

Lecture Notes in Computer Science 6986
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Petr Kolman Jan Kratochvíl (Eds.)

Graph-Theoretic
Concepts
in Computer Science

37th International Workshop, WG 2011
Teplá Monastery, Czech Republic, June 21-24, 2011
Revised Papers

13

Volume Editors

Petr Kolman
Jan Kratochvíl
KAM MFF UK
Charles University
Malostranské nám 25, 11800 Praha 1, Czech Republic
E-mail: {kolman, honza}@kam.mff.cuni.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25869-5 e-ISBN 978-3-642-25870-1
DOI 10.1007/978-3-642-25870-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): G.2.2, I.2.8, E.1, F.2, I.3.5, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 37th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2011) took place in Teplá Monastery, Czech Republic, during June
21–24, 2011. It was attended by 80 participants who came from all over the world
not only to deliver or listen to interesting talks, but also to celebrate the 65th
birthday of Luděk Kučera, a long-time member of the WG Steering Committee.

The conference series has a long tradition. Since 1975, WG has been organized
21 times in Germany, four times in The Netherlands, twice in Austria, France and
the Czech Republic, and once in Greece, Italy, Norway, Slovakia, Switzerland,
and the UK. WG aims at merging theory and practice by demonstrating how
concepts from graph theory can be applied to various areas in computer science,
and by extracting new graph theoretic problems from applications. Its goal is
to present emerging research results and to identify and explore directions of
future research. As always, this year’s conference was well-balanced with respect
to established researchers and young scientists.

This year’s conference received 54 submissions, two of which were withdrawn
before entering the review process. Each submission was carefully reviewed by
at least three, and on average four, members of the Program Committee. The
Committee decided to accept 28 papers for presentation at the conference and
publication in the proceedings. The conference program was further enriched by
two invited talks presented by Dániel Marx and Alberto Marchetti-Spaccamela
and whose extended abstracts are also included in the proceedings.

The site of the conference was the Premonstratensian abbey at Teplá, near
Mariánské lázně in western Bohemia. As mentioned above, the annual WG work-
shops have a long tradition going back to 1975 when the first WG took place in
Berlin. The Premonstratensian Order has an incomparably longer tradition of,
among other virtues, promoting science, technology and knowledge in general.
The abbey at Teplá used to be a center of art and science for centuries, its library
was one of the largest in the country, the abbey used to have its own observatory.
Among the Premonstratensians from Teplá one can find rectors of the Charles
University in Prague (Chrysostomus Pfrogner, Alois David), the vice-rector of
the Naval Academy at Rijeka (Vojtěch Knight Kuneš) or the director of the
Polytechnical Institute in Budapest (Lambert Mayer). Thus, though the voca-
tion of a friar and a scientist may seem very different at the first sight, there are
some similarities, too, the bottom line of which is a quest for truth. The abbey
turned out to be a great venue for the conference.

The scientific program of the conference was complemented by a social program
that contributed to a friendly and relaxing atmosphere. This included an organ
concert given by a world-class organist, Aleš Bárta, in the baroque church of the
abbey, a wine tasting of the finest selection of wines from Znov́ın Znojmo, and an
excursion to Bečov Castle with a display of the unique reliquary of St. Maurus.

VI Preface

We wish to thank all who contributed to the success of WG 2011: the
authors for submitting high-quality papers, the external reviewers for their timely
reports, the Program Committee members for their excellent and responsible
work, P. Augustin Ján Kováčik, O. Praem., Administrator, and Ms. Novotná
from the abbey for their help and hospitality, Aleš Bárta for an excellent concert,
Znov́ın Znojmo for sponsoring WG with top-quality wines from South Moravian
vineyards, Luděk Kučera for suggesting the venue, our colleagues and students
Jǐŕı Fiala, Tomáš Vyskočil, and Martin Koutecký for their help with the organi-
zation, and last but not least Anna Kotěšovcová and her team from Conforg for
a very smooth organization of WG 2011.

August 2011 Petr Kolman
Jan Kratochv́ıl

Organization

Program Committee

Tetsuo Asano Japan Advanced Institute of Science and
Technology, Nomi, Japan

Andreas Brandstädt University of Rostock, Germany
Leizhen Cai Chinese University of Hong Kong, SAR China
Sunil Chandran Indian Institute of Science, Bangalore, India
Jianer Chen Texas A&M University, College Station, USA
Derek Corneil University of Toronto, Canada
Michel Habib LIAFA-Université Paris 7, France
Pinar Heggernes University of Bergen, Norway
Juraj Hromkovič Federal Institute of Technology Zurich,

Switzerland
Petr Kolman Charles University in Prague, Czech Republic
Jan Kratochv́ıl - Chair Charles University in Prague, Czech Republic
Ludek Kučera Charles University in Prague, Czech Republic
Ernst Mayr Technical University Munich, Germany
Haiko Müller University of Leeds, UK
Sang-Il Oum Korea Advanced Institute of Science and

Technology, Daejeon, Korea
Christophe Paul National Center for Scientific Research,

Montpellier, France
Andrzej Proskurowski University of Oregon, Eugene, USA
Michal Stern Caesarea Rothschild Institute and Academic

College of Tel Aviv-Jaffa, Israel
Dimitrios Thilikos National and Kapodistrian University of

Athens, Greece
Dorothea Wagner University of Karlsruhe, Germany

Additional Reviewers

Adler, Isolde
Aravind, N.R.
Asinowski, Andrei
Bachmaier, Christian
Barat, Janos
Basavaraju, Manu
Beck, Nili
Bodlaender, Hans
Böckenhauer, Hans-Joachim

Bousquet, Nicolas
Chaplick, Steven
Cibulka, Josef
Daligault, Jean
Fernau, Henning
Fiala, Jǐŕı
Fleiner, Tamas
Fomin, Fedor V.
Fotakis, Dimitris

VIII Organization

Francis, Mathew
Gemsa, Andreas
Giannopoulou, Archontia
Gioan, Emeric
Golovach, Petr
Gregor, Petr
Gurski, Frank
Görke, Robert
Hartmann, Tanja
Havet, Frederic
Hicks, Illya
Hunter, Paul
Jampani, Krishnam Raju
Kaminski, Marcin
Kanj, Iyad
Keller, Lucia
Klav́ık, Pavel
Knop, Dušan
Kolliopoulos, Stavros
Komm, Dennis
Koutsonas, Athanassios
Kratsch, Dieter
Krause, Philipp Klaus
Krug, Marcus
Krugel, Johannes
Král, Daniel
Královič, Richard
Kurur, Piyush
Le, Van Bang
Leveque, Benjamin
Lieber, Tobias
Limouzy, Vincent
Lin, Min Chih
Mamcarz, Antoine
McConnell, Ross
Meister, Daniel
Mertzios, George B.
Misra, Neeldhara
Mnich, Matthias
Molitor, Paul

Monaco, Gianpiero
Müller, Tobias
Nanongkai, Danupon
Nasre, Meghana
Nevries, Ragnar
Norine, Serguei
Obdržálek, Jan
Pajor, Thomas
Paulusma, Daniel
Perez, Anthony
Pergel, Martin
Raffinot, Mathieu
Rao, Michael
Rautenbach, Dieter
Rossmanith, Peter
Rotics, Udi
Rutter, Ignaz
Sau, Ignasi
Sawada, Joe
Schiermeyer, Ingo
Sereni, Jean-Sebastian
Sikdar, Somnath
Sivadasan, Naveen
Sprock, Andreas
Sritharan, R.
Stanton, Brendon
Steffen, Björn
Steinová, Monika
Tancer, Martin
Telle, Jan Arne
Tůma, Vojtěch
Täubig, Hanjo
Villanger, Yngve
Volec, Jan
Völker, Markus
Wahlström, Magnus
Weihmann, Jeremias
Wolff, Alexander
Zwols, Yori

Table of Contents

Structures and Hyperstructures in Metabolic Networks 1
Alberto Marchetti-Spaccamela

Important Separators and Parameterized Algorithms 5
Dániel Marx

Split Clique Graph Complexity . 11
Liliana Alcón, Luerbio Faria, Celina M.H. de Figueiredo, and
Marisa Gutierrez

On Searching for Small Kochen-Specker Vector Systems 23
Felix Arends, Joël Ouaknine, and Charles W. Wampler

Characterizations of Deque and Queue Graphs . 35
Christopher Auer and Andreas Gleißner

Graph Classes with Structured Neighborhoods and Algorithmic
Applications . 47

Rémy Belmonte and Martin Vatshelle

Exact Algorithms for Kayles . 59
Hans L. Bodlaender and Dieter Kratsch

The Cinderella Game on Holes and Anti-holes . 71
Marijke H.L. Bodlaender, Cor A.J. Hurkens, and
Gerhard J. Woeginger

On the Complexity of Planar Covering of Small Graphs 83
Ondřej Bı́lka, Jozef Jirásek, Pavel Klav́ık, Martin Tancer, and
Jan Volec

Approximability of Economic Equilibrium for Housing Markets with
Duplicate Houses . 95

Kataŕına Cechlárová and Eva Jeĺınková

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs 107
Christine Cheng, Eric McDermid, and Ichiro Suzuki

List Coloring in the Absence of a Linear Forest . 119
Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and
Daniël Paulusma

X Table of Contents

Parameterized Complexity of Eulerian Deletion Problems 131
Marek Cygan, Dániel Marx, Marcin Pilipczuk,
Micha�l Pilipczuk, and Ildikó Schlotter

Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons 143
Andreas Emil Feldmann, Shantanu Das, and Peter Widmayer

Maximum Independent Set in 2-Direction Outersegment Graphs 155
Holger Flier, Matúš Mihalák, Peter Widmayer, and Anna Zych

Complexity of Splits Reconstruction for Low-Degree Trees 167
Serge Gaspers, Mathieu Liedloff, Maya Stein, and Karol Suchan

Empires Make Cartography Hard: The Complexity of the Empire
Colouring Problem . 179

Andrew R.A. McGrae and Michele Zito

Alternation Graphs . 191
Magnús M. Halldórsson, Sergey Kitaev, and Artem Pyatkin

Improved Bounds for Minimum Fault-Tolerant Gossip Graphs 203
Toru Hasunuma and Hiroshi Nagamochi

Parameterized Two-Player Nash Equilibrium . 215
Danny Hermelin, Chien-Chung Huang, Stefan Kratsch, and
Magnus Wahlström

Counting Independent Sets in Claw-Free Graphs . 227
Konstanty Junosza-Szaniawski, Zbigniew Lonc, and
Micha�l Tuczyński

On the Independence Number of Graphs with Maximum Degree 3 238
Iyad A. Kanj and Fenghui Zhang

On Computing an Optimal Semi-matching . 250
Frantǐsek Galč́ık, Ján Katrenič, and Gabriel Semanǐsin

Planar k-Path in Subexponential Time and Polynomial Space 262
Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh

Approximability of the Path-Distance-Width for AT-free Graphs 271
Yota Otachi, Toshiki Saitoh, Katsuhisa Yamanaka, Shuji Kijima,
Yoshio Okamoto, Hirotaka Ono, Yushi Uno, and Koichi Yamazaki

Hanani-Tutte and Monotone Drawings . 283
Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and
Daniel Štefankovič

On Collinear Sets in Straight-Line Drawings . 295
Alexander Ravsky and Oleg Verbitsky

Table of Contents XI

From Few Components to an Eulerian Graph by Adding Arcs 307
Manuel Sorge, René van Bevern, Rolf Niedermeier, and
Mathias Weller

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend
Paths in a Grid . 319

Steven Chaplick, Elad Cohen, and Juraj Stacho

A Polynomial Time Algorithm for Bounded Directed Pathwidth 331
Hisao Tamaki

Author Index . 343

Structures and Hyperstructures

in Metabolic Networks

Alberto Marchetti-Spaccamela�

Sapienza Università di Roma, Italy

1 Introduction

There has been an increasing interest by the computational biology community
in the study of chemical reactions within cells; indeed cells can be considered
as chemical factories that manufacture the various products of the cells and the
metabolic capacities of an organism are directly defined by the set of its possible
biochemical reactions. The links between reactions and compounds (or metabo-
lites) that are used and produced by such reactions constitute the metabolic
network of an organism.

A metabolic network consists of a set of metabolites and a set of reactions.
Each reaction transforms a subset of metabolites, the substrates, into another
subset of metabolites, the products of the reaction. Such a network can be mod-
elled as a directed hypergraph G = (N, R) with N being the set of vertices
corresponding to metabolites (also called compounds) and R the set of hyper-
edges corresponding to reactions. A hyperedge r ∈ R is directed away from a
compound c ∈ N only if c is a substrate of r, and directed into c only if c is a
product of r. Clearly we can also represent a directed hypergraph using directed
bipartite graphs with node sets (A, B) and arcs in both direction. Namely, A de-
notes the set of compounds and B the set of reactions; if x is substrate (product)
of reaction R then there is a directed arc from x to R (from R to x).

Note that reactions can be reversible and that we need to take into account
stoichiometry. Namely, each reversible reaction can be modeled as two different
reactions of opposite direction and an integer weight associated to each sub-
strate/product of a reaction allows to represent the stoichiometry coefficient of
the compound in the reaction. Next to that we observe that a subset of the
compounds which are nutrients of the cell could be regarded as being available
in infinite supply (for instance, from the environment).

The above presentation does not exhaust all possible biological aspects that
could be taken into account (e.g. it does not model the role of proteins in cat-
alyzing the reactions). We refer to the survey [8] and to references therein for a
more thoroughly presentation.

2 Structural Characterization

The vast literature focusing on metabolic networks can be roughly classified in two
categories depending on whether networks are studied either from a structural
� Partially supported by project INRIA ARC project SIMBIOSI.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 1–4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 A. Marchetti-Spaccamela

perspective, or from a dynamic one. In this section we briefly refer to the first
perspective.

In 1999 Barabasi and his group published two papers that had a strongly im-
pact in the community. The papers’ contribution can be summarized in two main
claims; the first one was the apparently startling discovery that the distribution
of connections of compounds (i.e. the number hyperlinks in which the compound
is involved) follows a power law; namely, the frequency of nodes with connectivity
k falls exponentially as k−α where α denotes the power law coefficient [5].

The second main claim was that the finding of a power law distribution in-
dicates that metabolic network are scale-free networks [11]. This second claim
had a big impact in the biological community and in the media. In fact the claim
was counter to traditional expectations of the community and for this reason its
occurrence seems to imply some deep meaning as similar discoveries in physics
(e.g. the occurrence of scale free networks had a deep impact in the study of
phase transitions).

The above papers had a broad interest in the biological community for their
impact: the papers proposed a model for metabolic networks that provides a
proper probabilistic framework that could be used a reference model for biology.

More recently there has been a detailed analysis of Barabasi’s claims (see
for example [6,7,12]). Main criticisms are: there was a high rate errors in used
data and available data can be also explained using other degree distributions
(not scale-free); moreover the analysis was mainly done modeling the network
using a graph that shows interaction of compounds but misses crucial aspects of
metabolic reactions (e.g. direction of the reaction, conservation of mass). Finally
it was also remarked that scale free networks are very general: if metabolic
networks are scale free then this does not provide any clue on them.

Preliminary investigations using two well known structural characterization
of graphs confirm that metabolic networks are not scale free. Namely, we have
performed experiments in characterizing the structural properties of the directed
bipartite graph representing the network using structural characterization as
treewidth and Kelly width. Our results show the existence of a core subnetwork
that involves only a fraction of the compounds of the metabolic network and
that seems to characterize the structure of the network.

We finally mention that in [9] the authors show that, similarly to the Web,
metabolic networks show a bow-tie structure. As a conclusion the structural
characterization of metabolic networks that might allow to obtain a a suitable
structural model that might provide a framework for the analysis of specific
networks [4].

3 Dynamic Characterization

The dynamics of metabolic networks can be also based on graph-related for-
malisms on a constraint-based modelling in which the network may still be
modelled as an edge-labelled hypergraph, but several types of constraints are

Structures and Hyperstructures in Metabolic Networks 3

added to restrict the possible fluxes through the network (to take into account
other aspects such as stoichiometric and thermodynamic constraints).

The choice of a particular model heavily depends on the type of the specific
question one wishes to address but also on the type of data that is available. An
important aspect that must be taken into account is the computational cost of
a given analysis, and therefore its scalability to large datasets (such as genome-
scale metabolic networks). This might force the choice of tractable models.

Significant research has been carried on in studying suitably defined subnet-
works of a given metaboic network. An important aspect is the study of admis-
sible flux distributions that corresponds to a set of reactions, which, perform the
transformation of available substrates into removable products with the special
property that all intermediate compounds are balanced (steady-state assump-
tion) and irreversible reactions are taken in the appropriate direction (thermody-
namic constraint). Such an admissible flux distribution is called a mode; finding
modes in a network is equivalent to finding suitably defined hyperpaths in the
network.

A central concept in this methodology is the notion of an elementary mode
which represents a minimal functional subsystem and that can be detected by
finding minimal hyperpaths in the network. The computation of elementary
modes still forms a limiting step in metabolic studies whose computational com-
plexity has been characterized [1,2]. Moreover, several algorithms have been pro-
posed to address this problem leading to increasingly faster methods. However,
although a theoretical upper bound on the number of elementary modes that
a network may possess has been established and enumeration algorithms have
been proposed [13], the complexity of this enumeration problem is a main open
problem in the area.

Since even relatively small networks have many elementary modes and given
that their enumeration seems out of reach, it is important to suitably restrict the
definition for which enumeration is possible either theoretically or in practice.
This opens the possibility to define new problems that can be directly formulated
as graph problems. As an example, in [3] the authors study the problem of finding
minimal sets of metabolites (called precursors) that are sufficient to produce a set
of target metabolites. The model takes into account self-regenerating metabolites
involved in hypercycles, which may be used to generate target metabolites from
potential precursors. Even if the problem of enumerating minimal precursors
is intractable an algorithm to enumerate all minimal precursor sets for a set of
target metabolites can be applied in real networks to identify a minimal medium
necessary for a cell to ensure some metabolic functions.

The structural analysis of metabolic networks aims both at understanding
the function and the evolution of metabolism. While it is commonly admitted
that metabolism is modular, the identification of metabolic modules remains an
open topic. Several definitions of what is a module have been proposed, and the
research in the area is still very active. The notion of chemical organizations,
aims to define sets of molecules which are closed and self-maintaining [10].

4 A. Marchetti-Spaccamela

References

1. Acuña, V., Chierichetti, F., Lacroix, V., Marchetti-Spaccamela, A., Sagot, M.F.,
Stougie, L.: Modes and cuts in metabolic networks: Complexity and algorithms.
Biosystems 95(1), 51–60 (2009)

2. Acuña, V., Marchetti-Spaccamela, A., Sagot, M.F., Stougie, L.: A note on the
complexity of finding and enumerating elementary modes. Biosystems 99(3),
210–214 (2010)

3. Cottret, L., Milreu, P.V., Acuña, V., Marchetti-Spaccamela, A., Stougie, L.,
Charles, H., Sagot M.F.: Graph-based analysis of the metabolic exchanges between
two co-resident intracellular symbionts, baumannia cicadellinicola and sulcia muel-
leri, with their insect host, homalodisca coagulata. PLOS Computational Biology 6
(2010)

4. Picard, F., Daudin, J.-J., Robin, S.: A mixture model for random graphs. Statistics
and Computing 18(2), 173–183 (2008)

5. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale
organization of metabolic networks. Nature 407(5), 651–654 (2000)

6. Keller, E.F.: Revisiting scale-free networks. Bioessays 27(10), 1060–1068 (2005)
7. Khanin, R., Wit, E.: How scale-free are biological networks. Journal of Computa-

tional Biology 13(3), 810–818 (2006)
8. Lacroix, V., Cottret, L., Thébault, P., Sagot, M.F.: An introduction to metabolic

networks and their structural analysis. IEEE/ACM Trans. Comput. Biology Bioin-
form. 5(4), 594–617 (2008)

9. Ma, H., Zeng, A.P.: Reconstruction of metabolic networks from genome data
and analysis of their global structure for various organisms. Bioinformatics 19(2),
270–277 (2003)

10. Milreu, P.V., Acuña, V., Birmelé, E., Crescenzi, P., Marchetti-Spaccamela, A.,
Sagot, M.F., Stougie, L., Lacroix, V.: Enumerating Chemical Organisations in Con-
sistent Metabolic Networks: Complexity and Algorithms. In: Moulton, V., Singh,
M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 226–237. Springer, Heidelberg (2010)

11. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical
organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

12. Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-
free: Sampling properties of networks. PNAS 102(12), 4221–4224 (2005)

13. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit
pattern trees. Bioinformatics 24(19), 2229–2235 (2008)

Important Separators and Parameterized

Algorithms

Dániel Marx

Institut für Informatik, Humboldt-Universität zu Berlin, Germany
dmarx@cs.bme.hu

Abstract. The notion of “important separators” and bounding the num-
ber of such separators turned out to be a very useful technique in the de-
sign of fixed-parameter tractable algorithms for multi(way) cut problems.
For example, the recent breakthrough result of Chen et al. [3] on the Di-

rected Feedback Vertex Set problem can be also explained using this
notion. In my talk, I will overview combinatorial and algorithmic results
that can be obtained by studying such separators.

1 Introduction

Problems related to cutting a graph into parts satisfying certain properties or
separating different parts of the graph from each other form a classical area
of graph theory and combinatorial optimization, with strong motivation com-
ing from applications. The study of these problems revealed deep mathematical
structures, such as connections to linear programming and semidefinite program-
ming. In this talk, we explore an aspect of these problems that has been inves-
tigated and exploited only recently. It seems that understanding the extremal
properties of small separators can be used to obtain combinatorial results and
fixed-parameter tractability results. In particular, the notion of “important sepa-
rators” has been used (implicitly or explicitly) in recent results on parameterized
algorithms for separation and related problems [11,15,2,12,1,10,9].

An (X, Y)-separator is a set S of edges that separate X and Y for each other,
that is, G \ S has no component containing vertices from both X and Y (most
of what we discuss here can be extended to vertex cutsets, but for simplicity
we stick to edge cuts now). An (X, Y)-separator S is inclusionwise minimal if
no subset S′ ⊂ S is an (X, Y)-separator. The main definition of the talk is the
following:

Definition 1. Let X, Y ⊆ V (G) be vertices, S ⊆ E(G) be an (X, Y)-separator,
and let R be the set of vertices reachable from X in G \ S. We say that S is
an important (X, Y)-separator if it is inclusionwise minimal and there is no
(X, Y)-separator S′ with |S′| ≤ |S| such that R ⊂ R′, where R is the set of
vertices reachable from X in G \ S′.

Note that an important (X, Y)-separator is not necessarily an important (Y, X)-
separator. Intuitively, we want to minimize the size of the (X, Y)-separator and

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 5–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

6 D. Marx

at the same time we want to maximize the set of vertices that remain reachable
from X after removing the separator. The important separators are the separa-
tors that are Pareto-optimal with respect to these two objectives. Note that we
do not want the number of vertices reachable from X to be maximal, we just
want that this set of vertices is inclusionwise maximal (i.e., we have R ⊂ R′ and
not |R| < |R′| in the definition). The main observation of [11] is that the number
of important (X, Y)-separators of size at most k can be bounded by a function
of k; a better bound is implicit in [2].

Theorem 2. [11,2] Let X, Y ⊆ V (G) be two sets of vertices in graph G, let
k ≥ 0 be an integer, and let Sk be the set of all (X, Y)-important separators of
size at most k. Then |Sk| ≤ 4k and Sk can be constructed in time |Sk| · nO(1).

The following lemma clearly proves the bound in Theorem 2: if the sum is at
most 1, then there cannot be more than 4k important (X, Y)-separators of size
at most k.

Lemma 3. [10] Let X, Y ⊆ V (G). If S is the set of all important (X, Y)-
separators, then

∑
S∈S 4−|S| ≤ 1.

As an application, we can prove the following surprisingly simple, but still non-
trivial combinatorial result:

Lemma 4. Let X, Y ⊆ V (G). The union of all inclusionwise minimal (X, Y)-
separators of size at most k contains at most k · 4k edges incident to Y .

2 Multiway Cut

Let G be a graph and T be a set of terminals. A multiway cut is a set S of edges
such that every component of G \ S contains at most one vertex of T .

Multiway Cut

Input: Graph G, set T of vertices, integer k
Find: A multiway cut S of size at most k

The Multiway Cut problem is known to be NP-hard already for |T | = 3 ter-
minals [6] (for two terminals, it is the classical minimum s−t cut problem, hence
it is polynomial-time solvable). For every fixed k, the problem is polynomial-time
solvable: using brute force, we can try all possible subsets of k edges in time
nO(k). Of course, for moderately large values of n, such a solution seems to be
practically useless already for very small values of k, say for k = 10. Can we do
anything significantly smarter than complete enumeration of these subsets? The
main goal of parameterized complexity is to design algorithms where the com-
binatorial explosion is restricted to a well-defined parameter (such as the size k
of the solution we are looking for). Recall that a problem with a parameter k is

Important Separators and Parameterized Algorithms 7

fixed-parameter tractable if it can be solved in time f(k) ·nO(1) for some function
f depending only on the parameter k [7,8,13]. If f(k) is “nice,” say, f(k) is ck

for some small constant c, then such an algorithm can be useful for small values
of k even for large n.

We show that Multiway Cut is FPT parameterized by k. The following
observation connects Multiway Cut and the concept of important separators:

Lemma 5 (Pushing Lemma). Let t ∈ T be a terminal that is not separated
from T \ t in G. If G has a multiway cut S, then it also has a multiway cut S′

with |S′| ≤ |S| that contains an important (t, T \ t)-separator.

Using this observation, we can solve the problem by branching on the choice of
an important separator and including it into the solution:

Theorem 6. [2] Multiway Cut can be solved in time 4k · nO(1).

Proof. We solve the problem by a recursive branching algorithm. If all the ter-
minals are separated from each other, then we are done. Otherwise, let t ∈ T be
a terminal not separated from the rest of the terminals. Let us use the algorithm
of Theorem 2 to construct the set Sk consisting of every important (t, T \ t)-
separator of size at most k. By Lemma 5, there is a solution that contains one of
these separators. Therefore, we branch on the choice of one of these separators,
and for every important separator S′ ∈ Sk, we recursively solve the Multiway

Cut instance (G \ S′, k − |S′|). If one of these branches returns a solution S,
then clearly S ∪ S′ is a multiway cut of size at most k in G.

The correctness of the algorithm is clear from Lemma 5. We claim that the
search tree explored by the algorithm has at most 4k leaves. We prove this by
induction on k, thus let us assume that the statement is true for every value
less than k. This means that we know that the recursive call (G \ S′, k − |S′|)
explores a search tree with at most 4k−|S′| leaves. Using Lemma 3, we can bound
the number of leaves of the search tree by∑

S′∈Sk

4k−|S′| ≤ 4k ·
∑

S′∈Sk

4−|S′| ≤ 4−k.

�	
The running time can be improved from 4k · nO(1) to 2k · nO(1) with somewhat
different techniques [15,5].

A natural generalization of Multiway Cut can be obtained if, instead of
requiring that all the terminals are separated from each other, we require that
a specified set of pairs are separated from each other:

Multicut

Input: Graph G, pairs (s1, t1), . . . , (s�, t�), integer k
Find: A set S of at most k edges such that G \ S has
no si − ti path for any i

8 D. Marx

Theorem 6 implies that Multicut is FPT jointly parameterized by k and
�, that is, can be solved in time f(k, �) · nO(1). We can guess how the solution
S partitions the 2� vertices si, ti (1 ≤ i ≤ �), identify those vertices that are
supposed to be in the same component of G \ S, and solve the resulting Mul-

tiway Cut instance. It is a more challenging question whether the problem is
FPT parameterized by k (the size of the solution) only. Very recently, a positive
answer was given to this question:

Theorem 7. [1,12] Multicut is FPT parameterized by k.

The proof in [12] introduces a new way of using important separators: with
the “random sampling of important separators” technique we can significantly
simplify the problem instance. This technique has found applications for other
problems [4,10] and it is very likely that it will be of use in the future.

3 Directed Graphs

Problems on directed graphs are notoriously more difficult than problems on
undirected graphs. This is phenomenon has been observed equally often in
the area of polynomial-time algorithms, approximability, and fixed-parameter
tractability. Let us see if the techniques based on important separators survive
the generalization to directed graphs. First, important separators can be defined
analogously for directed graphs and the bound of 4k of Lemma 2 still holds.
This gives us some hope that we would be able to use the technique on directed
graphs and in particular to show that Directed Multiway Cut (Delete a set
of at most k edges such that there is no t1 → t2 path in G \ S for any two
distinct t1, t2 ∈ T) is fixed-parameter tractable. However, the Pushing Lemma
(Lemma 5) is not true on directed graphs. This means that a straightforward
generalization of Theorem 6 to directed graphs is not possible. Nevertheless,
Chitnis et al. [4] showed, using the random sampling technique of [12], that the
problem is FPT:

Theorem 8. [4] Directed Multiway Cut is FPT.

What about the more general Directed Multicut problem? In contrast to the
undirected version, the directed problem is W[1]-hard parameterized by k [12].
But the problem can be interesting even for small values of �. The case � = 2 can
be reduced to Directed Multiway Cut in a simple way, thus Theorem 8 implies
that Directed Multicut for � = 2 is FPT parameterized by k. The case of a
fixed � ≥ 3 and the case of jointly parameterizing with � and k are still open.

Chen et al. [3] considered the following (slightly unnatural) variant of Di-

rected Multicut:

Skew Multicut

Input: Graph G, pairs (s1, t1), . . . , (s�, t�), integer k
Find: A set S of at most k edges such that G \ S has
no si → tj path for any i ≤ j

Important Separators and Parameterized Algorithms 9

For this problem, the Pushing Lemma can be made to work: there is a so-
lution that contains an important (s1, {t1, . . . , t�})-separator. Therefore, argu-
ments analogous to Theorem 6 give:

Theorem 9. [3] Skew Multicut is FPT parameterized by k.

The reason why Chen et al. [3] considered this problem is that it formed an
important ingredient in their proof showing that Directed Feedback Vertex

Set is FPT.

Directed Feedback Vertex Set

Input: A directed graph G, integer k
Find: A set S of at most k vertices such that G \ S has
no directed cycle

Using the technique of iterative compression (introduced by Reed et al. [14]),
Chen et al. [3] gave a nice reduction from Directed Feedback Vertex Set

to Skew Multicut. Together with Theorem 9, this reduction established the
fixed-parameter tractability of Directed Feedback Vertex Set, resolving a
longstanding open problem.

Theorem 10. [3] Directed Feedback Vertex Set is FPT parameterized
by k.

4 Conclusions

The notion of important separators seems to be useful for a wide range of com-
binatorial and algorithmic problems. In a particular application, first we need to
observe that important separators are relevant (an example of this is the Push-
ing Lemma for Multiway Cut) and then we can try to apply the upper bound
of Theorem 2. The random sampling technique of [12] raises the applicability of
important separators to a new level. After the initial application for Multicut,
randomized sampling turned out to be useful for Directed Multiway Cut

[4], and, in a very different context, for a clustering problem [10]. Based on the
recent surge of results using important separators, one can safely expect that it
will find further uses.

References

1. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the
43rd ACM Symposium on Theory of Computing, pp. 459–468 (2011)

2. Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum
Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

3. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

10 D. Marx

4. Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. Accepted to SODA (2012)

5. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.: On multiway cut pa-
rameterized above lower bounds. Accepted to IPEC (2011)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
9. Heggernes, P.: van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph

by contracting few edges. CoRR abs/1102.5441 (2011)
10. Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Hen-

zinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 785–797. Springer,
Heidelberg (2011)

11. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3),
394–406 (2006)

12. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: Proceedings of the 43nd ACM Symposium on Theory of
Computing, pp. 469–478 (2011)

13. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

15. Xiao, M.: Algorithms for Multiterminal Cuts. In: Hirsch, E.A., Razborov, A.A., Se-
menov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 314–325. Springer,
Heidelberg (2008)

Split Clique Graph Complexity

Liliana Alcón1, Luerbio Faria2,
Celina M.H. de Figueiredo3, and Marisa Gutierrez1,4

1 Universidad Nacional de La Plata, La Plata, Argentina
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

3 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
4 CONICET, Argentina

Abstract. A complete set of a graph G is a subset of vertices inducing a
complete subgraph. A clique is a maximal complete set. Denote by C(G)
the clique family of G. The clique graph of G, denoted by K(G), is the
intersection graph of C(G). Say that G is a clique graph if there exists a
graph H such that G = K(H). The clique graph recognition problem, a
long-standing open question posed in 1971, asks whether a given graph
is a clique graph and it was recently proved to be NP-complete even for
a graph G with maximum degree 14 and maximum clique size 12. Hence,
if P�=NP, the study of graph classes where the problem can be proved
to be polynomial, or of more restricted graph classes where the problem
remains NP-complete is justified. We present a proof that given a split
graph G = (V, E) with partition (K, S) for V , where K is a complete set
and S is a stable set, deciding whether there is a graph H such that G is
the clique graph of H is NP-complete. As a byproduct, we prove that a
problem about the Helly property on a family of sets is NP-complete. Our
result is optimum in the sense that each vertex of the independent set of
our split instance has degree at most 3, whereas when each vertex of the
independent set has degree at most 2 the problem is polynomial, since
it is reduced to check whether the clique family of the graph satisfies
the Helly property. Additionally, we show three split graph subclasses
for which the problem is polynomially solvable: the subclass where each
vertex of S has a private neighbor, the subclass where |S| ≤ 3, and the
subclass where |K| ≤ 4.

Keywords: clique graph, Helly property, NP-complete, split graphs.

1 Introduction

Consider finite, simple and undirected graphs. V and E denote the vertex set and
the edge set of the graph G, respectively. A complete set of G is a subset of V in-
ducing a complete subgraph. A clique is a maximal complete set. The clique family
of G is denoted by C(G). The clique graph of G is the intersection graph of C(G).

The clique operator, K, assigns to each graph G its clique graph which is
denoted by K(G). On the other hand, say that G is a clique graph if G belongs
to the image of the clique operator, i.e. if there exists a graph H such that
G = K(H).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 11–22, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

12 L. Alcón et al.

Clique operator and its image were widely studied. First articles focused on
recognizing clique graphs [7,11]. Graphs fixed under the operator K or fixed
under the iterated clique operator, Kn, for some positive integer n; and the
behavior under these operators of parameters such as number of vertices or
diameter were studied. For several classes of graphs, the image of the class under
the clique operator was characterized; and, in some cases, also the inverse image
of the class. Results of the previous bibliography can be found in the survey [14].
Clique graphs have been much studied as intersection graphs and are included
in several books [5,8,10].

The characterization of clique graphs given in [11] proposed the computa-
tional complexity of the recognition of clique graphs, a long-standing open ques-
tion [5,10,11,14] just recently settled as NP-complete [1,2].

A graph is split if its vertex set can be partitioned into a complete set and
a stable set. In this paper, we are concerned with the time complexity of the
problem of recognizing split clique graphs, for which we establish NP-complete
and polynomial results.

split clique graph

instance: A split graph G = (V, E).
question: Is there a graph H such that G = K(H)?

We prove that split clique graph is NP-complete. As a byproduct, we prove
that a problem about the Helly property is NP-complete. Given a set family
F = (Fi)i∈I , the sets Fi are called members of the family. F ∈ F means that F
is a member of F . The family is pairwise intersecting if the intersection of any
two members is not the empty set. The intersection or total intersection of F
is the set

⋂F =
⋂

i∈I Fi. The family F has the Helly property, if any pairwise
intersecting subfamily has nonempty total intersection. Besides the theoretical
interest, the Helly property has applications in many different areas such as
optimization and location problems, semantics, coding, computational biology,
data bases, image processing and, in special, graph theory where it has been a
useful and a natural tool. We refer to [6] for a survey on the Helly property and
its complexity aspects.

Given a family of sets F , say that a family F ′ is a spanning family for F if:⋃
F ′∈F ′ F ′ =

⋃
F∈F F ; for each F ′ ∈ F ′, |F ′| > 1; for each F ′ ∈ F ′, there exists

F ∈ F such that F ′ ⊆ F ; and for each F ∈ F ,
⋃

F ′⊆F,F ′∈F ′ F ′ = F .

spanning Helly family

instance: A family of sets F .
question: Does F admit a spanning family F ′ that satisfies the Helly property?

Our NP-completeness result yields that spanning Helly family is NP-complete
even when restricted to the members of the input family F having cardinality 2 or
3. Note that the problem is polynomial when all members of F have cardinality 2,
and we leave as open the problem when all members of F have cardinality exactly
3. Note that the problem 3sat3, defined in Section 2, when restricted to having
exactly three literals per clause is polynomial [9].

Split Clique Graph Complexity 13

2 NP-Complete Split Clique Graph Classes

Theorem 1 is a well known characterization of Clique Graphs. The edge with
end vertices u and v is represented by uv. We say that the complete set C covers
the edge uv when u and v belong to C. A complete set edge cover of a graph G
is a family of complete sets of G covering all edges of G.

Theorem 1 (Roberts and Spencer [11]). G is a clique graph if and only if
there exists a complete set edge cover of G satisfying the Helly property.

Notice that for any graph G the clique family C(G) is a complete set edge cover
of G, but, in general, this family does not satisfy the Helly property. Graphs
such that C(G) satisfies the Helly property are called clique-Helly graphs. It
follows from Theorem 1 that every clique-Helly graph is a clique graph. In [13],
clique-Helly graphs are characterized and a polynomial-time algorithm for their
recognition is presented. Lemma 2 extends that result and leads to a polynomial-
time algorithm to check if a given complete set edge cover of a graph satisfies
the Helly property which in turn yields that clique graph is in NP [1,2].

A triangle is a complete set with exactly 3 vertices. The set of triangles of G
is denoted T (G). Let F be a complete set edge cover of G and T a triangle, and
denote by FT the subfamily of F formed by all the members containing at least
two vertices of T .

Lemma 2 (Alcón and Gutierrez [3]). Let F be a complete set edge cover of
G. The following conditions are equivalent:
i) F has the Helly property.
ii) For every T ∈ T (G), the subfamily FT has the Helly property.
iii) For every T ∈ T (G), the subfamily FT has nonempty intersection, this means⋂FT �= ∅.

A graph admits a complete set edge cover with the Helly property if and only if
the graph admits a complete set edge cover with the Helly property such that no
member is contained in another; such cover is called an RS-family of the graph.
Thus Theorem 1 is equivalent to the following simpler statement: G is a clique
graph if and only if G admits an RS-family. The following properties are stated
and proved by Roberts and Spencer [11].

Lemma 3 (Lemma 1 and Theorem 3 of [11]). Let F be an RS-family of a
graph G. Then F contains a complete set of size 2 if and only if this complete
set is a clique of G. If a triangle T is a clique of G, then T is a member of F .

We show that split clique graph is NP-complete by a reduction from the
following version of the 3–satisfiability problem with at most 3 occurrences per
variable [9]. Let U = {ui, 1 ≤ i ≤ n} be a set of boolean variables. A literal is
either a variable ui or its complement ui. A clause over U is a set of literals.
Let C = {cj , 1 ≤ j ≤ m} be a collection of clauses over U . We say that variable
ui occurs in clause cj (and then in C) if ui or ui ∈ cj . We say that variable ui

14 L. Alcón et al.

occurs in clause cj as literal ui (or that literal ui occurs in cj) if ui ∈ cj , and as
literal ui (or that literal ui occurs in cj) if ui ∈ cj .

3sat3

instance: I = (U, C), where U = {ui, 1 ≤ i ≤ n} is a set of boolean variables,
and C = {cj , 1 ≤ j ≤ m} a set of clauses over U such that each clause has two
or three variables, each variable occurs at most three times in C.
question: Is there a truth assignment for U such that each clause in C has at
least one true literal?

In order to reduce 3sat3 to split clique graph, we need to construct in
polynomial time a particular instance GI of split clique graph from a generic
instance I = (U, C) of 3sat3, in such a way that the constructed graph GI is a
clique graph if and only if C is satisfiable. The particular instance GI is a 3-split
graph and we first characterize 3-split clique graphs.

3-Split Graphs

A split graph admits a split partition of its vertex set into a complete set K and
a stable set S. The family of cliques of a split graph with split partition (K, S) is
composed by the closed neighbourhood N [s], for each s ∈ S, and the complete
set K if it is not contained in N [s], for s ∈ S. An �-cone is an (� + 1)-clique
containing a vertex of S that is called its extreme vertex and the remaining �
vertices are in K composing the basis of the cone. The triangles of an �-cone
are its � triangles that contain the extreme vertex of the cone. The set of the
remaining vertices of a triangle of an �-cone are the basis of the triangle. Note
that a 2-cone is a triangle that is a clique and so by Lemma 3 forced to belong
to any RS-family of a split clique graph.

A 3-split graph admits a split partition where each vertex of the stable set S
has degree 2 or 3, in this case (K, S) is called a 3-split partition.

Theorem 4. Let G be a 3-split graph with 3-split partition (K, S). The following
are equivalent:

1. G is a clique graph;
2. There exists an RS-family F of G composed by K, each 2-cone and exactly

two triangles of each 3-cone;
3. There exists a family of complete sets of G containing each basis of a 2-cone

and the bases of exactly two triangles of each 3-cone that satisfies the Helly
property;

4. There exists a family of edges containing all the edges corresponding to the
bases of the 2-cones and the edges of the bases of exactly two triangles of
each 3-cone that induces a triangle-free subgraph of G[K].

Proof. 1. implies 2.: Let G be a 3-split graph with 3-split partition (K, S) and
let F be an RS-family of G. Assume K is not a member of F . Consider F ′

the family obtained from F by the addition of member K and by the removal
of complete sets K ′ that satisfy K ′ is a member of F and K ′ ⊂ K. Suppose

Split Clique Graph Complexity 15

there exists a pairwise intersecting subfamily of F ′ without a common vertex.
It is clear this subfamily must contain K, since the original RS-family F has
the Helly property. Let F1, F2, ..., F�, K be the pairwise intersecting subfamily
without a common vertex. Observe that � ≥ 2. Since F1, F2, ..., F� are members
of F , they have a common vertex s. It is clear s is not in K, and so s ∈ S.
In case N(s) = {x, y}, then F1 = {s, x} and F2 = {s, y} but this contradicts
Lemma 3 since F1 and F2 are not cliques of G. Hence, N(s) = {x, y, z} and
the assumption that F1, F2, ..., F� have no common vertex in K forces � = 3,
F1 = {s, y, z}, F2 = {x, s, z} and F3 = {x, y, s}, Note that F1, F2 and F3

are the three triangles containing vertex s. Now we can eliminate one of these
three triangles from F ′, the remaining two triangles have a common vertex in
K and cover the same set of edges as F ′. Observe that in case we have another
intersecting subfamily in F ′ without a common vertex, it must be the three
triangles of another 3-cone. We repeat the same reasoning for each such pairwise
intersecting subfamily to obtain an RS-family containing K.

So we may assume that K is a member of the RS-family F . Observe that each
2-cone is a clique and must be a member of F . Let Cs = {s, x, y, z} be a 3-cone
with extreme s and basis T = {x, y, z}. In order to cover the edges incident to
s, note that F must contain exactly two triangles of Cs or must contain the
3-cone Cs itself. Suppose Cs ∈ F . Note that no other member of F contains s.
By Lemma 2, let uT ∈ ⋂FT . Since uT ∈ K ∩ Cs = T , we may assume uT = y.
Consider F ′ obtained from F by the removal of cone Cs and the addition of
triangles {y, x, s} and {y, z, s}. Now suppose F1, F2, ..., F�, {y, x, s} is a pairwise
intersecting subfamily of F ′ without a common vertex. Since Fi ∩ {y, x, s} �=
∅ and Fi ∩ {y, x, s} �= s, we may assume x ∈ F1 and y �∈ F1, x �∈ F2 and
y ∈ F2. Since F1, F2, Cs are pairwise intersecting members of F , we must have
z = F1 ∩ F2 ∩ Cs. Now z, x ∈ F1 implies F1 ∈ FT , so y ∈ F1, a contradiction.
Suppose F1, F2, ..., F�, {y, x, s}, {y, z, s} is a pairwise intersecting subfamily of
F ′ without a common vertex. We have y �∈ F1 but F1 ∩ {y, x, s} �= ∅ and
F1 ∩ {y, z, s} �= ∅, which implies F1 ∈ FT , again leading to a contradiction.

4. implies 1.: Let E be a family of edges containing all the edges corresponding
to the bases of the 2-cones and the edges of the bases of exactly two triangles
of each 3-cone that induces a triangle-free subgraph of G[K]. Let e = xy be an
edge of the family E . Call Se = {s ∈ S|{x, y} ⊆ N(s)}. Observe that: (1) if s is
the extreme vertex of a 2-cone then s belongs to exactly one set Se; (2) if s is
the extreme vertex of a 3-cone then s belongs to exactly two sets Se. Consider
the complete set family F whose members are K and the triangles Te,s, where
e ∈ E and s ∈ Se. By (1) and (2) if a subfamily of triangles Te,s is pairwise
intersecting then the corresponding family of edges e is pairwise intersecting.
Since by hypothesis the family of edges do not contain a triangle, then they have
a common vertex in K, which implies F is an RS-family.

The remaining implications are simpler to establish and omitted in the ex-
tended abstract. �	

The family of edges defined in statement 4 of Theorem 4 is called an RS-basis
of a 3-split clique graph.

16 L. Alcón et al.

Construction of GI from I = (U, C)

Let I = (U, C) be any instance of 3sat3. We assume with no loss of generality
that each variable occurs two or three times in C, and no variable occurs twice
in the same clause. In addition, if variable ui occurs twice in C, then we assume
it is once as literal ui and once as literal ui; and if variable ui occurs three times
in C, then we assume it is once as literal ui and twice as literal ui.

For each variable ui, let ji be the subindex of the unique clause where variable
ui occurs as literal ui; and J i = {j | literal ui occurs in cj}.

For each clause cj with |cj | = 3, let Ij = {i | variable ui occurs in cj}; and
for each clause cj with |cj | = 2, let Ij = {i | variable ui occurs in cj}∪ {n + 1}.
Notice that in any case |Ij | = 3. Given Ij = {i1, i2, i3}, with i1 < i2 < i3, let
i∗1 = i2, i∗2 = i3 and i∗3 = i1.

From instance I = (U, C), we construct a graph GI = (V, E) as follows.
The vertex set V is the union:

V =
⋃

1≤i≤n

{ai
ji

, bi
ji

, ci
ji

, di
ji

, ei
ji

, f i
ji

, gi
ji

, hi
ji
}∪

⋃
1≤i≤n

⋃
j∈Ji

{ai
j, b

i
j , c

i
j , d

i
j , e

i
j, f

i
j , p

i
j , q

i
j}∪

⋃
1≤j≤m,|cj|=2

{an+1
j , cn+1

j , dn+1
j }.

In order to have the property that GI = (V, E) is a split graph, the edge set E
is composed so that:

K =
⋃

1≤i≤n

{ai
ji

, di
ji

, gi
ji

, hi
ji
} ∪

⋃
1≤i≤n

⋃
j∈Ji

{ai
j, d

i
j} ∪

⋃
1≤j≤m,|cj|=2

{an+1
j , dn+1

j }.

is a complete set and the remaining vertices S = V \ K compose the set:

S =
⋃

1≤i≤n

{bi
ji

, ci
ji

, ei
ji

, f i
ji
} ∪

⋃
1≤i≤n

⋃
j∈Ji

{bi
j, c

i
j , e

i
j , f

i
j , p

i
j , q

i
j} ∪

⋃
1≤j≤m,|cj |=2

{cn+1
j }.

and is a stable set.
We finish the definition of the edge set by defining the edges incident to

the vertices of the stable set S: For 1 ≤ i ≤ n, N(bi
ji

) = {ai∗
ji

, di
ji
}, N(ci

ji
) =

{ai∗
ji

, ai
ji

, di
ji
}, N(ei

ji
) = {di

ji
, hi

ji
}, N(f i

ji
) = {ai∗

ji
, gi

ji
}. For 1 ≤ i ≤ n, j ∈ J i,

N(bi
j) = {ai∗

j , di
j}, N(ci

j) = {ai∗
j , ai

j, d
i
j}, N(ei

j) = {di
j, h

i
ji
}, N(f i

j) = {ai∗
j , gi

ji
},

N(pi
j) = {ai

ji
, gi

ji
, ai

j}, N(qi
j) = {ai

ji
, hi

ji
, ai

j}. For 1 ≤ j ≤ m, | cj |= 2, N(cn+1
j)=

{an+1
j , an+1∗

j }.
Note that the constructed instance GI is a 3-split graph. Notice that for each

variable ui, graph GI contains as induced subgraph, Truth Setting component
Ti, the graph depicted in Figure 1 for the case variable ui has 3 occurrences.
Throughout the paper, we shall use the convention in the figures: vertices of K

Split Clique Graph Complexity 17

are black, vertices of S are white; only edges between vertices of the same cone
are drawn which means all other edges between black vertices are omitted. Note
further that our NP-completeness result yields that spanning Helly family,
defined in the Introduction, is NP-complete even when restricted to the members
of the input family F having cardinality 2 or 3.

aj
i
i

* f j
i
i

ej
i
i

aji

cj
i
i

gj
i
i

f r
i

er
i

ar
i*

ar
i

cr
i

f l
i

el
i

al
i*

al
i

cl
i

hj
i
i

i

qi

pr
i

qr
i

l
i

pi
l
i

dj
i
i dr

i

j
i
i br

ib

dl
i

bl
i

Fig. 1. Graph Ti corresponding to a variable ui, with J i = {r, l}

We refer to Figure 2 for the proof of Lemma 5.

Lemma 5. (True edge–False edge) Suppose F be an RS-basis of the constructed
graph GI . For each j, 1 ≤ j ≤ m, and for each i ∈ Ij , i �= n + 1, exactly one of
the edges ai

ja
i∗
j , ai

jd
i
j belongs to F . For each i, 1 ≤ i ≤ n, and for each j ∈ J i, if

ai
jd

i
j ∈ F then ai

ji
ai∗

ji
∈ F , and if ai

ja
i∗
j ∈ F then ai

ji
di

ji
∈ F .

Proof. Consider any j, 1 ≤ j ≤ m, and i ∈ Ij , i �= n + 1. Assume with no loss
of generality, j = ji. By considering the 2-cone N [bi

ji
], notice that edge ai∗

ji
di

ji

must belong to the RS-basis F which implies that both edges ai
ji

ai∗
ji

and ai
ji

di
ji

cannot belong to F , which implies that exactly one of the edges ai
ji

ai∗
ji

, ai
ji

di
ji

belongs to F .

18 L. Alcón et al.

*
*

hj
i

i
eji

iaj
i

i

cj
i

i

f ji
i

gji
iaj

i
i

bji
i

dji
i pr

i

qr
i

fr
i

ar
i

br
i

cr
idr

i

ar
i

er
i

*fl
i

al
i

bl
i

dl
i

al
iel

i

p
l
i

ql
i

cl
i

(a)

* *

hj
i

i
ej

i

iaj
i

i

cj
i

i

f ji
i

gji
iaj

i

i

bj
i

i

dji
i pr

i

qr
i

fr
i

ar
i

br
i

cr
i

dr
i

ar
i

er
i

*fl
i

al
i

bl
i

dl
i

al
iel

i

pl
i

ql
i

cl
i

(b)

Fig. 2. (a) RS-basis for Ti containing edge ai
rd

i
r is depicted in bold edges. Dashed edges

are the edges of the bases of the 3-cones that are not members of the RS-basis. (b)
Respectively for edge ai

ra
i∗
r .

Consider any i, 1 ≤ i ≤ n, and j ∈ J i = {r, l}. Say j = r and refer to
Figure 2(a). Notice that, edge hi

ji
di

r must belong to the RS-basis F . Assume
that ai

rd
i
r ∈ F . Then ai

rh
i
ji

�∈ F , and so by considering the 3-cone N [qi
r], edges

ai
ra

i
ji

, hi
ji

ai
ji
∈ F . Notice that edge hi

ji
di

ji
must belong to the RS-basis F . Hence

ai
ji

di
ji

�∈ F , and so by the first statement, ai
ji

ai∗
ji

∈ F . Assume that ai
ra

i∗
r ∈ F

and refer to Figure 2(b) to obtain an analogous reasoning. �	
Lemma 5 is the key for the NP-completeness result. Given any variable ui and
any clause cj where ui occurs, any RS-basis of GI is forced to choose exactly one
of the edges ai

ja
i∗
j , ai

jd
i
j . If r ∈ J i, then any RS-basis of GI is forced to choose

different types of edges incident to vertices ai
r and ai

ji
, respectively. If r, � ∈ J i,

then any RS-basis of GI is forced to choose the same type of edges incident to
vertices ai

r and ai
�, respectively. The correspondence between the two possible

truth assignments of variable ui and the two possible edges incident to vertex
ai

ji
is clear.

Theorem 6. split clique graph is NP-complete.

Proof. As mentioned in the Introduction, split clique graph belongs to NP.
Let G be the constructed 3-split graph obtained from an instance I = (U, C)

of 3sat3. Suppose G is a clique graph, and we exhibit a truth assignment for U
such that C is satisfied. By Theorem 4, let F be an RS-basis for G. Let ui ∈ U
be a variable. Set ui equal to true if and only if edge ai

ji
di

ji
∈ F . To see that

this truth assignment for U satisfies C consider a clause cj and its corresponding
triangle {ai

j , a
i∗
j , ai∗∗

j }. Since F induces a triangle-free subgraph of G[K], there
exists i ∈ Ij such that the edge ai

ja
i∗
j is not a member of F . Notice that i �= n+1.

Split Clique Graph Complexity 19

By Lemma 5, edge ai
ja

i∗
j �∈ F implies that edge ai

jd
i
j ∈ F . If j = ji then variable

ui is true and clause cj is satisfied. If j �= ji, then j ∈ J i, by Lemma 5 edge
ai

jd
i
j ∈ F implies edge ai

ji
ai∗

ji
∈ F , and edge ai

ji
di

ji
�∈ F . It follows that ui is false,

and then cj is satisfied.
Conversely, given a truth assignment of U that satisfies C, by Theorem 4, it

suffices to exhibit an RS-basis F in order to prove that G is a clique graph.
For each j, 1 ≤ j ≤ m, for each i ∈ Ij , the edges ai∗

j gi
j , di

jh
i
j, ai∗

j di
j .

For each j, 1 ≤ j ≤ m, for i = n + 1, the edges an+1∗
j an+1

j .
For each i, 1 ≤ i ≤ n, such that variable ui is true, the edges di

ji
ai

ji
, ai

ji
gi

ji
;

and for each j ∈ J i, the edges hi
ji

ai
j, ai

ja
i∗
j .

For each i, 1 ≤ i ≤ n, such that variable ui is false, the edges ai
ji

ai∗
ji

, ai
ji

hi
ji

;
and for each j ∈ J i, the edges gi

ji
ai

j , ai
jd

i
j .

The proof is completed by showing that the chosen set of edges indeed induces
a triangle-free subgraph of G[K] containing all the basis of 2-cones and two edges
of the basis of each 3-cone. Details are omitted in the extended abstract. �	

3 Polynomially Solvable Split Clique Graph Classes

In the following three theorems we present non trivial split graph classes for
which clique graphs can be recognized in polynomial time. Let G be a split graph
with split partition (K, S), without loss of generality assume K =

⋃
s∈S N(s),

to obtain a unique possible split partition.

w
G1

y

z

x

s2

s3s1

G2

y

z

x

s2

s3s1

Fig. 3. (a) w is a private neighbour of s2. (b) no vertex in S has a private neighbour.

We say that a vertex x ∈ K is a private neighbor of s ∈ S, if s is the only
vertex in S adjacent to x, i.e. N(x) ∩ S = {s}. We refer to Figure 3.

Theorem 7. If every vertex s ∈ S has a private neighbor then G is a clique
graph.

Proof. Suppose every vertex s ∈ S has a private neighbor hs. Let x and y be
vertices of K. We say that x is a twin of y when N [x] = N [y]. Observe this is
an equivalence relation, and so the equivalence classes define a partition of K.
Let Rs be the class of hs for s ∈ S; and R1, R2, ..., Rk the remaining classes,
this means the classes that do not contain any vertex hs for s ∈ S. We notice that

20 L. Alcón et al.

(
(Rs)s∈S , R1, R2, R3, . . . Rk

)
is a partition of K. Since hs is a private neighbor

of s, if s′ ∈ S and s′ �= s then Rs �= Rs′ .
For every s ∈ S, we call Is the set {i : 1 ≤ i ≤ k such that Ri ⊆ N(s)}. Let F

be the family of complete sets of G whose members are: K; Fs,i = Rs ∪Ri ∪{s},
for each s ∈ S, Is �= ∅ and i ∈ Is; Fs = Rs ∪{s}, for each s ∈ S, Is = ∅. We claim
that F is an RS-family of G, and so G is a clique graph.

Details are omitted in the extended abstract. �	
Theorem 8. Let G be a split graph with |S| ≤ 3. Graph G is a clique graph if
and only if G is not the Hajós graph depicted in Figure 3.(b).

Proof. It is well known that if G is a clique graph then G is not the Hajós graph.
Let us prove the reciprocal implication. Assume G is a graph with split partition
(K, S), | S |≤ 3 and G is not the Hajós graph. By Theorem 1, if the clique family
of G has the Helly property then G is a clique graph. If the clique family does
not satisfy the Helly property, then there exists a subfamily of cliques pairwise
intersecting without a common vertex.

It is clear that such subfamily must contain N [s1], N [s2] and N [s3] as mem-
bers, where s1, s2 and s3 are the vertices in S.

For 1 ≤ i < j ≤ 3, let xi,j be three vertices of K such that xi,j ∈ N [si]∩N [sj].
Since G is not the Hajós graph, then K must contain at least one more vertex.

Call it u and suppose u is a private neighbor, for instance of s1, then u ∈
N [s1] \ (N [s2] ∪ N [s3]). In this case it is easy to check that the complete set
family F N [s1]\N [s2], N [s1]\N [s3], N [s2], N [s3] and K satisfies the conditions
given by Theorem 1, so G is a clique graph. We depict in Figure 4 such family.
Details are omitted in the extended abstract. �	

(a)

N(s)1
1,3

1,2

2,3

x
u

x

x

N(s)2N(s)3
(b)

N(s)1
1,3

1,2

2,3

x
u

x

x

N(s)2N(s)3
(c)

N(s)1
1,3

1,2

2,3

x
u

x

x

N(s)2N(s)3
(d)

N(s)1
1,3

1,2

2,3

x
u

x

x

N(s)2N(s)3
(e)

N(s)1
1,3

1,2

2,3

x
u

x

x

N(s)2N(s)3

Fig. 4. Case in which u is a private neighbor, assumed of s1

Theorem 9. Let G be a split graph with |K| ≤ 4. Graph G is a clique graph if
and only if: (1) There are no three bases of 2-cones forming a triangle; and (2)
There are no four bases of cones satisfying: one is the basis B = {a, b, d} of a
3-cone, the other three bases B1 = {a, c}, B2 = {b, c}, and B3 = {d, c} are bases
of 2-cones.

Split Clique Graph Complexity 21

4 Open Related Problems

We summarize in a table the results and open problems we have managed to
state about the complexity of the problem of recognizing clique graphs when
restricted to split graphs. Denote by 3split2 the class of 3-split graphs, where
the vertices of the independent set have degree at least 2 and at most 3, and by
3split3 the subclass of 3-split graphs, where the vertices of the independent set
have degree exactly 3.

3split3 3split2 ∀s ∈ S, s has a |S| |K|
private neighbor. bounded bounded

Split graph
G = (V, E)

partition (K, S).
? NPC P

|S| ≤ 3 general

P ?

|K| ≤ 4 general

P ?

The present work presents three distinct sufficient conditions for a split graph
to be a clique graph that lead to three non trivial polynomial split clique graph
classes. The complexity of recognizing split clique graphs with |K| or |S| bounded
remains open.

Several subclasses of clique graphs have been studied for which polynomial-
time recognition is known. In particular, for several classes of graphs the corre-
sponding class of clique graphs is known [14]. Note that it is well known that
the clique graph of a chordal graph is a dually chordal graph [4,12] but the com-
plexity of deciding whether a chordal graph is a clique graph was a challenging
open problem. We have proved that deciding whether a given split graph is a
clique graph is an NP-complete problem. Note that the class of split graphs is
the intersection of chordal graphs and complements of chordal graphs.

The NP-completeness of clique graph [1,2] suggested the study of the prob-
lem restricted to classes of graphs not properly contained in the class of clique
graphs. One such class is the class of split graphs, the object of the present pa-
per, and the recognition of split clique graphs is proved NP-complete. Another
challenging still open problem is the recognition of planar clique graphs [3].

Let G be a split graph with split partition (K, S). In case G is a 3-split graph,
Theorem 4 says G admits an RS-family containing K. We leave as open the
complexity of deciding if a split clique graph with split partition (K, S) admits
an RS-family containing K.

Our NP-completeness result for split clique graph recognition is optimum in
the sense that each vertex of the independent set of our split instance has degree
at most 3, whereas when each vertex of the independent set has degree at most
2 the problem is polynomial, since it is reduced to check whether the clique
family of the graph satisfies the Helly property. Actually, by Theorem 4 the
problem is polynomial when the input is a 3-split graph such that the number
of 3-cones is bounded, which implies that 3-split clique graph recognition when
|K| is bounded or when |S| is bounded is in P. We leave as open the complexity
of recognizing split clique graphs such that every vertex of the independent set
has degree exactly 3. Note that the problem 3sat3 when restricted to having
exactly three literals per clause is polynomial [9].

22 L. Alcón et al.

Acknowledgment. Two of the polynomial cases were presented at the 4th
Latin-American Workshop on Cliques in Graphs and the corresponding abstract
appeared in the proceedings published by Matemática Contemporânea.

References

1. Alcón, L., Faria, L., de Figueiredo, C.M.H., Gutierrez, M.: Clique Graph Recog-
nition is NP-Complete. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271,
pp. 269–277. Springer, Heidelberg (2006)

2. Alcón, L., Faria, L., de Figueiredo, C.M.H., Gutierrez, M.: The complexity of clique
graph recognition. Theoretical Computer Science 410, 2072–2083 (2009)

3. Alcón, L., Gutierrez, M.: Cliques and extended triangles. A necessary condition for
planar clique graphs. Discrete Appl. Math. 141, 3–17 (2004)

4. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs.
SIAM J. Discrete Math. 11, 437–455 (1998)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A survey. SIAM Mono-
graphs on Discrete Mathematics and Applications (1999)

6. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity Aspects of the Helly Prop-
erty: Graphs and Hypergraphs. Electron. J. Combin. 17, 1–53 (2009)

7. Hamelink, R.C.: A partial characterization of clique graphs. J. Combin. Theory
Ser. B 5, 192–197 (1968)

8. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM Mono-
graphs on Discrete Mathematics and Applications (1999)

9. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
10. Prisner, E.: Graph Dynamics. Pitman Research Notes in Mathematics 338, Long-

man (1995)
11. Roberts, F.S., Spencer, J.H.: A characterization of clique graphs. J. Combin. The-

ory Ser. B 10, 102–108 (1971)
12. Szwarcfiter, J.L., Bornstein, C.F.: Clique graphs of chordal graphs and path graphs.

SIAM J. Discrete Math. 7, 331–336 (1994)
13. Szwarcfiter, J.L.: Recognizing clique-Helly graphs. Ars Combin. 45, 29–32 (1997)
14. Szwarcfiter, J.L.: A survey on Clique Graphs. In: Linhares-Sales, C., Reed, B. (eds.)

Recent Advances in Algorithms and Combinatorics. CMS Books Math./Ouvrages
Math. SMC, vol. 11, pp. 109–136. Springer, New York (2003)

On Searching for Small

Kochen-Specker Vector Systems�

Felix Arends1, Joël Ouaknine2, and Charles W. Wampler3

1 Google Germany GmbH
felix.arends@gmx.de

2 Department of Computer Science, Oxford University, UK
joel@cs.ox.ac.uk

3 Department of Mathematics, University of Notre Dame, USA
charles.w.wampler@gm.com

Abstract. Kochen-Specker (KS) vector systems are sets of vectors in R3

with the property that it is impossible to assign 0s and 1s to the vectors
in such a way that no two orthogonal vectors are assigned 0 and no three
mutually orthogonal vectors are assigned 1. The existence of such sets
forms the basis of the Kochen-Specker and Free Will theorems. Currently,
the smallest known KS vector system contains 31 vectors. In this paper,
we establish a lower bound of 18 on the size of any KS vector system.
This requires us to consider a mix of graph-theoretic and topological
embedding problems, which we investigate both from theoretical and
practical angles. We propose several algorithms to tackle these problems
and report on extensive experiments. At the time of writing, a large gap
remains between the best lower and upper bounds for the minimum size
of KS vector systems.

Keywords: Kochen-Specker vector systems, topological graph embed-
ding problems, constraint solving, graph enumeration algorithms.

1 Introduction

In a recent, thought-provoking paper, John H. Conway and Simon Kochen
demonstrate that “if [. . .] there exist any experimenters with a modicum of free
will, then elementary particles must have their own share of this valuable com-
modity” [10]. More precisely, Conway and Kochen consider so-called ‘spin-1’
particles (such as photons) whose ‘spin’ (a physical property) can be measured
along any given direction. The squared outcome of such measurements is always
either 0 or 1. Conway and Kochen’s Free Will theorem asserts that, if an ex-
perimenter can choose the direction along which to perform a spin-1 experiment
freely (i.e., in a way that is not determined by the past), then the response of
the spin-1 particle to such an experiment is also not determined by the past.

� This work is based on the first author’s Master’s thesis [1]; an extended version of
this paper is also available as [2].

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 23–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

24 F. Arends, J. Ouaknine, and C.W. Wampler

This theorem rests on three basic axioms of quantum mechanics and relativity,
the most crucial of which (for our purposes) is the following:

The SPIN Axiom [10]. Measurements of the squared components of spin of a
spin-1 particle in three orthogonal directions always yield the outcomes 1, 0, 1
in some order.1

The SPIN axiom not only follows from the postulates of quantum mechanics,
but has also been verified experimentally [12]. This axiom alone already gives
rise to what is known as the ‘Kochen-Specker paradox’ [11]: if the response of
a spin-1 particle to any conceivable spin measurement were predetermined prior
to the actual measurement, then those responses would define a function from
the unit sphere in three dimensions to the set {0, 1}, satisfying the so-called
101-property: any three points on the sphere with mutually orthogonal position
vectors must be assigned the values 1, 0, 1 in some order. The Kochen-Specker
paradox—which is in fact a mathematical theorem—is that no such function
exists.

The impossibility of such ‘101-functions’ can be proved by exhibiting a finite
set of points on the sphere on which such functions cannot be defined. The
first such set, discovered by Kochen and Specker more than forty years ago,
contained 117 points [13]. Subsequent sets, usually referred to as ‘records’ [17],
cut this number down to 33 and then 31 [20]. The latter is the size of the smallest
known ‘Kochen-Specker vector system’, discovered approximately 20 years ago
by Conway and Kochen.

As pointed out in [17], finding small Kochen-Specker vector systems has both
theoretical and practical motivations. Conway himself has stressed the problem
on several occasions whilst giving public lectures on the Free Will theorem.
The work we describe here reports on some partial progress in this endeavour;
our main result is that any Kochen-Specker vector systems must contain at
least 18 vectors (Thm. 10). Achieving this bound required us to consider a mix
of graph-theoretic and topological embedding problems, for which we devised
and analysed a number of algorithms. In addition, we establish bounds on the
theoretical complexity of some of the principal problems involved (Thms. 2 and
3), and also show that the key task of checking canonicity in the 30-year-old
Colbourn-Read orderly graph enumeration algorithm [9] cannot belong to NP—
and much less to P—unless NP = co-NP (Thm. 7).

Unfortunately, it would appear that narrowing the gap between the best
lower and upper bounds for the minimum size of KS vector systems remains
a formidable challenge, and significant progress in this area will likely require
substantially new ideas.

The work most closely related to ours is that of Pavičić et al. [18, 17]. They
consider higher-dimensional generalisations of the problem treated in this paper,
but their formulation and results are incomparable to ours. We return to the
differences between our approach and theirs in Sec. 2; we also refer the reader
to [18, 1] for a more thorough discussion of the matter.

1 As pointed out in [10], such measurements ‘commute’, so the order in which they
are performed does not matter.

On Searching for Small Kochen-Specker Vector Systems 25

Different Standards of Proof. Due to the mixed discrete/continuous aspects
of the problems considered in this paper, it is important to pay special attention
to the nature of the proofs involved. The usual kind of proof is mathematical.
Along with such proofs, we also present several results that have computer-aided
proofs, in which extensive calculations were carried out by computer. A third
category of results could be deemed to have numerical proofs, by which we mean
that a computer program was used and floating-point arithmetic was involved
in a way that cannot be guaranteed to be entirely accurate. While we have
occasionally made use of the latter as heuristics, it should be stressed that all
results presented in this paper are backed by fully rigorous mathematical or
computer-aided proofs.

2 Kochen-Specker Vector Systems

Kochen-Specker vector systems can be represented in multiple ways. In the In-
troduction, we have implicitly described such systems as certain finite sets of
points on the surface of the sphere S2. In fact, an immediate consequence of the
SPIN axiom is that squared-spin measurements along opposite directions neces-
sarily yield the same outcome, so that it is sensible to identify antipodal points.
Accordingly, let us therefore define a vector system as a finite subset of the
open northern hemisphere H2 = {(x, y, z) : x2 + y2 + z2 = 1 and z > 0}.2 Al-
ternatively, vector systems can be represented as finite subsets of the projective
plane P2, and also as finite sets of points on the surface of a cube, where once
again we identify antipodal points. We variously make use of all three of these
representations in the rest of this paper.

A vector system K ⊆ H2 is 101-colourable if it is possible to assign either 0
or 1 to each vector in K such that (i) no two orthogonal vectors are both assigned
0, and (ii) no three mutually orthogonal vectors are all assigned 1.

Finally, a Kochen-Specker (KS) vector system is a vector system that is
not 101-colourable. The size of such a system is simply the number of vectors it
contains.

At the time of writing, the smallest known KS vector system is still the one
discovered approximately twenty years ago by Conway and Kochen [20]. The 31
vectors of this system can be represented as lying on a cubic grid centered at the
origin, as depicted in Fig. 1. Note that orthogonality relationships among the
vectors are easily inferred through elementary geometry, thanks to the regularity
of the grid. Non-101-colourability can be established by (somewhat tedious) case
analysis.

Note that the colourability conditions (i) and (ii) as given above, although in
appearance stronger than the SPIN axiom, are implicitly equivalent to it. For
instance, while the SPIN axiom, strictly speaking, asserts nothing about a vector
system consisting of exactly two orthogonal vectors, it implicitly requires one of
2 Dispensing entirely with the equator simplifies somewhat our technical development

later on; it is harmless since any finite set of points on the sphere can always be
rigidly rotated so as to avoid the equator.

26 F. Arends, J. Ouaknine, and C.W. Wampler

Fig. 1. A visual representation of Conway and Kochen’s KS vector system of size 31

these vectors to be assigned 1, since if both were assigned 0 one could derive a
contradiction by considering a third vector orthogonal to the other two.

This seemingly innocuous observation has consequences for the way in which
KS vector systems are built and measured. Pavičić et al. [17] and Larsson [14],
for example, require every pair of orthogonal vectors to belong to a triple of
mutually orthogonal vectors, invoking a strict application of the SPIN axiom.
Following this convention, they argue that the KS vector system depicted in
Fig. 1 should be viewed as having size 51 rather than 31 (cf. [17]): indeed, this
system as represented above contains 20 pairs of orthogonal vectors without a
third orthogonal vector present.

In contrast, our own conventions—following, among others, [13, 19, 20, 7, 10,
11]—are predicated on colourability conditions (i) and (ii) as given earlier. For
further discussion on the matter, we refer the reader to [17] and [1].

Vector Systems and Graphs. Any vector system K gives rise to an associated
undirected graph GK, the vertices of which are the vectors of K, with an edge
between two vertices iff the corresponding vectors are orthogonal. In other words,
GK = (V, E), where V = K and E = {{u, v} : u, v ∈ K and u · v = 0}.

We define 101-colourability for graphs in the obvious way: assignment of 0
or 1 to the vertices in such a way that (i) no two adjacent vertices are both
assigned 0, and (ii) no triangle (3-clique) is assigned all 1s. Clearly, K is a KS
vector system iff GK is not 101-colourable.

Of course, an arbitrary graph H may not correspond to any realisable (3-
dimensional) vector system: the orthogonality constraints corresponding to
graph edges may fail to be simultaneously satisfiable. Let us define a graph
H to be embeddable if there exists some vector system that it corresponds to.
More precisely, we ask that there be a vector system K that can be put in
one-to-one correspondence with the vertices of H in such a way that adjacent
vertices are mapped to orthogonal vectors. Note that we do not require that

On Searching for Small Kochen-Specker Vector Systems 27

non-adjacent vertices should go to non-orthogonal vectors; this relaxation sim-
plifies the embeddability-checking process, discussed in Sec. 3. However, it is
necessary for distinct vertices to go to distinct vectors. Formally, H = (V, E)
is embeddable if it has a supergraph H ′ = (V, E′) over the same set of vertices
such that H ′ is isomorphic to GK for some vector system K.

Finding a small KS vector system therefore corresponds to finding a small
graph that is both not 101-colourable and embeddable, and accordingly this is
the approach we have followed and report on in this paper.

Note that any graph containing a square (4-cycle) is unembeddable: indeed,
orthogonality constraints would force a pair of opposite vertices of the square
to be mapped to collinear (i.e., identical) vectors. Accordingly, we shall mainly
focus on square-free graphs in the remainder of this paper. This turns out to be a
fairly powerful restriction: all square-free graphs with 9 or fewer vertices are em-
beddable, while there are only two distinct (up to isomorphism) unembeddable
square-free graphs with 10 vertices [1].

A second interesting observation about embeddable graphs is the following:

Proposition 1. Any embeddable graph is 4-colourable.

To see this, consider an embeddable graph G and let K be an embedding of
it as a vector system in the hemisphere H2. Partition H2 into four quadrants
as delineated by the xz-plane and the yz-plane, and colour each vector of K
according to the quadrant it lies in. Since vectors belonging to the same quadrant
cannot be mutually orthogonal, corresponding vertices of G cannot be adjacent.
Thus the quadrant colouring of K gives rise to a valid 4-colouring of G. �	
As the next result indicates, 101-colourability is in theory an expensive condi-
tion to check, even when restricting to graphs that are both square-free and
4-colourable. In practice, however, our SAT-based colourability checker (imple-
mented using MiniSat 2.0 [16]) was systematically able to decide 101-colourability
of graphs having at most 30 vertices in microseconds.

Theorem 2. Deciding whether a square-free 4-colourable graph is 101-colourable
is NP-complete.

Membership in NP is obvious; for hardness, we refer the reader to [1].
Finally, note that every 3-colourable graph is automatically 101-colourable.

3 Embeddability

In this section, we examine the problem of determining whether a given (square-
free) graph is embeddable or not. See also [1, 2] in which we discuss some of the
practical approaches and algorithms we have used including homotopy continu-
ation and interval arithmetic.

It is fairly straightforward to see that embeddability queries can be phrased
in the existential theory of the reals: given a graph G, postulate a triple of real

28 F. Arends, J. Ouaknine, and C.W. Wampler

variables (x, y, z) for every vertex of G, and express the various constraints us-
ing polynomial equalities and inequalities. For example, x2 + y2 + z2 = 1 and
z > 0 together ensure that the corresponding vector should lie in the hemisphere
H2. Orthogonality constraints are likewise expressed by setting the relevant dot
products equal to zero, and so on. Embeddability of the graph G therefore cor-
responds to solvability of this constraint system over the reals.

It is plain that the constraints can be constructed in polynomial time. Since
the existential theory of the reals has polynomial space complexity [8, 23], we
have:

Theorem 3. Graph embeddability can be decided in PSPACE.

For a graph with 30 vertices, the corresponding constraint system requires 90 real
variables (or rather, assuming the graph has at least one triangle, 81 variables
since we can quotient out rotational symmetries by fixing the vectors associated
with one of its triangles). Unfortunately, current real arithmetic solvers cannot
in practice handle systems containing more than just a handful of real variables.
Thm. 3 is therefore mainly of theoretical interest at the present time.

Our next observation is that, given a graph G, one can in fact construct a
single multivariate polynomial PG over the reals such that G is embeddable
iff PG has a root. We simply extend the above approach by transforming in-
equalities into equalities, through the use of auxiliary variables, and conjoining
multiple equalities into a single one via a standard squaring trick. For example,
the inequality z > 0 is equivalent to the conjunction of the equalities uv = 1 and
u2 = z, where u and v are implicitly existentially quantified. In turn, both equal-
ities can be conjoined into a single one by writing (uv − 1)2 + (u2 − z)2 = 0, etc.
We therefore have:

Proposition 4. A graph G is embeddable iff the polynomial PG has a real root.

It is easy to see that we can arrange for PG to have degree four. Moreover, graphs
with at most 30 vertices give rise to polynomials in fewer than 1000 variables
(the bulk of which are required to ensure that all vectors are pairwise distinct).
Unfortunately, deciding whether such polynomials have real roots is in general
also well beyond the practical capabilities of today’s algorithms and computers.
For an in-depth account of relevant algorithms and results in this area, we refer
the reader to [4].

Finally, let us remark that graph embeddability can alternatively be phrased
in terms of isometric (i.e., distance-preserving) embeddability: a graph is embed-
dable (in the sense of this paper) iff its vertices can distinctly be placed in the
upper half of R3 so as to lie at distance 1 from the origin, and such that adjacent
vertices are precisely

√
2 units apart. More information on isometric embeddings

and related topics in topological graph theory can be found in [5].

Cubic Grids. Conway and Kochen’s KS vector system of size 31 lies on a
regular cubic grid, as shown in Fig. 1. That grid can be viewed as consisting
of all vectors with integer coordinates lying on the surface of the cube [−2, 2]3,
with antipodal points identified.

On Searching for Small Kochen-Specker Vector Systems 29

We can, of course, consider grids of different granularities by introducing a
grid parameter N : the corresponding grid can be viewed as the set of vectors
with integer coordinates lying on the surface of the cube [−N, N]3, again with
antipodal points identified.

One of the chief advantages of cubic grids is that all orthogonality relationships
are inferable by straightforward inspection; thus grid embeddability provides
a genuine mathematical proof of embeddability. Moreover, we have so far not
encountered any graph which we believed to be embeddable (through the use
of homotopy continuation or interval arithmetic) yet which was not found to be
embeddable on some cubic grid. This leads us to formulate the following:

Conjecture 5. Every embeddable graph can be embedded on some cubic grid.

In our experiments, we found grid-solving to be consistently highly efficient. For
example, embedding the 31-vertex Conway-Kochen graph took less than 10ms
on the grid with parameter N = 2, approximately 250ms on the (N=8)-grid, and
26s on the (N=12)-grid. Naturally, all embeddability proofs carry mathematical
certainty; however the absence of a grid embedding does not allow one to draw
any conclusion regarding (proper) embeddability.

Let us conclude this section by noting that embeddability clearly remains a
highly challenging problem at present. For example, a 12-vertex graph is given
in [1] for which, despite our best efforts, we have not succeeded in proving or
disproving embeddability (even numerically).

4 Lower Bounds

A natural strategy for finding small KS vector systems is first to search for small
graphs that are not 101-colourable. Such graphs should moreover be square-
free (otherwise they cannot be embeddable) and connected (otherwise a smaller
instance would be available).

Our initial approach was to generate these graphs at random, subject to var-
ious parameters, and check whether they are embeddable. Several hundred mil-
lions of connected square-free graphs were generated, yielding thousands that
were not 101-colourable. Unfortunately, for most graphs with 30 vertices or less,
we were simply unable to determine embeddability; and the ones for which we
did succeed were all found to be unembeddable. Interestingly, our random graph
generator produced several isomorphic copies of the 31-vertex Conway-Kochen
specimen.

We then turned to sub-systems of the various cubic grids, which are em-
beddable by construction. We were able to exhaustively search the grids with
parameters N = 2 and N = 4; all vector systems of size 30 or less were found
to be 101-colourable, whereas the only systems of size 31 that were not 101-
colourable were all isomorphic to the 31-vector Conway-Kochen system. We also
randomly sampled extensively from sub-systems of the grids with parameters

30 F. Arends, J. Ouaknine, and C.W. Wampler

N = 6, N = 8, and N = 12.3 Again, no smaller system was found, and all KS
systems of size 31 were found to be isomorphic to the Conway-Kochen system.

Enumerating Connected Square-Free Graphs. At the time of writing,
the On-Line Encyclopedia of Integer Sequences [24] lists the numbers of non-
isomorphic connected square-free graphs with up to and including 17 vertices:
there are 19,297,850,417 in total, and 17,992,683,043 on 17 vertices alone. We
re-enumerated all these graphs and checked each one for 101-colourability, a
task which required solving more than 19 billion instances of an NP-complete
problem.

In [9], Colbourn and Read propose an ‘orderly’ procedure for graph enumer-
ation. The key idea is to generate the adjacency matrices of graphs in unique
canonical forms. More precisely, given an adjacency matrix, consider the bit-
string obtained by concatenating the entries strictly above the diagonal, column
by column (from top to bottom), left to right. The canonical representation of
a given graph G is the unique adjacency matrix of G with the greatest bit-string
value in lexicographic order.

As pointed out in [9], a crucial property of this particular notion of canonicity
is the following: if M is the canonical adjacency matrix of a graph G on n
vertices, then the (n − 1) × (n − 1) submatrix of M obtained by deleting the
last column and the last row of M is also the canonical adjacency matrix of
some subgraph of G on n− 1 vertices. In the terminology of [21] (see also [15]),
this enables the design of an effective graph enumeration algorithm: Generate
the adjacency matrices of graphs on a fixed number of vertices by a depth-
first search process which starts from the trivial 1 × 1 matrix and successively
augments the matrix by adding a single column and row to it until the target
number of vertices has been reached. In so doing, whenever a non-canonical
matrix is encountered, immediately discard it and backtrack. This procedure
guarantees that every canonical matrix will appear exactly once at some point
in the search. Moreover, the number of non-canonical matrices that are produced
(and immediately discarded) in the process is kept relatively low.

A second key advantage of the Colbourn-Read notion of canonicity is that
one may use it to enumerate all non-isomorphic graphs with some hereditary
property (i.e., any property of a graph which automatically holds for all its
induced subgraphs). Note however that while square-freeness is clearly heredi-
tary, connectedness is not. Nevertheless, the following result, whose proof can
be found in [1, 2], shows that the Colbourn-Read algorithm is still suitable for
our purposes:

Proposition 6. Suppose that M is the canonical adjacency matrix of a con-
nected graph G. Then the submatrix of M obtained by deleting the last column
and the last row of M is also the (canonical) adjacency matrix of some connected
subgraph of G.

3 For odd values of N , it turns out that the smallest grid which is not itself 101-
colourable—and therefore a candidate for hosting KS vector systems—is the one
with parameter N = 15.

On Searching for Small Kochen-Specker Vector Systems 31

A major attraction of orderly graph enumeration algorithms is that “expensive
isomorphism tests are replaced by relatively inexpensive verifications of canonic-
ity” [9]—see also [21, 22, 15]. Canonicity checking is indeed a pivotal component
of the Colbourn-Read algorithm, yet somewhat surprisingly its precise complex-
ity appears to have remained open since orderly algorithms were first introduced
30 years ago.4 We provide some partial answers to this question below.

The first observation is that canonicity checking is clearly in co-NP: if a ma-
trix is not canonical, then one needs only exhibit another one that is higher
in lexicographic order together with an isomorphism between the two. We now
establish a hardness result:

Theorem 7. If the problem of canonicity checking were in NP, then NP =
co-NP.

We show that an NP algorithm for canonicity checking would entail the existence
of an NP algorithm for proving that a graph has no clique of size a given integer
k. Since the latter is well-known to be co-NP-complete, the conclusion that NP
= co-NP would follow.

Note that the canonical adjacency matrix of a graph having a clique of size
k will necessarily contain 1s in the upper-left triangle covering vertices up to k,
for otherwise an adjacency matrix with a higher lexicographic order could im-
mediately be obtained by re-labelling the vertices of the clique with the integers
1 to k. Conversely, any adjacency matrix with an upper-left triangle covering
vertices up to k consisting entirely of 1s necessarily represents a graph having a
clique of size k.

Let G be a graph that has no clique of size k. Guess the canonical adjacency
matrix for G, guess and verify the adjacency mapping showing that the matrix
does indeed represent G, and verify that the matrix is indeed canonical using
the putative NP algorithm for canonicity checking. By the above observation,
the upper-left triangle of this matrix covering vertices up to k cannot consist
entirely of 1s, thereby proving that all cliques in G must have size strictly less
than k. �	

Thm. 7 strongly suggests that canonicity checking is unlikely to be in NP, and
much less in P.

Note however that this hardness result is not obviously applicable to square-
free graphs, since in particular the latter have no cliques of size greater than
3. We are nonetheless able to establish the following weaker statement, whose
proof can be found in [1, 2]:

Theorem 8. If the problem of canonicity checking for adjacency matrices of
square-free graphs were in NP, then the graph isomorphism problem (for arbitrary
graphs) would be in co-NP.

4 Note that the problem of canonisation—i.e., given a graph, construct its canonical
adjacency matrix—is well-known to be both NP-hard and co-NP-hard [3]. Yet it is
conceivable that merely verifying canonicity could be substantially easier.

32 F. Arends, J. Ouaknine, and C.W. Wampler

In practice, notwithstanding Thms. 7 and 8, we have found that canonicity
checking could be made extremely efficient. We implemented a fairly simple
backtracking algorithm which enabled us to check canonicity of the vast majority
of matrices with 17 vertices or fewer within microseconds. This led us to the
following computer-aided result:

Theorem 9. Every square-free graph with at most 16 vertices is 101-colourable.
Moreover, there is a unique graph with 17 vertices that is not 101-colourable
(shown on the left-hand side of Fig. 2).

1

10

15

9

28 3

4

11

16

12

17

5

6

7

13 14

1

9

10
15

4

16

17

12

11

6

14 13

Fig. 2. The unique square-free graph on 17 vertices that is not 101-colourable (left),
together with its smallest unembeddable subgraph

Unfortunately, this 17-vertex candidate turned out to be unembeddable. Using
Bertini [6], a state-of-the-art software package for numerical algebraic geometry,
we identified a 12-vertex subgraph (shown on the right-hand side of Fig. 2)
whose associated embedding polynomial was shown to have precisely 12 distinct
complex roots, none of which are purely real. This produces a numerical proof of
the fact that our 17-vertex candidate cannot be embedded. Finally, we were able
to upgrade this to a computer-aided proof using our interval arithmetic solver
(see [1, 2]), yielding the following lower bound:

Theorem 10. A Kochen-Specker vector system must contain at least 18 vectors.

Unfortunately, Thm. 10 still leaves an astronomical gap to bridge before proving
that Conway and Kochen’s KS vector system of size 31 is the smallest possible
(if indeed that is the case). Extrapolating from known data, the graph below
suggests that there are some 1032 connected square-free graphs on 30 vertices or
less, well out of the brute-force reach of current technology.

On Searching for Small Kochen-Specker Vector Systems 33

5 Conclusion

We have proposed the problem of finding small Kochen-Specker vector systems—
or proving that none exist of size less than 31—as a difficult and worthwhile
algorithmic challenge. Higher-dimensional generalisations of the problem have
also been considered by others, notably Pavičić et al. [17].

The results we have obtained (greater details of which are available in [1]) can
largely be summarised by listing a number of properties that any minimal KS
vector system must enjoy. Such a system:

– has at most 31 vectors (Conway and Kochen’s KS vector system);
– contains at least 18 vectors (Thm. 10);
– has associated graph that is square-free (Sec. 2);
– has associated graph that is not 101-colourable and not 3-colourable (Sec. 2);
– has associated graph that is 4-colourable (Prop. 1);
– has associated graph with minimum degree 3 [1];
– has associated graph in which each vertex belongs to a triangle [1];
– is not a subsystem of the cubic grid with grid parameter N = 4, unless it is

the Conway-Kochen 31-vector system itself (Sec. 3).

In our view, two central challenges are to (i) devise more efficient algorithms
for determining graph embeddability (in which respect Conjecture 5 could play
a key role), and (ii) find efficient means to drastically cut down the number of
candidate graphs that must be examined.

Acknowledgements. We thank Nick Trefethen for introducing the first two
authors to the third, Jean-Pierre Merlet for sharing his experience on interval
arithmetic, and Don Knuth for drawing our attention to [9]. The second author
was supported by EPSRC and the third author was supported by NSF grant
DMS-0712910.

34 F. Arends, J. Ouaknine, and C.W. Wampler

References

[1] Arends, F.: A lower bound on the size of the smallest Kochen-Specker vector
system. Master’s thesis. Oxford University (2009),
www.cs.ox.ac.uk/people/joel.ouaknine/download/arends09.pdf

[2] Arends, F., Ouaknine, J., Wampler, C.W.: On searching for small Kochen-Specker
vector systems (extended version). Technical report (2011),
www.cs.ox.ac.uk/people/joel.ouaknine/publications/ks11abs.html

[3] Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. STOC. ACM (1983)
[4] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry.

Springer, Heidelberg (2006)
[5] Beineke, L.W., Wilson, R.J. (eds.): Topics in Topological Graph Theory. Encyclo-

pedia of Mathematics and its Applications. Cambridge University Press (2009)
[6] http://www.nd.edu/~sommese/bertini/

[7] Bub, J.: Schütte’s tautology and the Kochen-Specker theorem. Found. Phys. 26,
787–806 (1996)

[8] Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proc.
STOC. ACM (1988)

[9] Colbourn, C.J., Read, R.C.: Orderly algorithms for graph generation. Int. J. Com-
put. Math. 7, 167–172 (1979)

[10] Conway, J.H., Kochen, S.: The free will theorem. Found. Phys. 36(10), 1441–1473
(2006)

[11] Conway, J.H., Kochen, S.: The strong free will theorem. Notices of the AMS 56(2)
(2009)

[12] Huang, Y.-F., Li, C.-F., Zhang, Y.-S., Pan, J.-W., Guo, G.-C.: Experimental test
of the Kochen-Specker theorem with single photons. Phys. Rev. Lett. 90(250401)
(2003)

[13] Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics.
J. Math. Mech. 17, 235–263 (1967)

[14] Larsson, J.-Å.: A Kochen-Specker inequality. Europhys. Lett. 58, 799–805 (2002)
[15] McKay, B.D.: Isomorph-free exhaustive generation. J. Alg. 26, 306–324 (1998)
[16] http://www.minisat.se/

[17] Pavičić, M., Merlet, J.-P., McKay, B., Megill, N.D.: Kochen-Specker vectors. J.
Phys. A: Math. Gen. 38(7), 1577–1592 (2005)

[18] Pavičić, M., Merlet, J.-P., Megill, N.D.: Exhaustive enumeration of Kochen-
Specker vector systems. Research report RR-5388, INRIA (2004)

[19] Peres, A.: Two simple proofs of the Kochen-Specker theorem. J. Phys. A: Math.
Gen. 24, L175–L178 (1991)

[20] Peres, A.: Quantum Theory: Concepts and Methods. Kluwer (1993)
[21] Read, R.C.: Every one a winner, or: How to avoid isomorphism search when cat-

aloguing combinatorial configurations. Annals Discrete Math. 2, 107–120 (1978)
[22] Read, R.C.: A survey of graph generation techniques. Lecture Notes in Mathe-

matics, vol. 884. Springer, Heidelberg (1981)
[23] Renegar, J.: On the computational complexity and geometry of the first-order

theory of the reals. Parts I-III. J. Symb. Comput. 13(3), 255–352 (1992)
[24] Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2010),

http://www.research.att.com/~njas/sequences/

www.cs.ox.ac.uk/people/joel.ouaknine/download/arends09.pdf
www.cs.ox.ac.uk/people/joel.ouaknine/publications/ks11abs.html
http://www.nd.edu/~sommese/bertini/
http://www.minisat.se/
http://www.research.att.com/~njas/sequences/

Characterizations of Deque and Queue Graphs�

Christopher Auer and Andreas Gleißner

University of Passau, 94030 Passau, Germany
{auerc,gleissner}@fim.uni-passau.de

Abstract. In graph layouts the vertices of a graph are processed ac-
cording to a linear order and the edges correspond to items in a data
structure inserted and removed at their end vertices. Graph layouts char-
acterize interesting classes of planar graphs: A graph G is a stack graph
if and only if G is outerplanar, and a graph is a 2-stack graph if and
only if it is a subgraph of a planar graph with a Hamiltonian cycle [2].
Heath and Rosenberg [12] characterized all queue graphs as the arched
leveled-planar graphs. In [1], we have introduced linear cylindric draw-
ings (LCDs) to study graph layouts in the double-ended queue (deque)
and have shown that G is a deque graph if and only if it permits a plane
LCD.

In this paper, we show that a graph is a deque graph if and only if it is
the subgraph of a planar graph with a Hamiltonian path. In consequence,
we obtain that the dual of an embedded queue graph contains a Eulerian
path. We also turn to the respective decision problem of deque graphs and
show that it is NP-hard by proving that the Hamiltonian path problem
in maximal planar graphs is NP-hard. Heath and Rosenberg state [12]
that queue graphs are “almost” proper leveled-planar. We show that
bipartiteness captures this “almost”: A graph is proper leveled-planar if
and only if it is a bipartite queue graph.

1 Introduction

In a graph layout the vertices are processed according to a total order, which
is called linear layout. The edges correspond to data items that are inserted to
and removed from a data structure: Each edge is inserted at its end vertex that
occurs first according to the linear layout and is removed at its other end vertex.
These operations must obey the principles of the underlying data structure, such
as “last-in, first-out” for a stack or “first-in, first-out” for a queue.

Queue and stack layouts, the latter also known as book embeddings, have
been studied extensively in the past, e.g., in [2, 3, 6, 7, 9, 10, 11, 12, 17, 18, 20],
and are used for 3D drawings of graphs [17, 18], in VLSI design [3] and in other
application scenarios [12]. Graph layouts have also shed new light on Gauss
codes and permutation networks [13]. A graph G is a stack graph, i.e., has a
stack layout, if and only if it is outerplanar, and it is a 2-stack graph if and only
if it is a subgraph of a planar graph with a Hamiltonian cycle (HC). Heath et al.

� Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 35–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 C. Auer and A. Gleißner

[7, 12] characterize the class of queue graphs as the arched leveled-planar graphs.
Such graphs have a planar drawing with vertices placed on levels and inter-level
edges only between two adjacent levels or intra-level edges (the arches) from the
left-most vertex to accessible vertices on the right side (see Fig. 3(a)).

In [1] we have studied graph layouts in the double-ended queue (deque): A
deque has two ends, a head and a tail, to insert and remove items. A deque
operates like a stack if an item is inserted and removed at the same side. It
operates like a queue if an item is inserted at one and removed from the other
side. In [1] we have introduced linear cylindric drawings (LCDs) of graphs. The
property of planarity also plays an important role in LCDs: A graph is a deque
graph if and only if it admits a plane LCD [1]. By further investigating linear
cylindric drawings, we are able to prove a new characterization of deque graphs:
A graph is a deque graph if and only if it is a subgraph of a planar graph
with a Hamiltonian path (HP). Remember that a 2-stack graph is a subgraph
of a planar graph with an HC. A single deque can emulate two stacks and
additionally allows queue items. Intriguingly, the “surplus” of power a deque
has in comparison to two stacks, i.e., the queue items, exactly captures the gap
between HCs and HPs in planar graphs. Based on these observations, we will
also give a new characterization of queue graphs. Specifically, we will see that
the dual of an embedded queue graph contains a Eulerian path.

We will then turn to the question how hard the decision problem “Is a given
graph a deque graph?” is. We will prove its NP-completeness by showing that
the HP problem in maximal planar graphs is NP-complete.

Heath and Rosenberg called arched leveled-planar graphs, which character-
ize all queue graphs, “almost proper leveled-planar” [12]. Proper leveled-planar
graphs, i.e., leveled planar graphs with edges only between adjacent levels, play
an important role in the field of graph drawing, e.g., in [5, 14]. We will show that
the property of bipartiteness exactly corresponds to the gap between arched and
proper leveled-planar graphs: A graph is a bipartite queue graph if and only if
it is proper leveled-planar.

The remainder of this paper is organized as follows: Sect. 2 introduces deque
layouts and linear cylindric drawings. In Sect. 3.1, we prove that a graph is a
deque graph if and only if it is a subgraph of a planar graph with an HP. We will
also give an intuitive explanation for this theorem, which leads to interesting
insights into deque and queue layouts. In Sect. 3.3 we show that the decision
problem “Is a given graph a deque graph?” is NP-complete. We then character-
ize all bipartite queue graphs as the proper leveled-planar graphs (Sect. 4). In
Sect. 5 we give a conclusion and some pointers to future work.

2 Preliminaries

In this section we introduce deque layouts and LCDs. We consider simple undi-
rected graphs G = (V, E) with n vertices and m edges. Let ≺ be a total order
on V , called linear layout. If u ≺ v (u � v), we say that u precedes (succeeds)
v. In the following, we assume that the edges are directed according to the lin-
ear layout, i.e., each edge {u, v} with u ≺ v is denoted by its directed version

Characterizations of Deque and Queue Graphs 37

(a)

921

3 8

10

4

6

5

7

(b)

1 2 3 4 5 6 7 8 9 10

(c)

�1 2 3 4 5 6 7 8 9 10

(d)

921

3 8

10

4

6

5

7

921

3 8

10

4

6

5

7

Fig. 1. A planar graph (see (a)) and its linear cylindric drawing on a 3D cylinder
(see (b)), which can be obtained by “cutting” along the Hamiltonian path (see (d)).
The linear cylindric drawing can be embedded in the plane (see (c)).

(u, v). A linear layout defines the order in which the vertices are processed in a
graph layout, where at each vertex all incoming edges have to be removed from
the data structure first and then all outgoing edges have to be inserted into the
data structure. These operations must obey the principles of the underlying data
structure, where we focus on the deque in the following.

A deque has two ends, a head h and a tail t, to insert and remove edges.
Let α/ω : E → {h, t} be two functions that assign to each edge the side of
its insertion and removal, respectively. α/ω are called input/output assignments
(I/O assignments). If α(e) = ω(e), then e is called stack edge, otherwise queue
edge, according to the manner e is processed in the deque. Note that a deque can
emulate two stacks by restricting α/ω such that only stack edges are allowed.
If all stack (queue) edges are inserted at the same side, a single stack (queue)
is emulated. The content of a deque is denoted by C = (e1, . . . , ek), where e1

is at the deque’s head and ek at the tail. At vertex v, at first all edges from
preceding vertices have to be removed from the deque according to ω. Note
that an edge can only be removed if it is situated at the deque’s head or tail,
i.e., if C = (e1, . . . , ek), then afterwards only a “kernel” C′

i = (er, . . . , es) with
1 ≤ r ≤ s ≤ k remains, where ω(et) = h for t = 1, . . . , r − 1 and ω(et) =
t for t = s + 1, . . . , k. Afterwards, all edges to succeeding vertices of v are
inserted according to α. That is, if C′ = (er, . . . , es), then its content afterwards
is C′′

i = (e′1, . . . , e
′
j′ , er, . . . , es, e1, . . . , e

′′
j′′) where α(e′i) = h for all i = 1, . . . , j′

and α(e′′i) = t for all i = 1, . . . , j′′.
A linear layout with I/O assignments denoted by Δ(G) = (≺, α, ω) is called

deque layout if all edges can be processed in a deque according to ≺ and α/ω
and a graph is a deque graph if and only if it has a deque layout. Note that
the property of having a deque layout is hereditary, i.e., if a graph has a deque
layout, then so does every subgraph. Also note that we can neglect the exact
order in which the edges are inserted/removed at a vertex as there is always a
canonical order (see also [1]).

In [1] we have introduced linear cylindric drawings (LCDs): In an LCD of
a graph G, the vertices are placed disjointly on a straight line, the front line,

38 C. Auer and A. Gleißner

on the surface of a 3D cylinder parallel to the cylinder’s axis. The edges are
drawn as monotone curves in direction of the cylinder’s axis and do not cross
the front line. The total order according to which the vertices are placed on
the front line is defined by a linear layout ≺. As an example consider the planar
graph G = ({1, . . . , 10}, E) in Fig. 1(a). Let ≺ be the linear layout corresponding
to the numbering of the vertices. The corresponding LCD of G with the linear
layout ≺ is shown in Fig. 1(b): The vertices are placed on the front line (dashed)
and all edges are either routed entirely above or below the front line or wrap at
most once around the cylinder.

In [1] we have investigated the relationship between deque layouts and LCDs.
We have found out that a graph is a deque graph if and only if it admits a plane
linear cylindric drawing (cf. Theorem 1 in [1]). The key observation to obtain
this result is as follows: The regions above and below the front line correspond
to the head and tail of the deque, respectively. An edge (u, v), leaving u and
entering v from above the front line, e.g., edge (1, 5) in Fig. 1(b), is inserted to
and removed from the head of the deque, i.e., it is a stack edge. Edges entering
their end vertices from opposing sides of the front line are queue edges, e.g.,
edge (6, 9) is inserted to the head and removed from the tail of the deque.

An LCD on the cylinder can be continuously transformed to a drawing in the
plane by mapping the surface of the cylinder to a disk. Hence, all deque graphs
are planar. Fig. 1(c) shows the result of the mapping when applied to the LCD
in Fig. 1(b). Again, the front line is displayed by a dashed line and the region
on the right side of the cylinder in Fig. 1(b) is symbolized by the gray dot at
the right end of the front line in Fig. 1(c). All queue edges are now routed once
around the disk.

3 Deque Graphs

3.1 Characterizing Deque Graphs

In this section we characterize deque graphs as the subgraphs of planar graphs
with an HP.

Theorem 1. A graph is a deque graph if and only if it is a subgraph of a planar
graph with an HP.

Proof. “⇒”: Let G be a deque graph and, hence, G has a plane LCD according
to Theorem 1 in [1]. Consider, for instance, the LCD in Fig. 1(c). Note that edges
between immediate neighbors on the front line can always be inserted without
destroying planarity. By inserting these edges, we obtain the super-graph G′ of
G which has an HP and is a deque graph since it allows a plane LCD. Since G′

is also planar, G has a planar super-graph with an HP.
“⇐”: Consider the planar super-graph G′ = (V ′, E′) of G with an HP. Any

plane drawing of G′ can be continuously transformed to a plane LCD where the
HP is a straight line. In the so obtained LCD, the vertices V ′ are placed on the
front line according to the HP and the edges E′ do not cross the front line. By
Theorem 1 in [1], we can conclude that G′ is a deque graph and so is G. �	

Characterizations of Deque and Queue Graphs 39

Since the deque can emulate two stacks, the surplus of the deque to addition-
ally allow queue edges exactly bridges the gap between Hamiltonian cycles and
Hamiltonian paths in planar graphs. With a slight abuse of notation, we get for
planar graphs:

Hamiltonian Path
Hamiltonian Cycle

=
Deque

2 Stacks
.

3.2 Hamiltonian Paths in Deque and Queue Graphs

Remember that the stack graphs are exactly the outerplanar graphs. A graph
is a 2-stack graph if and only if it has a planar super-graph with an HC, where
the proof in [2] relies on the following idea: Consider a plane drawing of a planar
graph with an HC and “cut” along this cycle. This divides the plane into two
regions where the vertices lie along the cut. Hence, we have obtained two outer-
planar graphs, each of which uses one stack in the 2-stack layout or, equivalently,
both use the same deque with stack edges only.

We can apply a similar interpretation to Theorem 1: In Fig. 1(d) the graph
from Fig. 1(a) is augmented by edges to form the HP p = 1, . . . , 10. In the
following, let V ∗ be the plane regions in G’s embedding, then G∗ = (V ∗, E) is
the dual of G where the set of edges of G∗ is equal to that of G, i.e., e ∈ E
is an edge between two regions u, v ∈ V ∗ if e joins the regions u and v in G’s
embedding. Now, join start and end of HP p by a path from vertex 10 and 1
by a path in G∗. Hence, we obtain a closed curve that divides the plane into
region A (shaded in Fig. 1(d)) and its complement �A. Like in the case of the
2-stack graphs, all edges that lie completely within A or �A are stack edges, e.g.,
edge (5, 7), situated completely within A, is inserted to and removed from the
head of the deque (see Fig. 1(b)). Edges that go from one region to the other are
exactly the queue edges in the deque layout, e.g., edges (2, 6) and (6, 9), where,
for instance, (2, 6) is inserted at the head and removed from the tail in the deque.

By applying the same interpretation, we obtain a new characterization of
queue graphs. Note that a queue graph is essentially a deque graph, where all
edges are queue edges. Hence, we obtain:

Corollary 1. G = (V, E) is a queue graph if and only if G = (V, E) has a planar
super-graph G′ = (V ′, E′) with an HP p = v1, . . . , vn fulfilling the following
properties: HP p does not use any edges of E and there is a path p∗ = v∗1 , . . . , v∗r
in G′’s dual graph G∗ from a region at v1 to a region at vn that visits each
edge e ∈ E exactly once, i.e., p∗ is a Eulerian path in G∗.

Corollary 2. Let G = (V, E) be an embedded queue graph and G∗ be its dual,
then G∗ contains a Eulerian path.

3.3 Deciding If a Graph Is a Deque Graph Is NP-Complete

The problem of deciding whether a maximal planar graph has an HC is NP-
complete [4, 16]. Consequently, the decision problem “Is a given graph a 2-stack

40 C. Auer and A. Gleißner

(a)

e
∗

a1 a2

a3

a1 a2

a3

Type A

(b)

b1 b2

b3

A1 A2

b1 b2

b3

Type B

(c)

B1

B2

B3

c1 c2

c3

c

�Type C

c1 c2

c3

(d)

B

� �
C1 C2

d1 d2

d3

b1 b2

c1

c2 c
′

1

c
′

2

� �Type D

d1 d2

d3

(e)

�

�D

a1 a2

a3

Fig. 2. Widgets needed for the NP-completeness reduction in Theorem 2

graph?” is NP-complete. In contrast, deciding if a graph permits a stack layout
can be done in linear time [2, 15]. We show that deciding if a graph is deque graph
is also NP-complete. To do so we show the NP-completeness of the following
problem:

Theorem 2. The decision problem “Given a maximal planar graph, does it con-
tain a Hamiltonian path?” is NP-complete.

Proof. In [16], Wigderson uses an elegant construction to transform a 3-
connected, cubic planar graph G to a maximal planar graph G′ and shows that
G contains an HC if and only if G′ contains an HC. For 3-connected, cubic pla-
nar graphs the HC problem is known to be NP-complete [8]. To the best of our
knowledge (and surprise) the HP problem for maximal planar graphs has not
been shown to be NP-complete so far.

In the following, we will introduce only those widgets from [16] that we need
for our purposes. For all widgets and proofs of their properties see [16]. The
widget of Type A is the base building block of the construction and is depicted
in Fig. 2(a): Wigderson has shown that if an HC enters and leaves, i.e., traverses,
a Type-A widget A, then all vertices of A must be visited before the A can be
left. He shows this by enumerating all possibilities of traversing a Type-A widget,
where all possibilities use edge e∗ (bold line) (see Fig. 2(a)); a fact which we will
use later in our adaption. In the following, a Type-A widget is symbolized by a

Characterizations of Deque and Queue Graphs 41

shaded triangle with a gray line (cf. Fig. 2(a); note that this widget is symmetric
with respect to the gray line within the triangle).

The Type-B widget, shown in Fig. 2(b), is composed by two Type-A widgets
A1 and A2. Wigderson has shown that an HC traversing a Type-B widget must
enter and leave at vertices b1 and b2 and, again, all vertices in A1 and A2 have
to be visited during this traversal. Hence, it is not possible to visit, for instance,
b3 and then visit the remaining vertices of the widget later (cf. [16]). A Type B
widget is symbolized by a shaded triangle, where the corners symbolizing b1 and
b2 are connected by an arc.

For our adaption we compose two additional widgets of Type-C and D: The
Type-C widget is depicted in Fig. 2(c) and it consists of three Type-B widgets. A
Type-C widget C has the property that any HP in a graph that contains C must
have at least one of its end points in C, i.e., C cannot be traversed completely:
Suppose that an HP enters at c1, then it must visit all vertices of B1 until it
reaches center vertex c. Then either B2 or B3 have to be traversed entirely. W.
l. o. g. it traverses B2 and reaches c3. Still, the vertices of B3 have to be visited.
The only possibility (by the properties of Type-A and B widgets) of doing this
is to enter C at c2 again and to visit all vertices of B3 just before center vertex
c is reached. There the HP ends. The same holds if the HP enters at c2 or c3.
A Type-C widget is denoted by a triangle with a gray dot symbolizing the end
point of an HP. Note that a Type-C widget is invariant with respect to rotation
around vertex c.

Two Type-C widgets can be composed to obtain a Type-D widget, which
assures that both ends of an HP end at a Type-D widget. The Type-D widget is
displayed in Fig. 2(d). For the sake of clarity we did not triangulate the Type-D
widget since it can be triangulated arbitrarily. Let D be a Type-D widget then
an HP of a graph containing D must have its one end in C1 and its other end
in C2. The Type-B widget B in D assures that any HP leaves D at d1 and d2:
Since any HP has to end in C1 and C2, B has to traversed by an HP. By the
property of Type-B widgets, the HP has to enter and leave B at b1 and b2 and
during the traversal d3 is traversed.

The construction in [16] replaces each vertex of the 3-connected, cubic graph
G by a widget composed of three Type-B widgets (consisting of two Type-
A widgets) and afterwards elegantly triangulates the whole graph to obtain
maximal planar graph G′. In our adaption we apply the same construction and
then pick an arbitrary Type-A widget A in G′. We then insert a Type-D widget
D into A as displayed in Fig. 2(e): Edge e∗ is replaced by the edge d1 and d2

of D and vertex d3 is connected to the central vertex of A. We denote the so
obtained graph by G′′. Remember that e∗ is the edge that always has to be used
when traversing a Type-A widget.

Suppose that G contains an HC. Then, by the construction in [16], G′ also
contains an HC. This HC must use edge e∗ in the Type-A widget A of G′. In G′′

and the corresponding Type-D widget (cf. Fig. 2(d) and (c)), consider the path
d2 → c′2 → b2 → b1 → c′1 and from c′1 to the vertex before the center vertex of
C2. This path visits all vertices of C2 and B and ends in C2. Similarly, the path

42 C. Auer and A. Gleißner

d1 → c1 → c2 and, again, from c2 to the vertex before the center vertex of C1

visits all vertices of C1 and ends in C1. Hence, in G′′ instead of using edge e∗ we
visit all vertices in D and let the HP end in C1 and C2. Consequently, G′′ has
an HP.

Conversely, let G′′ contain an HP. Then, by construction, the HP must end
in C1 and C2. Note that the HP must leave D at d1 and d2. In G′, there is an
HP starting and ending at d1 and d2. By adding edge e∗ to the HP we get an
HC and, hence, G also contains an HC. �	
Theorem 3. The decision problem “Is a given graph a deque graph?” is NP-
complete.

Proof. Let G = (V, E) be a graph, then non-deterministically guess a deque
layout Δ(G) = (≺, α, ω) of G, which can be done in linear time. Insert all edges
between immediate successors according to ≺ in order to construct a super-graph
G′ of G which contains an HP. G′ is planar if and only if G is a deque graph
(Theorem 1). Planarity of G′ can be decided in polynomial time. Consequently,
the decision problem is in NP .

Now, let G = (V, E) be maximal planar, i.e., if G′ is a super-graph of G and
G′ is planar, then G′ = G. Hence, G = (V, E) is a deque graph if and only if
it contains an HP. Thus, the decision problem “Does a maximal planar graph
contain an HP?” reduces to “Is a given graph a deque graph?”, which is then
also NP-complete by Theorem 2. �	

4 Queue Graphs

Now we turn to queue graphs. Heath and Rosenberg proved that a graph has a
queue layout if and only if it has an arched leveled-planar embedding [12]. The
leveling of a graph is an assignment of its vertices to positive integers. An arched
leveled embedding is a leveling together with a total left-to-right order of the
vertices on each level such that edges connect either vertices of adjacent levels
(inter-level edges) or the left-most vertex on a level with an accessible vertex on
the right side on the same level (arches).

We consider a special case by forbidding arches, i.e., ask for a proper leveled-
planar embedding. We show that this restriction is exactly captured by bipartite-
ness. The vertices of different levels are usually considered unrelated. However,
for sake of simplicity, we operate with a single total order on all vertices, which is
a linear extension of the union of the levelwise orders. Additionally, we consider
the arches as directed from the left-most vertex to the vertex on the right side.

Theorem 4. A graph is proper leveled-planar if and only if it is bipartite and
has a queue layout.

Proof. “⇒”: Let G = (V, E) be a graph with a proper level-drawing, which is
just a special case of an arched leveled-planar drawing, so that G, according to
[12], has a queue layout. The vertices placed on even, and the vertices placed on
odd levels of the drawing form a bipartition of V .

Characterizations of Deque and Queue Graphs 43

(a)

1 2 3 4

5 6 7 8 9 10

11 12 13 14

15 16 17

A

B
C

D

E

(b)

A

B

C

D

E

B0 B1 B2

(c)

a bs

bt cs

ct d

pB

pC

A B

C

D

(d)

12 34

5 67 89 10

11 12 1314

1516 17

︸ ︷︷ ︸
B2

︸ ︷︷ ︸
B1

︸︷︷︸
B0

A

B

C

D

E

(e)

1

2 3

4 5

6

7 8

9

10

11 12 13

14 15

16 17

Fig. 3. Bipartite graph G with an arched leveled-planar embedding (a), which is
transformed via (d) to a proper leveled-planar embedding (e). (b) is the component
graph G of G. (c) illustrates the proof that any component graph has a proper leveling.

“⇐”: Let G = (V, E) be a bipartite graph with a queue layout and partition
Vw ∪̇Vb = V , i.e., Vw ∩Vb = ∅, see Fig. 3(a). We will refer to Vw (Vb) as the set of
white (black) vertices. G has an arched leveled-planar embedding Σ consisting
in a level assignment φ : V → N and a total order ≺ on V , which imposes
the order of the vertices on each level. Let A ⊆ E be the arches of G caused
by Σ. We will transform Σ into a proper leveled-planar embedding Σ′ without
arches. W. l. o. g. assume that G is connected. Otherwise Σ can be transformed
independently for each connected component of G.

We call a vertex even (odd) if it is placed on an even (odd) level by Σ and
denote the set of all even (odd) vertices by Veven (Vodd). Obtain the graph G′ =
(V, E \A) by temporarily removing the arches from G. As Σ clearly is a proper
leveled-planar embedding of G′, Veven ∪̇ Vodd form another bipartition of the
vertices of G′. We call V+ = (Veven ∩Vw)∪ (Vodd ∩Vb) the set of positive vertices
and V− = (Veven ∩ Vb) ∪ (Vodd ∩ Vw) the set of negative vertices, respectively.
Note that in G′ none of the positive vertices is connected to any of the negative
vertices as each edge in E \A connects vertices of simultaneously different parity
and color.

Let V+ (V−) be the set of connected components of G′ which consist of
positive (negative) vertices and let V = V+ ∪ V−. Denote by c(v) the connected
component of G′ containing vertex v ∈ V . We define the directed graph G =
(V, E) by asserting a so called component connection (A,B) ∈ E if and only if
the components A,B ∈ V are connected by an arch in G, i.e., if there are vertices
u ∈ A and v ∈ B with (u, v) ∈ A. Note that while each arch contributes to a
single connection (A,B) ∈ E, this connection may be caused by several arches.

44 C. Auer and A. Gleißner

As an intermediate result, we prove that there is a proper leveling of G. In
order to avoid confusion of said leveling with planar level embeddings of G,
we speak of buckets instead of levels in the context of G. In other words, we
show that V can be partitioned into buckets B0, B1, B2, . . . such that for each
component connection (A,B) ∈ E there is an i with A ∈ Bi and B ∈ Bi+1.
Observe that each arch connects vertices of different color but the same par-
ity, i.e., the connected vertices (and thereby, their components) are of differ-
ent sign. Thus, G is bipartite with the partition V+ ∪̇ V− and, in particu-
lar, contains no triangle. Assume there are components A,B, C,D ∈ V with
(A,B), (B, C), (C,D) ∈ E, see Fig. 3(c). It remains to show that there are no tran-
sitive edges (A,D) ∈ E and no directed cycles caused by (D,A) or (B,A) ∈ E.
The following argument applies analogously for the situation with more com-
ponents involved, i.e., (A1,A2), (A2,A3) . . . , (Ak−1,Ak) ∈ E (k ∈ N), and for
the case |V| ≤ 3. Let a ∈ A, bs, . . . , bt ∈ B, cs, . . . , ct ∈ C, and d ∈ D and
let p = a, bs, . . . , bt, cs, . . . , ct, d be a simple path in G from A via B and C
to D ignoring edge directions. (a, bs), (bt, cs), (ct, d) ∈ A are arches of G with
φ(a) = φ(bs) �= φ(bt) = φ(cs) �= φ(ct) = φ(d) as arches on the same level would
have to share the same source vertex. W. l. o. g. assume φ(bt) > φ(bs). For any
vertex u ∈ V and a collection of vertices S ⊆ V , we say that u is placed at
the bottom left of S if φ(u) < minv∈S φ(v) or if φ(u) ≤ maxv∈S φ(v) and for all
v ∈ S with φ(u) = φ(v), u ≺ v. Accordingly, we say that u is placed at the top
right of S if φ(u) > maxv∈S φ(v) or if φ(u) ≥ minv∈S φ(v) and for all v ∈ S with
φ(u) = φ(v), v ≺ u. The subpath pB = bs, . . . , bt is a kind of “separator” of G′

in the following sense. If a vertex u is placed at the bottom left and a vertex
v is placed at the top right of pB, then, due to the planarity of Σ, any path q
from u to v in G must either share a vertex with pB or contain at least one arch.
Thus, if q consists solely of inter-level edges, both u and v are connected to pB
and thereby are contained in B. This implies that if c(u) �= B or c(v) �= B, then
c(u) �= c(v) since q contains an arch. Hence, φ(ct) > φ(cs) as otherwise cs and
ct would be placed at different sides of pB, but in fact cs, ct ∈ C. Similarly, the
subpath pC = cs, . . . , ct is a separator of G′, too. Note that pB and pC cannot
be bypassed simultaneously by a single arch because they share only the level
φ(bt) = φ(cs). Therefore, any path q that connects a and d and is vertex disjoint
to p, must contain at least two arches so that neither (A,D) ∈ E nor (D,A) ∈ E.
Furthermore, assume by contradiction (B,A) ∈ E caused by an arch (b∗, a∗)
with b∗ ∈ B and a∗ ∈ A. Then there must be a path pA = a∗, . . . , a ∈ A being
a separator of G′. b∗ must be a left-most vertex on the level φ(b∗) = φ(a∗). But
then b∗ /∈ B as bs and b∗ would be placed at different sides of pA, completing
the proof for the proper leveling of G.

Using the partition of V into buckets as described above, we can obtain a new
total order ≺′ of the vertices without introducing an edge crossing as follows.
Consider two vertices u, v ∈ V . If u and v belong to components of different
buckets, then they are ordered by ≺′ in reverse order of their buckets. In other
words, if there are i > j with c(u) ∈ Bi and c(v) ∈ Bj , then u ≺′ v. If, however,
c(u) and c(v) are in the same bucket, then the initial order ≺ is preserved, i.e.,

Characterizations of Deque and Queue Graphs 45

u ≺′ v ⇔ u ≺ v. The corresponding level embedding of G′, see Fig. 3(d), is
still planar as ≺′ does particularly not alter the order within a component and
does also not introduce new interleavings of different components. Note that the
vertices which where connected by an arch in G, now lie next to each other.
Next we transform the leveling φ. For each vertex v ∈ V , let φ′(v) = φ(v) + i if
c(v) ∈ Bi. φ′ and ≺′ constitute the new level embedding Σ′ of G′, see Fig. 3(e).
Σ′ is proper leveled-planar as the relative positions of the vertices belonging
to the same bucket is the same as in Σ, while vertices of different buckets are
horizontally separated by ≺′ and there is no edge between them.

Applying Σ′ to G, each arch in (u, v) ∈ A becomes an inter-level edge with
φ′(v) − φ′(u) = 1. As the arches determined the order of the buckets and now
the border vertices of neighboring buckets face each other in Σ′, reinserting the
arches does not cause any crossings in Σ′. Thus, Σ′ is a proper leveled-planar
embedding of G. �	
Heath and Rosenberg have shown in [12] that the decision problem “Is a graph
a queue graph?” is NP-complete. They have also shown that deciding if a graph
is proper leveled-planar is NP-complete. Hence, we obtain the following:

Corollary 3. The decision problem “Is a graph a queue graph?” is NP-
complete even for bipartite graphs.

5 Conclusion

In this paper, we have proved that a graph is a deque graph if and only if it
is a subgraph of a planar graph with a Hamiltonian path. Using this result,
we have also characterized the gap between Hamiltonian paths and cycles in
planar graphs with respect to graph layouts. We used our findings to obtain new
insights into queue graphs, e.g., the dual of an embedded queue graph contains a
Eulerian path. We then showed that deciding if a graph can be laid out in a deque
is NP-complete. We have also found out that the property of bipartiteness of a
queue graph exactly matches the difference between proper and arched leveled-
planar graphs: A graph is a bipartite queue graph if and only if it is proper
leveled-planar.

To layout an arbitrary planar graph four stacks are sufficient and necessary
[19, 20]. However, there are non-planar graphs that permit a 4-stack layout, e.g.,
the complete graph K5. We are currently in the process of proving that by a slight
modification of the deque data structure we are able to exactly characterize all
planar graphs. In [12], Heath and Rosenberg have conjectured that every planar
graph is a stack-queue graph; a conjecture, which is still open. We have obtained
indicators that this conjecture might not be true. We have the hope that our
extended deque layouts will help to prove our conjecture.

References

1. Auer, C., Bachmaier, C., Brandenburg, F.J., Brunner, W., Gleißner, A.: Plane
Drawings of Queue and Deque Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD
2010. LNCS, vol. 6502, pp. 68–79. Springer, Heidelberg (2011)

46 C. Auer and A. Gleißner

2. Bernhart, F., Kainen, P.: The book thickness of a graph. J. Combin. Theory, Ser.
B 27(3), 320–331 (1979)

3. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books:
A layout problem with applications to VLSI design. SIAM J. Algebra. Discr.
Meth. 8(1), 33–58 (1987)

4. Chvátal, V.: The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. John Wiley and Sons, New York (1985)

5. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions
on Systems, Man, and Cybernetics 18(6), 1035–1046 (1988)

6. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

7. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: Layouts of graph subdivi-
sions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

9. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discret. Math. 5(3), 398–412 (1992)

10. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs:
Part II. SIAM J. Comput. 28(5), 1588–1626 (1999)

11. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed
acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)

12. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Com-
put. 21(5), 927–958 (1992)

13. Rosenstiehl, P., Tarjan, R.E.: Gauss codes, planar hamiltonian graphs, and stack-
sortable permutations. J. of Algorithms 5, 375–390 (1984)

14. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2),
109–125 (1981)

15. Wiegers, M.: Recognizing Outerplanar Graphs in Linear Time. In: Tinhofer, G.,
Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg
(1987)

16. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal
planar graphs. Tech. rep., Department of EECS, Princeton University (1982)

17. Wood, D.R.: Bounded Degree Book Embeddings and Three-Dimensional Orthogo-
nal Graph Drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS,
vol. 2265, pp. 312–327. Springer, Heidelberg (2002)

18. Wood, D.R.: Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing.
In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359.
Springer, Heidelberg (2002)

19. Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In:
Proc. of the 18th Annual ACM Symposium on Theory of Computing, STOC 1986,
pp. 104–108. ACM, New York (1986)

20. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst.
Sci. 38(1), 36–67 (1989)

Graph Classes with Structured Neighborhoods
and Algorithmic Applications�

Rémy Belmonte and Martin Vatshelle

Department of Informatics, University of Bergen,
P.O. Box 7803, N-5020 Bergen, Norway

{remy.belmonte,martin.vatshelle}@ii.uib.no

Abstract. Boolean-width is a recently introduced graph width parame-
ter. If a boolean decomposition of width w is given, several NP-complete
problems, such as Maximum Weight Independent Set, k-Coloring
and Minimum Weight Dominating Set are solvable in O∗(2O(w))
time [6]. In this paper we study graph classes for which we can com-
pute a decomposition of logarithmic boolean-width in polynomial time.
Since 2O(log n) = nO(1), this gives polynomial time algorithms for the
above problems on these graph classes. For interval graphs we show how
to construct decompositions where neighborhoods of vertex subsets are
nested. We generalize this idea to neighborhoods that can be represented
by a constant number of vertices. Moreover we show that these decom-
positions have boolean-width O(log n). Graph classes having such de-
compositions include circular arc graphs, circular k-trapezoid graphs,
convex graphs, Dilworth k graphs, k-polygon graphs and complements
of k-degenerate graphs. Combined with results in [1, 5], this implies that
a large class of vertex subset and vertex partitioning problems can be
solved in polynomial time on these graph classes.

1 Introduction

Two common ways of coping with NP-hard graph problems are to restrict in-
stances to a certain graph class where the problem is polynomial, or to give FPT
algorithms parameterized by a graph width parameter. In this paper we com-
bine these two approaches by exploiting the fact that an FPT algorithm with
running-time 2O(w) · poly(n) is polynomial whenever w is O(log n).

A theorem by Courcelle, Makovski and Rotics [10] states that every problem
expressible in MSO1 logic can be solved in linear time on graphs of bounded
clique-width. Examples of graph classes with bounded clique-width can be found
in Group I of Figure 1. However, many interesting classes of graphs have un-
bounded clique-width (see [4] and [16]). In order to obtain algorithms for larger
classes of graphs, we have to compromise by considering a smaller range of prob-
lems or having less efficient running time. An example of such algorithms, related
to the results in this paper, was shown by Kratochvíl, Manuel and Miller in [23],

� This project was partially supported by the Research Council of Norway.

P. Kolman and J. Kratochvíl (Eds.): WG 2011, LNCS 6986, pp. 47–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

48 R. Belmonte and M. Vatshelle

where a large class of the (σ, ρ) vertex subset problems was shown to be solvable
in polynomial time on interval graphs.

Boolean-width is a graph parameter recently introduced by Bui-Xuan, Telle
and Vatshelle [6]. They present algorithms for solving Maximum Weight In-

dependent Set and Minimum Weight Dominating Set in 2O(w) · poly(n)
time, given a decomposition of boolean-width w. In this paper we study classes
of graphs with boolean-width O(log n). We show that a large class of graphs in-
cluding interval graphs, permutation graphs, convex graphs, circular k-trapezoid
graphs, Dilworth k graphs and complements of planar graphs have boolean-width
O(log n) (see Group II of Figure 1). Combining our results with the results in
[6] leads to polynomial time algorithms for problems such as Minimum Weight

Dominating Set and Maximum Weight Independent Set, for all the graph
classes in Group I and II of Figure 1. To our knowledge, this is the first time
an FPT algorithm parameterized by a graph parameter is used to give a poly-
nomial time algorithm on a natural graph class where the parameter value is
not bounded by a constant. Note that our result unifies and generalizes sev-
eral previous polynomial time algorithms for Minimum Weight Dominating

Set. Interestingly, there is no graph class whose boolean-width is known not to
be O(log n) for which Minimum Weight Dominating Set can be solved in
polynomial time. We are also able to prove that for most of the graph classes
discussed in this paper the upper bounds we give on boolean-width are tight up
to a constant factor, using the fact that they have clique-width Ω(

√
n).

In the simple case of interval graphs we show how to construct decompositions
such that every cut (A, A) has nested neighborhoods, i.e. for every pair of vertices
of A, the neighborhood of one is a subset of the neighborhood of the other when
restricted to A. We generalize the idea of a cut with nested neighborhoods to
the notion of representative-size. We say a cut (A, A) has representative-size r
if every subset of A contains another subset of size at most r having the same
neighborhood in A. We also show that these decompositions have boolean-width
O(log n), since there is only a polynomial number of subsets of constant size.
Our proofs depend on having a certain representation of the input graph. For
most of the graph classes discussed in this paper the required representation can
be computed in polynomial time, meaning we can in polynomial time build a
decomposition given a graph belonging to the graph class.

Telle and Proskurowski [30] introduced a framework covering a large class of
vertex subset and vertex partitioning problems. This framework includes sev-
eral well studied problems, among which are Maximum Independent Set

and Minimum Dominating Set, but also Perfect Code, k-Coloring, H-
Cover, H-Homomorphism and H-Role Assignment. We use the algorithm
Bui-Xuan et al. gave in [1, 5] to show that all the problems covered by this
framework can be solved in polynomial time on all the graph classes in Group I
and II of Figure 1.

In Section 2, we start by introducing standard graph theoretic notions and
define boolean-width as well as some of the related terminology. We also define
formally the notion of representing a neighborhood by a smaller set of vertices,

Graph Classes with Structured Neighborhoods and Algorithmic Applications 49

trees

cographs

threshold

trivially perfect

interval

unit interval

distance hereditary

bipartite permutation

Dilworth 4

Dilworth 2

biconvex

convex

permutation

Dilworth k

perfect

comparability

co−comparability

chordal

split

circular arc

trapezoid

k−trapezoid

circular k−trapezoid

tolerance

circular permutation

strongly chordal

bipartitecircle

co−k−degenerate

I

II

III

IV

k−tree, fixed k

k−polygon

bounded tolerance

Fig. 1. Inclusion diagram of some well-known graph classes. A link between a higher
class A and a lower class B means that B is a subclass of A. (I) Graph classes where
boolean-width is bounded by a constant. (II) Graph classes having boolean-width
O(log n). (III) It is unknown whether boolean-width is O(log n). (IV) There does not al-
ways exist a boolean-decomposition of value O(log n), or it is NP-complete to compute
it. Many vertex subset and vertex partitioning problems can be solved in polynomial
time on graph classes in Group I and II.

Main Result. We show that Dilworth k graphs, convex graphs, trapezoid
graphs, circular permutation graphs, circular arc graphs and complements of k-
degenerate graphs and circular k-trapezoid graphs have decompositions where
neighborhoods can be represented by a constant number of vertices. This im-
plies that a large class of vertex subset andvertexpartitioningproblemsare solv-
able in polynomial time on these graph classes given their intersection model.

Many of these problems are well studied on many of these graph classes, see
[2, 8, 11, 12, 13, 14, 17, 18, 24, 27, 31]. Our result implies many of these results.

50 R. Belmonte and M. Vatshelle

whose size we call “representative-size” and relate this notion to boolean-width.
In section 3, we show classes of graphs having representative-size bounded by
a constant. In section 4, we show that constant representative-size allows to
apply the results in [1, 5] and get polynomial time algorithms for the large
class of vertex subset and vertex partitioning problems defined by Telle and
Proskurowski [30]. Finally, in section 5 we show that our upper bounds are tight
up to a constant factor and give evidence that a large class of graphs cannot
have logarithmic boolean-width.

2 Framework

All graphs considered in this paper are undirected, finite and simple. A graph G
is a pair (V, E) where V is the set of vertices of G and E is the set of edges. The
neighborhood of a vertex u, denoted by N(u), is the set of vertices u such that
the edge {u, v} is in E. The neighborhood of a set X is N(X) =

⋃
x∈X N(x).

Given a set A ⊆ V , we denote by A the complement of A in V , i.e. V \ A. We
call a bipartition (A, A) of V a cut of G. Given a cut (A, A) of G and u ∈ A, we
call the set N(u) ∩ A the neighborhood of u across (A, A).

When applying divide-and-conquer to solve a graph problem, we first need
to divide the input graph. A common way to store the information of how to
divide a graph is to use a decomposition tree. The choice of a decomposition
tree greatly influences the running time of any algorithm using the decomposition
tree. In order to choose the best decomposition tree, we evaluate a decomposition
tree by using a cut function. The following formalism is referred to as branch
decomposition of a cut function and is standard in graph and matroid theory
(see, e.g., [15, 26, 29]).

Definition 1. A decomposition tree of a graph G = (V, E) is a pair (T, δ)
where T is a tree having internal nodes of degree three and |V | leaves, and δ is a
bijection between the vertices of G and the leaves of T . Every edge of T defines
a cut (A, A) of the graph via δ, by the leaves of the two subtrees of T we get by
removing the edge. Let f : 2V → R be a symmetric function, i.e. f(A) = f(A)
for all A ⊆ V , also called a cut function. The f -width of (T, δ) is the maximum
value of f(A), taken over all cuts (A, A) of G given by an edge of T . The f -width
of G is the minimum f -width over all decomposition trees of G.

The following equivalence relation on subsets of A was introduced in [6] and
serves as a basis for the definition of boolean-width:

Definition 2. Let G = (V, E) be a graph and A ⊆ V . Two vertex subsets
X, X ′ ⊆ A are neighborhood equivalent with respect to A, denoted by X ≡A X ′,
if N(X) ∩ A = N(X ′) ∩ A. We denote by nec(≡A) the number of equivalence
classes of ≡A.

Definition 3. [6] The cut-bool function of a graph G is defined as cut-bool(A) =
log2 nec(≡A). Using Definition 1 with f = cut-bool we define the boolean-width of
a decomposition, denoted boolw(T, δ), and the boolean-width of a graph, denoted
boolw(G).

Graph Classes with Structured Neighborhoods and Algorithmic Applications 51

It is known from boolean matrix theory that cut-bool is symmetric [21]. For more
background on boolean-width, see the full version of [6].

Definition 4 (Representative-size). Let G = (V, E) be a graph and (A, A) a
cut of G. We say that the cut (A, A) has representative-size r if r is the smallest
integer such that for every subset S of A, there exists a set S′ ⊆ S with |S′| ≤ r
and S ≡A S′. We denote by rep-size(A) the representative-size of the cut (A, A).
Using Definition 1 with f = rep-size we define the representative-size of a de-
composition, denoted rep-size(T, δ), and the representative-size of a graph, de-
noted rep-size(G).

The next lemma relates representative-size and boolean-width:

Lemma 1. Let G = (V, E) be a graph, and (T, δ) a decomposition of G. If
the representative-size of (T, δ) is r, then the boolean-width of (T, δ) is at most
r log2(|V |).
Proof. For any cut (A, A) of the decomposition (T, δ), we know that rep-size(A)
is at most r. This means that given any set S ∈ A, there exists a set S′ such
that |S′| ≤ r and S ≡A S′. Clearly, there are at most

(|V |
r

) ≤ |V |r subsets
of A of cardinality at most r. Hence we have that boolean-width is at most
log2 |V |r = r log2 |V |. 	

Caterpillar decompositions are decompositions where the underlying tree is a
path with one leaf added as neighbor of each internal node of the path. Many
of our proofs will construct caterpillar decompositions. To describe a caterpillar
decomposition of a graph G, we only give an ordering v1, . . . , vn of the vertices
of G. To construct the caterpillar decomposition (T, δ) from an ordering, first
construct a caterpillar T from a path u1, . . . , un of length |V |. Then let δ be a
mapping of v1 to u1, vn to un and for all i ∈ {2, . . . , n − 1}, of vi to the leaf
attached to ui.

Many of the graph classes we study in this paper are special cases of intersec-
tion graphs. Let F be a family of nonempty sets. The intersection graph of F is
obtained by representing each set in F by a vertex and connecting two vertices
by an edge if and only if their corresponding sets intersect. The intersection
model F usually consists of geometrical objects such as intervals of the real line.

3 Upper Bounds on Boolean-Width of Graph Classes

In this section we prove upper bounds on the boolean-width of several classes of
graphs. Throughout the paper, when talking about a class of graphs, we denote
by n the number of vertices |V |. We say that a class of graphs C has boolean-
width f(n) if every graph belonging to C has boolean-width at most f(n). In
particular, we focus on classes of graphs having boolean-width O(log n). We
prove that the graph classes in Group II of Figure 1 have representative-size
bounded by a constant. Combining this with Lemma 1 implies that they also
have boolean-width O(log n).

52 R. Belmonte and M. Vatshelle

First, we give a sketch of the proof for interval graphs showing that they have
representative-size 1. We build the decomposition by ordering the vertices by the
left endpoint of their intervals, then across each cut (A, A) of the decomposition
the neighborhood of the vertices are nested in order of right endpoint of their
intervals. This means that, for every pair of vertices of A, the neighborhood of
one is a subset of the neighborhood of the other when restricted to A. Now we
extend this idea to circular-arc graphs, which are the intersection graphs of arcs
on a circle.

Lemma 2. Given a circular-arc graph G we can, in polynomial time, compute
a decomposition of G having representative-size at most 2 and boolean-width at
most 2 log n.

Proof. We compute the circular-arc intersection model of G in polynomial time
using the algorithm of McConnell [25]. Let p be an arbitrary point on the circle.
We define the distance of an arc from p as follows: if the arc contains p, then the
distance is 0, otherwise it is the minimum distance between p and any point of
the arc. For any vertex u, we denote by arcu the arc corresponding to u. Note
that since p is an arbitrary point then no pair of arcs have the same distance
from p unless they intersect.

Build a caterpillar decomposition by adding the vertices in order of increasing
distance of their associated arc from p, breaking ties arbitrarily. Note that this
decomposition can be computed in polynomial time. We now consider any cut
(A, A) of this decomposition. By construction, for every x ∈ A, y ∈ A, the
distance of arcx from p is less than or equal to the distance of arcy from p.

Now, we prove that for any set S ⊆ A, there exists a subset S′ ⊆ S such
that |S′| ≤ 2 and S ≡A S′. Let d be the smallest distance from p to the arc of
any vertex in A. Let p+ be the point on the circle which is at distance d going
in clockwise direction from p. Likewise, p− is the point at distance d going in
counter-clockwise direction from p. We build S′ starting from the empty set. If
there exists a vertex in S whose arc contains p+, then let u be one such vertex
with arcu extending furthest from p+ in clockwise direction and add u to S′.
Likewise, if there exists a vertex in S whose arc contains p−, then let v be one
such vertex with arcv extending furthest from p− in counter-clockwise direction
and add v to S′. Now we prove that N(S) ∩ A = N(S′) ∩ A.

Let z be some vertex of N(S) ∩ A, if no such z exists S′ = ∅ satisfies the
lemma. Assume for contradiction that z �∈ N(S′). Let w be a vertex of N(z)∩S
and pi any point contained in both arcw and arcz. Since any arc of a vertex in
A is at distance at most d from p and pi is at distance at least d from p, then
arcw contains both pi and a point of distance at most d from p. We can assume
without loss of generality that arcw contains all points from p+ to pi in clockwise
direction. Since arcu is the arc extending furthest in clockwise direction from
p+, arcu will also contain pi, contradicting the choice of pi.

Therefore S ≡A S′, which implies that the decomposition we built has
representative-size at most 2. By applying Lemma 1 it follows that circular-
arc graphs have boolean-width at most 2 log n. 	

Graph Classes with Structured Neighborhoods and Algorithmic Applications 53

We show a similar result for several other classes of graphs but their definitions
and proofs are in the appendix due to space limitation. The proof for circular-arc
graphs contains all the important ideas. The definitions of the graph classes can
also be found in [3] or [28].

Theorem 1. Convex graphs, circular-arc graphs, circular permutation graphs
and trapezoid graphs have representative-size O(1) and boolean-width O(log n).

The graph classes in Group II of Figure 1 involving a parameter k are dealt
with in Theorem 2. As an example, the proof showing that k-trapezoid graphs
have representative-size at most k can be sketched as follows. A k-trapezoid is
the polygon obtained by choosing an interval on each of k parallel lines in the
plane and connecting the left and right endpoints of each neighboring interval.
k-trapezoid graphs are intersection graphs of k-trapezoids. First, we build the
caterpillar decomposition by ordering the k-trapezoids by their leftmost point.
Then, for any cut (A, A) of the decomposition and any set S ⊆ A, there is one
k-trapezoid extending further to the right on each of the k lines. We call the set
of vertices associated with these k-trapezoids S′. Moreover, for every vertex of
S, any of its neighbors in A is also adjacent to at least one of the vertices in S′.
Hence we have S′ ⊆ S, |S′| ≤ k and S′ ≡A S.

Theorem 2. Complements of k-degenerate graphs, Dilworth k graphs, k-polygon
graphs and circular k-trapezoid graphs have representative-size O(k) and thus
boolean-width O(k log n).

Note that Theorem 1 and 2 encompass all graph classes in Group I and II of
Figure 1. We find it interesting to note that some of these classes are seemingly
unrelated to each other, but they all have decompositions sharing a common
neighborhood structure, which allows for efficient dynamic programming ap-
proaches on a large class of problems. In particular, we combine these results
with the following:

Theorem 3 (Bui-Xuan, Telle, Vatshelle [6]). For any graph G = (V, E),
Minimum Weight Dominating Set can be solved in O(|V |2 + |V | · w · 23·w)
time when given a decomposition of G having boolean-width w.

Combining Theorem 3 with Theorem 1 and 2, we get:

Corollary 1. Minimum Weight Dominating Set can be solved in polynomial
time on all the graph classes in Group I and II of Figure 1.

The next section shows how to extend this result to a larger class of problems.

4 Vertex Partitioning Problems

In [30] Proskurowski and Telle introduced a generalized framework for handling
many types of vertex subset and vertex partitioning problems in a unified man-
ner. These problems can be described by a degree constraint matrix.

54 R. Belmonte and M. Vatshelle

Definition 5. A degree constraint matrix Dq is a q by q matrix with entries
being finite or co-finite subsets of natural numbers. A Dq-partition in a graph G
is a partition {V1, V2, ..., Vq} of V such that for 1 ≤ i, j ≤ q we have ∀v ∈ Vi :
|N(v) ∩ Vj | ∈ Dq[i, j].

A Dq vertex partitioning problem is the problem of finding a Dq partition sat-
isfying a given Dq matrix and optionally maximizing or minimizing the weight
of a given class of the Dq partition. This formalism was introduced by Telle
and Proskurowski and encompass several well studied problems, such Maxi-

mum Independent Set, Minimum Dominating Set, Perfect Code, k-
Coloring, H-Cover, H-Homomorphism and H-Role Assignment. The
class of (σ, ρ) vertex subset problems is a subset of Dq vertex partitioning prob-
lems. For example, Maximum Independent Dominating Set is encoded by
a 2 by 2 matrix with entries [1, 1] = {0}, [1, 2] = {0, 1, . . .}, [2, 1] = {1, 2, . . .}
and [2, 2] = {0, 1, . . .}, and maximizing the size of V1. H-Homomorphism for
a graph H on q vertices simply asks for the existence of a partition satisfying
the q by q matrix constructed from the adjacency matrix of H by replacing
entry 0 with {0} and 1 with {0, 1, . . . }. Telle and Proskurowski showed that
all Dq-problems are solvable in FPT time parameterized by tree-width [30].
Kobler and Rotics showed that Dq-problems are solvable on graphs of bounded
clique-width [22], and with a little effort their algorithms can be made into FPT
algorithms. Bui-Xuan et al. showed that Dq-problems are FPT when parame-
terized by boolean-width [1]. Kratochvíl et al. [23] showed that a subset of the
Dq-problems are solvable in polynomial time on interval graphs. We generalize
the results of [23] by showing that all Dq-problems are solvable in polynomial
time on many well known graph classes, including interval graphs.

We will apply the algorithm of Bui-Xuan et al. [1], where the bottleneck for
running time is the number of equivalence classes of d-neighborhoods. When
solving a Dq-problem, the integer value d(Dq) needed depends on the degree
constraint matrix in the following way. Let d({0, 1, . . .}) = 0. For every finite or
co-finite non-empty set μ ⊆ N, let d(μ) = 1 + min(max x : x ∈ μ, max x : x /∈ μ).
For a matrix Dq, the value d(Dq) will be maxi,j d(Dq[i, j]). When there is no
ambiguity, we denote d(Dq) by d. Note that d depends only on the problem and
hence can be treated as a constant.

Definition 6 (d-neighbor equivalence). Let G = (V, E) be a graph, A ⊆ V
and d a positive integer. Two vertex subsets X ⊆ A and X ′ ⊆ A are d-neighbor
equivalent with respect to A, denoted X ≡d

A X ′ if:
∀v ∈ A, (|N(v) ∩ X | = |N(v) ∩ X ′|) or (|N(v) ∩ X | ≥ d and |N(v) ∩ X ′| ≥ d)

We denote by nec(≡d
A) the number of equivalence classes of ≡d

A.

Note that X and X ′ are 1-neighborhood equivalent with regard to A if and only
if N(X)∩A = N(X ′)∩A and thus nec(≡A) = nec(≡1

A). We show a connection
between representative-size and d-neighbor equivalence.

Lemma 3. Let G = (V, E) be a graph and (A, A) a cut of G. If rep-size(A) = r,
then for every positive integer d and every set X ⊆ A, there exists Xd ⊆ X such
that |Xd| ≤ d · r and Xd ≡d

A X.

Graph Classes with Structured Neighborhoods and Algorithmic Applications 55

Proof. We prove the statement by induction on d. Let R ⊆ X be an inclusion
minimal set such that N(R) ∩ A = N(X) ∩ A. Since the representative-size of
(A, A) is r, we have that |R| ≤ r. For d ≤ 1 the lemma holds since R ≡1

A X .
Assume the induction hypothesis true up to i− 1, then we show it true for i. By
induction hypothesis there exists Xi−1 ⊆ (X \ R) such that Xi−1 ≡i−1

A (X \ R)
and |Xi−1| ≤ r · (i− 1). Thus it is enough to show Xi ≡i

A X , for Xi = Xi−1 ∪R.
We partition the nodes of A into (P, Q) such that ∀v ∈ P , we have |N(v) ∩

(X \ R)| = |N(v) ∩ Xi−1| and ∀v ∈ Q, we have |N(v) ∩ (X \ R)| ≥ i − 1 and
|N(v)∩Xi−1| ≥ i−1. Since R∩Xi−1 = ∅ and R ⊆ X , we know |N(v)∩(X\R)| =
|N(v) ∩X | − |N(v) ∩R| and |N(v) ∩ (Xi−1 ∪R)| = |N(v) ∩Xi−1|+ |N(v)∩R|.
Hence for every vertex v ∈ P , we have |N(v)∩X | = |N(v)∩Xi−1|+ |N(v)∩R| =
|N(v)∩(Xi−1∪R)|. Since i > 1, then for every vertex v ∈ Q we have N(v)∩R �= ∅.
Since X ≡A R, then for every vertex v ∈ Q we have |N(v) ∩ X | ≥ i and
|N(v) ∩ Xi| ≥ i.

Since (P, Q) is a partition we get Xi ≡i
A X and |Xi| ≤ r · i, thus by induction

the lemma holds for all i. 	

For a decomposition (T, δ) of a graph G, let necd(T, δ) be the maximum nec(≡d

A)
over all cuts (A, A) of (T, δ).

Lemma 4. Let G = (V, E) be a graph, (T, δ) a decomposition of G and d a
positive integer. If rep-size(T, δ) = r, then necd(T, δ) ≤ |V |d·r.
Proof. For any cut (A, A) of the decomposition (T, δ), we know that rep-size(A)
is at most r. From Lemma 3 we know that for any S ⊆ A there exists a set S′

such that |S′| ≤ d · r and S ≡d
A S′. Clearly, there are at most

(|V |
d·r

) ≤ |V |d·r
subsets of A of cardinality at most d · r. Hence necd(T, δ) ≤ |V |d·r. 	

By combining Lemma 4 with Theorem 1 and Theorem 2 we get:

Theorem 4. Let G = (V, E) be a graph in Group I or II of Figure 1, then we
can in polynomial time compute a decomposition (T, δ) such that necd(T, δ) is
polynomial in |V | assuming an intersection model of G is provided.

Theorem 5 (Bui-Xuan, Telle, Vatshelle [5]1). For any graph G = (V, E)
and (T, δ) a decomposition of G, all Dq vertex partitioning problems can be solved
in O(necd(T, δ)3·q · poly(|V |)) time.

Combining Theorem 4 with Theorem 5, we get:

Corollary 2. All Dq vertex partitioning problems can be solved in polynomial
time on all the graph classes in Group I and II of Figure 1 assuming an inter-
section model of the input graph is provided.

5 Lower Bounds

We say that a class of graphs C has boolean-width Ω(f(n)) if there exists an
infinite family of graphs in C all having boolean-width Ω(f(n)). In this section
1 [5] is an arXiv version of [1] containing a more fitting version of this theorem.

56 R. Belmonte and M. Vatshelle

we show that the upper bounds we gave on the boolean-width are tight in two
senses. Firstly, for all graph classes (except Dilworth k graphs) in Group II of
Figure 1, we are able to show that they have boolean-width Ω(log n). Secondly,
we show that for all graph classes in Group IV of Figure 1, it is highly unlikely
that they have boolean-width O(log n). Note the following result on the relation
between boolean-width and some other width parameters:

Theorem 6 (Bui-Xuan, Telle, Vatshelle [6]). For any graph G it holds that
log rw(G) − 1 ≤ log cw(G) − 1 ≤ boolw(G), where boolw(G), rw(G) and cw(G)
denote respectively the boolean-width, rank-width and clique-width of G.

Hence if a graph class has rank-width or clique-width Ω(nc) for some constant
c > 0, then this graph class also has boolean-width Ω(log n). We use this to
show that the bounds we give in this paper are tight up to a constant factor.

Lemma 5. All graph classes in Group II of Figure 1 (except Dilworth k graphs),
have boolean-width Θ(log n).

Proof. Brandstädt and Lozin showed in [4] an infinite family of bipartite permu-
tation graphs with clique-width Ω(

√
n). Likewise, Golumbic and Rotics showed

in [16] an infinite family of unit interval graphs with clique-width Ω(
√

n). More-
over, Jelínek showed in [19] that q× q grids have rank-width exactly q− 1. Note
that if a graph G has rank-width w, then its complement G has rank-width w±1.
Since all grids are 2-degenerate, then complements of 2-degenerate graphs have
rank-width Ω(

√
n). From Theorem 6, it follows that these three graph classes

have boolean-width Θ(log n). Hence the lemma follows since all graph classes in
Group II of Figure 1 contain one these graph classes. 	

Another interesting question to ask is whether there exist more graph classes
having logarithmic boolean-width. For some graph classes it is possible to provide
examples of an infinite family of graphs having non-logarithmic boolean-width,
for example the grid. However, for some classes of graphs, we do not know any
example of infinite family of graphs having non-logarithmic boolean-width. We
are nonetheless able to provide some lower bounds:

Lemma 6. For all the classes in Group IV of Figure 1, either they do not have
boolean-width O(log n), or a decomposition of boolean-width O(log n) cannot be
computed in polynomial time, unless P = NP .

Proof. Note first that for all the classes of graphs in Group IV of Figure 1, Mini-

mum Weight Dominating Set is NP-complete (see [9], [7] and [20]). Moreover,
Minimum Weight Dominating Set can be solved in time O(23·boolw ·poly(n)).
Assume now that there exists a class C in Group IV of Figure 1 having boolean-
width O(log n) and where such decompositions can be computed in polynomial
time. Then Minimum Weight Dominating Set can be computed in time
O(2O(log n) · poly(n)), which is a polynomial of n. Hence if a class of graphs on
which Minimum Weight Dominating Set is NP-complete has boolean-width
O(log n), then decompositions of boolean-width O(log n) cannot be computed
in polynomial time, unless P = NP . 	

Graph Classes with Structured Neighborhoods and Algorithmic Applications 57

Note that this holds not only for Minimum Weight Dominating Set, but as
long as there exists a problem which can be solved in O(2O(boolw · poly(n)) time.
Finally, we get better lower bounds by working under a stronger hypothesis.
The Exponential Time Hypothesis (ETH) states that there does not exists an
algorithm for solving 3-SAT running in time 2o(n). We can reformulate Lemma
6 as follows:

Lemma 7. For all the classes in Group IV of Figure 1, either they do not have
boolean-width no(1), or a decomposition of boolean-width no(1) cannot be computed
in time 2o(n), unless ETH fails.

This means for instance that if split graphs have boolean-width poly-log(n), then
it is NP-hard to compute a decomposition of split graphs having boolean-width
within a factor log(n) of the optimum.

6 Conclusion

We have shown that all graph classes in Group II of Figure 1 have logarithmic
boolean-width and we can compute such decompositions of logarithmic boolean-
width, answering an open question from [6]. Applying the algorithm for vertex
partitioning problems (as well as their weighted versions) in [1, 5], we show
several graph classes for which a large class of vertex partitioning problems can
be solved in polynomial time. What is the boolean-width of the graph classes
in Group III of Figure 1? Is there any graph class not having boolean-width
O(log n) where Minimum Weight Dominating Set is polynomially solvable?

References

[1] Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle,
M.: On the Boolean-Width of a Graph: Structure and Applications. In: Thilikos,
D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 159–170. Springer, Heidelberg (2010)

[2] Brandstädt, A., Kratsch, D.: On the Restriction of Some np-Complete Graph
Problems to Permutation Graphs. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199,
pp. 53–62. Springer, Heidelberg (1985)

[3] Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey (1999)
[4] Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite

permutation graphs. Ars Comb. 67 (2003)
[5] Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Fast algorithms for vertex subset and

vertex partitioning problems on graphs of low boolean-width. arXiv
[6] Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-Width of Graphs. In: Chen,

J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 61–74. Springer, Hei-
delberg (2009)

[7] Chang, M.S.: Weighted Domination on Cocomparability Graphs. In: Staples, J.,
Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 122–131.
Springer, Heidelberg (1995)

[8] Chang, M.S.: Efficient algorithms for the domination problems on interval and
circular-arc graphs. SIAM J. on Computing 27(6), 1671–1694 (1998)

58 R. Belmonte and M. Vatshelle

[9] Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Applied Math. 9, 27–40 (1984)

[10] Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

[11] Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipar-
tite graphs. Inf. Process. Lett. 36(5), 231–236 (1990)

[12] Díaz, J., Nešetřil, J., Serna, M., Thilikos, D.M.: H-Colorings of Large Degree
Graphs. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510,
pp. 850–857. Springer, Heidelberg (2002)

[13] Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs.
Discrete Appllied Math 44(1-3), 65–77 (1993)

[14] Farber, M., Keil, J.: Domination in permutation graphs. J. Algorithms 6, 309–321
(1985)

[15] Geelen, J.F., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in
matroids and graphs. J. Comb. Theory, Ser. B 84(2), 270–290 (2002)

[16] Golumbic, M.C., Rotics, U.: On the Clique-Width of Perfect Graph Classes Ex-
tended Abstract. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999.
LNCS, vol. 1665, pp. 135–147. Springer, Heidelberg (1999)

[17] van’t Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of
chordal graphs. Theor. Comput. Sci. 411(40-42), 3601–3613 (2010)

[18] Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inf. Process.
Lett. 40(3), 123–129 (1991)

[19] Jelínek, V.: The rank-width of the square grid. Discrete Applied Math 158(7),
841–850 (2010)

[20] Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Ap-
plied Math. 42(1), 51–63 (1993)

[21] Kim, K.H.: Boolean matrix theory and its applications. Marcel Dekker (1982)
[22] Kobler, D., Rotics, U.: Polynomial algorithms for partitioning problems on graphs

with fixed clique-width (extended abstract). In: Proc. SODA, pp. 468–476 (2001)
[23] Kratochvíl, J., Manuel, P.D., Miller, M.: Generalized domination in chordal

graphs. Nord. J. Comput. 2(1), 41–50 (1995)
[24] Liang, Y.: Dominations in trapezoid graphs. Inf. Process. Lett. 52(6), 309–315

(1994)
[25] McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37,

93–147 (2003)
[26] Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb.

Theory, Ser. B 96(4), 514–528 (2006)
[27] Rhee, C., Liang, Y., Dhall, S., Lakshmivarahan, S.: An o(n + m)-time algorithm

for finding a minimum-weight dominating set in a permutation graph. SIAM J.
on Computing 25(2), 404–419 (1996)

[28] de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions
(ISGCI), http://wwwteo.informatik.uni-rostock.de/isgci

[29] Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-
decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)

[30] Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on par-
tial k-trees. SIAM J. Discrete Math. 10(4), 529–550 (1997)

[31] Tsai, K.H., Hsu, W.L.: Fast algorithms for the dominating set problem on permu-
tation graphs. Algorithmica 9(6), 601–614 (1993)

http://wwwteo.informatik.uni-rostock.de/isgci

Exact Algorithms for Kayles�

Hans L. Bodlaender1 and Dieter Kratsch2

1 Utrecht University, P.O. Box 80.089
3508 TB Utrecht, The Netherlands

hansb@cs.uu.nl
2 Université Paul Verlaine – Metz

LITA, 57045 Metz Cedex 01, France
kratsch@univ-metz.fr

Abstract. In the game of Kayles, two players select alternatingly a
vertex from a given graph G, but may never choose a vertex that is
adjacent or equal to an already chosen vertex. The last player that can
select a vertex wins the game. In this paper, we give an exact algorithm to
determine which player has a winning strategy in this game. To analyse
the running time of the algorithm, we introduce the notion of a K-set:
a nonempty set of vertices W ⊆ V is a K-set in a graph G = (V, E),
if G[W] is connected and there exists an independent set X such that
W = V −N [X], where N [X] is the union of X and the set of all vertices
adjacent to at least one vertex of X. The running time of the algorithm
is bounded by a polynomial factor times the number of K-sets in G. We
show that the number of K-sets in a graph with n vertices is bounded
by O(1.6052n), and thus we have an algorithm for Kayles with running
time O(1.6052n). We also show that the number of K-sets in a tree is
bounded by n·3n/3 and thus Kayles can be solved on trees in O(1.4423n)
time. We show that apart from a polynomial factor, the number of K-sets
in a tree is sharp.

1 Introduction

When a problem is computationally hard, then there still are many situations
in which the need can arise to solve it exactly. This motivates the field of exact
algorithms, where exact, exponential-time algorithms whose running time is as
small as possible are sought. Many such exact algorithms have been designed and
analysed for problems that are NP-complete or #P -complete, see [6]. Of course,
also problems that are complete for a ’harder’ complexity class, e.g., PSPACE-
complete often ask for exact solutions. Many PSPACE-complete problems arrive
from the question which player has a winning strategy for a given position in a
combinatorial game. Exact algorithms are of great relevance here, e.g., a program
could use a heuristic to find a move, but once a position is simple enough, it
switches to an exact algorithm to give optimal play in the endgame.

In this paper, we study exact algorithms for one such PSPACE-complete
problem, namely the problem to determine which player has a winning strategy
� The work of the second author was supported by the ANR project AGAPE.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 59–70, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 H.L. Bodlaender and D. Kratsch

in an given instance of the game Kayles. Kayles is a two-player game that is
played on a graph G = (V, E). Alternatingly, the players choose a vertex from
the graph, but players are not allowed to choose a vertex that already has been
chosen or is adjacent to a vertex that already has been chosen. Thus, the player
build together an independent set in G. The last player that chooses a vertex
(i.e., turns the independent set into a maximal independent set) wins the game.
Alternatively, one can describe the game as follows: the chosen vertex and its
neighbors are removed and a player wins when his move empties the graph. The
problem to determine the winning player for a given instance of the game is also
called Kayles. This problem was shown to be PSPACE-complete by Schaefer
[9]. In an earlier paper [3], we showed that by exploiting Sprague-Grundy theory,
Kayles can be solved in polynomial time on several special graph classes, in
particular graphs with a bounded asteroidal number (which includes well known
classes of graphs like interval graphs, cocomparability graphs and cographs).
Fleischer and Trippen [5] showed that Kayles can be solved in polynomial time
on stars of bounded degree, and also analysed this special case experimentally.
For general trees, the complexity of Kayles is a long standing open problem.
Variants of the game on paths were shown to be linear time solvable by Guignard
and Sopena [7]. For more background, the reader can consult [1,2,4].

It is not hard to find an algorithm that solves Kayles in O∗(2n) time1, by
tabulating for each induced subgraph of G which player has a winning strategy
from that position. In this paper, we improve upon this trivial algorithm, and
give an algorithm that uses O(1.6052n) time. The algorithm uses ideas from [3],
exploiting results from Sprague-Grundy theory. To analyze the running time of
the algorithm, we introduce the notion of a K-set: a set of nonempty vertices
W ⊆ V is a K-set in a graph G = (V, E), if G[W] is connected and there exists
an independent set X such that W = V −N [X], where N [X] is the set of vertices
belonging to X or having a neighbour in X . With a nontrivial analysis we obtain
that the number of K-sets of a graph with n vertices is bounded by O(1.6052n),
which yields the bound on the running time of our algorithm. We also show that
if G is a tree, then G has at most n · 3n/3 K-sets, and thus, Kayles can be
solved in O∗(3n/3) = O(1.4423n) time on trees (and forests). We also give lower
bounds for the number of K-sets. In particular, our bound of 3n/3 K-sets for
trees is sharp except for polynomial terms.

2 Preliminaries

Graph terminology. Throughout this paper all graphs G = (V, E) are undirected
and simple. Let S ⊆ V . Then N [S] = ∪s∈SN [s] is the closed neighborhood of S,
N(S) = N [S] \ S is the open neighborhood of S, and G[S] denotes the subgraph
of G induced by S.

1 We use the so called O∗ notation: f(n) = O∗(g(n)) if f(n) = O(g(n)p(n)) for some
polynomial p(n). If a base α is obtained by rounding up a real then we may and
shall write O(αn) (instead of O∗(αn)). See also [6].

Exact Algorithms for Kayles 61

A nonempty set of vertices W ⊆ V of a graph G = (V, E) is called a K-set
(Kayles set) of G, if it fulfills each of the following criteria:

– G[W] is connected;
– there exists an independent set X ⊆ V such that W = V − N [X].

Sprague-Grundy theory. Next, we review some notions and results from Sprague-
Grundy theory, and give some preliminary results on how this theory can be
used for Kayles. For a good introduction to Sprague-Grundy theory, the reader
is referred to [1,4].

A nimber is an integer belonging to N = {0, 1, 2, . . .}. For a finite set of
nimbers S ⊆ N, define the minimum excluded nimber of S as mex(S) = min{i ∈
N | i �∈ S}. To each position in a two player game that is finite, deterministic,
full-information, impartial, and with ‘last player wins rule’, one can associate a
nimber in the following way. If no move is possible in the position (and hence the
player that must move loses the game), the position gets nimber 0. Otherwise
the nimber is the minimum excluded nimber of the set of nimbers of positions
that can be reached in one move.

Theorem 1. [1,4] There is a winning strategy for player 1 from a position, if
and only if the nimber of that position is at least 1.

Denote the nimber of a position p by nb(p). Given two (finite, deterministic,
impartial, . . .) games G1, G2, the sum of G1 and G2, denoted G1 +G2 is the game
where a move consists of choosing G1 or G2 and then making a move in that
game. A player that cannot make a move in G1 nor in G2 loses the game G1 +G2.
With (p1, p2) we denote the position in G1 + G2, where the position in Gi is pi

(i = 1, 2).
The binary XOR operation is denoted by ⊕, i.e., for nimbers i1, i2, i1 ⊕ i2 =∑{2j | (�i1/2j� is odd) ⇔ (�i2/2j� is even)}.

Theorem 2. [1,4] Let p1 be a position in G1, p2 a position in G2. The nimber
of position (p1, p2) in G1 + G2 equals nb((p1, p2)) = nb(p1) ⊕ nb(p2).

As Kayles is an impartial, deterministic, finite, full-information, two-player game
with the rule that the last player that moves wins the game, we can apply
Sprague-Grundy theory to Kayles, and we can associate with every graph G the
nimber of the start position of the game Kayles, played on G. We denote this
nimber nb(G), and call it the nimber of G.

An important observation is the following: when G = G1 ∪ G2 for disjoint
graphs G1 and G2, then the game Kayles, played on G is the sum of the game
Kayles, played on G1, and the game Kayles, played on G2. Hence, by Theorem 2,
we have the following result.

Lemma 1. nb(G1 ∪ G2) = nb(G1) ⊕ nb(G2).

Note that G1 and G2 might be disconnected graphs.
Our second observation shows how to express the nimber of a graph G in the

nimbers of some subgraphs of G. Consider Kayles, played on G = (V, E), and

62 H.L. Bodlaender and D. Kratsch

suppose that a vertex v ∈ V is played. Then, the nimber of the resulting position
is the same as the nimber of G − N [v], as the effect of playing on v is the same
as the effect of removing v and its neighbors from the graph. As the nimber of
a position is the minimum nimber that is not in the set of nimbers of positions
that can be reached in one move, we have:

Lemma 2. (i) If G = (V, E) is the empty graph, then nb(G) = 0.
(ii) If G = (V, E) is not the empty graph, then nb(G) = mex(nb({G−N [v] | v ∈
V }).

3 An Upper Bound on the Number of K-sets

In this section, we will show an upper bound on the number of K-sets in a graph.
This bound is needed for the analysis of our algorithm, see Section 5. Our main
result is the following.

Theorem 3. Let G be a graph with n vertices. Then G has O(1.6052n) K-sets.

The proof of Theorem 3 is algorithmic: we give a branching procedure that
generates all K-sets. By distinguishing different types of vertices, assigning these
different weights, and considering the different branching vectors, we obtain a
set of recurrences, whose solution gives us the desired bound. For information
on branching algorithms and their analysis, in particular branching vectors and
the corresponding recurrences we refer to [6].

We say that a K-set is nontrivial, if it has at least three vertices; otherwise
we call it trivial. As each trivial set either consists of a single vertex or the two
endpoints of an edge, the number of trivial K-sets is at most n + m, where m is
the number of edges of the graph.

During our branching process, we decide at some points to put some vertices in
an independent set X and forbid for some vertices to put them in the independent
set. When placing a vertex in X , we say we select the vertex. The vertices in G
are of four types:

– White or free vertices. Originally all vertices in G are white. We have not
made any decision yet for a white vertex. All white vertices have weight one.

– Red vertices. Red vertices may not be placed in the independent set X : i.e.,
we already decided this during the branching. It still is possible that a red
vertex becomes deleted later. Red vertices have a weight α = 0.5685.

– Green vertices. A green vertex is ‘safe’: it never will be removed. I.e., we
cannot place the green vertex nor any of its neighbors in the independent
set X . Green vertices have weight zero.

– Removed vertices: these are either placed in the independent set or are a
neighbor of a vertex in the independent set. All removed vertices have weight
zero. Removed vertices are considered not existing, i.e., when discussing the
neighbors of a vertex, these neighbors will be white, red, or green.

Exact Algorithms for Kayles 63

The measure of an instance G is the total weight of all vertices, and the difference
in the measure from an instance to one of a subproblem often called gain is
used to analyse the branching algorithm via branching vectors. Our branching
process may be overcounting the number of K-sets (in particular, in some cases,
we will not detect that a generated set is not connected), but the obtained bound
nevertheless is valid as an upper bound.

The semantics of the colors imply that we can always perform the following
actions:

– Rule 1: If a red vertex v has no white neighbors, we can color it green. This
is valid, as we can no longer place a neighbor of v in X .

– Rule 2: If a green vertex v has a white neighbor w, we can color w red. This
is valid, as placing w in X would remove v, which we are not allowed by the
green color of v.

Rules 1 and 2 will always decrease the measure. They ensure that each red vertex
will have a white neighbor, and that white vertices have no green neighbors.

The following action also can always be performed; the removed vertices can
no longer be part of a nontrivial K-set.

– Rule 3: If W ⊆ V is a set of white vertices that are not adjacent to non-
deleted vertices not in W , and |W | ≤ 2, then remove all vertices of W .

Before starting the main recursive branching, we first fix one vertex v0 ∈ V ,
of which we will assume that it is an element of the K-set. In terms of colors,
this means that we color v0 green and all neighbors of v0 red. Clearly, the total
number of K-sets will be at most n times the bound on the number of K-sets
that contain a specific vertex.

We obtain a fourth rule.

– Rule 4: If G has more than one connected component, then remove all
vertices from components that do not contain v0.

As a consequence, we have that while G has white vertices, a rule can be applied.
Also, there may be a white vertex adjacent to a red vertex.

We consider two main types of branching. The first type of branching is a
vertex branch. Let v ∈ V be a white vertex. We consider two cases: v is placed
in X , and v is not placed in X . In the former case, we remove and decrease the
measure by the total weight of all white and red vertices in the closed neigh-
borhood of v. In the latter case, we color v red and have a measure decrease of
1 − α. In some cases, we gain more by applications of Rules 1, 2, and 3.

In the second type of branching, we consider a number of cases, of which one
must apply. Again, in some cases, we can gain more by applications of Rules 1,
2, and 3.

In the sequel we present all branching rules in a preference order. Hence when
Case i branching is applied to an instance all earlier cases do not apply.

64 H.L. Bodlaender and D. Kratsch

Case 1: There is a white vertex with at least three white neighbors. If v has three
white neighbors, we can perform a vertex branch on v. The branching vector in
this case will be (4, 1− α), i.e., in one case, we decrease the measure by at least
four, and in the other case, we decrease the measure by 1 − α.

Case 2: There is a white vertex with two white neighbors and at least one red
neighbor. If v has two white neighbors and at least one red neighbor, then a
vertex branch on v gives a branching vector of (3 + α, 1 − α).

Suppose Cases 1 and 2 cannot be applied anymore. Then all white vertices
have at most two white neighbors. Moreover, there cannot be a cycle of white
vertices, as such a cycle would either be removed by Rule 4 or contains a vertex
to which Case 2 applies. Similar for white vertices forming paths. Only the
endpoints of such a path can be adjacent to a red vertex, and at least one
endpoint is adjacent to a red vertex.

Case 3: The subgraph induced by white vertices contains a path of length at least
two, with both endpoints incident to at least one red vertex. Suppose now we
have a path of white vertices v1, . . . , vr, r ≥ 2, with v1 and vr incident to a red
vertex. As Case 2 no longer applies, we can assume that v2, . . . , vr−1 have no
nondeleted neighbors outside the path.

Let R be the set of red vertices that are adjacent to v1 and/or vr.

Case 3.1: r = 2. We must either select v1, or select v2, or select neither v1 nor
v2. In the latter case, both v1 and v2 can be colored green, so the measure is
decreased by two in this case. Hence, we have a branching vector (2+α, 2+α, 2).

Case 3.2: r = 3 and |R| ≥ 2. We consider all cases of placing vertices from
{v1, v2, v3} in X :

– Select v1 and v3: we decrease the measure by 3 + 2 · α.
– Select v1: we decrease the measure by 3 + α.
– Select v2: we decrease the measure by 3.
– Select v3: we decrease the measure by 3 + α.
– Choose none: we decrease the measure by 3. (All three vertices can be colored

green.)

So, in this case, we obtain a branching vector (3 + 2 · α, 3 + α, 3, 3 + α, 3).

Case 3.3: r = 3 and |R| = 1. The vertices v1 and v3 have a common red neighbor.
Now, we can perform a vertex branch on v1. If we select v1, then v3 becomes an
isolated vertex, and thus we have a branching vector of (3 + α, 1 − α).

Case 3.4: r = 4 and |R| ≥ 2. Like in Case 3.2, we consider all cases of placing
vertices from {v1, v2, v3, v4} in X , and obtain a somewhat tedious case analysis.
In each case, each vertex in {v1, v2, v3, v4} either is removed or is green. If v1 or
v4 is placed in X , we gain an additional α for the removal of the red neighbor
of this vertex. In case we select both v1 and v4, we gain 2 · α; here we use that

Exact Algorithms for Kayles 65

|R| ≥ 2. This gives a branching vector of (4+α, 4+2 ·α, 4+α, 4+α, 4, 4, 4+α, 4),
corresponding to selecting {v1, v3}, {v1, v4}, {v2, v4}, {v1}, {v2}, {v3}, {v4} or
no vertex from this path for inclusion in X .

Case 3.5: r = 4 and |R| = 1. We do a vertex branch on v1: if we select v1, then
Rule 3 will remove v3 and v4. So the branching vector is (4 + α, 1 − α).

Case 3.6: r ≥ 5. We branch as follows:

– v1 is placed in X : we decrease the measure by 2 + α.
– v2 is placed in X : we decrease the measure by 3.
– v3 is placed in X and v1 is not placed in X . v1 can be colored green, and

thus we decrease the measure by 4.
– v4 is placed in X and v1 and v2 are not placed in X . v1 and v2 can be colored

green, and thus we decrease the measure by 5.
– None of v1, v2, v3, v4 is placed in X . v1, v2, v3 become green, and v4 becomes

red: a measure decrease of 4 − α.

Thus, the branching vector is (2 + α, 3, 4, 5, 4 − α).

Case 4: The subgraph induced by white vertices contains a path of length at least
two, with exactly one endpoint incident to a red vertex. Suppose v1, . . . , vr is a
path of white vertices, and suppose r ≥ 2 is maximal. Assume without loss of
generality that v1 has a red neighbor, say w.

Case 4.1: r ≥ 3. We do a vertex branch on vr−2. If we select vr−2 then we gain
at least 3+α: if r ≥ 4, then vr−2 has two white neighbors, and if r = 3, then vr−2

has a white neighbor (vr−1) and a red neighbor (w). Moreover, vr becomes an
isolated vertex after vr−2 is placed in the independent set, and thus is removed
by Rule 3. If we do not select vr−2, we gain 1−α, and thus we have a branching
vector of (3 + α, 1 − α).

Case 4.2: r = 2 and w has a white neighbor x �= v1. We can now perform a vertex
branch on x. If we place x in the independent set, then w and x are removed,
but also v1, v2 are removed as Rule 3 can be applied: they form a connected
component of at most two white vertices. So, the measure is decreased by at
least 3 + α. If we do not select x, we color x red so obtain a measure decrease of
1 − α. So, this case gives a (3 + α, 1 − α) branching vector.

Case 4.3: r = 2 and w has no white neighbor. We either must select v1, or we
select v2, or we select neither v1 or v2. If we select v2, then w can be colored
green, as its only white neighbor v1 is removed. If we select neither v1 nor v2,
then w, v1 and v2 can be colored green, so we decrease the measure 2 +α in this
case. So we obtain a branching vector of (2 + α, 2 + α, 2 + α).

If Cases 1 – 4 cannot be applied, then there are no adjacent white vertices.
The remaining cases thus deal with white vertices that have no white neighbors.
If a white vertex has no red neighbors, then it is removed by Rule 3, so we assume
that each white vertex has at least one red neighbor but no other neighbors.

66 H.L. Bodlaender and D. Kratsch

Case 5: v1 is a white vertex with no white but at least two red neighbors. We do
a vertex branch on v1. If we do not select v1, it can be colored green, by Rule 1.
So we obtain a branching vector (1 + 2 · α, 1).

Case 6: v1 is a white vertex with exactly one neighbor, which is red. Let w be
the red neighbor of v1.

Case 6.1: w has a white neighbor x �= v1. If a white neighbor of w has at least
two red neighbors, then we can deal with it as in Case 5, and obtain a branching
vector of (1 + 2 ·α, 1). So suppose all white neighbors of w have degree one, and
thus w is their unique neighbor. We now have the following branch:

– w is a vertex in the K-set. In this case, w and all white neighbors of w are
colored green. So, the measure decreases by at least 2 + α.

– w is not a vertex in the K-set. In this case, we must place all white neighbors
of w in the independent set X . Again, the measure decreases by at least 2+α.

So, we obtain a (2 + α, 2 + α) branching vector.

Case 6.2: v1 is the unique white neighbor of w. In this case, we do a vertex
branch on v1. If we do not place v1 in the independent set, then both v1 and w
can be colored green. So, the branching vector is (1 + α, 1 + α).
If no case applies, then there are no white, and hence also no red vertices left, so
we found one (or zero, in case the green vertices are not connected) K-set. Our
choice of α = 0.5685 gives the best value for the base of the exponent for the
given branching vectors, namely the claimed 1.6052. Thus, it follows that there
are O(1.6052n) nontrivial K-sets that contain v0. As the value 1.6052 is obtained
by rounding, and there are at most n + m trivial K-sets, the result follows.

4 A Bound on the Number of K-sets in Trees

In this section, we establish an upper bound on the number of K-sets in a tree.
This bound is used in Section 5 to show a bound on the running time of our
algorithm, when the input graph is a tree or a forest.

Theorem 4. Let T (n) be the maximum number of K-sets in a tree on n nodes.
Then T (n) ≤ n · 3n/3.

Proof. We denote as a rooted K-set of a rooted tree T any K-set of T containing
r, where r denotes the root of T . Let R(n) be the maximum number of rooted
K-sets in any rooted tree on n nodes. We claim that R(n) ≤ 3n/3 − 1 for all
n ≥ 2.

We are going to prove this claim by induction. To see that the claim is true for
the base case n = 2, note that the only K-set containing r is the one containing
both nodes of the tree, and that 32/3 − 1 > 1.08.

As induction hypothesis let us assume that the claim is true for all n′ < n
and consider any rooted tree T on n > 2 nodes. Let r be the root of the tree

Exact Algorithms for Kayles 67

and u1, u2, . . . , up be the children of v. For every i = 1, 2, . . . , p, let Ti be the
subtree of T rooted at ui. Furthermore for all i = 1, 2, . . . , p, we denote by ni

the number of nodes of Ti.
Let W be any K-set of T containing its root r. Then for every i, the intersection

of W with Ti is either empty or a K-set of Ti containing its root ui. Note that
ni = 1 implies that W also contains ui since r ∈ W (and thus r cannot be taken
into the independent set X generating W). Using the induction hypothesis and∑p

i=1 ni = n − 1, we establish the following upper bound for the number of
rooted K-sets of a rooted tree on n nodes

R(n) ≤
∏

i:ni≥2

(R(ni) + 1) ≤
∏

i:ni≥2

3ni/3

≤ 3(n−1)/3 ≤ 3n/3 − 1.

This completes the proof of our claim.
To complete the proof of the theorem simply note that any K-set is counted

at least once as a rooted K-set for some vertex v chosen to be the root, and thus
T (n) ≤ n · R(n). 	

The above proof can be used to obtain an algorithm to enumerate all K-sets of a
tree in time O∗(3n/3). This algorithm chooses any vertex r of maximum degree
and branches into two subproblems: in one r is taken into W and in the other
one r is discarded from W and thus all neighbors of r are discarded from S.

5 The Exact Algorithm

In this section we present our exact exponential-time algorithm solving Kayles.
The algorithm starts with a call to the procedure compute nimber shown in
Figure 1, with input G = (V, E). If it returns a nimber that is at least one, then
Player 1 has a winning strategy on G; if it otherwise returns nimber zero, then
Player 2 has a winning strategy. Correctness of the procedure directly follows
from the discussion in Section 2.

Note that the procedure compute nimber(G[W]) is only called for K-sets,
and thus G[W] is always connected, with one possible exception: if G is not
connected, then the first call to the procedure is for G[V] with V not a K-set. As
the overhead per recursive call is polynomial, the running time is a polynomial
factor times the number of K-sets in G. The procedure computes the nimber
nb(W) of G[W] for all K-sets W of G and stores the value in a table using
Memorisation, i.e., computed values are stored in a table, and by look-up no
value nb(W) is computed more than once. It follows that the running time of
the algorithm is O∗(|K(G)|) where K(G) is the set of K-sets of G.

Combining the bounds of the previous sections on the number of K-sets with
the algorithm of this section, we establish the following result.

Theorem 5. Kayles can be solved in time O∗(1.6052n) for graphs on n ver-
tices. Kayles can be solved in time O∗(1.4423n) for trees on n nodes.

68 H.L. Bodlaender and D. Kratsch

Procedure compute nimber(G[W]).

if nb(W) already computed then
return nb(W)

else
M := ∅;
for all w ∈ W do

let Z1, Z2, . . . , Zr (r ≥ 1) be the components of G − N [w];
nim := 0;
for i ← 1 to r do

nim := nim ⊕ compute nimber(G[Zi]);

M := M ∪ {nim};

answer := mex(M);
nb(W) := answer;

return answer

Fig. 1. Procedure compute nimber

6 Lower Bounds

There are graphs on n vertices having Θ(3n/3) different K-sets. This implies
a lower bound on the maximum number of K-sets of any graph on n vertices
as well as a lower bound on the running time of any exact algorithm solving
Kayles by using all K-sets of the input graph. A similar lower bound can be
achieved for trees.

Theorem 6. For any t ≥ 1, there is a graph on n = 3t vertices having 3n/3 +
2n/3 different K-sets.

Proof. Consider the following family of (chordal) graphs Gt for all positive in-
tegers t on the vertex set {1, 2, . . . , 3t}. The edge set of Gt is constructed as
follows:

– {3i : i = 1, 2, . . . , t} is a clique of Gt, and
– for all i = 1, 2, . . . , t, the vertex set {3i − 2, 3i − 1, 3i} induces a path.

Let us count the K-sets W of Gn. For any K-set W let X be an independent set
such that W = V − N [X].

Fig. 2. Example of the construction of Theorem 6, with t = 5

Exact Algorithms for Kayles 69

Case 1: W∩{3i : i = 1, 2, . . . , t} = ∅, which implies |X∩{3i : i = 1, 2, . . . , t}| =
1. Say X ∩{3i : i = 1, 2, . . . , t} = {3i0}. Hence W ⊆ {3i− 1, 3i− 2} for some i.
Thus if i �= i0 then W = {3i− 1, 3i− 2}; and if i = i0 then W = {3i− 2}. Hence
there are 2t different K-sets in this case.

Case 2: W ∩{3i : i = 1, 2, . . . , t} �= ∅, which implies X∩{3i : i = 1, 2, . . . , t} =
∅. Then for any i, X ∩ {3i − 2, 3i − 1, 3i} may be one of the following sets:
{3i − 2, 3i − 1, 3i}, {3i}, ∅. Thus there are 3t different K-sets W in this case.

In total the graph Gt has at least 3t + 2t K-sets. 	

Theorem 7. For any t ≥ 1, there is a tree on n = 3t+1 nodes having 3(n−1)/3+
n − 1 different K-sets.

Proof. Consider the following family of trees Tt for all positive integers t. The
node set of Tt is the set {0, 1, 2, . . . , 3t+1}. The edge set is constructed as follows:

– For all i = 1, 2, . . . , t, the vertex set {3i − 2, 3i − 1, 3i} induces a path, and
– the node 0 is adjacent to all nodes in the set {3i : i = 1, 2, . . . , t} and no

others.

Fig. 3. Example of the construction of Theorem 7, with t = 5

For any K-set W let X be an independent set such that W = V − N [X]. To
count the K-sets W of Tt we distinguish two cases.

Case 1: 0 /∈ W . Then X ∩{0, 3, 6, . . . , 3t} �= ∅. Hence W ⊆ {3i, 3i−1, 3i−2} for
some i. Thus W = {3i, 3i − 1, 3i − 2}, W = {3i} or W = {3i − 2}. Hence there
are 3t different K-sets.

Case 2: 0 ∈ W . Then X ∩ {0, 3, 6, . . . , 3t} = ∅. For every i, consider W ∩
{3i − 2, 3i − 1, 3i}. By connectedness of G[W] and since 0 ∈ W , we obtain that
W ∩ {3i − 2, 3i − 1, 3i} is any of the following sets {3i − 2, 3i − 1, 3i}, {3i}, ∅.
Thus there are 3t different K-sets W in this case.

Summarizing, the tree Tt has at least 3t + 3t K-sets. 	

7 Conclusions

In this paper, we gave an algorithm to determine which player has a winning
strategy for the game Kayles. To analyse the running time, we introduced the
notion of K-sets, and obtained upper and lower bounds on the maximum number
of K-sets that a graph can have. We also obtained such bounds for trees; up to
a polynomial factor, the bounds are sharp for trees.

70 H.L. Bodlaender and D. Kratsch

A number of interesting directions for further research remain. The complexity
of Kayles on trees remains a long standing open problem. But one can also ask
if there exists a subexponential time algorithm for Kayles on trees, e.g., with
running time of the form O(c

√
n).

Our algorithm uses exponential memory. It also is open if there exists a poly-
nomial space algorithm with a running time of O∗(2n), and this may well be
hard to obtain.

Our paper shows that a PSPACE-complete problem may be solvable by an
exact algorithm of running time O∗(cn) with c < 2. It would be interesting
to study exact algorithms for other PSPACE-complete problems, e.g., for other
combinatorial games, or for a problem like Quantified 3-Satisfiability [8].
An algorithm that solves Quantified (3-)Satisfiability in O∗(2n) time is not
hard to find, but it seems very hard (or impossible) to find an algorithm with a
running time O∗(cn) with c < 2 for this problem.

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your mathematical
plays. Games in General, vol. 1. Academic Press (1982)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your mathematical
plays. Games in Particular, vol. 2. Academic Press (1982)

3. Bodlaender, H.L., Kratsch, D.: Kayles and nimbers. Journal of Algorithms 43,
106–119 (2002)

4. Conway, J.H.: On Numbers and Games. Academic Press (1976)
5. Fleischer, R., Trippen, G.: Kayles on the Way to the Stars. In: van den

Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846,
pp. 232–245. Springer, Heidelberg (2006)

6. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

7. Guignard, A., Sopena, É.: Compound Node-Kayles on paths. Theoretical Computer
Science 410, 2033–2044 (2009)

8. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC
1978, pp. 216–226 (1978)

9. Schaefer, T.J.: On the complexity of some two-person perfect-information games.
Journal of Computer and System Sciences 16, 185–225 (1978)

The Cinderella Game on Holes and Anti-holes

Marijke H.L. Bodlaender1, Cor A.J. Hurkens2, and Gerhard J. Woeginger2

1 Department of Information and Computing Sciences
Universiteit Utrecht, The Netherlands

2 Department of Mathematics and Computer Science
TU Eindhoven, The Netherlands

Abstract. We investigate a two-player game on graphs, where one
player (Cinderella) wants to keep the behavior of an underlying water-
bucket system stable whereas the other player (the wicked Stepmother)
wants to cause overflows. The bucket number of a graph G is the smallest
possible bucket size with which Cinderella can win the game.

We determine the bucket numbers of all perfect graphs, and we also
derive results on the bucket numbers of certain non-perfect graphs. In
particular, we analyze the game on holes and (partially) on anti-holes
for the cases where Cinderella sticks to a simple greedy strategy.

Keywords: Combinatorial game, on-line algorithms, perfect graphs.

1 Introduction

“Five empty buckets of capacity b stand in the corners of a regular pentagon.
Cinderella and her wicked Stepmother play a game that goes through a sequence
of rounds: at the beginning of every round, the Stepmother takes one liter of
water from the nearby river, and distributes it arbitrarily over the five buckets.
Then Cinderella chooses a pair of neighboring buckets, empties them into the
river, and puts them back into the pentagon. Then the next round begins. The
Stepmother’s goal is to make one of these buckets overflow. Cinderella’s goal is
to prevent this. For which bucket sizes b can the Stepmother eventually enforce
a bucket overflow? And for which bucket sizes can Cinderella keep the game
running forever?”

This game has been proposed as a problem [5] for the 50th International
Mathematical Olympiad for high-school students that took place in Germany
in summer 2009. Bodlaender & al. [1] consider a generalization of this game
where there are n ≥ 2 buckets in a circle and where in every round Cinderella
can empty an arbitrary group of c consecutive buckets; they construct optimal
strategies and characterize optimal bucket sizes for many instances of this game.
An earlier paper [2] by Chrobak & al. investigates another variant where the
water does not arrive in rounds, but does arrive continuously over time; this
earlier variant is built around independent sets in certain underlying graphs.
In the current paper, we will study yet another variant where water arrives in
rounds (as in [5] and [1]) and where the game board is an undirected graph (as
in [2]).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 71–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

72 M.H.L. Bodlaender, C.A.J. Hurkens, and G.J. Woeginger

Bucket games and bucket numbers. The game is played on an undirected simple
graph G = (V, E). Every vertex in V contains a bucket which is empty at
the beginning of the game. Every edge [u, v] ∈ E indicates an incompatibility,
and Cinderella must never touch two adjacent buckets u and v within the same
round. In every round the Stepmother first distributes one liter of water over the
buckets, and then Cinderella picks an independent set in the graph and empties
the buckets in this independent set. The Stepmother wants to reach a bucket
overflow, and Cinderella wants to avoid this. Note that the original puzzle [5]
considers this game on the graph C5, the cycle with five vertices a, b, c, d, e and
the five edges [a, c], [c, e], [e, b], [b, d], and [d, a].

We define bucket′(G) as the infimum of all bucket sizes for which Cinderella
can keep the game running forever; furthermore we introduce the quantity
bucket(G) = bucket′(G) − 1 which we call the bucket number of G. If Cin-
derella consistently avoids overflows for buckets of size bucket′(G), then at the
end of every round she must leave buckets with contents bucket(G) or less. The
Stepmother adds a liter and messes up the water levels, and then Cinderella
restores order and brings the water levels back to at most bucket(G).

Perhaps the most natural strategy for Cinderella is the GREEDY strategy:
“Always remove as much water as possible from the system.” In other words,
GREEDY empties the buckets in an independent set with currently largest total
contents; ties are broken arbitrarily. In analogy to the value bucket(G), we define
the so-called greedy bucket number g-bucket(G) of a graph G for games in which
Cinderella works with the GREEDY strategy.

Summary of results. We relate the bucket number and the greedy bucket number
of a graph to its clique number and chromatic number; roughly speaking, we show
that both bucket numbers lie between the natural logarithm of the clique number
and the natural logarithm of the chromatic number. These results (presented in
Section 3) settle the game for all perfect graphs.

The main part of the paper then deals with the two simplest families of
non-perfect graphs: with odd holes and with odd anti-holes. Odd holes are fully
analyzed in Section 4. We prove that their bucket number alway equals 1, whereas
their greedy bucket number always lies strictly above 1; see Theorem 10 for the
exact statement of these greedy values. In Section 5 we investigate odd anti-holes.
The bucket game on odd anti-holes is also discussed — in a slightly different
guise — by [1] who conjecture that the bucket number of an odd anti-hole is
essentially the natural logarithm of its clique number. We do not touch this
(seemingly hard) conjecture, but manage to show that under this conjecture the
greedy bucket number of every odd anti-hole is strictly larger than its bucket
number.

Section 6 finally formulates some bold conjectures on bucket numbers that are
in perfect agreement with our current knowledge. For instance, it could be true
that the GREEDY strategy is sub-optimal if and only if the underlying game
board graph is non-perfect.

The Cinderella Game on Holes and Anti-holes 73

2 Definitions and First Results

Consider a graph G = (V, E). The set of all neighbors of a vertex v ∈ V is
denoted NG(v), or simply N(v) if the graph is clear from the context. As usual,
the chromatic number of G is denoted by χ(G) and its clique number by ω(G).
For a subset S ⊆ V , we will often shortly write χ(S) to denote (in slight abuse
of notation) the chromatic number of the sub-graph G[S] induced by S.

The partial sums H〈k〉 of the harmonic series play a major role in our inves-
tigations.

H〈k〉 = 1 +
1
2

+
1
3

+
1
4

+ +
1
k

(1)

We often summarize the contents of the buckets at a particular moment in time
in a corresponding load vector x = (xv)v∈V where xv denotes the contents of
bucket v. For a subset S of buckets, we denote x(S) =

∑
v∈S xv. To keep the

notation simple, we write x(u, v) short for x({u, v}) and x(u, v, w) short for
x({u, v, w}).

The following three lemmas state simple but very useful observations.

Lemma 1. Let H be a graph, and let G be a (not necessarily induced) sub-graph
of H. Then bucket(G) ≤ bucket(H) and g-bucket(G) ≤ g-bucket(H).

Lemma 2. A disconnected graph G with connected components G1, . . . , Gk sat-
isfies bucket(G) = max1≤i≤k bucket(Gi) and furthermore g-bucket(G) =
max1≤i≤k g-bucket(Gi).

Lemma 3. Let G = (V, E) be a graph, and let u and v be two non-adjacent ver-
tices with N(u) ⊆ N(v). Then bucket(G) = bucket(G−u) and g-bucket(G) =
g-bucket(G − u).

3 The Game on General Graphs

In this section we relate the bucket number and the greedy bucket number of a
graph to its clique number and chromatic number. The proofs of the following
two Theorems 4 and 5 apply ideas that have been used before by Dietz & Sleator
[3], Chrobak & al. [2], and Bodlaender & al. [1]. Theorem 4 substantially extends
these ideas, whereas Theorem 5 follows quite easily by cosmetic modifications.

Theorem 4. Every graph G = (V, E) satisfies g-bucket(G) ≤ H〈χ(G) − 1〉.
Proof. Let xv denote the contents of bucket v ∈ V at the beginning of some
round. We will show that the GREEDY strategy maintains the following system
of invariants:

x(S) < χ(S) · (1 + H〈χ(G) − 1〉 − H 〈χ(S)〉) for all sets S ⊆ V . (2)

By applying the inequality in (2) to a single vertex set S = {v}, we get that all
buckets satisfy the bound xv < H〈χ(G) − 1〉; this implies the theorem.

74 M.H.L. Bodlaender, C.A.J. Hurkens, and G.J. Woeginger

Now let us show that the invariants (2) indeed are maintained. These invari-
ants are trivially satisfied at the beginning of the game when all buckets are still
empty. Let us inductively assume that GREEDY has maintained the invariants
up to some fixed round. Next the Stepmother makes her move by raising the
bucket contents to yv for v ∈ V , and then GREEDY empties an independent set
I with maximum y-weight. Consider an arbitrary set S ⊆ V −I. If χ(S) = χ(G),
then

y(S) ≤ y(V −I) ≤ χ(G) − 1
χ(G)

y(V) ≤ χ(G) − 1
χ(G)

(x(V) + 1) < χ(G)−1. (3)

To get the rightmost inequality in (3), we deduced x(V) < χ(G) − 1 from the
invariant. Note that (3) implies that S satisfies the invariant, exactly as desired.
In the remaining cases we will assume χ(S) < χ(G). Observe that the choice of
I implies

y(S) ≤ χ(S) · y(I). (4)

Furthermore the chromatic number χ(S ∪ I) is either χ(S) or χ(S) + 1. Since
χ(S) < χ(G), in either case the inductive assumption yields

x(S ∪ I) < (χ(S) + 1) · (1 + H〈χ(G) − 1〉 − H 〈χ(S) + 1〉) . (5)

By applying (4) and (5) we derive

y(S) ≤ χ(S)
χ(S) + 1

(y(S) + y(I)) ≤ χ(S)
χ(S) + 1

(x(S ∪ I) + 1)

< χ(S) ·
(

1 + H〈χ(G) − 1〉 − H 〈χ(S) + 1〉 +
1

χ(S) + 1

)

= χ(S) · (1 + H〈χ(G) − 1〉 − H 〈χ(S)〉) .

Therefore GREEDY maintains the invariant (2) for all sets S ⊆ V − I. Since all
the buckets in I are emptied by GREEDY, this also yields the invariant for all
the remaining sets S ⊆ V that overlap with I. �

Theorem 5. Every graph G = (V, E) satisfies bucket(G) ≥ H〈ω(G) − 1〉.
Proof. By Lemma 1, it is sufficient to prove the result for the complete graph
Kn on n vertices. Note that on the game board Kn Cinderella can only empty
a single bucket per round. In a first phase, the Stepmother always distributes
her liter in such a way that all buckets in Kn are filled to the same level. This
common filling level strictly increases over the rounds and converges to 1. The
first phase ends when all buckets have contents 1− ε (where ε is a small positive
real number that can be chosen arbitrarily close to 0). Cinderella empties (at
most) one of these buckets, whereas the remaining n − 1 buckets take their
contents into the following round.

The second phase goes through n − 2 further rounds that we number from 1
to n − 2. At the beginning of the r-th such round, there are n − r buckets that

The Cinderella Game on Holes and Anti-holes 75

each contain at least W := 1− ε +H〈n − 1〉−H 〈n − r〉 water. The Stepmother
then fills these n − r buckets to the same level

(n − r) W + 1
n − r

= 1 − ε + H〈n − 1〉 − H 〈n − (r + 1)〉 .

Cinderella empties (at most) one of these buckets, whereas the remaining n −
(r + 1) buckets remain untouched and move on into the next round. At the end
of round n − 2 there remains a bucket of contents H〈n − 1〉 − ε. �

By combining Theorems 4 and 5, we see that the bucket numbers of every graph
G are sandwiched between the following bounds:

H〈ω(G) − 1〉 ≤ bucket(G) ≤ g-bucket(G) ≤ H〈χ(G) − 1〉 . (6)

This fully settles the bucket game for all graphs G with ω(G) = χ(G), and in
particular yields the following corollary.

Corollary 6. Every perfect graph G satisfies bucket(G) = g-bucket(G) =
H〈ω(G) − 1〉.
In the rest of this section, we settle the bucket game for all graphs with n ≤ 6
vertices. Because of Corollary 6 we actually only need to check the non-perfect
graphs in Figure 1.

Lemma 7. The graph C5 + u satisfies bucket(C5 + u) = 3/2.

Proof. We show that Cinderella can maintain the following system of invariants.

x1, x2, x3, x4, x5, xu < 3/2 (7a)

xu + xk + xk+1 < 2 for 1 ≤ k ≤ 5 (7b)

x(1, 2, 3, 4, 5, u) < 5/2 (7c)

The indices k + 1 in (7b) are taken modulo 5. The argument is an inductive
proof with many case distinctions. We first show that the invariants can be
maintained, if there is a bucket of contents at least 3/2, and then settle the
remaining cases. The (straightforward but tedious) details are omitted from this
extended abstract. �

Theorem 8. Every graph G on n ≤ 6 vertices has bucket(G) = H〈ω(G) − 1〉.
Proof. Because of Corollary 6, it only remains to prove that every non-perfect
graph G on n ≤ 6 vertices satisfies bucket(G) ≤ H〈ω(G) − 1〉. Every non-
perfect graph G on n ≤ 6 vertices consists of an induced cycle C5 on five vertices
plus (perhaps) some sixth vertex u. The clique number of such a graph G is
either 2 or 3.

First consider the case ω(G) = 2. Then vertex u cannot be adjacent to two
consecutive vertices on the cycle C5. Every such graph G is a subgraph of the

76 M.H.L. Bodlaender, C.A.J. Hurkens, and G.J. Woeginger

graph H that consists of a cycle C5 on five vertices 1, 2, 3, 4, 5 plus vertex u plus
the two edges [1, u] and [3, u]. By Lemma 1 we have bucket(G) ≤ bucket(H). By
Lemma 3 we have bucket(H) = bucket(C5), as H contains the two non-adjacent
vertices u and 1 with N(u) ⊆ N(1). By Theorem 9 we have bucket(C5) = 1.
Putting things together yields the desired bound

bucket(G) ≤ bucket(C5) = 1 = H〈ω(G) − 1〉 .

Next consider the case ω(G) = 3. Every such graph G is a subgraph of the
graph C5 + u that consists of a cycle C5 on five vertices 1, 2, 3, 4, 5 plus all five
edges between vertex u and the vertices on the cycle. By Lemma 1 we have
bucket(G) ≤ bucket(C5 + u), and Lemma 7 shows that bucket(C5 + u) =
3/2 = H〈2〉. This completes the proof of Theorem 8. �

4 The Game on Holes

In this section the considered game board will be the cycle Cn on n ≥ 3 vertices.
The vertices/buckets correspond to the integers in B = {1, 2, . . . , n}, and two
buckets i and j are adjacent, if and only if |i− j| ≡ 1 (mod n). Bucket numbers
are always taken modulo n, so that k and k + n refer to the same bucket.

The results in Section 3 yield bucket(Cn) = g-bucket(Cn) = 1 for all even
n, as in these cases Cn is a perfect graph with clique number 2. Hence we will
assume throughout this section that n = 2m + 1 is an odd integer; note that
ω(C2m+1) = 2 and χ(C2m+1) = 3. We use Ir = {r+2, r+4, r+6, . . . , r+2m} to
denote the (unique) independent set of m buckets that neither contains bucket
r nor bucket r + 1.

Theorem 9. The odd cycle C2m+1 satisfies bucket(C2m+1) = 1.

Proof. The lower bound bucket(C2m+1) ≥ 1 follows from Theorem 5. Hence we
concentrate on the upper bound proof. Cinderella always completes a round by

4

23

1

5

u 4

23

1

5

u

Fig. 1. The non-perfect graphs H (to the left) and graph C5 + u (to the right)

The Cinderella Game on Holes and Anti-holes 77

emptying an appropriate independent set Ir for some r, and she leaves buckets
with contents x1, . . . , x2m+1. As invariants she uses the inequalities

xr + xr+1 < 1 (8a)

xk ≤ 1 for 1 ≤ k ≤ 2m + 1. (8b)

Then the Stepmother moves and increases the bucket contents to y1, . . . , y2m+1.
From xr−1 = 0, xr+2 = 0, and from (8a) we derive

yr−1 + yr + yr+1 + yr+2 ≤ xr−1 + xr + xr+1 + xr+2 + 1 < 2,

which implies yr−1 + yr < 1 or yr+1 + yr+2 < 1. First consider the case where
yr−1 + yr < 1. Then Cinderella empties Ir−1 and maintains (8a). All buckets
k ∈ Ir were emptied in the preceding round and hence satisfy yk ≤ 1. All
buckets k ∈ Ir−1 have been emptied in the current round and hence satisfy
yk = 0. The only bucket in B − (Ir ∪ Ir−1) is bucket r, for which yr−1 + yr < 1
implies yr < 1. Hence Cinderella also maintains (8b). Next consider the case
where yr+1 + yr+2 < 1. In this case Cinderella empties Ir+1 and maintains the
invariants by symmetric arguments. �

Theorem 10. The odd cycle C2m+1 has g-bucket(C2m+1) = 1 + 1
m · 2−m.

The proof of Theorem 10 will be presented in Section 4.1 (for the upper bound)
and Section 4.2 (for the lower bound).

4.1 Proof of the Upper Bound for GREEDY

We show by induction that GREEDY always leaves configurations where the
bucket contents x1, . . . , x2m+1 satisfy the system (9a)–(9c) of invariants. In
the next round, the Stepmother moves by raising the bucket contents to
y1, . . . , y2m+1. Then GREEDY reacts by emptying an independent set I with
maximum y-weight, and thereby produces buckets with contents z1, . . . , z2m+1.
We assume without loss of generality that among any three consecutive buckets
at least one is in I.

2m+1∑
i=1

xi <
m + 1

m
(9a)

k+2t−1∑
i=k

xi < 1 +
1
m

· 2t−m for 1 ≤ k ≤ 2m + 1, 1 ≤ t ≤ m (9b)

xk < 1 +
1
m

· 2−m for 1 ≤ k ≤ 2m + 1 (9c)

The details of this proof can be found in the full version of the paper.

78 M.H.L. Bodlaender, C.A.J. Hurkens, and G.J. Woeginger

4.2 Proof of the Lower Bound for GREEDY

We present an adversarial strategy for the Stepmother that works against
GREEDY in three phases.

In the first phase, the Stepmother always distributes her liter in such a way
that all 2m+1 buckets are filled to the same level. GREEDY always empties some
independent set Ir with m buckets. This common filling level ai after i moves of
the Stepmother satisfies the recurrence ai+1 = ((m + 1)ai + 1)/(2m + 1). Hence
these levels ai strictly increase over the rounds and converge to 1/m. The first
phase ends when all buckets have contents 1/m − ε (where ε is an arbitrarily
small positive real number). Without loss of generality GREEDY empties I2m =
{1, 3, 5, . . . , 2m−1}, so that the m+1 buckets 2, 4, 6, . . . , 2m−2, 2m and 2m+1
take their contents of 1/m− ε into the second phase.

To keep the presentation simple, we let ε become infinitesimally small and will
not further indicate the dependence of our bounds on ε from now on. On top of
this, we will manipulate and control the tie-breaking behavior of GREEDY by
introducing appropriate infinitesimally small fluctuations in the bucket loads.
This is straightforward to do (but messy to describe in detail), and we will
apply it without much further discussion. The second phase is built around the
following sequence of real numbers.

αk =
1

2m

(
k + 1 + 2−k

)
for k ≥ 0.

Note that α0 = 1/m and that

4 αk = 2αk−1 +
k + 2

m
for k ≥ 1. (10)

Now let us specify what is going on during the second phase. There are m − 1
additional rounds that we number by k = 1, . . . , m−1. In the canonical situation
at the beginning of round k

– the buckets k + 2i − 1 with 1 ≤ i ≤ m − k all have contents 1/m;
– the two buckets 2m − k + 1 and 2m− k + 2 both have contents αk−1;
– all other buckets are empty.

Then the Stepmother moves. She fills the m − k − 1 empty buckets k + 2i with
1 ≤ i ≤ m − k − 1 to level 1/m. Furthermore the Stepmother adds water to
the four buckets 2m − k − 1, 2m − k, 2m − k + 1, and 2m − k + 2 so that their
contents increases from respectively 1/m, 0, αk−1, αk−1 to respectively αk, αk,
αk, αk. By using (10), we compute that the overall amount of water added by
the Stepmother in this round is

(m − k − 1)
1
m

+ 4 αk − 1
m

− 2 αk−1 = 1.

After the Stepmother’s move, the 2(m − k − 1) buckets in the interval k +
1, . . . , 2m − k − 2 all have contents 1/m and the next four buckets 2m − k −
1, . . . , 2m − k + 2 all have contents αk. The remaining buckets are empty.

The Cinderella Game on Holes and Anti-holes 79

Then GREEDY moves. Through infinitesimally small changes in the bucket
loads the Stepmother tricks GREEDY into emptying the buckets k + 2i − 1 for
1 ≤ i ≤ m− k together with the bucket 2m− k + 2. After GREEDY’s move, the
buckets k + 2i with 1 ≤ i ≤ m − k − 1 all have contents 1/m, the two buckets
2m− k and 2m− k + 1 both have contents αk, and all other buckets are empty.
Note that GREEDY has created the canonical situation for the beginning of
round k + 1.

The third phase begins, as soon as round m− 1 of the second phase has been
completed. The canonical situation for the beginning of the following round m
does not have any buckets with contents 1/m, but it does have the two buckets
m + 1 and m + 2 with contents αm−1. The Stepmother adds half a liter to both
buckets and raises their contents to

αm−1 +
1
2

=
1

2m

(
m + 2−m+1

)
+

1
2

= 1 +
1
m

· 2−m.

GREEDY empties bucket m + 1, so that bucket m + 2 takes its contents into
the next round. This completes the proof of Theorem 10.

5 The Game on Anti-holes

In this section the considered game board will be the anti-hole Cn on n ≥ 4
vertices. The vertices/buckets correspond to the integers to the integers in B =
{1, 2, . . . , n}, and two buckets i and j are adjacent, if and only if |i − j| �≡ 1
(mod n). Bucket numbers are always taken modulo n, so that k and k + n refer
to the same bucket.

Since even anti-holes are perfect graphs, the results in Section 3 yield
bucket(C2m) = g-bucket(C2m) = H〈m − 1〉. Since furthermore the anti-hole
C5 is isomorphic to the hole C5 (which has been treated in the preceding sec-
tion), we will assume throughout the current section that the number of buckets
is odd with n = 2m+1 and m ≥ 3. Since ω(C2m+1) = m and χ(C2m+1) = m+1,
the inequalities in (6) turn into

H〈m − 1〉 ≤ bucket(C2m+1) ≤ g-bucket(C2m+1) ≤ H〈m〉 (11)

If we imagine the buckets arranged along the circumference of a circle, then
in each round Cinderella may empty two consecutive buckets from the circle;
therefore the games on anti-holes also fall into the class of games investigated in
[1]. The following conjecture from [1] states that in (11) the leftmost inequality
should in fact hold with equality.

Conjecture 11. (Bodlaender & al. [1])
Every odd anti-hole C2m+1 satisfies bucket(C2m+1) = H〈m − 1〉.
This conjecture has been settled in [1] for the odd anti-holes on n = 5, 7, 9, 11
vertices. The behavior of the general case, however, remains unclear and seems
to be quite messy. In the remainder of this section, we will analyze the behavior

80 M.H.L. Bodlaender, C.A.J. Hurkens, and G.J. Woeginger

of GREEDY on C2m+1 with m ≥ 3, and we will strengthen (11) to the following
bounds:

H〈m − 1〉 +
m2 − 3m + 1
2m2(m − 1)

≤ g-bucket(C2m+1) ≤ H〈m〉 − 1
2m

.

Upper and lower bound are proved respectively in the following two theorems.

Theorem 12. For m ≥ 3 we have g-bucket(C2m+1) ≤ H〈m〉 − 1/(2m).

Proof. The proof can be found in the full version of the paper. �

Theorem 13. For m ≥ 3, g-bucket(C2m+1) ≥ H〈m − 1〉 +
m2 − 3m + 1
2m2(m − 1)

.

Proof. We give an adversarial strategy for the Stepmother that works against
GREEDY in two phases. During the first phase, the Stepmother always dis-
tributes her liter such that all 2m + 1 buckets are filled to the same level and
then GREEDY always empties two buckets. The filling level of all buckets in-
creases and converges to 1/2. The first phase ends when all buckets are suffi-
ciently close to 1/2 (similarly as in Section 4.2, we can make the difference to 1/2
infinitesimally small). Then GREEDY empties buckets 2m and 2m + 1, so that
the remaining buckets 1, . . . , 2m− 1 take contents 1/2 into the second phase.

The second phase goes through m further rounds. As in Section 4.2, we control
the tie-breaking of GREEDY through infinitesimally small fluctuations in the
bucket loads.

– In the first round, the Stepmother adds 1/2 to bucket 2m and then adds
1/(2m) to the odd-numbered buckets 1, 3, 5, . . . , 2m−5 and to buckets 2m−2
and 2m. GREEDY empties 2m − 2 and 2m − 1.

– In the second round, the Stepmother adds 1/2 to bucket 2m; adds 1/(2m)
to bucket 2m − 3; and adds (m − 1)/(2m2) to the odd-numbered buckets
1, 3, 5, . . . , 2m − 3 and to bucket 2m. GREEDY empties buckets 2 and 3.

– In the third round, the Stepmother adds 1/2 to bucket 1, and then adds
1/(2m − 2) to the odd-numbered buckets 5, 7, . . . , 2m − 3 and to buckets 1
and 2m. GREEDY empties buckets 2m − 4 and 2m − 3.

– In the fourth round, the Stepmother adds 1/(m − 2) to the odd-numbered
buckets 5, 7, . . . , 2m−5 and to buckets 1 and 2m. GREEDY empties 2m−6
and 2m − 5.

Let us summarize the situation after the fourth round. The six buckets 2m −
6, . . . , 2m− 1 and the three buckets 2, 3, 2m+ 1 are empty. Bucket 1 and bucket
2m each contain γ = 1 + 1

m−2 + 1
2m−2 + 1

2m + m−1
2m2 . The m− 5 even-numbered

buckets 4, 6, . . . , 2m− 8 each contain 1/2, and the m− 5 odd-numbered buckets
5, 6, . . . , 2m − 7 each contain γ − 1/2.

– In round k = 5, . . . , m − 1, the Stepmother adds 1/(m − k + 2) to buckets
5, 7, . . . , 2m−2k+3 and to buckets 1 and 2m. GREEDY empties 2m−2k+2
and 2m − 2k + 3.

The Cinderella Game on Holes and Anti-holes 81

After round m − 1, all but two buckets are empty. The two non-empty buckets
are 1 and 2m, and the Stepmother adds 1/2 to each of them, and thus increases
their contents to γ +

∑m
k=5

1
m−k+2 = H〈m − 1〉+ m2−3m+1

2m2(m−1) . GREEDY empties
bucket 2m, and bucket 1 takes its load into the next round.

6 Conclusions and Conjectures

We have analyzed the bucket number and the greedy bucket number for several
families of graphs. For perfect graphs (Corollary 6), odd cycles (Theorem 9),
and all graphs on n ≤ 6 vertices (Theorem 8) the leftmost inequality in (6) is
an equality. Under Conjecture 11, the same holds true for odd anti-holes. This
perhaps suggests the following:

Wild Guess 14. Every graph G satisfies bucket(G) = H〈ω(G) − 1〉.
We have shown that for every perfect graph the bucket number and the greedy
bucket number coincide (Corollary 6), and we have seen that for every non-
perfect hole and for every non-perfect anti-hole these two numbers are distinct
(assuming the odd anti-hole Conjecture 11). One might speculate that perfect
graphs are the only graphs on which the GREEDY strategy is optimal:

Wild Guess 15. A graph G is perfect, if and only if bucket(G) =
g-bucket(G).

The GREEDY strategy is primitive and simple, and performs extremely well
on the graphs investigated by us. For instance on the odd cycles C2m+1 the
difference between the greedy bucket number and the bucket number is 1

m ·2−m,
which rapidly tends to 0 as m increases. The largest gap known to us is 1/8, and
occurs for the cycle C5.

Wild Guess 16. The difference between g-bucket(G) and bucket(G) is boun-
ded by an absolute constant (that does not depend on G).

For getting a better understanding of these issues, we will have to analyze the
bucket numbers of graphs whose clique number is far away from the chromatic
number. Good candidates might be the graphs introduced by Mycielski [4]; recall
that the Mycielski graph Mk (with k ≥ 3) has 3 ·2k−2−1 vertices, is triangle-free
and has chromatic number k.

References

1. Bodlaender, M., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J., Zan-
tema, H.: Cinderella versus the wicked Stepmother. Working paper, TU Eindhoven
(February 2011)

2. Chrobak, M., Csirik, J.A., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The
Buffer Minimization Problem for Multiprocessor Scheduling with Conflicts. In:
Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,
pp. 862–874. Springer, Heidelberg (2001)

82 M.H.L. Bodlaender, C.A.J. Hurkens, and G.J. Woeginger

3. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC
1987), pp. 365–372 (1987)

4. Mycielski, J.: Sur le coloriage des graphs. Colloquium Mathematicum 3, 161–162
(1955)

5. Woeginger, G.J.: Combinatorics problem C5. In: Problem Shortlist of the 50th In-
ternational Mathematical Olympiad, Bremen, Germany, pp. 33–35 (2009)

On the Complexity of Planar Covering

of Small Graphs�

Ondřej Bı́lka, Jozef Jirásek, Pavel Klav́ık, Martin Tancer, and Jan Volec

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Malostranské nám. 25, 118 00 Prague, Czech Republic

{ondra,klavik,tancer,janv}@kam.mff.cuni.cz,jirasekjozef@gmail.com

Abstract. The problem Cover(H) asks whether an input graph G cov-
ers a fixed graph H (i.e., whether there exists a homomorphism G → H
which locally preserves the structure of the graphs). Complexity of this
problem has been intensively studied. In this paper, we consider the prob-
lem PlanarCover(H) which restricts the input graph G to be planar.

PlanarCover(H) is polynomially solvable if Cover(H) belongs to
P, and it is even trivially solvable if H has no planar cover. Thus the
interesting cases are when H admits a planar cover, but Cover(H) is
NP-complete. This also relates the problem to the long-standing Negami
Conjecture which aims to describe all graphs having a planar cover. Kra-
tochv́ıl asked whether there are non-trivial graphs for which Cover(H)
is NP-complete but PlanarCover(H) belongs to P.

We examine the first nontrivial cases of graphs H for which Cover(H)
is NP-complete and which admit a planar cover. We prove NP-
completeness of PlanarCover(H) in these cases.

1 Introduction

Unless stated otherwise, we work with simple undirected finite graphs and we
use standard notation from graph theory.

Graph Homomorphisms and Covers. Let G and H be graphs. A mapping
f : V (G) → V (H) is a homomorphism from G to H if the edges of G are mapped
to the edges H , i.e., for every edge uv ∈ E(G), f(u)f(v) ∈ E(H).

A homomorphism f is called locally bijective if for every v ∈ V (G) the closed
neighborhood NG[v] ⊆ V (G) is bijectively mapped to NH [f(v)] ⊆ V (G). Notice
that x, y ∈ NG[v] and f(x)f(y) ∈ E(H) may or may not imply xy ∈ E(G). We
say that G covers H (or G is a cover of H) if there exists a locally bijective
homomorphism from G to H ; see Figure 1. If G covers H , their local structures
are somewhat similar. Note that if G covers H and H is connected, then |V (G)|
is a multiple of |V (H)| and every vertex of H has the same number of preimages.
� The initial research was supported by DIMACS/DIMATIA REU program (grant

number 0648985). The third and the fourth author were supported by Charles Uni-
versity as GAUK 95710. The fourth author is also affiliated with Institute for Theo-
retical Computer Science (supported by project 1M0545 of The Ministry of Educa-
tion of the Czech Republic).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 83–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

84 O. B́ılka et al.

4
2

3
4

2

3
1

1

1

3
4

2
G

f
2 3

1

4 H

Fig. 1. An example of a cover of K−
4 . For every vertex v, its image f(v) is written in

the circle. Notice that for vertices mapped to 1, its neighbors 2 and 3 may or may not
be adjacent.

Graph homomorphisms and covers provide a common language for various
problems in graph theory. They are studied as generalized coloring. A graph is
properly k-colorable if and only if it homomorphically maps to Kk. Similarly,
covering is a generalization of coloring which puts additional restrictions on
neighborhoods. From another point of view, G covers Kk if and only if G can
be partitioned into k 1-perfect codes.

Computational Problems. For a fixed graph H , the problem Hom(H) asks
whether there exists a homomorphism from an input graph G to H . Hell and
Nešetřil [HN90] proved a dichotomy for computational complexity: Hom(H) is
polynomially solvable if H is a bipartite graph, and it is NP-complete otherwise.

Similarly, the problem Cover(H) asks whether an input graph G covers a
fixed graph H . Study of this problem was pioneered by Bodlaender [Bod89]. First
results depending on the graph H were proved by Abello et al. [AFS91]. Kra-
tochv́ıl [Kra94] showed that Cover(K4) is NP-complete. Afterwards, Kratochv́ıl,
Proskurowski and Telle [KPT97] and Fiala [Fia00] proved that Cover(H) is
NP-complete for every k-regular graph H with k ≥ 3. Later, a dichotomy for all
simple graphs with up to six vertices was proved, [KPT98].

We can restrict the input graph G and ask whether it changes Cover(H) to
be polynomially solvable. In this paper, we restrict G to be planar. We consider
the following problem:

Problem: PlanarCover(H).
Input: A planar graph G.

Output: Yes if G covers H , no otherwise.

Every PlanarCover(H) problem trivially lies in NP. In the rest of the paper,
we only question NP-hardness. Note that if Cover(H) is polynomially solvable,
then PlanarCover(H) is also polynomially solvable.

Many NP-complete problems remain hard for planar inputs. Originally, the
graph covering problems looked similar to problems such as Not-All-Equal Satis-
fiability or 3-Edge-Colorability of Cubic graphs. Both of them are polynomially
solvable for planar graphs, the first was proved by Moret [Mor88], the latter is
trivial to decide since Tait has showed that the 3-Edge-Colorability of Cubic
planar graphs is equivalent to the Four Color Theorem. Indeed the NP-hardness
reduction for Cover(K4) presented in [Kra94] is from 3-Edge-Colorability of
Cubic graphs. This has led Kratochv́ıl to pose the problem of the complexity

On the Complexity of Planar Covering of Small Graphs 85

of PlanarCover(K4) at several occasions, including 6th Czech-Slovak Sympo-
sium on Graph Theory 2006, IWOCA 2007 and ATCAGC 2009. In this paper,
we prove that PlanarCover(K4) is NP-complete.

Negami Conjecture. As a motivation to study the PlanarCover problems,
we describe a relation to a long-standing conjecture of Negami [Neg88]. For a
graph H , we can ask whether there exists a planar graph G that covers H . If the
answer is no, then the problem PlanarCover(H) is trivial—we output “no”
regardless of the input. Negami conjectured the following:

Conjecture 1. The connected graphs which admit a planar cover are exactly the
connected graphs embeddable in the projective plane.

If a connected graph is embeddable in the projective plane, it is straightforward
to construct one of its planar covers. The other implication is still open. The most
recent results can be found in Hliněný and Thomas [HT04]. For example, K7

has no (finite) planar cover since there is no six regular planar graph. Therefore,
the problem PlanarCover(K7) is polynomially solvable but Cover(K7) is
NP-complete; see [KPT97].

It is natural to ask whether the restriction to planarity makes the problem
easier in a non-trivial case. Kratochv́ıl asked the following question in his talk
at Prague Midsummer Combinatorial Workshop 2009:

Question 1. Is it true that PlanarCover(H) is NP-complete if and only if
Cover(H) is NP-complete and the graph H admits a planar cover?

Our Results. In this paper, we show that PlanarCover(H) is NP-complete
for several small graphs H .

Theorem 1. The problem PlanarCover(K6) is NP-complete.

The graph K6 is a somewhat extremal case for the Negami Conjecture. If a
planar graph G covers K6, it has to be 5-regular. The structure of 5-regular
planar graphs is very limited, but we show that the problem is still NP-complete.

Theorem 2. The problems PlanarCover(K4) and PlanarCover(K5) are
NP-complete.

Covering of these regular graphs is related to coloring squares of graphs. For
example, a cubic planar graph G covers K4 if and only if its square G2 is 4-
colorable. Coloring the squares of graphs (especially planar) is widely studied
as a special case of the channel assignment problem; see [RL93]. Dvořák et
al. [DŠT08, Theorem 25] prove that deciding whether the square of a given
subcubic planar graph is 4-colorable is NP-complete. Theorem 2 strengthens
this result.

We denote K4 with a leaf attached to a vertex by K+
4 and K5 without an

edge by K−
5 ; see Figure 6.

86 O. B́ılka et al.

Theorem 3. The problems PlanarCover(K+
4) and PlanarCover(K−

5) are
NP-complete.

Theorems 1, 2 and 3 together give an affirmative answer to Question 1 for all
graphs with up to five vertices except for W4; see details in Conclusions.

We also examine the smallest non-trivial multigraph case. The dumbbell graph
D is a multigraph with two adjacent vertices with a loop on each vertex; see Fig-
ure 7 on the right. This graph is the smallest multigraph for which the problem
Cover is NP-complete.

Theorem 4. The problem PlanarCover(D) is NP-complete.

This result strengthens a result of Janczewski et al. [JKM09, Proposition 5]
which proves hardness for partial PlanarCover(D). By partial covers we mean
locally injective homomorphisms. As described in Section 4, if G covers D, it
has to be a cubic planar graph. For a partial cover of D, it has to be a subcubic
planar graph. But if the input graph is cubic, then every partial cover of D is
also a cover of D.1 On the other hand, reductions for partial covers cannot be
easily extended to covers while preserving planarity.

2 Hardness of Planar Covering of K6

In this section, we prove Theorem 1: PlanarCover(K6) is NP-complete. First,
we describe a problem we reduce from.

An intersection representation of a graph is an assignment of sets to the ver-
tices in such a way that two vertices are adjacent if and only if the corresponding
sets intersect. A graph is called a segment graph if it has an intersection repre-
sentations where the sets are segments in the plane. We consider only segment
representations with all endpoints distinct and with no three segments crossing
in one point.

Problem: k-SegmentColoring

Input: A segment representation of a graph G.
Output: Yes if G is k-colorable, no otherwise.

Ehrlich et al. [EET76] proved that k-SegmentColoring is NP-complete for
k ≥ 3. We note that there exist segment graphs which have every representation
exponentially large in the number of vertices; see [KM94]. However this repre-
sentation is a part of the input hence it does not pose a problem; see [EET76].

Overview of the Reduction. We reduce PlanarCover(K6) from 6-
SegmentColoring. For a graph G with a segment representation, we construct
a plane graph G′ which covers K6 if and only if G is 6-colorable.

The reduction is sketched in Figure 2. Consider an arrangement of segments.
Every segment is split by crossings into several subsegments which contain no
crossings. We construct a graph G′ with the same topology as the segment
representation of G. Every subsegment is represented by two parallel edges.
1 We note that even in general partial PlanarCover(H) problem is at least as hard

as PlanarCover(H).

On the Complexity of Planar Covering of Small Graphs 87

G G′

Fig. 2. We construct a planar graph G′ having the same topology as the arrangement
of the segments

We replace every crossing by a crossing gadget. Every crossing gadget has four
pairs of outer vertices. These vertices are incident with the edges representing
subsegments; see the detail in Figure 2. In other words, two crossing gadgets are
connected by a pair of parallel edges if the crossings they represent lie on the
same segment and there is no other crossing between them. A last subsegment of
a segment is represented by one edge connecting both outer vertices of a crossing
gadget. The obtained planar graph has the same topology as the arrangement
of the segments.

Relation to Coloring. Every subsegment is represented by a pair of parallel
edges. Mapping of vertices of these edges to K6 gives a coloring of this subsegment
in a way depicted in Figure 3a. On the other hand, crossing gadgets ensure that ev-
ery covering of K6 satisfy these properties. The vertices depicted in black are called
color vertices and the vertices depicted in white are called non-color vertices.

Crossing Gadget. Every crossing gadget has four adjacent subsegments. Their
color and non-color vertices alternate; see Figure 3b. Using the topology of the
segment arrangement, the crossing gadgets can be connected in this way so that
G′ is planar.

colored by x

xxx

xxxy

y

(a)

x1x1x1

x1x1x1 y′
1

y′
1

x2x2x2

x2x2x2

y2

y2

x1x1x1

x1x1x1y1

y1

x2x2x2

x2x2x2

y′
2

y′
2

(b)

Fig. 3. (a) A subsegment colored by x is represented by two parallel edges, with two
color vertices mapped to x (depicted in black) and the other two vertices mapped to
an arbitrary y (depicted in white) where y �= x. (b) A crossing gadget transfers color
information between the opposite subsegments.

88 O. B́ılka et al.

This gadget ensures three properties:

(1) The subsegments are mapped in the way described in Figure 3a.
(2) The subsegments belonging to the same segment are colored by the same

color. Therefore, for every segment, all its subsegments are colored by the
same color and the color of this segment is well-defined. The crossing gadget
gives no additional restrictions on non-color vertices.

(3) Every two intersecting segments are colored by different colors. It is possible
to map the crossing gadget only if x1 �= x2.

The crossing gadget is built from several basic blocks, called auxiliary gadgets.
The auxiliary gadget is a graph shown in Figure 4.

Lemma 1. The auxiliary gadget can be mapped to K6 in a unique way up to a
permutation of the vertices of K6.

Proof. Observe that if we fix a mapping for any vertex and its neighbors, the
rest of the mapping is uniquely determined. ��
In every covering f , the six outer vertices u1, . . . , u6 of the auxiliary gadget are
mapped to three distinct vertices of K6 with f(ui) = f(ui+3), i ∈ {1, 2, 3}. The
parallel edges adjacent to the auxiliary gadget are mapped in the way described
in Figure 3a.

The crossing gadget consists of eight auxiliary gadgets; see Figure 5. We need
to prove that the crossing gadget is correct.

Lemma 2. The crossing gadget can be mapped to K6 if and only if the properties
(1) to (3) are satisfied.

Proof. Let G′ cover K6. Consider one crossing gadget. Since all edges repre-
senting subsegments are connected to auxiliary gadgets, according to Lemma 1
these edges are mapped correctly as in Figure 3a. Colors are transfered between
the opposite subsegments, as depicted in Figure 5. The central auxiliary gadgets
force x1 and x2 to be distinct. Therefore, we know that every mapping satisfies
properties (1) to (3).

We need to show that if the vertices of the edges adjacent to the crossing
gadget are mapped correctly, we can extend this mapping to the rest of the
gadget. By a straightforward case analysis we can see that an arbitrary correct
mapping of non-color vertices can be extended. ��
We conclude this section with a proof of the main theorem:

Proof (Theorem 1). Let G′ cover K6. By Lemma 2, the mapping of every crossing
gadget satisfies the properties (1) to (3). Using the properties (1) and (2), we
can infer colors of the segments. By the property (3), this coloring is proper.

On the other hand, given a proper coloring, we map the color vertices accord-
ing to this coloring. By Lemma 2, it is possible to extend the mapping to the
entire graph G′. ��

On the Complexity of Planar Covering of Small Graphs 89

1

23
3

1

2

1

2 3
3

1

2

u1

u2

u3

u4

u5

u6

4

5

645

6

4

5

6 4 5

6

1

3

3

2

2

1

13

3
2

2 1

12
3 1 2

3

Fig. 4. The auxiliary gadget on the left, denoted by a hexagon on the right

3
2

3 5

6
2

36

42
3 4 2

3 12
3 1 2

3

12
3 1 2

3

14
3 1 4

3 54
3 5 4

342
6 4 2

6

41
3 4 1

361
3 6 1

3

3
3

3
3

3
3

3
3

3
3

3
3

3 5

6
2

36

3
2

Fig. 5. The crossing gadget on the left, denoted by a circle on the right

90 O. B́ılka et al.

1

23

0
+ K+

4

1

2
3

0

−

K−
5

Fig. 6. Graphs K+
4 and K−

5 with labeled vertices

3 Hardness of Planar Covering of K4, K5, K+
4 and K−

5

In this section, we sketch the proof of hardness of PlanarCover of K4, K5, K+
4

and K−
5 . The reductions slightly modify the reduction described in Section 2.

In the case of K4 and K5, we just change the auxiliary gadget and reduce
these problems from 4-SegmentColoring, resp. 5-SegmentColoring.

In the case of K+
4 and K−

5 , we change both the auxiliary gadget and the
crossing gadget and reduce these problems from 3-SegmentColoring. The
color vertices are mapped to 1, 2 and 3, the non-color vertices are mapped to 0
(or − in the case of K−

5); see Figure 6.
Due to space limitations, details of these reductions are described in Appendix

of pre-print version http://arxiv.org/abs/1108.0064.

4 Hardness of Planar Covering of the Dumbbell Graph

In this section, we prove hardness of PlanarCover(D) where D is the dumbbell
graph (see Figure 7 on the right). It is a multigraph and the notion of covering
can be extended to multigraphs, see [Kra94]. For the purpose of this paper, we
need only the following: G is a planar cover of D if G is a cubic planar graph and
can be colored by two colors (black and white) in such a way that every black
vertex has two black neighbors and one white neighbor and every white vertex
has two white neighbors and one black neighbor; see Figure 7. In the rest of the
section, we use this coloring interpretation.

To prove the hardness of PlanarCover(D), we first describe the problem we
reduce from. 2-in-4-MonotonePlanarSAT is a satisfiability problem where:

– all clauses contain exactly four variables,
– the incidence graph of clauses and variables is planar, and
– all variables are in the positive form, i.e. there is no negation.

A clause is satisfied if exactly two variables are true. The entire formula is satis-
fied if all clauses are satisfied. For an example, see Figure 8a. Kára, Kratochv́ıl
and Wood [KKW07] proved that this problem is still NP-complete.

f

Fig. 7. An example of a cover of the dumbbell graph W

On the Complexity of Planar Covering of Small Graphs 91

x1 x2 x3

x4 x5 x6

(a) (b)

x1 x2 x3

x4 x5 x6

Fig. 8. (a) A graph G representation of the formula: (x1, x2, x4, x5) ∧ (x2, x3, x5, x6).
This formula can be satisfied by an assignment x1 = x2 = x6 = 1 and x3 = x4 = x5 = 0.
(b) The constructed graph G′ for this formula.

Overview of Reduction. Let G be a planar incidence graph of variables and
clauses. We construct a graph G′ such that G′ covers D if and only if the formula
is satisfiable. We replace every variable with a variable gadget and every clause
with a clause gadget. If a variable is in a clause, we connect the variable gadget
and the clause gadget by an edge. The variable gadgets and the clause gadgets
are connected in the way that the overall topology of G is preserved in G′; see
Figure 8b.

The variable gadget can be colored in two ways which encodes the assignment
of the variable. Every clause gadget can be colored if and only if two of its
variables gadget are true and the other two are false.

Variable Gadget. For a variable that appears in the formula k times, the
variable gadget contains the cycle C4k. Every fourth vertex of the cycle is con-
nected to a clause gadget. The remaining vertices are connected to triangles; see
Figure 9.

Lemma 3. For every coloring of the variable gadget, u1, . . . , uk are colored by
one color and v1, . . . , vk by the other one.

Proof. Every triangle in the graph has to be monochromatic. The triangles force
the cycle to be monochromatic as well. ��
The color of v1, . . . , vk represents the value assigned to the variable. If the inner
cycle is colored black, the variable is assigned true, otherwise the variable is false.

Clause Gadget. We start with basic blocks described in Figure 10. The auxiliary
gadget consists of eight basic blocks; see Figure 11. The reader is encouraged to
prove that there exists no other colorings of these gadgets.

· · ·

Fig. 9. The variable gadget with a unique coloring—up to swapping of the colors

92 O. B́ılka et al.

Fig. 10. The basic block has three different colorings—up to swapping of the colors

Fig. 11. The auxiliary gadget with all three colorings—up to swapping of the colors.
Note that every coloring has two outer vertices black and the other two white.

u1

u2 u3

u4

v1

v2 v3

v4

Fig. 12. The clause gadget with all three colorings—up to swapping of the colors

The clause gadget, described in Figure 12, contains an auxiliary gadget. Every
clause gadget is connected by edges to the corresponding variable gadgets.

Lemma 4. Let the vertices ui and vi have distinct colors for every i ∈
{1, 2, 3, 4}. The crossing gadget can be covered if and only if exactly two of vi’s
are colored black and the other two are colored white.

Proof. Observe that the coloring is forced by colors of ui and vi. The rest is
ensured by the auxiliary gadget; see description in Figure 11. ��

On the Complexity of Planar Covering of Small Graphs 93

4
12

3

4
1 2

3

2
3 4

1

2
34

1

f
12

3 4

Fig. 13. An example planar cover of W4. If G covers W4, it has to consist of cycles of
length divisible by four connected by black vertices of degree four. The cycles can be
labeled in the cyclic order 1, 2, 3 and 4 (eight possible labellings for each cycle) in such
a way that every vertex of degree four is adjacent to one vertex of each label.

Proof (Theorem 4). We need to show that there exists a correct assignment of
the variables if and only if G′ covers D. Let G′ cover D. According to Lemma 3,
every variable gadget has to be colored in one of two ways, one representing
the true assignment and the other one the false assignment; see Figure 9. By
Lemma 4, the clause gadget can be colored if and only if exactly two variables
in the clause are true and the other two are false. Therefore, the colorings gives
an assignment of the variables which satisfies the formula.

On the other hand, if there exists a correct assignment, we cover the variable
gadgets according to it. Since every clause has two variables assigned true and
the other two assigned false, the corresponding clause gadgets can be covered
according to Lemma 4. We obtain a correct colorings of G′.

The reduction is clearly polynomial, which concludes the proof. ��

5 Conclusions

In this paper, we prove hardness of PlanarCover(H) for several small graphs
H . Our techniques can be generalized to prove hardness of other graphs. For
example, if we replace the leaf in K+

4 with any planar graph, the resulting
PlanarCover problem is still NP-complete.

Our results give a positive answer to Question 1 for all graphs with at most five
vertices except for W4, the wheel graph with four outer vertices (Cover(W4) is
NP-complete; see [KPT98]). For an example, see Figure 13. Since the symmetries
of W4 are different from the symmetries of other graphs solved in this paper, a
reduction would require a new technique. We note that we were able to prove
hardness of partial PlanarCover(W4).

Acknowledgment. We would like to thank Jan Kratochv́ıl for introducing us
to the problem and kindly answering our questions. We would also like to thank
Aaron D. Jaggard, Pavel Paták and Zuzana Safernová for fruitful discussions.

References

[AFS91] Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combina-
torics of covering finite complexes. Australian Journal of Combinatorics 4,
103–112 (1991)

94 O. B́ılka et al.

[Bod89] Bodlaender, H.L.: The classification of coverings of processor networks. Jour-
nal of Parallel and Distributed Computing 6(1), 166–182 (1989)

[DŠT08] Dvořák, Z., Škrekovski, R., Tancer, M.: List-coloring squares of sparse sub-
cubic graphs. SIAM J. Discrete Math. 22(1), 139–159 (2008)

[EET76] Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the
plane. Journal of Combinatorial Theory, Series B 21(1), 8–20 (1976)

[Fia00] Fiala, J.: Note on the computational complexity of covering regular graphs.
In: 9th Annual Conference of Doctoral Students, WDS 2000, pp. 89–90.
Matfyzpress (2000)

[HN90] Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory
Ser. B 48(1), 92–110 (1990)

[HT04] Hliněný, P., Thomas, R.: On possible counterexamples to Negami’s planar
cover conjecture. J. Graph Theory 46(3), 183–206 (2004)

[JKM09] Janczewski, R., Kosowski, A., Malafiejski, M.: The complexity of the l(p,q)-
labeling problem for bipartite planar graphs of small degree. Discrete Math-
ematics 309(10), 3270–3279 (2009)

[KKW07] Kára, J., Kratochv́ıl, J., Wood, D.R.: On the complexity of the balanced
vertex ordering problem. Discrete Mathematics & Theoretical Computer
Science 9(1), 193–202 (2007)

[KM94] Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. Journal of
Combinatorial Theory, Series B 62(2), 289–315 (1994)

[KPT97] Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J.
Comb. Theory Ser. B 71(1), 1–16 (1997)

[KPT98] Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering
problems. Nordic J. of Computing 5(3), 173–195 (1998)

[Kra94] Kratochv́ıl, J.: Regular codes in regular graphs are difficult. Discrete
Math. 133(1-3), 191–205 (1994)

[Mor88] Moret, B.M.E.: Planar NAE3SAT is in P. SIGACT News 19, 51–54 (1988)
[Neg88] Negami, S.: The spherical genus and virtually planar graphs. Discrete

Math. 70(2), 159–168 (1988)
[RL93] Ramanathan, S., Lloyd, E.: Scheduling algorithms for multihop radio net-

works. IEEE/ACM Transactions on Networking 1(2), 166–177 (1993)

Approximability of Economic Equilibrium

for Housing Markets with Duplicate Houses

Kataŕına Cechlárová1,� and Eva Jeĺınková2,��

1 Institute of Mathematics,
Faculty of Science, P. J. Šafárik University,

Jesenná 5, 040 01 Košice, Slovakia
2 Department of Applied Mathematics

Faculty of Mathematics and Physics, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
katarina.cechlarova@upjs.sk, eva@kam.mff.cuni.cz

Abstract. In a modification of the classical model of housing market
which includes duplicate houses, economic equilibrium might not exist.
As a measure of approximation the value sat(M) was proposed: the
maximum number of satisfied agents in the market M, where an agent is
said to be satisfied if, given a set of prices, he gets a most preferred house
in his budget set. Clearly, market M admits an economic equilibrium if
sat(M) is equal to the total number n of agents, but sat(M) is NP-hard
to compute.

In this paper we give a 2-approximation algorithm for sat(M) in the
case of trichotomic preferences. On the other hand, we prove that sat(M)
is hard to approximate within a factor smaller than 21/19, even if each
house type is used for at most two houses. If the preferences are not
required to be trichotomic, the problem is hard to approximate within a
factor smaller than 1.2. We also prove that, provided the Unique Games
Conjecture is true, approximation is hard within a factor 1.25 for tri-
chotomic preferences, and within a factor 1.5 in the case of general pref-
erences.

1 Introduction

A housing market consists of a finite set of agents and a finite set of houses. Each
agent owns one house, considers some other houses acceptable and orders them
according to their desirability. The aim of each agent is to get the house he finds
to be the best possible. This model was introduced by Shapley and Scarf in [13],
where the notion of the economic equilibrium in such markets was considered
and its existence in all housing markets proved. A polynomial-time algorithm
for finding an economic equilibrium, called the Top Trading Cycles (TTC for

� Supported by VEGA grants 1/0035/09 and 1/0325/10.
�� Supported by project 1M0021620838 of the Czech Ministry of Education. Part of

work was done while visiting ICE-TCS, Reykjav́ık University, Iceland.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 95–106, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

96 K. Cechlárová and E. Jeĺınková

short) algorithm was attributed to Gale (see [13]). An asymptotically optimal
implementation of the TTC algorithm was proposed in [2].

The above results rely substantially on the assumption that each agent’s house
is unique. A modified version of the basic model, in which some houses are of
the same type (and so must have equal price), was proposed by Fekete et al.
[9]. In this model it may happen that the economic equilibrium does not exist.
Fekete et al. even proved that the problem to decide its existence is NP-complete.

Cechlárová and Fleiner [4] further narrowed the dividing line between easy
and difficult cases. They proved that if agents have strict preferences over house
types, a polynomial-time algorithm decides the existence of an economic equi-
librium. An efficient optimal implementation of their algorithm was proposed in
[5]. On the other hand, Cechlárová and Fleiner showed that the problem remains
NP-complete even if each agent distinguishes only three classes of house types:
desired houses, houses of the same type as his original house and unacceptable
houses. They call such preferences trichotomic.

In general markets with indivisible goods (i. e., each agent may own several
units of each good) it has been known for many years that equilibrium might
not exist. A recent result of Deng, Papadimitriou and Safra states that even in
the case with linear utility functions the problem to decide its existence is NP-
complete [7]. These authors studied the so-called ε-approximate equilibrium,
i. e., such that the market clears approximately (at most ε units of each good
remain unsold) and each agent obtains a commodity bundle such that its utility
is within a factor of (1 − ε) from the optimum in his budget set.

Cechlárová and Fleiner [4] proposed a different notion of approximate equi-
librium for housing markets with duplicate houses. They studied the deficiency
of housing markets, i. e., the minimum number of agents that cannot get a most
preferred house in their budget set.

Cechlárová and Schlotter [6] examined deficiency from the parameterized com-
plexity viewpoint. They proved that the deficiency problem is NP-hard even in
the case when each agent prefers only one house type to his own, and the maxi-
mum number of houses of the same type is two. They further proved this problem
to be W[1]-hard with the parameter α describing the desired value of deficiency,
and fixed-parameter tractable when parameterized by the number of distinct
house types.

In this paper, we focus on the approximability of the equilibrium in housing
markets with duplicate houses when preferences contain ties, and in particular,
in the case with trichotomic preferences. Technically, instead of minimizing the
number of unsatisfied agents, we shall maximize sat(M), i. e., the number of
satisfied agents in a housing market M. In Section 3 we study bounds for sat(M)
in trichotomic markets and present a 2-approximation algorithm. In Section 4
we prove that the problem is NP-hard to approximate within a factor smaller
than 21/19, even if the maximum number of houses of the same type is two, and
agents endowed with a house of the same type have the same preference lists.
We further prove that if the preferences are not required to be trichotomic, then
sat(M) is NP-hard to approximate within a factor smaller than 1.2.

Approximability of Economic Equilibrium for Housing Markets 97

Assuming that the Unique Games Conjecture of Khot [11] is true, we obtain
stronger innaproximability results, also in the case of trichotomic preference lists
whose lengths are bounded by a constant.

2 Preliminaries

Let A be the set of n agents, H the set of m house types. The endowment function
ω : A → H assigns to each agent the type of house he originally owns. We shall
denote by A(h) the set of agents endowed with a house of type h ∈ H .

Each agent has preferences over house types in H in the form of a linearly
ordered list P (a), possibly with ties. Notation h 	a k means that agent a prefers
houses of type h to houses of type k. The set of house types appearing in P (a)
is denoted by H(a), and house types in H(a) are said to be acceptable for a. We
assume that ω(a) belongs to the least preferred acceptable house types for each
agent. The remaining house types are called unacceptable.

In the special case of trichotomic preferences, each agent distinguishes only
three kinds of house types: house types more preferred than the type of his own
house, these are called desired ; houses of the same type as his own house and
unacceptable house types.

The n-tuple P of all preference lists is called the preference profile. The
quadruple M = (A, H, ω,P) is called a housing market. A market M′ = (A′, H ′,
ω′, P ′) is a submarket of a market M = (A, H, ω,P) if A′ ⊆ A, ω(A′) ⊆ H ′ ⊆ H ,
H ′(a) = H(a)∩H ′ and the endowment function ω′ and preference profile P ′ are
restrictions of ω and P to A′.

In a housing market M, we want to assign prices to house types and design
trading consistent with prices so that each agent ends up with exactly one ac-
ceptable house. More formally, we say that a triple T = (x, π, p) is a solution for
M if

(i) x : A → H is a function and π : A → A is a bijection such that x(a) =
ω(π(a)) and x(a) ∈ H(a) for each a ∈ A,

(ii) p : H → R is a price function such that p(x(a)) ≤ p(ω(a)) for each a ∈ A.

Condition (ii) ensures that each agent can afford a house of type x(a). Function
x and bijection π define who gets whose house. Moreover, they partition A into
cycles of the form (a0, . . . , al−1), where x(ai) = ω(ai+1) for all i = 0, . . . , l − 1
(modulo l), called trading cycles. We say that an agent a is trading in solution
T if a �= π(a).

Given a price function p : H → R+, the budget set of agent a with respect
to p is the set of house types that a can afford, i. e., {h ∈ H : p(h) ≤ p(ω(a))}.
An agent a is satisfied in a solution T of M if x(a) is among the most preferred
house types in the budget set of a. (Notice that in the case of trichotomic pref-
erences, an agent a is satisfied if and only if a is either trading or p(h) > p(ω(a))
for each h ∈ H(a) such that h �= ω(a); in other words, of all acceptable houses
a can only afford houses of the same type as his endowment). Otherwise, we say
that a is dissatisfied. By Sat(T) and Dissat(T) we denote the sets of satisfied

98 K. Cechlárová and E. Jeĺınková

and dissatisfied agents in T , respectively, and by sat(T) and dissat(T) the car-
dinalities of these sets. The minimum of values dissat(T) over all solutions for
a market M is called the deficiency of M [4]. As a dual notion, the maximum
of sat(T) over all solutions T is denoted by sat(M); a solution achieving this
value is called optimal. A solution T is called an economic equilibrium for M if
all agents are satisfied in T .

A simple observation follows directly from the definitions (see also [4,9]).

Lemma 1. If T = (x, π, p) is a solution for a market M then p(x(a)) = p(ω(a))
for each agent a ∈ A.

We study the following problems.

Max-SHDTies (Maximum Satisfied Housing with Duplicate houses and
Ties): Given a market M, find a solution T that maximizes sat(T).

Max-SHDTri (Maximum Satisfied Housing with Duplicate houses and
Trichotomic preferences): Given a market M with trichotomic prefer-
ences, find a solution T that maximizes sat(T).

For our purpose it is very convenient to view a housing market M as a digraph
GM = (A, E). Vertices of GM correspond to agents and each vertex is colored
according to the type of house this agent is endowed with—hence the color
classes correspond to the sets A(h). An arc ab ∈ E means that ω(b) �a ω(a).
In case of a general housing market M, the arcs may be labelled with numbers
that express the preference order.

When there is no danger of confusion, we identify the digraph GM with the
market M, and the vertices of GM with agents of M. We then speak of in-
neighbors and out-neighbors of agents, of directed cycles in M, and we say that
M is acyclic if GM does not contain any directed cycle (note that in GM there
are no loops and arcs between agents of the same type). Finally, as it will be
clear from the context, we usually say simply cycle also for a directed cycle.

Recall that a set S of vertices of an undirected graph is called a vertex cover
(VC for short) if each edge has at least one endpoint in S. A set of vertices in
a directed graph is a feedback vertex set (FVS for short) if its removal leaves an
acyclic graph. Both problems Min-VC and Min-FVS, asking for finding the size
of a minimum vertex cover VC(G) and the size of a minimum feedback vertex set
FVS(G), respectively, in a given (di)graph G are well-known NP-hard problems.

3 Bounds for sat(M)

In this section we deal with markets that exhibit special structure. For example,
we show that each acyclic market admits an equilibrium and that sat(M) can
be computed easily in markets with only two house types . Then we prove that
in each trichotomic market at least half of the agents can always be satisfied.
The proof of this theorem also provides a simple 2-approximation algorithm for
sat(M). Finally, we show that the approximation guarantee 2 of this algorithm
is tight.

Approximability of Economic Equilibrium for Housing Markets 99

Lemma 2. Any acyclic market M admits an economic equilibrium, i. e., for
any acyclic market M we have sat(M) = n. Moreover, an optimal solution can
be found in time O(L), where L =

∑
a∈A |H(a)|.

Proof. Let us denote by G∗
M the digraph whose vertices correspond to house

types and a pair hk is an arc if and only if there exists an agent a with ω(a) = h
such that k �a ω(a).

If GM is acyclic then G∗
M is acyclic too, and the argument is as follows:

Suppose that (h0, h1, . . . , hk−1) is a cycle in G∗
M. This means that there are

agents a0, a1, . . . , ak−1 such that ω(ai) = hi and ai desires hi+1 (modulo k).
It is easy to see that (a0, a1, . . . , ak−1) is a cycle in GM. Now assign prices to
house types according to any topological ordering of vertices in G∗

M so that
hk ∈ E(G∗

M) implies p(h) < p(k). Such prices enable no trading, but all agents
are satisfied.

Finally, the digraph G∗
M can easily be constructed from preference lists of

agents in time O(L), the number of its arcs is O(L) too, so the topological
ordering of its vertices can also be performed in time O(L).

The main significance of the above lemma is in the possibility to extend a solu-
tion obtained for an acyclic submarket to a solution of the whole market while
preserving the number of satisfied agents.

The proof of the following basic lemma is omitted due to space limits.

Lemma 3. Let M′ be a submarket of M. Every solution T ′ of M′ can be
extended to a solution T of M such that sat(T) ≥ sat(T ′). Hence, sat(M) ≥
sat(M′).

The following lemma is an immediate corollary of Lemma 2 and Lemma 3.

Lemma 4. Let M be a market. If a set F ⊆ A is a FVS in GM, then there
exists a solution T for M such that A \ F ⊆ Sat(T). Hence, sat(M) ≥ |A \ F |.
The following theorem provides a lower bound for the number of satisfied agents
in each trichotomic market.

Theorem 1. In each trichotomic market M with n agents at least n/2 agents
can be satisfied.

Proof. Let C be any maximum cycle packing of GM, i. e., a set of vertex-disjoint
directed cycles that contains the maximum possible number of vertices. Let us
denote by AC the set of agents contained in C.

If |AC | ≥ n/2, a possible solution is as follows: all house types in M receive
the same price, and the cycles of C are trading cycles. Then all trading agents
are satisfied, hence sat(T) ≥ n/2.

Now consider the case |AC | < n/2. As C is maximal, AC is a FVS of M and
so the submarket generated by A \ AC is acyclic. Using Lemma 4 we obtain a
solution T satisfying all the agents in A \ AC , i. e., sat(T) ≥ n/2.

Notice that there is a folklore polynomial algorithm for finding a maximum
cycle packing in a digraph, see e. g. [1]. So the proof of Theorem 1 immediately
provides the following corollary.

100 K. Cechlárová and E. Jeĺınková

Corollary 1. There is a polynomial 2-approximation algorithm for the problem
Max-SHDTri.

Example 1. Consider the following market M.

M : A = {a1, a2, . . . , aq, b1, b2, . . . , bq, c}
ω(ai) = ω(bi) = hi; ω(c) = hq+1

P (ai) = P (bi) = hi+1 � hi; P (c) = h1 � hq+1

Here, |A| = 2q + 1 and any maximum cycle packing contains a single cycle
of length q + 1: (c, a1 or b1, a2 or b2, . . . , aq or bq). Thus, the algorithm satisfies
q + 1 agents only, and since the house types of the rest of the agents are already
present in the trading cycle, q agents remain unsatisfied. On the other hand, if
agent c is removed, an acyclic market with 2q satisfied agents is obtained.

If we let q grow indefinitely, this example shows that the bound of the above
approximation algorithm cannot be tightened to 2 − ε for any ε > 0.

Example 2. Suppose that housing market M fulfills that |H | = 2 and H(a) \
{ω(a)} �= ∅ for each agent. We show that sat(M) = max{2 min{n1, n2}, n1, n2},
where |A(h1)| = n1, |A(h2)| = n2.

In this case, GM is a complete bipartite digraph. For any solution T , there are
three possibilities. If p(h1) = p(h2) then each trading cycle is even and contains
alternately agents from A(h1) and A(h2), hence the same number of agents of the
two types. So sat(T) = 2 min{n1, n2}. If p(h1) < p(h2) then there is no trading,
but all the agents from A(h1) are satisfied, as they cannot afford a house of type
h2. So sat(T) = n1. Finally, if p(h1) > p(h2) then sat(T) = n2 by a similar
argument.

Example 2 gives an infinite number of housing markets with sat(M) = 2
3n if we

set n2 = 2n1. We remark that it remains an open problem whether a housing
market exists where the number of dissatisfied agents is more than one third of
all agents.

4 Inapproximability

We derive our results from the hardness results for Min-VC. Proposition 1, the
main result of Subsection 4.1, provides a transformation of a graph G into a hous-
ing market for which the number of dissatisfied agents in any optimal solution
is proportional to VC(G). In Subsection 4.2, we derive several consequences for
the hardness of approximation of sat(M) in the case of trichotomic preferences.

Further, Proposition 1 contains a parameter k that influences the fraction
of dissatisfied agents in any optimal solution. This is used to get stronger inap-
proximability bounds of sat(M) if preferences are not required to be trichotomic.
These bounds are presented in Subsection 4.3.

Approximability of Economic Equilibrium for Housing Markets 101

4.1 The Transformation

Proposition 1. For every integer k ≥ 1, there is a polynomial-time trans-
formation T̃k from Min-VC to Max-SHDTies such that each graph G with
|V (G)| vertices is transformed into a housing market M̃k = T̃k(G) with n =
(2k + 1)|V (G)| agents, such that sat(M̃k) = (2k + 1)|V (G)| − k VC(G).

Proof. Consider an instance G of Min-VC. We construct a market M̃k.
For each vertex v ∈ G, there is a set of vertices Av consisting of k+1 incoming

agents Iv = {iv,1,iv,2, . . . , iv,k+1}, and k outgoing agents Ov = {ov,1, ov,2, . . . ,
ov,k}. Their endowments and preferences are as follows (the sets of house types
in brackets in the preference lists of outgoing agents represent ties).

ω(iv,1) = ω(iv,2) = · · · = ω(iv,k+1) = hv

ω(ov,1) = h∗
v,1; ω(ov,2) = h∗

v,2; . . . ; ω(ov,k) = h∗
v,k

P (iv,1) = · · · = P (iv,k+1) = h∗
v,1 � h∗

v,2 � · · · � h∗
v,k � hv

P (ov,1) = (h∗
v,2, . . . , h

∗
v,k) � (all hw such that {vw} ∈ E(G)) � h∗

v,1

P (ov,2) = (h∗
v,3, . . . , h

∗
v,k) � (all hw such that {vw} ∈ E(G)) � h∗

v,2

...
P (ov,k) = (all hw such that {vw} ∈ E(G)) � h∗

v,k.

For illustration, see Figure 1. Incoming (white) agents have the same in-arcs and
out-arcs, which is for simplicity illustrated by just one copy of the arcs coming
into and going out of the oval shape. Numbers accompanying arcs express the
preference ordering.

Clearly, this construction can be performed in polynomial time.
For a vertex subset B of G, we define the corresponding set OB of outgoing

agents: OB = {ov,j : v ∈ B, j = 1, . . . , k}. We prove several properties of M̃k.

Lemma 5. F is a vertex cover in G if and only if OF is a FVS in M̃k.

Due to space constraints, the simple proof of Lemma 5 is omitted.

Lemma 6. There exists an optimal solution for M̃k with no trading.

Proof. Assume that every optimal solution has at least one trading cycle, and
let T be an optimal solution with the minimum number of trading cycles. Let
C be any trading cycle of T . By Lemma 1, houses of all agents on C have the
same price; we denote this price by pC .

Now consider the set Av for any v such that at least one agent a ∈ Iv belongs
to C. Then the price of the house of each agent from Ov who is trading must
also be equal to pC , as some of the agents preceding him on his trading cycle
must belong to Iv. Thus, each agent of Av is either trading with price pC or not
trading.

102 K. Cechlárová and E. Jeĺınková

1

2

3

4

k

1

2

⎫ ⎬ ⎭

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

iv,1

iv,2

iv,3

iv,4

iv,k+1

ov,1

ov,2

ov,3

ov,4

ov,k

1

1

... ...

Fig. 1. Agents in M̃k corresponding to a vertex v of G′

Let A+
C denote the union of all sets Av such that at least one agent in Av is

trading with price pC .
We construct another solution T ′ from T by modifying prices of houses ac-

cording to their owner and their price in T as follows.

1. Owner in A \ A+
C , price ≤ pC . These houses receive the same price in T ′ as

in T .
2. Owner in A\A+

C , price > pC . These houses receive their price in T increased
by k + 1.

3. Owner in A+
C . For each v such that Av ⊆ A+

C , we set p(hv) = pC , p(h∗
v,1) =

pC + 1, p(h∗
v,2) = pC + 2, . . . , p(h∗

v,k) = pC + k.

It is immediate that prices of the houses are defined consistently. Trading cycles
from T with price different from pC are in T ′ as well, while agents of A+

C are
not trading in T ′. This concludes the construction of T ′.

Clearly, the number of trading cycles in T ′ is strictly smaller than the number
of trading cycles in T . Now we show that sat(T ′) ≥ sat(T).

Let us first consider an agent outside A+
C . His budget set in T ′ has not in-

creased, and his trading/nontrading status has not changed compared to T , so
if this agent was satisfied in T , he remains satisfied in T ′ as well.

Now take a set Av ⊆ A+
C . Notice that all agents from Iv have the same strict

preferences and the same nonempty budget set in T . Hence, since at most one of
them can get their common unique most preferred affordable house from Ov, at
most one agent from Iv is satisfied in T . This implies that | Sat(T)∩Av | ≤ k+1.
In T ′ no agent from Av is trading, but since agents from Iv cannot afford any
house from Ov, they are all satisfied. This implies | Sat(T ′) ∩ Av| ≥ k + 1.

Approximability of Economic Equilibrium for Housing Markets 103

Summarizing, sat(T ′) ≥ sat(T). Hence, T ′ is another optimal solution having
less trading cycles than T , which is a contradiction with the choice of T .

Lemma 7. Let T be any optimal solution of M̃k with no trading and let v ∈ G
be arbitrary. Then Iv ⊆ Sat(T) and either Ov ⊆ Sat(T) or Ov ⊆ Dissat(T).

Proof. Let T be an optimal solution with no trading and v any vertex from
V (G). First we claim that

p(hv) < p(h∗
v,j) for each j ∈ {1, . . . , k}. (1)

Otherwise, if p(hv) ≥ p(h∗
v,j) for some j, then all the agents in Iv can afford

the acceptable house h∗
v,j and are dissatisfied. By increasing p(h∗

v,j) to p(hv) + 1
for every such j, all k + 1 agents in Iv become satisfied, while at most k agents
from Ov may become dissatisfied. This is a contradiction with optimality of T .
Hence, (1) holds, and this implies that Iv ⊆ Sat(T).

Now distinguish two cases.

Case 1. p(hv) < p(hu) for each u ∈ V such that {v, u} ∈ E. Let us denote
p∗ = min{p(hu); {v, u} ∈ E} and define new prices p′ fulfilling the following
inequality:

p(hv) < p′(h∗
v,1) < p′(h∗

v,2) < · · · < p′(h∗
v,k) < p∗.

Thanks to (1), the satisfaction of any agent outside Av w. r. t. new prices does
not differ from his satisfaction according to old prices. Moreover, all agents in
Ov are satisfied. So they all were satisfied in T too, or T was not optimal.

Case 2. There exists u ∈ V such that {v, u} ∈ E and p(hv) ≥ p(hu). Due to
(1), all agents from Ov can afford the house hu and so they are all dissatisfied,
as there is no trading in T .

To prove the Proposition, we show that VC(G) = l if and only if sat(M̃k) =
n− kl. Assume that F is a vertex cover of size l in G. Then by Lemma 5 the set
OF is a feedback vertex set in M̃k and by Lemma 4, sat(M̃k) ≥ |A\OF | = n−kl.

Now let T be an optimal solution in M̃k with no trading (which exists by
Lemma 6). Lemma 7 implies that Dissat(T) =

⋃
v∈B Ov for some B ⊆ V , and

hence dissat(T) = kl for some l. For any directed cycle C in M̃k, at least one
agent will have maximum price among the agents of C, and because there is
no trading, this agent is dissatisfied. Moreover, (1) implies that the dissatisfied
agent is outgoing. Hence, the set OB contains at least one agent out of every
directed cycle in M̃k, and thus OB is a FVS of M̃k. Lemma 5 directly implies
that B is a vertex cover in G and hence VC(G) ≤ l.

Therefore sat(M̃k) = n − kl if and only if VC(G) = l.

In the case that k = 1, the constructed market M̃k is trichotomic. Hence, we
get the following proposition as a corollary.

Proposition 2. There is a polynomial-time transformation T from Min-VC to
Max-SHDTri such that each graph G with |V (G)| vertices is transformed into
a housing market M = T (G) with n = 3|V (G)| agents, such that sat(M) =
3|V (G)| − VC(G).

104 K. Cechlárová and E. Jeĺınková

4.2 Inapproximability for Max-SHDTri

Halldórsson et al. [10], when studying the approximability of the problem to
find a stable matching of maximum size in the stable marriage problem with
incomplete lists and ties (SMTI for short), presented a construction that assigns
to each graph G = (V, E) an SMTI instance I such that the number of men as
well as the number of women in I is equal to 3|V (G)|, and | opt(I)| = 3|V (G)|−
VC(G). Since the quantitative relations in our Proposition 2 and in the proof
of their Theorem 3.2. are the same, we get by exactly the same argument the
following analogies of Theorem 3.2., its Corollary 3.4. and Remark 3.6. of [10].

Proposition 3. For any ε > 0 and p < 3−√
5

2 , given an instance M of Max-

SHDTri with n agents, it is NP-hard to distinguish between the following two
cases:

1. sat(M) ≥ 2+p−ε
3 n, and

2. sat(M) < 2+max{p2,4p3−3p4}+ε
3 n.

Theorem 2. It is NP-hard to approximate Max-SHDTri within a factor smaller
than 21/19.

Theorem 3. If Min-VC is NP-hard to approximate within a factor of 2 − ε
then Max-SHDTri is NP-hard to approximate within a factor smaller than
1.25.

The Unique Games Conjecture was introduced by Khot [11]. For the statement
of the Conjecture and all necessary definitions, see [11] and [12]. Khot and
Regev [12] proved that if UGC is true, then Min-VC is NP-hard to approxi-
mate within a ratio smaller than 2. Thus, the assumption of Theorem 3 would
be fulfilled. We get the following corollary.

Corollary 2. If UGC is true, then Max-SHDTri is NP-hard to approximate
within a factor smaller than 1.25.

The results of Austrin et al. [3, page 3 and Theorem 4.1] may be stated in the
following way.

Proposition 4. If UGC is true, then for every sufficiently large integer d it is
NP-hard to distinguish between the following two cases:

1. VC(G) ≤ (1/2 + Θ(log log d
log d))|V (G)|, and

2. VC(G) > (1 − 1
log d)|V (G)|,

even on graphs of maximum degree d.

It is easy to see that in the transformation of Proposition 2, the resulting pref-
erence list lengths are bounded in terms of degrees of G. We therefore define a
restricted variant of the Max-SHDTri problem with preference lists of length
at most d; we call it Max-SHDTrid. From Proposition 4 we derive the following
result. Due to space constraints, the straightforward calculation is omitted.

Theorem 4. If UGC is true, then for every sufficiently large integer d it is
NP-hard to approximate Max-SHDTrid within a ratio 1.25 − Θ(log log d

log d).

Approximability of Economic Equilibrium for Housing Markets 105

4.3 Inapproximability for Max-SHDTies

As the problem Max-SHDTri is a restricted version of Max-SHDTies, all
inapproximability results for Max-SHDTri apply to Max-SHDTies as well.
However, due to the general Proposition 1, we obtain even stronger inapprox-
imability results here.

Theorem 5. The problem Max-SHDTies is

1. NP-hard to approximate within a factor smaller than 1.2, and
2. NP-hard to approximate within a factor smaller than 1.5, if UGC is true.

To prove the first part of the theorem, we use the following assertion for Min-VC

due to Dinur and Safra [8] (as in the reasoning that leads to Proposition 3).

Proposition 5. For any ε > 0 and p < 3−√
5

2 , given a graph G, it is NP-hard
to distinguish between the following two cases:

1. VC(G) ≤ (1 − p + ε)|V (G)|, and
2. VC(G) > (1 − max{p2, 4p3 − 3p4} − ε)|V (G)|.

To prove the second part, we use the following special case of the results of Khot
and Regev [12, Section 4].

Proposition 6. If UGC is true, then for any ε > 0, given a graph G, it is
NP-hard to distinguish between the following two cases:

1. VC(G) ≤ (1
2 + ε)|V (G)|, and

2. VC(G) > (1 − ε)|V (G)|.
The proof of Theorem 5 then consists in combining Proposition 1 with Proposi-
tion 5 and Proposition 6. It is omitted due to space limits.

5 Conclusion and Open Problems

In this paper, we have presented a simple 2-approximation algorithm for Max-

SHDTri. We have also shown that the number of agents satisfiable in any
instance of Max-SHDTri is at least n/2.

Based on a reduction from Min-VC, we have shown several inapproximability
results for Max-SHDTri, Max-SHDTrid (where preference lists have length
at most d), and Max-SHDTies (where preference lists are not required to be
trichotomic).

All the markets constructed in this paper have a special property: all agents
that own the same house type have the same preference lists. Markets with this
property may be called coherent.

One could expect that for coherent markets, stronger results could be ob-
tained. Further, no approximation algorithm is known for Max-SHDTies, nor
for markets where preference lists are strictly ordered.

106 K. Cechlárová and E. Jeĺınková

Acknowledgement. The authors would like to thank Magnús M. Halldórsson
and Vı́t Jeĺınek for helpful suggestions.

References

1. Abraham, D., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange
markets: Enabling nationwide kidney exchanges. In: EC 2007, San Diego, California
(2007)

2. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto Optimality
in House Allocation Problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)

3. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent
set in bounded degree graphs. In: CCC 2009: Proceedings of the 2009 24th An-
nual IEEE Conference on Computational Complexity, pp. 74–80. IEEE Computer
Society, Washington, DC, USA (2009)

4. Cechlárová, K., Fleiner, T.: Housing markets through graphs. Algorithmica 58(1),
19–33 (2010)

5. Cechlárová, K., Jeĺınková, E.: An efficient implementation of the equilibrium al-
gorithm for housing markets with duplicate houses. Information Processing Let-
ters 111(13), 667–670 (2011)

6. Cechlárová, K., Schlotter, I.: Computing the Deficiency of Housing Markets with
Duplicate Houses. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478,
pp. 72–83. Springer, Heidelberg (2010)

7. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price equilibria. J.
Computer and System Sciences 67, 311–324 (2003)

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics 162, 439–485 (2005)

9. Fekete, S., Skutella, M., Woeginger, G.: The complexity of economic equilibria for
house allocation markets. Information Processing Letters 88(5), 219–223 (2003)

10. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxi-
mation results for the stable marriage problem. ACM Trans. Algorithms 3(3), 30
(2007)

11. Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th ACM
Symp. on Theory of Computing, STOC 2002, pp. 767–775 (2002)

12. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008); Computational
Complexity 2003

13. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1, 23–37 (1974)

Planarization and Acyclic Colorings of Subcubic

Claw-Free Graphs

Christine Cheng�, Eric McDermid��, and Ichiro Suzuki���

Department of Computer Science,
University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA

{ccheng,mcdermid,suzuki}@uwm.edu

Abstract. We study methods of planarizing and acyclically coloring
claw-free subcubic graphs. We give a polynomial-time algorithm that,
given such a graph G, produces an independent set Q of at most n/6
vertices whose removal from G leaves an induced planar subgraph P (in
fact, P has treewidth at most four). We further show the stronger result
that in polynomial-time a set of at most n/6 edges can be identified whose
removal leaves a planar subgraph (of treewidth at most four). From an
approximability point of view, we show that our results imply 6/5- and
9/8-approximation algorithms, respectively, for the (NP-hard) problems
of finding a maximum induced planar subgraph and a maximum planar
subgraph of a subcubic claw-free graph, respectively.

Regarding acyclic colorings, we give a polynomial-time algorithm that
finds an optimal acyclic vertex coloring of a subcubic claw-free graph.
To our knowledge, this represents the largest known subclass of subcu-
bic graphs such that an optimal acyclic vertex coloring can be found
in polynomial-time. We show that this bound is tight by proving that
the problem is NP-hard for cubic line graphs (and therefore, claw-free
graphs) of maximum degree d ≥ 4. An interesting corollary to the algo-
rithm that we present is that there are exactly three subcubic claw-free
graphs that require four colors to be acyclically colored. For all other
such graphs, three colors suffice.

1 Introduction
A simple, finite graph G is said to be claw-free if no vertex of G has three pairwise
nonadjacent neighbors. It is subcubic if every vertex of G has degree at most
three. Claw-free graphs are a well-studied and interesting class of graphs that
generalize line graphs. Additionally, claw-free graphs are very well-understood,
thanks to a complete structure theorem found by Chudnovsky and Seymour
[5]. In this paper we explore methods of planarization and acyclic colorings of
claw-free subcubic graphs.

Planarization. Planarization is a broad term used to refer to the process of
modifying a graph in order to make it planar (see [13] for a survey). Interest in

� Supported by NSF award CCF-0830678.
�� Supported by NSF award CCF-0830678 and UWM Research Growth Initiative.

��� Supported by UWM Research Growth Initiative.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 107–118, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

108 C. Cheng, E. McDermid, and I. Suzuki

such techniques arises both for combinatorial and theoretical uses, but also for in-
dustrial applications (for example, VLSI and layout problems). In the minimum
nonplanar vertex deletion problem (MINVD) we wish to compute a smallest set
of vertices Q such that G − Q is an induced planar subgraph. The complement
problem of MINVD is to find a maximum induced planar subgraph (MAXIPS),
where the size of the solution is the number of vertices of G − Q. Analogously,
the minimum nonplanar edge deletion problem MINED asks for a smallest set
of edges E′ such that G − E′ is a planar subgraph. The complement of MINED
is to find a maximum planar subgraph (MAXPS), where the size of the solution
is the number of edges of G − E′.

From a complexity perspective, all of these optimization problems are hard,
but some positive results are also known. On the negative side, Yannakakis
[16,17] first showed that MINVD and MINED are NP-hard. Independently, Liu
and Geldmacher [14] also proved that MINED is NP-hard. Cǎlinescu et al. [4]
improved upon this by showing that MINED and MAXPS are Max SNP-hard.
Subsequently, Faria et al. [8,9,10] (note the two different sets of authors) showed
that MINVD and MINED are both Max SNP-hard in cubic graphs, and that
MAXIPS and MAXPS are NP-hard in cubic graphs. They also showed that
MAXIPS in general graphs admits no polynomial-time approximation algorithm
with a fixed ratio unless P = NP. We remark that, although Faria et al. [10] do
not explicitly state it, the derived instance in their hardness proof for MAXIPS
in cubic graphs has the property that every vertex is in a triangle (a necessary
and sufficient condition for claw-freeness in a cubic graph). Hence MAXIPS is
NP-hard in claw-free cubic graphs. It is also easy to see that their hardness result
for MAXPS in cubic graphs implies that MAXPS is also NP-hard in claw-free
cubic graphs: a cubic graph G contains a planar subgraph P of size n − k (i.e.,
we remove k edges to obtain P) if and only if the claw-free graph G′ obtained by
replacing each vertex of G with a triangle has a planar subgraph of size 3n− k.

On the positive side, Faria et al. [10] gave a 4/3-approximation algorithm
for MAXIPS in subcubic graphs. Edwards and Farr [6] presented a polynomial-
time algorithm that, given a graph of maximum degree d, finds an induced planar
subgraph of size at least 3n/(d+1). They later generalized this result to graphs of
average degree d (in fact, the induced subgraph found is series-parallel). This can
be interpreted as a (d+1)/3-approximation algorithm, which matches the bound
given by Faria et al. when the maximum degree is three. Finally, Cǎlinescu et
al. [4] gave a 9/4-approximation for MAXPS in general graphs. We remark that
there is much other work on finding subgraphs (induced or otherwise) having a
particular property; we have only mentioned those results most directly related
to our own.

Acyclic Colorings. An acyclic coloring of a graph G is a proper vertex coloring
of G with the property that no cycle is bicolored. The acyclic coloring problem
is to compute an acyclic coloring for G using the fewest number of colors. Aside
from its intrinsic interest, researchers are interested in this problem because
it has applications in computing the Jacobian and Hessian of sparse matrices
[11].

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs 109

Using probabilistic methods, Alon et al. [1] proved that it is always possible
to acyclically color the vertices of a graph of maximum degree d using O(d4/3)
colors, and showed that there exists graphs requiring Ω(d4/3/(log d)1/3) colors.
For fixed values of d, they showed that a straightforward greedy algorithm uses at
most d2 + 1 colors. Several authors have presented polynomial-time algorithms
[3,12,15] showing that graphs of maximum degree 3, 4, and 5, respectively, admit
an acyclic 4-, 5-, and 7-coloring. Note that all of these results are approximation
algorithms – they will not, in general, return an acyclic coloring with the fewest
number of colors possible. Regarding special cases of graphs, Zhang and Bilka
[18] (implicitly) give a polynomial-time algorithm showing that every cubic line
graph admits an acyclic coloring using at most three colors – a result that will
be useful to us later on.

We remark that much attention has also been devoted to the acyclic edge
coloring of a graph G (defined analogously to acyclic vertex colorings). For our
purposes, we mention only that Alon and Zaks [2] have shown that determining
if a cubic graph G admits an acyclic coloring with at most three colors is NP-
complete.

Our Contribution. On the surface, planarization and acyclic colorings seem
to be quite different problems. A unifying approach to our results is our sim-
ple reduction technique, that, in linear time, yields a reduced graph with very
desirable properties. In particular, we show that if the reduced graph admits a
(induced) planar subgraph of a certain size, or is acyclically colorable, then the
original graph also has this property. We believe that this reduction technique
could be applicable to other problems restricted to subcubic claw-free graphs.

Regarding planarization, we give a polynomial-time algorithm that, given a
claw-free subcubic graph, produces an independent set Q of at most n/6 ver-
tices whose removal from G leaves an induced planar subgraph P (in fact, P
has treewidth at most four). Hence, G always has an induced planar subgraph
(of treewidth at most four) of size at least 5n/6. Given this result, we further
show the stronger result that in polynomial-time a set of at most n/6 edges
can be identified whose removal leaves a planar subgraph (of treewidth at most
four). From the perspective of the combinatorial bounds given by Edwards and
Farr [7], our results show the existence of significantly larger induced planar
subgraphs when restricted to subcubic claw-free graphs, rather than general
subcubic graphs. From an approximability point of view, we show that our first
two bounds give a 6/5- and a 9/8-approximation ratio, respectively, for MAX-
IPS and MAXPS. This gives a better performance guarantee for the special case
of subcubic claw-free graphs than that of the 4/3-approximation algorithm for
MAXIPS in general subcubic graphs, and an improvement for this special case
over the general 9/4-approximation algorithm for MAXPS.

Next, we give a polynomial-time algorithm that finds an optimal acyclic vertex
coloring of a subcubic claw-free graph. To our knowledge, this represents the
largest subclass of subcubic graphs (or any non-trivially degree bounded class of
graphs) such that an optimal acyclic vertex coloring can be found in polynomial-
time. We show that this bound is tight by proving that the problem is NP-hard

110 C. Cheng, E. McDermid, and I. Suzuki

Fig. 1. A claw with base u, a diamond and double diamond with endpoints u and v,
and an envelope with an acyclic coloring

for claw-free graphs of maximum degree d ≥ 4. An interesting corollary to the
algorithm that we present is that there are exactly three subcubic claw-free
graphs that require four colors to be acyclically colored. For all other such graphs,
three colors suffice.

2 Preliminaries and Definitions

We consider all graphs to be simple and finite, and use standard graph terminol-
ogy and notation. A claw, diamond, double-diamond, and an envelope, respec-
tively, are defined to be the graphs (from left to right) depicted in Figure 1. Let
D be an induced diamond or double-diamond. The endpoints of D are defined
to be the (only) two vertices in D with degree two in D. Let H be any induced
subgraph of G. For a vertex u ∈ H with degree two in H , but degree three in G,
tH(u) is defined to be the (distinct) neighbor of u not in H . For example, if G is
a cubic graph, and u is an endpoint of an induced diamond or double-diamond
D, then tD(u) is the distinct neighbor of u that is not in D. A tree decomposition
of a graph G = (V, E) is a pair (X, T), where X = {X1, . . . , Xn} is a family of
subsets of V , and T is a tree whose nodes are the subsets Xi, satisfying that:
(i) ∪Xi = V , (ii) every edge uv ∈ E belongs to some Xi ∈ X , and (iii) for each
vertex u ∈ V , the set of subsets of X containing u induce a connected subtree
of T . The treewidth of a tree decomposition is maxi |Xi| − 1. The treewidth of a
graph is the minimum treewidth over all possible tree decompositions of a graph.

3 Simplifying the Graph

In this section we present our reduction algorithm, which takes an arbitrary
subcubic claw-free graph G = (V, E), and returns a reduced claw-free cubic graph
GR = (VR, ER) with VR ⊆ V , with no induced diamonds or double-diamonds.

Reducing the graph is a crucial preprocessing step for each of the results
that we present in the later sections of this paper. In particular, in each of
the subsequent sections we will show that, roughly speaking, if we can find an
(induced) planar subgraph of GR of a certain size, or an acyclic coloring for GR,
then we can find such a solution for G as well.

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs 111

Before presenting the reduction algorithm we need one lemma regarding the
properties of induced diamonds and double-diamonds of cubic claw-free graphs,
whose proof follows immediately from the claw-freeness of G.

Lemma 1. Let G be a claw-free cubic graph, and D an induced diamond or
double-diamond with endpoints u, v. Then, tD(u) �= tD(v).

The reduction algorithm is as follows. We remark that it can be implemented to
run in linear time; we omit the details.
Reduce(G)

1. Perform steps 1(a) and 1(b) until no further reduction is possible.
(a) If G contains a pendant or isolated vertex u, delete u.
(b) If G contains a vertex u of degree two, let v, w be the neighbors of u. Delete

u, and add the edge vw if it does not already exist.
2. If G contains an induced diamond or an induced double-diamond D, with endpoints

u, v, let tD(u) = w and tD(v) = x. Delete D, and add the edge wx to G if it does
not already exist. Return to Step 1. Else, return G.

In the next lemmas, we establish the properties of this procedure (namely, we
will show that we can never introduce a claw into the graph), and characterize
the properties of the final graph GR returned by the reduction algorithm.

Lemma 2. Let G be a subcubic claw-free graph, and G′ the graph resulting from
a single execution of one of the steps denoted by (1a), (1b), or (2) in the pseu-
docode. Then, G′ is a subcubic claw-free graph.

Proof. None of the operations described in the reduction algorithm can increase
the degree of a vertex of G, so G′ must also have maximum degree three.

It is clear that step (1a) cannot create a claw, so we need only consider the
steps denoted by (1b) and (2) in the pseudocode, that involve potentially adding
an edge to G. Suppose that a degree two vertex u, with neighbors v and w, is
deleted from G, so that the edge vw is present in G′, creating a claw C in G′. If
C does not involve the edge vw, then C must be present in G, a contradiction
– hence the edge vw is involved in C. Suppose without loss of generality that
v is the base of C, and that the other two neighbors of v are x and y. If vw is
present in G, v, w, x, y induces a claw in G, and otherwise, v, u, x, y induces a
claw in G, a contradiction.

A very similar argument holds for the deletion of an induced diamond or
double-diamond D from G as described in step 2. If u, v are the endpoints of
D, and the edge tD(u)tD(v) is involved in a claw in G′, then tD(u) or tD(v) is
involved in a claw in G. ��
The following definition allows us to characterize the graph GR returned by the
algorithm.

Definition 1. A cubic disjoint triangle graph is a cubic graph with the property
that every vertex is in exactly one triangle (hence any two triangles are vertex
disjoint), and every edge of G is either a part of a triangle or is the unique edge
joining two vertex-disjoint triangles.

112 C. Cheng, E. McDermid, and I. Suzuki

Lemma 3. Let G be a subcubic claw-free graph, and GR = (VR, VE) the graph
returned at the termination of the reduction algorithm. Then, either VR = ∅, or
each component of GR is either: (i) isomorphic to K4, or (ii) isomorphic to an
envelope, or (iii) a cubic disjoint triangle graph.

Proof. Consider a particular maximal component G′
R of GR. If G′

R is not the
empty set, then it must be a cubic graph, for otherwise the reduction algorithm
cannot have terminated. In a claw-free cubic graph, every vertex must be in
at least one triangle. Let T = {u, v, w} be a triangle of G′

R, with tT (u) = x,
tT (v) = y, and tT (w) = z. If x = y = z, then G′

R consists entirely of the vertices
u, v, w, x, and is isomorphic to K4. If exactly two of x, y, z are identical, say, x
and y, then G′

R contains an induced diamond, a contradiction. Suppose now that
x, y, z are distinct. If x, y, z is a triangle, then G′

R is isomorphic to an envelope. If
exactly two of x, y, z are in the same triangle, say, x and y, then, u, v, w and the
triangle including x and y is an induced double-diamond, a contradiction. The
only remaining possibility is that x, y, z are in vertex-disjoint triangles, implying
that G′

R is a cubic disjoint triangle graph. ��
Finally, we bound the treewidth of the graph G in the case that GR is not a
cubic disjoint triangle graph. One finds a tree decomposition of width at most
four for G as follows. Begin with a tree decomposition of width at most four for
GR. Next, iteratively ‘undo’ the operations of the reduction algorithm, one by
one, extending the tree decomposition by adding an appropriate set of bags to
the tree decomposition. The details are an easy exercise.

Proposition 1. Let G be a subcubic claw-free graph, and GR the graph returned
at the termination of the reduction algorithm. If GR is not a cubic disjoint tri-
angle graph, then G has treewidth at most four.

4 Finding Large Planar Subgraphs

Our main focus in this section is to present a polynomial-time algorithm that,
given a subcubic, claw-free graph, finds an induced planar subgraph with at least
5n/6 vertices. In particular, we construct a set of at most n/6 vertices Q such
that G − Q is planar. We then use the particular properties of this set Q to
show the stronger result that, in fact, we need only remove n/6 edges from G to
arrive at a planar graph.

As alluded to in the previous section, our algorithm begins by passing the in-
put graph to the reduction algorithm. The usefulness of the reduction algorithm
for finding large planar subgraphs emerges in the following lemma.

Lemma 4. Let G be a subcubic claw-free graph, and G′ the graph resulting from
a single execution of one of the steps denoted by (1a), (1b), or (2) in the pseu-
docode. Then, for any subset V ′ of the vertices of G′, G′ − V ′ is planar implies
that G − V ′ is planar.

Proof. Fix a particular plane embedding Π ′ of G′ − V ′. We shall construct a
plane embedding Π for G−V ′. If G′ is obtained from G by deleting a pendant or

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs 113

isolated vertex v, then v can obviously be added to Π ′ in a way that avoids edge
crossings. Otherwise, G′ is obtained from G by deleting a vertex of degree two,
an induced diamond, or an induced double-diamond, along with the addition of
at most one edge.

If a vertex u of degree two is deleted from G, then, the neighbors of u, say,
v and w, are joined by an edge in G′. If both v and w are present in G′ − V ′,
then u, along with the edges uw and uv can be drawn as close as necessary to
the edge vw to avoid edge crossings. The edge vw may then be deleted. If at
most one of v and w is in G′ −V ′, then u can be added as a pendant or isolated
vertex to Π ′.

The case for an induced diamond or double-diamond D is analogous to that
of a single vertex of degree two. We omit the full details. ��
In light of Lemma 4, we may focus our attention on finding an induced planar
subgraph of GR, the graph returned by the reduction algorithm.

4.1 Induced Planar Subgraphs

The planarization algorithm is outlined in Figure 2. Let G denote the input
graph, which is assumed to be subcubic and claw-free. Recall that the goal of
the planarization algorithm is to compute a set Q of vertices such that G − Q
is planar. The algorithm begins by passing G to the reduction algorithm. Let
GR denote the graph returned. The main body of the algorithm is a while loop,
which continues as long as there is some component Gi of GR that is a cubic
disjoint triangle graph. Inside the loop, an arbitrary vertex u of Gi is added to
Q, and deleted from GR. The reduction algorithm is then called on GR, and the
loop proceeds to its next iteration.

The following lemma establishes the correctness of the planarization algo-
rithm, along with establishing the properties of Q.

Lemma 5. Let G be a subcubic claw-free graph. When Planarize(G) terminates,
(i) G − Q is planar, (ii) |Q| ≤ n/6, where n is the number of vertices in G, and
(iii) Q is an independent set in G.

Proof. (i) If there is any nonempty component of G − Q, then, by Lemma 3, it
is isomorphic to K4 or an envelope, which are both planar. Thus, by inductively
applying Lemma 4, G − Q is planar.

(ii) We will show that after the deletion of a vertex u as described in the while
loop of the planarization algorithm, the reduction algorithm always deletes at
least five additional vertices. Hence, the number of iterations cannot exceed
n/6. Let T = u, v, w be the triangle containing u in G, tT (u) = x, and y, z the
two vertices in a triangle with vertex x. Note that there is no edge with one
endpoint in {v, w} and one endpoint in {y, z}, for otherwise we either have an
induced double-diamond, or these six vertices are isomorphic to an envelope, a
contradiction. After removing the vertex u, it is easy to see that the reduction
algorithm will delete, regardless of the exact order, the vertices v, w, x, y, and z
(as these vertices will have degree two), and possibly additional vertices.

114 C. Cheng, E. McDermid, and I. Suzuki

Planarize(G):
GR ← Reduce(G)
Q ← ∅
while GR has a component Gi that is a cubic disjoint triangle graph:

u ← arbitrary vertex of Gi

Q ← Q ∪ {u}
GR ← GR − {u}
GR ← Reduce(GR)

return Q
Fig. 2. The planarization algorithm

(iii) When a vertex u is chosen to be placed into Q, the reduction algorithm
will subsequently delete all of u’s neighbors, hence none of these vertices can
ever be placed into Q at a later iteration. ��

Theorem 1. Let G be a subcubic claw-free graph with n vertices. In O(n2)
time, an independent set Q can be found containing at most n/6 vertices such
that G − Q is planar (in fact, G − Q has treewidth at most four).

Corollary 1. There is a O(n2)-time approximation algorithm for MAXIPS on
subcubic claw-free graphs with a performance guarantee of 6/5.

4.2 Planar Subgraphs

Let us now bound the number of edge deletions required to planarize G. Let
P = G − Q be the planar graph resulting from the planarization algorithm.
Consider any vertex u ∈ Q. Since Q is an independent set, u has neighbors v, w,
and x in P . Since G is claw-free, some pair from the set {v, w, x}, say, v and
w, are joined by an edge. If we delete the edge ux, then P ∪ {u} is planar: u,
along with the edges uv and uw can be drawn as close as necessary to the edge
vw in any plane embedding of P , as discussed in the proof of Lemma 2. If this
operation is performed for every vertex in Q, the resulting graph is planar. The
proof of the next theorem is very similar to that of Theorem 1.

Theorem 2. Let G = (V, E) be a subcubic claw-free graph. In O(n2)-time, a
set of at most n/6 edges E′ can be found such that G − E′ is planar (in fact,
G − E′ has treewidth at most four).

We now show that the planar subgraph found by the edge deletions described
in the above procedure is a 9/8-approximation algorithm for MAXPS. Suppose
G = (V, E), the original input graph, has n vertices and m edges. After the
reduction algorithm is run once on G, the resulting graph, GR = (VR, ER), has,
say, n′ ≤ n vertices and m′ = 3n′/2 edges (since GR is cubic). The number
of edges removed to make GR planar, and thus, the number of edges removed
to make G planar, is at most n′/6 = m′/9. Let EA denote the set of edges in
the planar subgraph found by our method. The set EA contains every edge of
the graph, except for one edge for each vertex in Q. Thus we have that |EA| ≥

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs 115

Fig. 3. The only three subcubic claw-free graphs requiring four colors for an acyclic
coloring

(m−|Q|) ≥ m− n′
6 ≥ m− m′

9 ≥ 8m
9 . Since the size of an optimal solution EOPT

is at most m, we have that |EA|
|EOP T | ≥ 8

9 . This leads us to the following corollary.

Corollary 2. There is a O(n2)-time approximation algorithm for MAXPS on
subcubic claw-free graphs with a performance guarantee of 9/8.

5 Acyclic Colorings

In this section we give a polynomial-time algorithm for finding an optimal acyclic
coloring of a subcubic claw-free graph G. An interesting consequence of the
algorithm that we describe is that there are exactly three subcubic claw-free
graphs that require four colors in order to be acyclically colored. Three colors
suffice for all other subcubic claw-free graphs. Without loss of generality, we
make a few assumptions to simplify our discussion. First, we assume that G is
not a forest, for finding an optimal acyclic coloring in a forest is trivial. Secondly,
we assume that G is connected, for if it is not, we can find an optimal coloring
for each of the individual maximally connected components. Lastly, we assume
that G is not one of the graphs in Figure 3 (for space reasons, we have moved
the remaining figures to the Appendix), which, it turns out, are the only three
graphs in this class that require four colors to be acyclically colored (it is easy
to verify that four colors are necessary and sufficient for these graphs).

Similar to the approach used in the planarization algorithm, we first run the
reduction algorithm on G. The following lemma demonstrates the usefulness of
the reduction algorithm for finding acyclic colorings.

Lemma 6. Let G be a subcubic claw-free graph, and G′ the graph resulting from
a single execution of one of the steps denoted by (1a), (1b), or (2) in the pseu-
docode. If G′ is acyclically 3-colorable, then G is acyclically 3-colorable.

Proof. Suppose that we are given an acyclic 3-coloring for G′. The graph G′

is obtained from G by either (i) deleting an isolated vertex, or (ii) deleting a
pendant vertex, or (iii) deleting a vertex u of degree two with neighbors v and
w, and possibly adding a new edge vw, or (iv) deleting a diamond or a double-
diamond, and possibly adding a new edge. We can extend the coloring of G′ to an
acyclic coloring of G if cases (i), (ii), or (iii) apply – simply color the new vertex
with a different color than its neighbors (if it has any neighbors). Otherwise,
suppose that D is a diamond or double-diamond deleted from G with endpoints

116 C. Cheng, E. McDermid, and I. Suzuki

Fig. 4. The possible candidates for Gs−1, the last of which is acyclically colorable

u and v. Notice that, by the description of the reduction algorithm, G′ is a cubic
graph. By Lemma 1, tD(u) �= tD(v) in G, but tD(u) and tD(v) are joined by
an edge in G′, and are therefore colored different colors, say zero and one. It is
a straightforward exercise to construct an acyclic coloring of D such that there
is no bicolored path from tD(u) to tD(v) through D. We omit the full details.
Therefore, G is acyclically 3-colorable. ��
Thus, by inductively applying Lemma 6, we have that if the reduced graph GR is
acyclically 3-colorable, then G is as well. We may therefore focus our attention on
acyclically coloring GR. Recall that, by Lemma 3, GR is either an empty graph,
or is isomorphic to K4, or to an envelope, or is a cubic disjoint triangle graph.
Trivially, we are already done if GR is the empty graph. If GR is isomorphic to
an envelope, then GR is acyclically 3-colored as described in Figure 1, and we
are done. If, instead it is a cubic disjoint triangle graph, then GR is acyclically
3-colored using the method of Zhang and Bylka [18]. In the next section, we
describe how to color GR if it is isomorphic to K4, which is not immediately
acyclically 3-colorable.

5.1 Acyclically Coloring GR
∼= K4

Let us consider the sequence of operations performed by the reduction algorithm
on G to arrive at GR. This gives rise to a sequence of graphs S = 〈G = G0,
G1, . . . , Gs−1, Gs = GR〉. Notice that this sequence of operations cannot be
empty, for, by assumption, G is not isomorphic to K4.

Consider the graph Gs−1 – this graph must be obtained by replacing an edge
of K4 with a degree two vertex, diamond, or double-diamond, and is therefore
isomorphic to one of the graphs shown in Figure 4. For, Gs cannot be obtained
by deleting a pendant vertex of Gs−1, as this would force some vertex of Gs−1 to
have degree four. Also, since none of the operations of the reduction algorithm
can disconnect the graph, the graph Gs cannot be obtained by deleting an iso-
lated vertex from Gs−1 either. If Gs−1 is isomorphic to the rightmost graph in
Figure 4, then it is acyclically 3-colored as shown in the figure, and we are done.
Thus, we may restrict our attention to the case in which Gs−1 is isomorphic to
the first or second graphs (from left to right) in Figure 4. Notice that from this
observation, we may conclude that Gs−1 �= G0, for these are two of the graphs
in Figure 3 that, by assumption, are not isomorphic to G = G0.

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs 117

Define an edge e of Gs−k to be artificial if it is not present in Gs−k−1 (G0 is
defined to have no artificial edges). The following lemma begins to shed light on
how to proceed.

Lemma 7. Let S = 〈G0, G1, . . . , Gk〉 be the graphs arising from a non-empty
sequence of reductions as described by the reduction algorithm on G, and D an
induced diamond of Gk such that every vertex u ∈ D has degree three in Gk.
Then, in Gk, none of the edges with both endpoints in D are artificial.

Proof. Suppose e is an artificial edge of an induced diamond D of Gk such
that every vertex (crucially) has degree three in Gk. Then, Gk must have been
obtained from Gk−1 by replacing a vertex of degree two, a diamond, or a double-
diamond of Gk−1 with the edge e, as described by the reduction algorithm. It is
easily verified that in all of the above cases, Gk−1 must contain a claw, the base
of which is one of the vertices of D, a contradiction to Lemma 2. ��
In light of Lemma 7, we may immediately conclude that none of the edges of
Gs−1 that are a part of an induced diamond in either of the two left graphs
depicted in Figure 4 are artificial. Thus, only two edges, denoted by e1 and
e2 in Figure 4, can possibly be artificial. There are exactly five distinct graphs
(up to isomorphism) that can therefore be candidates for Gs−2, which are those
graphs that can be obtained by replacing e1 or e2 with a vertex of degree two,
a diamond, or a double-diamond. There are five possible distinct graphs (up
to isomorphism) that arise from this operation; it is an easy exercise to find
an acyclic coloring for each of them (for space reasons, we omit the details, a
fuller version of this paper demonstrating these coloring can be found on the
first author’s webpage).

Theorem 3. Let G be a claw-free subcubic graph. Then, (i) there is a polynomial-
time algorithm to compute an optimal acyclic coloring for G, and (ii) G admits an
acyclic coloring with at most three colors, unless G is one of the three graphs shown
in Figure 3.

5.2 NP-Hardness for d ≥ 4

Alon and Zaks [2] proved that the problem of deciding if a given cubic graph G
can be acyclically edge colored using only k colors is NP-complete, even if k = 3.
If we compute the line graph L(G) of G, then L(G) contains a vertex for every
edge, and two vertices {e, e′} are adjacent in L(G) if and only if the corresponding
edges are incident in G. Since G is cubic, L(G) is 4-regular. Clearly, an acyclic
vertex coloring of L(G) corresponds to an acyclic edge coloring of G, and vice
versa.

Theorem 4. Deciding if the vertices of a line graph (and therefore, a claw-free
graph) of maximum degree four can be acyclically colored using at most k colors
is NP-complete even if k = 3.

118 C. Cheng, E. McDermid, and I. Suzuki

References

1. Alon, N., McDiarmid, C., Reed, B.: Acyclic colourings of graphs. Random Struc-
tures and Algorithms 2, 277–288 (1990)

2. Alon, N., Zaks, A.: Algorithmic aspects of acyclic edge colorings. Algorithmica 32,
611–614 (2002)

3. Burnstein, M.I.: Every 4-valent graph has an acyclic five coloring, Soobšč. Akad.
Nauk Gruzin SSR 93, 21–24 (1979) (in Russian)

4. Cǎlinescu, G., Fernandes, C.G., Finkler, U., Karloff, H.: A better approximation
algorithm for finding planar subgraphs. Journal of Algorithms 27, 269–302 (1998)

5. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. In: Proceedings
of the 20th British Combinatorial Conference, Surveys in Combinatorics 2005,
Durham, pp. 153–171 (2005)

6. Edwards, K., Farr, G.: An Algorithm for Finding Large Induced Planar Subgraphs.
In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 75–83.
Springer, Heidelberg (2002)

7. Edwards, K., Farr, G.: Planarization and fragmentability of some classes of graphs.
Discrete Mathematics 308, 2396–2406 (2008)

8. Faria, L., de Figueiredo, C.M.H., Mendonça, C.F.X.: Splitting number is NP-
complete. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517,
pp. 285–297. Springer, Heidelberg (1998)

9. Faria, L., de Figueiredo, C.M.H., de Mendonça Neto, C.F.X.: On the complexity of
the approximation of nonplanarity parameters for cubic graphs. Discrete Applied
Mathematics 141(1-3), 119–134 (2004)

10. Faria, L., de Figueiredo, C.M.H., Gravier, S., de Mendonça Neto, C.F.X., Stolfi, J.:
On maximum planar induced subgraphs. Discrete Applied Mathematics 154(13),
1774–1782 (2006)

11. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review 47, 629–705 (2005)

12. Kostochka, A., Stocker, C.: Graphs with maximum degree 5 are acyclically 7-
colorable. Ars Mathematica Contemporanea 4, 153–164 (2011)

13. Liebers, A.: Planarizing graphs – a survey and annotated bibliography. Journal of
Graph Algorithms and Applications 5(1), 1–74 (2001)

14. Liu, P.C., Geldmacher, R.C.: On the deletion of nonplanar edges of a graph. Cong.
Numer. 24, 727–738 (1979)

15. Skulrattanakulchai, S.: Acyclic colorings of subcubic graphs. Information Process-
ing Letters 92(4), 161–167 (2004)

16. Yannakakis, M.: Node and edge-deletion NP-complete problems. In: Proceedings
of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978),
pp. 253–264 (1978)

17. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10, 297–309 (1981)
18. Zhang, X.-D., Bylka, S.: Disjoint triangles of a cubic line graph. Graphs and Com-

binatorics 20, 275–280 (2004)

List Coloring in the Absence of a Linear Forest�

Jean-François Couturier1, Petr A. Golovach2,
Dieter Kratsch1, and Daniël Paulusma2

1 Laboratoire d’Informatique Théorique et Appliquée,
Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France

{couturier,kratsch}@univ-metz.fr
2 School of Engineering and Computing Sciences, Durham University,

Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
{petr.golovach,daniel.paulusma}@durham.ac.uk

Abstract. The k-Coloring problem is to decide whether a graph can
be colored with at most k colors such that no two adjacent vertices receive
the same color. The List k-Coloring problem requires in addition that
every vertex u must receive a color from some given set L(u) ⊆ {1, . . . , k}.
Let Pn denote the path on n vertices, and G + H and rH the disjoint
union of two graphs G and H and r copies of H , respectively. For any two
fixed integers k and r, we show that List k-Coloring can be solved in
polynomial time for graphs with no induced rP1 + P5, hereby extending
the result of Hoàng, Kamiński, Lozin, Sawada and Shu for graphs with
no induced P5. Our result is tight; we prove that for any graph H that is
a supergraph of P1 + P5 with at least 5 edges, already List 5-Coloring

is NP-complete for graphs with no induced H . We also show that List

k-Coloring is fixed parameter tractable in k + r on graphs with no
induced rP1 +P2, and that k-Coloring restricted to such graphs allows
a polynomial kernel when parameterized by k. Finally, we show that List

k-Coloring is fixed parameter tractable in k for graphs with no induced
P1 + P3.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by in-
tegers called colors such that no two adjacent vertices receive the same color.
The corresponding k-Coloring problem is to decide whether a graph can be
colored with at most k colors. Due to the fact that k-Coloring is NP-complete
for any fixed k ≥ 3, there has been considerable interest in studying its complex-
ity when restricted to certain graph classes. One of the most well-known results
in this respect is due to Grötschel, Lovász, and Schrijver [11] who show that k-
Coloring is polynomial-time solvable for perfect graphs. More information on
this classic result and on the general motivation, background and related work
on coloring problems restricted to special graph classes can be found in several
surveys [24, 26] on this topic.
� This work has been supported by ANR Blanc AGAPE (ANR-09-BLAN-0159-03)

and EPSRC (EP/G043434/1).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 119–130, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

120 J.-F. Couturier et al.

We continue the study of the computational complexity of the k-Coloring

problem and related problems, in particular List k-Coloring when restricted
to graph classes defined by one or more forbidden induced subgraphs. Such
problems have been studied in many papers by different groups of researchers [3–
7, 12, 15–19, 23, 27]. Before we summarize these results and explain our new
results, we first state the necessary terminology and notations.

Terminology. We only consider finite undirected graphs G = (V, E) without
loops and multiple edges. We sometimes denote the vertex set of G by VG. The
subgraph of G = (V, E) induced by U ⊆ V is denoted by G[U]. We refer to
Bondy and Murty [2] for any undefined graph terminology and to Downey and
Fellows [8] and Niedermeier [22] for a discussion on parameterized complexity.

The graph Pn denotes the path on n vertices. The disjoint union of two graphs
G and H is denoted G+H , and the disjoint union of r copies of G is denoted rG.
A linear forest is the disjoint union of a collection of paths. Let {H1, . . . , Hp} be
a set of graphs. We say that a graph G is (H1, . . . , Hp)-free if G has no induced
subgraph isomorphic to a graph in {H1, . . . , Hp}; if p = 1, we sometimes write
H1-free instead of (H1)-free.

A (vertex) coloring of a graph G = (V, E) is a mapping φ : V → {1, 2, . . .}
such that φ(u) �= φ(v) whenever uv ∈ E. Here, φ(u) is referred to as the color of
u. A k-coloring of G is a coloring φ of G with φ(V) ⊆ {1, . . . , k}. Here, we used
the notation φ(U) = {φ(u) | u ∈ U} for U ⊆ V . If G has a k-coloring, then G is
called k-colorable. Recall that the problem k-Coloring is to decide whether a
given graph admits a k-coloring. Here, k is fixed, i.e., not part of the input. If k
is part of the input then we denote the problem as Coloring. The optimization
version of this problem is to determine the chromatic number of a graph, i.e.,
the smallest k such that G has a k-coloring.

A list assignment of a graph G = (V, E) is a function L that assigns a list
L(u) of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for u ∈ V ,
then L is also called a k-list assignment. Equivalently, L is a k-list assignment
if |⋃u∈V L(u)| ≤ k. We say that a coloring φ : V → {1, 2, . . .} respects L if
φ(u) ∈ L(u) for all u ∈ V . For a fixed integer k, the List k-Coloring problem
has as input a graph G with a k-list assignment L and asks whether G has a
coloring that respects L. If |L(u)| = 1 for every vertex u of some subset W ⊆ V
and L(u) = {1, . . . , k} for u ∈ V \ W , then we obtain the k-Precoloring

Extension problem.

Related Work. Král’, Kratochv́ıl, Tuza and Woeginger [17] completely deter-
mined the computational complexity of Coloring for graph classes character-
ized by a forbidden induced subgraph and achieved the following dichotomy.

Theorem 1 ([17]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1 +P3 then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

Theorem 1 can be extended in various ways. One way of doing this is to consider
the computational complexity of Coloring for H-free graphs where H is a
family of two (or more) graphs. Some initial results have been obtained by Král’

List Coloring in the Absence of a Linear Forest 121

et al. [17], Schindl [25] and a number of authors studying the H-free graphs, in
which one of the two graphs in H is the triangle [5, 7, 15, 21]. Another way is
to apply parameterized complexity to establish a more subtle classification of
those problems being NP-complete. Finally, Theorem 1 can also be extended by
classifying the computational complexity of k-Coloring and other variants of
coloring for H-free graphs where k is a fixed integer and H is a fixed graph.
The complexity classifications in all three directions are far from being finished.
In this paper we consider the second and third direction. We focus on the case
when H is a linear forest. Below we justify this.

Kamiński and Lozin [15] showed that for any k ≥ 3, the k-Coloring problem
is NP-complete for the class of graphs of girth (the length of a shortest induced
cycle) at least p for any fixed p ≥ 3. Their result implies that for any k ≥ 3, the k-
Coloring problem is NP-complete for the class of H-free graphs if H contains
a cycle. Holyer [13] showed that 3-Coloring is NP-complete on line graphs.
Later, Leven and Galil [20] extended this result by showing that k-Coloring is
also NP-complete on line graphs for k ≥ 4. Because line graphs are claw-free, i.e.,
they have no induced K1,3, we find that for k ≥ 3, the k-Coloring problem is
NP-complete for the class of H-free graphs if H is a forest that contains a vertex
with degree at least 3. Hence, only the case in which H is a linear forest remains.

It is known that 4-Coloring is NP-complete for P8-free graphs [4] and that
6-Coloring is NP-complete for P7-free graphs [3]. On the contrary, Randerath
and Schiermeyer [23] showed that 3-Coloring can be solved in polynomial time
for P6-free graphs. A result which was generalized by Broersma et al. [3] who
showed that 3-Precoloring Extension can be solved in polynomial time for
P6-free graphs. Later, Broersma et al. [4] extended this result by showing that 3-
Precoloring Extension can be solved in polynomial time for H-free graphs if
H is a linear forest on at most 6 vertices. The proof methods of both papers [3, 4]
can directly be applied to show exactly the same results for List 3-Coloring.
For P5-free graphs, Hoàng et al. [12] could show a stronger result; note that
Coloring is NP-complete for P5-free graphs due to Theorem 1.

Theorem 2 ([12]). For any fixed integer k, the List k-Coloring problem can
be solved in polynomial time for P5-free graphs.

Our Results. The first aim of our paper is to generalize Theorem 2 as much
as possible. We prove that for any fixed integers k and r, the List k-Coloring

problem is polynomial-time solvable for (rP1 +P5)-free graphs. In order to prove
our result, we show that our input graphs have a dominating set of small size
should they be k-colorable. Hence, we search for such a dominating set. If we
find it, then we color its vertices in every possible way. Afterwards, we use the
technique of “separating the color lists of independent sets” of Hoáng et al. [12]
on each resulting instance. They successfully applied this technique for coloring
P5-free graphs, and our result for (rP1 +P5)-free graphs can be seen as a second
example of its usefulness. We present this technique in Section 2 in a more generic
way. In order to obtain our result for (rP1 + P5)-free graphs we have to prove
a number of additional structural results. This is done in Section 3. There, we
also show that our result is tight by proving that already List 5-Coloring is

122 J.-F. Couturier et al.

NP-complete for the class of H-free graphs whenever H has at least 5 edges and
contains P1 + P5 as a subgraph.

The second aim of our paper is to initiate a parameterized complexity study
for the k-Coloring and List k-Coloring problem restricted to H-free graphs,
when H is some fixed linear forest. In Section 4 we prove the following three
results: (i) List k-Coloring is fixed parameter tractable in k + r for (rP1 +
P2)-free graphs; (ii) k-Coloring restricted to (rP1 + P2)-free graphs allows a
polynomial kernel when parameterized by k; and (iii) List k-Coloring is fixed
parameter tractable in k for (P1 + P3)-free graphs.

2 A Generic Approach for Coloring H-Free Graphs

We generalize the technique Hoáng et al. [12] used to prove Theorem 2.
Given a graph G = (V, E) with a k-list assignment L, we use the following

terminology. Two adjacent vertices u and v are essential if L(u) ∩ L(v) �= ∅;
otherwise u and v are non-essential. We observe that u is an essential neighbor
of v if and only if v is an essential neighbor of u. Two disjoint sets of vertices
are separated for L if no vertex in one of them has an essential neighbor in the
other. Let L be a set of k-list assignments of G with L′(u) ⊆ L(u) for all L′ ∈ L
and u ∈ V . Then L and L are compatible if the following holds: G has a coloring
respecting L′ for some L′ ∈ L if G has a coloring respecting L. Note that the
reverse implication holds by the definition of L.

Assigning an admissible color to a vertex u does not influence the choice of
admissible colors for its non-essential neighbors. Hence, in our coloring algorithm,
we would like to branch in such a way that we obtain a compatible set of list
assignments for which disjoint sets of vertices become separated. Then we can
apply the algorithm recursively on smaller graphs induced by these disjoint sets.
This idea has been applied more often but usually leads to a huge case analysis.
However, Hoáng et al. [12] developed an elegant technique, which works well for
P5-free graphs. We present it in a more generic way below.

A subset D ⊆ V is a dominating set of G if every vertex in G belongs to D or
is adjacent to a vertex of D. In that case we also say that G[D] is dominating.
Suppose that we have ordered the vertices of D as d1, . . . , dp. Then we can define
(possibly empty) sets Fi for i = 1, . . . , p as follows. Let F1 be the set of vertices
in V \D adjacent to d1, and for i = 2, . . . , p, let Fi be the set of vertices in V \D
adjacent to di but not to any dh with h ≤ i − 1. The sets F1, . . . , Fp are called
fixed sets for D. By this definition and because D is dominating, every vertex in
V \ D belongs to exactly one fixed set Fi. We note, however, that D can have
several collections of fixed sets, depending on the ordering of the vertices of D.
A subset X ⊆ V is independent if there is no edge between any two vertices of
X . We call a graph H a dominator-separator graph if every connected H-free
graph G = (V, E) satisfies the following two properties.

(i) If G is k-colorable for some integer k ≥ 1, then G has a dominating set D of
at most f(k) vertices, where f is a function that only depends on k.

List Coloring in the Absence of a Linear Forest 123

(ii) There exists a polynomial-time algorithm that on input G, two independent
sets X and Y that are subsets of two different fixed sets of a dominating set
of G and a k-list assignment L of G outputs a set L of k-list assignments of
G with L′(u) ⊆ L(u) for all L′ ∈ L and all u ∈ V , such that

1. L is compatible with L;
2. |L| = O(h(k)ng(k)) for some functions h(k) and g(k) that only depend

on k;
3. X and Y are separated for every L′ ∈ L.

By a straightforward translation of the proof of Hoàng et al. [12] one finds that for
P5-free graphs, f(k) = k satisfies property (i), whereas h(k) = kk and g(k) = k
satisfy property (ii). Hence, P5 is a dominator-separator. The following theorem
generalizes their approach. Its proof is a reformulation of their proof in terms of
dominator-separator graphs. As such, we omit it from our paper.

Theorem 3. Let H be a dominator-separator graph, and let k be a fixed integer.
Then List k-Coloring can be solved in polynomial time for H-free graphs.

3 Coloring (rP1 + P5)-Free Graphs

In order to apply Theorem 3 we must prove that rP1 + P5 is a dominator-
separator graph for any fixed r. We start with the following more general lemma
that we use in Section 4 as well. We omit its proof.

Lemma 1. Let G be an (rP1 +P�)-free graph for integers r and
. If G contains
an induced P�, then G contains a dominating induced sP1 + P� for some s < r.

A vertex subset K in a graph G is called a clique of G if there is an edge between
any two vertices of K. Just as Hoáng et al. [12], we need the following result of
Bacsó and Tuza [1] for the class of connected P5-free graphs.

Theorem 4 ([1]). Every connected P5-free graph G has a dominating P3 or a
dominating clique.

We are now ready to show the following two lemmas which together show that
rP1 + P5 is a dominator-separator for any fixed integer r.

Lemma 2. Every connected (rP1 + P5)-free graph satisfies property (i).

Proof. Let G be a connected (rP1 + P5)-free graph that is k-colorable for some
integer k ≥ 1. We show that G has a dominating set of size at most max{3, k, r+
4}. Then we may define f(k) = max{3, k, r+ 4} for all k ≥ 1. This function only
depends on k, because r is fixed. If G is P5-free, then G has a dominating P3

or a dominating clique due to Theorem 4. Because G is k-colorable, any clique
in G has at most k vertices. Hence we find a dominating set of size 3 or of size
at most k. If G is not P5-free, then by Lemma 1, G has a dominating induced
sP1 +P5 for some s < r. Hence, we find a dominating set of size s+5 ≤ r+4. ��

124 J.-F. Couturier et al.

Lemma 3. Every connected (rP1 + P5)-free graph satisfies property (ii).

Proof sketch. Let G = (V, E) be a connected (rP1 + P5)-free graph on n vertices
with k-list assignment L. Let D = {d1, . . . , dp} be a dominating set of G, and
let F1, . . . , Fp be the collection of fixed sets for D. For some 1 ≤ i < j ≤ n, let
X ⊆ Fi and Y ⊆ Fj be two independent sets of G. Note that i < j implies that
di is not adjacent to any vertex in Fj , whereas dj might be adjacent to one or
more vertices of Fi.

Let the set C consist of every color c for which there exist two adjacent vertices
x ∈ X and y ∈ Y such that c ∈ L(x) ∩ L(y). By definition, such x and y are
essential neighbors of each other. If C = ∅, then X and Y are separated.

Suppose that C �= ∅. We define a set X ′ as the set of all vertices in X that
have an essential neighbor in Y , and a set Y ′ as the set of all vertices in Y that
have an essential neighbor in X ′. Because C �= ∅, both X ′ and Y ′ are nonempty.
Our goal is to reduce the size of X ′. The reason is that when X ′ becomes empty,
then C′ will be empty, and consequently, X and Y will be separated.

We will use the following claim, the proof of which we omit. We say that
x ∈ X ′ is maximal if there is no vertex in X ′ that has more neighbors in Y ′ than
x has. We say that a vertex z ∈ X ′ is an associate of x if at least |Y ′| − r + 1
vertices in Y ′ are adjacent to x or z.

Claim 1. Let x ∈ X ′ be maximal. Then either x is adjacent to all vertices of
Y ′, or every vertex in X ′ that is adjacent to a non-neighbor of x in Y ′ is an
associate of x.

We are now ready to describe our algorithm that we use to prove property (ii).
Recall that our goal is to reduce the size of X ′. Hence, we branch on vertices of
X ′. Because X ′ may have a large size, we cannot branch by arbitrarily assigning
colors to vertices of X ′. Therefore, we do as follows as long as X ′ �= ∅.

Determine a maximal vertex x ∈ X ′ and start to branch on x.
Our algorithm either assigns to x a specific color c from C, creating a number of
branches, or no color from C at all, yet another branch. In a branch of the first
type we cannot only remove x from X ′ but we will also show that we may remove
c from C; this is crucial for the running time analysis which we do afterwards. If
x is not adjacent to every vertex in Y ′, then we may need to refine the branching
by involving the associates of x. In a branch of the second type we remove every
color in C from the list of x. Consequently, x can be removed from X ′ as desired
(but we might not have decreased the size of C in this case).

The procedure Reduce-to-empty-set explains our approach in detail; see
Pseudocode 2. Here, updating a list assignment after a vertex gets a color means
removing this color from the list of every neighbor of that vertex. Further, for
x ∈ X ′, the set Ax

c denotes the set of associates of x that have color c in their
list and that are adjacent to a vertex in Y ′ that is no neighbor of x. Finally,
we note that at some places in this procedure we could also reduce the set Y ′.
However, for simplicity, we refrain from doing this, except in line 14 where it is
necessary for the correctness.

List Coloring in the Absence of a Linear Forest 125

We will use the Reduce-to-empty-set procedure as a subroutine inside our
separation algorithm called Separator; see Pseudocode 1. The output of
Separator is a set L of k-list assignments of G; at the start we set L = ∅.

Separator

input : sets X and Y
output : a set L of k-list assignments

1. determine the sets X ′, Y ′ and C
2. set L := ∅
3. Reduce-to-empty-set(X ′, Y ′, C,L)
4. return L

Pseudocode 1. Separating the two sets X and Y

Reduce-to-empty-set(X ′, Y ′, C,L)

1. while X ′ �= ∅
2. determine a maximal vertex x ∈ X ′

3. for every color c ∈ C that is in the list of x do
4. color x by c and update the list assignment
5. determine the set Ax

c

6. if Ax
c = ∅ then

7. Reduce-to-empty-set(X ′ \ {x}, Y ′, C \ {c},L)
8. else
9. for every z ∈ Ax

c do
10. color z by c and update the list assignment
11. determine the set Y ′′ ⊆ Y ′ of vertices that have c in their list
12. for every coloring φ of Y ′′ that respects the lists do
13. color Y ′′ according to φ and update the list assignment
14. Reduce-to-empty-set(X ′ \ {x, z}, Y ′ \ Y ′′, C′ \ {c},L)
15. end for
16. remove c from the lists of every vertex in Ax

c

17. Reduce-to-empty-set(X ′ \ {x}, Y ′, C′ \ {c},L)
18. end for
19. end if
20. remove every color in C from the list of x
21. Reduce-to-empty-set (X ′ \ {x}, Y ′, C,L)
22. end for
23. end while
24. put the obtained list assignment in L

Pseudocode 2. Reducing the set X ′ to the empty set

126 J.-F. Couturier et al.

Having completed the overall description of our branching algorithm we now
prove that G satisfies property (ii).

From the description of the procedure Reduce-to-empty-set, we conclude
that each time we process a maximal vertex x ∈ X ′, the size of X ′ reduces by
at least one vertex. Hence, this procedure will always terminate, and when it
does X ′ will be empty. Consequently, our algorithm Separator will terminate
as well. When it does, it will return as output a set L of k-list assignments of
G. The sets X and Y are separated for each k-list assignment of L, because X ′,
and consequently, C are empty for each such list assignment. In other words,
condition 3 of property (ii) is satisfied. Below we show that conditions 1 and 2
are also satisfied.

The procedure Reduce-to-empty-set only reduces lists of vertices of G. As
a consequence, every list assignment L′ ∈ L has the property that L′(u) ⊆ L(u)
for all u ∈ V . We will show that L and L are compatible.

In order to show this suppose that G has a coloring φ respecting L. Let x ∈ X ′

be the maximal vertex that is under consideration. We show that in the search
tree that represents our recursive procedure, there exist a branch that we can
follow in order to prove the existence of a list assignment L′ ∈ L that is respected
by φ. The line numbers in our proof refer to lines in the Reduce-to-empty-set
procedure.

If φ(x) ∈ C, then we follow the branch that assigns color c to x in one of the
executions of line 4. Afterwards, we may safely update the list assignment.

If Ax
c = ∅, then Claim 1 tells us that there is no vertex in X ′ left that has

color c in its list and that is adjacent to a vertex in Y ′ with c in its list; if there
were such vertices they would have been associates of x. Hence, we may remove
c from C and x from X ′, as is done in line 7.

If Ax
c �= ∅, then there are two cases to consider.

Case 1. At least one vertex z ∈ Ax
c has color φ(z) = c.

We will detect this case in one of the execution of line 10. If after updating the
list assignment there is still a set Y ′′ of vertices in Y ′ left, then we will consider
the coloring according to φ in one of the executions of line 13. We follow the
corresponding branch that colors the vertices of Y ′′ according to φ. Afterwards,
we may remove the vertices of Y ′′ from Y ′ as is done in line 14. Consequently,
the lists of the remaining vertices of Y ′ do not contain c anymore. Hence, we may
remove c from C in line 14. Because x and z received a color, we may remove x
and z from X ′; this is done in line 14 as well.

Case 2. None of the vertices in Ax
c has color c according to φ.

In this case we follow the branch that removes c from the lists of every vertices
in Ax

c ; see line 16. We claim that c is not in C anymore. This can be seen as
follows. In order to obtain a contradiction suppose that c ∈ C. Then there are
two adjacent vertices x∗ ∈ X ′ and y∗ ∈ Y ′ that each have c in their list. Because
x received color c and we removed c from the lists of its neighbors, we find that
y∗ is no neighbor of x. However, then x∗ must be in Ax

c by the definition of this
set and Claim 1. This is not possible either, because we removed c from the list
of every vertex in Ax

c . We conclude that c /∈ C. Hence, we may remove c from C

List Coloring in the Absence of a Linear Forest 127

in line 17, and as before, we may also remove x from X ′, which is done in line
17 as well.

Finally, we consider the case in which φ(x) /∈ C. In this case, we follow the
branch that removes every color in C from the list of x; see line 20. Afterwards,
we may remove x from X ′, as is done in line 21. We conclude that for every
maximal vertex x, there exists a branch that assigns color φ(x) to x and that
the adjustments in the sets X ′, Y ′ and C in lines 7, 14, 17 and 21 are permitted.
Following these branches leads to a k-list assignment L′ ∈ L that is respected
by φ, as desired. This completes our proof of condition 1 of property (ii).

We are left to prove condition 2 of property (ii), namely that our algo-
rithm Separator runs in polynomial time and that |L| = O(h(k)ng(k)) for
some functions h(k) and g(k) that only depend on k. We note that the sets
X ′, Y ′ and C can be computed in polynomial time. By the construction of the
Reduce-to-empty procedure, each k-list assignment in L is the output of ex-
actly one leaf of the search tree T . This means that the number of leaves of T
is an upper bound for the number of the k-list assignments of L. Also, finding
a maximal vertex, assigning it a color and updating its list and the lists of its
neighbors takes polynomial time. Hence our algorithm runs in polynomial-time
if the number of leaves in T is O(h(k)ng(k)) for some functions h(k) and g(k)
that only depend on k.

Let
 be a leaf of T . Then there exists a sequence of vertices of X ′, on which
we branched in order to arrive at
. Each of these vertices was a maximal vertex
at the moment it was considered. We call these vertices the
-vertices. The
procedure Reduce-to-Empty only assigns a color from C to a vertex in X ′ if
it can remove this color from C afterwards. Maintaining this property has the
following two consequences. First, the number of
-vertices that received a color
from C is at most |C|; all other
-vertices got their list reduced by removing the
colors of C. Second, no two
-vertices received the same color from C. Recall
that every vertex in every nonempty set Ax

c determined in line 5 is an associate
of the minimal vertex x under consideration. Then, by definition, every set Y ′′

determined in line 11 has size at most r − 1. For a leaf
 of T , we let C� denote
the set of colors from C used on the
-vertices. Using the above observations, we
can determine that the number of leaves of T and consequently the number of
k-list assignments of L is at most 2k · nk · k! · nk · rknrk · kr. Hence, we can set
h(k) = 2kk!rkkr and g(k) = 2k + rk. This completes the proof of Lemma 3. ��
Due to Lemmas 2 and 3, the graph rP1 + P5 is a dominator-separator for every
fixed integer r. Hence we can apply Theorem 3 and obtain the main result of
this section.

Theorem 5. For any fixed integers k and r, the List k-Coloring problem can
be solved in polynomial time for (rP1 + P5)-free graphs.

This theorem is best possible in the sense that List k-Coloring becomes NP-
complete for some integer k on H-free graphs, whenever H is a supergraph of
P1 +P5 with at least 5 edges. Theorem 6 shows this for k = 5; we omit its proof.

128 J.-F. Couturier et al.

Theorem 6. Let H be a supergraph of P1 +P5 with at least 5 edges. Then List

5-Coloring is NP-complete for H-free graphs.

4 Parameterized Complexity Results

By Theorem 5, List k-Coloring is in XP for (rP1 + P5)-free graphs when k is
the parameter and r is fixed. In this section we show that List k-Coloring is
in FPT for graph classes defined by taking a smaller linear forest as the forbidden
induced subgraph.

First we consider (rP1 + P2)-free graphs. Theorem 1 tells us that already
Coloring is NP-complete for (rP1 + P2)-free graphs whenever r ≥ 2. For a
graph G = (V, E), we let N(u) = {v ∈ V | uv ∈ E} denote the set of neighbors
of a vertex u ∈ V , N(S) = {v ∈ V \ S | uv ∈ E for some u ∈ S} denotes the set
of neighbors of a set S ⊆ V , and N [S] = N(S) ∪ S.

Let G be a graph with a k-list assignment L. Let G = {G1, . . . , Gp} be a set
of graphs, where each Gi has a (k − 1)-list assignment Li. Then we say that G
and G are (k − 1)-compatible if the following holds: G has a coloring respecting
L if and only if there exists a graph Gi ∈ G that has a coloring respecting Li.

We need the following two lemmas; we omit their proofs.

Lemma 4. Let k ≥ 2 and r ≥ 1. Let G = (V, E) be an (rP1 + P2)-free graph
on n vertices with a k-list assignment L. If G has a maximal independent set X
with at least (r − 1)k + 1 vertices, then it is possible to find in O(k2n) time a
(k − 1)-compatible set G that consists of at most k induced subgraphs of G.

Lemma 5. Let k ≥ 2 and r ≥ 1. Let G be an (rP1 + P2)-free graph with
n ≥ (r + 1)k−1((r − 1)k + 1) + (r + 1) (r+1)k−1−1

r vertices and m edges. Then
either G has a clique of size k + 1 or a maximal independent set X of size at
least (r − 1)k + 1. Moreover, it is possible to find such a clique or independent
set in O(k(n + m)) time.

Now we are ready to prove the following result.

Theorem 7. The List k-Coloring problem is in FPT for (rP1 + P2)-free
graphs when parameterized by k and r.

Proof. Let G be an (rP1 + P2)-free graph on n vertices that has a k-list as-
signment L. If k ≤ 2, then we can solve the problem in polynomial time. If
n < f(k, r) = (r + 1)k−1((r − 1)k + 1) + (r + 1) (r+1)k−1−1

r , then we can solve
it in O(f(k, r)k) time by brute force. Otherwise, by Lemma 5, we either find a
clique of size k + 1 or a maximal independent set of size at least (r − 1)k + 1
in O(k(n + m)) time. In the first case, G has no coloring respecting L. In the
second case, we construct in O(k2n) time a (k − 1)-compatible set G of at most
k subgraphs of G by using Lemma 4. We branch on each of them and repeat
the same steps. Since the depth of the search tree is bounded by k, the desired
result follows. ��

List Coloring in the Absence of a Linear Forest 129

If we only choose k as the parameter, then we can improve our result for the
k-Coloring problem as shown in Theorem 8, the proof of which we omit. Here,
we assume that r ≥ 2 because Coloring can be solved in polynomial time for
(rP1 + P2)-free graphs with r ≤ 1, due to Theorem 1.

Theorem 8. For any fixed integer r ≥ 2, the k-Coloring problem restricted
to (rP1 +P2)-free graphs has a kernel of size k2(r−1) when parameterized by k.

We now consider (P1 + P3)-free graphs. Recall that Coloring is polynomial-
time solvable for (P1 + P3)-free graphs due to Theorem 1. However, Jansen and
Scheffler [14] showed that List k-Coloring is NP-complete when k is part of
the input, already for complete bipartite graphs which form a subclass of the
class of (P1 + P3)-free graphs. We show the following result, the proof of which
we omit.

Theorem 9. The List k-Coloring problem is in FPT for (P1+P3)-free graphs
when parameterized by k.

5 Future Work

Theorem 5 implies that for any fixed integer k and any fixed graph H on at most
5 vertices, List k-Coloring is polynomially solvable, except when H = P2+P3.

1. Is List k-Coloring polynomial-time solvable on (P2 + P3)-free graphs for
any fixed k?

Due to the aforementioned polynomial-time result on List 3-Coloring for sP3-
free graphs [4], the first open case is k = 4. We note that the same question is
also open with respect to k-Coloring. For this problem, the first open case is
k = 5, as it is known that 4-Coloring is polynomial-time solvable on (P2 +P3)-
free graphs [10]. A possible solution strategy would be to prove that P2 + P3 is
a dominator-separator graph but this seems to be difficult.

Jansen and Scheffler [14] showed that List k-Coloring is in FPT for P4-
free graphs when parameterized by k. This result together with Theorems 7
and 9 implies that the two smallest open cases parameterized by k are the cases
H = 2P2 and H = 2P1 + P3.

2. Is List k-Coloring parameterized by k in FPT for 2P2-free graphs?
3. Is List k-Coloring parameterized by k in FPT for (2P1 + P3)-free graphs?

References

1. Bacsó, G., Tuza, Z.: Dominating cliques in P5-free graphs. Periodica Mathematica
Hungarica 21, 303–308 (1990)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer Graduate Texts in Mathe-
matics, vol. 244 (2008)

3. Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity Re-
sults on Coloring Pk-Free Graphs. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)

130 J.-F. Couturier et al.

4. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity
status of coloring graphs without a fixed induced linear forest (manuscript)

5. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Determining the chromatic
number of triangle-free 2P3-free graphs in polynomial time (manuscript)

6. Bruce, D., Hoàng, C.T., Sawada, J.: A Certifying Algorithm for 3-Colorability of
P5-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 594–604. Springer, Heidelberg (2009)

7. Dabrowski, K., Lozin, V., Raman, R., Ries, B.: Colouring Vertices of Triangle-Free
Graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 184–195. Springer,
Heidelberg (2010)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

10. Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-free graphs when H is small
(manuscript)

11. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
Ann. Discrete Math., Topics on Perfect Graphs 21, 325–356 (1984)

12. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability
of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

13. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720
(1981)

14. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl.
Math. 75, 135–155 (1997)

15. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or
long cycles. Contributions to Discrete Math. 2, 61–66 (2007)

16. Kamiński, M., Lozin, V.V.: Vertex 3-colorability of Claw-free Graphs. Algorithmic
Operations Research 21 (2007)

17. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs
without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG
2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

18. Kratochv́ıl, J.: Precoloring extension with fixed color bound. Acta Math. Univ.
Comen. 62, 139–153 (1993)

19. Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs
without long induced paths. Theoret. Comput. Sci. 389, 330–335 (2007)

20. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular
graphs. Journal of Algorithms 4, 35–44 (1983)

21. Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem
for triangle-free graphs. Discrete Math. 162, 313–317 (1996)

22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press (2006)

23. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P6-free graphs. Discrete
Appl. Math. 136, 299–313 (2004)

24. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a sur-
vey. Graphs Combin. 20, 1–40 (2004)

25. Schindl, D.: Some new hereditary classes where graph coloring remains NP-hard.
Discrete Math. 295, 197–202 (2005)

26. Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph
Theory 17, 161–228 (1997)

27. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced
paths. Acta Cybernet. 15, 107–117 (2001)

Parameterized Complexity of Eulerian
Deletion Problems

Marek Cygan1, Dániel Marx2, Marcin Pilipczuk1,
Michał Pilipczuk1, and Ildikó Schlotter3,�

1 Institute of Informatics, University of Warsaw, Poland��

{cygan,malcin}@mimuw.edu.pl, mp248287@students.mimuw.edu.pl
2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany

dmarx@cs.bme.hu
3 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics, Hungary

ildi@cs.bme.hu

Abstract. We study a family of problems where the goal is to make a graph
Eulerian by a minimum number of deletions. We completely classify the param-
eterized complexity of various versions: undirected or directed graphs, vertex or
edge deletions, with or without the requirement of connectivity, etc. Of particular
interest is a randomized FPT algorithm for making an undirected graph Eulerian
by deleting the minimum number of edges.

1 Introduction

An undirected graph is Eulerian if it is connected and every vertex has even degree; a
directed graph is Eulerian if it is strongly connected and every vertex is balanced (i.e.,
the indegree equals the outdegree). The class of Eulerian graphs is a well-studied and
classical notion in the graph theory. We investigate several algorithmic problems related
to the question of how to make a graph Eulerian. We focus on deletion problems, where
either vertices or edges can be deleted from the input graph to make it Eulerian, using as
few deletions as possible. What makes these problems interesting is the interplay of two
different type of constraints: each vertex locally prescribes the constraint that it has to
be even/balanced, while retaining connectivity is a global requirement. For comparison,
we also investigate the variant of the problem where we have only the local constraints
(i.e., the task is to delete the minimum number of edges or nodes to make every vertex
even/balanced). As many of the studied problems turn out to be NP-hard, we apply the
framework of parameterized complexity to get a more detailed insight.

The investigation of these problems was initiated by Cai and Yang [9] who presented
parameterized results for some cases. We complement their work by answering here
several open questions raised in [9]. Another motivation for our work comes from an

� Supported by the Hungarian National Research Fund (grant OTKA 67651), and by the Euro-
pean Union and the European Social Fund (grant TÁMOP 4.2.1./B-09/1/KMR-2010-0003).

�� Authors from the University of Warsaw are partially supported by the Polish Ministry of Sci-
ence grant N206 567140 and Foundation for Polish Science.

P. Kolman and J. Kratochvı́l (Eds.): WG 2011, LNCS 6986, pp. 131–142, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

132 M. Cygan et al.

observation of Cechlárová and Schlotter [10]: computing the deficiency for a certain
type of housing market is equivalent to finding the minimum number of arcs whose
deletion makes every strongly connected component of the graph balanced. While we
are not able to determine the parameterized complexity of this problem, our results shed
light on the complexity of several related problems.

Related Work. Subgraph problems have been widely studied in the literature. To name
a few examples, Lewis and Yannakakis [20] investigated the complexity of the vertex-
deletion problem for hereditary properties, Alon et al. [2] examined edge-deletion prob-
lems for monotone properties, while Natanzon et al. [25] and Burzyn et al. [6] studied
the classical complexity of edge modification problems for various graph classes.

Subgraph problems have also been looked at from the parameterized perspective.
The most extensively studied variants are the vertex-deletion problems for hereditary
properties: the results by Cai [8], and Khot and Raman [17], yield a complete charac-
terization of the fixed-parameter tractable cases. Apart from hereditary properties, FPT
algorithms are known for vertex-deletion problems where the task is to obtain a regular
graph [24], a chordal graph [22], a grid [12], etc. Parameterized hardness results have
been obtained in numerous cases as well [21,23]. Recently, researchers focused on the
issue of kernelization, yielding both positive [4,16,26] and negative results [19].

There is much less known about directed graphs. Raman and Sikdar [29] investigated
the parameterized complexity of hereditary vertex-deletion problems in digraphs, while
Raman and Saurabh [28] examined feedback set problems in tournaments. The FPT
algorithm by Chen et al. for finding a feedback vertex set in a directed graph [11]
resolved a long-standing open question.

Work related to the class of Eulerian graphs mainly concentrated on the extension
problem, where the task is to add a minimum number of edges or arcs in order to make
the given graph Eulerian. FPT algorithms were given for various settings by Dorn et
al. [13] and by Sorge [30]. Eulerian deletion problems were studied by Cai and Yang [9].

Our Contribution. To settle the classical complexity of the examined problems, first
we observe (Thms. 1 and 2) that classical results imply polynomial-time algorithms
for the edge-deletion problems where the task is to make the graph even/balanced: in
the undirected case, this is essentially a T -join problem, while the directed case can
be reduced to a flow problem. These observations answer a question raised by Cai
and Yang [9], who observed that the analogous vertex-deletion problems are NP-hard.
Moreover, the aforementioned algorithms are used as subroutines in our FPT results.

By contrast to the polynomial time algorithms, we show that the seemingly similar
edge- (or arc-) deletion problems where we aim for an Eulerian graph are NP-hard, even
in the extremely restricted case when the input is a cubic planar graph and the number
of deletions can be arbitrary (Theorem 3). We investigate both the undirected and the
directed cases of Eulerian edge-deletion problem thoroughly from the parameterized
point of view: we present a fixed-parameter tractable algorithm for both cases where
the parameter is the number of deletions allowed (Theorem 8), and prove that these
problems do not admit a polynomial-size kernel unless NP ⊆ coNP/poly (Theorem 9),
which is known to imply a collapse of the polynomial hierarchy to its third level [31,7].
The FPT results use a novel argument that might be of independent interest. Intuitively,

Parameterized Complexity of Eulerian Deletion Problems 133

Table 1. Summary of the main results. Parameterized results only appear when the corresponding
problem is NP-hard; the parameter considered is the number of deletions allowed.

Undirected Undirected Directed Directed
even Eulerian balanced Eulerian

Vertex W[1]-hard W[1]-hard W[1]-hard W[1]-hard
deletion: [9] [9] Thm. 15 Thm. 15

Edge P FPT, no poly kernel P FPT, no poly kernel
deletion: Thm. 1 Thms. 3, 8, 9 Thm. 2 Thms. 3, 8, 9

we need to find a solution S to a T -join problem and a witness (disjoint from S) certify-
ing that the graph remains connected after the removal of S. Using a random colouring,
we partition the edges into two types: each edge can contribute either to the solution or
to the witness of the solution. This partition ensures that the solution and the witness
are disjoint. While the use of random colourings is a standard technique for finding a
solution consisting of disjoint objects [3], we use this technique to separate the solution
from its proof of feasibility.

The undirected vertex-deletion problems, where the task is to obtain an Eulerian or an
even graph, were already handled by Cai and Yang [9] who proved their W[1]-hardness.
We complemented these results by showing W[1]-hardness for the directed cases as well
in Theorem 15. Additionally, we also focus on a slight modification of the node-deletion
problems where certain forbidden vertices are not allowed to be deleted. Theorem 16
shows that each of the four node-deletion problems remains W[1]-hard, even if we are
only allowed to delete vertices of degree at most 4. This contrasts the easy FPT algorithm
applicable if the parameter is not only the number of deletions but also the maximum
degree of the graph (this algorithm will be included in the full version of the paper).

Table 1 shows a summary of our main results.

Organization of the Paper. Section 2 describes our notation, and provides basic
concepts of parameterized complexity. Section 3 discusses polynomial-time solvable
edge-deletion problems. We deal with the NP-hard Eulerian edge-deletion problems
in Section 4, first covering the issue of NP-completeness, and then fixed-parameter
tractability and kernelization in Sections 4.1 and 4.2. Node-deletion problems are dis-
cussed in Section 5. We summarize our results and draw conclusions in Section 6.

2 Notation and Preliminaries

Given a graph G, let V (G) denote its vertex set and E(G) denote its edge set (or, in the
directed case, its arc set). The degree of a vertex v in an undirected graph G is denoted
by dG(v); we say that v is even, if dG(v) is even. For a vertex v in a directed graph G,
we denote by din

G (v) and dout
G (v) its indegree and its outdegree, respectively. We say

that v is balanced, if din
G (v) = dout

G (v). We define the degree of v in G (where G is
directed), as dG(v) = din

G (v) + dout
G (v). If G is clear from the context, we might omit

the subscript. A directed graph is weakly connected if the underlying undirected graph
is connected. An even (balanced) graph is an undirected (directed) graph where each

134 M. Cygan et al.

vertex is even (balanced). An undirected Eulerian graph is a connected even graph, and
a directed Eulerian graph is a strongly connected balanced graph.1

Given a path P in a (directed or undirected) graph, the internal vertices of P are
the vertices lying on P except for the two end-vertices. If dG(v) = 2 holds (meaning
din

G (v) = dout
G (v) = 1 in the directed case) for each internal vertex v of P , then we say

that the path P is an unattached path. In a directed graph, a pair of twin arcs is two arcs
(a, b) and (b, a).

Given a set X of vertices, edges, or arcs in a graph G, let G \ X denote the graph
obtained by deleting X from G. When X has only one element x, we might also write
G \ x instead of G \ {x}.

Parameterized Complexity. In the parameterized complexity setting, an instance
comes with an integer parameter k — formally, a parameterized problem Q is a sub-
set of Σ∗ × N for some finite alphabet Σ. We say that the problem is fixed param-
eter tractable (FPT) if there exists an algorithm solving any instance (x, k) in time
f(k)poly(|x|) for some (usually exponential) computable function f . It is known that
a problem is FPT iff it is kernelizable: a kernelization algorithm for a problem Q takes
an instance (x, k) and in time polynomial in |x| + k produces an equivalent instance
(x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such that |x′| + k′ ≤ g(k) for some com-
putable function g. The function g is the size of the kernel, and if it is polynomial, we
say that Q admits a polynomial kernel.

3 Polynomial-Time Solvable Cases

First, we give a simple polynomial time algorithm for the following problem:

UNDIRECTED EVEN EDGE DELETION Parameter: k
Input: An undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges in G such that G \S is even?

It turns out that this problem is strongly connected to the concept of a T -join. If we
define T to be the set of vertices having odd degree, then UNDIRECTED EVEN EDGE

DELETION is equivalent with the following classical problem of finding a T -join of
minimum size:

MINIMUM T-JOIN

Input: A graph G = (V, E) and a set T ⊆ V of even size.
Task: Find a minimum T -join, i.e., a set S ⊆ E of minimum size such that T is
exactly the set of vertices of odd degree in the graph H = (V, S).

Since MINIMUM T-JOIN can be solved in cubic time by the algorithm of Edmonds
and Johnson [14], we obtain the following consequence:

Theorem 1. UNDIRECTED EVEN EDGE DELETION can be solved in O(n3) time for
an n-vertex graph.

1 Strictly speaking, the usual definition of being Eulerian requires only that the graph is con-
nected after removing the isolated vertices. However, we feel that requiring connectivity in-
stead leads to more natural and fundamental problems.

Parameterized Complexity of Eulerian Deletion Problems 135

Now we turn our attention to the directed version of the problem:

DIRECTED BALANCED EDGE DELETION Parameter: k
Input: A directed graph G and an integer k.
Question: Does there exist a set S of at most k arcs in G such that G\S is balanced?

This problem can be formulated as a minimum cost flow problem with unit costs as
follows. We create a digraph G′ by taking G and adding two vertices s,t (source and
sink). Each edge of E(G) has unit capacity and unit cost. For each vertex v ∈ V (G)
such that din(v) < dout(v) we add to G′ an arc (s, v) of capacity dout(v) − din(v)
and cost zero. Similarly, for each vertex v ∈ V (G) such that din(v) > dout(v) we add
to G′ an arc (v, t) of capacity din(v) − dout(v) and cost zero. Let f∗ denote the total
capacity of the added arcs (s, v). In a solvable instance we know that f∗ ≤ k.

It is straightforward to see that a flow of size f∗ and cost k corresponds to a set S
of k arcs for which G \ S balanced, and vice versa. Thus, in order to find a solution of
minimum size it suffices to find a minimum cost flow of size f∗. As f∗ ≤ k and each
arc has unit cost, this can be done in O(nm log n log log k) time [1], where n = |V (G)|
and m = |E(G)|. Note that the above argument also handles an annotated case, where
we require that S ⊆ Ea for a set Ea ⊆ E given in the input, as we can put zero
capacities on E \ Ea. This yields the following:

Theorem 2. DIRECTED BALANCED EDGE DELETION can be solved in
O(nm log n log log k) time for an input graph with n vertices and m edges, even in
an annotated case where some edges are forbidden to delete.

4 Eulerian Edge-Deletion Problems

In this section we examine the following problems:

UNDIRECTED EULERIAN EDGE DELETION Parameter: k
Input: A connected undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges of G such that G \ S is
Eulerian, i.e., even and connected?

DIRECTED EULERIAN EDGE DELETION Parameter: k
Input: A strongly connected directed graph G and an integer k.
Question: Does there exist a set S of at most k arcs of G such that G\S is Eulerian,
i.e., balanced and strongly connected?

The undirected problem can be easily seen to be NP-hard by observing that a cubic
graph contains a Hamiltonian cycle if and only if it can be made Eulerian by edge
deletions. Indeed, if deleting a set of edges from a cubic graph G results in an Eulerian
graph G′, then each vertex in G′ must have degree 2, so G′ must be a Hamiltonian
cycle of G. Since the HAMILTONIAN CYCLE problem restricted to cubic planar graphs
is NP-hard [15] the result follows. The directed version can be treated in a similar way
using NP-hardness from [27].

136 M. Cygan et al.

Theorem 3. The UNDIRECTED and DIRECTED EULERIAN EDGE DELETION prob-
lems are NP-hard, even when restricted to inputs (G, k) where G is a planar (directed)
graph with maximum degree at most 3, and k = |E(G)|.
In Section 4.1, we show that both versions of the problem are FPT and can be solved
in time 2O(k log k)nO(1). The algorithm is based on a novel randomized selection argu-
ment. In Section 4.2, we sharpen Theorem 3 by showing that the problems do not admit
a polynomial kernel. In some sense, the nonexistence of polynomial kernels suggests
that randomized selection or a similar technique is inherently required for the problems,
as they cannot be solved by simple reduction rules.

4.1 FPT Algorithms

We have seen in Section 3 that removing edges to make all the vertices even can be
expressed as a T -join problem, where T is the set of odd vertices. Thus UNDIRECTED

EULERIAN EDGE DELETION requires us to find a T -join S such that G\S is connected.
Observe that if G is connected, and G \ S has a connected subgraph W containing the
endpoints of every edge in S, then G \ S is connected as well. We will call such a
subgraph W a witness of S. Therefore, the right way to look at the problem is that we
need to find a pair (S, W), where is S is a T -join and W is the witness of S. It is clear
that the problem has a solution if and only if such a pair exists.

Our approach for finding a pair (S, W) is the following. We randomly colour the
edges of the graph red and blue, and try to find a pair (S, W) where S uses only red
edges and the subgraph W uses only blue edges. We would like to ensure that if a
suitable pair (S, W) exists, then it is correctly coloured red and blue with probability at
least 2−O(k log k). However, in general the size of W can be very large (unbounded in
k) and therefore the probability of a correct colouring can be very small. We get around
this problem by observing that edges “far” from T can be always coloured blue, and
there is a witness W that uses only a bounded number of edges “close” to T . Formally,
we say that an edge e is close if at least one endpoint of e is at distance at most k from T ;
otherwise, e is far. The following two lemmas contain the crucial combinatorial ideas
of the algorithm:

Lemma 4. If S is an optimum solution of size at most k, then each edge of S is close.

Proof. As removing a cycle from S would still yield a solution, H = (V, S) has to
be a forest for an optimum solution S. Each connected component of H that is not an
isolated vertex contains a vertex from T , as each tree contains vertices of odd degree
(for example, leaves). Since |S| ≤ k, each vertex in such a connected component is at
distance at most k from T , and thus each edge in S is close. ��
Lemma 5. If S is an optimum solution of size at most k, then S has a witness W having
at most (2k − 1)(2k + 2) close edges.

Proof. Let X be the set of endpoints of the edges in S. Note that T ⊆ X and |X | ≤
2|S| ≤ 2k. Let i be the smallest integer such that G \ S has a subgraph W containing
X , having exactly i connected components and at most (|X | − i)(2k + 2) close edges

Parameterized Complexity of Eulerian Deletion Problems 137

(such i and W always exist as for i = |X | we can take W = (X, ∅)). If i = 1, then we
are done. Otherwise, we can assume that each component of W contains a vertex of X ;
let P be a shortest path in G \ S that connects two different components of W . Denote
these components K1 and K2.

We claim that only the first k + 1 and the last k + 1 edges of P may be close. If
this is true, then adding P to W decreases the number of components and increases the
number of close edges by at most 2k + 2, contradicting the minimality of i.

Suppose that an edge e is close, but it is not among the first or last k + 1 edges, i.e.,
both of its endpoints are at distance greater than k from both K1 and K2 on P . As e is
close, it has an endpoint v such that there is a path P ′ of length at most k connecting
v and T . As T ⊆ X , the path P ′ connects v to a component K ′ of W . Assuming
without loss of generality that K ′ �= K1, the concatenation of P ′ and the subpath of P
from K1 to v is a walk P ′′ connecting two different components of W . As the distance
of v from K2 on P is more than k, the walk P ′′ is shorter than P , contradicting the
minimality of P . ��
Now, we are ready to state our algorithm, working as follows:

1. Determine which edges are close and which are far.
2. Make each close edge independently with probability 1/k2 red; every edge that is

not red becomes blue.
3. If there is more than one connected component of the blue edges containing a vertex

from T , return NO; otherwise let KB be this unique component.
4. Solve MINIMUM T-JOIN instance (GR, T), where GR is the graph induced by the

red edges with both endpoints in KB . If the solution is of size at most k, return it,
otherwise return NO.

Lemma 6. If the algorithm returns a solution S, then S is a proper solution to UNDI-
RECTED EULERIAN EDGE DELETION.

Proof. By the definition of MINIMUM T-JOIN, G \ S is even. The component KB of
blue edges ensures that the endpoints of S are in the same component of G \ S, i.e.,
G \ S is connected. ��
Lemma 7. If the UNDIRECTED EULERIAN EDGE DELETION instance (G, k) was a
YES-instance, the algorithm returns a solution with probability at least 1/2O(k log k).

Proof. Let S be an optimum solution to (G, k), and let W be a witness having at most
(2k − 1)(2k + 2) close edges, guaranteed by Lemma 5. In the algorithm:

1. With probability at least (1/k2)k = 1/22k log k each edge of S becomes red.
2. With probability at least (1 − 1/k2)(2k−1)(2k+2) = Ω(1) each close edge of W

becomes blue (and hence every edge of W is blue).

The above events are independent, since S and W do not share edges. Furthermore,
if both events happen, then W will connect all the endpoints of the edges from S.
Therefore, all of these endpoints will be contained in one connected component KB of
the graph induced by blue edges, which in particular connects all the vertices from T .
Thus, with probability 1/2O(k log k), every edge of S appears in GR in the last step of
the algorithm and the MINIMUM T-JOIN instance has a solution of size at most k. ��

138 M. Cygan et al.

Theorem 8. Both the UNDIRECTED and DIRECTED EULERIAN EDGE DELETION

problems are fixed-parameter tractable with parameter k.

Proof. By Lemmas 6 and 7, the presented algorithm for UNDIRECTED EULERIAN

EDGE DELETION finds a solution with probability 1/2O(k log k), and never produces
a wrong output, that is removal of the returned set of edges always makes the graph Eu-
lerian. Since the algorithm runs in O(n3) time for an n-vertex graph, we immediately
obtain a randomized FPT Monte-Carlo algorithm, running in 2O(k log k)n3 time.

We can derandomize the above algorithm using the standard technique of splitters,
which will be described in the full version.

Regarding DIRECTED EULERIAN EDGE DELETION, we can use a slightly modified
version of our randomized algorithm (which then can be derandomized). After defining
the set T of terminals to contain the unbalanced vertices, we forget about the orientation
of the arcs, and perform Steps 1 − 3 of the algorithm. We adjust Step 4 by solving an
annotated DIRECTED BALANCED EDGE DELETION instance (G, k) where only red
arcs can be deleted. Observe that this algorithm in fact looks for a set of edges S of size
at most k such that G \S is balanced and weakly connected. However, every graph that
is weakly connected and balanced is Eulerian, thus the algorithm returns the solution to
DIRECTED BALANCED EDGE DELETION with high probability, if one exists. ��

4.2 Non-existence of a Polynomial Kernel for UNDIRECTED and DIRECTED

EULERIAN EDGE DELETION

The aim of this subsection is to prove the following theorem.

Theorem 9. If NP �⊆ coNP/poly, then there is no polynomial kernel for the UNDI-
RECTED and DIRECTED EULERIAN EDGE DELETION problems with parameter k,
even if the input graph has maximum degree at most 4.

We use the cross-composition technique introduced by Bodlaender et al. [5]. Let us
recall the crucial definitions.

Definition 10 (Polynomial equivalence relation [5]). An equivalence relation R on
Σ∗ is called a polynomial equivalence relation if (1) there is an algorithm that given
two strings x, y ∈ Σ∗ decides whether R(x, y) in (|x| + |y|)O(1) time; (2) for any
finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 11 (Cross-composition [5]). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N be a pa-
rameterized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given t strings x1, x2, . . . xt belonging
to the same equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time
polynomial in

∑t
i=1 |xi| such that (1) (x∗, k∗) ∈ Q iff xi ∈ L for some 1 ≤ i ≤ t; (2)

k∗ is bounded polynomially in maxt
i=1 |xi| + log t.

Theorem 12 ([5], Theorem 9). If L ⊆ Σ∗ is NP-hard under Karp reductions and L
cross-composes into the parameterized problem Q that has a polynomial kernel, then
NP ⊆ coNP/poly.

Parameterized Complexity of Eulerian Deletion Problems 139

We apply Theorem 12 on the following language L:

UNDIRECTED or DIRECTED s − t PATH WITH FORBIDDEN PAIRS OF EDGES

Input: An undirected or directed graph G = (V, E), two vertices s, t ∈ V , and a
set C ⊆ E × E called the constraints.
Task: Does there exist an s− t path P in G such that from each constraint (e1, e2) ∈
C at least one edge (arc) does not lie on P?

The undirected version of this problem with forbidden pairs of vertices was proven
to be NP-hard by Kolman and Pangrác [18] and their proof can be easily modified to
handle our case as well.

Lemma 13. UNDIRECTED and DIRECTED s − t PATH WITH FORBIDDEN PAIRS OF

EDGES are NP-hard under Karp reductions, even in the case where each vertex has
maximum degree three, s and t have degree one, and, in the directed case, each vertex
has maximum in- and outdegree two.

To finish the proof of Theorem 9 we need to show a cross-composition algorithm. This
is done in the following lemma.

Lemma 14. UNDIRECTED (DIRECTED) s − t PATH WITH FORBIDDEN PAIRS OF

EDGES cross-composes to UNDIRECTED (DIRECTED) EULERIAN EDGE DELETION.
If the input instances have degrees bounded as in Lemma 13 then the output instance
can be made to have maximum degree 4.

Proof. For the equivalence relation R we take an almost trivial relation that sorts all
malformed instances into one equivalence class and all well-formed into another one. If
we are given malformed instances, we simply output a trivial NO-instance. Thus in the
rest of the proof we assume we are given a sequence (Gi, si, ti, Ci)t

i=1 of UNDIRECTED

or DIRECTED s − t PATH WITH FORBIDDEN PAIRS OF EDGES instances.
We now construct an UNDIRECTED or DIRECTED EULERIAN EDGE DELETION

instance (G, k). We start by obtaining a graph G′
i for each 1 ≤ i ≤ t as follows.

First we subdivide each edge e ∈ E(Gi) with new vertices xC
e , one for each constraint

C ∈ Ci that contains e. Then for each constraint C = (e1, e2) ∈ Ci we introduce
vertices zC

1 and zC
2 and create a (directed) cycle xC

e1
, zC

1 , xC
e2

, zC
2 . By V (Gi) we denote

the subset of V (G′
i) containing vertices different than xC

e and zC
α . To construct the graph

G, we first take the union of all graphs G′
i and identify all vertices si into one vertex

s∗ and all vertices ti into one vertex t∗. Let V 0 = {s∗, t∗} ∪ ⋃t
i=1 V (Gi) \ {si, ti}.

Second, we introduce a new vertex r and connect it to the rest of the graph as follows.
In the undirected case for each v ∈ V 0 \ {s∗, t∗} we connect r and v with one or two
unattached paths of length 2, so that in G the vertex v is even. In the directed case, we
connect r and v with some positive number of unattached directed paths of length 2, so
that in G the vertex v is balanced. We do almost the same construction to connect s∗ and
t∗ to r, but we ensure that the degrees of s∗ and t∗ are odd (in the undirected case) or that
din

G (s∗)+1 = dout
G (s∗) and din

G (t∗) = dout
G (t∗)+1 (in the directed case). Note that r is

even (balanced). Finally, we set k = maxt
i=1 |V (G′

i)|−1 = O(maxt
i=1 |V (Gi)|+|Ci|).

It is clear that the above construction can be done in polynomial time and that the
parameter k is bounded polynomially in the maximum size of the input instances. We
verify its correctness and explain the degree reduction in the full version. ��

140 M. Cygan et al.

5 Node-Deletion Problems

We first consider the following two node-deletion problems:

DIRECTED BALANCED (or EULERIAN) NODE DELETION Parameter: k
Input: A directed graph G and an integer k
Question: Does there exist a set of at most k vertices S ⊆ V (G) such that G \ S is
balanced (or Eulerian)?

The undirected versions of these problems, namely UNDIRECTED EVEN and UNDI-
RECTED EULERIAN NODE DELETION, are defined analogously. While these undi-
rected variants were already shown to be W[1]-hard with parameter k by Cai and
Yang [9], the complexity of the directed versions has not been studied yet. In the full
version by the following theorem we show that they are intractable as well.

Theorem 15. DIRECTED BALANCED NODE DELETION and DIRECTED EULERIAN

NODE DELETION are NP-hard and W[1]-hard with parameter k.

As Table 1 shows, the vertex-deletion variant is W[1]-hard in all four cases, while the
edge-deletion version is FPT or even polynomial-time solvable. What makes the vertex-
deletion versions harder? One obvious difference is that in the edge-deletion problem
the answer is trivially no if there are more than 2k odd/unbalanced vertices, but the
vertex-deletion versions can have a solution even if the number of such nodes is un-
bounded. This suggests that the higher complexity comes from the ability of affecting
the degree of many vertices by a single vertex deletion. Indeed, if every vertex has de-
gree bounded by Δ, then we can solve all of the above defined node-deletion problems
in O((Δ + 1)k(|V (G)| + |E(G)|)) time by a simple branching algorithm which will
be described in the full version.However, this interpretation is not fully correct: as we
shall show, the vertex-deletion problems are hard even if we are allowed to delete only
vertices of constant degree.

To this end, we define the following variation of the four different node-deletion
problems, where α can be UNDIRECTED EVEN, UNDIRECTED EULERIAN, DIRECTED

BALANCED, or DIRECTED EULERIAN:

α NODE DELETION WITH FORBIDDEN NODES Parameter: k
Input: A graph G, a set F ⊆ V (G) of forbidden nodes, and an integer k.
Question: Does there exist a solution S ⊆ V (G) for (G, k) with respect to the
corresponding α NODE DELETION problem such that S ∩ F = ∅ and |S| ≤ k?

In other words, we require the solution to be disjoint from a set of forbidden vertices.
A vertex is allowed, if it is not forbidden. For each of the four node-deletion problems,
the above variant is at least as hard as the original problem, and in fact has the same
complexity: this variant can easily be reduced to the original version, by attaching long
unattached cycles to every forbidden vertex. Furthermore, we show that allowing only
the deletion of bounded-degree vertices does not make the problem easier:

Parameterized Complexity of Eulerian Deletion Problems 141

Theorem 16. Each of the problems α NODE DELETION WITH FORBIDDEN NODES

where α is UNDIRECTED EVEN, UNDIRECTED EULERIAN, DIRECTED BALANCED,
or DIRECTED EULERIAN remains W[1]-hard with parameter k, even if each allowed
vertex has degree at most 4.

6 Conclusion

We completed the analysis of the complexity of making a graph Eulerian via edge or
vertex deletions. There are two open problems that we would like to emphasise here.

First, do there exist FPT algorithms for the edge-deletions problems running in time
cknO(1)? It seems hard to obtain such algorithms using our techniques, mainly due to
the fact that the witness subgraph W may contain Ω(k2) close edges.

Second, Cechlárová and Schlotter in [10] asked for the parameterized complexity
of a related problem, where the task is to delete at most k arcs from a directed graph
to obtain a graph where each strongly connected component is Eulerian. This problem
seems to be significantly different than the problems considered in this paper, as for
example it includes DIRECTED FEEDBACK VERTEX SET [10], and, to the best of our
knowledge, the question of its parameterized complexity still remains open.

References

1. Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding minimum-cost flows by dou-
ble scaling. Math. Program. 53, 243–266 (1992)

2. Alon, N., Shapira, A., Sudakov, B.: Additive approximation for edge-deletion problems. In:
FOCS, pp. 419–428 (2005)

3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
4. van Bevern, R., Moser, H., Niedermeier, R.: Approximation and tidying—a problem kernel

for s-plex cluster vertex deletion. Algorithmica (February 2011)
5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for ker-

nelization lower bounds. CoRR abs/1011.4224 (2010)
6. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems.

Discrete Appl. Math. 154, 1824–1844 (2006)
7. Cai, J., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers yield

improved Karp-Lipton collapse results. Inf. Comput. 198(1), 1–23 (2005)
8. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary proper-

ties. Inf. Process. Lett. 58(4), 171–176 (1996)
9. Cai, L., Yang, B.: Parameterized Complexity of Even/Odd Subgraph Problems. In: Cala-

moneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 85–96. Springer, Heidelberg
(2010)

10. Cechlárová, K., Schlotter, I.: Computing the Deficiency of Housing Markets with Duplicate
Houses. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 72–83. Springer,
Heidelberg (2010)

11. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the
directed feedback vertex set problem. J. ACM 55(5), 1–19 (2008)

12. Dı́az, J., Thilikos, D.M.: Fast FPT-Algorithms for Cleaning Grids. In: Durand, B., Thomas,
W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 361–371. Springer, Heidelberg (2006)

142 M. Cygan et al.

13. Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient Algorithms for Eulerian Exten-
sion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 100–111. Springer, Heidelberg
(2010)

14. Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman problem. Math.
Program. 5, 88–124 (1973)

15. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-
complete. SIAM J. on Computing 5, 704–714 (1976)

16. Guo, J.: Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related
Graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Hei-
delberg (2007)

17. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary proper-
ties. Theor. Comput. Sci. 289, 997–1008 (2002)

18. Kolman, P., Pangrác, O.: On the complexity of paths avoiding forbidden pairs. Discrete Ap-
plied Mathematics 157(13), 2871–2876 (2009)

19. Kratsch, S., Wahlström, M.: Two Edge Modification Problems Without Polynomial Kernels.
In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Hei-
delberg (2009)

20. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-
complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

21. Lokshtanov, D.: Wheel-Free Deletion is W[2]-Hard. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 141–147. Springer, Heidelberg (2008)

22. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)
23. Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems and

generalizations. In: CATS, pp. 79–86 (2008)
24. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs.

Journal of Discrete Algorithms 7, 181–190 (2009)
25. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification

problems. Discrete Appl. Math. 113, 109–128 (2001)
26. Philip, G., Raman, V., Villanger, Y.: A Quartic Kernel for Pathwidth-one Vertex Deletion. In:

Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 196–207. Springer, Heidelberg (2010)
27. Plesnı́k, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with

degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979)
28. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals

in tournaments. Theor. Comput. Sci. 351, 446–458 (2006)
29. Raman, V., Sikdar, S.: Parameterized complexity of the induced subgraph problem in directed

graphs. Inf. Process. Lett. 104, 79–85 (2007)
30. Sorge, M.: On making directed graphs Eulerian. CoRR abs/1101.4283 (2011)
31. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Com-

put. Sci. 26, 287–300 (1983)

Restricted Cuts for Bisections in Solid Grids:

A Proof via Polygons�

Andreas Emil Feldmann1, Shantanu Das2, and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
{feldmann,widmayer}@inf.ethz.ch

2 Laboratoire d’Informatique Fondamentale, Aix-Marseille University, France
shantanu.das@lif.univ-mrs.fr

Abstract. The graph bisection problem asks to partition the n vertices
of a graph into two sets of equal size so that the number of edges across
the cut is minimum. We study finite, connected subgraphs of the infi-
nite two-dimensional grid that do not have holes. Since bisection is an
intricate problem, our interest is in the tradeoff between runtime and
solution quality that we get by limiting ourselves to a special type of
cut, namely cuts with at most one bend each (corner cuts). We prove
that optimum corner cuts get us arbitrarily close to equal sized parts,
and that this limitation makes us lose only a constant factor in the qual-
ity of the solution. We obtain our result by a thorough study of cuts in
polygons and the effect of limiting these to corner cuts.

1 Comparing Optimal with Restricted Cuts

We consider the bisection problem: partition the vertex set of a given graph into
two (almost) equal sized subsets such that the number of edges with an endpoint
in each partition is minimised. The problem has been studied extensively, due
to its utility in divide-and-conquer algorithms. It is NP-hard in general [5] and
the best approximation algorithm known [9] guarantees an approximation ratio
of O(log n). For planar graphs a PTAS [2] has been found, while for trees an
optimum solution can be computed in O(n2) time [6,7]. Our motivation to study
the bisection problem comes from the need to parallelise a finite element com-
putation of a human bone structure model in order to diagnose osteoporosis [1].
In such an application the aim is to distribute the data, modelled by the vertices
(of a graph G), evenly onto a given number p of processors to achieve a balanced
computation load. At the same time the communication between data points,
modelled by the edges (of G), needs to be kept at a minimum between processors
since this constitutes a bottleneck in parallel computing. One way to distribute
the data is to recursively solve the bisection problem. The finite element models
corresponding to the bones in our application constitute a porous 3D grid. In a

� We gratefully acknowledge discussions with Peter Arbenz who introduced the human
bone simulation problem to us, and the support of this work through the Swiss
National Science Foundation under Grant No. 200021 125201/1.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 143–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 A.E. Feldmann, S. Das, and P. Widmayer

Fig. 1. An optimal (left) and a corner cut (right) in a solid grid, each cutting out
k = 110 many vertices. The bold edges indicate the segments.

first step towards understanding the problem for 3D grids, in this paper we limit
ourselves to 2D grid graphs, which are finite, connected subgraphs of the infinite
two-dimensional grid. A grid graph is called solid if it has no hole, i.e. if it has
no interior face surrounded by more than four edges. For solid grid graphs the
fastest algorithm known [8] computes an optimum bisection in time O(n5).

We aim at understanding the intricacies of bisection from a novel point of
view: we study particular classes of cuts, for which it is possible to find optimum
solutions faster. It is well known that any cut in a planar graph G = (V, E)
corresponds to a set of cycles in its dual graph (i.e. the graph whose vertices
are the faces of G and whose edges represent a shared boundary between faces).
We call a set of edges in a planar graph a segment if it corresponds to a simple
cycle in the dual graph. Hence a cut can be defined as a set S ⊆ 2E of segments.
In this paper we consider cuts that contain segments with at most one bend,
so-called corner cuts (Figure 1). We prove that optimum corner cuts do not need
a lot more cut-edges than arbitrary cuts. Using only segments without any bend
(straight cuts) does not achieve this high quality: these cuts can be a

√
n factor

away from optimum. We achieve our result by proving a number of theorems for
polygons that we relate to the case of grid graphs. The main part of this paper
will therefore be concerned with thoroughly analysing corner cuts in polygons.

We call the number of edges
∑

s∈S |s| in a cut S its cut-size. The cut min-
imising the cut-size is optimal. Notice that some edges may be counted several
times in the sum. However in the non-restricted case, edges that appear more
than once can be removed. Hence this generalisation does not change the op-
timal solution. A simple cycle in the dual of a planar graph corresponds to a
closed curve in its embedding in the plane. Hence the cycle divides the plane
into an interior and an exterior area. We say that a pair of cycles cross if the
corresponding closed curve of one of them both contains points belonging to the
interior and to the exterior area into which the other cycle divides the plane.
Note that any pair of crossing simple cycles can be seen as a (different) pair
of simple cycles that do not cross. Hence for the non-restricted optimal cut we
may consider only non-crossing cuts in which no corresponding cycles cross. In
our application we can assume that the grid graph G is given together with its
natural embedding in the plane, i.e. G is a plane graph in which the vertices
are coordinates in N2 and all edges have unit length. We propose to use only
segments that correspond to orthogonal lines with at most one right-angled bend
in the dual graph, when disregarding the part of the cycle that connects to the

Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons 145

−→ −→

Fig. 2. Converting a grid to a polygon

exterior face (Figure 1). If the corresponding line of a segment contains no bend
we call it a straight segment and if it contains exactly one right-angled bend a
corner segment.

If removing the edges included in a cut leaves a set of connected components
together containing exactly k vertices, we call it a k-cut. We say that it cuts out
k vertices. We call the set containing k vertices the A-part, and the other set
the B-part of the k-cut. A natural generalisation of the bisection problem is to
find the optimal k-cut for a given integer k ∈ {0, ..., n}. The main result of this
paper is summarised in the following theorem.

Theorem 1. Let l be the cut-size of an optimal k-cut in G and ε ∈]0, 1]. Then
there exists a non-crossing corner k′-cut, for some k′ ∈ [(1−ε)k, (1+ε)k], which
has a cut-size of O(1/

√
ε) · l.

This result was already used in [3] where we showed that the optimal corner
k-cuts for all k ∈ {0, ..., n} can be computed in time O(n4) for a given solid grid
graph G. Thus the above theorem implies that one can find a good approximation
to the optimal bisection of G faster than by using the O(n5) time algorithm
from [8]. Since the set sizes of the resulting k-cut correspond to the load on each
machine in our application, the deviation by a factor of ε on the load balance
is acceptable as it does not significantly affect the resulting running time of
the parallel computation. However the speed-up of the bisection algorithm is a
considerable improvement since a typical data set will have billions of vertices.

We will prove Theorem 1 by going through several steps, each of which is an
interesting problem in itself. We start by comparing cuts in grid graphs to cuts
in polygons. For this we convert a given solid grid graph into a simple orthog-
onal polygon, and hence all polygons considered in this paper are orthogonal
and simple (but can be degenerate in the sense that the polygonal chain corre-
sponding to its border can have overlapping edges; see Figure 2). Given a solid
grid graph G the conversion is done by replacing each vertex (x, y) ∈ V by a
unit square that has its centre at the coordinate (x, y). Notice that the squares
of two neighbouring vertices of V will share a boundary, but the converse is
not necessarily true. Ignoring those boundaries that correspond to an edge in G
leaves a connected line that is the boundary of the polygon. The region enclosed
by the boundary is of size exactly n, the number of vertices in G. The k-cut in
the polygon that corresponds to the optimal k-cut in the grid obviously has a
cut-size that is at least the cut-size of the optimal k-cut in the polygon.

All the notions used for cuts in grids carry over naturally to the case of poly-
gons. For a polygon P with fixed orientation in the plane we call an orthogonal

146 A.E. Feldmann, S. Das, and P. Widmayer

line1 within P that has no bend and starts and ends at the boundary of P ,
a straight line. Accordingly an orthogonal line within P that has exactly one
right-angled bend and starts and ends at the boundary of P is called a corner
line. The cut-size of a set of lines L in a polygon is the sum of the lengths of the
lines in L, which are measured using the Manhattan distance. We will first show
the existence of corner cuts in simple polygons that cut out almost the required
area and have small cut-size (close to optimal). We will then convert such a cut
in a polygon derived from a grid graph to a corresponding cut in the grid having
the properties described in Theorem 1. More precisely we prove the following
results for polygons which together imply the theorem:

1. We show that there is an optimal k-cut in a polygon that is almost a corner
cut, in the sense that the cut consists of only straight and corner lines ex-
cept at most one other line. This line may be shaped like a staircase (a so
called staircase line), or it may be a rectangular line, which is defined as a
continuous part of the boundary of an orthogonal rectangle (Figure 3).

2. We show how to remove a rectangular line from a cut containing only straight
and corner lines otherwise. We replace the rectangular line by a set of straight
and corner lines, and at most one staircase line. Together these cut out the
same area as the rectangular line. While doing this we need to take other
lines from the cut into consideration so that the newly introduced lines do
not interfere with these. The new cut will also be a k-cut but its cut-size
may not be optimal. However, we show that the cut-size of the new cut is
only a constant factor away from the optimal.

3. Given a k-cut of the polygon consisting of straight and corner lines, and one
staircase line, we next show how to replace the staircase line with a set of
corner and straight lines, such that the new area that is cut out is close to k.
To be more precise, the new cut is a k′-cut where k′ ∈ [(1− ε)k, (1 + ε)k] for
any desired constant ε ∈]0, 1]. Further, the cut-size of the new cut is only a
constant factor (depending on ε) times the cut-size of the original cut.

4. At last we show how to convert a cut containing only straight and corner
lines in a polygon corresponding to a grid graph G into a cut in G. Note
that this step would be straightforward if all the lines in the cut were passing
through exactly the midpoints of the edges of the grid. We call such lines
grid lines. We show that all lines in the cut obtained in the previous steps
can be moved to grid lines in such a way that the cut-size remains the same,
but we lose a small area a from the cut out area. Since a is small we can cut
this area from the polygon using a recursive method using only grid lines so
that the cut-size grows by only a small factor.

The next sections explain these techniques in more detail.

2 Cuts in Polygons

We will now show that in an optimal k-cut of a polygon all but at most one line
are corner and straight lines. Lines with more bends include staircase lines and
1 All lines considered in this paper have finite length unless otherwise stated.

Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons 147

Fig. 3. A straight, corner, staircase,
and rectangular line in a polygon de-
noted by λ1 through λ4 respectively

Fig. 4. A rectangular line λ1 with its defining
rectangle R1 is replaced by the rectangular line
λ′

1. To compensate for the area a (shaded grey),
another line λ2 is replaced by λ′

2. It can be a cor-
ner, staircase, or a rectangular line (with defin-
ing rectangle R2).

rectangular lines. The former have at least two bends and are monotonic in x- and
in y-direction. The latter have two or three bends and lie on the boundary of an
orthogonal rectangle (Figure 3). In a first step, we convince ourselves (Lemma 5)2

that in any simple polygon there is an optimal k-cut that contains only straight,
corner, staircase, and rectangular lines. Furthermore, none of these lines cross or
overlap. These results are analogous to those attained in [8] for grid graphs.

In a next step we show that if an optimal k-cut contains a rectangular line,
then all other lines are straight or corner lines (Lemma 9). Generally speaking
the reason is that cuts can be modified so that the cut out area remains the
same. This is easy to see for two rectangular lines where the A-part of the cut
out area is on the inside of one of the rectangles and on the outside of the other:
we can simply make both rectangular lines smaller by the same area, thereby
decreasing the length of the cut (Figure 4)—a contradiction to optimality. More
generally, we call a corner or rectangular line convex w.r.t. the area next to
its 90 degree angles and concave w.r.t. the area next to its 270 degree angles
(Figure 5). Similar area exchange arguments show that for an optimal k-cut with
a rectangular line, the area on its concave side will belong to the same part of
the cut as the area on the concave sides of all corner lines. This fact will become
important later when a rectangular line is replaced by a staircase line.

For staircase lines, area exchange works by changing the staircase line while still
keeping it monotonic between its end points. The potential area exchanged is the
deficit or the surplus, which are the areas of maximal size with monotone borders
contained in theB- andA-part respectively (Figure6).Theseareasareusedtoprove
that an optimal cut requires at most one staircase line (Lemma 10): for more than
one staircase line we trade the smaller deficit or surplus of one staircase with the
larger of another one, turning the former into only straight and corner lines. Putting
all these observations together (Corollary 11), we obtain the following result.

Theorem 2. For any simple polygon P there is an optimal k-cut L such that
L is non-crossing and all lines in L are corner or straight lines except at most
one which is either a staircase line or a rectangular line. If there is a rectangular
line in L that is concave with respect to the A-part (resp. B-part) then all corner
lines in L are concave with respect to the same area A (resp. B).

2 All lemmas and theorems, along with their proofs, can be found in the full version of
the paper [4].

148 A.E. Feldmann, S. Das, and P. Widmayer

Fig. 5. A corner, and rectangular line in
a polygon denoted by λ1, λ2, respectively.
Both are concave with respect to the A-part
and convex with respect to the B-part.

Fig. 6. A staircase line λ1 together
with its surplus (in light grey shading)
and its deficit (in dark grey shading)

3 Removing Rectangular Lines

We now show how to convert an optimal k-cut containing straight and corner lines
and one rectangular line into a k-cut containing only straight and corner lines ex-
cept at most one which is a staircase line. Consider the area inside the defining
rectangle of the rectangular line (Figure 7). This region may contain a part of the
boundary of the polygon (and possibly some other lines of the cut). We can re-
place the rectangular line with a set Ξ of straight and corner lines lying within
the defining rectangle such that these lines have total length less than the length
of the rectangular line. By doing this we do not increase the cut size, but we now
have to cut out an additional area of size a equal to the difference in sizes of the
parts cut out by the original and the new cut. We show how to find a set of lines
that cut out an area of size a and has total length not too large (compared to the
optimal cut-size l). Note that the length of the rectangular line (and thus l) is at
least

√
a. So, it is sufficient to show that the area of size a can be cut out using a

set of lines of total length not much larger than
√

a.
Consider any corner line of infinite length in the plane. Since the line can be

rotated to any particular orientation, let us assume w.l.o.g. the corner line has
a vertical section going up and a horizontal section going right from the corner
point (x, y). We call this line the corner line at (x, y). Given any specific polygon,
the parts of this infinite line that are inside this polygon are said to form a virtual
corner line (Figure 8). Notice that a virtual corner line is a set of straight and
corner lines lying inside the polygon. If a virtual corner line cuts out an area
of size a on the upper right side of its corner, we say that it is a virtual corner
line for a. We can analogously define a virtual staircase line by considering any
staircase line of infinite length in the plane and taking the parts of the line that
lie inside some specific polygon. The easy case is when the required area a can be
cut out from the polygon using a single virtual corner line of short length (say,
of length at most c

√
a for some fixed constant c). However, depending on the

shape of the polygon, it is not always possible to find such a virtual corner line.
For example, in the polygon shown in Figure 9, any virtual corner line cutting
out the required area contains a long vertical section or a long horizontal section.

Given any simple polygon, we can search along the x-axis between the two
extremities of the polygon, and for each value of x try to find a y such that the

Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons 149

Fig. 7. A rectangu-
lar line ρ (dashed) to-
gether with the set of
lines Ξ (dotted) with
which it is replaced.
The area of size a is
shaded in grey.

Fig. 8. A virtual
corner line (black
dashed) at (x, y).
The cut out area is
shaded in grey.

Fig. 9. A polygon in which every vir-
tual corner line for a is too long. At p1

the vertical section switches from short
to long and at p2 the horizontal section
switches from long to short.

virtual corner line at (x, y) cuts out exactly an area of size a (Figure 10). We
can show that if there does not exist any single virtual corner line for a having
sufficiently small length, then there exist virtual corner lines for a at two points
(x1, y1) and (x2, y2) such that the former has a short (i.e. at most c

√
a) vertical

section, the latter has a short horizontal section, and for all virtual corner lines
in between both sections are long (Lemma 13). Using these properties we can
show that the intervals [x1, x2] and [y2, y1] are short (Lemma 14). With these
results we find a virtual staircase line which cuts out exactly the required area a
and has a short total length (Lemma 16). The corresponding staircase line goes
along the vertical section of the first virtual corner line, to some y∗ and then
turns to the right and goes to some x∗, turns again and then finally follows the
horizontal part of the second virtual corner line (Figure 11).

Let L be the set of straight and corner lines in the cut after replacing the
rectangular line, such that L cuts out an area k− a or k + a. We now know that
there exists a virtual staircase line Λ that can be used to cut out the remaining
area of size a from the A- or B-part. Notice that the underlying staircase line
(of infinite length in the plane) may be intersecting with other lines in the cut
(Figure 12). So the parts of the line included in Λ may not have endpoints on the
boundary of the polygon. Thus, we need to convert Λ into a set M of staircase,
corner, and straight lines, none of which ends at any other line in L (however, the
lines may partially overlap). This is done by adding those parts of lines in L to
the lines in Λ that are monotonic extensions of the latter in x- and in y-direction
(Lemma 17). This is possible since the corner lines in L are all concave w.r.t.
the same cut out part, as pointed in the previous section. Thus the set M may
contain several staircase lines, but its total length is at most that of L.

The next step is to convert the staircase lines from the set M ∪ L so that
at most one of them remains but the cut-size does not increase. Similar to the
techniques seen before, we will use the lines contained in the boundary of the
surplus or deficit of a staircase line for the transformation. Unfortunately some
of the previous arguments can not be used here since M ∪ L is not an optimal

150 A.E. Feldmann, S. Das, and P. Widmayer

Fig. 10. The interval [x1, x2] in a
polygon and a virtual corner line
(dashed black) for k whose horizontal
and vertical sections are both long

Fig. 11. A virtual staircase line (dotted
black) cutting out the area of size a shaded
in grey. It is constructed using the the two
virtual corner lines at (x∗, y2) and (x1, y

∗).

cut. Instead we need some observations on the nature of the boundary of the
deficit and surplus of a staircase line λ ∈ M : it turns out that any staircase line
λ′ different from λ at the boundary of the deficit or surplus of λ overlaps with
exactly one corner line μ ∈ L (Figure 13). This corner line μ together with the
staircase line λ′ can be used to construct a pair of corner lines which can be
replaced with μ and λ′ so that the same area is cut out by the new set of lines.
The cut-size decreases during this process (Lemma 18). Hence an area exchange
between two staircase lines is possible even in this case (Lemma 19).

Using the above techniques we can find a k-cut containing at most one stair-
case line for any optimal k-cut containing a rectangular line, such that the cut-
size of the former k-cut is at most a constant times the cut-size of the latter.
The following theorem (Theorem 20 in the full paper) summarizes these results.

Theorem 3. For any simple polygon P with an optimal k-cut L of P contain-
ing a rectangular line, there exists a non-crossing k-cut M which contains only
corner and straight lines except at most one which is a staircase line and M has
a cut-size of at most 9l, where l is the cut-size of L.

4 Removing Staircase Lines

We now turn to the task of converting a (not necessarily optimal) cut L contain-
ing only straight and corner lines except one which is a staircase line, into a cut
containing only straight and corner lines. Similar to the case of rectangular lines
we will replace the staircase line with a set of appropriate corner and straight
lines having a short cut-size. It is easy to see that if the deficit (or surplus)
area of the staircase line λ has size a, then

√
a < l, where l is the cut-size of

L. Thus, if we can cut out the excess area a using straight and corner lines of
total length in O(

√
a), then our cut-size will still be close to optimal. Given any

simple polygon P of area n, a ∈ [0, n], and constant ε ∈]0, 1] we can find a set
of at most three virtual corner lines that cut out an area whose size is in the
interval [(1 − ε)a, (1 + ε)a], and has a cut-size that is a constant (depending on
ε) times

√
a. Furthermore the corners of these virtual corner lines all have either

Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons 151

Fig. 12. A virtual staircase lined (dashed)
that is converted to a set of staircase, cor-
ner, and straight lines (dashed and dotted).
For this parts of the corner lines (dotted) from
the original cut are used. These are all concave
w.r.t. the same part of the cut shaded in grey.

Fig. 13. A staircase line λ with its
surplus shaded in grey. The lines on
the border of the surplus can be re-
placed by a set of straight and cor-
ner lines (dotted). The corner line μ
is also removed.

the same x-coordinate or the same y-coordinate (Lemma 21). They can be found
using the short interval [x1, x2] that was identified before (Figure 10). We use
the virtual corner line with corner (x1, y2) which has short length but cuts out
an area that is too large. To correct for the area we additionally find two virtual
corner lines (of short length) with corners at either points (x′, y2) and (x′′, y2),
for some x′, x′′ ≥ x2, or points (x1, y

′) and (x1, y
′′), for some y′, y′′ ≥ y1.

Fig. 14. A tail (dotted
line) and three virtual
corner lines (dashed) cut
out the area shaded in
grey (The lines overlap
on the bottom right)

To apply the above result we need to find a region
of the polygon from which to cut out the excess area.
We want this area to contain no lines of the cut so
that we do not interfere with these. For this we define
the concept of a tail : for any cut L in a polygon P ,
consider all the connected pieces of P cut out by it.
We call a piece T that is cut out by a single line τ ∈ L
a tail of the polygon, and we refer to τ as the line of T
(Figure 14).

Note that we can shift the staircase line λ in either
direction, i.e. going into either the A- or the B-part.
However all the tails in the polygon may belong to only
one part. We need to consider two cases, one of which
is when L contains only λ. This means that there are
exactly two tails, one on each side of λ. If we assume
w.l.o.g. that the size a of λ’s deficit is at most that of its surplus, we can replace
the staircase line with the set of straight and corner lines on the border of its
deficit. We then cut out the area a′ ∈ [(1−ε)a, (1+ε)a] from the original A-part
(containing the surplus) using the at most three virtual corner lines which were
shown to exist above. The other case is when there is a tail contained in, say,
the A-part whose line μ is not the staircase line λ. We can safely assume that
the size of the tail is larger than the size a of the deficit of λ (Lemma 23). If
this was not the case then we could remove μ from the cut by using an area
exchange with the staircase line λ, without increasing the cut-size. Hence we
can replace λ by the corner and straight lines on the border of its deficit and

152 A.E. Feldmann, S. Das, and P. Widmayer

cut out the area a′ from the tail, again using the virtual corner lines of short
length. In both cases it may be that some of the virtual corner lines end at the
line μ of the tail. If this happens we can find a set of straight and corner lines
that overlap with parts of the virtual corner lines and μ with which to replace
the latter lines (in the same way as suggested by Figure 13). The cut out area
is the same while the cut-size only grows by a constant factor since there are
at most three virtual corner lines. The result of the above described method is
summarized in the following theorem (Theorem 24 in the full paper).

Theorem 4. Given a non-crossing k-cut L of a simple polygon P with cut-size
l containing only straight and corner lines except one which is a staircase line,
for any desired ε ∈]0, 1] there exists a non-crossing corner k′-cut L′, where
k′ ∈ [(1 − ε)k, (1 + ε)k], having a cut-size of at most (6

√
7/ε + 7) · l.

5 Converting Lines in Polygons to Segments in Grids

We now face the task of finding a cut in the grid G given a cut in the polygon
PG constructed from G. Our transformation from a grid to a polygon implies
that an optimal k-cut in G transforms into a k-cut in PG, but not necessarily
into an optimal one, since the cut lines in the polygon are not limited to integer
positions (these are integer positions in the dual of the grid, and thus halfway
positions between grid points). In other words, a cut in the polygon does not
in general translate directly into a cut in the grid (note that if we would just
cut grid edges with polygon cut lines, that is, not cut the edges in the middle,
this would not translate the cut out area into the same number of grid vertices).
Whenever a line in PG happens to lie in integer position however, we will just
take the corresponding segment to cut the grid G (Figure 15).

For non-grid lines, we start with a clean-up phase that modifies a pair of these
lines so that one of them becomes a grid line, and the other compensates for the
area difference that this creates. We start the clean-up phase by first focussing
on the unit length open intervals on the polygon boundary between adjacent
integer positions, as shown in Figure 15. Because a grid line does not hit any
such open unit interval, we are concerned only with cut lines that do. For any
open unit interval hit by more than one cut line, we can shift one of these cut

Fig. 15. A grid line λ1 and a non-grid line
λ2. The corridor of λ2 is shaded in grey.
The boundary of the polygon is divided
into the unit length lines.

Fig. 16. A virtual pseudo corner line with
its corner at (x, y) and its unit sized step
at x̃

Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons 153

lines to the boundary and compensate for the area difference by also shifting
one other of these cut lines accordingly. Repeating this leaves us with at most
one cut line per open unit interval on the boundary (Lemma 27). Similarly, as
long as there is more than one such non-grid line (now in different open unit
intervals on the boundary), we can shift one of them to become a grid line, and
shift the other accordingly, to compensate for the area difference. This ends in
a situation with at most one non-grid line in the cut (Lemma 28). During the
whole process, the cut length does not increase (it might even decrease, since
the cut was not necessarily optimal).

From now on, we can limit ourselves to the situation with only one non-
grid line in the polygon cut. We shift this line to the nearest integer position
(Figure 15), creating the need to compensate for the area difference (which will
be the more involved part of the argument). We do this by introducing more
grid lines. But since this increases the cut length, we need to prove that suitable
short extra grid lines exist. In the end, this will preserve the property that the
cut out area lies in the interval defined by k and ε, but will increase the cut-size
by a constant factor. Next, we will look at a way to cut out for compensation,
and then argue that there is a place from which to cut out in this way.

We manage to compensate in a recursive manner. We compensate for an area
difference a by first finding a particular way to cut out an area guaranteed to be
between a and 3a/2, with the exact value not under our control (Lemma 31).
This leaves us with the problem to compensate for at most half the previous
area (since we are at most a/2 away from a). A recursive repetition of this
compensation step ends after at most �log2(�a�)� steps. The particular way to
cut out the area between a and 3a/2 makes use of a staircase grid line of three
consecutive bends, with a step of unit height at the middle bend (Figure 16).
Furthermore, the middle bend is guaranteed to lie outside or on the boundary
of the polygon, so that the intersection of the staircase with the polygon results
in a set of corner and straight lines (Figure 16) in the cut. We call this a virtual
pseudo corner line. The analysis of the recursion reveals that the total length of
the additional lines to cut out area a is limited to 3a (Lemma 30).

We still need to convince ourselves that such a line exists. In case there is a
virtual corner line that cuts out the required area and contains only grid lines we
are done. This is because such a set of lines can be seen as a virtual pseudo corner
line, as the unit step of the underlying staircase line of the latter can entirely lie
outside of the polygon. In the other case a suitable set of lines can be constructed
using three virtual corner lines at some integer points (x∗, y∗), (x∗ + 1, y∗), and
(x∗, y∗+1). These three virtual corner lines are chosen such that the first one cuts
out an area larger than 3a/2, while the other two each cut out at most a−1. Using
these properties it is then possible to show that there must be a unit sized step
between the virtual corner lines at (x∗, y∗) and (x∗, y∗ + 1) with which a suitable
virtual pseudo corner line can be constructed. That is, the corresponding set of
lines cuts out an area between a and 3a/2, and the upper most point of the unit
sized step is on the boundary or outside of the polygon.

154 A.E. Feldmann, S. Das, and P. Widmayer

Fig. 17. A tail with its corner line at p
(black dotted). The excess area in grey is
cut out using the four virtual corner lines
at p (thin dashed) together with the re-
cursive method that uses virtual pseudo-
corner lines (dashed and dotted).

It remains to be shown that there is
a place in the polygon to cut out from
using the recursive method above. For
this we use a tail of the cut (Figure 17),
as for the staircase line argument in the
previous section. However, we need to
make sure that no additional lines are
produced while cutting out the area of
size a which would increase the cut-size
by some non-constant factor. For this we
break the tail into four sectors using four
virtual corner lines having the same cor-
ner as the line of the tail. We then greed-
ily assign these virtual corner lines to the
cut as long as the cut out area does not exceed a. The difference still needed to
reach the desired area a is finally cut out using the recursive method presented
above from one of the four sectors that was not yet used (Lemma 33).

Thus the main result of this paper, as stated in Theorem 1, follows from the
theorem below (Theorem 34 in the full paper) which summarizes this section.

Theorem 5. Let l be the cut-size of an optimal k-cut L, for some k ∈ {0, ..., n},
in the polygon PG of a grid G. For any ε ∈]0, 1] there exists a non-crossing
corner k′-cut L′ for some k′ ∈ [(1 − ε)k, (1 + ε)k], such that all lines in L′ are
grid lines and the cut-size is at most (216

√
7/ε + 260) · l.

References

1. Arbenz, P., Müller, R.: Microstructural finite element analysis of human bone struc-
tures. ERCIM News 74, 31–32 (2008)

2. Dı́az, J., Serna, M.J., Torán, J.: Parallel approximation schemes for problems on
planar graphs. Acta Informatica 33(4), 387–408 (1996)

3. Feldmann, A.E., Das, S., Widmayer, P.: Simple Cuts are Fast and Good: Optimum
Right-Angled Cuts in Solid Grids. In: Wu, W., Daescu, O. (eds.) COCOA 2010,
Part I. LNCS, vol. 6508, pp. 11–20. Springer, Heidelberg (2010)

4. Feldmann, A.E., Das, S., Widmayer, P.: Restricted cuts for bisections in solid grids:
A proof via polygons. Technical Report 731, Institute of Theoretical Computer
Science, ETH Zürich (July 2011)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory
of NP-completeness. W.H. Freeman and Co., San Fransisco (1979)

6. Goldberg, M., Miller, Z.: A parallel algorithm for bisection width in trees. Computers
& Mathematics with Applications 15(4), 259–266 (1988)

7. MacGregor, R.M.: On partitioning a graph: a theoretical and empirical study. PhD
thesis, University of California, Berkeley (1978)

8. Papadimitriou, C., Sideri, M.: The bisection width of grid graphs. Theory of Com-
puting Systems 29, 97–110 (1996)

9. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in net-
works. In: Proceedings of the 40th Annual ACM Symposium on Theory of Comput-
ing (2008)

Maximum Independent Set in

2-Direction Outersegment Graphs�

Holger Flier, Matúš Mihalák, Peter Widmayer, and Anna Zych

Institute of Theoretical Computer Science, ETH Zürich, Switzerland
{firstname.lastname}@inf.ethz.ch,

http://www.pw.inf.ethz.ch/

Abstract. An outersegment graph is the intersection graph of line-seg-
ments lying inside a disk and having one end-point on the boundary of
the disk. We present a polynomial-time algorithm for the problem of
computing a maximum independent set in outersegment graphs where
every segment is either horizontally or vertically aligned. We assume that
a geometric representation of the graph is given as input.

1 Introduction

In this paper we study the problem of computing a maximum independent set
(MIS) in intersection graphs of segments lying inside a disk and having one
endpoint attached to the boundary of the disk. The problem of computing a
MIS in various classes of intersection graphs has been intensively studied in the
literature. For an extensive survey on many graph classes, refer to [1]. Despite the
numerous efforts, the problem is by far not solved or fully understood. This paper
adds to these efforts by presenting a polynomial-time algorithm for computing
a MIS in a specific class of intersection graphs.

Motivated by general interest in the field of computational geometry and
graph theory, intersection graphs of curves in the plane have received consider-
able attention in the literature, e.g., see [3,4,5,8,9,10,13,14]. A graph is a string
graph if each vertex can be represented by a string, i.e., a curve in the Euclidean
plane, such that there is an edge connecting two vertices if and only if the cor-
responding strings intersect. A set of strings representing the vertices is called a
representation of the graph.

Most of the classical NP-hard optimization problems on graphs (such as find-
ing a maximum clique, a maximum independent set, a minimum vertex cover,
a minimum dominating set, or a minimum coloring) remain NP-hard for string
graphs even if the representation is given [7,9,11,16]. The problem of recognizing
string graphs, i.e., deciding whether a given graph is a string graph, is NP-hard,
too [9]. Finding a MIS remains NP-hard even for the yet narrower class of seg-
ment graphs, which are the intersection graphs of straight line segments in the
plane [11]. If every segment of the representation of a segment graph follows one
� This work was partially funded by the Swiss National Science Foundation (SNF

grant no. 200021-125033/1).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 155–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

156 H. Flier et al.

of k directions, we say that the graph is a k-direction segment graph. It has been
shown that the problem of computing a MIS in k-direction segment graphs is
NP-hard for every k ≥ 2 [11], whereas it is solvable in polynomial time for k = 1,
since a 1-direction segment graph is an interval graph.

Considerably less is known about the problem of computing a MIS in string
graphs if we restrict the strings to lie entirely inside a disk and to have one
endpoint on the boundary of the disk. Such a string graph is called an outerstring
graph. While finding a maximum clique is NP-hard in outerstring graphs [12],
the complexity of finding a MIS in outerstring graphs is, to the best of our
knowledge, an open problem. Our original motivation to study the problems
considered in this paper stems from searching for a polynomial time algorithm
for the latter problem, which would have interesting applications in railways [2].

We call an outerstring graph an outersegment graph if it has a representation
where every string is a straight line segment. If further every segment of the
representation follows one of k fixed directions, we say that the graph is a k-
direction outersegment graph. Up to now, the complexity of computing a MIS in
2-direction outersegment graphs has been an open problem, too. We refer to this
computational problem as MIS-2-Dir-Outer-SEG and to the class of graphs
as 2-Dir-Outer-SEG.

Let us remark that the restriction to 2-direction outersegment graphs still
allows for chordless cycles of length 5 (refer to [1] for terminology). Hence, out-
ersegment graphs are not perfect. An interesting subclass of outerstring graphs
that is neither a sub- nor a superclass of outersegment graphs is the class of
interval filament graphs, for which the problem of computing a MIS is solvable
in polynomial time [6].

In this paper we present a polynomial-time algorithm for MIS-2-Dir-Outer-

SEG if a representation of the outersegment graph is given. For the ease of
presentation, we assume that each segment is either horizontally or vertically
aligned. The presented techniques can be generalized to the case where the seg-
ments are aligned to two arbitrary directions (i.e., not only horizontally and
vertically). A sketch of how to generalize our results is given at the end of this
paper. The main ingredient of our solution is a dynamic-programming algo-
rithm that solves the problem on restricted instances where no vertical segment
attached to the upper half of the disk appears. Then, by a careful guessing of
few segments of an optimal solution, we can decompose the original problem
into four restricted subproblems where we can apply the dynamic programming
algorithm.

We leave the complexity of computing a MIS in k-direction outersegment
graphs open for k ≥ 3. To the best of our knowledge, the complexity of recog-
nizing 2-Dir-Outer-SEG graphs is open, too.

Notation and Definitions. An instance of MIS-2-Dir-Outer-SEG is a set I of
straight line segments in the plane lying in a disk D such that each segment s
has at least one endpoint on the boundary of D. We call this endpoint the disk-
endpoint of s. We assume w.l.o.g. that the other endpoint of s does not lie on
the boundary of D. We call this endpoint the free-endpoint of s.

MIS in 2-Direction Outersegment Graphs 157

To facilitate our discussion, we assume w.l.o.g. that the center of D is aligned
with the origin of a Cartesian coordinate system. Furthermore, every segment
s ∈ I is either horizontal (i.e., parallel with the x-axis) or vertical (i.e., parallel
with the y-axis). We assume w.l.o.g. that no segment lies on the x-axis or on
the y-axis. Thus, each segment is either a left-, right-, top- or bottom- segment,
depending on the location of its disk-endpoint: a horizontal segment is a left-
(right-) segment, if its disk-endpoint has a negative (positive) x-coordinate; a
vertical segment is a top- (bottom-) segment, if its disk-endpoint has a positive
(negative) y-coordinate. We denote the set of left-, right-, top-, and bottom-
segments as L, R, T , and B, respectively. These sets form a partition of I.

As our goal is to compute a MIS in the intersection graph of I, we assume
w.l.o.g. that no two segments in L have the same disk-endpoint: observe that
no MIS can contain more than one such segment; thus we can preprocess the
input by keeping in L the shortest segment of all segments with the same disk-
endpoint. Similarly, we assume the same about segments in R, T , and B. Thus,
the segments within one set of the partition do not intersect (and so form an
independent set in the underlying intersection graph). Note, however, that a
horizontal segment from L may intersect with one from R. Similarly, a vertical
segment from T may intersect with one from B. We call an instance bipartite
if at least two of the sets of the partition L, R, T , B are empty. Clearly, the
intersection graph of a bipartite instance is a bipartite graph, for which the
problem of finding a MIS can be solved in polynomial time [15]. We call an
instance tripartite if one of the sets of the partition L, R, T , B is empty. We
refer to the version of MIS-2-Dir-Outer-SEG that is restricted to tripartite
instances as tripartite MIS-2-Dir-Outer-SEG.

We distinguish between two different locations of the vertical segments: a
western vertical segment lies to the left of the y-axis, and an eastern vertical
segment lies to the right of the y-axis. Similarly, we distinguish two different
locations of the horizontal segments: a northern horizontal segment lies above
the x-axis, and a southern horizontal segment lies below the x-axis.

Finally, for a region X ⊂ D and a set of segments S, we denote by S[X] the
segments of S contained entirely in X .

Outline. In Section 2 we present a polynomial-time algorithm for tripartite
MIS-2-Dir-Outer-SEG, i.e., the restricted version of MIS-2-Dir-Outer-

SEG where one set of the partition L, R, T , B is empty. Based on this, we
present a polynomial-time algorithm for MIS-2-Dir-Outer-SEG in Section 3.

2 Solving the Tripartite MIS-2-Dir-Outer-SEG

In this section we consider tripartite instances of MIS-2-Dir-Outer-SEG, i.e.,
instances for which one of the sets L, R, T , and B is empty. Without loss of
generality, we will assume that T = ∅, i.e., that there is no top segment. In the
following we present a polynomial-time algorithm that finds a maximum inde-
pendent set in any such restricted instance. We will observe the existence of a

158 H. Flier et al.

certain decomposition of every solution into solutions of independent subprob-
lems, where every subproblem is a bipartite instance of MIS-2-Dir-Outer-

SEG. We describe this decomposition in the next section, before presenting the
actual algorithm which is based on the dynamic programming technique.

2.1 Structure of an Optimal Solution

In the following we show that an optimal solution for tripartite MIS-2-Dir-

Outer-SEG is the disjoint union of optimal solutions for a certain set of sub-
problems. Let I be an instance of tripartite MIS-2-Dir-Outer-SEG. Assume
that we are given an optimal solution OPT for I together with a partition of
the disk D into regions D1, . . . ,Dr such that each segment of OPT lies entirely
inside one of these regions. For i = 1, . . . , r, recall that I[Di] and OPT[Di]
denote the set of segments of the instance I and OPT, respectively, that lie
completely within region Di. Note that while OPT =

⋃r
i=1 OPT[Di], it holds

that I �
⋃r

i=1 I[Di] if there is a segment of I that lies in more than one of the
regions. Denote by MIS[S] a maximum independent set for a set S of segments.
For a region Di, we abbreviate MIS[I[Di]] to MIS[Di]. Clearly, it follows that
|OPT[Di]| = |MIS[Di]| for all i = 1, . . . , r.

Hence, if we can find such a partition in polynomial time such that for all
i = 1, . . . , r, a MIS[Di] can be computed in polynomial time, then we can solve
tripartite MIS-2-Dir-Outer-SEG in polynomial time. We show that such a
partition always exists before presenting our algorithm in the next section. The
argument is based on the structure of an (unknown) optimal solution OPT.
We show that a particular traversal of the bottom segments of OPT yields the
desired partition of D. We say that a bottom segment si towers above a bottom
segment sj if the y-coordinate of the free-endpoint of si is greater than that of sj .
W.l.o.g. we assume that the free-endpoints lie in general position and hence that
for each region, there is at most one segment towering above all other segments.

Lemma 1. Given an instance I of tripartite MIS-2-Dir-Outer-SEG and an
optimum solution OPT, there exists a partition D1, . . . ,Dr of the disk D into
regions such that |OPT| =

∑r
i=1 |MIS[Di]| and a MIS[Di] can be computed in

polynomial time for each i = 1, . . . , r.

Proof. Given an optimal solution OPT, we partition the disk recursively as fol-
lows, see Figure 1 for an example. At each step i of the recursion, there is an
unprocessed region Ui of the disk for which I[Ui] is tripartite. Let U0 := D be
the initial region. At each step i ≥ 1, let si be the bottom segment in Ui−1 that
towers above all other bottom segments in Ui−1. Segment si naturally divides
Ui−1 into three regions, namely Ai, Bi, and Ui, as follows.

Ai is the region (strictly) above si. Note that I[Ai] may contain bottom
segments if it does not lie completely in the northern half of D, and thus be
tripartite. In this case, however, it must hold that a MIS for I[Ai] \ B is also a
MIS for I[Ai], since by choice of si, OPT[Ai] does not contain a bottom segment.
Hence, a MIS[Ai] can be computed in polynomial time, as I[Ai] \B is bipartite.

MIS in 2-Direction Outersegment Graphs 159

U0

s1

A1

B1 U1
s1

A1

B1 U2
s2

B2

A2

Fig. 1. All three pictures depict the same set of independent segments of an optimal
solution to a tripartite instance of MIS-2-Dir-Outer-SEG. Left: Initially, the unpro-
cessed region U0 is the whole disk D. Middle: The bottom-segment s1 of an optimal
solution OPT partitions U0 into three regions A1, B1, and U1. Right: Recursively, s2,
which towers above all bottom-segments in U1, partitions U1 into three regions A2, B2,
and U2.

Bi and Ui are the regions to either side of si (and below Ai), where Bi includes
si and Ui contains the lowest point of the disk. (For example, if si is a western
bottom segment, Bi is to the left of si.) Because Bi does not contain the lowest
point of the disk, it either lies completely in the left or completely in the right
half of the disk. Hence, no two horizontal segments of I[Bi] can intersect, as
they are all either left or right segments. Thus, I[Bi] is bipartite as well.

The recursion continues by partitioning Ui if OPT[Ui] contains a bottom
segment, and stops otherwise. Let U� denote the region at which the recursion
stops. Similar to the argument for Ai above, it suffices to compute a MIS[I[U�]\
B], as OPT[U�] consists of horizontal segments only. As I[U�] \ B is bipartite, a
MIS can be computed in polynomial time.

By the choice of si, the regions Ai, Bi, i = 1, . . . ,
 and U� are a partition
of D such that each segment of OPT lies completely within one of these regions.
Hence,

|OPT| =
�∑

i=1

|MIS[Ai]| + |MIS[Bi]| + |MIS[U�]|

must hold. This completes the proof. ��
In the following, we call Ai the part above si in Ui−1, Bi the part behind si in
Ui−1, and Ui the unprocessed part of Ui−1 by si.

2.2 Algorithm for Tripartite MIS-2-Dir-Outer-SEG

From the above discussion we know that there exists a sequence of bottom
segments s1, . . . , s� that yields a partition of D into regions such that a MIS

for I can be computed in polynomial time by independently computing a MIS

for a set of bipartite subproblems induced by these regions. The partition of D
is based on the structure of an optimal solution which, of course, is unknown.

160 H. Flier et al.

l0 r0

l1
l2

l3l4 l5 l6

r1

r2
r3

r4
r5

l0 r0

l1
l2

l3l4 l5 l6

r1

r2
r3

r4
r5

li rjli′

Ul4,r2

Bl4

Al4

Fig. 2. Both figures depict the bottom segments of a (tripartite) instance of
MIS-2-Dir-Outer-SEG. Left: the western bottom-segments l0, . . . , lnl are ordered
from left to right (here, nl = 6), and the eastern bottom-segments r0, . . . , rnr are
ordered from right to left (here, nr = 5). Right: Computing T[li, rj] as T[li′ , rj] +
|MIS[Ali]| + |MIS[Bli]| for i = 4, j = 2 and i′ = 2.

Next, we develop a dynamic programming approach that allows us to find such
a partition.

To develop the algorithm, we need a few more definitions. Let sL(i) and sR(i)
denote the last visited western and eastern bottom-segment, respectively, after
step i = 1, . . . ,
, of the recursion in the proof of Lemma 1. In the following we
will use two phantom boundary segments s−∞ and s∞ to allow sL(i) and sR(i)
to be always defined: we denote by s−∞ the infinite vertical segment defined
by the equation x = −∞ (i.e, a line), and by
∞ the infinite vertical segment
x = +∞. We set sL(0) = s−∞ and sR(0) = s∞.

Observe that with these definitions, the region Ui, i = 0, . . . ,
, is defined by
sL(i) and sR(i): Ui is the region of D to the right of sL(i) and to the left of
sR(i) and below the free-endpoints of both sL(i) and sR(i). The regions Ai+1

and Bi+1 can thus be defined by Ui and the (i + 1)-th visited segment, i.e., by
sL(i), sR(i) and by either sL(i + 1) or sR(i + 1).

Let l1, . . . , lnl
be the western bottom-segments sorted by x-coordinate in in-

creasing order, and let r1, . . . , rnr be the eastern bottom-segments sorted by
x-coordinate in decreasing order. Further, let l0 be the phantom segment s−∞
and let r0 be the phantom segment s∞. See Figure 2 for illustration.

For a segment li and a segment rj we define by Uli,rj the unprocessed region
that we would obtain by the recursion if li and rj were the last visited western and
eastern bottom-segment, respectively. Thus, this is the region between segments
li and rj and below the free-endpoints of li and rj .

We will compute the table T[li, rj] for every i = 0, . . . , nl and every j =
0, . . . , nr, where T[li, rj] is the maximum number of non-intersecting segments in
the subproblem defined by the segments lying completely inside D\Uli,rj where
segments li and rj are required to be part of the solution (of the subproblem).

MIS in 2-Direction Outersegment Graphs 161

Clearly, if we have such a table at hand, we can compute the optimal number
of non-intersecting segments of the whole instance: consider the recursion in the
proof of Lemma 1 on an (unknown) optimal solution OPT. Let li ∈ OPT be
the last western and rj ∈ OPT be the last eastern bottom-segment encountered
in the sequence s1, . . . , s� of the recursion. By Lemma 1, a MIS[Uli,rj] can be
computed in polynomial time (because it suffices to compute a MIS for the
bipartite instance I[Uli,rj] \ B). Hence, |OPT| = T[li, rj] + |MIS[Uli,rj]| can be
computed in polynomial time.

As we do not know OPT, our algorithm tries all pairs li, rj ∈ B, and outputs
the maximum of the computed values T[li, rj] + |MIS[Uli,rj]| over all i, j. The
solution itself can be computed using standard book-keeping techniques.

We now show how to compute the entries of the table T[·, ·]. Again, for a pair
s, t ∈ B, we say that s towers above t if the free-endpoint of s has a greater
y-coordinate than that of t.

We set T[l0, r0] = 0. Then, for every i = 0, . . . , nl and every j = 0, . . . , nr, we
need to distinguish the following cases in order to compute the value of entry
T[li, rj]. Namely, for the case that rj towers above li, we compute

T[li, rj] = max
i′<i

li′ towers above li and rj

{T[li′ , rj] + |MIS[Ali]| + |MIS[Bli]|}, (1)

and otherwise (if li towers above rj), we compute

T[li, rj] = max
j′<j

rj′ towers above li and rj

{T[li, rj′] + |MIS[Arj]| + |MIS[Brj]|}. (2)

As in the proof of Lemma 1, Ali is the region of D between segments li′ and rj

and above the free-endpoint of li and not above the free-endpoints of li′ and rj ;
Bli is the region of D below Ali and between li′ and li, including li but not li′ . The
regions Arj and Brj are defined symmetrically. By Lemma 1, the cardinalities
of |MIS[As]| and |MIS[Bs]|, s ∈ {li, rj} can be computed in polynomial time.

Theorem 1. The table entry T[li, rj], i = 0, . . . , nl, j = 0, . . . , nr, contains
the size of an optimal solution of an instance I[D \ Uli,rj] further restricted to
contain the segments li and rj .

Proof. To prove the theorem we need to show that T[·, ·] indeed has the recur-
sive property of Equations (1) and (2). This, however, follows directly from the
existence of a decomposition as described in Section 2.1: The recursive compu-
tation of T[li, rj] takes the last visited segment x (x is the “smaller” segment
of li or rj , i.e., the one that is not towering above the other) and finds the seg-
ment that is the predecessor of x in the sequence s1, . . . , s� of bottom segments
of an unknown optimal solution OPT. This predecessor of x naturally defines,
together with x, the region Ax above x and the region Bx behind x, just as in
the recursion of Lemma 1. The correctness of the recursive definition of T then
directly follows from Lemma 1. ��
Corollary 1. There is a polynomial-time algorithm for tripartite instances of
MIS-2-Dir-Outer-SEG.

162 H. Flier et al.

3 Decomposing MIS-2-Dir-Outer-SEG

In this section we provide a polynomial time algorithm for the general setting. We
show how to decompose an arbitrary instance of MIS-2-Dir-Outer-SEG into
few tripartite instances of MIS-2-Dir-Outer-SEG. The decomposition we de-
scribe can be computed in polynomial time. Therefore, combined with the poly-
nomial time algorithm for tripartite MIS-2-Dir-Outer-SEG presented in the
previous section, it yields a polynomial time algorithm for MIS-2-Dir-Outer-

SEG. The decomposition is determined by a constant number of segments in an
optimal solution. Since we do not know these segments, we have to perform an
exhaustive search, namely by enumerating through all sets of segments whose
cardinality is bounded by a constant.

We will use the following notation. A vertical overlap is a pair of vertical
segments that cannot be separated by a horizontal line. If a vertical overlap
consists of western segments only, i.e., if it lies entirely to the left of the y-axis,
we call it a left overlap. If an overlap lies entirely to the right of the y-axis, we
call it a right overlap.

Observe that if a left overlap is part of an optimal solution OPT then there is
no right segment of OPT that intersects with the region to the left of the over-
lap. This region thus induces a tripartite instance of MIS-2-Dir-Outer-SEG.
Similarly, the region to the right of a right overlap of OPT induces a tripartite
instance of MIS-2-Dir-Outer-SEG. In the following, we show that the re-
gion between the two overlaps can be decomposed into two tripartite instances
of MIS-2-Dir-Outer-SEG. For this, we will consider special (left and right)
overlaps.

Lemma 2. Let I be an instance of MIS-2-Dir-Outer-SEG and let OPT be an
optimal solution for it. If OPT contains a left overlap, then D can be partitioned
into regions R1, R2, and R3 such that

– I[R1] is a tripartite instance of MIS-2-Dir-Outer-SEG

– OPT[R2] does not contain a left overlap
– there are segments f, c ∈ OPT s.t. OPT = OPT[R1] ∪ OPT[R2] ∪ {f, c}

Proof. Assume that OPT contains a left overlap. Each overlap consists of two
segments: the one further from the y-axis, which we call the far segment, and the
one closer to the y-axis, which we call the close segment. Let {f, c} be the left
overlap in OPT where the far segment f is the rightmost far segment occurring
in a left overlap of OPT, and where further the close segment c is the segment
that is closest to f among all c′ ∈ OPT that form a left overlap {f, c′}.

Let E be the rectangle from the free-endpoint of c to the free-endpoint of f .
Due to the choice of f and c, no segments in OPT lie within E. Let R1 and R2

be the region to the left and right of f ∪ c ∪ E, respectively, such that R1, R2,
and f ∪ c ∪ E are a partition of D. See Figure 3 for illustration.

Clearly, OPT = OPT[R1] ∪ OPT[R2] ∪ {f, c}. Since {f, c} is a left overlap,
I[R1] does not contain a right segment, and thus it is a tripartite instance of
MIS-2-Dir-Outer-SEG.

MIS in 2-Direction Outersegment Graphs 163

f

c

R1

R2

Fig. 3. Illustration for Lemma 2. A left-overlap {f, c}, yielding a tripartite subproblem
I[R1]. Due to the choice of f and c, no segment can cross the boundary of the white
rectangle.

Now let g be the chord of D containing f . Note that by the choice of f , for
each left overlap in OPT, its far segment lies to the left of or on g. Thus, no pair
of segments of OPT[R2] can form a left overlap. This completes the proof. ��

Theorem 2. Let I be an instance of MIS-2-Dir-Outer-SEG and let OPT
be an optimal solution for it. There is a set of segments S ⊆ OPT that allows
to determine in polynomial time pairwise disjoint instances I1, . . . , Ih ⊆ I of
tripartite MIS-2-Dir-Outer-SEG, such that

|OPT| = |S ∪
h⋃

i=1

OPT(Ii)|

Moreover, |S| is bounded from above by a constant.

Proof. The set S that we will construct in the following separates D into a
constant number of regions. The i’th region determines Ii as a subset of I
contained in that region. We proceed with the construction of S.

Lemma 2 shows that we may focus on the case when OPT contains neither a
left nor a right overlap: If OPT contains a left overlap then I can be decomposed
into two independent subproblems, namely a tripartite MIS-2-Dir-Outer-SEG

instance I1 and a MIS-2-Dir-Outer-SEG instance I ′, each induced by seg-
ments lying completely inside the region to the left and, respectively, right of
the overlap. Thus, it suffices to consider I′. Lemma 2 also states that I ′ admits
an optimum not containing a left overlap. Symmetrically, we can use Lemma 2
to eliminate right overlaps in the optimal solution. Hence, we further consider
only the case where OPT contains neither a left nor a right overlap.

We distinguish two cases: first, we consider the case when OPT contains a
vertical overlap, i.e., consisting of both a western and eastern vertical segment,
and then the case when OPT does not contain a vertical overlap.

164 H. Flier et al.

t

e

R1

R2

b

l

r

Fig. 4. Ilustration to Theorem 2. Segments t and b yield a separation line.

Case 1. We assume that OPT contains a vertical overlap. Let t be a top segment
in OPT with the lowest y coordinate of its free-endpoint. Let b be a bottom
segment in OPT with the highest y coordinate of its free-endpoint. Due to our
assumption that OPT contains an overlap, t and b overlap in particular. Since
there is no left and no right overlap, t and b lie on different sides of the y-axis.
We assume w.l.o.g. that t lies to the left of the y-axis and b lies to the right of the
y-axis. Let l be the horizontal line connecting the y-axis with the boundary of D
passing through the free-endpoint of t and let r be the horizontal line connecting
the y-axis with the boundary of D passing through the free-endpoint of b (see
Figure 4). Let e be the line on y axis connecting the endpoints of l and r.

Observe that there are no top segments in OPT below l or crossing l, because
a top segment in OPT below or crossing l would have the y-coordinate of its free-
endpoint lower than the y-coordinate of the free-endpoint of t, a contradiction
to the choice of t. Also, there is no top segment crossing or below r: any such
segment would form a right overlap with r, a contradiction to our assumption.
Similarly, there are no bottom segments in OPT above or crossing l or r. Since l
and r are horizontal, only vertical segments could possibly cross them. Therefore
no segments in OPT cross l or r.

Now observe, that no (horizontal) segment in OPT crosses e, as it would
have to cross either t or b. The curve consisting of l, e and r divides D into
two regions R1 and R2 that lie above and below the curve, respectively. These
regions separate OPT into two independent parts. The part of OPT contained in
R1 is an optimal solution for instance I1 = I[R1]\B. The part of OPT contained
in R2 is an optimal solution for I2 = I[R2] \ T . Both I1 and I2 are tripartite
instances of MIS-2-Dir-Outer-SEG. This completes the proof of the theorem
for Case 1.

Case 2. We assume that OPT does not contain a vertical overlap. Consider
the horizontal line l passing through the free-endpoint of the bottom segment
in OPT with the highest y-coordinate of its free-endpoint. Clearly, l separates
the top segments in OPT from the bottom segments in OPT. Thus, l divides D

MIS in 2-Direction Outersegment Graphs 165

into two regions R1 and R2 lying above and below l, respectively. These regions
separate OPT into two independent parts. Again, the part of OPT contained
in R1 is an optimal solution for instance I1 = I[R1] \ B. The part of OPT
contained in R2 is an optimal solution for I2 defined as I[R2] \ T . Both I1 and
I2 are tripartite instances of MIS-2-Dir-Outer-SEG. This completes the proof
of the theorem for Case 2 (and thus of the whole theorem). ��
Corollary 2. MIS-2-Dir-Outer-SEG can be solved in polynomial time given
a polynomial time algorithm for tripartite MIS-2-Dir-Outer-SEG.

Combining the results of the previous sections, we state our main result:

Theorem 3. MIS-2-Dir-Outer-SEG can be solved in polynomial time.

We remark that the algorithms developed in this paper require a geometric rep-
resentation of the graph, even if it is known that the graph under consideration
is a 2-Dir-Outer-SEG.

As mentioned earlier, the techniques of this paper can be generalized to the
case where the segments are aligned to two arbitrary directions. Lets us sketch
some steps of such a generalization. First, the disk can be rotated such that the
segments of one direction are horizontally aligned. Then, there is an axis, say
y′, parallel to the other direction, and an axis x′ that is orthogonal to y′. The
definitions of top and bottom segments have to be adapted to x′. The definitions
of eastern and western bottom segments, left and right segments, left and right
half of the disk, as well as the notion of a bottom segment towering above
another remain based on the y-axis, however. With these definitions, the results
of Section 2 carry over easily. Further, it is not too difficult to adapt the results
of Section 3. Some care has to be taken, however, to ensure that the choice of
segments of an overlap indeed yields a partition such that each segment of OPT
lies within exactly one region.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics Mathematics (1999)

2. Flier, H., Mihalák, M., Schöbel, A., Widmayer, P., Zych, A.: Vertex Disjoint Paths
for Dispatching in Railways. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS),
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, vol. 14, pp. 61–73 (2010)

3. Fox, J., Pach, J.: Coloring Kk-free intersection graphs of geometric objects in the
plane. In: Proceedings of the 24th ACM Symposium on Computational Geometry
(SoCG), pp. 346–354. ACM (2008)

4. Fox, J., Pach, J.: Erdős-Hajnal-type results on intersection patterns of geometric
objects. In: Győri, E., Katona, G.O.H., Lovász, L. (eds.) Horizons of Combinatorics,
vol. 17, pp. 79–103. Springer, Heidelberg (2008)

5. Fox, J., Pach, J.: A separator theorem for string graphs and its applications. Com-
binatorics, Probability and Computing 19(03), 371–390 (2010)

166 H. Flier et al.

6. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Information Processing Letters 73(5-6), 181–188 (2000)

7. Mark Keil, J.: The complexity of domination problems in circle graphs. Discrete
Applied Mathematics 42(1), 51–63 (1993)

8. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infinite.
Journal of Combinatorial Theory, Series B 52(1), 53–66 (1991)

9. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. Journal of
Combinatorial Theory, Series B 52(1), 67–78 (1991)

10. Kratochv́ıl, J., Matoušek, J.: String graphs requiring exponential representations.
Journal of Combinatorial Theory, Series B 53(1), 1–4 (1991)

11. Kratochv́ıl, J., Nešetřil, J.: INDEPENDENT SET and CLIQUE problems in
intersection-defined classes of graphs. Commentationes Mathematicae Universitatis
Carolinae 31(1), 85–93 (1990)

12. Middendorf, M., Pfeiffer, F.: The max clique problem in classes of string-graphs.
Discrete Mathematics 108(1-3), 365–372 (1992)

13. Pach, J., Tóth, G.: Recognizing string graphs is decidable. Discrete & Computa-
tional Geometry 28, 593–606 (2002)

14. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Jour-
nal of Computer and System Sciences 67(2), 365–380 (2003); Special Issue on STOC
2002

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

16. Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.)
STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)

Complexity of Splits Reconstruction

for Low-Degree Trees�

Serge Gaspers1, Mathieu Liedloff2, Maya Stein3, and Karol Suchan4,5

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
gaspers@kr.tuwien.ac.at

2 LIFO, Université d’Orléans, Orléans, France
mathieu.liedloff@univ-orleans.fr

3 CMM, Universidad de Chile, Santiago, Chile
mstein@dim.uchile.cl

4 FIC, Universidad Adolfo Ibáñez, Santiago, Chile
karol.suchan@uai.cl

5 WMS, AGH - University of Science and Technology, Krakow, Poland

Abstract. Given a vertex-weighted tree T , the split of an edge xy in
T is min{sx, sy} where sx (respectively, sy) is the sum of all weights of
vertices that are closer to x than to y (respectively, closer to y than to
x) in T . Given a set of weighted vertices V and a multiset of splits S , we
consider the problem of constructing a tree on V whose splits correspond
to S . The problem is known to be NP-complete, even when all vertices
have unit weight and the maximum vertex degree of T is required to be
no more than 4. We show that

– the problem is strongly NP-complete when T is required to be a path.
For this variant we exhibit an algorithm that runs in polynomial time
when the number of distinct vertex weights is constant. We also show
that

– the problem is NP-complete when all vertices have unit weight and
the maximum degree of T is required to be no more than 3, and

– it remains NP-complete when all vertices have unit weight and T is
required to be a caterpillar with unbounded hair length and maxi-
mum degree at most 3.

Finally, we shortly discuss the problem when the vertex weights are not
given but can be freely chosen by an algorithm.

The considered problem is related to building libraries of chemical
compounds used for drug design and discovery. In these inverse problems,
the goal is to generate chemical compounds having desired structural
properties, as there is a strong correlation between structural properties,
such as the Wiener index, which is closely connected to the considered
problem, and biological activity.

� The authors acknowledge the support of Conicyt Chile via projects Fondecyt
11090390 (M.L., K.S.), Fondecyt 11090141 (M.S.), Anillo ACT88 (K.S.), and Basal-
CMM (S.G., M.S., K.S.). The first author acknowledges partial support from the
European Research Council (COMPLEX REASON, 239962). The second and fourth
authors acknowledge the support of the French Agence Nationale de la Recherche
(ANR AGAPE ANR-09-BLAN-0159-03).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 167–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 S. Gaspers et al.

1 Introduction

In this paper, we consider trees T = (V, E) where integer weights are associated
to vertices by a function ω : V → N, where N denotes the set of natural numbers
excluding 0.

Definition 1. Let T be a tree and ω : V → N be a function. The split of an
edge e in T is the minimum of Ω(T1) and Ω(T2), where T1 and T2 are the two
trees obtained by deleting e from T , and Ω(Ti) =

∑
v∈Ti

ω(v). We use S(T) to
denote the multiset of splits of T .

We consider the problem of reconstructing a tree with a given multiset of splits
and a given set of weighted vertices.

Weighted Splits Reconstruction (WSR): Given a set V of n ver-
tices, a weight function ω : V → N, and a multiset S of integers, is there
a tree T whose multiset of splits is S (i.e. S(T) = S)?

The Weighted Splits Reconstruction for Trees of Maximum Degree

k problem (WSRk) is defined in the same way, except that we restrict T to have
maximum degree at most k. When we require T to belong to a class of trees
T , the problem is called Weighted Splits Reconstruction for T . When
ω assigns unit weights to the vertices, the problem is simply called Splits Re-

construction (SR). The Splits Reconstruction for Trees of Maximum

Degree k problem (SRk) and the Splits Reconstruction for T are the
obvious unweighted counterparts of the weighted variants defined above.

Related Work. In the field of Chemical Graph Theory [2,3,18], molecules are
modeled by graphs in order to study the physical properties of chemical com-
pounds. A chemical graph is a graph, where vertices represent atoms of a chem-
ical compound and edges the chemical bonds between them. Within the area
of quantitative structure-activity relationship (QSAR), several structural mea-
sures of chemical graphs were identified that quantitatively correlate with a well
defined process, such as biological activity or chemical reactivity. Probably the
most widely known example is the Wiener index (see [12]): the sum of the dis-
tances in a graph between each pair of vertices, where the distance between two
vertices is the number of edges on a shortest path from one to the other. Wiener
[19] found a strong correlation between the boiling points of paraffins and the
Wiener index. From then on, many other topological (using the information of
the chemical graph) and topographical (using the information of the chemical
graph and the location of its vertices in space) indices were introduced and their
correlation with various other biological activities was investigated.

In Combinatorial Chemistry, drug design is facilitated by building libraries
of molecules that are structurally related (via the Wiener index or any of the
other numerous indices). We face inverse problems where the goal is to design
new compounds that have a prescribed structural information (see also [6]).

Goldman et al. [11] study problems related to the design of combinatorial
libraries for drug design from an algorithmic and complexity-theoretic point of

Complexity of Splits Reconstruction for Low-Degree Trees 169

view, following the heuristic approaches of [17] and [10]. They show that for every
positive integer W , except 2 and 5, there exists a graph with Wiener index W .
They also show that every integer, except a finite set, is the Wiener index of some
tree. For constructing a tree (of unbounded or bounded maximum degree) with
a given Wiener index, they devise pseudo-polynomial dynamic programming al-
gorithms. Goldman et al. also introduce the Splits Reconstruction problem
and recall a result due to Wiener [19]: the Wiener index of a tree T on n vertices
with unit weights is

∑
s∈S(T) s · (n− s). They show that SR is NP-complete and

give an exponential-time algorithm without running time analysis.
As it is not reasonable to construct chemical trees with arbitrarily high vertex

degrees, Li and Zhang [15] studied SR4 and showed that it is also NP-complete.
Their algorithm to construct a tree with maximum degree at most 4 to solve
SR4 runs in exponential time (no running time analysis is provided) and creates
weighted vertices in intermediate steps.

In order to reconstruct glycans or carbohydrate sugar chains, Aoki-Kinoshita
et al. [1] study the reconstruction of a node-labeled supertree from a set of node-
labeled subtrees. They give a 6-approximation algorithm for this problem, which
generalizes the smallest superstring problem. We refer to [4] surveying results
on the Wiener index for trees.

Our Results. By the result of Li and Zhang [15], SR4 is NP-complete, while
SR2 is trivially in P. We close this gap by showing that SR3 is NP-complete by
a reduction from Numerical Matching with Target Sums (defined below).
It is even NP-complete for caterpillars with unbounded hair length. Identifying
small classes of trees for which the problem is NP-complete may be important
for future investigations in the spirit of the deconstruction of hardness proofs [14]
which aim at identifying parameters for which the problem becomes tractable if
these parameters are small.

Our main result proves that WSR2 is strongly NP-complete by a reduction
from a variant of Numerical Matching with Target Sums in which all
integers of the input are distinct. For the case where the weights of the vertices
are chosen from a small set of values, our dynamic-programming algorithm solves
WSR2 in time O(nk+3 · k), where k is the number of distinct vertex weights.

Definitions. A caterpillar is a tree consisting of a path, called its backbone, and
paths attached with one end to the backbone. Its hair length is the maximum
distance from a leaf to the closest vertex of the backbone. A star K1,k is a tree
with k leaves and one internal vertex, called the center. In our hardness proofs,
we reduce from the following problem (problem [SP17] in [9]).

Numerical Matching with Target Sums (NMTS): Given three dis-
joint multisets A,B, and S = {s1, . . . , sm}, each containing m elements
from N, can A ∪ B be partitioned into m disjoint sets C1, C2, . . . , Cm,
each containing exactly one element from each of A and B, such that,
for 1 ≤ i ≤ m,

∑
c∈Ci

c = si?

Due to space constraints, the proofs of some statements are omitted in this
extended abstract.

170 S. Gaspers et al.

2 WSR2 is Strongly NP-Complete

In this section, we show that WSR2 is strongly NP-complete. First we introduce
a new problem that is polynomial-time-reducible to WSR2, and then show that
this new problem is strongly NP-hard.

Scheduling with Common Deadlines (SCD): Given n jobs with
positive integer lengths j1, . . . , jn and n deadlines d1 ≤ . . . ≤ dn, can
the jobs be scheduled on two processors P1 and P2 such that at each
deadline there is a processor that finishes a job exactly at this time, and
processors are never idle between the execution of two jobs?

To reinforce the intuition on this problem one may imagine that we want to
satisfy delivery deadlines and avoid using any warehouse space to store a product
between its fabrication and the delivery date. There is no restriction as to which
product should be delivered at a given time. (Another possibility is imagining
computer scientists scheduling paper production to fit conference deadlines.)

Given an instance (j1, . . . , jn, d1, . . . , dn) for SCD, we construct an instance
for WSR2 as follows. For each job ji, 1 ≤ i ≤ n, create a vertex vi with weight
ω(vi) = ji. For each deadline di, 1 ≤ i ≤ n−1, create a split di. We may assume
that

∑n
i=1 ji = dn−1 + dn, otherwise we add a deadline dn+1 = dn and a job of

length 2dn −∑n
i=1 ji.

Suppose the path P = (vπ(1), vπ(2), . . . , vπ(n)) is a solution to WSR2. Say
{vπ(�), vπ(�+1)} is the edge associated to the split dn−1. We construct a solution
for SCD by assigning the jobs jπ(1), jπ(2), . . . , jπ(�) to processor P1, and the jobs
jπ(n), jπ(n−1), . . . , jπ(�+2), jπ(�+1) to processor P2, in this order. Note that then,
one of the jobs jπ(�), jπ(�+1) ends at dn−1, and the other at −dn−1+

∑n
i=1 ji = dn,

which is as desired.
On the other hand, if SCD has a solution, then WSR2 has a solution as well,

because the previous construction is easily inverted. Visually, the list of jobs of
P2 is reversed and appended to the list of jobs of P1. Job lengths correspond to
vertex weights and deadlines correspond to splits (the last deadline where a job
from P1 finishes is merged with the last deadline where a job from P2 finishes).
Thus, SCD is polynomial-time-reducible to WSR2.

Lemma 1. SCD ≤p WSR2.

In the remainder of this section, we show that dNMTS is polynomial-time-
reducible to SCD. The dNMTS problem is equal to the NMTS problem, except
that all integers in A∪B ∪S are pairwise distinct. This variant has been shown
to be strongly NP-hard by Hulett et al. (see corollary 8 in [13]). As the proof
becomes somewhat simpler, we use dNMTS instead of NMTS for our reduction.

Let us first give a high level description of the main ideas of the reduction. For
a dNMTS instance (A, B, S), the elements of A∪B will be encoded as jobs, and
the elements of S will be encoded as deadlines. A convenient way to represent an
element s ∈ S is by introducing segments which are delimited to the left and the
right by double deadlines, and whose distance is equivalent to s. The elements

Complexity of Splits Reconstruction for Low-Degree Trees 171

of A∪B∪S are blown up by well-chosen additive factors that preserve solutions
and make sure that the length of each segment can only be met by the sum of
exactly two job-lengths, one corresponding to an element of A and the other to
an element of B.

Our reduction will create an instance whose solution assigns, in each seg-
ment, one x-job (a job corresponding to an A-element) and one y-job (a job
corresponding to a B-element) to the same processor, such that these two jobs
are the only jobs executed on this processor in this segment, thus providing a so-
lution to dNMTS. W.l.o.g., the x-job is scheduled first. As we must not introduce
any restriction which x-jobs can be assigned to which segments, we introduce a
deadline for each length of an x-job; these are the real deadlines. We refer to the
x- and y-jobs as green jobs. The job lengths were blown up such that in each
segment, exactly one processor starts with a green x-job, and in each segment,
exactly one processor ends by executing a green y-job. In each segment, the green
jobs must not overlap; this is achieved by multiplying all deadlines created so
far and the corresponding job lengths by a factor 2, and introducing fake dead-
lines at odd positions one unit before the real deadlines. If an x-job and a y-job
overlapped, there would be no job ending at the fake deadline preceding the real
deadline at which the x-job ends, as all green jobs have even length and all real
deadlines and double deadlines are even. Blue, red, and black jobs are created
to meet all deadlines on the processor that is not currently executing green jobs.
The blow-up of the elements of A∪B ∪S ensures that these jobs cannot equate
the green jobs (except the black jobs whose lengths might equal the lengths of
green y-jobs, but, w.l.o.g., one can assign them to the last part of each segment
of the processor not executing a green job). That none of these jobs is executed
between two green jobs within a segment is ensured as the sum of all green job
lengths equals the sum of the lengths of the segments. This summarizes the re-
duction and gives the reasons for the different elements of the construction. Let
us now turn to the formal reduction.

Let (A, B, S) be an instance for dNMTS. We suppose, w.l.o.g., that
∑m

i=1 si =∑
x∈A∪B x, otherwise (A, B, S) is trivially a No-instance for dNMTS. Let A =

{a1, . . . , am} and B = {b1, . . . , bm}. We also assume, w.l.o.g., that ai < ai+1,
bi < bi+1, si < si+1, for all i ∈ {1, . . . , m − 1}, that am < bm, and that sm ≤
am + bm.

First, we construct an equivalent instance (X, Y, Z) for dNMTS. Each of X :=
{x1, . . . , xn}, Y := {y1, . . . , yn}, and Z := {z1, . . . , zn} has n := m + 1 elements:

for i ∈ {1, . . . , n − 1},
xi := 2 · (ai + (bm + 2)), xn := 2 · (am + 1 + (bm + 2)),
yi := 2 · (bi + 3 · (bm + 2)), yn := 2 · (bm + 1 + 3 · (bm + 2)),
zi := 2 · (si + 4 · (bm + 2)), and zn := 2 · (am + bm + 2 + 4 · (bm + 2)).

The elements of X , Y , and Z have the following properties.

Property 1. Each element of X ∪ Y ∪ Z is an even positive integer.

172 S. Gaspers et al.

Property 2. For every i ∈ {1, . . . , n − 1}, we have that xi < xi+1, that yi <
yi+1, and that zi < zi+1.

Property 3. For every i ∈ {1, . . . , n}, we have

2 · bm + 4 ≤ xi ≤ 4 · bm + 4,

6 · bm + 12 ≤ yi ≤ 8 · bm + 14, and
8 · bm + 16 ≤ zi ≤ 12 · bm + 18.

In particular, Property 3 implies that y1 > xn, that z1 > yn, and that 2 ·y1 > zn.
Properties 1–3 easily follow by construction of X, Y , and Z.

Property 4. If k and � are integers such that xk + y� = zn, then k = � = n.

Property 4 holds because xn and yn are the only elements of X and Y , resp.,
that are large enough to sum to zn.

Property 5. Let p, q ∈ X ∪ Y , p ≤ q, and z ∈ Z. If p + q = z, then p ∈ X and
q ∈ Y .

By Property 3, the sum of any two X-elements is smaller and the sum of any
two Y -elements is larger than any element of Z.
For our SCD instance, we create the following deadlines:

– real deadlines: ri,j := xi +
∑j

k=1 zk, for each j ∈ {0, . . . , n − 1} and each
i ∈ {1, . . . , n},

– fake deadlines: fi,j := ri,j − 1, for each j ∈ {0, . . . , n − 1} and each i ∈
{1, . . . , n}, and

– sum deadlines: two deadlines ds1,j := ds2,j :=
∑j

k=1 zk, for each j ∈
{1, . . . , n}.

The sum deadlines we just defined partition the interval [0, ds1,n] into n segments
Ij := [ds1,j−1, ds1,j], j = 1, . . . n, where for convenience, we let ds1,0 = 0. We
create jobs with the following lengths, where x0 = 0 :

– green x-jobs: xi, for each i ∈ {1, . . . , n},
– green y-jobs: yi, for each i ∈ {1, . . . , n},
– blue jobs: n · (n − 1) times a job of length 1,
– red fill jobs: n−1 times a job of length xi −1−xi−1, for each i ∈ {1, . . . , n},
– red overlap jobs: xi − xi−1, for each i ∈ {1, . . . , n},
– black fill jobs: zi − xn for i ∈ {1, . . . , n − 1}, and
– a black overlap job: zn − xn + 1.

To illustrate these definitions, we start by showing that if we have a Yes-
instance (X, Y, Z) for dNMTS, then we have an SCD Yes-instance as well. Let
C1, C2, . . . , Cn be n couples such that Cj = {xπ1(j), yπ2(j)} and xπ1(j) + yπ2(j) =
zj, j ∈ {1, . . . , n}, for two permutations π1 and π2 of the set {1, . . . , n}. We
construct a solution for SCD. Let us construct the schedules for P1 and P2. For
each j ∈ {1, . . . , n − 1},

Complexity of Splits Reconstruction for Low-Degree Trees 173

r1,j−1 r2,j−1 rπ1(j)−1,j−1 rπ1(j),j−1 rπ1(j)+1,j−1 rn,j−1

f1,j−1 f2,j−1 fπ1(j),j−1 fπ1(j)+1,j−1

ds1,j−1

ds2,j−1

ds1,j

ds2,j

xπ1(j) yπ2(j) . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

P1

P2

Fig. 1. How jobs are assigned to processors in the SCD instance in segment j < n.
(The patterns of the jobs are the following: Red jobs are dotted, blue jobs are hatched,
black jobs are cross-hatched, and green jobs have no pattern.)

– assign the green x-job xπ1(j) to the interval [ds1,j−1, rπ1(j),j−1] of P1,
– assign the green y-job yπ2(j) to the interval [rπ1(j),j−1, ds1,j] of P1,
– assign a red fill job of length x1 − 1 to the interval [ds1,j−1, f1,j−1] of P2,
– for every i ∈ {1, . . . , n−1}\π1(j), assign a red fill job of length xi+1−1−xi

to the interval [ri,j−1, fi+1,j−1] of P2,
– for every i ∈ {1, . . . , n}\π1(j), assign a blue job to the interval [fi,j−1, ri,j−1]

of P2,
– assign a red overlap job of length xπ1(j)+1 −xπ1(j) to the interval [fπ1(j),j−1,

fπ1(j)+1,j−1] of P2, and
– assign a black fill job of length zj − xn to the interval [rn,j−1, ds1,j] of P2.

It only remains to assign jobs to the last segment. The last segment of P1 contains
the green x-job xn and the green y-job yn, in this order. The last segment of
P2 contains a red fill job of length x1 − 1, a blue job, a red fill job of length
x2 − 1 − x1, a blue job, . . ., a red fill job of length xn − 1 − xn−1, and the black
overlap job, in this order. See Fig. 1 for an illustration.

Now suppose the SCD instance is a Yes-instance. We will show some struc-
tural properties of any valid assignment of jobs to the processors, which will help
to extract a solution for our original dNMTS instance. We will show that in each
segment Ij , any valid solution for the SCD instance has exactly one green x-job
xk and exactly one green y-job y�, and xk and y� sum to zj .

Consider a valid assignment of the jobs to the processors P1 and P2. As two
jobs with the same length are interchangeable, when we encounter a job whose
length belongs to more than one category (for example “black fill” and “green
y”) we may choose in this case, w.l.o.g., to which category the job belongs.

Claim 1. A black fill job is assigned to each interval [rn,j , ds1,j+1], j ∈
{0, . . . , n − 2}.

This uses up all black fill jobs.

Claim 2. The green y-job yn is assigned to the interval [rn,n−1, ds1,n].

Claim 3. The black overlap job is assigned to the interval [fn,n−1, ds1,n].

174 S. Gaspers et al.

This uses up all black jobs. Now, the only jobs left whose length is between
6bm + 12 and 8bm + 14 are the green y-jobs y1, . . . , yn−1.

Claim 4. For each � ∈ {1, . . . , n − 1}, the green y-job y� is assigned to an
interval [ri,j−1, ds1,j] for some i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n − 1}.

Proof. Each job is assigned to an interval inside some segment, as the double
deadlines prevent jobs to span more than one segment. Suppose the green y-job
y� is assigned to segment p. As ds1,p + y� > ds1,p + xn, by Properties 2 and 3,
and the deadline following rn,p = ds1,p +xn is ds1,p+1, it must be that the green
y-job y� finishes at ds1,p+1. Moreover, ds1,p+1 − y� is equal to a real deadline as
ds1,p+1 − y� is even. ��
Each of the 2n jobs that have been assigned so far finish at a double deadline
ds1,j , ds2,j . Thus, no other jobs may end at a double deadline.

Claim 5. A red fill job of length x1 − 1 is assigned to each interval [ds1,j , f1,j],
0 ≤ j ≤ n − 1.

This uses up all red fill jobs of length x1 − 1.

Claim 6. For each � ∈ {1, . . . , n}, the green x-job x� is assigned to an interval
[ds1,j , ri,j] for some i ∈ {1, . . . , n} and j ∈ {0, . . . , n − 1}.

By Claims 2, 4, and 6, and since we have the same amount of segments as green
x-jobs, resp. green y-jobs, we obtain that each segment Ij , 1 ≤ j ≤ n,, contains
exactly one green x-job and exactly one green y-job.

Claim 7. For j ∈ {1, . . . , n}, the green x-job and the green y-job in the segment
Ij do not overlap.

Proof. Suppose otherwise, that is, suppose there is a j ∈ {1, . . . , n} such that
Ij contains a green x-job, say x�, and a green y-job, say yk, that overlap (i.e.
the intervals they are assigned to overlap). Since x� ends at a real deadline by
Claim 6 and yk starts at a real deadline by Claim 4, no job ends at the fake
deadline situated at ds1,j−1 + x� − 1, which contradicts the validity of the SCD

solution. ��
The last claim implies that in each segment Ij , 1 ≤ j ≤ n, there is a green x-job
x�j and a green y-job ykj which together have the same size as the interval.
Hence the couples Cj = {a�j , bkj}, 1 ≤ j ≤ n, form a solution of dNMTS. Thus,
we have the following lemma.

Lemma 2. dNMTS ≤p SCD.

Our main theorem follows from the strong NP-hardness of dNMTS, Lemmata
1 and 2, and the membership of WSR2 in NP, which is easily verified as the
certificate is a path and an assignment of the splits to its edges, all of which can
be encoded in polynomial space.

Theorem 1. WSR2 is strongly NP-complete.

Corollary 1. Splits Reconstruction for Caterpillars of Unbounded

Hair-Length and Maximum Degree 3 is NP-complete.

Complexity of Splits Reconstruction for Low-Degree Trees 175

3 Algorithm for WSR2 with Few Distinct Vertex Weights

Let k = |{ω(v) : v ∈ V }| denote the number of distinct vertex weights in an
instance (V, ω,S) for WSR2. We exhibit a dynamic programming algorithm for
WSR2 that works in polynomial time when k is a constant. Moreover, standard
backtracking can be used to actually construct a solution, if one exists.

Suppose |V | = n and the multiset of splits, S, contains the splits s1 ≤
s2 . . . ≤ sn−1. Let w1 < w2 . . . < wk denote the distinct vertex weights and
m1, m2, . . . , mk denote their respective multiplicities, i.e. mi = |{v ∈ V : ω(v) =
wi}| for all i ∈ {1, 2, . . . , k}.

Our dynamic programming algorithm computes the entries of a boolean table
A. The table A has an entry A[p, WL, WR, v1, v2, . . . , vk] for each integer p with
1 ≤ p ≤ n − 1, each two integers WL, WR ∈ S, and each vi ∈ {0, 1, . . . , mi},
where i ∈ {1, 2, . . . , k}. The entry A[p, WL, WR, v1, v2, . . . , vk] is set to true iff
there is an assignment of the splits s1, s2, . . . , sp to the � leftmost edges and the
r rightmost edges of the path Pn on n vertices, such that

– p = � + r;
– v1 weights w1, v2 weights w2, . . . , and vk weights wk are assigned to the �

leftmost and the r rightmost vertices of Pn such that each split assigned to
the left (respectively to the right) part of the path corresponds to the sum of
the vertex weights assigned to vertices to the left (respectively to the right)
of this split; and

– WL is equal to the value of the �th split from the left and WR is equal to the
rth split from the right.

Intuitively, our algorithm assigns splits and weights by starting from both end-
points of the path and trying to meet these two sub-solutions.

For the base case, set A[0, WL, WR, v1, v2, . . . , vk] to true if WL = WR = v1 =
v2 = . . . = vk = 0 and to false otherwise. We compute the remaining entries of
A by increasing values of p using the following recurrence.

A[p, WL, WR, v1, v2, . . . , vk] =
k∨

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A[p − 1, WL − wi, WR, v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk]
∨A[p − 1, WL, WR − wi, v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk]

In the previous recurrence, each table entry that does not exist is set to false.
The final result of the algorithm is computed by evaluating the expression∨

WL,WR∈S
i∈{1,2,...,k}

(WL≤wi+WR) ∧ (WR≤wi+WL)

A[|S|, WL, WR, m1, m2, . . . , mi−1, mi−1, mi+1, mi+2, . . . , mk].

Finally, we establish the following theorem.

Theorem 2. WSR2 can be solved in time O(nk+3 · k), where k is the number
of distinct vertex weights of any input instance (V, ω,S) and n = |V |.

176 S. Gaspers et al.

4 SR3 is NP-Complete

In this section we show that Splits Reconstruction with unit weights is NP-
complete for trees with maximum degree 3. Our polynomial-time reduction is
done from the strongly NP-complete NMTS problem recalled in Section 1. This
problem remains NP-complete even if each integer of the NMTS instance is at
most p(m), where p is a polynomial and m is the length of the description of
the instance. Let us just mention that the next theorem does not immediately
follow from Corollary 1.

Theorem 3. SR3 is NP-complete.

Proof. Let Ã = {ã1, ã2, . . . , ãm}, B̃ = {b̃1, b̃2, . . . , b̃m} and S̃ = {s̃1, s̃2, . . . , s̃m}
be an instance of NMTS. Let C = max{x : x ∈ Ã ∪ B̃} be the maximum over
Ã ∪ B̃. W.l.o.g., we construct the following equivalent NMTS instance:

ai := ãi + 2 + 3C, 1 ≤ i ≤ m,

bi := b̃i + 3 + 5C, 1 ≤ i ≤ m, and
si := s̃i + 5 + 8C, 1 ≤ i ≤ m.

Let A =
⋃

1≤i≤m{ai}, B =
⋃

1≤i≤m{bi}, and S =
⋃

1≤i≤m{si}. Clearly, the
instance (Ã, B̃, S̃) has a solution iff the instance (A, B, S) has a solution.

Now we describe an instance (V,S) of SR3, which is a Yes-instance iff the
previous instance (A, B, S) of NMTS is a Yes-instance (see also Figure 2).

Let n = 2m− 2 +
∑m

i=1 ai +
∑m

i=1 bi be the number of vertices in V ; we recall
that they have unit weight. The multiset S of splits is defined as follows.

– For each value si, 1 ≤ i ≤ m, the value 1 + si is added to S and we refer to
these splits as red splits.

– For each value si, 2 ≤ i ≤ m − 2, the value (i − 1) +
∑i

j=1(1 + sj) is added
to S and we refer to these splits as black splits.

1+s1

1+
s 2

3+s1+s2 5+s1+s2+s3 7+s1+s2+s3+s4

1+
s 3

1+
s 4

path of length aj
(green splits)

path of length bk
(blue splits)

aj + bk = s1

1+sm

1+
sm

-1
aj

b j

black splits

red splits red splits

red splits

Fig. 2. A tree with maximum degree 3 representing a solution to a SR3 instance
constructed as described in the proof of Theorem 3

Complexity of Splits Reconstruction for Low-Degree Trees 177

– For each value ai, 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are added to S and
we refer to these splits as green splits.

– For each value bi, 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are added to S and we
refer to these splits as blue splits.

Finally each value x of S is replaced by min(x, n − x).

Lemma 3. (A, B, S) is a Yes-instance for NMTS if and only if (V, ω : V →
{1},S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. ��

5 Freely Choosable Weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V, E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 4. ChWSR always admits a solution.

6 Conclusion

In Section 3, we have shown that, in the framework of parameterized complexity
[5,8,16], WSR2 is in XP when parameterized by the number of distinct vertex
weights. A generalization of this problem is W[1]-hard [7], but it remains open
whether this problem is fixed parameter tractable. For practical purposes, it
would further be important to identify other quantities that are small in prac-
tice (e.g. the number of leaves, the diameter of the tree, or topological indices),
and investigate the multivariate complexity of the considered problems param-
eterized by combinations of these quantities.

There is a large contrast between the complexities of WSR, where we are given
n vertex weights, and ChWSR, where we can freely choose the vertex weights,
or, alternatively, we can choose the vertex weights from an infinite multiset
containing n times each element of N. It would be interesting to know some
restrictions on the multiset of vertex weights such that the problem becomes
tractable with respect to interesting parameterizations. Ideally, these restrictions
should be consistent with the applications in drug design and discovery.

Acknowledgment. We thank Ming-Yang Kao for communicating this problem.

References

1. Aoki-Kinoshita, K.F., Kanehisa, M., Kao, M.-Y., Li, X.-Y., Wang, W.: A 6-
Approximation Algorithm for Computing Smallest Common Aon-Supertree with
Application to the Reconstruction of Glycan Trees. In: Asano, T. (ed.) ISAAC
2006. LNCS, vol. 4288, pp. 100–110. Springer, Heidelberg (2006)

178 S. Gaspers et al.

2. Balaban, A.T.: Chemical Applications of Graph Theory. Academic Press, Inc.
(1976)

3. Bonchev, D., Rouvray, D.H.: Chemical Graph Theory: Introduction and Funda-
mentals. Taylor & Francis (1991)

4. Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index of trees: Theory and
applications. Acta Applicandae Mathematicae 66(3), 211–249 (2001)

5. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg
(1999)

6. Faulon, J.-L., Bender, A.: Handbook of Chemoinformatics Algorithms, 1st edn.
Chapman and Hall/CRC (2010)

7. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the Number of
Numbers. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp.
123–134. Springer, Heidelberg (2010)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

10. Gillet, V.J., Willett, P., Bradshawand, J., Green, D.V.S.: Selecting combinatorial
libraries to optimize diversity and physical properties. Journal of Chemical Infor-
mation and Computer Sciences 39(1), 169–177 (1999)

11. Goldman, D., Istrail, S., Lancia, G., Piccolboni, A., Walenz, B.: Algorithmic strate-
gies in combinatorial chemistry. In: SODA, pp. 275–284 (2000)

12. Hammer, P.L. (ed.): Special issue on the 50th anniversary of the Wiener index.
Discrete Applied Mathematics, vol. 80. Elsevier (1997)

13. Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree se-
quences: Maximization is easy, minimization is hard. Operations Research Let-
ters 36(5), 594–596 (2008)

14. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing Intractability: A
Case Study for Interval Constrained Coloring. In: Kucherov, G., Ukkonen, E. (eds.)
CPM 2009 Lille. LNCS, vol. 5577, pp. 207–220. Springer, Heidelberg (2009)

15. Li, X., Zhang, X.: The edge split reconstruction problem for chemical trees is
NP-complete. MATCH Communications in Mathematical and in Computer Chem-
istry 51, 205–210 (2004)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

17. Sheridan, R.P., Kearsley, S.K.: Using a genetic algorithm to suggest combinatorial
libraries. Journal of Chemical Information and Computer Sciences 35(2), 310–320
(1995)

18. Trinajstić, N.: Chemical Graph Theory, 2nd edn. CRC Press (1992)
19. Wiener, H.: Structural determination of paraffin boiling points. Journal of the

American Chemical Society 69(1), 17–20 (1947)

Empires Make Cartography Hard:

The Complexity of the Empire Colouring
Problem

Andrew R.A. McGrae and Michele Zito

Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK
{A.McGrae,M.Zito}@liverpool.ac.uk

Abstract. We study the empire colouring problem (as defined by Percy
Heawood in 1890) for maps containing empires formed by exactly r > 1
countries each. We prove that the problem can be solved in polynomial
time using s colours on maps whose underlying adjacency graph has no
induced subgraph of average degree larger than s/r. However, if s ≥ 3,
the problem is NP-hard for forests of paths of arbitrary lengths (if s < r)
for trees (if r ≥ 2 and s < 2r) and arbitrary planar graphs (if s < 7 for
r = 2, and s < 6r − 3, for r ≥ 3). The result for trees shows a perfect
dichotomy (the problem is NP-hard if 3 ≤ s ≤ 2r−1 and polynomial time
solvable otherwise). The one for planar graphs proves the NP-hardness
of colouring with less than 7 colours graphs of thickness two and less
than 6r − 3 colours graphs of thickness r ≥ 3.

1 Introduction

Let r and s be fixed positive integers. Assume that the n vertices of a planar
graph G are partitioned into blocks (or empires) each containing exactly r ver-
tices. The (s, r)-colouring problem (s-COLr) asks for a vertex colouring of G
that uses at most s colours, never assigns the same colour to adjacent vertices
in different empires and, conversely, assigns the same colour to all vertices in
the same empire, disregarding adjacencies. s-COL1 coincides with the classical
vertex colouring problem on planar graphs. The generalization for r ≥ 2 was de-
fined by Heawood [10] in the same paper in which he refuted a previous “proof”
of the famous Four Colour Theorem. It has since been shown that 6r colours are
always sufficient and in some cases necessary to solve this problem [12].

In [17] (also see [16]), we proved that 2r colours suffice and are sometimes
needed to colour a collection of empires defined in an arbitrary tree. We also
looked at the proportion of (s, r)-colourable trees on n vertices. We showed that,
as n tends to infinity, for each r there exists a value sr such that almost no tree
can be coloured with at most sr colours and, conversely, for s sufficiently larger
than sr, s colours are sufficient with (at least) constant positive probability. Later
on [5] we improved on this showing that, as n tends to infinity, the minimum
value s for which a random tree is (s, r)-colourable is concentrated in a very short
interval with high probability. Although our investigation considerably expanded

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 179–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

180 A.R.A. McGrae and M. Zito

the state of knowledge on s-COLr, it failed to shed light on its computational
complexity. Heawood [10] was the first to argue that there is a simple algorithm
that can find a (6r, r)-colouring in any planar graph G in polynomial time. The
same process uses at most 2r colours if G is a tree. But what if we only have r
available colours? How difficult is it to decide whether G has an (r, r)-colouring?
In this paper we show that s-COLr can be solved in polynomial time on planar
graphs containing no induced subgraph of average degree greater than s/r. This
implies that, for instance, (2r − 1)-COLr (resp. (6r − 1)-COLr) can be solved
in polynomial time on forests consisting of paths of length at most 2r − 1 (resp.
planar graphs with components of size at most 12r). Unfortunately, the outcome
of our investigation seems to indicate that such algorithmic results cannot be
extended much further. If s ≥ 3, we prove that, if no bound is known on the
length of the paths, s-COLr on paths is NP-hard if s < r. Furthermore, the
hardness extends to s < 6r − 3 (resp. s < 7) when r ≥ 3 (resp. for r = 2) on
arbitrary planar graphs. Finally, for trees, our argument entails a nice dichotomy:
s-COLr is NP-hard for s ∈ {3, . . . , 2r − 1} and solvable in polynomial time for
any other positive value of s.

The hardness proofs mentioned above hinge on the fact that the connectivity
within empires has no effect on the graph colourability. Essentially, to find an
(s, r)-colouring in a planar graph G, it suffices to be able to colour with at most
s distinct colours (in such a way that no two distinct vertices connected by an
edge receive the same colour) its reduced graph Rr(G). This is a (multi)graph
obtained by contracting each empire to a distinct pseudo-vertex and adding an
edge between a pair of pseudo-vertices u and v for each edge connecting two
vertices in the original graph, one belonging to the empire represented by u, the
other one to that represented by v. The algorithmic results are based on the
use of simple minimum degree greedy colouring strategies [10] or more refined
heuristics providing algorithmic proofs (see [9, Theorem 7.9] or [14, Exercises
9.12, 9.13]) of the well-known Brooks theorem [3] on such reduced graphs.

The reader at this point may question the reasons for studying this type of
colourings. Our main interest in the problem comes from its relationship with
other important colouring problems. Each instance of s-COLr can be translated
to an instance of the classical colouring problem, but it is not clear to what
extent the two problems are equivalent. The empire colouring problem is related
to the problem of colouring graphs of given thickness (a graph has thickness t
[11], if t is the minimum integer such that its edges can be partitioned into at
least t planar graphs). Bipartite graphs can have high thickness but only need
two colours, and on the other hand a graph of thickness t may have chromatic
number as large as 6t. Theorem 9 in this paper implies that deciding whether a
graph of thickness t ≥ 3 can be coloured with s < 6t − 3 colours is NP-hard.

The rest of the paper is organized as follows. In Section 2 we present our
positive results concerning sparse planar graphs. We then move on (Section
3) to describe a new reduction from the well-known satisfiability problem to
the problem of colouring a particular type of graph. Hardness results for the
colourability of these graphs will be instrumental to our main results. Section

Empires Make Cartography Hard 181

4 deals with the hardness result for forests of paths. A substantial part of this
section is devoted to the definition of a number of gadgets that will be used in
subsequent proofs. The last two sections deal with the hardness results about
trees and arbitrary planar graphs.

Let k and s be positive integers greater than two. In what follows k-SAT
(resp. s-COL) denotes the well known [8,13] NP-complete problem of checking
the satisfiability of a k-CNF boolean formula (resp. deciding whether the vertices
of a graph G can be coloured using at most s distinct colours in such a way that
no edge of G is monochromatic). Also, if Π is a decision problem and I is a
particular set of instances for it, then Π(I) will denote the restriction of Π to
instances belonging to I. If Π1 and Π2 are decision problems, then Π1 ≤p Π2

will denote the fact that Π1 is polynomial-time reducible to Π2. Unless otherwise
stated we follow [7] for all our graph-theoretic notations.

2 Algorithms

The main outcome of our work is that the empire colouring problem is much
harder than the problem of colouring planar graphs in the classical sense. How-
ever there are cases where things are easy. Let σ be a positive real number. In
the following result SPARSE(σ) denotes the class of planar graphs G containing
no induced subgraph of average degree larger than σ.

Theorem 1. Let σ be a positive rational number and r be a positive integer such
that rσ is a whole number. The decision problem rσ-COLr(SPARSE(σ)) can be
solved in polynomial time.

Proof. Let r and σ be two positive numbers satisfying the assumptions above,
and assume that G ∈ SPARSE(σ), and its vertex set is partitioned into empires
of size r. If Rr(G) contains a copy of Krσ+1 then there can be no (rσ, r)-colouring
of G. We now argue that if Rr(G) does not contain a copy of Krσ+1 then it is
rσ-colourable (and therefore G admits an (rσ, r)-colouring).

Let S be a connected component of Rr(G). In what follows we denote by GS

the subgraph of G such that Rr(GS) ≡ S. Because all edges of S are edges in
GS , the average degree of this graph satisfies

|E(S)| = |E(GS)| = d(GS) · |V (GS)|/2.

Note that |V (S)| = |V (GS)|/r. Thus, using the definition of SPARSE(σ), we
have

|E(S)| ≤ rσ

2 · r · r · |V (S)| =
rσ

2
· |V (S)|.

This implies that the average degree of S is at most rσ. It follows that S is
either a regular graph of degree rσ or it must contain at least a vertex of degree
less than rσ. In the former case S is can be coloured with rσ colours using, say,
the algorithm in the proof of Brooks’ Theorem described in [9]. If S contains a
vertex of degree less than rσ we argue that, in fact, the assumptions about the

182 A.R.A. McGrae and M. Zito

average degree of all subgraphs of G imply that any induced subgraph of S is
either rσ-regular or, in turn, contains a vertex of degree at most rσ−1. Assume
that some induced subgraph of S, S′ is not rσ-regular and its minimum degree is
at least rσ. This implies that in particular d(S′) ≥ rσ. But, by the assumptions
on G the average degree of S′ cannot exceed rσ. Therefore d(S′) = rσ and this
implies S′ must contain a vertex of degree less than rσ.

The result above has a number of interesting consequences. Let k be a positive
integer. Any induced subgraph on n vertices of a forest of paths of length at
most k cannot span more than kn/(k + 1) edges. Hence Theorem 1 implies,
for instance, that

⌈
2kr
k+1

⌉
-COLr can be decided in polynomial time for forests of

paths of length at most k. Similarly (6r−1)-COLr can be decided in polynomial
time for graphs G formed by arbitrary planar components of size at most 12r.

3 A Useful Reduction

Let s and k be positive integers with s > max(2, k). An (s, k)-formula graph is an
undirected graph Φ such that V (Φ) = T ∪C∪A where T = {T, F, X1, . . . , Xs−2},
C contains m groups of vertices, denoted by {c1,1, . . . , c1,s−1}, {c2,1, . . . c2,s−1},
. . . , {cm,1, . . . , cm,s−1} and A is a set of 2n vertices paired up in some recog-
nizable way. In particular, in what follows we will denote the elements of A by
a1, . . . , an, a1, . . . , an, and we will say that for each i ∈ {1, . . . , n}, ai and ai are
a pair of complementary vertices. Set T spans a complete graph; for each pair
of complementary vertices a and a, {a, a, Xj} spans a complete graph for each
j ∈ {1, . . . , s − 2}; for each i ∈ {1, . . . , m}, {T, ci,1, . . . , ci,s−1} spans a complete
graph and if j ∈ {1, . . . , k} then there is a single edge connecting ci,j to some
vertex in A, else if j ≥ k+1 then {ci,j , F} ∈ E(Φ). Fig. 1 gives a simple example
of a (5, 3)-formula graph.

Let FG(s, k) denote the class of all (s, k)-formula graphs. We will now describe
a reduction from k-SAT to the problem of colouring using at most s distinct
colours the vertices of a given (s, k)-formula graph. The reduction shows the
NP-hardness of s-COL(FG(s, k)) for any k ≥ 3 and s > k. This in turn will be
used repeatedly to prove our hardness results on s-COLr.

2

1,1

a3 3

c 1,2

c 1,3

c 1,4 X 1 3X
X

c T F

a a a a a1 1 2 2

Fig. 1. A small formula graph

Empires Make Cartography Hard 183

Theorem 2. Let s be an integer with s ≥ 3. Then k-SAT ≤p s-COL(FG(s, k))
for any integer k < s.

Proof. Given a k-CNF formula φ ≡ C1 ∧ . . .∧Cm where Ci is the disjunction of
k literals ci,1, . . . , ci,k for each i ∈ {1, . . . , m}, we devise an (s, k)-formula graph
Φ that admits an s-colouring if and only if φ is satisfiable. The graph Φ will
consist of one truth gadget, one variable gadget for each variable in φ, and one
clause gadget for each clause in φ. The truth gadget is a complete graph on s
vertices labelled T , F , and X1, . . . , Xs−2. Note that every vertex in this gadget
must be given a different colour in any s-colouring. Hence w.l.o.g. we call these
colours “TRUE”, “FALSE”, “OTHER1”, . . ., “OTHERs−2” respectively. For
each variable a of φ the variable gadget consists of two complementary vertices
labelled a, and a, connected by an edge and also adjacent to X1, . . . , Xs−2. There
are therefore only two ways to colour a and a: either a is TRUE and a is FALSE
or a is FALSE and a is TRUE. Thus the two colourings of a and a encode the two
truth-assignments of the variable a. Each clause ci,1∨. . .∨ci,k will be represented
by s + k + 1 vertices of Φ. Of these, k will correspond to the clause literals and
will be labelled ci,1, . . . , ci,k, s− 1 − k will be labelled ci,k+1, . . . , ci,s−1, and the
remaining k+2 will be k vertices from variable gadgets and the vertices T and F
from the truth gadget. Vertices T, ci,1, . . . , ci,s−1 form a clique and, furthermore,
for each j ∈ {1, . . . , k}, the vertex ci,j is connected to the corresponding literal
in a variable gadget. For k ≤ s − 2 vertices ci,j , for j ∈ {k + 1, . . . , s − 1},
are adjacent to F . Note that, in any colouring of a clause gadget, vertices ci,j ,
for j ≤ k, cannot have the same colour of vertex T , and vertices ci,j for j ≥ k
cannot be coloured like F either. The reader can readily verify that Φ ∈ FG(s, k).
The graph in Fig. 1 is the (5, 3)-formula graph corresponding to the formula φ
consisting of the single clause a1 ∨ a2 ∨ a3.

If φ is satisfiable, the elements of A in Φ can be assigned a colour in {TRUE,
FALSE} so that, for each i ∈ {1, . . . , m} at least one of the ci,j (say for j = j∗) is
adjacent to some literal coloured TRUE. This implies that ci,j∗ can be coloured
FALSE, while all other ci,j for j ∈ {1, . . . , s−1}\{j∗} can be assigned a distinct
colour in {OTHER1, OTHER2, . . . , OTHERs−2}. Conversely if there is no way
to colour A so that for each i ∈ {1, . . . , m} at least one of the ci,j is adjacent to
some literal coloured TRUE, then the clause gadget will need s + 1 colours as
the s−1 vertices ci,j only have s−2 colours available (as TRUE and FALSE are
used up by T , F , and the corresponding literals). Thus Φ admits an s-colouring
if and only if there is some way to assign the variables of φ as TRUE or FALSE
in such a way that every clause contains at least one TRUE literal.

4 Forests of Paths

In Section 2 we showed that there are specific values for s such that s-COLr

becomes easy if the input graph is a collection of short paths. Here we argue
that if the paths are allowed to have arbitrary length (let PATH denote the set
of all forests of this form) then the problem becomes NP-hard. We will prove
the following result.

184 A.R.A. McGrae and M. Zito

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B3,5

� � � � � �

� � � � � �

� � � � � �

�
�
�

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B+
3,5(1)

� � � � � �

� � � � � �

� � � � � �

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B−
3,5(1,5)

� � � � � �

� � � � � �

� � � � � �

Fig. 2. B3,5 and two related constrained clique gadgets

Theorem 3. Let r and s be positive integers with r > s ≥ 3. Then the s-
COLr(PATH) problem is NP-hard.

The proof is split in two parts which are covered at the end of this section. The
argument for s = 3 is based on a direct construction which is reminiscent of a
well-known hardness proof for 3-COL [6, p.1103]. For s > 3, given an (s, s− 1)-
formula graph Φ, we will argue that there is a number of gadgets that can be
used to define a forest of paths P and a partition of V (P) into empires of size r in
such a way that Φ is s-colourable if and only if P admits an (s, r)-colouring. The
hardness of s-COLr(PATH) will then follow from that of s-COL(FG(s, s− 1)).

Gadgets

Before moving to the proof of Theorem 3 we introduce a number of useful gad-
gets.

Clique Gadgets. Let r and s be positive integers with s < 2r. In what follows
the clique gadget Br,s is a graph satisfying the following properties.

B0 It has r(s + 1) vertices partitioned into s + 1 empires of size r.
B1 It is a forest consisting of r paths.
B2 No path in the graph contains two vertices from the same empire.
B3 Its reduced graph contains a copy of Ks+1. Hence the graph admits an

(s + 1, r)-colouring and cannot be coloured with fewer colours.

Also, if r > 1 and v ≡ {v1, . . . , vr} is some set of r vertices, the connected clique
gadget rooted at v, B+

r,s(v), is formed by adding edges {vi, vi+1} for all i such
that 1 ≤ i ≤ r − 1 to Br,s. Note that the resulting graph is a tree. However
B+

r,s(v) still satisfies B0, and B3. Finally, if u and v are two sets of r vertices,
the (u,v)-colour constraining gadget B−

r,s(u,v) is a graph obtained from Br,s,
without loss of generality, by removing a single edge connecting the end-point u1

of a path to its neighbour v1. Thus u1 becomes isolated in B−
r,s(u,v). The graph

Rr(B−
r,s(u,v)) contains a copy of Ks−1 in which every vertex is also adjacent

to the vertices corresponding to u and v. Thus any (s, r)-colouring of B−
r,s(u,v)

must give u and v the same colour. Examples are given in Fig. 2. The clique
gadgets Br,s can be easily constructed from the Hamiltonian decomposition of
K2r+1 (see, for instance [4, p. 71]).

Empires Make Cartography Hard 185

uv

Fig. 3. The graph A5,4,8(v), dark vertices are in Z(v)

Connectivity gadgets. Let v be a given empire (i.e. a set of r vertices). For
positive integers r, s and m with r > s ≥ 3, an m-connector for v, denoted by
Ar,s,m(v), is a graph satisfying the following properties.

A0 It contains no more than r(m · s + 1) vertices split into empires of size r.
A1 The graph is a forest of paths.
A2 The empire v contains at least r − ⌈

s−1
2

⌉
isolated vertices.

A3 The graph has at least m isolated vertices which belong to empires different
from v that must be given the same colour as v in any (s, r)-colouring. The
set of such vertices, denoted by Z(v) is called v’s monochromatic set.

Gadgets Ar,s,m(v) will be used to connect v to other parts of a bigger graph
where there are degree constraints on the vertices. The gadget Ar,s,m(v) will
be linked to other parts of this graph through some of the isolated vertices in
v and the elements belonging to its monochromatic set. The elements of Z(v)
(generically denoted by zv) are useful to “pass” the colour constraints on v to
other parts of the bigger graph. Gadget Ar,sm can be constructed recursively
by adding a copy of Br−2,s−2 along with a new set of r isolated vertices u to
Ar,s,m′(v) for some m′ < m. Fig. 3 gives an example.

Proof of Theorem 3

We are now ready to tackle the proof of Theorem 3. We start from the case
s = 3.

Theorem 4. Let r be an integer with r ≥ 4. Then 3-SAT ≤p 3-COLr(PATH).

Proof. Given an instance φ of 3-SAT we can produce a forest of paths P (φ) and
a partition of V (P (φ)) into empires of size r such that P (φ) admits a (3, r)-
colouring if and only if φ is satisfiable. P (φ) consists of one truth gadget, one
variable gadget for each variable used in φ, and one clause gadget for each clause
in φ. To define the truth gadget, we start by adding r − 2 distinct isolated ver-
tices to each empire in B2,2. The empires in the resulting graph will be labelled
T, F and X. Then, if φ uses n different variables and m clauses, one copy of
Ar,3,2m(T), and one copy of Ar,3,n(X) are attached to B2,2 via T and X respec-
tively. Since T, F and X are all adjacent (in the gadget’s reduced graph) they
must have different colours which, again, we call TRUE, FALSE and OTHER
respectively. For each variable a in φ, P (φ) contains a variable gadget (Fig. 4),

186 A.R.A. McGrae and M. Zito

r, ,n()A X3

a

a

 ()A ar, ,occ(a)3

 ()A ar, ,occ(a)3

Fig. 4. The shape of a variable gadget for s = 3. The dashed shapes represent the
empires a and a.

including an empire named a, and another one named a. A path connects two
vertices in a with an element of a and an element of Z(X). Also, a copy of
Ar,3,occ(a)(a) (resp. Ar,3,occ(a)(a))) is attached to empire a (resp. a). Here occ(·)
is a function taking as input a literal and returning the number of occurrences
of its argument in the given formula. Since X has colour OTHER, there are only
two possible colourings for a and a — either a is TRUE and a is FALSE, or a
is FALSE and a is TRUE. Finally, for each clause in φ, P (φ) contains a gadget
like the one depicted in Fig. 5. This is connected to the rest of the graph via
four connectivity gadgets: Ar,3,2m(T), and three of the form Ar,3,occ(�)(�) where
� is a literal of φ. Since T will always be coloured TRUE, it can be shown that
the clause gadget admits a proper (3, r)-colouring if and only if at least one of
the empires corresponding to a literal is coloured TRUE.

Note that P (φ) is (3, r)-colourable if and only if φ is satisfiable. This follows
from the properties of the well known [6, p.1103] reduction 3-SAT ≤p 3-COL, as
the graph obtained from P (φ) by shrinking each connectivity gadget or empire
to a distinct (pseudo-)vertex (removing loops or parallel edges created in the
process) coincides with that created from φ using the classical 3-COL reduction.

For s > 3 the NP-hardness of s-COLr(PATH) follows from that of
s-COL(FG(s, s − 1)).

Theorem 5. Let r and s be fixed positive integers with 3 < s < r. Then s-
COL(FG(s, s − 1)) ≤p s-COLr(PATH).

T1

T2 c2
1

c1
1

c1
2

c3
1

c5
1

c4
1

c3
2 c4

2

a

c5
2

b

c2
2

d
�

� � � �

� � �

� � � �

� � �

Fig. 5. The clause gadget for the clause (a ∨ b ∨ d). Only at most two vertices from
each empire are shown. In particular vertices labelled T1 and T2 are in Z(T), while
vertices labelled a, b and d are in Z(a), Z(b) and Z(d) respectively.

Empires Make Cartography Hard 187

Proof. Let Φ be an (s, s − 1)-formula graph. Given r > s, a few simple re-
placement rules enable us to define a forest of paths P (Φ) and a partition of
V (P (Φ)) into empires of size r such that Φ is s-colourable if and only if P (Φ) is
(s, r)-colourable. More specifically, the complete graph on {T, F, X1, . . . , Xs−2}
is replaced by s empires of size r labelled T, F, and X1, . . . ,Xs−2 so that � s

2�
vertices from each empire induce a copy of B� s

2 �,s−1. Moreover we attach a copy
of Ar,s,� s

2 �m(T) (resp. Ar,s,2n(X1), . . . , Ar,s,2n(Xs−2)) to these empires. Note
that, by A2, the resulting graph is a collection of paths and isolated vertices.
Next, for each a, a ∈ A, we define two empires on r vertices, and for each pos-
itive integer i such that 2i ≤ s − 2 we replace the cycle {X2i−1, a, X2i, a} in
Φ with a path zX2i−1 , ai, zX2i , ai, z

′
X2i−1 (distinct cycles replaced by paths using

distinct elements of Z(X2i−1) and Z(X2i)). We also replace the edge {a, a} with
{a� s−1

2 �, a� s−1
2 �}, and if s is odd we replace the path a, Xs−2, a with the path

a� s−1
2 �, zXs−2 , a� s−1

2 �. As a result of these replacements and the properties of

Ar,s,2n(Xi), empires a and a in P (Φ) are adjacent to empires that must be given
the same colour as the neighbours X i of a and a in Φ. To finish with the variable
gadgets we attach a copy of Ar,s,occ(a)(a) (resp. Ar,s,occ(a)(a)) to the empires a
and a.

Finally, the clique on {T, ci,1, . . . , ci,s−1} is replaced by a copy of B� s
2 �,s−1 on

the empires ci,1, . . . , ci,s−1 and � s
2� vertices from Z(T). For each i, j and vertex

� ∈ A such that {ci,j , �} ∈ E(Φ) we add an edge connecting ci,j
s and a vertex

from Z(�).
The graph obtained from P (Φ) by shrinking each connectivity gadget or em-

pire to a distinct (pseudo-)vertex (removing loops or parallel edges created in
the process) coincides with the initial formula graph. The correctness of the
reduction follows.

5 Trees

The result on forests of paths of Section 4 already proves that s-COLr is NP-hard
on planar graphs if s is sufficiently small. In this section we investigate the effect
of connectedness on the computational complexity of the s-COLr. The outcome
of our investigation is the following dichotomy result (in the next theorem TREE
is the class of all trees).

Theorem 6. Let r and s be fixed positive integers with r ≥ 2, then the s-
COLr(TREE) problem is NP-hard if 2 < s < 2r, and polynomial time solvable
otherwise.

The argument for s = 3 is very similar to the one we used for forests of paths,
but simpler. We present the proof in some details only for the case r = 2 (see
Theorem 7 below). For r > 2 note that a tree T1 with empires of size r1 can
be translated into a tree T2 with empires of size r2 > r1 by simply attaching
r2 − r1 new leaves to a fixed element in each empire of T1. For s > 3 we argue
as in Section 4, translating formula graphs into pairs formed by a tree and a

188 A.R.A. McGrae and M. Zito

a
2

a
3

a
1

a
2

a
3

a
1

X

W
W

(

(
(

1
1
W2

(W3

2

1

3

a
a

)
1)

1

W (
)
1

)
1

1
a

a
a

)

Fig. 6. The gadget for the complementary pair a and a when r = 3, s = 5

partition of its vertices into empires. The hardness of s-COLr(TREE) follows
from Theorem 2. Details in Theorem 8 below.

Theorem 7. 3-SAT ≤p 3-COL2(TREE).

Proof. (Sketch) Given an instance φ of 3-SAT we define a tree T (φ) and a par-
tition of its vertices into empires such that T (φ) admits a (3,2)-colouring if and
only if φ is satisfiable. T (φ) will consist of one truth gadget, one variable gadget
for each variable used in φ, and one clause gadget for each clause in φ. The
truth gadget is a copy of B+

2,2(T). Since empires T, F and X are adjacent to
each other (in the gadget’s reduced graph) w.l.o.g. we assume they are coloured
TRUE, FALSE and OTHER respectively. For each variable a in φ, T (φ) contains
a copy of B2,2 spanned by empires labelled a, a, and X. The construction forces
empires a, a to be coloured differently from X (and each other). Finally, for each
clause in φ, we use a clause gadget like the one in Fig. 5.

Arguing like in the proof of Theorem 4 it is easy to see that T (φ) is (3, 2)-
colourable if and only if there is some way to assign the variables of φ as TRUE
or FALSE so that every clause contains at least one TRUE literal.

Theorem 8. s-COL(FG(s, s − 1)) ≤p s-COLr(TREE), for any r ≥ 3 and 3 <
s < 2r.

Proof. As in the proof of Theorem 5 we give a set of replacement rules that
translate an (s, s−1)-formula graph Φ into a tree T (Φ) and a partition of V (T (Φ))
into empires of size r such that T (Φ) is (s, r)-colourable if and only if the formula
graph is s-colourable.

The complete graph on vertices {T, F, X1, . . . , Xs−2} is replaced by a copy of
B+

r,s−1(T) with empires labelled T, F, and X1,X2, Note that this graph is
in fact a tree. Also, because of constraint B3 in the definition of Br,s, w.l.o.g. we
may assume that colours “TRUE”, “FALSE”, “OTHER1”, . . ., “OTHERs−2”
are assigned to empires T, F, X1 . . . respectively. For each complementary pair
a, a of V (Φ) we create 2s − 5 empires W2(a), . . ., Ws−2(a) and W1(a), . . .,
Ws−2(a). For each a ∈ A, the subgraph spanned by

⋃
i{a, a, X i} is replaced

by a graph including the one given in Fig. 6 consisting of empires a, a, X1,
W2(a), . . . ,Ws−2(a) and W1(a), . . . ,Ws−2(a), connected to B+

r,s−1(T) using
the graphs B−

r,s(Wi(a),Xi) and B−
r,s(Wi(a),Xi) for all i ∈ {1, . . . , s − 2}. Note

that vertices of each empire corresponding to an element of A are connected to
the tree in B+

r,s−1(T) via X1
1 . Also vertices in a (resp. a) are connected to the

isolated vertices W i(a)1 (resp. W i(a)1). This prevents a and a from being able

Empires Make Cartography Hard 189

to use the colours of the Xi in any colouring of T (Φ). Each group {c1, . . . , cs−1}
in C is replaced by empires c1, . . . , cs−1 (different groups replaced by different
sets of empires). The complete graph on {T, c1, . . . , cs−1} is replaced by a copy of
Br,s−1 on the corresponding empires. We then attach to this graph s− 1 graphs
B−

r,s(bj , cj), for j ∈ {1, . . . , s − 1}. Empire bj must have the same colour as cj

and it has, in B−
r,s(bj , cj), an isolated vertex, bj

1. If � is an element of A adjacent
to cj then {bj

1, �1} is an edge of T (Φ).
The overall construction is such that for each vertex in V (Φ) there is an

equivalent empire in V (T (Φ)), and for each edge in E(Φ) there is an edge {u, v} ∈
E(T (Φ)) that either connects the corresponding empires u and v or connects u
to an empire that must be given the same colour as v in any (s, r)-colouring of
T (Φ). From this we can see that T (Φ) admits an (s, r)-colouring if and only if Φ
admits an s-colouring.

6 General Planar Graphs

Theorem 6 of last section does not exclude the possibility that s-COLr be solv-
able in polynomial time for arbitrary planar graphs provided s ≥ 2r. Here we
show that in fact this is not the case. Let δx,y is equal to one if and only if x = y
(and equal to zero otherwise). The main result of this section is the following:

Theorem 9. Let r and s be fixed positive integers with r ≥ 2, then the s-COLr

problem is NP-hard if 3 ≤ s < 6r − 3 − 2δr,2, and solvable in polynomial time if
s = 2 or s ≥ 6r.

Note that s-COLr can be solved in polynomial time for s = 2 (as checking if the
reduced graph of a planar graph is bipartite is easy) and for s ≥ 6r (because
of Heawood’s result). Also, Theorem 6 proves the case s < 2r. Therefore only
the case s ≥ 2r needs further discussion. The argument is similar to that of
Theorems 8 with a couple of differences. First, this time we only need the graph
resulting from the transformation of the initial formula graph to be planar (note
that the formula graph in general is NOT planar). On the other hand, we want
the transformation to work for much larger values of s. Our solution hinges on
proving that all complete subgraphs of the starting formula graph and a number
of other gadgets (see below) attached to them have sufficiently large thickness.
For the complete graphs we may use well-known results [1], whereas for the
specific gadgets we need a bespoke construction. In particular, if r = 2 for s ≤ 6
and if r ≥ 3 for s ≤ 6r − 4, it is possible to define a family of planar graphs
Dr,s(u,v) satisfying the following properties.

D0 It has r(s + 1) vertices partitioned into s + 1 empires all of size r.
D1 It contains an isolated vertex v1.
D2 No connected component of the given graph contains two vertices from the

same empire.
D3 The graph Ks+1 minus the edge {u,v} is a subgraph of Rr(Dr,s(u,v)).

190 A.R.A. McGrae and M. Zito

Dr,s(u,v) serves a similar purpose to B−
r,s(u,v) in Theorem 8. Our construction

of such graphs is based on a result by Beineke [2] showing that the thickness of
K6r−3 is r.

A careful reader will realize that a proof of Theorem 9, using more direct
reductions from 3-SAT for s = 3 and one from s-COL(FG(s, s − 1)) for 4 ≤
s < 6r − 3 − 2δr,2 can be used to prove the NP-hardness of colouring, in the
traditional sense, graphs of thickness r. Thus it is NP-hard to decide whether a
graph of thickness r > 1 can be coloured with s < 6r − 3 − 2δr,2 colours.

References

1. Beineke, L.W.: Biplanar graphs: a survey. Computers and Mathematical Applica-
tions 34(11), 1–8 (1997)

2. Beineke, L.W., Harary, F.: The thickness of the complete graph. Canadian Journal
of Mathematics 17, 850–859 (1965)

3. Brooks, R.L.: On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37,
194–197 (1941)

4. Bryant, D.E.: Cycle decompositions of the complete graphs. In: Hilton, A.J.W.,
Talbot, J.M. (eds.) Surveys in Combinatorics. London Mathematical Society Lec-
ture Notes Series, vol. 346, pp. 67–97. Cambridge University Press (2007)

5. Cooper, C., McGrae, A.R.A., Zito, M.: Martingales on Trees and the Empire Chro-
matic Number of Random Trees. In: Kuty�lowski, M., Gebala, M., Charatonik, W.
(eds.) FCT 2009. LNCS, vol. 5699, pp. 74–83. Springer, Heidelberg (2009)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. M.I.T. Press (2009)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (1999)

8. Garey, M.R., Johnson, D.S.: Computer and Intractability, a Guide to the Theory
of NP-Completeness. Freeman and Company (1979)

9. Gibbons, A.M.: Algorithmic Graph Theory. Cambridge University Press (1985)
10. Heawood, P.J.: Map colour theorem. Quarterly Journal of Pure and Applied Math-

ematics 24, 332–338 (1890)
11. Hutchinson, J.P.: Coloring ordinary maps, maps of empires, and maps of the moon.

Mathematics Magazine 66(4), 211–226 (1993)
12. Jackson, B., Ringel, G.: Solution of Heawood’s empire problem in the plane. Journal

für die Reine und Angewandte Mathematik 347, 146–153 (1983)
13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

14. Lovász, L.: Combinatorial Problems and Exercises, 2nd edn. North-Holland (1993)
15. Lucas, E.: Récreations Mathématiqués, vol. II. Gauthier-Villars (1892)
16. McGrae, A.R., Zito, M.: Colouring Random Empire Trees. In: Ochmański, E.,

Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 515–526. Springer, Hei-
delberg (2008)

17. McGrae, A.R.A.: Colouring Empires in Random Trees. PhD thesis, Department of
Computer Science, University of Liverpool as technical report ULCS-10-007 (2010),
http://www.csc.liv.ac.uk/research/techreports/techreports.html

http://www.csc.liv.ac.uk/research/techreports/techreports.html

Alternation Graphs

Magnús M. Halldórsson1,�, Sergey Kitaev1,2,��, and Artem Pyatkin3,� � �

1 School of Computer Science, Reykjavik University, 101 Reykjavik, Iceland
mmh@ru.is

2 Department of Computer and Information Sciences, University of Strathclyde,
Glasgow, G1 1XH, UK

sergey.kitaev@gmail.com
3 School of Engineering and Computing Sciences, Durham University, Science

Laboratories, South Road, Durham DH1 3LE, UK
artempyatkin@gmail.com

Abstract. A graph G = (V, E) is an alternation graph if there exists a
word W over the alphabet V such that letters x and y alternate in W if
and only if (x, y) ∈ E for each x �= y.

In this paper we give an effective characterization of alternation graphs
in terms of orientations. Namely, we show that a graph is an alternation
graph if and only if it admits a semi-transitive orientation defined in
the paper. This allows us to prove a number of results about alternation
graphs, in particular showing that the recognition problem is in NP, and
that alternation graphs include all 3-colorable graphs.

We also explore bounds on the size of the word representation of the
graph. A graph G is a k-alternation graph if it is represented by a word
in which each letter occurs exactly k times; the alternation number of G
is the minimum k for which G is a k-alternation graph. We show that
the alternation number is always at most n, while there exist graphs for
which it is n/2.

1 Introduction

Consider a scenario with n recurring tasks with requirements on the alternation
of certain pairs of tasks. This captures typical situations in periodic scheduling,
where there are recurring precedence requirements.

When tasks occur only once, the pairwise requirements form precedence con-
straints, which are modeled by partial orders. When the orientation of the con-
straints is omitted, the resulting pairwise constraints form comparability graphs.
The focus of this paper is to study the class of undirected graphs induced by the
alternation relationship of recurring tasks.

Consider, e.g., the following five tasks that may be involved in the operation
of a given machine: 1) Initialize controller, 2) Drain excess fluid, 3) Obtain

� Partially supported by grant no. 090032021 from the Iceland Research Fund.
�� Partially supported by grant no. 090038011 from the Icelandic Research Fund.

� � � Partially supported by EPSRC, Grant EP/F064551/1 and by the Ministry of
education and science of the Russian Federation (contract number 14.740.11.0868).

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 191–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

mmh@ru.is
sergey.kitaev@gmail.com
artempyatkin@gmail.com

192 M.M. Halldórsson, S. Kitaev, and A. Pyatkin

permission from supervisor, 4) Ignite motor, 5) Check oil level. Tasks 1 & 2, 2
& 3, 3 &4, 4 & 5, and 5 & 1 are expected to alternate between all repetitions of
the events. This is shown in Fig. 1(b). One possible task execution sequence that
obeys these recurrence constraints – and no other – is shown in Fig. 1(a). We
introduce later an orientation of such graphs that will be called semi-transitive.

�

1 1

2 5

3 44 2

5 3

3 1 2 5 1 4 5 3 4 2

(a) Task execution

sequence

(b) An alternation graph (c) Semi-transitive

orientation

�� ��

Fig. 1. The word in (a) corresponds to the alternation graph in (b). A semi-transitive
orientation of the graph is given in (c).

Execution sequences of recurring tasks can be viewed as words over an alpha-
bet V , where V is the set of tasks. A graph G = (V, E) is an alternation graph if
there exists a word W over the alphabet V such that letters x and y alternate in
W if and only if (x, y) ∈ E for each x �= y. If each letter appears exactly k times
in the word, the graph is said to be a k-alternation graph. It is known that any
alternation graph is a k-alternation graph for some k [8]. Alternation graphs are
also known as representable graphs [9,8,5].

Our results. We introduce the following notion. A directed graph (digraph)
G = (V, E) is semi-transitive if it is acyclic and for any directed path v1v2...vk

either v1vk �∈ E or vivj ∈ E for all 1 ≤ i < j ≤ k. Clearly, all transitive (i.e.,
comparability) graphs are semi-transitive.

The main result of this paper is that the graph is an alternation graph if
and only if it admits a semi-transitive orientation. This result allows us to make
progress on the three most fundamental issues about alternation graphs:

– Which types of graphs are alternation graphs and which ones are not?
– How large words can be needed to represent alternation graphs?
– Are there alternative representations of these graphs that aid in reasoning

about their properties?

We show that the class of alternation graphs captures non-trivial graph proper-
ties. In particular, all 3-colorable graphs are alternation graphs, whereas various
types of 4-chromatic graphs cannot all be represented in this way. This resolves
a conjecture of [8] regarding the Petersen graph, showing that it is an alterna-
tion graph. The result also properly captures all the previously known classes of
alternation graphs: outerplanar, prisms, and comparability graphs.

Alternation Graphs 193

Finally, we show that any alternation graph on n vertices is an n-alternation
graph, again utilizing the semi-transitive orientability. This result implies that
the problem of deciding whether a given graph is an alternation graph is con-
tained in NP. Previously, no polynomial upper bound was known on the al-
ternation number, which is the smallest value k such that the given graph is
k-alternation. This bound on the alternation number is tight up to a constant
factor, as we construct graphs with alternation number n/2. We also show that
deciding if an alternation graph is k-alternation is NP-complete for 3 ≤ k ≤ n/2,
while the polynomially decidable class of circle graphs coincides with the class
of graphs with alternation number at most 2.

Related work. Several graph classes are defined in terms of interrelationships
between letters in words, where the vertices represent the letters. Circle graphs
are those whose vertices can be represented as chords on a circle in such a way
that two nodes in the graph are adjacent if and only if the corresponding chords
overlap. By viewing each chord as a letter and listing the chords in order of
appearance on the circle we find that these graphs correspond to words where
each letter appears twice and two nodes are adjacent if and only if the letter
occurrences alternate [2]. They therefore correspond to 2-alternation graphs in
our vocabulary.

This has been generalized to polygon-circle graphs (see [12]), which are the
intersection graphs of polygons inscribed in a circle. If we view each polygon as
a letter and read the incidences of the polygons on the circle in order, we see
that two polygons intersect if and only if there exists a pair of occurrences of
the two polygons that alternate. This compares with alternation graphs where
all occurrences of the two letters must alternate in order for the nodes to be
adjacent.

The notion of directed alternation graphs was introduced in [9] to obtain
asymptotic bounds on the free spectrum of the widely-studied Perkins semigroup
which has played central role in semigroup theory since 1960, particularly as
a source of examples and counterexamples. The class of alternation graphs is
known to contain comparability graphs [9]; in fact, the comparability graphs
are precisely the permutational alternation graphs (see Sec. 2). In [8] numerous
properties of alternation graphs were derived and several types of alternation
and non-alternation graphs pinpointed. In particular, outerplanar graphs, prisms
and 3-subdivision graphs are all alternation graphs. Also, the neighborhood of
each vertex in an alternation graph induces a comparability graph. Some open
questions from [8] were resolved recently in [5], including the representability of
the Petersen graph. These works however do not give alternative representations
or essential structural characteristics of alternation graphs.

Cyclic (or periodic) scheduling problems have been studied extensively in the
operations research literature [6,11], as well as in the AI literature [3]. These are
typically formulated with more general constraints, where, e.g., the 10th occur-
rence of task A must be preceded by the 5th occurrence of task B. The focus
of this work is then on obtaining effective periodic schedules, while maintaining

194 M.M. Halldórsson, S. Kitaev, and A. Pyatkin

a small cycle time. We are, however, not aware of work on characterizing the
graphs formed by the cyclic precedence constraints.

A different periodic scheduling application related to alternation graphs was
considered by Graham and Zang [4], involving a counting problem related to
the cyclic movements of a robot arm. More generally, given a set of jobs to be
performed periodically, certain pairs (a, b) must be done alternately, e.g. since
the product of job a is used as a resource for job b. Any valid execution sequence
corresponds to a word over the alphabet formed by the jobs. The alternation
graph given by the word must then contain the constraint pairs as a subgraph.

Organization. The paper is organized as follows. In Section 2 we give definitions
of objects of interest and review some of the known results. In Section 3 we
give a characterization of alternation graphs in terms of orientations and discuss
some important corollaries of this fact. In Section 4 we examine the alterna-
tion number, and show that it is always at most n but can be as much as n/2.
We explore in Section 5 which classes of graphs are alternation graphs, show-
ing, in particular, that 3-colorable graphs are alternation graphs, but numerous
other properties are orthogonal to the alternation property. The construction
for triangle-free non-alternation graphs is also presented there. Finally, we con-
clude with a discussion of algorithmic complexity and some open problems in
Section 6.

2 Definitions, Notation, and Known Results

In this section we follow [8] to define the objects of interest.
Let W be a finite word. If W involves the letters x1, x2, . . . , xn then we write

V ar(W) = {x1, . . . , xn}. A word is k-uniform if each letter appears in it exactly
k times. A 1-uniform word is also called a permutation. Denote by W1W2 the
concatenation of words W1 and W2. We say that the letters xi and xj alternate
in W if the word induced by these two letters contains neither xixi nor xjxj

as a factor. If a word W contains k copies of a letter x then we denote these k
appearances of x by x1, x2, . . . , xk. We write xj

i < xl
k if xj

i occurs in W before
xl

k, i. e., xj
i is to the left of xl

k in W .
We say that a word W represents the graph G = (V, E) if there is a bijection

φ : V ar(W) → V such that (φ(xi), φ(xj)) ∈ E if and only if xi and xj alternate
in W . We call a graph G an alternation graph if there exists a word W that
represents G. It is convenient to identify the vertices of an alternation graph and
the corresponding letters of a word representing it. If G can be represented by
a k-uniform word, then we say that G is a k-alternation graph. The alternation
number of an alternation graph G is the minimum k such that G is a k-alternation
graph. We call a graph a permutational alternation graph if it can be represented
by a word of the form P1P2 . . . Pk where all Pi are permutations.

A digraph is transitive if the adjacency relation is transitive, i. e. for every
vertices x, y, z ∈ V , the existence of the arcs xy, yz ∈ E yields that xz ∈ E. A
comparability graph is an undirected graph having an orientation of the edges
that yields a transitive digraph.

Alternation Graphs 195

The following properties of alternation graphs are useful [8]. A graph G is
an alternation graph if and only if it is k-alternation for some k. If W = AB
is k-uniform word representing a graph G, then the word W ′ = BA also k-
represents G.

The wheel W5 is the smallest non-alternation graph. The non-alternation
graphs on 6 and 7 vertices (from [8]) are given in Fig. 2.

Fig. 2. Small non-alternation graphs

3 Characterization of Alternation Graphs by Orientability

The word representation of alternation graphs is simple and natural. Yet it does
not lend itself to easy arguments for the characteristic of alternation graphs.
Non-alternation is even harder to argue. The main result of this section is a new
characterization of alternation graphs that is effective algorithmically.

We give a characterization in terms of orientability, which implies that alter-
nation corresponds to a property of a digraph obtained by directing the edges
in certain way. It is known that a graph is a permutational alternation graph if
and only if it has a transitive orientation (i.e., is a comparability graph) [9]. We
prove a similar fact on alternation graphs, namely, that a graph is an alterna-
tion graph if and only if it has a certain semi-transitive orientation that we shall
define. Our definition, in fact, generalizes that of a transitive orientation.

Other orientations have been defined in order to capture generalizations of
comparability graphs. As transitive orientations form constraints on the order-
ings of induced P3, these generalizations form constraints on the orderings of
induced P4. These include perfectly orderable graphs (and its subclasses) and op-
position graphs [1]. None of these properties captures our definition below, nor
does our characterization subsume any of them.

We turn to the characterization and start with definitions of certain directed
graphs. A semi-cycle is the directed acyclic graph obtained by reversing the
direction of one arc of a directed cycle. An acyclic digraph is a shortcut if it
is induced by the vertices of a semi-cycle and contains a pair of non-adjacent
vertices. Thus, a digraph on the vertex set {v0, v1, . . . , vt}, is a shortcut if it
contains a directed path v0v1 . . . vt, the arc v0vt and it is missing an arc vivj ,
0 ≤ i < j ≤ t (in particular, t ≥ 3).

A digraph is semi-transitive if it is acyclic and contains no shortcuts. A
graph is semi-transitively orientable if there exists an orientation of the edges
that results in a semi-transitive graph. Our main result in this paper is the
following.

196 M.M. Halldórsson, S. Kitaev, and A. Pyatkin

Theorem 1. A graph is an alternation graph if and only if it is semi-transitively
orientable.

We first need some additional definitions and lemmas. A linear extension (a.k.a.
topological order) of an acyclic digraph is a permutation of the vertices that
obeys the arcs, i. e. for each arc uv, u precedes v in the permutation. For a
node-labeled digraph, let the linear extension also refer to the word obtained
by visiting the nodes in that order. Let D = (V, E) be a digraph. The t-string
digraph Dt of D is defined as follows. The vertices of Dt are vi, for v ∈ V and
i = 1, 2, . . . , t, and viuj is an arc in Dt if and only if either i = j and vu ∈ E or
i < j and uv ∈ E. Intuitively, the t-string digraph of D has t copies of D strung
together. Given a word S, let GS denote the graph represented by S. If S is a
linear extension of Dt then we also denote by GS the graph represented by the
word S′ obtained from S by omitting the superindices of the vertices (i. e. the
copies of the same vertex in S are considered as the same letters in S′).

Given a digraph D, let GD be the graph obtained by ignoring orientation.
We argue that the word representing a semi-transitive digraph comes from a

special linear extension of the t-string digraph Dt for some t. We first observe
that any linear extension of Dt preserves arcs.

Lemma 1. Let D be a digraph with distinct node-labels. Let S be a linear ex-
tension of a Dt. Then GD is a subgraph of GS.

Proof. Consider an edge uv in GD, and suppose without loss of generality that
it is directed as uv in D. Then, in Dt, there is a directed path u1v1u2v2 . . . utvt.
Thus, occurrences of u and v in a linear extension of Dt are alternating. Hence,
uv ∈ GS .

To prove equivalence, we now give a method to produce a linear extension of
Dt that generates all non-arcs. We say that an induced subgraph H covers a
set A of non-arcs if each non-arc in A is also a non-arc in H . A word covers the
non-arc if the digraph that it represents covers them.

Lemma 2. The non-arcs incident with a (directed) path P in a semi-transitive
digraph D can be covered with a 2-uniform word.

Proof. Consider the 2-string digraph D2 and and let P 1 (P 2) be the first (second)
copy of P in D2. We say that a node x of D2 depends on node y, and denote
it by y � x, if there is a directed path from y to x in D2, i. e. y must appear
before x in a linear extension of D2. Thus, (D2, �) is a partial order formed by
the transitive closure of D2.

We inductively form a linear extension S of D2 as follows. Set Q = D2. Select
a source node (i.e., of indegree 0) v in Q, giving first priority to nodes in P 2,
next nodes neither in P 1 or P 2, and finally nodes in P 1. Order v first in S,
remove it from Q, and inductively form the linear extension of Q as the tail of
S. Intuitively speaking, the nodes in P 1 are listed as late as possible, while the
nodes in P 2 are listed as early as possible.

Alternation Graphs 197

We claim that this word S covers all non-arcs involving nodes in P . Consider
a pair u, v, where uv �∈ GD and u ∈ P . Note that v may also belong to P , in
which case we may assume that the path goes from u to v. Observe that u may
depend on v, or vice versa, but not both. Let u1, v1, u2, v2 be the corresponding
vertices of D2. There are three cases to consider.

Case (i): There is a path from u to v in D. We claim that u2 does not depend
on v1. Suppose it does, i. e. v1 � u2. Then, there is an arc x1y2 ∈ D2 such
that v1 � x1 and y2 � u2. By the assumptions and the symmetry of the two
copies of D in D2, it follows that y1 � u1 � v1 � x1. By the definition of
2-string graphs, yx is an arc in D, so y1x1 ∈ E(D2). Then, by semi-transitivity,
u1v1 ∈ E(D2), which implies that uv ∈ E(GD), which is a contradiction. Thus,
u2 �� v1. From the priority given by the algorithm, u2 will then be listed before
v1, resulting in the order u1u2v1v2 in S. Thus, uv �∈ E(GS).

Case (ii): There is a path from v to u in D. This is symmetric to case (i), with
u replaced by v. Thus, the nodes will occur as v1v2u1u2 in S.

Case (iii): The nodes u and v are incomparable in D. In particular, v is not
in P . Then, u1 and v1 do not depend on each other, nor do u2 and v2. If v2

depends on u1 then the nodes occur as v1u1u2v2 in S. Otherwise, their order is
v1v2u1u2.

We now return to the proof of Theorem 1, starting with the forward direction.
Given a word S, we direct an edge of GS from x to y if the first occurrence of x
is before that of y in the word. Let us show that such an orientation D of GS is
semi-transitive. Indeed, assume that x0xt ∈ E(D) and there is a directed path
x0x1 . . . xt in D. Then in the word S we have xi

0 < xi
1 < . . . < xi

t for every i.
Since x0xt ∈ E(D) we have xi

t < xi+1
0 . But then for every j < k and i there

must be xi
j < xi

k < xi+1
j , i. e. xixj ∈ E(D). So, D is semi-transitive.

For the other direction, denote by G the graph and by D its semi-transitive
orientation. Let P1, P2, . . . , Pτ be the set of directed paths covering all vertices
of D. For every i = 1, 2, . . . , τ denote by Si the linear extension of the digraph
D2 satisfying the conditions of Lemma 2 for the path Pi. Put S = S1S2 . . . Sτ .
Clearly, S is a 2τ -uniform word; it can be treated as a linear extension of a
2τ -string D2τ . Then G = GS . Indeed, by Lemma 1 we have E(G) ⊂ E(GS). On
the other hand, if uv �∈ E(G) then u ∈ Pi for some i, and thus by Lemma 2
the letters u and v are not alternating in the subword Si. Therefore, uv �∈ E(S).
Theorem 1 is proved. ��
Theorem 1 makes clear the relationship to comparability graphs, which are
those that have transitive orientations. Since transitive digraphs are also semi-
transitive, this immediately implies that comparability graphs are alternation
graphs.

The construction in Lemma 2 shows that all alternation graphs can be repre-
sented “almost” permutationally. This is made more precise as follows.

Observation 2. Let G be an alternation graph. Then there is a word W rep-
resenting G such that for any prefix P of W and any pair a, b of letters, the
number of occurrences of a and b in P differ by at most two.

198 M.M. Halldórsson, S. Kitaev, and A. Pyatkin

4 The Alternation Number of Graphs

We focus now on the following question: Given an alternation graph, how large
is its alternation number? In [8], certain classes of graphs were proved to be 2-
or 3-alternation, and an example was given of a graph (the triangular prism)
with the alternation number of 3. On the other hand, no examples were known
of graphs with alternation numbers larger than 3, nor were there any non-trivial
upper bounds known. We show here that the maximum alternation number of
alternation graphs is linear in the number of vertices.

For the upper bound, we use the results of the preceding section. We have the
following directly from the proof of Theorem 1.

Corollary 1. An alternation graph G is a 2τ(G)-alternation graph, where τ(G)
is the minimum number of paths covering all nodes in some semi-transitive ori-
entation of G.

This immediately gives an upper bound of 2n on the alternation number. We
can improve this somewhat with an effective procedure.

Theorem 3. Given a semi-transitive digraph D on n vertices, there is a polyno-
mial time algorithm that generates an n-uniform word representing GD. Thus,
each alternation graph is an n-alternation graph.

Proof. The algorithm works as follows.
Step 0. Start with A = ∅ and i = 1.
Step i. If D contains a path Pi covering at least two vertices from V \A then

let A := A∪ V (Pi) and i := i + 1. Otherwise, let B = V \A and go to the Final
Step.

Final Step. Let Si be the linear extension of the digraph D2 satisfying the
conditions of Lemma 2 for the path Pi and put S′ = S1S2 . . . St where t is the
number of paths found at previous steps. If |B| ≤ 1 then let S = S′. Otherwise,
consider a linear extension S0 of D where the vertices of B are listed in a row
(since the vertices of B form an antichain, i.e. are mutually incomparable, such
a linear extension must exist) and in particular in the reverse order of their
appearance in S1. Let S = S′S0.

Clearly, GD = GS (the proof is the same as in Theorem 1). It is easy to verify
that each letter appears in S at most n times.

Theorem 3 implies that the graph property of alternation is polynomially verifi-
able, answering an open question in [8]. Indeed, having an alternation graph G,
we may ask for a word representing it and verify this fact in time bounded by
the polynomial in n.

Corollary 2. The recognition problem for alternation graphs is in NP.

We now show that there are graphs with alternation number of n/2, matching
the upper bound within a factor of 2.

The crown graph Hk,k is the graph obtained from the complete bipartite graph
Kk,k by removing a perfect matching. Denote by Gk the graph obtained from a
crown graph Hk,k by adding a universal vertex (adjacent to all vertices in Hk,k).

Alternation Graphs 199

Theorem 4. The graph Gk has alternation number k = �n/2�.

The proof is based on three statements.

Lemma 3. Let H be a graph and G be the graph obtained from H by adding
an all-adjacent vertex. Then G is a k-alternation graph if and only if H is a
permutational k-alternation graph.

Proof. Let 0 be the letter corresponding to the all-adjacent vertex. Then every
other letter of the word W representing G must appear exactly once between two
consecutive zeroes. We may assume also that W starts with 0. Then the word
W \ {0}, formed by deleting all occurrences of 0 from W , is a permutational k-
representation of H . Conversely, if W ′ is a word permutationally k-representing
H , then we insert 0 in front of each permutation to get a (permutational) k-
representation of G.

Lemma 4. A comparability graph is permutational k-alternation graph if and
only if the poset induced by this graph has dimension at most k.

Proof. Let H be a comparability graph and W be a word permutationally k-
representing it. Each permutation in W can be considered as a linear order where
a < b if a meets before b in the permutation (and vice versa). We want to show
that the comparability graph of the poset induced by the intersection of these
linear orders coincides with H .

Two vertices a and b are adjacent in H if and only if their letters alternate in
the word. So, they must be in the same order in each permutation, i. e. either
a < b in every linear order or b < a in every linear order. But this means that
a and b are comparable in the poset induced by the intersection of the linear
orders, i. e. a and b are adjacent in its comparability graph.

Lemma 5 ([13]). The poset P over 2k elements {a1, a2, . . . , ak, b1, b2, . . . , bk}
such that ai < bj for every i �= j and all other elements are not comparable has
dimension k.

Now we can prove Theorem 4.

Proof. Since the crown graph Hk,k is a comparability graph of the poset P , we
deduce from Lemmas 5 and 4 that Hk,k is permutational k-alternation graph
but not a permutational (k − 1)-alternation graph. Then by Lemma 3 we have
that Gk is a k-alternation graph but not a (k− 1)-alternation graph. Theorem 4
is proved. ��
The above arguments help us also in deciding the complexity of determining
the alternation number. From Lemmas 3 and 4, we see that it is as hard as
determining the dimension k of a poset. Yannakakis [14] showed that the latter
is NP-hard, for any 3 ≤ k ≤ �n/2�. We therefore obtain the following result,
which matches the situation for the related by different k-polygon circle graphs
[10].

200 M.M. Halldórsson, S. Kitaev, and A. Pyatkin

Proposition 1. Deciding whether a given graph is a k-alternation graph, for
any given 3 ≤ k ≤ �n/2�, is NP-complete.

It was further shown by Hegde and Jain [7] that it is NP-hard to approximate
the dimension of a poset within almost a square root factor. We therefore obtain
the same hardness for the alternation number.

Proposition 2. Approximating the alternation number within n1/2−ε-factor is
NP-hard, for any ε > 0.

5 Characteristics of Alternation Graphs

When faced with a new graph class, the most basic questions involve the kind
of properties it satisfies: which known classes are properly contained (and which
not), which graphs are otherwise contained (and which not), what operations
preserve alternation (or non-alternation), and which properties hold for these
graphs.

Previously, it was known that the class of alternation graphs includes compa-
rability graphs, outerplanar graphs, subdivision graphs, and prisms. The purpose
of this section is to clarify this situation significantly, including resolving some
conjectures. We start with exploring the relation of colorability and alternation.

Theorem 5. 3-colorable graphs are semi-transitively orientable, and thus alter-
nation graphs.

Proof. Given a 3-coloring of a graph, direct its edges from the first color class
through the second to the third class. It is easy to see that we obtain a semi-
transitive digraph.

This implies a number of earlier results on alternation, including that of out-
erplanar graphs, subdivision graphs, and prisms. The theorem also shows that
2-degenerate graphs, graphs of maximum degree 3 (via Brooks theorem), and
triangle-free planar graphs (via Grötzch’s theorem) are all alternation graphs.

This result does not extend to higher chromatic numbers. The examples in
Fig. 2 show that 4-colorable graphs can be non-alternation. We can, however,
obtain a result in terms of the girth of the graph, which is the length of its
shortest cycle.

Proposition 3. Let G be a graph whose girth is greater than its chromatic num-
ber. Then, G is an alternation graph.

Proof. Suppose the graph is colored with χ(G) natural numbers. Orient the
edges of the graph from small to large colors. There is no directed path with
more than χ(G) − 1 arcs, but since G contains no cycle of χ(G) or fewer edges,
there can be no shortcut. Hence, the digraph is semi-transitive.

The next theorem shows us how to construct an infinite series of triangle-free
non-alternation graphs. This answers an open question in [8].

Alternation Graphs 201

Theorem 6. There exist triangle-free non-alternation graphs.

Proof. Let H be a 4-chromatic graph with girth at least 10 (such graphs exist
by Erdös theorem). For every path P of length 3 in H add to H the edge eP

connecting its ends. Denote the obtained graph by G. Let us show that G is a
triangle-free non-alternation graph.

If G contains a triangle on the vertices u, v, w then H contains three paths
Puv, Puw, and Pvw of lengths 1 or 3 connecting these vertices. Let T be a graph
spanned by these three paths. Since T has at most 9 edges and the girth of H
is at least 10, T is a tree. Clearly, it cannot be a path. So, it is a subdivision
of K1,3 with the leafs u, v, w. But then at least one of the paths Puv, Puw , Pvw

must have an even length, a contradiction.
So, G is triangle-free. Assume that G has a semi-transitive orientation. Then

it induces a semi-transitive orientation on H . Since H is 4-chromatic, each of
its acyclic orientation must contain a directed path P of length at least 3. But
then the orientation of the edge eP in G produces either a 4-cycle or a shortcut,
contradicting the semi-transitivity. So, G is a triangle-free non-alternation graph.

6 Concluding Remarks and Open Questions

It is natural to ask about optimization problems on alternation graphs. The
known NP-hardness of many classical optimization problems on 3-colorable
graphs implies NP-hardness on alternation graphs, due to Theorem 5.

Observation 7. The optimization problems Independent Set, Dominating Set,
Graph Coloring, Clique Partition, Clique Covering are NP-hard on alternation
graphs.

Note that it may be relevant whether the representation of the graph as a semi-
transitive digraph is given; solvability under these conditions is open. However,
some problems remain polynomially solvable:

Observation 8. The Clique problem is polynomially solvable on alternation
graphs.

Indeed, we can simply use the fact that the neighborhood of any node is a com-
parability graph. The clique problem is easily solvable on comparability graphs.
Thus, it suffices to search for the largest clique within all induced neighborhoods.

We conclude with several open questions about alternation graphs:

1. Is it NP-hard to decide whether a graph is an alternation graph?
2. What is the maximum alternation number of a graph? We know that it lies

between n/2 and n.
3. Are all graphs of maximum degree 4 alternation graphs?
4. Is there an algorithm that forms an f(k)-representation of a k-alternation

graph, for some function f? Namely, can the alternation number be approx-
imated as a function of itself? The same question holds also for the partial
order (or poset) dimension [7].

202 M.M. Halldórsson, S. Kitaev, and A. Pyatkin

References

1. Brandstädt, A., Bang Lee, V., Spinrad, J.P.: Graph Classes: A Survey. Monographs
on Discrete Mathematics and Applications. SIAM (1987)

2. Courcelle, B.: Circle graphs and Monadic Second-order logic. J. Applied Logic 6(3),
416–442 (2008)

3. Draper, D.L., Jonsson, A.K., Clements, D.P., Joslin, D.E.: Cyclic Scheduling. In:
Proc. IJCAI (1999)

4. Graham, R., Zang, N.: Enumerating split-pair arrangements. J. Combin. Theory,
Series A 115(2), 293–303 (2008)

5. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Graphs Capturing Alternations in
Words. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224,
pp. 436–437. Springer, Heidelberg (2010)

6. Hanen, C., Munier, A.: Cyclic scheduling on parallel processors: An overview. In:
Chretienne, P., Coffman Jr., E.G., Lenstra, J.K., Liu, Z. (eds.) Scheduling Theory
and its Applications, ch. 9, John Wiley & Sons (1995)

7. Hegde, R., Jain, K.: The hardness of approximating poset dimension. Electronic
Notes in Discrete Mathematics 29, 435–443 (2007)

8. Kitaev, S., Pyatkin, A.: On representable graphs. Automata, Languages and Com-
binatorics 13, 45–54 (2008)

9. Kitaev, S., Seif, S.: Word problem of the Perkins semigroup via directed acyclic
graphs. Order (2008), doi: 10.1007/s11083-008-9083-7

10. Kratochv́ıl, J., Pergel, M.: Two Results on Intersection Graphs of Polygons. In:
Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 59–70. Springer, Heidelberg (2004)

11. Middendorf, M., Timkovsky, V.G.: On scheduling cycle shops: Classification, com-
plexity and approximation. Journal of Scheduling 5, 135–169 (2002)

12. Pergel, M.: Recognition of Polygon-Circle Graphs And Graphs of Interval Fila-
ments Is NP-Complete. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG
2007. LNCS, vol. 4769, pp. 238–247. Springer, Heidelberg (2007)

13. Trotter, W.T.: Combinatorics and partially ordered sets: Dimension theory. Johns
Hopkins Univ. Press (2001)

14. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Algebraic Discrete Methods 3(3), 351–358 (1982)

Improved Bounds for Minimum Fault-Tolerant

Gossip Graphs�

Toru Hasunuma1 and Hiroshi Nagamochi2

1 Institute of Socio-Arts and Sciences, The University of Tokushima,
Tokushima 770–8502 Japan

hasunuma@ias.tokushima-u.ac.jp
2 Department of Applied Mathematics and Physics, Kyoto University,

Kyoto 606-8501, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract. A k-fault-tolerant gossip graph is a (multiple) graph whose
edges are linearly ordered such that for any ordered pair of vertices u and
v, there are k + 1 edge-disjoint ascending paths from u to v. Let τ (n, k)
denote the minimum number of edges in a k-fault-tolerant gossip graph
with n vertices. In this paper, we present upper and lower bounds on
τ (n, k) which improve the previously known bounds. In particular, from
our upper bounds, it follows that τ (n, k) ≤ nk

2
+ O(n log n). Previously,

it has been shown that this upper bound holds only for the case that n
is a power of two.

1 Introduction

Throughout the paper, a graph may have multiple edges, but not self loops.
Let G = (V, E) be a graph. An edge-ordering of G is a bijection from E(G) to
{1, 2, . . . , |E(G)|}. A graph G with an edge-ordering ρ is an ordered graph (G, ρ).
Let P = (v0, e1, v1, e2, v2, . . . , ek, vk) be a path from a vertex v0 to a vertex vk

in G, where vi ∈ V (G) for 0 ≤ i ≤ k and ei ∈ E(G) for 1 ≤ i ≤ k such that
all vi’s are distinct and ei joins vi−1 and vi for 1 ≤ i ≤ k. If ρ(ei) < ρ(ej) for
1 ≤ i < j ≤ k, then P is an ascending path from v0 to vk in (G, ρ). An ordered
graph (G, ρ) is a k-fault-tolerant gossip graph if for any ordered pair of vertices
u and v in (G, ρ), there are k + 1 edge-disjoint ascending paths from u to v. A
0-fault-tolerant gossip graph is simply called a gossip graph. Let τ(n, k) be the
minimum number of edges in a k-fault-tolerant gossip graph with n vertices.

The term of a gossip graph comes from the gossiping problem, first proposed
by Boyd. Suppose that there are n persons such that each person has a unique
message, and all the n persons want to know all the n messages by telephone.
In each telephone call, the two persons exchange every message which they have
at the time of the call. The gossiping problem is to find the minimum number of
calls. A process that the n persons communicate by telephone can be modeled
by an ordered graph (G, ρ), where each vertex (respectively, edge) corresponds

� This work was supported by JSPS KAKENHI 20500012, 21500017.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 203–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

204 T. Hasunuma and H. Nagamochi

to each person (respectively, telephone call) such that the edge-ordering ρ indi-
cates the ordering of telephone calls. A person (vertex) v receives the message
originated from a person (vertex) u if and only if there is an ascending path
from u to v in the ordered graph (G, ρ). Thus, a gossiping for n persons can be
modeled by a gossip graph with n vertices. The minimum number of calls in the
gossiping problem on n persons was determined to be 2n − 4 for n ≥ 4 by sev-
eral researchers independently (see [1], [4], [6], [11]). Besides, several variations
of the problem have been studied in [10], [12]. In some situation, a telephone
call may fail in the sense that the messages in the failed call are not exchanged.
Berman and Hawrylycz [2] first proposed the gossiping problem with at most
k failed calls which can be modeled by a k-fault-tolerant gossip graph (G, ρ).
Gossiping is now a fundamental problem in computer networks. When we study
gossiping problems in computer networks, we need to specify many assumptions.
Our gossiping model corresponds to gossiping in computer networks under the
assumptions that communication mode is full-duplex and whispering, packet
size is unbounded, fault type is transient link-fault, fault model is bounded, and
algorithm is nonadaptive. For each terminology in these assumptions, the reader
is referred to the survey [9] by Pelc.

Berman and Hawrylycz [2] showed that⌈(
k+4
2

)
(n − 1)

⌉− 2�√n � + 1 ≤ τ(n, k) ≤ ⌊(
k + 3

2

)
(n − 1)

⌋
for k ≤ n − 2,⌈(

k+3
2

)
(n − 1)

⌉− 2�√n � ≤ τ(n, k) ≤ ⌊(
k + 3

2

)
(n − 1)

⌋
for k ≥ n − 2.

Haddad, Roy, and Schäffer [5] proved that

τ(n, k) ≤
(

k

2
+ 2p

)(
(n − 1) +

n − 1
2p − 1

+ 2p

)
,

where p is any integer between 1 and log2 n inclusive. By choosing p appropri-
ately, this upper bound improves the Berman and Hawrylycz’s upper bounds
for almost all k. In particular, by choosing p = � log2 n

2 �, the following bound is
obtained: τ(n, k) ≤ nk

2 + O(k
√

n + n log n). For the special case of n = 2p for
some p, Haddad, Roy, and Schäffer also showed that

τ(n, k) ≤ min
{(⌈

k+1
log2 n

⌉
+ 1

)
n log2 n

2 ,(⌊
k+1

log2 n

⌋
+ 1

)
n log2 n

2 + (k + 1 mod log2 n)(2n − 4)
}

.

Thus, τ(n, k) ≤ nk
2 + O(n log n) when n is a power of two.

Later on Berman and Paul [3] improved Berman and Hawrylycz’s lower bounds
by showing that

2n − 2 +
⌈

k(n − 1)
2

⌉
− �log2 n� ≤ τ(n, k).

Recently, Hou and Shigeno [8] showed that⌊
n(k + 2)

2

⌋
≤ τ(n, k) ≤ n(n − 1)

2
+
⌈

nk

2

⌉
.

Improved Bounds for Minimum Fault-Tolerant Gossip Graphs 205

Thus, it holds that nk
2 +Ω(n) ≤ τ(n, k) ≤ nk

2 +O(n2). Hou and Shigeno’s bounds
improve the previous bounds for small n and sufficiently large k.

In this paper, we show that

τ(n, k) ≤

⎧⎪⎨
⎪⎩

n log2 n

2
+

nk

2
if n is a power of two,

2n�log2 n� + n

⌈
k − 1

2

⌉
otherwise.

From our results, it holds that τ(n, k) ≤ nk
2 +O(n log n). In particular, our upper

bound improves Hou and Shigeno’s upper bound for all n ≥ 13. We also improve
the upper bound by Haddad et al. by showing that the factor (k/2 + 2p) in their
upper bound can be replaced with a smaller factor (k/2 + p):

τ(n, k) ≤
(

k

2
+ p

)(
(n − 1) +

n − 1
2p − 1

+ 2p

)
,

where p is any integer between 1 and log2 n inclusive.
Besides, we show that⌈

3n − 5
2

⌉
+
⌈

1
2

(
nk +

⌊
n + 1

2

⌋
− �log2 n�

)⌉
≤ τ(n, k).

Our lower bound improves Berman and Paul’s lower bound when k > n/2 and
Hou and Shigeno’s lower bound when n ≥ 5.

This paper is organized as follows. Section 2 presents our general method
for constructing fault-tolerant gossip graphs. Upper bounds on the minimum
number of edges in fault-tolerant gossiping graphs based on the hypercubes and
circulant graphs are given in Sections 3 and 4, respectively. Section 5 gives our
lower bound.

2 Construction of Fault-Tolerant Gossip Graphs

In order to simplify the discussion for edge-disjoint paths, we often omit the
vertices (or edges) in the description of a path if there is no confusion. Let P =
(e0, e1, . . . , ek) be a path in an ordered graph (G, ρ), where ei ∈ E(G) for 0 ≤ i ≤
k. If P is divided into s+1 subpaths P (0) = (e0, . . . , ep0), P (1) = (ep0+1, . . . , ep1),
. . . , P (s) = (eps−1+1, . . . , ek), then we write P = P (0) � P (1) � · · · � P (s), where
� is the concatenation operation on two paths for which the last vertex of one
path is the first vertex of the other. If P = P (0)�P (1)�· · ·�P (s) such that P (j)

is an ascending path for 0 ≤ j ≤ s and P (j) � P (j+1) is not an ascending path
for 0 ≤ j < s, then P is an s-folded ascending path. For an s-folded ascending
path P , the folded number of P is defined to be s.

Based on an ordered graph (G, ρ), we define h · (G, ρ) to be the ordered graph
obtained from (G, ρ) by adding h − 1 copies E1, E2, . . . , Eh−1 of E0 = E(G)
and setting the order of each edge et,i ∈ Ei as ρ(et) + i · |E(G)|, where et is
the original edge in E(G) corresponding to et,i. For a path P = (e0, e1, . . . , ek)

206 T. Hasunuma and H. Nagamochi

in (G, ρ), let P0 = P and Pi(= (e0,i, e1,i, . . . , ek,i)) be the corresponding path
using edges in Ei for 1 ≤ i < h. Let P = P (0) � P (1) � · · · � P (s) be an s-
folded ascending path from a vertex u to a vertex v in (G, ρ), where P (j) is an
ascending subpath for 0 ≤ j ≤ s. Then, Pi is also an s-folded ascending path and
Pi = P

(0)
i �P

(1)
i �· · ·�P

(s)
i . Now consider the path P (k) = P

(0)
k �P

(1)
k+1�· · ·�P

(s)
k+s

in h · (G, ρ). Then, P (k) is an ascending path from u to v for 0 ≤ k < h − s
such that P (k) and P (k′) are edge-disjoint if k �= k′. Thus, based on an s-folded
ascending path P , we can construct (h − s) edge-disjoint ascending paths from
u to v in h · (G, ρ). Similarly, based on another s-folded ascending path P ′ from
u to v, we can construct (h − s) edge-disjoint ascending paths P ′(k) from u to
v for 0 ≤ k < h − s. If P and P ′ are edge-disjoint, then P (0), . . . , P (h − s − 1)
and P ′(0), . . . , P ′(h − s − 1) are clearly edge-disjoint each other. Therefore, the
following lemma holds. This lemma was shown by Haddad et. al. [5] in a slightly
different form1.

Lemma 1. Let u and v be vertices in an ordered graph (G, ρ). If there are p edge-
disjoint s-folded ascending paths from u to v in (G, ρ). then there are p(h − s)
edge-disjoint ascending paths from u to v in h · (G, ρ) for any integer h ≥ s.

From this lemma, if there are p edge-disjoint s-folded ascending paths from u
to v in (G, ρ), then there are k + 1 edge-disjoint ascending paths from u to v in
(s + �k+1

p �) · (G, ρ). Thus, the following corollary is obtained.

Corollary 1. Let G be a graph with n vertices and m edges. If there are p
edge-disjoint s-folded ascending paths from any vertex to any other vertex in an
ordered graph (G, ρ), then τ(n, k) ≤ (s + �k+1

p �)m.

Based on this corollary, Haddad et al. derived upper bounds. In order to improve
their upper bounds, we need a proposition stronger than Corollary 1.

Theorem 1. Let (G, ρ) be an ordered graph with n vertices. Suppose that

– E(G) can be decomposed into � subsets F0, F1, . . . , F�−1 such that for any
two edges e ∈ Fi and e′ ∈ Fj, ρ(e) < ρ(e′) if i < j,

– for any two vertices u and v, there are p edge-disjoint paths from u to v such
that the sum of their folded numbers is at most q, and the last edges of ri

paths are in Fi for 0 ≤ i < �.

Then, τ(n, k) ≤∑
0≤i≤w |Fi mod �|, where w is an integer satisfying∑

0≤i≤w ri mod � ≥ k + q + 1.

Proof. Suppose that there are pi edge-disjoint i-folded ascending paths from a
vertex u to a vertex v for 0 ≤ i ≤ s such that p =

∑s
i=0 pi and q ≥ ∑

0≤i≤s ipi.
Let S(u, v) be the set of such p edge-disjoint paths from u to v in (G, ρ). Also,
let h = �w

� �.
1 Haddad et al. define an s-folded ascending path as a path which can be decomposed

into at most s ascending subpaths.

Improved Bounds for Minimum Fault-Tolerant Gossip Graphs 207

– Case 1: h ≥ s. From Lemma 1, we can see that based on pi edge-disjoint
i-folded ascending paths from u to v in (G, ρ), there are pi(h − i) edge-
disjoint ascending paths from u to v in h · (G, ρ) for each i. Thus, there
are

∑
0≤i≤s pi(h − i) ≥ hp − q edge-disjoint ascending paths from u to v in

h · (G, ρ).
Let F ′

i be the subset of E((h + 1) · (G, ρ)) − E(h · (G, ρ)) corresponding to
Fi ⊆ E(G) for 0 ≤ i < �. Define the ordered graph Hi (−1 ≤ i < �) as follows.
Let H−1 = h · (G, ρ). For 0 ≤ i < �, let Hi be the ordered graph obtained
from Hi−1 by adding the edges in F ′

i . Note that H�−1 = (h + 1) · (G, ρ).
Let P = P (0) � P (1) � · · · � P (t) (0 ≤ t ≤ s) be a t-folded ascending
path in S(u, v) such that each P (j) is an ascending subpath. Now consider
the path P (h − t + 1) = P

(0)
h−t+1 � P

(1)
h−t+2 � · · · � P

(t)
h+1 in (h + 1) · (G, ρ).

If the last edge of P (h − t + 1) is in F ′
i , then P (h − t + 1) exists in Hi.

Note that all the edges in P
(t)
h+1 are in ∪0≤j≤iF

′
j , since P

(t)
h+1 is an as-

cending subpath. There are ri paths in S(u, v) whose last edge is in Fi.
Therefore, compared to Hi−1, ri ascending paths are newly constructed in
Hi while preserving edge-disjointness. Consequently, in the ordered graph
with h|E(G)| +

∑
h�≤i≤w |Fi mod �| =

∑
0≤i≤w |Fi mod �| edges, there are

hp − q +
∑

h�≤i≤w ri mod � =
∑

0≤i≤w ri mod � − q ≥ k + 1 edge-disjoint as-
cending paths from u to v.

– Case 2: h < s. In this case, there are
∑

0≤i≤h pi(h−i) ≥ hp−q+
∑

h<i≤s pi(i−
h) edge-disjoint ascending paths from u to v in h · (G, ρ). The discussion in
Case 1 can be similarly applied to t-folded ascending paths in S(u, v) for 0 ≤
t ≤ h while for h < t ≤ s, any t-folded ascending path is not newly appeared
in Hi compared to Hi−1. Hence, in the ordered graph with

∑
0≤i≤w |Fi mod �|

edges, there are at least hp − q +
∑

h<i≤s pi(i − h) + (
∑

h�≤i≤w ri mod � −∑
h<i≤s pi) ≥ hp − q +

∑
h�≤i≤w ri mod � =

∑
0≤i≤w ri mod � − q ≥ k + 1

edge-disjoint ascending paths from u to v.
��

3 Fault-Tolerant Gossip Graphs Based on Hypercubes

The p-dimensional hypercube Qp is the graph whose vertex set is the set of
all 0-1 vectors of length p and two vertices are adjacent if and only if their
coordinates differ in exactly one place. For an edge e = {u, v} in Qp, where
u = (u1, u2, . . . , up) and v = (v1, v2, . . . , vp), and an integer i ∈ {1, 2, . . . , p}, if
ui �= vi and uj = vj for all j �= i, then the dimension dim(e) of the edge e is
defined to be i. Haddad et al. [5] showed that there are p inner vertex-disjoint
paths from any vertex to any other vertex in an ordered graph based on Qp

such that the folded number of each path is at most one, which implies that
τ(n, k) ≤ (�k+1

p � + 1)np
2 by Corollary 1.

Applying Theorem 1 to the vertex-disjoint paths in the hypercube shown in
[5], we can improve their upper bound result.

Theorem 2. τ(n, k) ≤ n log2 n
2 + nk

2 if n is a power of two.

208 T. Hasunuma and H. Nagamochi

Proof. Let n = 2p. Let Fi−1 be the set of edges with dimension i in Qp for
1 ≤ i ≤ p. For each vertex v = (v1, v2, . . . , vp) in Qp, let bin(v) =

∑
1≤i≤p 2p−ivi

and binj(v) =
∑

1≤i<j 2p−1−ivi +
∑

j<i≤p 2p−ivi for 1 ≤ j ≤ p. Define the edge-
ordering ρ of Qp as follows: for each edge e = {u, v}, ρ(e) = 2p−1(dim(e) −
1) + bindim(e)(u) + 1. By definition, it holds that for any two edges e1 and
e2, if dim(e1) < dim(e2), then ρ(e1) < ρ(e2). Let u = (u1, u2, . . . , up), v =
(v1, v2, . . . , vp) ∈ V (Qp). Also, let A = {i | ui = vi, 1 ≤ i ≤ p} = {a1, a2, . . . , a|A|}
and B = {i | ui �= vi, 1 ≤ i ≤ p} = {b1, b2, . . . , b|B|} such that a1 < a2 < · · · <
a|A| and b1 < b2 < · · · < b|B|. A path from u to v in Qp can be represented by a se-
quence of ai’s and bi’s, i.e., a sequence of the dimensions of edges. For 1 ≤ j ≤ |A|,
define ij to be the integer satisfying bij < aj < bij+1 if b1 < aj < b|B|. If aj < b1

or b|B| < aj , then let ij = 0. Now consider the following paths which were
previously defined in [5]: Pb|B| = (b1, b2, . . . , b|B|), Pb1 = (b2, . . . , b|B|, b1), . . .,
Pb|B|−1 = (b|B|, b1, . . . , b|B|−1), Pa1 = (a1, bi1+1, . . . , b|B|, b1, . . . , bi1 , a1), Pa2 =
(a2, bi2+1, . . . , b|B|, b1, . . . , bi2 , a2), . . ., Pa|A| = (a|A|, bi|A|+1, . . . , b|B|, b1, . . . , bi|A| ,
a|A|). As shown in [5], these paths are inner vertex-disjoint, thus edge-disjoint,
each other. The first path is 0-folded and the others are 1-folded. Also, the di-
mensions of the last edges of the paths are distinct, i.e., there is exactly one path
whose last edge is in Fi, where |Fi| = n/2, for 0 ≤ i < p. Therefore, by setting
q = p−1 and ri = 1 for 0 ≤ i < p in Theorem 1, we obtain τ(n, k) ≤ n(p+k)

2 . ��
Haddad et al. defined the (h, p)-hypercube Qh,p to be the graph obtained from
h copies of Qp by selecting one vertex from each Qp and identifying such h
vertices as a single vertex called the center vertex. Let h = �(n − 1)/(2p − 1)�.
The number ñ of vertices in the (h, p)-hypercube is h(2p − 1) + 1 ≥ n. It is
not difficult to see that τ(n, k) ≤ τ(ñ, k). Then, they showed that τ(ñ, k) ≤(

k
2 + 2p

)(
(n − 1) + n−1

2p−1 + 2p
)

. In what follows, we show that the factor (k
2 +2p)

in the upper bound by Haddad et al. can be replaced with a smaller factor (k
2 +p).

Theorem 3. τ(n, k) ≤ (
k
2 + p

) (
(n − 1) + n−1

2p−1 + 2p
)

, where p is any integer
between 1 and log2 n inclusive.

Proof. For the (h, p)-hypercube Qh,p, let Q1
p, Q2

p, . . . , Q
h
p be the h hypercubes by

which Qh,p is constructed. Define the edge-ordering ρ of Qh,p as follows: for each
edge e = {u, v} ∈ E(Qi

p), 1 ≤ i ≤ h, ρ(e) = h2p−1(dim(e) − 1) + bindim(e)(u) +
(i − 1)2p−1 + 1. By definition, it holds that for any two edges e1 and e2, if
dim(e1) < dim(e2), then ρ(e1) < ρ(e2). Let u and v be any two vertices of Qh,p

and x the center vertex of Qh,p. Suppose that u ∈ V (Qi
p) and v ∈ V (Qj

p). We
construct p edge-disjoint paths from u to v in Qh,p by concatenating edge-disjoint
paths from u to x in Qi

p and edge-disjoint paths from x to v in Qj
p. The set Si

(Sj) of such edge-disjoint paths in Qi
p (Qj

p) is defined similarly to that shown in
the proof of Theorem 2. For 1 ≤ i ≤ p, Pi (respectively, P ′

i) denotes the path in
Si in which the dimension of the last edge is i (respectively, the path in Sj in
which the dimension of the first edge is i). Then, we define p edge-disjoint paths
from u to v as follows: R1 = P1 � P ′

2, R2 = P2 � P ′
3, . . ., Rp−1 = Pp−1 � P ′

p,

Improved Bounds for Minimum Fault-Tolerant Gossip Graphs 209

Rp = Pp � P ′
1. In the set Si = {Pi | 1 ≤ i ≤ p} (Sj = {P ′

i | 1 ≤ i ≤ p}), there
is exactly one ascending path and the remaining paths are 1-folded ascending
paths. The folded number of Ri is the sum of the folded numbers of Pi and P ′

i+1

for 1 ≤ i < p, while the folded number of Rp is just one more than the sum of
the folded numbers of Pp and P ′

1. Thus, the sum of the folded numbers of Ri’s
is 2p − 1.

In Theorem 1, by letting Fi be the set of edges with the dimension i in
∪1≤j≤hE(Qj

p), i.e., |Fi| = h|V (Qp)|/2, and ri = 1 for 1 ≤ i ≤ p, it holds that
τ(ñ, k) ≤ (k + 2p)h|V (Qp)|/2 = (k + 2p)� n−1

2p−1�2p−1 ≤ (k + 2p)(n−1
2p−1 + 1)2p−1 =

(k
2 + p)((n − 1) + n−1

2p−1 + 2p). ��

4 Fault-Tolerant Gossip Graphs Based on Circulant
Graphs

In this section, we assume that the number n of vertices is not a power of two.

Definition 1. The ordered graph (R(n), ρn) is defined as follows:
{

V (R(n)) = {0, 1, . . . , n − 1},
E(R(n)) = {{u, v} | v ≡ u + 2i (mod n), 0 ≤ i ≤ �log n� − 1}.

ρn({u, u + 2i}) = n(�log2 n�− i− 1) + u + 1, for 0 ≤ u < n, 0 ≤ i ≤ �log n�− 1.

Note that R(n) is 2�log n�-regular. We denote a path in R(n) by a sequence of
vertices instead of a sequence of edges. The span sp(e) of an edge e = {u, u +
2i(mod n)} in R(n) is defined to be i. By definition, it holds that for any two
edges e1 and e2, if sp(e1) > sp(e2), then ρn(e1) < ρn(e2). In what follows, the
ordered graph (R(n), ρn) is simply abbreviated to R(n).

Let πc be the cyclic permutation (0 1 · · · n − 1) on V (R(n)). Also, let πm

be the permutation (0)(1 n − 1)(2 n − 2) · · · (n−1
2

n+1
2) if n is odd, (0)(1 n −

1)(2 n − 2) · · · (n−2
2

n+2
2)(n

2) if n is even. Then, it can be easily checked that
πc and πm are automorphisms on R(n). Thus, without loss of generality, it is
sufficient to consider edge-disjoint paths from 0 to v for any 0 < v ≤ n/2. Let
v ∈ V (R(n)) such that v =

∑�
i=1 si2ti , where ti ≥ 0 and si ∈ {−1, 1} for 1 ≤ i ≤

�. We denote by P (0; s1t1, s2t2, . . . , s�t�; v) the path (0, s12t1(mod n), s12t1 +
s22t2(mod n), . . . ,

∑�
i=1 si2ti) from 0 to v.

Now define the operations Li, Ri, and X on paths in R(n) as follows: for a
given path P = P (0; s1t1, s2t2, . . . , s�t�; v),

Li(P) = P (0;−i, s1t1, s2t2, . . . , s�t�, i; v), for 0 ≤ i ≤ �log2 n� − 1,
Ri(P) = P (0; i, s1t1, s2t2, . . . , s�t�,−i; v), for 0 ≤ i ≤ �log2 n� − 1,
X(P) = P (0; s�t�, s2t2, . . . , s�−1t�−1, s1t1; v).

Note that X(P) is obtained from P by exchanging s1t1 and s�t�.
Let S(P) = {P} ∪ {Li(P) | i �= t1, t�} ∪ {Ri(P) | i �= t1, t�} ∪ {X(P)}. Then,

we can check that the following lemma holds.

210 T. Hasunuma and H. Nagamochi

Lemma 2. Let P = P (0; s1t1, s2t2, . . . , s�t�; v) be a path in R(n). If all ti’s are
distinct and every element in S(P) is a path, then all the elements in S(P) are
pairwise edge-disjoint paths.

In order to prove our upper bound result, we construct 2�log2 n� edge-disjoint
paths from 0 to v in R(n) for 0 < v ≤ n/2 so that the sum of their folded
numbers is at most 4�log2 n� − 2. Let v =

∑�
i=1 2ti , where �log2 n� − 1 ≥ t1 >

t2 > · · · > t� ≥ 0. Our constructions for edge-disjoint paths are divided into the
following seven cases. We will basically explain each construction in this order.

– Case 1: � ≥ 2 and t1 = �log2 n� − 1,
– Case 2: � ≥ 2, t1 ≤ �log2 n� − 2 and v �= 2t�(2t1−t�+1 − 1),
– Case 3: � ≥ 2, t1 = �log2 n� − 2 and v = 2t�(2t1−t�+1 − 1),
– Case 4: � ≥ 2, t1 ≤ �log2 n� − 3 and v = 2t�(2t1−t�+1 − 1),
– Case 5: � = 1 and t1 = �log2 n� − 1,
– Case 6: � = 1 and t1 = �log2 n� − 2,
– Case 7: � = 1 and t1 ≤ �log2 n� − 3.

Define P ∗ = P (0; t1, t2, . . . , t�; v) and call it the standard path from 0 to v. Note
that P ∗ is an ascending path from 0 to v. Clearly, X(P ∗) is a path. Also, any
Li(P ∗) (respectively, Ri(P ∗)) in S(P ∗) is also a path, since 2i �= 2t1+2t2+· · ·+2tk

(1 < k ≤ �) (respectively, 2i �= 2tk′ + · · ·+ 2t� (1 ≤ k′ < �)). Thus, every element
in S(P ∗) is a path from 0 to v. Then, we call Li(P ∗), Ri(P ∗), and X(P ∗), the
i-left-shift path of P ∗, the i-right-shift path of P ∗ , and the exchange path of P ∗,
respectively. From Lemma 2, the following lemma holds.

Lemma 3. All the paths in S(P ∗) are pairwise edge-disjoint.

By definition, P ∗ is an ascending path and the folded number of any other path
in S(P ∗) is at most two. Next, we define the opposite path OP ∗ as follows:

OP ∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P (0;−(�log2 n� − 1),−y1,−y2, . . . ,−y�′,−(�log2 n� − 1); v)
if v + 2log n� ≤ n and n − v − 2log n� =

∑
1≤i≤�′ 2yi

where �log2 n� − 1 ≥ y1 > y2 > · · · > y�′ ≥ 0,
P (0;−(�log2 n� − 1), z1, z2, . . . , z�′′ ,−(�log2 n� − 1); v)

if v + 2log n� > n and v + 2log n� − n =
∑

1≤i≤�′′ 2zi

where �log2 n� − 1 ≥ z1 > z2 > · · · > z�′′ ≥ 0.

Lemma 4. Let � ≥ 2. If t1 = �log2 n� − 1, then OP ∗ is edge-disjoint to any
path in S(P ∗).

When t1 ≤ �log2 n� − 2, we can define the jumping path JP ∗ as follows:
JP ∗ = P (0;−t1, t1 + 1, t1, t2, . . . , t�,−t1; v).

Lemma 5. Let � ≥ 2. If t1 < �log2 n�−1, then JP ∗ is edge-disjoint to any path
in S(P ∗).

Improved Bounds for Minimum Fault-Tolerant Gossip Graphs 211

Note that the folded numbers of OP ∗ and JP ∗ are at most two. From Lemmas
3,4, and 5, it is sufficient to present one more path edge-disjoint to any path
in S(P ∗) ∪ {OP ∗} if � ≥ 2 and t1 = �log2 n� − 1, S(P ∗) ∪ {JP ∗} if � ≥ 2,
t1 ≤ �log2 n� − 2, and v �= 2t�(2t1−t�+1 − 1). By defining the following path
called the merged path, our constructions are completed for Cases 1 and 2.

MP ∗ =

⎧⎪⎪⎨
⎪⎪⎩

P (0;−t�, t1, . . . , tk, t�, tk+1 + 1,−t�; v),
if there is a positive integer j such that tj > tj+1 + 1
and k = max{j | tj > tj+1 + 1, 1 ≤ j < �},

P (0;−t�, t1, t�, t1,−t�; v), otherwise.

Note that MP ∗ is a 2-folded ascending path.

Proposition 1. Suppose that � ≥ 2. If t1 = �log2 n� − 1, or t1 ≤ �log2 n� − 2
and v �= 2t�(2t1−t�+1 − 1), then there are 2�log2 n� edge-disjoint paths from 0 to
v in R(n) such that the folded number of one path is 0 and the folded numbers
of remaining paths are at most two.

Next, we consider Cases 3 and 4, i.e., � ≥ 2, t1 ≤ �log2 n�−2 and v = 2t�(2t1−t�+1−
1). In these cases, we cannot employ the set of paths for Case 2, since JP ∗ and
MP ∗ are no longer edge-disjoint under the condition that v = 2t�(2t1−t�+1 − 1).
Then, we consider the path P ′ = P (0; t1 + 1,−t�; v) from 0 to v. Let S(P ′) =
{P ′} ∪ {Li(P ′) | i �= t1 + 1, t�} ∪ {Ri(P ′) | i �= t1 + 1, t�} ∪ {X(P ′)}. Clearly, P ′

is an ascending path and the folded number of any other path in S(P ′) is at most
two. From Lemma 2, all the paths in S(P ′) are pairwise edge-disjoint.

Lemma 6. 2�log2 n� − 2 paths in S(P ′) are pairwise edge-disjoint.

Similarly to Cases 1 and 2, we can add OP ∗ or JP ′ to S(P ′) while preserving
edge-disjointness, where JP ′ is defined as follows:

JP ′ = P (0;−(t1 + 1), t1 + 2, t1 + 1,−t�,−(t1 + 1); v).

The folded number of JP ′ is two.

Lemma 7. Suppose that � ≥ 2, t1 = �log2 n� − 2 and v = 2t�(2t1−t�+1 − 1).
Then OP ∗ is edge-disjoint to any path in S(P ′).

Lemma 8. Suppose that � ≥ 2, t1 ≤ �log2 n� − 3 and v = 2t�(2t1−t�+1 − 1).
Then JP ′ is edge-disjoint to any path in S(P ′).

From Lemmas 6,7 and 8, it is sufficient to construct one more path edge-disjoint
to any path in S(P ′)∪{OP ∗} if � ≥ 2, t1 = �log2 n�−2 and v = 2t�(2t1−t�+1−1),
S(P ′) ∪ {JP ′} if � ≥ 2, t1 ≤ �log2 n� − 3 and v = 2t�(2t1−t�+1 − 1). De-
fine the right-cyclic-shift path CP ∗ of the standard path P ∗ from 0 to v as
CP ∗ = P (0; t�, t1, . . . , t�−2, t�−1; v). Besides, define the divided path DP ∗ of
CP ∗ as DP ∗ = P (0; t�, t1, . . . , t�−2, t�, t�; v). The folded number of DP ∗ is two.
It can be checked that DP ∗ is edge-disjoint to any path in S(P ′) ∪ {OP ∗}
(S(P ′) ∪ {JP ′}) except for Lt�−1(P ′). Since DP ∗ and Lt�−1(P ′) have an edge
with span t� in common, instead of Lt�−1(P ′), we employ the t�−1-left-shift path
of CP ∗: Lt�−1(CP ∗) = P (0;−t�−1, t�, t1, . . . , t�−2, t�−1, t�−1; v). The folded num-
ber of Lt�−1(CP ∗) is two.

212 T. Hasunuma and H. Nagamochi

Proposition 2. Suppose that � ≥ 2. If t1 ≤ �log2 n�−2 and v = 2t�(2t1−t�+1−1),
then there are 2�log2 n� edge-disjoint paths from 0 to v in R(n) such that the folded
number of one path is 0 and the folded numbers of remaining paths are at most two.

Finally, we consider the case that � = 1 which is divided into Cases 5,6, and
7. In these cases, the standard path from 0 to v consists of one edge: P ∗ =
(0; t1; v). From Lemma 2, 2�log2 n�−1 paths in S(P ∗) are pairwise edge-disjoint.
Thus, we need one more path edge-disjoint to any path in S(P ∗). When t1 =
�log2 n�−1, we can add OP ∗ to S(P ∗) while preserving edge-disjointness. When
t1 ≤ �log2 n� − 3, we can employ the wide jumping path:

WP ∗ = P (0;−t1, t1 + 2, t1,−(t1 + 1),−t1).

The folded number of WP ∗ is two. For two vertices x and y, if (x−y)(mod n) ≤
n/2 and (x−y)(mod n) =

∑m
i=1 2ui , where �log2 n�−1 ≥ u1 > u2 > · · · > um ≥

0, we can define the opposite standard path P̃ ∗(x; y) from x to y as follows:

P̃ ∗(x; y) = P (x;−u1,−u2, . . . ,−um; y)

When t1 = �log2 n�−2, we use the divided opposite path OP ∗∗ defined as follows:

OP ∗∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃ ∗(0;−2t1+1 + 1) � P (−2t1+1 + 1;−(t1 + 1); 2t1+2) � P̃ ∗(2t1+2; v)
if n = 2t1+3 − 1,

P̃ ∗(0;−2t1+1 + 1) � P (−2t1+1 + 1;−t1,−(t1 + 1),−t1; v)
if n = 7 · 2t1 − 1,

P̃ ∗(0;−2t1+1 + 1) � P̃ ∗(−2t1+1 + 1; 2t1+1) � P (2t1+1;−t1; v)
if n > 5 · 2t1 and n �= 7 · 2t1 − 1, 2t1+3 − 1,

P (0;−t1,−(t1 + 1),−t1; v) if n = 5 · 2t1 ,
P (0;−t1,−(t1 + 1), 0,−t1; v) if n = 5 · 2t1 − 1,

P̃ ∗(0;−2t1+1 + 1) � P̃ ∗(−2t1+1 + 1; 2t1+1) � P (2t1+1,−t1; v)
if n ≤ 5 · 2t1 − 2.

The folded number of OP ∗∗ is at most two. We can show that S(P ∗) ∪ {OP ∗},
S(P ∗) ∪ {OP ∗∗}, and S(P ∗) ∪ {WP ∗} are sets of 2�log2 n� edge-disjoint paths
for Cases 5,6, and 7, respectively.

Proposition 3. Suppose that � = 1. Then, there are 2�log2 n� edge-disjoint
paths from 0 to v in R(n) such that the folded number of one path is 0 and the
folded numbers of remaining paths are at most two.

From Propositions 1, 2, and 3, it follows that in R(n), there are 2�log n� edge-
disjoint paths from any vertex to any other vertex in which one path is an
ascending path and the folded number of any other path is at most two. By
letting Fi be the set of edges with span �log n�− i− 1 for 0 ≤ i < �log n�, where
|Fi| = n, the last edges of two paths are in Fi, i.e., ri = 2, for each i. Since the
sum of the folded numbers of paths is at most 2(2�log2 n� − 1), from Theorem
1, we have the following theorem.

Theorem 4. τ(n, k) ≤ 2n�log2 n� + n�k−1
2 � if n is not a power of two.

Improved Bounds for Minimum Fault-Tolerant Gossip Graphs 213

When k is even, we can slightly improve the number of edges by the follow-
ing observation. First we construct k edge-disjoint ascending paths for which
we need 2n�log2 n� + n(k−2)

2 edges. Since the spanning subgraph with edge
set F(k/2−1) mod log2 n� is 2-regular, it consists of t disjoint cycles with n

t ver-
tices. By adding edges in each cycle alternately, i.e., at most t� n

2t� ≤ 2n
3 edges

in F(k/2−1) mod log2 n�, we can obtain one more ascending path which is edge-
disjoint to any path in the k edge-disjoint ascending paths.

5 A Lower Bound

In order to show our lower bound, we need two results on broadcasting. A k-fault-
tolerant broadcast graph is an ordered graph in which there are k+1 edge-disjoint
ascending paths from a vertex to any other vertex. Let μ(n, k) be the minimum
number of edges in a k-fault-tolerant broadcast graph. Berman and Hawrylycz
[2] determined μ(n, k) for any n and k.

Theorem 5. (Berman and Hawrylycz [2])

μ(n, k) =

{⌈(
k+2
2

)
(n − 1)

⌉
, if k ≤ n − 2,⌈(

k+1
2

)
n
⌉
, if k > n − 2.

For a vertex v in an ordered graph (G, ρ), the v-broadcast number of (G, ρ) is
the number of vertices w(�= v) such that there is an ascending path from v to
w. The broadcast number of (G, ρ) is the minimum v-broadcast number over all
vertices v of (G, ρ). Berman and Paul presented an upper bound on the broadcast
number of an ordered tree. (Besides, they showed that there exists an ordered
tree with n vertices whose broadcasting number is equal to �log2 n�.)
Theorem 6. (Berman and Paul [3]) Let (T, ρ) be an ordered tree with n ver-
tices. Then, the broadcasting number of (T, ρ) is at most �log2 n�.

For each ordered pair of vertices u and v in (G, ρ), define η(G,ρ)(u, v) to be
the maximum number of edge-disjoint ascending paths from u to v in (G, ρ).
Moreover, define ψ(G,ρ)(v; k) = max{0, k + 1 − minu∈V (G)−{v} η(G,ρ)(u, v)} and
we call ψ(G,ρ)(v; k) the defect number of v with respect to k.

Theorem 7. τ(n, k) ≥ ⌈
3n−5

2

⌉
+
⌈

1
2

(
nk +

⌊
n+1

2

⌋− �log n�)⌉ for n ≥ 3 and
k ≥ 1.

Proof. Suppose that (G, ρ) is a k-fault-tolerant gossip with n vertices, where
n ≥ 3 and k ≥ 1. Let (G, ρ)i be the ordered spanning subgraph of (G, ρ)
having all the edges of order at most i. Now, let (G, ρR)� 3

2 (n−1)�−1 be the or-
dered graph obtained from (G, ρ)� 3

2 (n−1)�−1 by reversing the orders of edges, i.e.,
the edge-ordering ρR is defined as ρR(e) = � 3

2 (n − 1)� − ρ(e) for each edge e.
From Theorem 5, (G, ρR)� 3

2 (n−1)�−1 is not a 1-fault-tolerant broadcast graph.
Thus, for any vertex v in (G, ρR)� 3

2 (n−1)�−1, there exists a vertex u such that

214 T. Hasunuma and H. Nagamochi

η(G,ρR)� 3
2 (n−1)�−1

(v, u) ≤ 1. This means that for any vertex v in (G, ρ)� 3
2 (n−1)�−1,

there exists a vertex u such that η(G,ρ)� 3
2 (n−1)�−1

(u, v) ≤ 1. Thus, for any vertex

v in (G, ρ)� 3
2 (n−1)�−1, ψ(G,ρ)� 3

2 (n−1)�−1
(v; k) ≥ k.

There exists a connected component that is a tree in (G, ρ)n−1. Thus, from
Theorem 6, the broadcast number of (G, ρ)n−1 is at most �log2 n�. Let x be a
vertex in (G, ρ)n−1 such that the x-broadcast number is equal to the broadcast
number of (G, ρ)n−1. Also, let Bi(x) be the set of vertices to which there is an
ascending path from x in (G, ρ)i, where i ≥ n − 1. Then, |Bn−1(x)| ≤ �log2 n�.
Adding the edge with order i + 1 into (G, ρ)i, at most one vertex newly receives
the message originated from x. Hence it holds that |Bi+1(x)| ≤ |Bi(x)| + 1.
Therefore, |B(G,ρ)� 3

2 (n−1)�−1
(x)| ≤ �log2 n�+

⌈
3
2 (n − 1)

⌉−n. Let nk be the num-

ber of vertices with defect number k in (G, ρ)� 3
2 (n−1)�−1. For a vertex w in

(G, ρ)� 3
2 (n−1)�−1, if the defect number of w is k, then there must exist an as-

cending path from x to w unless w = x, i.e., w ∈ B(G,ρ)� 3
2 (n−1)�−1

(x) ∪ {x}.

Hence, nk ≤ �log2 n� +
⌈

3
2 (n − 1)

⌉− n + 1.
For a vertex w in (G, ρ)� 3

2 (n−1)�−1, if the defect number of w is k (respectively,
k + 1), then there must exist at least k (respectively, k + 1) edges with order at
least � 3

2 (n − 1)� which are incident to w in (G, ρ). Therefore, |E(G)| ≥ � 3
2 (n −

1)� − 1 + � 1
2 (knk + (k + 1)(n − nk))� ≥ � 3

2 (n − 1)� − 1 + � 1
2 ((k + 1)n − nk)� ≥

� 3
2 (n−1)�−1+� 1

2 ((k+1)n−(�log2 n�+� 3
2 (n−1)�−n+1))� = � 3n−5

2 �+� 1
2 (kn−

�log2 n�+� 1
2 (n+1)�)�. Hence, τ(n, k) ≥ � 3n−5

2 �+� 1
2 (kn−�log2 n�+� 1

2 (n+1)�)�.
��

References

1. Baker, B., Shostak, R.: Gossips and telephones. Discrete Math. 2, 191–193 (1972)
2. Berman, K.A., Hawrylycz, M.: Telephone problems with failures. SIAM J. Alg.

Disc. Meth. 7, 13–17 (1986)
3. Berman, K.A., Paul, J.L.: Verifiable broadcasting and gossiping in communication

networks. Discrete Applied Math 118, 293–298 (2002)
4. Bumby, R.T.: A problem with telephones. SIAM J. Alg. Disc. Meth. 2, 13–18 (1981)
5. Haddad, R.W., Roy, S., Schäffer, A.A.: On gossiping with faulty telephone lines.

SIAM J. Alg. Disc. Meth. 8, 439–445 (1987)
6. Hajnal, A., Milner, E.C., Szemerédi, E.: A cure for the telephone disease. Canad.

Math. Bull. 15, 447–450 (1976)
7. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and

broadcasting in communication networks. Networks 18, 319–349 (1988)
8. Hou, Z., Shigeno, M.: New bounds on the minimum number of calls in failure-

tolerant gossiping. Networks 53, 35–38 (2009)
9. Pelc, A.: Fault-tolerant broadcasting and gossiping in communication networks.

Networks 28, 143–156 (1996)
10. Seress, Á.: Quick gossiping by conference calls. SIAM J. Disc. Math. 1, 109–120

(1988)
11. Tijdeman, R.: On a telephone problem. Nieuw Arch. Wisk. 3, 188–192 (1971)
12. West, D.B.: Gossiping without duplicate transmissions. SIAM J. Alg. Disc. Meth. 3,

418–419 (1982)

Parameterized Two-Player Nash Equilibrium

Danny Hermelin1, Chien-Chung Huang2,
Stefan Kratsch3, and Magnus Wahlström1

1 Max-Planck-Institute for Informatics, Saarbrücken, Germany
{hermelin,wahl}@mpi-inf.mpg.de

2 Humboldt-Universität zu Berlin, Germany
villars@informatik.hu-berlin.de

3 Utrecht University, Utrecht, The Netherlands
s.kratsch@uu.nl

Abstract. We study the problem of computing Nash equilibria in a
two-player normal form (bimatrix) game from the perspective of pa-
rameterized complexity. Recent results proved hardness for a number of
variants, when parameterized by the support size. We complement those
results, by identifying three cases in which the problem becomes fixed-
parameter tractable. Our results are based on a graph-theoretic represen-
tation of a bimatrix game, and on applying graph-theoretic tools on this
representation.

1 Introduction

Algorithmic game theory is a quite recent yet rapidly developing discipline that
lies at the intersection of computer science and game theory. The emergence of
the internet has given rise to numerous applications in this area such as online
auctions, online advertising, and search engine page ranking, where humans and
computers interact with each other as selfish agents negotiating to maximize
their own payoff utilities. The amount of research spent in attempting to devise
computational models and algorithms for studying these types of interactions has
been overwhelming in recent years; unsurprisingly perhaps, when one considers
the economical rewards available in this venture.

The central problem in algorithmic game theory is that of computing a Nash
equilibrium, a set of strategies for each player in a given game, where no player
can gain by changing his strategy when all other players strategies remain fixed.
This problem is so important because Nash equilibria provide a good way to pre-
dict the outcomes of many of the scenarios described above, and other scenarios
as well. Furthermore, Nash’s Theorem states that for any finite game a mixed
Nash equilibrium always exists. However, for this concept to be meaningful for
predicting behaviors of rational agents which are in many cases computers, a
natural prerequisite is for it to be computable. This led researchers such as Pa-
padimitriou to dub the problem of computing Nash equilibria as one of the most
important complexity problems of our time [31].

The initial breakthrough in determining the complexity of computing Nash
equilibria was made by Daskalakis, Goldberg, and Papadimitriou [12,24]. These

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 215–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 D. Hermelin et al.

two papers introduced a reduction technique which was used by the authors for
showing that computing a Nash equilibrium in a four player game is PPAD-
complete. Shortly afterwards, this hardness result was simultaneously extended
to three player games by Daskalakis and Papadimitriou [16], and by Chen and
Deng [6]. The case of two player (bimatrix) games was finally cracked a year
later by Chen and Deng [7], who proved it to be PPAD-complete. This implied
that the existence of a polynomial-time algorithm for the core case of bimatrix
games is unlikely.

Since the result of Chen and Deng [7], the focus on computing Nash equilibria
in bimatrix games was directed either towards finding approximate Nash equi-
libria [4,8,9,10,13,14,27,28,29,32], or towards finding special cases where exact
equilibria can be computed in polynomial time [2,9,11,26,28,29]. Nevertheless,
for general bimatrix games the best known algorithm for computing either ap-
proximate or exact equilibria still requires exponential time in the worst case.
Interestingly enough, if the support of both players is known, one can compute
a Nash equilibrium by solving a linear program. This implies the following:

Theorem 1 ([30]). A Nash equilibrium in a bimatrix game, where the support
sizes are bounded by k, can be computed in nO(k) time.

Due to the central role that the algorithm of Theorem 1 plays in computing exact
and approximate Nash equilibria, it is natural to ask whether one can improve on
its running-time substantially. In particular, can we remove the dependency on
the support size from the exponent? The standard framework for answering such
questions is that of parameterized complexity theory [17,21]. Estivill-Castro and
Parsa initiated the study of computing Nash equilibria in this context [19,20].
They showed that when the support size is taken as a parameter, the problem is
W[2]-hard even in certain restricted settings. The implication of their result is a
negative answer to the above question. In particular, combining their reduction
with the results of Chen et al. [5] gives a sharp contrast to Theorem 1 above.

Theorem 2 ([19]). Unless FPT=W[1], there is no no(k) time algorithm for
computing a Nash equilibrium with support size at most k in a bimatrix game.

The consequence of Theorem 2 above is devastating in the sense that for large
enough games that have equilibriums with reasonably small supports, the task
of computing equilibria already becomes infeasible. The main motivation of this
paper is to find scenarios where one can circumvent this. Our goal is thus to
identify natural parameters which govern the complexity of computing Nash
equilibria, and which can help in devising feasible algorithms. We believe that
this direction can prove to be fruitful in the quest for understanding the com-
putational limitations of this fundamental problem. Indeed, prior to our work,
Kalyanaraman and Umans [26] provided a fixed-parameter algorithm for find-
ing equilibrium in bimatrix games whose matrices have small rank (and some
additional constraints).

Our techniques are based on considering a natural graph-theoretic represen-
tation of bimatrix games. This is done by taking the union of the underlying

Parameterized Two-Player Nash Equilibrium 217

boolean matrix of the two given payoff matrices, and considering this matrix
as the biadjacency matrix of a bipartite graph. A similar approach was taken
in [11], and in particular in [2] where games that have an underlying planar graph
structure were considered. Our work complements both these results as will be
explained further on, and further exemplifies the strength of a graph-theoretical
approach when computing Nash equilibria in bimatrix games.

A natural class of games that has a convenient interpretation in the graph-
theoretic context is the class of �-sparse games [9,11,15]. Here each column and
row in both payoff matrices of the game have at most � non-zero entries. An
initial tempting approach in these types of games would be to try to devise a
parameterized algorithm with � taken as a single parameter. However, Chen,
Deng, and Teng [9] showed that unless PPAD = P, there is no algorithm for
computing an ε-approximate equilibrium for a 10-sparse game in time polynomial
both in ε and n (although algorithms polynomial only in n do in fact exist [9,15]).
Thus, such an FPT algorithm cannot exist unless PPAD is in P. We complement
this result by showing that if � is taken as a parameter, and the size of the
supports is taken as an additional parameter, then computing Nash equilibrium
is fixed-parameter tractable.

Theorem 3. A Nash equilibrium in an �-sparse bimatrix game, where the sup-
port sizes is bounded by k, can be computed in �O(k�) · nO(1) time.

Note that the above result also complements the polynomial time algorithms
given in [9,11] for 2-sparse games. While in these algorithms there was no as-
sumption made on the size of support of the equilibrium to be found, both
algorithms could handle only win-lose games [1,10], games with boolean payoff
matrices. Theorem 3, on the other hand, holds for arbitrary payoffs.

Our second result is concerned with k-unbalanced games, games where the row
player has a small set of k strategies [26,29]. Lipton, Markakis, and Mehta [29]
observed that in such games there is always an equilibrium where the row player
plays a strategy with support size at most k + 1. Thus, by applying Theorem 1
one can find a Nash equilibrium in nO(k) time for these types of games. Can
this result be improved to an algorithm running in f(k) · nO(1) time? We give
a partial answer to this question, by showing that if the number � of different
payoffs of the row player is taken as an additional parameter, the problem indeed
becomes fixed-parameter tractable.

Theorem 4. A Nash equilibrium in a k-unbalanced bimatrix game, where the
row player has � different payoff values, can be computed in �O(k2) · nO(1) time.

In our last result, examining the borderline of FPT cases, we consider a structural
property that simultaneously extends both the previous cases (albeit only in
the case of a bounded number of different payoffs). We show that for bimatrix
games whose corresponding graph has locally bounded treewidth, and where
the payoff matrices have at most � different values, we can compute a Nash
equilibrium of support size at most k in time f(k, �) · nO(1). In addition to the
above cases of sparse and unbalanced games, this also includes many other cases
including games where the underlying graph structure is planar, as considered

218 D. Hermelin et al.

in [2]. However, as this class is quite general, the running-time dependency on
both parameters is worse.

Theorem 5. A Nash equilibrium in a locally bounded treewidth game, where the
support sizes are bounded by k, and the payoff matrices have at most � different
values, can be computed in f(k, �) ·nO(1) time for some computable function f().

The paper is organized as follows: We begin with some preliminaries in Section 2.
In Section 3 we consider �-sparse games and prove Theorem 3. Section 4 addresses
locally bounded treewidth games and proves Theorem 5. Finally, in Section 5
we prove Theorem 4 regarding k-unbalanced games. Due to space restrictions
all proofs are deferred to the full version [25].

2 Preliminaries

Let G := (A, B) be a bimatrix game, where A, B ∈ Qn×n are the payoff matrices
of the row and the column players respectively (note that the entries are allowed
to be negative). The row (column) player has a strategy space consisting of the
rows (columns) [n] := {1, . . . , n}. (For ease of notation, except in unbalanced
games, we assume that both players have the same number of strategies; different
numbers of strategies do not affect any of our results.) The row (column) player
chooses a strategy profile x (resp. y), which is a probability distribution over his
strategy space. That is, xi, yj ≥ 0 for all i, j ∈ [n], and furthermore

∑n
i=1 xi = 1

and
∑n

j=1 yj = 1. The expected outcomes of the game for the row and the
column players are xT Ay and xT By respectively.

The players are rational, always aiming for maximizing their expected payoffs.
They have reached a Nash equilibrium if the current strategies x and y are
such that neither player has a deviating strategy x̂ or ŷ such that x̂T Ay >
xT Ay or xT Bŷ > xT By. In other words, if neither of them can improve his
payoff independently of the other. The following proposition gives an equivalent
condition for a pair of strategies to be an equilibrium.

Lemma 1. ([30, Chapter 3]) The pair of strategy vectors (x, y) is a Nash equi-
librium for the bimatrix game (A, B) if and only if

(i) xs > 0 ⇒ (Ay)s ≥ (Ay)j for all j �= s;
(ii) ys > 0 ⇒ (xT B)s ≥ (xT B)j for all j �= s.

The support of a strategy vector x is defined as the set S(x) = {i : xi > 0}.
Note that the above proposition implies that if (x, y) is a Nash equilibrium,
then in the column vector Ay, the values in positions S(x) are mutually equal,
and no less than the values in positions not in S(x); symmetrically, in the row
vector xT B, the values in positions S(y) are equal and no less than the values
in positions not in S(y). It is known that, given possible supports I, J ⊆ [n] it
can be efficiently decided whether there is a matching Nash equilibrium, and the
corresponding strategy vectors can be computed via linear programming.

The following graph associated with a bimatrix game is useful for presenting
our algorithms in Sections 3 and 4.

Parameterized Two-Player Nash Equilibrium 219

Definition 1. Let G = (A, B) be a bimatrix game with A, B ∈ Qn×n. The undi-
rected bipartite graph G := G(G) associated with G is defined to be the bipartite
graph with vertex classes Vr := {r1, . . . , rn} and Vc := {c1, . . . , cn}, referred to
as row resp. column vertices, where ri ∈ Vr and cj ∈ Vc are adjacent in G
iff Ai,j �= 0 or Bi,j �= 0. For a component C of G, we let Vr(C) (resp. Vc(C)) be
the set of row vertices (resp. column vertices) occurring in C.

As a last bit of notation: For I, J ⊆ [n], and any n×n matrix A, we use AI,J to
denote the submatrix composed of rows in I and columns in J . We also use AI,∗
as a shorthand for AI,[n]. Thus, Ai,∗ means the i’th row of A.

3 Sparse Games

In this section we present the proof for Theorem 3. Throughout the section we
let G := (A, B) denote our given bimatrix game, where A and B are rational
value matrices with at most � non-zero entries per row or column. For ease of
notation we let the vertices correspond directly to the respective row or column
indices. We will present an algorithm for finding a Nash equilibrium where the
support sizes of both players are at most k (and k is taken as a parameter).
The high-level strategy is to show that it suffices to search for equilibria that
induce one or two connected components in the associated graph G = G(G).
This permits us to find candidate support sets by enumerating subgraphs of G
(on one or two components). Central to this strategy is the notion of minimal
equilibria:

Definition 2. A Nash equilibrium (x, y) is minimal if for any Nash equilib-
rium (x′, y′) with S(x′) ⊆ S(x) and S(y′) ⊆ S(y), we have S(x′) = S(x)
and S(y′) = S(y).

Our algorithm iterates through all possible support sizes k1, k2 ≤ k in increasing
order to determine whether there exists an equilibrium (x, y) with |S(x)| = k1

and |S(y)| = k2. To avoid cumbersome notation, we will assume that k1 = k2 = k
(extending this to general case will be immediate). Thus at a given iteration, the
algorithm can assume that no equilibrium exists with smaller supports, which
means it can restrict its search to minimal equilibriums. This fact will prove
crucial later on. Furthermore, observe that we can assume n > �k since otherwise
obtaining the running time required by Theorem 3 is trivial by enumerating all
possible supports (which is dominated by 2O(n)). Therefore, since our game is
�-sparse, our algorithm only needs to search for equilibriums where both players
receive non-negative payoffs.

Lemma 2. If G = (A, B) is an �-sparse game, where A, B ∈ Qn×n and n > �k,
then in any Nash equilibrium where both players have support size at most k,
both players receive non-negative payoffs.

For an equilibrium (x, y), let the extended support of x be the rows S(x) ∪
N(S(y)), and similarly for y, where the neighborhood N(I) is taken over the

220 D. Hermelin et al.

graph G := G(G) of the game. Note that any row not in the extended support
of x would have payoff constantly zero given the current strategy of y, and thus
is not important for the existence of an equilibrium. We will show that for a
minimal equilibrium (x, y), the extended supports of x and y induce a subgraph
of G which has at most two connected components. This will be done in two
steps: The first is the special case where AS(x),S(y) = BS(x),S(y) = 0, while the
second corresponds to the remaining cases.

Lemma 3. If (x, y) is a minimal Nash equilibrium for a game (A, B) with
AS(x),S(y) = BS(x),S(y) = 0, then the subgraphs induced by N [S(x)] and N [S(y)]
in the graph associated with the game are both connected1.

Lemma 4. If (x, y) is a minimal Nash equilibrium for a game (A, B) with either
AS(x),S(y) �= 0 or BS(x),S(y) �= 0, and with a non-negative payoff for both players,
then the subgraph induced by N [S(x) ∪ S(y)] is connected.

As an immediate corollary of Lemmas 3 and 4, we get that the subgraph in
G(G) induced by the extended support of a minimal equilibrium has at most
two connected components. In the following lemma we show that in graphs of
small maximum degree, we can find all such subgraphs quite efficiently. This will
allow us to find a small, minimal equilibrium by checking all sets of rows and
columns that would be candidates for being the extended supports of one.

Lemma 5. Let G be a graph on n vertices and with maximum degree Δ = Δ(G).
In time (Δ + 1)2t · nc+O(1) one can enumerate all subgraphs on t vertices that
consist of c connected components.

We are now in position to describe our entire algorithm. It first iterates through
all possible sizes of extended support in increasing order. In each iteration, it
enumerates all subgraphs that might correspond to the extended support of a
minimal equilibrium. It then checks all ways of selecting a support from the given
subgraph, and for each such selection it uses the algorithm behind Theorem 1
to check whether there is an equilibrium on the support. If no equilibrium is
found throughout the whole process, the algorithm reports that there exists no
equilibrium with support size at most k in G. The running time is bounded
by �O(k�)nO(1) from Lemma 5, times

(
k�+k

k

)2
= 2O(k�) ways of selecting the

support, times nO(1) for checking for an equilibrium. In total, we get a running
time of �O(k�)nO(1).

Finally, completeness comes from the exhaustiveness of Lemma 5 and the
structure given by Lemmas 3 and 4.

3.1 Non-negative Payoffs

In the case that the payoffs of our games are non-negative, i.e., A, B ∈ Qn×n
≥0 ,

we can reduce our running time to be polynomial in �, for �-sparse games. We
get a strengthening of Lemmas 3 and 4.
1 Note that N [I] = N(I) ∪ I denotes the closed neighborhood if I .

Parameterized Two-Player Nash Equilibrium 221

Lemma 6. Let G = (A, B) be a bimatrix game with A, B ∈ Qn×n
≥0 , and G be

the graph associated with G. If (x, y) is a minimal Nash equilibrium for G, then
either |S(x)| = |S(y)| = 1, or G[S(x) ∪ S(y)] is connected.

Thus, to find an equilibrium in G = (A, B), it suffices to search for occurrences
of the support, rather than the extended support. Invoking Lemma 5 directly
with a bound of 2k vertices gives a running time of �O(k)nO(1).

3.2 No Polynomial Kernels

We next show another interesting application of the connectivity lemmas de-
scribed in the section above. In particular, we will use Lemma 6 to rule out the
possibility of effectively compressing our problem instances.

Polynomial kernelization is a central concept in parameterized complexity,
formalizing the notions of compression and data reduction. In our setting, a
polynomial kernel is an algorithm that receives as input an �-sparse game G
and an integer k, and outputs in polynomial time an �′-sparse game G′ and an
integer k′, with |G′| + k′ + �′ ≤ p(� + k) for some polynomial p, such that G has
an equilibrium with support sizes bounded by k iff G′ has an equilibrium with
support sizes bounded by k′. Thus, a polynomial kernel outputs an equivalent
game whose size is bounded by a polynomial in k and �. This clearly implies an
FPT algorithm for computing the equilibrium in G, but it also gives something
better since one can use other techniques and heuristics on the reduced instance.
In the remainder of the section we prove the following theorem.

Theorem 6. Unless co-NP ⊆ NP/poly, the problem of determining whether a
Nash equilibrium with support sizes at most k exists in an �-sparse bimatrix game
has no kernel which is polynomial in k + �.

A framework for providing evidence that polynomial kernels do not exist for a
given problem was given in [3]. There, the concept of composition algorithms
plays a central role. A composition algorithm for a parameterized problem Π is
an algorithm that receives as input a sequence of instances (x1, k), . . . , (xt, k) of
Π , all sharing the same parameter, and outputs in time polynomial in

∑
i |xi| an

instance (y, k′) of Π such that (y, k′) ∈ Π ⇐⇒ ∃i : (xi, k) ∈ Π and k′ ≤ p(k)
for some polynomial p. A parameterized problem admitting a composition algo-
rithm is called compositional. The following connection between compositional
problems and polynomial kernels was proven in [3] and [22]:

Theorem 7 ([3,22]). Unless co-NP ⊆ NP/poly, no compositional parameter-
ized problem whose unparameterized variant is NP-complete has a polynomial
kernel.

Observe that the unparameterized decision variant of our problem is the problem
of determining whether there exists an equilibrium in a given bimatrix game
with support sizes bounded by k (since � is part of the input, the sparseness
does not come into effect here). This problem was shown to be NP-complete

222 D. Hermelin et al.

in [23]. Thus, in order to show the non-existence of a polynomial kernel in our
setting, we need to show that our problem is compositional. We will restrict
ourselves to instances with non-negative payoffs. Given a sequence of �-sparse
games (A1, B1), . . . , (At, Bt) with non-negative payoffs, and a parameter k, our
algorithm outputs the game G := (A, B) defined by

A :=

⎛
⎜⎜⎜⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · 0 At

⎞
⎟⎟⎟⎠ and B :=

⎛
⎜⎜⎜⎝

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 · · · 0 Bt

⎞
⎟⎟⎟⎠ .

It is clear that our algorithm runs in polynomial time, and that G is �-sparse.
Furthermore, it is not difficult to see that due to Lemma 6, we know that G has
an equilibrium with support sizes bounded by k iff (Ai, Bi) has an equilibrium
with support sizes bounded by k, for some i ∈ {1, . . . , t}. It follows that the
above algorithm is a composition algorithm, and so according to Theorem 7, we
can rule out the possibility of polynomial kernels for our problem.

4 Locally Bounded Treewidth Games

Let G = (A, B) be a given game with A, B ∈ Pn×n, with P ⊂ Q, |P | ≤ �, and
let G = G(G) the graph associated with G. In this section we will present an
algorithm that finds an equilibrium with support sizes at most k when G comes
from a graph class with locally bounded treewidth. Note that this is a partial
extension of the results of the previous section, as graphs of bounded degree have
locally bounded treewidth, while on the other hand we assume that there is a
bounded set P of only � different payoff values which can occur in the games.
(The case P = {0, 1} would correspond to win-lose games.)

Definition 3 ([18]). A graph class has locally bounded treewidth if there is
a function f : N → N such that for every graph G := (V, E) of the class, any
vertex v ∈ V , and any d ∈ N, the subgraph of G induced by all vertices within
distance at most d from v has treewidth at most f(d).

The crucial property of locally bounded treewidth graphs in our context is that
first-order queries can be answered in FPT time on such graphs when the param-
eter is the size of first-order formula [21, Chapter 12.2]. Below we show how to
use a bounded number of first-order queries in order to compute an equilibrium
with support sizes at most k (assuming one exists) in G.

For ease of presentation we show how to find an equilibrium where both
players have support size k (the algorithm can be easily adapted to support
sizes k1, k2 ≤ k). Let I and J be two subsets of k elements in [n]. We say that two
matrices A∗, B∗ ∈ Qk×k occur in G at (I, J) if A∗ = AI,J and B∗ = BI,J . The
pair (A∗, B∗) forms an equilibrium pattern if there exists an equilibrium (x, y)
where (A∗, B∗) occur in G at (S(x), S(y)). Our algorithm will try all possible �2k2

Parameterized Two-Player Nash Equilibrium 223

pairs of matrices (A∗, B∗), and for each such pair it will determine whether it is
an equilibrium pattern.

When does a pair of matrices (A∗, B∗) form an equilibrium pattern? The first
obvious condition is that it occurs in G at some pair of position sets (I, J). Fur-
thermore, by definition of a Nash equilibrium, there is a pair of strategies (x, y)
with S(x) = I and S(y) = J , such that neither player has a better alternative.
The difficulty here lies in the fact that, even given the support S(y) of the col-
umn player, there may be too many possible strategies for the row player that
have supports different from I. To circumvent this, we define equivalence of rows
with respect to supports S(y), and of columns with respect to supports S(x).

Definition 4. Let I, J ⊆ [n]. Two rows i1, i2 ∈ [n] are J-equivalent if Ai1,J =
Ai2,J . Similarly, two columns j1, j2 ∈ [n] are I-equivalent if BI,j1 = BI,j2 .

Lemma 7. Let J be the support of the column player. For any row strategy x
there is a row strategy x̂ such that:

(i) the support S(x̂) contains at most one row from each J-equivalence class
(ii) and for any column strategy y with support J we have x̂T Ay = xT Ay.

The same is true for column strategies, given a support I of the row player.

For each possible equilibrium pattern (A∗, B∗) we do the following. For each
choice of rows A† ⊆ P 1×k that do not occur in A∗ and each choice of columns
B† ⊆ P k×1 that do not occur in B∗, we create two matrices

C =
(

A∗ 0
A† 0

)
and D =

(
B∗ B†

0 0

)
.

We then check if there is an equilibrium (x, y) in the game (C, D) with S(x) =
S(y) = [k] using linear programming. If there is such an equilibrium, then we
proceed as follows to find an occurrence of (A∗, B∗) that avoids the rows and
columns which were not chosen. For this let F1 be the rows which occur neither
in A∗ nor in A† and let F2 be the columns which occur neither in B∗ nor in B†.
We say that F1 and F2 are forbidden for (A∗, B∗). We note that given (A∗, B∗),
a set of rows F1 ⊆ P 1×k, and a set of columns F2 ⊆ P k×1, one can write a first-
order formula of size bounded by some function in k and |P | = � to determine
whether (A∗, B∗) has an occurrence which avoids F1 and F2. Since the number
of possible choices for F1 and F2 is bounded by some function in k and �, and
for each such choice we can determine whether F1 and F2 is a forbidden pair
for (A∗, B∗) in polynomial time, the total time for determining whether (A∗, B∗)
is an equilibrium pattern is FPT in k and �. Since the number of pairs (A∗, B∗)
is also bounded by a function in k, the total running time of our entire algorithm
is also FPT in k and �.

To complete the proof of Theorem 5, let us briefly argue completeness. Assume
that there is any equilibrium with support sizes equal to k, let I and J be the
supports, and let A∗ and B∗ be corresponding sub-matrices. Observe that we
may set all entries in columns outside J of A to zero without harm, ditto for

224 D. Hermelin et al.

rows outside I in B. According to Lemma 7 it suffices to keep one copy of each
row outside A∗ in A (also discard the corresponding zero-row in B to keep the
size the same). The same is of course true for columns outside B∗ in B. Except
for a permutation this is equal to one of the games (C, D) that we considered.
Therefore our algorithm will find such an equilibrium if one exists.

5 Unbalanced Games

In this section we briefly consider k-unbalanced bimatrix games. A bimatrix
game (A, B) is k-unbalanced if A, B ∈ Qk×n

≥0 for some k << n [26,29] (i.e.,
the row player has a significantly smaller number of strategies than the column
player). We will show that a Nash equilibrium can be computed in FPT-time
with respect to k and �, where � denotes the number of different payoffs that the
row player has, i.e., � := |{Ai,j : 1 ≤ i ≤ k, 1 ≤ j ≤ n}|.

Similar to Definition 4 we define two column strategies i, j ∈ [n] to be equiv-
alent if A∗,i = A∗,j . (However, notice that unlike Definition 4, here equivalence
of column strategies is defined with respect to the row player payoff.)

Lemma 8. For each equilibrium there is an equilibrium where the column player
plays at most one column from each equivalence class.

Using Lemma 8 we can easily devise an FPT algorithm for computing a Nash
equilibrium in our setting. The algorithm simply guesses the support of the row
player and column player, and then uses the method of Theorem 1 to determine
whether there exists a Nash equilibrium corresponding to these sets of supports.
Observe that there are at most �k column-strategy equivalence classes. Further-
more, according to Lipton, Markakis, and Mehta [29], in a k-unbalanced game
there always exists an equilibrium where the column player has support size
at most k + 1. Thus the number of guesses the algorithm makes is bounded
by 2k · (�k

k+1

)
= �O(k2), and for each such guess, the amount of time required is

polynomial. This completes the proof of Theorem 4.

6 Conclusions

This paper is among the first attempts at applying parameterized complexity
techniques in algorithmic game theory. This seems surprising when considering
the potential benefit both fields can enjoy from each other. Our paper focused
on the fundamental game-theoretical problem of computing a Nash equilibrium
in bimatrix game. Three parameterized algorithms were presented, each cor-
responding to a different parameterization of the problem. In two cases, our
algorithms utilized the graph-theoretical structure inherited in bimatrix games,
and we believe this perspective will be useful in other settings as well.

Our work is only the first step towards completely understanding the multi-
variate complexity of computing Nash equilibria in bimatrix games. There are
still several parameters of the problems which were left unexplored, and we con-
sider the problem of identifying new parameterizations to be the central open

Parameterized Two-Player Nash Equilibrium 225

problem of this paper. Other questions which would be interesting to explore
include the existence of a polynomial-time algorithm for computing Nash equi-
libria in games whose bipartite graph representation has bounded treewidth, and
whether the dependency on the number of different values can be removed from
the parameter in Theorems 4 and 5. For the latter question, it is also interesting
to ask what strong negative evidence would look like (note that the concept of
PPAD-completeness does not immediately apply).

References

1. Abbott, T., Kane, D., Valiant, P.: On the complexity of two-player win-lose games.
In: Proc. of the 46th Annual IEEE symposium on Foundations of Computer Science
(FOCS), pp. 113–122 (2005)

2. Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for find-
ing Nash equilibria in planar win-lose games. Journal of Graph Algorithms and
Applications 11(1), 309–319 (2007)

3. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without poly-
nomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

4. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria
in bimatrix games. Theoretical Computer Science 411(1), 164–173 (2010)

5. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I., Xia, G.: Tight
lower bounds for certain parameterized NP-hard problems. Information and Com-
putation 201(2), 216–231 (2005)

6. Chen, X., Deng, X.: 3-NASH is PPAD-complete. Electronic Colloquium on Com-
putational Complexity (134) (2005)

7. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 261–272 (2006)

8. Chen, X., Deng, X., Teng, S.-H.: Computing Nash equilibria: Approximation and
smoothed complexity. In: Proc. of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 603–612 (2006)

9. Chen, X., Deng, X., Teng, S.-H.: Sparse Games are Hard. In: Spirakis, P.G.,
Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286,
pp. 262–273. Springer, Heidelberg (2006)

10. Chen, X., Teng, S.-H., Valiant, P.: The approximation complexity of win-lose
games. In: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 159–168 (2007)

11. Codenotti, B., Leoncini, M., Resta, G.: Efficient Computation of Nash Equilibria
for Very Sparse Win-Lose Bimatrix Games. In: Azar, Y., Erlebach, T. (eds.) ESA
2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)

12. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

13. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate Nash equi-
libria. In: Proc. of the 8th ACM Conference on Electronic Commerce (EC),
pp. 355–358 (2007)

14. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate Nash equi-
libria. Theoretical Computer Science 410(17), 1581–1588 (2009)

15. Daskalakis, C., Papadimitriou, C.: On oblivious PTAS’s for Nash equilibrium. In:
Proc. of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp.
75–84 (2009)

226 D. Hermelin et al.

16. Daskalakis, K., Papadimitriou, C.: Three-player games are hard. Electronic Collo-
quium on Computational Complexity (139) (2005)

17. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
18. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Jour-

nal of Graph Algorithms and Applications 3(3) (1999)
19. Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder: New results

show hardness even for parameterized complexity. In: Proc. of the 15th Computing:
the Australasian Theory Symposium (CATS), vol. 94, pp. 81–87 (2009)

20. Estivill-Castro, V., Parsa, M.: Single Parameter FPT-Algorithms for Non-Trivial
Games. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460,
pp. 121–124. Springer, Heidelberg (2011)

21. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

22. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

23. Gilboa, I., Zemel, E.: Nash and correlated equillbrla: Some complexity considera-
tions. Games and Economic Behavior (1989)

24. Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In:
Proc. of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp.
61–70 (2006)

25. Hermelin, D., Huang, C.-C., Kratsch, S., Wahlström, M.: Parameterized two-player
Nash equilibrium. CoRR (2010), http://arxiv.org/abs/1006.2063

26. Kalyanaraman, S., Umans, C.: Algorithms for playing games with limited random-
ness, pp. 323–334 (2007)

27. Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. In:
Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1124–1132 (2007)

28. Kontogiannis, S., Spirakis, P.: Exploiting concavity in bimatrix games: New poly-
nomially tractable subclasses. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J.
(eds.) APPROX 2010, LNCS, vol. 6302, pp. 312–325. Springer, Heidelberg (2010)

29. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proc. of the 4th ACM Conference on Electronic Commerce (EC), pp. 36–41
(2003)

30. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
Cambridge University Press (2007)

31. Papadimitriou, C.: Algorithms, games, and the internet. In: Proc. of the 33rd
Annual ACM Symposium on Theory of Computing (STOC), pp. 749–753 (2001)

32. Tsaknakis, H., Spirakis, P.G.: An Optimization Approach for Approximate Nash
Equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858,
pp. 42–56. Springer, Heidelberg (2007)

http://arxiv.org/abs/1006.2063

Counting Independent Sets in Claw-Free Graphs

Konstanty Junosza-Szaniawski, Zbigniew Lonc, and Michał Tuczyński

Warsaw University of Technology
Faculty of Mathematics and Information Science
Pl. Politechniki 1 / 207, 00-661 Warsaw, Poland

{k.szaniawski,zblonc,m.tuczynski}@mini.pw.edu.pl

Abstract. In this paper we give an algorithm for counting the num-
ber of all independent sets in a claw-free graph which works in time
O∗(1.08352n) for graphs with no vertices of degree larger than 3 and
O∗(1.23544n) for arbitrary claw-free graphs, where n is the number of
vertices in the instance graph.

1 Introduction

Recently much attention has been paid to algorithmic aspects of some counting
problems. Although many of the problems (e.g. counting independent sets or
matchings in a graph) are known to be #P-Complete (see Vadhan [9]), a re-
markable progress has been done in designing exponential time algorithms solv-
ing them. Dahllöf, Jonsson, Wahlström [2] constructed algorithms that count
maximum weight models of 2-SAT and 3-SAT formulas in time O∗(1.2561n) and
O∗(1.6737n), respectively. The former bound was later improved to O∗(1.2461n)
by Fürer and Kasiviswanathan [4] and subsequently to O∗(1.2377n) by
Wahlström [10]. The latter bound was improved by Kutzkov [6] to O∗(1.6423n).

Independent sets in a graph naturally correspond to models of 2-SAT formulas
with all variables negated. In particular the algorithm of Wahlström [10] can be
applied to count all independent sets and all independent sets of maximum size
in a graph. In fact this algorithm was used by Björklund, Husfeldt and Koivisto
[1] as a subroutine in their (based on the inclusion-exclusion principle) algorithm
for graph coloring. This algorithm is currently the fastest exact algorithm for
graph coloring.

In this paper we present an algorithm counting independent sets in claw-
free graphs whose time complexity is O∗(1.23544n). Notice that matchings in a
graph correspond to independent sets in its line graph. The problem of counting
matchings is also #P-Complete (see Vadhan [9]). Hence, as line graphs are claw-
free, the problem of counting independent sets in a graph stays #P-Complete
in the class of claw-free graphs. Using the algorithm presented in this paper, we
can count matchings in a graph with m edges in time O∗(1.23544m). On the
other hand, matchings can be counted in time O∗(2n), where n is the number
of vertices of a graph, thanks to Ryser’s formula [8]. So our algorithm applied
for counting matchings is faster for graphs where m ≤ 1

log2 1.23544n ≈ 3.278n. If
we use our algorithm as a subroutine in the algorithm of Björklund, Husfeldt

P. Kolman and J. Kratochvíl (Eds.): WG 2011, LNCS 6986, pp. 227–237, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

228 K. Junosza-Szaniawski, Z. Lonc, and M. Tuczyński

and Koivisto [1] for graph coloring, we obtain a faster algorithm for coloring
claw-free graphs, which running time is O∗(2.23544n).

The algorithm presented in this paper is a modification of the algorithm of
Dahllöf et al. [2]. In our algorithm we introduce an extra simplification (we call it
FOLDING) for graphs with maximum degree of a vertex at most 3 that removes
vertices with the same closed neighborhoods. This simplification guarantees a
better choice of the next vertex for branching than in the algorithm in [2]. The
rest of the algorithm is just an adaptation of the algorithm of Dahllöf et al. [2]
so that it counts independent sets in graphs instead of models of 2-SAT for-
mulas. Consequently, the correctness of our algorithm (except for the procedure
FOLDING) follows directly from the correctness of the algorithm of Dahllof et
al. [2].

In analyzing the running time of recursive algorithms a method sometimes
called the "measure and conquer" method (introduced by Kullman [5] and de-
veloped by Fomin et al. [3]) is very useful. In particular this method was used
in analyzing the running time of the algorithm in Dahllof et al. [2]. They de-
fined the measure of a graph with maximum degree of a vertex at most 3 to be
equal to the number of vertices of degree 3 in this graph. It allowed them to
obtain the time complexity bound of O∗(1.1892n) for such graphs. An extension
of this measure to some piecewise linear function depending on the number of
vertices and the number of edges is the measure of graphs with larger degree. It
allowed to prove the bound of O∗(1.2561n) for graphs with arbitrary maximum
degree. Fürer and Kasiviswanathan [4] observed that piecewise linear measure
can be applied already to graphs with degree maximum of a vertex at most 3.
This way they obtained the complexity bound of O∗(1.1504n) for such graphs
and O∗(1.2461n) for general graphs. Wahlström [10] considered still more com-
plicated measure for graphs with the maximum degree of a vertex larger than
3 (depending on the degrees of vertices) and obtained the complexity bound of
O∗(1.2377n). In all these three cases, any improvement of the complexity bound
for graphs with the maximum degree of a vertex at most 3 implies a better bound
for all graphs.

The algorithm of Wahlström works for claw-free graphs with maximum degree
of a vertex at most 3 in time O∗(1.1406n) while our algorithm for such graphs
works in time O∗(1.08352n). There are two reasons of this. One of them is
introduction of the procedure FOLDING. The other one is a new measure that
we use for claw-free graphs in the discussion of the running time of our algorithm.
The measure is defined as the number of vertices of degree equal to 3 contained
in triangles whose all vertices have degrees equal to 3. An appropriate extension
of this new measure to some piecewise linear function defined for all graphs gives
the complexity bound of our algorithm O∗(1.23544n), for all claw-free graphs.
This bound can be slightly improved with the method used by Wahlström in
[10]. It would require, however, consideration of a much larger number of cases.

Our algorithm and its analysis can be easily extended, in the way described
in [2], to a version allowing to count weighted independent sets in a claw-free
graph. Nevertheless, we do not do it for clarity.

Counting Independent Sets in Claw-Free Graphs 229

We observe that a set of vertices is independent in a graph if and only if its
complement is a transversal (also called a vertex cover) in this graph. Therefore,
our algorithm applies not only for counting independent sets in claw-free graphs
but for counting transversals in such graphs as well.

2 Preliminaries

We denote by V (G) the vertex set of a graph G and by E(G) its edge set.
Let n(G) and m(G) be the number of vertices and the number of edges of G,
respectively. We write n instead of n(G) and m instead of m(G) whenever it
does not lead to a confusion.

An open neighborhood of a vertex v is the set of vertices N(v) = {u ∈ V (G) :
uv ∈ E(G)} and a closed neighborhood of v is N [v] = N(v) ∪ {v}. Let d(v) =
|N(v)| be the degree of a vertex v. By ni(G) and n≥i(G) we denote the number
of vertices of degree i and at least i in G, respectively. A vertex of degree 0 is
called isolated and a vertex of degree 1 is called a leaf. By Δ(G) we mean the
maximum degree of a vertex in G. Let S(v) =

∑
u∈N [v]

d(u).

For a vertex set U ⊂ V (G), G[U] is the subgraph induced by U and G−U =
G[V (G)−U]. If U = {u}, then we write G−u instead of G−{u}. For a subgraph
H of G instead of G − V (H), we write G − H . A graph is claw-free if it does
not contain the complete bipartite graph K1,3 as an induced subgraph. For the
empty graph (∅, ∅) we simple write ∅.

A set U of vertices of G is a cut set if G−U has more components than G. A
vertex u is a cut vertex, if U = {u} is a cut set. A graph G is called k-connected
if n(G) > k and G − U is connected for every set U ⊂ V (G) such that |U | < k.

A set S ⊂ V (G) is an independent set (or an IS for short) in G, if no edge in
G has both ends in S.

For some technical reasons in our algorithm we use a function c : {0, 1} ×
V (G) → {0, 1, . . .} called the cardinality function. For convenience we write
c0(v) and c1(v) instead of c(0, v) and c(1, v), respectively. Given a cardinality
function c and an independent set S, we define

C(S, c) =
∏
v/∈S

c0(v)
∏
v∈S

c1(v).

Let IS(G) denote the set of independent sets of G. We define

#IS(G, c) =
∑

S∈IS(G)

C(S, c).

Notice that if c0(v) = 1 and c1(v) = 1, for every vertex v ∈ V (G), then C(S, c) =
1 for any IS in G and, thus, #IS(G, c) is equal to the number of independent
sets in G.

Our algorithm solves the problem of computing the number #IS(G, c) for a
given graph G and a cardinality function c.

230 K. Junosza-Szaniawski, Z. Lonc, and M. Tuczyński

For functions f and g we write f(n) = O∗(g(n)) if f(n) = O(g(n)p(n)), where
p is a polynomial.

For positive real numbers t0, . . . , td we denote by τ(t0, . . . , td) the unique
solution τ > 1 of the equation

d∑
i=0

1
τ ti

= 1.

One can readily verify that

if ti ≤ t′i for i ∈ {0, . . . , d}, then τ(t′0, . . . , t
′
d) ≤ τ(t0, . . . , td). (1)

In the complexity analysis we use a measure μ, which is a function assigning a
nonnegative real number to every graph. Consider an arbitrary graph G′ which
labels some internal vertex of this tree. Let the children of G′ be vertices labeled
with the subgraphs G0, . . . , Gd of G′ for which our algorithm is next called.
Assume that Δiμ(G′) = μ(G′) − μ(Gi) > 0 for i = 0, . . . , d. Then the number
τ(Δ0μ(G′), . . . , Δdμ(G′)) is well defined and we call this number the branching
number for G′ (with respect to the measure μ). Kullmann [5] proved that if this
assumption is satisfied for all internal vertices of the tree of recursive calls of the
algorithm for a graph G, then the number of leaves of this tree is bounded by
O(τμ(G)

0), where τ0 is the largest branching number for the internal vertices of the
tree. In our analysis it is convenient to consider a subtree of the tree of recursive
calls of our algorithm whose internal vertices are restricted to vertices labeled
with graphs whose measure is larger than some constant, say c. The leaves of
this tree are labeled with graphs whose measure is at most c. We show that our
algorithm applied to each graph which labels a leaf works in polynomial time.
Moreover, in our algorithm, the height of the tree of recursive calls is bounded by
the number of vertices of the instance graph. Therefore the number of internal
vertices of the tree is bounded by a linear function of the number of leaves. We
also show that the amount of time between one recursive call of our algorithm
and the next is polynomial with respect to the order of the graph. Hence the
running time of the considered algorithm applied to a graph G is bounded by
O∗(τμ(G)

0).

3 Procedures

Our main algorithm TCOUNT returns #IS(G, c) for a given pair (G, c). It
calls two subalgorithms TCOUNT3, TCOUNT6 that are applied to graphs with
maximum degree of a vertex at most 3 and between 4 and 6, respectively. They
use auxiliary procedures introduced below. In the procedures REDUCTION
and BRANCHING we assume, abusing the notation a little bit, that calls of
TCOUNT refer to the one of the algorithms TCOUNT3, TCOUNT6,
or TCOUNT that called this procedure.

Counting Independent Sets in Claw-Free Graphs 231

3.1 FOLDING

The procedure FOLDING simplifies an input graph by removing vertices of
degree 0 and 1 and identifying vertices with common closed neighborhoods.

Algorithm 1. FOLDING(G, c)
1 while any of the conditions 2, 5, or 8 is applicable do
2 if n(G) > 1 and there exists an isolated vertex v then
3 Let u �= v be any vertex of G. (F1)
4 c0(u) ← c0(u)(c0(v) + c1(v)), c1(u) ← c1(u)(c0(v) + c1(v))

5 else if there exists a leaf v then
6 Let u be the neighbor of v. (F2)
7 c0(u) ← c0(u)(c0(v) + c1(v)), c1(u) ← c1(u)c0(v)

8 else if there are distinct vertices u and v such that N [u] = N [v] then
9 c0(u) ← c0(u)c0(v), c1(u) ← c0(u)c1(v) + c1(u)c0(v) (F3)

10 G ← G − v

11 return (G, c)

Lemma 1. Let (G̃, c̃) = FOLDING(G, c). Then #IS(G, c) = #IS(G̃, c̃).

Sketch of the proof. (For detailed proof see Appendix B.)
We proceed by induction on n(G). Clearly, the lemma holds for graphs with

at most 1 vertex. We sketch the proof of the induction step in the case when the
condition in line 8 is satisfied but the conditions in lines 2 and 5 are not (the
step (F3) is executed).

Notice that every IS in G contains at most one of the vertices v and u, because
N [v] = N [u], so uv is an edge in G. Moreover {S ∈ IS(G) : u, v /∈ S} = {S ∈
IS(G− v) : u /∈ S} and {S ∈ IS(G) : u ∈ S or v ∈ S} = {S, S ∪ {v}− {u} : S ∈
IS(G − v), u ∈ S}. Hence the value of the function #IS stays the same if we
change c0(u) to c0(u)c0(v), c1(u) to c1(u)c0(v) + c0(u)c1(v), and remove v.

We proceed similarly in the remaining cases, i.e. when line 4 or 7 of the
algorithm is executed. �

Lemma 2. Procedure FOLDING runs in polynomial time. �

We say that a graph G is folded if none of the conditions in lines 2, 5, or 8 in
the FOLDING procedure is satisfied, i.e. if FOLDING(G, c) = (G, c).

3.2 REDUCTION

The procedure REDUCTION is applied when there is a cut vertex, say v, in
the input graph. Let H be a component of G − v. Instead of working with the

232 K. Junosza-Szaniawski, Z. Lonc, and M. Tuczyński

whole G we can compute #IS(G, c) as follows: calculate separately the numbers∑
C(S, c)

S∈IS(G[H∪{v}]):v/∈S

and
∑

C(S, c)
S∈IS(G[H∪{v}]):v∈S

, save them in c0(v) and c1(v), respec-

tively and then call TCOUNT for G−H . The correctness of the REDUCTION
procedure follows from Lemma 2 in [2]

Algorithm 2. REDUCTION(G, c, v, H)
1 H1 ← G[V (H) ∪ {v}], H2 ← G − H
2 c0 ← TCOUNT(FOLDING(H1 − v, c))
3 c1 ← TCOUNT(FOLDING(H1 − N [v], c))
4 c0(v) ← c0c0(v), c1(v) ← c1c1(v)

∏
u∈NH1 (v)

c0(u)

5 return TCOUNT(FOLDING(H2, c))

3.3 BRANCHING

The BRANCHING procedure is the main step of the algorithm. It recursively
counts the number of independent sets containing and not containing a chosen
vertex v. Its correctness follows from Lemma 3 in [2].

Algorithm 3. BRANCHING(G, c, v)
1 return c0(v) · TCOUNT(FOLDING(G − v, c))+
2 +c1(v)

∏
u∈N(v)

c0(u) · TCOUNT(FOLDING(G − N [v], c))

4 Algorithm TCOUNT3

Let G be a claw-free graph with Δ(G) ≤ 3. We say that a triangle in G is a
3-triangle (respectively 2-triangle, 1-triangle), if it contains 3 (respectively 2, 1)
vertices of degree 3. We observe that if G is folded, then all triangles in G are
disjoint. Indeed, suppose some two triangles have a common edge uv in G. Then
N [u] = N [v], because Δ(G) ≤ 3, and we obtain a contradiction with the fact
that G is folded. Moreover, since Δ(G) ≤ 3, there is no pair of triangles in G
with one common vertex.

Let t3(G) be the number of 3-triangles in G. In the complexity analysis of
our algorithm we use a measure of a graph G defined by μ(G) = 3t3(H), where
H is the graph obtained by applying the procedure FOLDING to the graph G.
Notice that μ(G) ≤ n3(G) ≤ n(G).

Counting Independent Sets in Claw-Free Graphs 233

Algorithm 4. TCOUNT3(G, c)
1 (G, c) ← FOLDING(G, c)
2 if G is empty then return 1
3 if G consists of only one vertex v then return c1(v) + c0(v)
4 if G is disconnected then

5 return
s∏

i=1

ci, where ci ← TCOUNT3(Ci, c), for the components (R0)

6 C1, . . . , Cs of G

7 if there exists a cut vertex v in G then
8 return REDUCTION(G, c, v, H), where H is the component (R1)
9 of G − v with minimum n(H)

10 if t3(G) = 0 then let v be a vertex of the maximum degree in G
11 else let v be a vertex contained in a 3-triangle
12 return BRANCHING(G, c, v) (B)

Theorem 3. The algorithm TCOUNT3 counting the number of independent
sets in claw-free graphs with maximum degree of a vertex at most 3 runs in time
O∗(τ(6, 12)n) = O∗(1.08352n).

Proof. It can be shown that the asymptotic behavior of the running time of the
algorithm is determined by the step (B). Therefore we do not consider the steps
(R0), (R1) in the complexity analysis. We only have to analyze the changes of
measure when applying the branching procedure (B). This procedure is applied
for graphs G which are folded and 2-connected so we assume that G is such a
graph. In particular G contains no 1-triangles.

Let u be any vertex of a 3-triangle in G and let P be a maximal path starting
with u which contains no edge of a 3-triangle. Since G is claw-free and folded,
every internal vertex of P is either a vertex of degree 2 or a vertex of degree
3 contained in a 2-triangle and the last vertex of P is a vertex of a 3-triangle.
We call such paths f-paths. A 2-connected claw-free graph with no 3-triangles is
called an f-cycle. Clearly, f-cycle is a cycle or it consists of 2-triangles joined by
paths with all internal vertices of degree 2. One can easily see that G consists of
pairwise disjoint 3-triangles joined by f-paths or it is an f-cycle.

Let us observe, that an f-path cannot have both ends in the same 3-triangle.
Otherwise the third vertex of this 3-triangle is a cut vertex in G which contradicts
2-connectivity of G.

Let us consider the subtree of the tree of recursive calls of our algorithm whose
internal vertices are graphs whose measure is larger than 6. We show first that
if the measure of the input graph is at most 6 then the algorithm works in a
polynomial time.

Let μ(G) = 3t3(G) ≤ 6. By the handshaking lemma t3(G) is even, so t3(G) = 0
or t3(G) = 2. In the former case, as G is folded and 2-connected, G is an f-cycle.
The procedure FOLDING (which is called in BRANCHING(G, c, v) for some
vertex v) applied to graphs G − N [v] and G − v returns graphs with only one

234 K. Junosza-Szaniawski, Z. Lonc, and M. Tuczyński

vertex. Hence, by Lemma 2, for graphs whose measure is 0, our algorithm works
in polynomial time.

Let us assume now that t3(G) = 2. As G is 2-connected and folded, the three
vertices of one of the 3-triangles in G are joined with the three vertices of the
other 3-triangle with three disjoint f-paths and there are no more vertices in G.
The procedure FOLDING (which is called in BRANCHING(G, c, v) for some
vertex v of a 3-triangle) applied to the graph G−N [v] returns a graph with only
one vertex and applied to the graph G − v returns an f-cycle. Polynomiality of
our algorithm in this case follows from Lemma 2 and the statement proved in
the preceding paragraph.

We assume now that μ(G) = 3t3(G) > 6. Let v be the vertex chosen in line
11 of the algorithm TCOUNT3 and let x and y be the remaining two vertices of
the 3-triangle T containing v. We denote by Pv, Px, and Py the f-paths starting
at v, x, and y, respectively and ending at v′, x′, and y′, respectively. Let Tv,
Tx, and Ty be the 3-triangles containing v′, x′, and y′, respectively. Let G0

and G1 be the graphs obtained by applying the procedure FOLDING (called in
BRANCHING(G, c, v)) for graphs G − v and G − N [v], respectively. We shall
compute Δjμ(G) = 3t3(G) − 3t3(Gj), for j = 0, 1.

First, we consider the graph G−v. Clearly G−v does not contain the 3-triangle
T . Moreover, the procedure FOLDING removes all the remaining vertices of Pv

except v′, so in G0 the triangle Tv is no longer a 3-triangle. Hence, t3(G0) =
t3(G) − 2, so Δ0μ(G) = 6.

Let us consider the graph G − N [v] now. Clearly G − N [v] does not contain
the 3-triangle T . Moreover, the procedure FOLDING removes all the remaining
vertices of Pv, Px, and Py except v′, x′, and y′, respectively. Thus, the triangles
Tv, Tx, and Ty are no longer a 3-triangles in G1.

If Tv = Tx = Ty, then, by connectivity of G, the triangles T and Tv are the
only two 3-triangles in G, a contradiction with the assumption μ(G) > 6.

Suppose now that exactly two of the triangles Tv, Tx, and Ty, are the same, say
Tv = Tx. Then, after removing the paths Pv − v′ and Px − x′ by the procedure
FOLDING, the triangle Tv becomes a 1-triangle. Let w be the vertex of Tv

different from v′ and x′. Since N [v′] = N [x′] in this graph, FOLDING removes
v′, x′, and all vertices of the f-path Pw starting at w except its last vertex,
say w′. Let Tw be the 3-triangle containing w′. Notice that Tw �= Ty, because
otherwise the vertex of Tw = Ty different from w′ and y′ is a cut-vertex in G, a
contradiction. Thus, none of the 3-triangles T , Tv, Ty, and Tw in G is a 3-triangle
in G1. Consequently, Δ1μ(G) = 12 in this case.

Finally, if Tv, Tx, and Ty are pairwise different 3-triangles in G, then none of
the 3-triangles T , Tv, Tx, and Ty is a 3-triangle in G1, so Δ1μ(G) = 12.

We have shown that the branching number of every graph G, for which the
procedure BRANCHING is called, is equal to τ(6, 12), if μ(G) > 6. Moreover,
the algorithm TCOUNT3 works in polynomial time for all graphs G such that
μ(G) ≤ 6. By the remarks in the last paragraph of Section 2 and the fact that
μ(G) ≤ n(G) it follows that the running time of the algorithm TCOUNT3 is
O∗(τ(6, 12)μ(G)) = O∗(1.08352n). �

Counting Independent Sets in Claw-Free Graphs 235

5 Algorithm TCOUNT6

In this section we consider graphs G in which all vertices have degrees at most 6.
Following [2], we define the average degree dav(v) = d(v)+|{w∈N(v):d(w)<Δ(G)}|

1+
∑

{w∈N(v):d(w)<Δ(G)}
1

d(w)
,

for every vertex v in G of degree Δ(G).

Algorithm 5. TCOUNT6(G, c)
1 if Δ(G) ≤ 3 then return TCOUNT3(G, c)
2 if G is disconnected then

3 return
s∏

i=1

ci, where (R0)

4 ci ← TCOUNT6(Ci, c) for the components C1, . . . , Cs of G

5 if there exists a cut vertex v in G then
6 return REDUCTION(G, c, v, H), where (R1)
7 H is the component of G − v with the least n(H)

8 Let v be a vertex of degree Δ(G) with the largest average degree.
9 if there is a 2-element cut set {a, b} in G, such that n≥3(L) ≤ n≥3(G − L − a)

and dG−L(a) ≥ dG−L(b) ≥ 2, where L is the component of G − {a, b} containing
v then return BRANCHING(G, c, a) (B+R)

10 else return BRANCHING(G, c, v) (B)

It can be shown that the asymptotic behavior of the running time of the
algorithm TCOUNT6 is determined by the calls of the procedure BRANCHING.
Recall that for graphs G with maximum degree of a vertex at most 3, the measure
μ(G) = 3t3(G). Let us consider now graphs which have a vertex of degree larger
than 3. In this case, as in [2], we define a measure of a connected graph G which
depends on n(G) and m(G) only, i.e μ(G) = μ′(n(G), m(G)). For a disconnected
graph G let μ(G) =

∑
μ(C)

C:C is a component of G
.

The function μ′(n, m) is a piecewise linear function defined as follows. We
partition the interval (0, 6] into subintervals (ki, ki+1] for i = 0, . . . , 15 (see Table
1 for the values of the kis). We define μ′(n, m) = μi(n, m) = ain + bim, if
2m
n ∈ (ki; ki+1]. We observe that 2m(G)

n(G) ≤ 6, for graphs G whose vertices have
degrees at most 6, so the measure μ has been defined for all such graphs. The
coefficients ai, bi (whose approximate values are given in Table 1) are chosen so
that the function μ′ is continuous (i.e. μi−1(n, m) = μi(n, m) when 2m

n = ki, for
i = 1, . . . , 15), the largest branching numbers of a graph G such that n(G)

M(G) ∈
(ki; ki+1] are equal and for every i = 1 . . . 15 the inequality 3t3(G) ≤ μ(G) holds
for any claw-free graph G with maximum degree at most 3. For convenience we
introduce some auxiliary numbers χi, for i = 0, . . . , 15. The approximate values
of ai, bi, ki, χi are given in the Table 1.

236 K. Junosza-Szaniawski, Z. Lonc, and M. Tuczyński

Table 1.

i ki ki+1 ai bi χi O∗(τχin
0)

0 0 2 0 0 0 O∗(1)
1 2 3.2 −2 2 1.2 O∗(1.127128465n)
2 3.2 3.5 −1.391248 1.61953 1.4429295 O∗(1.154768641n)
3 3.5 3.75 −0.9141105 1.34688 1.6112895 O∗(1.174321067n)
4 3.75 4 −0.53470425 1.14453 1.75435575 O∗(1.191195984n)
5 4 4 4

29
0.29185575 0.73125 1.804786784 O∗(1.19720204n)

6 4 4
29

4 4
9

0.4833964393 0.638672 1.90266755 O∗(1.208945658n)
7 4 4

9
4 4

7
0.657876439 0.560156 1.93823301 O∗(1.213241233n)

8 4 4
7

4.8 0.7989484384 0.498437 1.995197239 O∗(1.220153162n)
9 4.8 5 0.924571639 0.446094 2.039806639 O∗(1.225593462n)
10 5 5 5

47
1.546641639 0.197266 2.050299511 O∗(1.226876631n)

11 5 5
47

5 1
3

1.587533554 0.18125 2.070866887 O∗(1.229395705n)
12 5 1

3
5.5 1.627117553 0.166406 2.084734054 O∗(1.231097063n)

13 5.5 5.625 1.662565054 0.153516 2.094328804 O∗(1.232275617n)
14 5.625 5 5

6
1.695524742 0.141797 2.109099325 O∗(1.234092133n)

15 5 5
6

6 1.726286825 0.13125 2.120036825 O∗(1.23543898n)

We assume that the numbers ai, bi, χi satisfy the following conditions:

a0 = b0 = χ0 = 0 (2)

χi = χi−1 +
bi

2
(ki+1 − ki), for i = 1 . . . , 15, (3)

ai = χi−1 − kibi

2
, for i = 1 . . . , 15 (4)

μi(n, m) = ain + bim = χi−1n + (m − kin

2
)bi, for i = 1 . . . , 15. (5)

Using (2)-(5) and the fact that b1 ≥ b2 ≥ . . . ≥ b15 one can easily show that the
function μ′(n, m) has the following properties:

(P1) μ′(n, m) is continuous.
(P2) μ′(n, m) is concave, i.e. μ′(n, m) ≤ μi(n, m), for m ≥ n and i = 1 . . . , 15.
(P3) If 2m

n ∈ (ki; ki+1], then 0 ≤ μi(n, m) ≤ χin, for i = 0 . . . , 15.

By an exhaustive case analysis we prove that the largest branching number
defined for the algorithm TCOUNT6 and the measure μ defined in this section
is τ(6, 8) ≈ 1.10488 (see Appendix A for details).

Let C be a component of a graph G and let j = 0, . . . , 15 be such that
2m(C)
n(C) ∈ (kj , kj+1]. Then, by properties (P2) and (P3), μ(C) = μ′(n(C), m(C))
≤ μj(n(C), m(C)) ≤ χjn(C) ≤ χ15n(C) so, consequently, μ(G) ≤ χ15n(G).
This way we obtain the following result.

Counting Independent Sets in Claw-Free Graphs 237

Theorem 4. The algorithm TCOUNT6 counting the number of independent
sets in claw-free graphs with maximum degree of a vertex at most 6 runs in time
O∗(τ(6, 8)χ15n) = O∗(1.23544n). �

6 Algorithm TCOUNT

We extend the measure μ defined in Section 5 to μ(G) = χ15n(G), for claw-free
graphs G that have a vertex of degree larger than 6. By (P3), μ(G′) ≤ χ15n(G′),
for every claw-free graph G′. Thus, for graphs G that have a vertex of degree
larger than 6, Δ0μ(G) = μ(G) − μ(G − v) ≥ χ15n(G) − χ15n(G − v) = χ15 and
Δ1μ(G) = μ(G)−μ(G−N [v]) ≥ χ15n(G)−χ15n(G−N [v]) ≥ 8χ15. Hence, the
branching number of the graph G is not larger than τ(χ15, 8χ15) = τ(1, 8)

1
χ15 ≤

1.10344 < τ(6, 8).

Algorithm 6. TCOUNT(G, c)
1 if Δ(G) ≤ 6 then return TCOUNT6(G, c)
2 Let v be a vertex with maximum degree. return BRANCHING(G, c, v). (B)

Since μ(G) ≤ χ15n(G), we get the final result of this paper.

Theorem 5. The algorithm TCOUNT counting the number of independent sets
in an arbitrary claw-free graph runs in time O∗(τ(6, 8)χ15n) = O∗(1.23544n). �

References

1. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

2. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT
formulae. Theor. Comput. Sci. 332, 265–291 (2005)

3. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and Conquer: Domination – A
Case Study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

4. Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and
colorings with applications, Tech. Rep. 05-033, ECCC (2005)

5. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci. 223(1-2), 1–72 (1999)

6. Kutzkov, K.: New upper bound for the #3-SAT problem. Inform. Process.
Lett. 105, 1–5 (2007)

7. Lonc, Z., Truszczynski, M.: Computing minimal models, stable models and answer
sets. Theory and Practice of Logic Prog. 6(4), 395–449 (2006)

8. Ryser, H.J.: Combinatorial Mathematics. The Mathematical Association of Amer-
ica, Washington (1963)

9. Vadhan, S.P.: The Complexity of Counting in Sparse, Regular, and Planar Graphs.
SIAM J. on Comput. 31, 398–427 (1997)

10. Wahlström, M.: A Tighter Bound for Counting Max-Weight Solutions to 2SAT
Instances. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018,
pp. 202–213. Springer, Heidelberg (2008)

On the Independence Number of Graphs

with Maximum Degree 3

Iyad A. Kanj1 and Fenghui Zhang2

1 School of Computing, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604
ikanj@cs.depaul.edu

2 Google Kirkland, 747 6th Street South, Kirkland, WA 98033
fhzhang@gmail.com

Abstract. Let G be an undirected graph with maximum degree at most
3 such that G does not contain any of the three graphs shown in Figure 1
as a subgraph. We prove that the independence number of G is at least
n(G)/3+nt(G)/42, where n(G) is the number of vertices in G and nt(G)
is the number of nontriangle vertices in G. This bound is tight as implied
by the well-known tight lower bound of 5n(G)/14 on the independence
number of triangle-free graphs of maximum degree at most 3. We then
proceed to show some algorithmic applications of the aforementioned
combinatorial result to the area of parameterized complexity. We present
a linear-time kernelization algorithm for the independent set problem on
graphs with maximum degree at most 3 that computes a kernel of size at
most 140k/47 < 3k, where k is the given parameter. This improves the
known 3k upper bound on the kernel size for the problem, and implies a
lower bound of 140k/93 on the kernel size for the vertex cover problem
on graphs with maximum degree at most 3.

1 Introduction

We study the independence number of graphs with maximum degree at most 3.
This study is motivated by the importance of the independent set problem on
graphs with maximum degree at most 3, abbreviated IS-3: Given an undirected
graph G with maximum degree at most 3 and a nonnegative integer k, decide if G
has an independent set of cardinality at least k. This problem is known to be NP-
complete [7], and the optimization version of the problem has received significant
interest from both areas of approximation and exact algorithms. After a long
sequence of results in each area, up to the authors’ knowledge, the currently-best
approximation algorithm for the problem achieves a ratio that is arbitrarily close
to 6/5 [1], and the currently-best exact algorithm runs in time O(1.0885n(G)),
where n(G) is the number of vertices in G [13].

We take a combinatorial approach, establishing lower bounds on the indepen-
dence number of a graph with maximum degree at most 3 that excludes the
three obstacle-graphs depicted in Figure 1 as subgraphs. Combinatorial results
of a similar nature are very common in the literature. Brook’s theorem [2], pub-
lished as early as 1941, implies that the independence number of a K4-free graph

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 238–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Independence Number of Graphs with Maximum Degree 3 239

G with maximum degree at most 3 is at least n(G)/3. Staton showed in 1979 [11]
that the independence number of a triangle-free graph G with maximum degree
at most 3 is at least 5n(G)/14. Staton’s lower bound for triangle-free graphs is
tight, as shown by the example given in [5]. A simpler proof of Staton’s result
was given by Jones in 1990 [10], and an even simpler proof was given by Heck-
man and Thomas in 2001 [9]. In their result [9], Heckman and Thomas define
the notion of a difficult component in a graph, based on some “obstacle” sub-
graphs. They then prove that every triangle-free graph with maximum degree at
most 3 has an independence number of at least (4n(G)− e(G)−λ(G))/7, where
e(G) and λ(G) are the number of edges and the number of difficult components
in G, respectively. They showed how their result implies Staton’s result [11].
We mention that for a connected triangle-free graph with maximum degree at
most 3, Fraughnaugh and Locke proved a lower bound of (11n(G)−4)/30 on its
independence number, which is strictly larger than 5n(G)/14 for n(G) ≥ 15 [6].

v1

w1

u1 v2

w2

u2

x

y

za

c

d

b

w

v

u

w′

v′

u′

q

p

r

q′

p′

r′

Fig. 1. The obstacle graphs. The graph on the top-left is referred to as the small
obstacle; the graph on the top-right is referred to as the medium obstacle; and the
graph at the bottom is referred to as the large obstacle. The degree of vertex z in the
medium obstacle could be either 2 or 3, and the degree of vertices a and b in the small
obstacle is 3, and a and b could be adjacent.

Very recently, Harant et al. [8] generalized Heckman and Thomas’ result to
graphs of maximum degree at most 3 that may contain triangles. They define the
notion of a difficult block and use it to define the bad components of a graph: the
components in which every block is either a difficult block or an edge between
two difficult blocks. They then prove that the independence number of a K4-free

240 I.A. Kanj and F. Zhang

graph with maximum degree at most 3 is at least (4n(G)−e(G)−λ(G)−tr(G))/7,
where λ(G) and tr(G) are the number of bad components and the number of
vertex-disjoint triangles in G, respectively.

Since at most one vertex from a triangle can be in any maximum independent
set of G, the presence of a lot of triangles poses an obstacle for obtaining a lower
bound on the independence number that is larger than n(G)/3. Intuitively, one
would think that we should be able to “gain” a certain fraction of the number
of nontriangle vertices in G (i.e., vertices that do not appear in any triangle),
above the “guaranteed” n(G)/3 lower bound on the independence number. This
impression, however, is incorrect, as can be seen from the top-right and bottom
graphs in Figure 1: the independence number of each of these two graphs is
precisely n(G)/3, despite the presence of nontriangle vertices in it. A natural
question to ask then is whether there are certain “obstacle” subgraphs that
can be excluded from G, so that a lower bound of the form n(G)/3 + nt(G)/c
on the independence number can be derived, where nt(G) is the number of
nontriangle vertices in G, and c is some fixed (proper) constant; such a result
can be interpreted as we are gaining a fraction n(G)/c of the nontriangle vertices
in G above the guaranteed value of n(G)/3.

In the current paper we prove the following combinatorial result: if G is a
graph with maximum degree at most 3 that does not contain any of the three
obstacle graphs depicted in Figure 1 as a subgraph, then the independence num-
ber of G is at least n(G)/3 + nt(G)/42. This lower bound on the independence
number in terms of the number of vertices and the number of nontriangle ver-
tices in the graph is tight, as implied by the well-known tight lower bound of
5n(G)/14 = n(G)/3 + nt(G)/42 on the independence number of triangle-free
graphs of maximum degree at most 3. To prove the aforementioned result, we
use a discharging argument coupled with an amortized analysis. Up to the au-
thors’ knowledge, the technique of using amortized analysis for establishing lower
bounds on the independence number is new, and could have wider applications.

The fact that the three obstacle graphs can be pre-processed (removed) in
polynomial time allows this result to have algorithmic applications. As shown
in Section 5, by introducing some reduction rules that enable us to lower bound
the value of nt(G) by n(G)/10 in the resulting graph, and then using the combi-
natorial result in the current paper, we obtain a kernelization algorithm for the
IS-3 problem that produces a kernel of size at most 140k/47 in O(k) time. We
note that since a K4 subgraph must appear as a separate component in a graph
of maximum degree 3, Brook’s theorem [2] implies a kernel of size at most 3k
for IS-3. The current result is a linear improvement over the 3k upper bound.

Using the notion of duality introduced in [3], the 140k/47 upper bound on the
kernel size for IS-3 implies a lower bound of 140k/93 on the kernel size for the
vertex cover problem on graphs with maximum degree at most 3, abbreviated
VC-3.

Most of the proofs are omitted for lack of space.

On the Independence Number of Graphs with Maximum Degree 3 241

2 Preliminaries

We assume familiarity with the basic notations and terminologies about graphs.
For more information, we refer the reader to [12]. We consider only simple undi-
rected graphs.

For a graph G we denote by V (G) and E(G) the set of vertices and edges of
G, respectively; n(G) = |V (G)| and e(G) = |E(G)| are the number of vertices
and edges in G. A set of vertices in V (G) is said to be an independent set
if no edge in E(G) exists between any two vertices in this set. By α(G) we
denote the independence number of G, that is, the cardinality/size of a maximum
independent set in G.

For a set of vertices S ⊆ V (G), we denote by G[S] the subgraph of G induced
by the set of vertices in S. For a vertex v ∈ G, G− v denotes G[V (G)\ {v}], and
for a subset of vertices S ⊆ V (G), G − S denotes G[V (G) \ S]. By removing a
subgraph H of G we mean removing V (H) from G to obtain G−V (H). For two
vertices u, v ∈ V (G), we denote by G− (u, v) the graph (V (G), E(G) \ {(u, v)}),
and by G + (u, v) the simple graph (V (G), E(G) ∪ {(u, v)}).

The degree of a vertex v in G, denoted d(v), is the number of edges in G that
are incident to v. The degree of G, denoted Δ(G), is Δ(G) = max{d(v) : v ∈ G}.

Call a vertex v ∈ G a triangle vertex if v is a vertex of some triangle in G;
otherwise call v a nontriangle vertex. We denote the number of vertex-disjoint
triangles in G by tr(G), and the number of nontriangle vertices in G by nt(G).

Two triangles in a graph G are said to share an edge if the two triangles have
exactly two vertices in common. Two triangles are said to be adjacent if the two
triangles do not have any common vertex and a vertex in one of the triangles
is adjacent to a vertex in the other triangle. Note that if a graph has maximum
degree at most 3, then no two triangles in the graph can have exactly one vertex
in common.

The blocks of a graph G are its maximal 2-connected subgraphs, its cut-edges,
and its isolated vertices. Two blocks may only intersect at a cut-vertex of G.
The block-cutpoint tree of a connected graph G is the tree whose vertices are the
blocks and cut-vertices of G, with an edge from cut-vertex to each block that
contains it. A connected graph that is not 2-connected has a nontrivial block-
cutpoint tree; its leaf blocks are its blocks that are leaves in its block-cutpoint
tree.

A parameterized problem is a set of instances of the form (x, k), where x ∈ Σ∗

for a finite alphabet set Σ, and k is a non-negative integer called the parame-
ter [4]. A parameterized problem Q is kernelizable [4] if there exists a polynomial-
time computable reduction that maps an instance (x, k) of Q to another instance
(x′, k′) of Q such that: (1) |x′| ≤ g(k) for some recursive function g, (2) k′ ≤ k,
and (3) (x, k) is a yes-instance of Q if and only if (x′, k′) is a yes-instance of Q.
The instance x′ is called the kernel of x. For more information on parameterized
complexity and kernelization we refer the reader to [4].

The independent set problem on graphs of maximum degree at most 3,
abbreviated IS-3, is defined as follows: Given an undirected graph G with

242 I.A. Kanj and F. Zhang

Δ(G) ≤ 3, and a nonnegative integer k, determine if G has an independent set
of size at least k.

3 Structural Results

We present in this section some structural results that will be used in the re-
maining sections of the paper. Let G be a graph such that Δ(G) ≤ 3.

Fact 1 (A triangle with a degree-2 vertex). Let (u, v, w) be a triangle in
G such that d(u) = 2. Then there exists a maximum independent set of G that
contains u.

Fact 2 (Two triangles sharing an edge). Let (u, v, w) and (p, v, w) be two
triangles in G that share an edge (v, w). Then there exists a maximum indepen-
dent set of G that excludes v (or w).

We assume in the remaining discussion in this section that no triangle in G
contains a vertex of degree 2, and that no two triangles in G share an edge.
Therefore, any two triangles in G are vertex-disjoint.

A sequence of distinct triangles T1, . . . , T�, � ≥ 1, in G is said to form a path
of triangles if either � = 1, or if � > 1 and triangle Ti is adjacent to Ti+1, for
i = 1, . . . , � − 1. A path of triangles T1, . . . , T� is said to be a cycle of triangles
if either � > 2 and T1 and T� are adjacent, or � = 2 and (some) two vertices of
T1 are neighbors of two vertices of T2 (i.e., there are at least two edges between
the vertices of T1 and the vertices of T2). The length of a path/cycle of triangles
is the number of triangles in it. A path of triangles is maximal if it is maximal
under containment. We have the following lemmas:

Lemma 1 (Cycle of triangles). Let T1, . . . , T� be a cycle of triangles in G,
where Ti = (ui, vi, wi) for i = 1, . . . , �, ui is adjacent to vi+1 for i = 1, . . . , �− 1,
and u� is adjacent to v1. Then there exists a maximum independent set of G that
contains {v1, . . . , v�}.

Lemma 2 (Medium obstacle). Let T1 = (u1, v1, w1) and T2 = (u2, v2, w2)
be two adjacent triangles in G where u1 is adjacent to v2. Suppose that w1 and
w2 share a common neighbor x, v1 and u2 share a common neighbor y, and
x and y share a common neighbor z; that is, the subgraph of G induced by
V (T1)∪ V (T2)∪ {x, y, z} is a medium obstacle graph (see Figure 1). Then there
exists a maximum independent set of G containing the set of vertices {x, y, v2}.

4 A Combinatorial Result

We will say that a graph G is obstacle-free if G does not contain any of the three
obstacle graphs depicted in Figure 1 as a subgraph. Let G be an obstacle-free
graph such that Δ(G) ≤ 3. This section is devoted to proving that α(G) ≥
n(G)/3 + nt(G)/42. The proof proceeds in three phases. In the first phase, we

On the Independence Number of Graphs with Maximum Degree 3 243

apply a set of graph operations to G to obtain a “simplified” graph. The opera-
tions performed in the first phase reduce the number of triangles in G without
affecting the nontriangle vertices; these operations also ensure that given any
independent set I ′ of the resulting graph, an independent set I of G containing
I ′ can be obtained by adding a vertex from each of the triangles removed by
one of these operations. Let G1 be the graph resulting from G at the end of
the first phase. In the second phase we apply more operations to G1 to sim-
plify its structure further. In contrast to the operations performed in the first
phase, the operations performed in the second phase may remove nontriangle
vertices. Each of these operations removes a subgraph H from G1 to obtain the
subgraph G1 − V (H) such that there exists a subset of vertices SH ⊆ V (H)
that is an independent set satisfying: (1) α(G1) ≥ |SH | + α(G1 − V (H)), (2)
|SH | ≥ n(H)/3 + nt(H)/42, and (3) nt(G1) = nt(H) + nt(G1 − V (H)). Let G2

be the graph resulting from G1 at the end of the second phase. In the third
phase we prove that α(G2) ≥ n(G2)/3 + nt(G2)/42. To do so, we prove using
an amortized analysis technique that α(G2) ≥ (23n(G2)− 6e(G2) + nt(G2))/42.
Since e(G2) is at most 3n(G2)/2, the desired statement follows. The following
simple observation will be useful:

Observation 3. Let G be a graph with Δ(G) ≤ 3 such that G is obstacle-free.
Then for any subset of vertices S ⊆ V (G), the subgraph G−S of G has maximum
degree at most 3 and is obstacle-free.

4.1 The First Phase

In what follows we introduce a set of graph operations to be applied to the graph
G to obtain a simpler graph in which every triangle is contained in one of two
specific structures. We will need to keep track of how each operation affects the
number of vertices, the number of nontriangle vertices, and the independence
number of the graph G. For convenience, if an operation, or a set of operations,
is applied to G to obtain a graph G′, we will denote by δn(G), δnt(G), and δα(G)

the entities n(G) − n(G′), nt(G) − nt(G′), and α(G) − α(G′), respectively. The
operations are considered/applied in the listed order.

Operation 4.1. Let (u, v, w) be a triangle in G such that one of its vertices is
of degree 2. Then set G := G − {u, v, w}.

Operation 4.2. Let (u, v, w) be a triangle in G such that d(u) = d(v) = d(w) =
3. Let u′, v′, and w′ be the neighbors of u, v, w, respectively that are nontriangle
vertices. If two vertices in {u′, v′, w′} are adjacent then set G := G − {u, v, w}.

Operation 4.3. Let T1, . . . , T� be a cycle of triangles, where Ti = (ui, vi, wi),
i = 1, . . . , �, ui is adjacent to vi+1 for i = 1, . . . , � − 1, and u� is adjacent to v1.
Then set G := G −⋃�

i=1 V (Ti).

Operation 4.4. Let T1, . . . , T�, � > 2 be a maximal path of triangles, where
Ti = (ui, vi, wi) for i = 1, . . . , �, and ui is adjacent to vi+1, for i = 1, . . . , � − 1.

244 I.A. Kanj and F. Zhang

If w1 and w� share a common neighbor x, v1 and u� share a common neighbor
y, and x and y share a common neighbor z, then set G := (G − (V (T1) ∪⋃�

i=3 V (Ti))) + (x, v2) + (y, u2).

Operation 4.5. Let T1, . . . , T�, � > 1, be a maximal path of triangles, where
Ti = (ui, vi, wi) for i = 1, . . . , �, and ui is adjacent to vi+1, for i = 1, . . . , � − 1.
Suppose that w1 and w� share a common neighbor x and v1, u� share a com-
mon neighbor y, and x and y do not share a neighbor. Then set G := (G −⋃�

i=1 V (Ti)) + (x, y).

Operation 4.6. Let T1, . . . , T�, � > 1, be a maximal path of triangles, where
Ti = (ui, vi, wi) for i = 1, . . . , �, and ui is adjacent to vi+1, for i = 1, . . . , � − 1.
Suppose that a vertex in T�, say w�, does not share a common neighbor with v1

and does not share a common neighbor with w1. Let w′
� be the nontriangle vertex

that is a neighbor of w�. Then set G := (G −⋃�
i=2 V (Ti)) + (w′

�, u1).

Operation 4.7. Suppose that no two triangles in G are adjacent, and let (u, v, w)
be a triangle in G such that d(u) = d(v) = d(w) = 3. Let u′, v′, and w′ be the
neighbors of u, v, w, respectively that are nontriangle vertices. If there are two
vertices in {u′, v′, w′}, say u′ and v′, that do not share a common neighbor in
G, then set G′ := (G − {u, v, w}) + (u′, v′).

Proposition 1. Let G be a graph with Δ(G) ≤ 3 such that G is obstacle-free.
Let G1 be the graph resulting from the application of Operations 4.1– 4.7 to G
until none of these operations is applicable. Then the following are true:

(i) Δ(G1) ≤ 3 and G1 is obstacle-free.
(ii) Every triangle vertex in G1 has degree 3 (in G1).

(iii) δnt(G) ≤ 0, and hence nt(G1) ≥ nt(G).
(iv) δα(G) ≥ δn(G)/3.
(v) No two triangles in G1 share an edge or are adjacent.

(vi) If (u, v, w) is a triangle in G1 then each of u, v, w has exactly one neigh-
bor u′, v′, w′, respectively, that is a nontriangle vertex. Moreover, vertices
u′, v′, w′ are distinct, no two of them are adjacent, and every two of them
share a neighbor.

4.2 The Second Phase

Let G1 be the graph resulting from G after the first phase. In the second phase we
apply more operations to simplify G1 further. Each of the operations introduced
in the second phase removes a subgraph H from G1 satisfying a local ratio
property. More formally, there exists a subset of vertices SH ⊆ V (H) that is an
independent set, and such that the following are true: (1) α(G1) ≥ |SH |+α(G1−
V (H)), (2) |SH | ≥ n(H)/3+nt(H)/42, and (3) nt(G1) = nt(H)+nt(G1−V (H)).
Since each of the operations introduced in this phase removes a set of vertices
from G1, by Observation 3, the graph resulting after each operation is obstacle-
free and has maximum degree at most 3.

On the Independence Number of Graphs with Maximum Degree 3 245

By part (v) of Proposition 1, no two triangles in G1 share an edge or are
adjacent; therefore, any two triangles in G1 are disjoint. Moreover, by part (vi)
of Proposition 1, every triangle vertex in G1 is of degree 3 and has exactly one
neighbor that is a nontriangle vertex. For a triangle vertex u, we denote its
nontriangle neighbor by u′. Note that for two distinct triangle vertices u, v that
are not vertices of the same triangle, u′ can be identical to v′. For any triangle
(u, v, w) in G1, by part (vi) of Proposition 1, the vertices u′, v′, w′ are distinct,
no two of them are adjacent, and every two of them share a common neighbor
that is a nontriangle vertex. Note that the three vertices u′, v′, w′ could all share
the same common neighbor (or two common neighbors).

Let u′ be a vertex that is adjacent to some triangle vertex. It is not difficult to
verify that u′ has exactly one neighbor that is a triangle vertex, unless the graph
G1 has a component H of exactly 10 vertices, 4 of which are nontriangle vertices,
and an independent set of size 4; in this case we have α(H) ≥ n(H)/3+nt(H)/42.
Therefore, we can assume that each such vertex u′ is adjacent to exactly one
triangle vertex.

From the above discussion, every triangle in G1 must be contained in one
of two subgraphs that we call type-I steeple and type-II steeple. Each of the
two subgraphs consists of triangle vertices u, v, w, and their (distinct) neighbors
u′, v′, w′, respectively, that we call the middle vertices of the steeple. In a type-I
steeple the three vertices u′, v′, w′ all share at least one neighbor x, and in a
type-II steeple each pair of vertices in {u′, v′, w′} shares a distinct neighbor; we
call the common neighbors of the vertices u′, v′, w′ (or any two of them) the top
vertices of the steeple. Since no two triangles in G1 are adjacent, no edge exists
between two top vertices of a type-II steeple. Therefore, G1 contains a steeple
as a subgraph if and only if it contains it as an induced subgraph. The vertices
u′, v′, w′ in a type-I steeple can be of degree 2 or 3 in the graph, and so can the
vertices x, y, z in a type-II steeple. Moreover, the vertices u′, v′, w′ in a type-I
steeple can have a common neighbor(s) other than x.

Since G1 is obstacle-free, it is not difficult to show using the properties of
G1 described in Proposition 1 that any two steeples in G1 must be vertex-
disjoint, unless the three middle vertices of one steeple all share another common
neighbor beside the top vertex of the steeple, thus forming a second steeple with
a different top vertex. We now apply more operations to simplify G1. Each of
these operations removes a subgraph H from G1 to obtain a subgraph G1 −
V (H) of G1 such that there exists a subset of vertices SH ⊆ V (H) that is an
independent set (the set of black vertices), and such that the following holds
true: (1) α(G1) ≥ |SH | + α(G1 − V (H)), (2) |SH | ≥ n(H)/3 + nt(H)/42, and
(3) nt(G1) = nt(H) + nt(G1 − V (H)). The purpose behind those operations is
to make the steeples further apart.

Definition 1. Let S and S′ be two steeples. The distance between S and S′ is
defined as follows. If S and S′ are not vertex disjoint, then the distance between
S and S′ is zero. Otherwise, the distance between S and S′ is the length of a
shortest path between a middle vertex of S and a middle vertex of S′ if both S
and S′ are type-I steeples, the length of a shortest path between a middle vertex

246 I.A. Kanj and F. Zhang

of S and a top vertex of S′ if S is a type-I steeple and S′ is a type-II steeple,
and the length of a shortest path between a top vertex of S and a top vertex of
S′ if both S and S′ are type-II steeples.

Proposition 2. There is a sequence of operations that can be applied to G1 to
obtain a graph G2 such that G2 satisfies the following properties:

(i) Every triangle in G2 appears either in a type-I or a type-II steeple.
(ii) The distance between any type-I steeple and any other steeple in G2 is at

least 4, and the distance between any two type-II steeples in G2 is at least
3.

(iii) For any type-I steeple in G2, the neighbors of its middle vertices (if exist)
are all distinct degree-3 vertices, and no two of them are adjacent.

(iv) For any type-II steeple in G2, the neighbors of its top vertices (if exist) are
all distinct degree-3 vertices.

(v) For any type-II steeple in G2, none of its top vertices is adjacent to a vertex
of a K∗

4 , and no two of its top vertices are adjacent to two nonadjacent
vertices of a C5.

(vi) No C5 in G2 has two degree-2 nonadjacent vertices, and no K∗
4 in G2 has

a degree-2 vertex.
(vii) If α(G2) ≥ n(G2)/3 + nt(G2)/42 then α(G) ≥ n(G)/3 + nt(G)/42.

4.3 The Third Phase

Let G2 be the resulting graph after the second phase. Then G2 satisfies all
the properties described in Proposition 2. By part (vii) of Proposition 2, it
suffices to show that α(G2) ≥ n(G2)/3 + nt(G2)/42 to conclude that α(G) ≥
n(G)/3 + nt(G)/42.

As in the previous two phases, we will apply some operations to G2. The
purpose of the operations applied in this phase is the removal of all triangles from
G2. Each of these operations removes a subgraph H of G2; however, in contrast
to the operations performed in phase 2, the removed subgraph does not satisfy
the local ratio property, namely that we can always add to any independent set
of G−V (H) an independent set of H of cardinality at least n(H)/3+nt(H)/42.
To show that α(G2) ≥ n(G2)/3 + nt(G2)/42, we use a charging argument to
measure the impact of each of these operations on the resulting graph, in addition
to amortized analysis.

A block of a graph is called difficult [8] if it is isomorphic to one of the following
four graphs: K3, C5, K∗

4 (K4 with two of its edges each subdivided twice), and
a graph arising from C5 by adding a new vertex and connecting it to three
consecutive vertices of C5. A connected graph is called bad [8] if every block
of the graph is either a difficult block or an edge between two difficult blocks.
Harant et al. [8] showed that if a graph G′ is a K4-free graph with Δ(G′) ≤ 3
then α(G′) ≥ (4n(G′) − e(G′) − λ(G′) − tr(G′))/7, where λ(G′) is the number
of components of G′ that are bad. It follows that:

Lemma 3 ([8]). Let G′ be a triangle-free graph such that Δ(G′) ≤ 3. If G′ does
not contain bad components then α(G′) ≥ (4n(G′) − e(G′))/7.

On the Independence Number of Graphs with Maximum Degree 3 247

Definition 2. Let H be a subgraph of G2. Call an edge e with exactly one
endpoint in H a fringe edge to H . Call a vertex v ∈ V (H) a boundary vertex if
v is an endpoint of a fringe edge to H ; otherwise, call v an internal vertex. Let
e+(H) denote the number of edges in H plus the number of fringe edges to H .

Suppose that we can apply some operations to G2 to remove all triangles such
that the following conditions are satisfied: (1) each operation removes a subgraph
H such that there exists an independent set consisting of internal vertices in H
of size at least (23n(H) − 6e+(H) + nt(H))/42; and (2) the subgraph resulting
from G2 at the end of these operations is triangle-free and contains no bad
components. Suppose that all these operations remove a subgraph G−

2 from
G2. Then by Lemma 3 we have α(G2 − V (G−

2)) ≥ (4n(G2 − V (G−
2)) − e(G2 −

V (G−
2)))/7 = (23n(G2−V (G−

2))−6e(G2−V (G−
2))+nt(G2−V (G−

2)))/42; the last
equality is true because G2−V (G−

2) is triangle-free, and hence nt(G2−V (G−
2)) =

n(G2 − V (G−
2)). Since the operations performed satisfy condition (1) above, we

can add to any independent set of G2−V (G−
2) an independent set of G−

2 of size at
least (23n(G−

2) − 6e+(G−
2) + nt(G−

2))/42. Therefore, the independence number
of G2 satisfies: α(G2) ≥ (23n(G2) − 6e(G2) + nt(G2))/42. Since Δ(G2) ≤ 3,
e(G2) ≤ 3n(G2)/2, and α(G2) ≥ (14n(G2)+nt(G2))/42 = n(G2)/3+nt(G2)/42.

It follows that it is sufficient to show that each of the operations that we
apply satisfies conditions (1) and (2) above. For a subgraph H of G2, let φ(H) =
|SH |−(23n(H)−6e+(H)+nt(H))/42, where SH is a maximum independent set
consisting of internal vertices in H . Then an operation that removes a subgraph
H such that φ(H) ≥ 0 satisfies condition (1) above. We would like to show
that each introduced operation that removes a subgraph H satisfies φ(H) ≥ 0.
This will be the case for most of the operations that we apply except few. To
circumvent this issue, we use amortized analysis. To implement this concept,
for each operation that removes a subgraph H , we introduce a parameter c(H),
where c(H) is the cost (or debit) of the operation, meant to possibly pay off the
deficit of some later operations. We have the following definition:

Definition 3. Let H be a subgraph of G2, and let SH be a maximum independent
set in H consisting of internal vertices to H. Let E1(H) be the set of fringe
edges to H whose endpoint in G2 − V (H) is a neighbor of a top vertex in some
type-II steeple, and let E2(H) be the set of remaining fringe edges to H. Let
s = 1/14. Define the functions φ(H) = |SH | − (23n(H) − 6e+(H) + nt(H))/42
and Φ(H) = φ(H) − c(H), where c(H) = (s/2)|E1(H)| + (s/4)|E2(H)|.
Our task now becomes to remove all triangles in G2 by applying operations,
each of which removes a subgraph H from the graph, such that the sum of
Φ(H) over all operations is nonnegative. At each point we consider a triangle
in the resulting graph. This triangle will always be contained in a type-I or a
type-II steeple. Since every triangle in G2 is contained in a steeple, and since
each steeple is 2-connected, no bad component of G2 contains a triangle, and
every bad component C in G2 is triangle-free. Now if a component C of G2

is triangle-free, then by [9], we have α(C) ≥ 5n(C)/14 = n(C)/3 + n(C)/42.
Therefore, since our goal is to prove that α(G2) ≥ n(G2)/3 + nt(G2)/42, by

248 I.A. Kanj and F. Zhang

additivity, we can assume that at the beginning of this phase every component
of G2 contains some triangle, and that G2 does not contain bad components. We
will ensure that none of the operations applied to G2 in this phase introduces
bad components. We can prove that:

Proposition 3. There exists a sequence of operations, each removing a subgraph
H of G2, that can be applied to G2 to obtain a graph G3 such that G3 is triangle-
free and contains no bad components, and such that the sum of Φ(H) over all
removed subgraphs is nonnegative.

Theorem 4. Let G be an obstacle-free graph with Δ(G) ≤ 3. Then α(G) ≥
n(G)/3 + nt(G)/42.

5 The Kernel

Let (G, k) be an instance of IS-3. The validity of Reduction Rules 1 – 4 fol-
lows from Fact 1, Fact 2, Lemma 1, and Lemma 2, respectively. The validity of
Reduction Rule 5 can be easily verified.

Reduction Rule 1. If (u, v, w) is a triangle in G such that d(u) = 2 then set
G := G − {u, v, w} and k := k − 1.

Reduction Rule 2. If (u, v, w) and (p, v, w) are two triangles in G that share
an edge (v, w) then set G := G − v.

Reduction Rule 3. If T1, . . . , T� is a cycle of triangles in G then set G :=
G −⋃�

i=1 V (Ti) and k := k − �.

Reduction Rule 4. If H is a subgraph of G that is a medium obstacle then set
G := G − V (H) and k := k − 3.

Reduction Rule 5. If C is a component in G that is a large obstacle then set
G := G − V (C) and k := k − 4.

Definition 4. Call a graph reduced if none of Reduction Rules 1 – 5 applies to it.

Lemma 4. Let G be a reduced graph. Then the number of nontriangle vertices
nt(G) satisfies nt(G) ≥ n(G)/10.

Combining Lemma 4 with Theorem 4 we obtain:

Theorem 5. Given an instance (G, k) of IS-3, the algorithm Kernelize given
in Figure 2 either accepts the instance (G, k) correctly, or returns an equivalent
instance (G′, k′) of IS-3 such that n(G′) ≤ 140k′/47. The running time of the
algorithm Kernelize is O(k).

Using the notion of duality introduced in [3], Theorem 5 yields a lower bound
on the kernel size of the vertex cover problem on graphs with maximum degree
at most 3 (VC-3):

Theorem 6. Unless P=NP, the VC-3 problem does not have a kernel of size
at most 140k/93.

On the Independence Number of Graphs with Maximum Degree 3 249

Algorithm Kernelize

Input: An instance (G, k) of IS-3

Output: An instance (G′, k′) of IS-3

1. if k ≤ n(G)/4 then accept the instance (G, k);

2. Apply Reduction Rules 1 – 5 to (G, k) until none of them applies;

3. let (G′, k′) be the resulting instance;

4. if k′ ≤ 47n(G′)/140 then accept the instance (G, k);
else return the instance (G′, k′).

Fig. 2. The algorithm Kernelize

References

1. Berman, P., Fujito, T.: On approximation properties of the independent set prob-
lem for low degree graphs. Theory Comput. Syst. 32(2), 115–132 (1999)

2. Brooks, R.: On colouring the nodes of a network. Math. Phys. Sci. 37(4), 194–197
(1941)

3. Chen, J., Fernau, H., Kanj, I., Xia, G.: Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size. SIAM Journal on Computing 37(4),
1077–1106 (2007)

4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
5. Fajtlowicz, S.: On the size of independent sets in graphs. Congr. Numer. 21,

269–274 (1978)
6. Fraughnaugh, K., Locke, S.: Finding large independent sets in connected triangle-

free 3-regular graphs. Journal of Combinatorial Theory B 65, 51–72 (1995)
7. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete problems.

In: STOC, pp. 47–63. ACM (1974)
8. Harant, J., Henning, M., Rautenbach, D., Schiermeyer, I.: The independence num-

ber in graphs of maximum degree three. Discrete Mathematics 308(23), 5829–5833
(2008)

9. Heckman, C., Thomas, R.: A new proof of the independence ratio of triangle-free
cubic graphs. Discrete Mathematics 233(1-3), 233–237 (2001)

10. Jones, K.: Size and independence in triangle-free graphs with maximum degree
three. Journal of Graph Theory 14(5), 525–535 (1990)

11. Staton, W.: Some Ramsey-type numbers and the independence ratio. Transactions
of the American Mathematical Society 256, 353–370 (1979)

12. West, D.: Introduction to graph theory. Prentice-Hall, NJ (1996)
13. Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree

graphs. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942,
pp. 281–292. Springer, Heidelberg (2010)

On Computing an Optimal Semi-matching

Frantǐsek Galč́ık, Ján Katrenič, and Gabriel Semanǐsin�

Institute of Computer Science,
P.J. Šafárik University, Faculty of Science,
Jesenná 5, 041 54 Košice, Slovak Republic

{frantisek.galcik,jan.katrenic,gabriel.semanisin}@upjs.sk

Abstract. The problem of finding an optimal semi-matching is a gener-
alization of the problem of finding classical matching in bipartite graphs.
A semi-matching in a bipartite graph G = (U, V, E) with n vertices and
m edges is a set of edges M ⊆ E, such that each vertex in U is inci-
dent to at most one edge in M . An optimal semi-matching is a semi-
matching with degM (u) = 1 for all u ∈ U and the minimal value of∑

v∈V
degM (v).(degM (v)+1)

2
. We propose a schema that allows a reduction

of the studied problem to a variant of the maximum bounded-degree
semi-matching problem. The proposed schema yields to two algorithms
for computing an optimal semi-matching. The first one runs in time
O(

√
n · m · log n) that is the same as the time complexity of the cur-

rently best known algorithm. However, our algorithm uses a different ap-
proach that enables some improvements in practice (e.g. parallelization,
faster algorithms for special graph classes). The second one is random-
ized and it computes an optimal semi-matching with high probability in
O(nω · log1+o(1) n), where ω is the exponent of the best known matrix
multiplication algorithm. Since ω ≤ 2.38, this algorithms breaks through
O(n2.5) barrier for dense graphs.

1 Introduction

We consider unweighted bipartite graphs without loops, multiple edges, and
isolated vertices. In general we use standard graph theory terminology and no-
tations. If it is not stated otherwise, the symbols n and m stand for the number
of vertices and the number of edges of a graph respectively. By N(X) we under-
stand the open neighborhood of a set X , subset of the set of vertices. If v is a
vertex belonging to a set W then we refer it as a W -vertex. A semi-matching M
of a bipartite graph G = (U, V, E) is a set of edges such that each vertex of U
is incident to at most one edge of M . A semi-matching M is a maximum semi-
matching if each vertex of U is incident to exactly one edge of M . We denote by
SM(G) the set of all maximum semi-matchings of G. It is easy to see that any

� The research of the authors was supported in part by the Slovak Research and
Development Agency under contracts APVV-0035-10 ”Algorithms, Automata, and
Discrete Data Structures” and SK-SI-0014-10 ”Contemporary graph invariants and
applications” and in part by the VVGS grant No. I-10-003-10.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 250–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Computing an Optimal Semi-matching 251

bipartite graph without isolated vertices contains a maximum semi-matching
and therefore SM(G) is non-empty.

The studied problem is motivated by the following off-line load balancing
scenario: Given a set of tasks and a set of machines, each of which can process
a subset of tasks. Each task requires one unit of processing time and must be
assigned to some machine that can process it. The tasks has to be assigned in
such a manner that minimizes some optimization objective. One natural goal is
to process all tasks with the minimum total completion time. Another goal is to
minimize the average completion time, or total flow time, which is the sum of
time units necessary for completion of all jobs (including the units while a job
is waiting in the queue).

Let M be a semi-matching. Let us denote by degM (v) the degree of a vertex
v ∈ U ∪ V in the subgraph of a graph G induced by M . (The definition of a
maximum semi-matching immediately implies that if M ∈ SM , then |M | =
|U | =

∑
v∈V degM (v).) For any maximum semi-matching M we define the cost

of M , denoted by cost(M), as follows: For any machine v ∈ V , its cost with
respect to the semi-matching M is

costM (v) =
degM (v)∑

i=1

i =
degM (v) · (degM (v) + 1)

2
.

Intuitively, costM (v) is the total completion time of jobs assigned to the machine
v. The cost of the maximum semi-matching M is the sum of costs taken over all
machines:

cost(M) =
∑
v∈V

costM (v).

An optimal semi-matching is a maximum semi-matching with the minimum pos-
sible cost among all maximum semi-matchings.

The problem of finding an optimal semi-matching is studied from early 70s
when an O(n3)-algorithm was developed independently by Horn [5] and Bruno
et al. [2]. In the next period, no significant progress has been reported besides
the results related to some special cases of the problem and its variations. The
problem received considerable attention in the past few years. Harvey et al. [4]
shown that an optimal semi-matching minimizes simultaneously the maximum
number of tasks assigned to a machine, the flow time and the variance of loads on
the machines. They gave also a characterization of an optimal assignment based
on cost-reducing paths and provided two algorithms for finding an optimal semi-
matching in time O(n·m). Their first algorithm builds the semi-matching step by
step starting with an empty semi-matching. Subsequently, in each step, it finds
an augmenting path from a free U -vertex to a vertex in V with the smallest
possible degree. The second proposed algorithm starts with an arbitrary semi-
matching M , where in each step, the algorithm finds a cost-reducing path. The
authors provided the O(min{n3/2, m · n} · m) upper bound for running time of
this algorithm [4].

The unweighted semi-matching problem was recently generalized to the quasi-
matching problem by Bokal et al. [1]. In this problem, a function g is provided,

252 F. Galč́ık, J. Katrenič, and G. Semanǐsin

and each vertex u ∈ U is required to be connected to at least g(u) vertices
in V . Observe that the maximum semi-matching problem corresponds to the
case when g(u) = 1 for each u ∈ U . Bokal et al. [1] used another definition of
the optimality and shown that a maximum semi-matching is an optimal semi-
matching if and only if its degree distribution is lexicographically minimal. More
precisely, let G = (U, V, E) be a bipartite graph, X ⊆ V , and M ⊆ E. Denote
by dM (X) the sequence (d1, d2, . . . , d|X|), d1 ≥ d2 ≥ . . . ≥ d|X|, of degrees of
vertices from X in the subgraph induced by M . We say that a maximum semi-
matching M1 is lexicographically smaller than a maximum semi-matching M2

(denoted by M1 <lex M2), if the sequence dM1(V) is lexicographically smaller
than the sequence dM2(V). Analogously we define the relation M1 ≤lex M2.
A maximum semi-matching M ∈ SM(G) is a lexicographically minimal semi-
matching, if M ≤lex M ′ for all M ′ ∈ SM(G). A set of all lexicographically
minimal semi-matchings of the graph G is denoted as LSM(G).

Very recently, Fakcharoenphol, Laekhanukit and Nanongkai [3] presented
O(

√
n · m · log n) algorithm for the optimal semi-matching problem, which im-

proves the previous O(n ·m) algorithm by Harvey et al. [4]. Their algorithm uses
the same reduction to the min-cost flow problem as in [4]. However, instead of
canceling one negative cycle in each iteration, the algorithm exploits the struc-
ture of the graphs and the cost functions to cancel many negative cycles in a
single iteration.

In this paper, we present a new algorithm for finding an optimal semi-matching
with respect to optimality criterion due to [1]. Our algorithm is based on the
divide-and-conquer strategy that yields to some practically useful properties
of the algorithm. In the algorithm, we reduce the problem of computing a
lexicographically minimal semi-matching to several computations of a specific
variant of the maximum bounded-degree semi-matching problem. This prob-
lem is referred as a BDSM problem. The proposed algorithm runs in time
O(TBDSM (n, m) · log n), where TBDSM (n, m) is the time complexity in which
the BDSM problem can be solved. Hence our algorithm can viewed also as
a schema that utilizes an algorithm for the BDSM problem as a black-box
subroutine, i.e. each algorithm for BDSM problem results in an algorithm for
computing an optimal semi-matching.

As a consequence, applying known algorithms we get two algorithms for com-
puting an optimal semi-matching. The first one is deterministic and runs in time
O(

√
n · m · log n) that is the same as the running time of the algorithm from

[3]. The second one is randomized and computes an optimal semi-matching with
high probability in time O(nω · log1+o(1) n), where ω is the exponent of the best
known matrix multiplication algorithm. Since ω < 2.38, for dense graphs this
algorithm breaks the O(n2.5) upper-bound known before.

2 Preliminaries

The algorithm proposed in this paper is in fact a schema that reduces the problem
of computing a lexicographically minimal semi-matching to several instances

On Computing an Optimal Semi-matching 253

of a variant of the maximum bounded-degree semi-matching problem (shortly
BDSM) that can be stated as follows:

PROBLEM [BDSM]
INSTANCE: A bipartite graph G = (U, V, E) with n = |U | + |V | vertices and
m = |E| edges; a capacity mapping c : V → N satisfying

∑
v∈V c(v) ≤ 2 · n.

QUESTION: Find a semi-matching M in G with maximum number of edges
such that degM (v) ≤ c(v) for all v ∈ V .

By ComputeBDSM(G, c) we shall denote an algorithm for solving the instance
of BDSM problem.

2.1 Balancing Subroutine

In this subsection, we describe a balancing subroutine. The balancing subroutine
provides a method for a transformation of a semi-matching M to a new semi-
matching M∗ in such a way that for a given semi-matching Mf and a subset
W of V we guarantee that all its vertices are loaded at least as in the semi-
matching Mf . Moreover, the proposed method is time-efficient and in some sense
guarantees that the transformation affects only a small number of V -vertices.

Function Balance(G, M , Mf , W)
Input: a bipartite graph G = (U, V, E), semi-matchings M and Mf in G,

and a subset W ⊆ V
Output: a semi-matching Mb satisfying properties stated in Lemma 1

foreach w ∈ W do Rw ← {u ∈ U |(u, w) ∈ Mf \ M};
foreach u ∈ U do p(u) ← nil;
foreach (u, v) ∈ M do p(u) ← v;
Q ← {w ∈ W |degM (w) < degMf

(w)};

X ← M ;
while Q
= ∅ do

w ← arbitrary vertex from Q;
Q ← Q \ {w};
u ← arbitrary vertex from Rw;
Rw ← Rw \ {u};

if p(u)
= nil then
X ← X \ {(u, p(u)};
if p(u) ∈ W ∧ degX(p(u)) < degMf

(p(u)) then Q ← Q ∪ {p(u)};
end

X ← X ∪ {(u, w)};
p(u) ← w;
if degX(w) < degMf

(w) then Q ← Q ∪ {w};
end
return X(= Mb)

254 F. Galč́ık, J. Katrenič, and G. Semanǐsin

Lemma 1. Let M and Mf be semi-matchings of a bipartite graph G = (U, V, E)
and let VMf

= {v ∈ V |∃u ∈ U, ∃v′ ∈ V, (u, v) ∈ E ∧ (u, v′) ∈ Mf}. Then for any
subset W ⊆ V , a semi-matching Mb of G satisfying

(1) degMb
(v) = degMf

(v), for each v ∈ W with degM (v) ≤ degMf
(v),

(2) degMf
(v) ≤ degMb

(v) ≤ degM (v), for each v ∈ W with degM (v) > degMf
(v),

(3) degMb
(v) ≤ degM (v), for each v ∈ V \ W with v ∈ VMf

,
(4) degMb

(v) = degM (v), for each v ∈ V \ W with v /∈ VMf
, and

(5) |Mb| ≥ |M |
can be obtained as a results of the function Balance(G, M, Mf , W) in linear time
O(|V (G)| + |E(G)|).

2.2 Dividing Subroutine

In the proposed algorithm, we apply the divide-and-conquer strategy. The key
element of the algorithm is a dividing construction that allows to reduce the prob-
lem of finding a lexicographically minimal semi-matching of a bipartite graph
G into two problems of finding a lexicographically minimal semi-matchings of
induced subgraphs of G.

The dividing strategy is based on the following observation: Let us assume that
we have already computed a maximum semi-matching M of a bipartite graph
G = (U, V, E) in the situation when the maximum load (maximal number of
incident matching edges) of each V -vertex is bounded from above by a constant
cut (the value of cut will be determined in the main algorithm, where cut is
used as a variable). Obviously, the computed semi-matching M is not necessary
maximum. However, one can expect that if a V -vertex v is not fully loaded in
M (i.e., degM (v) < cut), an enlargement of the upper bound for the load of the
vertex v would not help to find a larger semi-matching. On the other hand, if
degM (v) = cut, it could be possible to enlarge M after increasing the allowed
capacity (maximum allowed load) of v. As we shall show later, according to a
computed semi-matching and an actual load of V -vertices, we can even divide
the graph into two disjoint subgraphs in such a way, that the loads of vertices in
all lexicographically minimal semi-matchings in one of them are upper-bounded
by a given constant cut, and the loads of vertices in all lexicographically minimal
semi-matchings in the other subgraph are lower-bounded by cut.

The following theorem states a few properties of our main algorithm that are
crucial for estimation of the total time complexity of the algorithm.

Theorem 1. Let down, cut, up be non-negative integers such that down < cut <
up and cut ≤ 2 · down. Let G = (U, V, E) be a bipartite graph such that for any
lexicographically minimal semi-matching M ∈ LSM(G) of G it holds down ≤
degM (v) ≤ up for all v ∈ V . Let Mf be a semi-matching in G that satisfies
degMf

(v) ≥ down for each vertex v ∈ V . Then there exist bipartite graphs
G− = (U−, V −, E−), G+ = (U+, V +, E+) and semi-matchings M−

f ⊆ E− in
G−, M+

f ⊆ E+ in G+ such that the following properties hold

On Computing an Optimal Semi-matching 255

(1) G−, G+ are disjoint and induced subgraphs of G, such that U− ∪ U+ = U ,
V − ∪ V + = V , U− ∩ U+ = ∅, V − ∩ V + = ∅,

(2) ∀v ∈ V −: degM−
f

(v) ≥ down,

(3) ∀v ∈ V +: degM+
f

(v) = cut,

(4) ∀M− ∈ LSM(G−), ∀v ∈ V : down ≤ degM−(v) ≤ cut,
(5) ∀M+ ∈ LSM(G+), ∀v ∈ V : cut ≤ degM+(v) ≤ up, and
(6) ∀M− ∈ LSM(G−), ∀M+ ∈ LSM(G+): M− ∪ M+ ∈ LSM(G).

Moreover, graphs G+ and G− can be constructed in time TBDSM (n, m) + O(n +
m), where n = |U | + |V |, m = |E| and TBDSM (n, m) is time complexity for
solving an instance of the Problem BDSM for a graph with n vertices and m
edges.

By Divide(G, down, cut, up, Mf) we shall denote an algorithm that constructs
graphs G−, G+ and semi-matchings M−, M+ as claimed in Theorem 1.

3 The Main Algorithm

Our algorithm for computing a lexicographically minimal semi-matching is an
implementation of the divide-and-conquer strategy whose division stage is based
on Theorem 1. The key computational element of the proposed algorithm is a
recursive subroutine ComputeBLSM(G, down, up, Mf , l) that expects five pa-
rameters. First three parameters are a bipartite graph G = (U, V, E) and two
non-negative integers down and up, such that for an arbitrary lexicographically
minimal semi-matching M of G it holds that down ≤ degM (v) ≤ up for all
v ∈ V . We use here a special value �∞ to denote that no upper-bound on the
maximum degree of vertices in a lexicographically minimal semi-matching is
given. In all inequalities, we assume that x ≤ �∞ is valid for all x ∈ N. Observe
that the whole computation starts with the parameter down set to 0 and the
parameter up set to �∞. Note also that it follows from the algorithm that �∞
can be practically set to the value 2 · n without affecting the computation. The
fourth parameter is a semi-matching Mf in G satisfying degMf

(v) ≥ down for
all v ∈ V . This semi-matching is important for the Divide subroutine. More-
over, it is utilized to transfer some results of already realized computation to
subproblems. The last parameter l is not related to the computation. It is added
as a supplementary element used in the time complexity analysis and denotes a
level (depth of recursive call) of the current subproblem.

Algorithm 1. ComputeLSM(G)

Input: a bipartite graph G = (U, V, E);
Output: a lexicographically minimal semi-matching M ;
return ComputeBLSM(G, 0, �∞, ∅, 0) ;

256 F. Galč́ık, J. Katrenič, and G. Semanǐsin

Function ComputeBLSM(G, down, up, Mf , l)
Input: a bipartite graph G = (U, V, E), down ∈ N, up ∈ N ∪ {�∞}, s.t.,

∀M ∈ LSM(G), ∀v ∈ V : down ≤ degM (v) ≤ up, and a
semi-matching Mf in G, s.t., ∀v ∈ V : degMf

(v) ≥ down;
Output: a lexicographically minimal semi-matching M of G

//the trivial case;
if G = ∅ then return ∅ ;
if up
= �∞ ∧ up − down ≤ 1 then

M ← ComputeBDSM(G, c : {c(v) → up|v ∈ V }) ;
M ← Balance(G, M, Mf , V) ;
return M ;

end

//recursive case;
if up
= �∞ then

cut ← �(down + up)/2� ;
else

cut ← max{2 · down, 1} ;
end
(G−, M−

f , G+, M+
f) ← Divide(G, down, cut, up, Mf);

M− ← ComputeBLSM(G−, down, cut, M−
f , l + 1);

M+ ← ComputeBLSM(G+, cut, up, M+
f , l + 1);

return M− ∪ M+;

Let us analyze the correctness of the algorithm. In what follows, we shall use
the symbol ? to denote a parameter whose value is not important in an actual
context.

Lemma 2. Let G = (U, V, E) be a bipartite graph and M be a maximum semi-
matching of G such that ∀v, w ∈ V : degM (v) − degM (w) ≤ 1. Then M ∈
LSM(G).

Proof. Follows from Theorem 3.1 in [4] which shows that a semi-matching is
optimal if and only if no cost reducing path exists. ��

Lemma 3. Let lmax be the maximal value of the parameter l that occurs in a call
of the subroutine ComputeBLSM during the computation of ComputeLSM(G).
Then, lmax = O(log n) where n = |U | + |V |.

Proof. First we show, using mathematical induction with respect to l, that
if a subproblem ComputeBLSM(?, down, �∞, ?, l), l ≥ 1, occurs during the
computation of ComputeLSM(G), then it holds down = 2l−1. The call of
ComputeBLSM(G, 0, �∞, ∅, 0) can yield only to the computation of a subprob-
lem ComputeBLSM(?, 1, �∞, ?, 1) and in this case the induction hypothesis is
valid. For l > 1, a subproblem ComputeBLSM(?, down, �∞, ∅, l − 1) can yield
only to the computation of a subproblem ComputeBLSM(?, 2 · down, �∞, ∅, l).

On Computing an Optimal Semi-matching 257

From the induction hypothesis, it follows 2 · down = 2 · 2l−2 = 2l−1. Simi-
larly, we can show by induction on l and utilizing Theorem 1 that if a problem
ComputeBLSM(G′, down, �∞, ?, l) occurs in computation then G′ is a subgraph
of G. For down ≥ n = |U | + |V |, the precondition of ComputeBLSM implies
that an input graph G′ = (U ′, V ′, E′) is empty. Indeed, if for any semi-matching
M ∈ LSM(G′) it holds deg(v) ≥ degM (v) ≥ down ≥ n for all v ∈ V ′
= ∅, we get
a contradiction to deg(v) < n (as G′ is a subgraph of G). Hence, if a subproblem
ComputeBLSM(G′, ?, �∞, ?, l) with G′
= ∅ is a part of the computation, then
2l−1 = down < n which implies l ≤ log n + 1.

In order to prove formally an upper-bound for lmax, we shall show, by induc-
tion on l, that if a subproblem ComputeBLSM(G′, down, up, ?, l) with up
= �∞,
l ≥ 1, and G′
= ∅, is a part of the computation then up−down ≤ n

2l−2−log n +2 =
n2

2l−2 +2. Since ComputeBLSM(?, 0, 1, ?, l) is the only subproblem with l = 1 and
up
= �∞ that can occur in the computation, the claim is obvious for l = 1. So we
can assume that the induction hypothesis holds for l = 1. Let us assume now that
up− down ≤ n2

2l−3 + 2 for all subproblems ComputeBLSM(?, down, up, ?, l − 1)
at level l − 1. Each subproblem ComputeBLSM(?, down, up, ?, l − 1) can be
divided into at most two subproblems ComputeBLSM(?, down, cut, ?, l) and
ComputeBLSM(?, cut, up, ?, l) where cut = �(down+up)/2�. By an application
of the induction hypothesis, for a subproblem ComputeBLSM(?, down, cut, ?, l),
we get cut−down = �(down+up)/2�−down ≤ (up−down)/2 ≤ n2

2l−2 +1. Simi-
larly, for a subproblem ComputeBLSM(?, cut, up, ?, l), we get up− cut ≤ (up−
down)/2 + 1 ≤ n2

2l−2 + 2. Hence, the claim holds for the both subproblems. It re-
mains to analyze the case when a subproblem ComputeBLSM(?, down, up, ?, l)
is forced by ComputeBLSM(?, down, �∞, ?, l − 1). We already know that the
call ComputeBLSM(?, down, �∞, ?, l − 1) implies down = 2l−2 and l − 1 ≤
log n + 1. The problem ComputeBLSM(?, down, �∞, ?, l − 1) can force only a
subproblem ComputeBLSM(?, down, 2 ·down, ?, l). For this subproblem, we get
2 · down − down = down = 2l−2 ≤ n. Since l − 2 ≤ log n, it implies n ≤ n2

2l−2 . It
means that in this case the claim holds too.

Hence, if a subproblem ComputeBLSM(?, down, up, ?, l) with up
= �∞ oc-
curs during a computation, it holds up−down ≤ n

2l−2−log n +2. For l > 2+2·logn,
it follows n

2l−2−log n + 2 < 3 and up − down ≤ 2. In this case the construction
of subroutine ComputeBLSM guarantees that if a new subproblem is forced
then it is the trivial one. Since there are no subproblems with up
= �∞ for
l > 3 + 2 · log n and no subproblem with up = �∞ for l > log n + 3, the assertion
follows. ��
Lemma 4. The algorithm ComputeLSM computes a lexicographically minimal
semi-matching of G.

Proof. We have to show that the computation is finite and a semi-matching
returned by ComputeBLSM(G, 0, �∞, ∅, 0) is lexicographically minimal. Since
each problem ComputeBLSM(?, ?, ?, ?, l) can yield to the computation of at
most two subproblems ComputeBLSM(?, ?, ?, ?, l + 1) and from Lemma 3 we
have l ∈ O(log n), the computation is finite.

258 F. Galč́ık, J. Katrenič, and G. Semanǐsin

Now, we show the correctness of the algorithm. In particular, we show that
the subroutine ComputeBLSM(G, down, up, Mf , l) returns a semi-matching M
such that M ∈ LSM(G). We show it by a backward induction on l. In what
follows, G refers to the first parameter of a given subproblem ComputeBLSM
and not to a parameter of ComputeLSM which initiates the whole computation.

Let us analyze the induction base, i.e., when l = lmax and lmax is the maximal
value of the parameter l that occurs in the computation. Since no subproblem at
level lmax +1 is forced, either the input graph is empty or up−down ≤ 1. In the
former case is obvious. In the latter case when up− down ≤ 1, Lemma 1 implies
that down ≤ degM (v) ≤ up for all v ∈ V . Let M ′ be an arbitrary semi-matching
such that M ′ ∈ LSM(G). Precondition of ComputeBLSM implies degM ′(v) ≤
up for all v ∈ V . If |M ′| > |M |, we get a contradiction with maximality of a
semi-matching computed by ComputeBDSM . Indeed, M ′ is a feasible solution
for the BDSM problem. Hence, due to maximality of M ′ we have |M ′| = |M |.
It follows that the semi-matching M is a maximum semi-matching for G. And
therefore Lemma 2 implies that M ∈ LSM(G).

Let us analyze the inductive step. If no subproblem is forced, the proof is the
same as in the induction base. In the complementary case, which corresponds to
a recursive step of the algorithm, two new subproblems are forced. Let G−, G+,
M−

f , and M+ be the results of the subroutine Divide. Note that all assumptions
of Theorem 1 are satisfied due to preconditions of ComputeBDSM and the fact,
which can be easily shown by induction on l, that up ≤ 2 · down + 1 in the case
when up
= �∞. Therefore, properties (2) and (4) of Theorem 1 imply that
preconditions of ComputeBLSM(G−, down, cut, M−

f , l+1) are satisfied as well.
Similarly, preconditions of ComputeBLSM(G+, cut, up, M+

f , l + 1) are satisfied
due to properties (3) and (5) of Theorem 1. The new subproblems are at level
l+1. Hence we can apply the induction hypothesis and we get M− ∈ LSM(G−)
and M+ ∈ LSM(G+). Finally, due to the property (6) of Theorem 1 the returned
semi-matching M− ∪ M+ belongs to LSM(G) . ��
Lemma 5. Let Gl be a collection of subgraphs of G such that G′ ∈ Gl if and
only if a subproblem ComputeBLSM(G′, ?, ?, ?, l) occurs in the computation of
ComputeLSM(G). Then, all graphs in Gl are disjoint and

⋃
G′∈Gl

G′ is a sub-
graph of G.

Proof. We show the assertion of the lemma by induction on l. For l = 0, the claim
is trivial. Let us assume that the claim holds for l − 1. Clearly, if G′ ∈ Gl, then
there is a subproblem ComputeBLSM(G∗, ?, ?, ?, l−1) that forces a computation
ComputeBLSM(G′, ?, ?, ?, l). As we can see in the subroutine ComputeBLSM ,
new subproblems are generated as the result of the Divide subroutine. In partic-
ular, a subproblem ComputeBLSM(G∗, ?, ?, ?, l−1) can force only subproblems
ComputeBLSM(G−, ?, ?, ?, l) and ComputeBLSM(G+, ?, ?, ?, l). Then, due to
the property (1) of Theorem 1, both graphs G− and G+ are disjoint subgraphs
of G∗ and the claim follows. ��
The proposed algorithm is a recursive algorithm that is normally executed in
the DFS like manner. However, to complete the analysis of time complexity, let

On Computing an Optimal Semi-matching 259

us consider a computation in which the computational tree is traversed in BFS-
like manner. In particular, the computation works in stages. In a stage l, we
process all subproblems ComputeBLSM(?, ?, ?, ?, l) at level l. Each subproblem
is preprocessed and subproblems at level l + 1 are constructed. Consequently,
execution in the stage l is interrupted and we start to solve subproblems at level
l + 1 and the stage l + 1 starts. After the stage l + 1 is completed, we continue
with the stage l. From results obtained at the stage l + 1 we construct results
for all subproblems at level l and the stage l is completed.

The motivation for considering BFS-like computation is the following. Ob-
serve that in order to compute ComputeBLSM(G′, ?, ?, ?, l), we execute the
subroutine ComputeBDSM(G′, ?) that computes a solution for the BDSM
problem. Let us denote the graph

⋃
G′∈Gl

G′ by Gl = (U l, V l, El). By Lemma 5,
the graph Gl is a subgraph of G that consists of components corresponding to
graphs in Gl. Therefore, instead of executing the subroutine ComputeBDSM
for each graph G′ = (U ′, V ′, E′) ∈ Gl separately, we can execute the subroutine
ComputeBDSM with the graph Gl as an input. Since vertex sets of all graphs
in Gl are disjoint, we can set capacities for all V -vertices separately. Observe that∑

v∈V (Gl) c(v) =
∑

G′∈Gl

∑
v∈V ′ c(v) ≤ ∑

G′∈Gl
2 · (|U ′| + |V ′|) = 2·(|U l|+|V l|).

Hence the precondition of ComputeBDSM is satisfied for input graph Gl. It
means that using a BFS-like computational approach we can merge compu-
tations of bounded-degree semi-matchings for individual graphs occurring in
subproblems at a given level to one computation of a maximum bounded-degree
semi-matching at the given level.

Theorem 2. Let G = (U, V, E) be a bipartite graph. A lexicographically minimal
semi-matching of G can be computed in time O((n + m + TBDSM (n, m)) · log n)
where n = |U | + |V |, m = |E|, and TBDSM (n, m) is the time complexity of
an algorithm for the BDSM problem. Moreover, the algorithm for the BDSM
problem is applied O(log n) times during the computation.

Proof. Let us analyze the modified algorithm that realizes a BFS-like computa-
tion of ComputeLSM . The correctness of the algorithm follows from Lemma 4.
Note that, in order to allow sharing some computational parts, we changed only
the order in which independent subproblems are computed. Lemma 3 implies
that there are O(log n) stages in the computation. If we do not take into account
time spent by the run of ComputeBDSM , due to Theorem 1 the time complex-
ity of each subproblem is linear in size of the input subgraph. From Lemma 5,
we have that

⋃
G′∈Gl

G′ is a subgraph of G and graphs in Gl are disjoint. Hence∑
G′∈Gl

O(|V (G′)| + |E(G′)| = O(|V (G)| + |E(G)|) = O(n + m). In each stage,
the algorithm ComputeBDSM is executed with a subgraph of G as an input.
Therefore, the computation of ComputeBDSM is in time TBDSM (n, m). It fol-
lows that the total time complexity of a stage is O(n + m) + TBDSM (n, m).
Taking into account the number of stages, the claim follows. ��

Note that the previous theorem holds even in the case of the standard DFS-like
computation under assumption that the time complexity TBDSM (n, m) satisfies

260 F. Galč́ık, J. Katrenič, and G. Semanǐsin

that
∑

i TBDSM (ni, mi) = O(TBDSM (n, m)) for all ni, mi such that
∑

i ni = n
and

∑
i mi = m.

In what follows, we show how to construct efficient algorithms for finding op-
timal semi-matching by an application of known algorithms for other problems.

Theorem 3. Let G = (U, V, E) be a bipartite graph with n vertices and m edges.
A lexicographically minimal semi-matching of G can be computed in time O(

√
n ·

m · log n).

Proof. In [6], Katrenič and Seminǐsin investigated a problem of finding a maxi-
mum (f, g)-semi-matching of a given graph G. The special case of this problem
is a computation of a maximum (1, c)-semi-matching. A semi-matching M is a
(1, c)-semi-matching of a bipartite graph G = (U, V, E) if and only if degM (u) ≤ 1
for all u ∈ U and degM (v) ≤ c(v) for all v ∈ V . It is easy to see that any
instance (G, c) of the BDSM problem can be solved by finding a maximum
(1, c)-semi-matching of the graph G. The authors of [6] showed that a maximum
(1, c)-semi-matching of a graph G can be constructed in time O(

√
n · m), hence

TBDSM (n, m) = O(
√

n ·m). Finally, Theorem 2 implies that a lexicographically
minimal semi-matching can be computed in time O(

√
n · m · log n). ��

Proposition 1. For any bipartite graph G = (U, V, E) with n vertices and a
capacity mapping c, the BDSM problem can be solved with high probability in
time O(nω), where ω is the exponent of the best known matrix multiplication
algorithm.

Proof. We use a simple reduction to the problem of maximum matching in bi-
partite graphs. First, we create a new graph G′ from the graph G = (U, V, E)
by splitting each vertex v ∈ V exactly c(v) times. The new graph has |U | +∑

v∈V c(v) vertices, which is at most 3 · n due to precondition about the map-
ping c. Next, we compute the maximum matching M ′ in G′. In [7], the authors
shown that a maximum matching can be computed in time O(nω) with high
probability. Finally, from M ′ we construct a semi-matching M for G by merging
the corresponding vertices. ��
Theorem 4. Let G = (U, V, E) be a bipartite graph with n vertices and m edges.
A lexicographically minimal semi-matching of G can be computed with high prob-
ability in time O(nω · log n · log log n), where ω is the exponent of the best known
matrix multiplication algorithm.

Proof. From Proposition 1, TBDSM (n, m) = O(nω). Applying Theorem 2, there
are O(log n) instances of the BDSM problem solved during the computation.
Executing the randomized algorithm for the BDSM problem log log n times on
each problem instance, the claim follows from Theorem 2. ��

4 Conclusion

We presented a schema reducing the problem of computing an optimal semi-
matching to a variant of the maximum bounded-degree semi-matching problem.

On Computing an Optimal Semi-matching 261

This problem can be efficiently solved utilizing known algorithms for maximum
(f, g)-semi-matching or maximum matching using Gaussian elimination. The
schema is based on a divide-and-conquer strategy. The problem is recursively
divided into smaller independent subproblems that can be solved separately. This
property can lead to a construction of simple and efficient parallel algorithms for
computing an optimal semi-matching. Another its useful property follows from
reduction to a variant of the maximum bounded-degree semi-matching problem.
It shows that the time complexity of finding an optimal semi-matching is at most
O(log n) times worse than the time complexity of solving the BDSM problem,
which matches best known complexity upper bounds for maximum matchings
in bipartite graphs.

References

1. Bokal, D., Brešar, B., Jerebic, J.: A generalization of Hungarian method and Hall’s
theorem with applications in wireless sensor networks. IFMF, University of Ljubl-
jana, Slovenia, Preprint Series 47(1102), 15 (2009)

2. Bruno, J., Coffman Jr., E.G., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Commun. ACM 17, 382–387 (1974)

3. Fakcharoenphol, J., Laekhanukit, B., Nanongkai, D.: Faster Algorithms for Semi-
Matching Problems (Extended Abstract). In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198,
pp. 176–187. Springer, Heidelberg (2010)

4. Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite
graphs and load balancing. Journal of Algorithms 59(1), 53–78 (2006)

5. Horn, W.A.: Minimizing average flow time with parallel machines. Operations Re-
search 21(3), 846–847 (1973)

6. Katrenič, J., Semanǐsin, G.: A generalization of Hopcroft-Karp algorithm for semi-
matchings and covers in bipartite graphs, Technical report (2010)

7. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science,
pp. 248–255. IEEE Computer Society Press, Washington, DC, USA (2004)

Planar k-Path in Subexponential Time

and Polynomial Space

Daniel Lokshtanov1, Matthias Mnich2, and Saket Saurabh3

1 University of California, San Diego, USA
daniello@ii.uib.no

2 International Computer Science Institute, Berkeley, USA
mmnich@icsi.berkeley.edu

3 The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Abstract. In the k-Path problem we are given an n-vertex graph G to-
gether with an integer k and asked whether G contains a path of length k
as a subgraph. We give the first subexponential time, polynomial space
parameterized algorithm for k-Path on planar graphs, and more gen-
erally, on H-minor-free graphs. The running time of our algorithm is

O(2O(
√

k log2 k)nO(1)).

1 Introduction

In the k-Path problem we are given a n-vertex graph G and integer k and asked
whether G contains a path of length k as a subgraph. The problem is a gen-
eralization of the classical Hamiltonian Path problem, which is known to be
NP-complete [16] even when restricted to planar graphs [15]. On the other hand
k-Path is known to admit a subexponential time parameterized algorithm when
the input is restricted to planar, or more generally H-minor free graphs [4]. For
the case of k-Path a subexponential time parameterized algorithm means an
algorithm with running time 2o(k)nO(1). More generally, in parameterized com-
plexity problem instances come equipped with a parameter k and a problem is
said to be fixed parameter tractable (FPT) if there is an algorithm for the problem
that runs in time f(k)nO(1). The algorithm is said to be a subexponential time
parameterized algorithm if f(k) ≤ 2o(k). For an introduction to parameterized
algorithms and complexity see the textbooks [10,11,22].

In this paper we pose the following question. Does k-Path on planar graphs
admit a subexponential time parameterized algorithm which only uses space
polynomial in n? We give a positive answer to this question by presenting a poly-
nomial space, 2O(

√
k log2 k)nO(1) time algorithm for k-Path restricted to planar

graphs. Our algorithm easily generalizes to any family of graphs which exclude
a fixed graph H as a minor.

The fastest parameterized algorithm for k-Path on planar graphs runs in
2O(

√
k)nO(1) time and uses 2O(

√
k) log n + nO(1) space [9]. The algorithm we

present uses polynomial space, but is slower by a factor of O(log2 k) in the

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 262–270, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Planar k-Path in Subexponential Time and Polynomial Space 263

exponent of 2. Is the trade-off worth it? In general, does it make sense to settle
for slightly slower algorithms if used space is reduced drastically? We believe that
such a trade-off is reasonable because algorithms that use exponential time and
space tend to run out of space long before they run out of time. In the survey
paper on exponential time algorithms, Woeginger [24] states that “algorithms
with exponential space complexities are absolutely useless for real life applica-
tions”. This line of reasoning has opened up an interesting research direction;
for which problems can we obtain space-efficient algorithms that are (almost)
as time-efficient as the fastest ones? Some progress has been made – Fomin,
Grandoni and Kratsch [12] gave a 6knO(log k) time, polynomial space algorithm
for the Steiner Tree problem and showed how to use it to obtain a O(1.60n)
time polynomial space algorithm. In a breakthrough paper, Nederlof [21] gave
a 2knO(1) time polynomial space algorithm for Steiner Tree. Subsequently,
Lokshtanov and Nederlof [20] devised general sufficient conditions for turning
exponential space dynamic programming algorithms into polynomial space al-
gorithms based on algebraic transforms.

It is natural to ask which problems admit polynomial space FPT algorithms.
While this might look like a whole new research program, the question has a
surprising answer; any problem for which a polynomial space FPT algorithm is
remotely feasible has one. In particular, a necessary condition for a problem to
have a polynomial space FPT algorithm is to have an FPT algorithm. Another
necessary condition is that the problem is solvable in polynomial space and time
ng(k) for some function g (that is, a polynomial space XP algorithm for the
problem). A well-known trick from parameterized complexity shows that these
two conditions are not only necessary, but also sufficient.

Theorem 1. If a parameterized problem Π has an algorithm A which uses
f(k)nc time and space, and an algorithm B which uses ng(k) time and poly-
nomial space, then Π can be solved in nc+1 + f(k)g(k) time and polynomial
space.

Proof. If n ≥ f(k) then run algorithm A, this takes polynomial time and space.
If n ≤ f(k) then run algorithm B, this takes polynomial space and f(k)g(k)

time. ��

Because of Theorem 1 the right question to ask is not which problems admit poly-
nomial space FPT algorithms, but rather which problems admit fast polynomial
space FPT algorithms. Obvious candidates for scrutiny are problems for which
the fastest parameterized algorithms require exponential space. Graph problems
restricted to planar and H-minor free graphs have this property – the Bidi-
mensionality theory of Demaine et al. [4] gives 2O(

√
k)nO(1) or 2O(

√
k log k)nO(1)

time algorithms for a multitude of graph problems on H-minor free graphs.
However, these algorithms crucially depend on exponential space dynamic pro-
gramming algorithms on graphs of bounded treewidth. In particular, the crux of
all bidimiensionality based algorithms is to first bound the treewidth of the input
graph by t = O(

√
k), and then solve the problems in 2O(t)n (or tO(t)n) time and

264 D. Lokshtanov, M. Mnich, and S. Saurabh

2O(t) log n (or tO(t) log n) space. We refer to following surveys for further details
on the the Bidimensionality theory and its several applications [5,8].

Interestingly, using another simple trick we can make most of the algorithms
for bidimensional problems on H-minor free graphs run in polynomial space, at
the cost of a O(log k) factor in the exponent of the running time. The trick has
two components, the first is that (almost) all of the 2O(t)n time and 2O(t log t)n
time dynamic programming algorithms on graphs of treewidth t can be turned
into polynomial space divide and conquer algorithms with running time nO(t) and
nO(t log t). The second component is that most problems for which the Bidimen-
sionality theory of Demaine et al. [4] gives fast algorithms admit linear kernels on
planar and H-minor-free graphs [3,14]. A linear kernel for a parameterized graph
problem is a polynomial time pre-processing algorithm that takes instances (G, k)
and transforms them into equivalent instances (G′, k′) of the same problem such
that k′ = O(k) and V (G′) = O(k). Now the subexponential time algorithms
of Demaine et al. [4] can be made to run in polynomial space as follows. Run
the pre-processing algorithm first, to ensure that the number of vertices in the
input graph is at most O(k). Bound the treewidth by t = O(

√
k) as before, but

replace the 2O(t)n (or tO(t)n) time algorithms by nO(t) (or nO(t log t)) time poly-
nomial space algorithms. Since n = O(k) this second step uses only 2O(

√
k log k)

(or 2O(
√

k log2 k)) time respectively. We remark that for many of these problems
one can even remove the log k overhead in the exponent by using a Lipton-Tarjan
separator approach [18,19] instead of the polynomial space algorithms for graphs
of bounded treewidth after obtaining the linear kernel for the problem, as done
in [1].

In the above argument it was crucial that the problem considered admits a
linear kernel. What about the problems that do not? Notably, the k-Path prob-
lem does have a subexponential time parameterized algorithm on H-minor-free
graphs. At the same time k-Path does not admit a linear (or polynomial size)
kernel unless the polynomial hierarchy collapses to the third level [2], even when
the input is restricted to planar graphs. Thus, with respect to parameterized
polynomial space, subexponential time algorithms for planar graph problems,
k-Path stands out as a blank spot in an almost chartered map. Our polynomial
space, 2O(

√
k log2 k)nO(1) time algorithm for k-Path on H-minor free graphs fills

this gap. Our approach for obtaining polynomial space subexponential time al-
gorithm for k-Path seems applicable to other problems also that do not admit
polynomial kernels or not known to admit a polynomial kernel.

2 Definitions and Notations

In this section we give various definitions which we make use of in the paper.
Let G be a graph then we use V (G) and E(G) to denote its vertex set and the
edge set respectively. A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). The subgraph G′ is called an induced subgraph of G if E(G′) = {uv ∈
E(G) | u, v ∈ V (G′)}, in this case, G′ is also called the subgraph induced by V ′

and denoted with G[V ′]. By N(u) we denote the (open) neighborhood of u,

Planar k-Path in Subexponential Time and Polynomial Space 265

that is, the set of all vertices adjacent to u. The closed neighbourhood of u is
N [u] = N(u)∪{u}. Similarly, for a subset D ⊆ V , we define N [D] =

⋃
v∈D N [v]

and N(D) = N [D] \ D.

Parameterized algorithms and Treewidth. A parameterized problem Π is
a subset of Γ ∗ × N for some finite alphabet Γ . An instance of a parameterized
problem consists of (x, k), where k is called the parameter. A central notion in
parameterized complexity is fixed parameter tractability (FPT) which means, for
a given instance (x, k), solvability in time f(k) · p(|x|), where f is an arbitrary
function of k and p is a polynomial in the input size.

A tree decomposition of a graph G is a pair (T,B) where T is a tree and
B = {Xi | i ∈ V (T)} is a collection of subsets of V (G) such that

1.
⋃

i∈V (T) Xi = V (G),
2. for each edge xy ∈ E, {x, y} ⊆ Xi for some i ∈ V (T);
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition is maxi∈VT |Xi|−1. The treewidth of a graph
G is the minimum width over all tree decompositions of G. A tree decomposition
(T,B) can be converted in linear time [17] into a nice tree decomposition of the
same width: here, the tree T is rooted and binary, and its nodes are of four types:

– Leaf nodes h are leaves of T and have |Xh| = 1.
– Introduce nodes h have one child i with Xh = Xi∪{v} for some vertex v ∈ V .
– Forget nodes h have one child i with Xh = Xi \ {v} for some vertex v ∈ V .
– Join nodes h have two children i, j with Xh = Xi = Xj .

We denote by tw(G) the treewidth of the graph G.

3 Polynomial Space Algorithm for the k-Path Problem

In this section we prove our main result, which is a polynomial space subex-
ponential time algorithm for the k-Path problem. For a set W ⊆ V (G) a set
S ⊆ V (G) is a balanced separator for W if V (G) can be partitioned into L,
S and R such that there is no edge from L to R and |W ∩ L| ≤ 2|W\S|

3 and
|W ∩R| ≤ 2|W\S|

3 . In other words, W is evenly distributed between L and R. It
is well-known that in any tree T , for every set W ⊆ V (G) there is a balanced
separator S for W with |S| = 1. This result has been generalized to graphs
of bounded treewidth [23][11, Lemma 11.16] - in particular in a graph G of
treewidth at most t, for any set W there is a balanced separator S of size at
most t + 1. Lemma 1 is a subtle strengthening of this fact and states that given
any tree-decomposition of G of width at most t the separator S can be chosen as
one of the bags of the decomposition. In fact, the proofs given in [23][11, Lemma
11.16] already imply Lemma 1, we include a proof here for completeness.

For a graph G and a nice tree-decomposition (T,B) of G and node v ∈ V (T)
let Xv ∈ B be the corresponding bag. Let Tv be the subtree of T rooted at v
and let A(v) = (

⋃
u∈V (Tv) Xu) \ Xv.

266 D. Lokshtanov, M. Mnich, and S. Saurabh

Lemma 1. Let G be a graph, let (T,B) be a nice tree-decomposition of G of
width t and let W ⊆ V be a vertex set of size at least 3. Then there exists a
vertex v such that Xv is a balanced separator for W and in the corresponding
partition V (G) = L ∪ Xv ∪ R, L = A(v).

Proof. Recall that T is a rooted tree with root r, and that each node of T

has at most two children. Observe that |A(r) ∩ W | = |W \ Xr| ≥ |W\Xr |
3 .

Choose a lowermost node v such that |A(v) ∩ W | ≥ |W\Xv |
3 . We prove that

|A(v) ∩ W | ≤ 2|W\Xv |
3 . If v is an introduce node or a forget node with child v′

then |A(v′) ∩ W | ≤ |W\Xv′ |
3 and hence |A(v) ∩ W | ≤ 2|W\Xv |

3 . Here we used
that |W | ≥ 3 and that |Xv| = |Xv′ | + 1 if v is an introduce node, and that
|A(v)| = |A(v′)| + 1 if v is a forget node. If v is a join node with children u and
w then Xv = Xu = Xw and A(v) = A(u) ∪ A(w). Finally |A(u) ∩ W | ≤ |W\Xu|

3

and |A(w) ∩W | ≤ |W\Xw|
3 and hence |A(v) ∩W | ≤ 2|W\Xv |

3 . This concludes the
proof. ��
A key component of our algorithm is a new divide and conquer algorithm for
the k-Path problem on graphs of bounded treewidth.

Lemma 2. There is an (ntt)O(log k) time and polynomial space algorithm for
k-Path if a nice tree-decomposition (T,B) of G of width t is given as input.

Proof. We describe a divide and conquer algorithm for the problem. In order to
handle the instances that are generated in the recursive steps of the algorithm
we will solve a slightly more general problem. In the generalized k-Path problem
(k-GP) we are given a graph G, integer k, vertex set Vp and an edge set Ep such
that every edge in Ep has both endpoints in Vp. The task is to determine whether
there is a path P in G such that Vp ⊆ V (P), Ep ⊆ E(P) and |V (P)\Vp| = k. One
can think of the sets Vp and Ep as vertices and edges which are pre-determined
to be in the path P . We are now ready to give an algorithm for k-GP in graphs
of bounded tree-width with running time O((nk2(t + 1)!3t+2)log k+O(1) · (Vp +
t log k)!). Suppose that there is a path P such that Vp ⊆ V (P), Ep ⊆ E(P) and
|V (P) \ Vp| = k. Let W = V (P) \ Vp, with |W | = k. If k = 0 the algorithm tries
all the |Vp|! possible orderings of Vp and checks whether any of the orderings is a
path that contains all edges of Ep. If k < 3 the algorithm tries all possible ways
to extend Vp by k vertices, and then proceeds to the case when k = 0. We now
handle the case that k ≥ 3.

By Lemma 1 there exists a node v ∈ V (T) such that Xv ∈ B is a balanced
separator for W . The algorithm guesses the correct vertex v by looping over all
the n possible bags in the decomposition. Furthermore, by Lemma 1 there is a
partition of V (G) into L∪Xv ∪R such that L = A(v) and R = V (G)\ (Xv ∪R),
there is no edge from L to R, |W ∩ L| ≤ 2|W\Xv |

3 and |W ∩ R| ≤ 2|W\Xv |
3 . The

algorithm computes L and R from v. Now the algorithm guesses V (P)∩Xv = X
by trying all the 2t+1 possible subsets of Xv.

The path P visits the vertices of X in some order, say x1, x2, . . . xq. The algo-
rithm guesses this order by trying all the (at most) (t+1)! possible permutations

Planar k-Path in Subexponential Time and Polynomial Space 267

of X . Now, for each i < q the subpath of P from xi to xi+1 either uses the edge
xixi+1, or has all its inner vertices in L, or has all its inner vertices in R. By try-
ing each of the three possibilities for each i < q the algorithm correctly guesses
which of the possibilities it is. The algorithm also guesses whether the subpath
of P attached to x1 lies in its entirety in L ∩ X or in R ∩ X . The same guess
is performed for the subpath of P attached to xq. Finally the algorithm guesses
kL = |(V (P) \ Vp) ∩ L| and kR = |(V (P) \ Vp) ∩ R|.

Using all the guesses the algorithm constructs two instances GL, V L
p , EL

p , kL

and GR, V R
p , ER

p , L, kR as follows. We set V L
p = (Vp ∩ L) ∪ X and EL

p = Ep ∩
E(G[L∪X]). To construct GL we start with G[L∪X] and remove all the edges
with both endpoints in X . For every pair xi, xi+1 such that we have guessed
that the subpath of P from xi to xi+1 uses the edge xixi+1 or has all its internal
vertices in R, we add the edge xixi+1 to GL and to EL

p . Finally, if we have
guessed that the subpath of P from the start point until x1 lies entirely in X ∪R
we add a vertex pstart to GL and to V L

p , make pstart adjacent to x1 and add
p1pstart to EL

p . Similarly if we have guessed that the subpath of P from xq to
the end point of P lies entirely in X ∪ R we add a vertex pend to GL and to
V L

p , and add the edge xqpend to GL and to EL
p . The graph GR and set V R

p is
constructed symmetrically.

If the two instances GL, V L
p , EL

p , kL and GR, V R
p , ER

p , kR are both “yes” in-
stances one can glue their solution paths together to form a solution path for
G, Vp, Ep, k. In particular every edge xixi+1 in GL will correspond either to an
edge xixi+1 in the solution paths of both GL, V L

p , EL
p , kL and GR, V R

p , ER
p , kR,

or it can be replaced by a subpath of the solution path of GR, V R
p , ER

p , kR. Edges
xixi+1 in GR are handled symmetrically. In the reverse direction for the correct
set of guesses the path P breaks up into solution paths to GL, V L

p , EL
p , kL and

GR, V R
p , ER

p , kR respectively. On the side that contains pstart we add the edge
pstartx1 to the solution path, and on the side that contains pend we add the edge
xqpend.

Now we bound the running time of the algorithm. Observe that since we only
add edges between vertices in X ⊆ Xv and pendant vertices pstart and pend of
degree 1 attached to X , the treewidth of GL and GR is at most t. Let r = |Vp|,
and let T (k, r, n, t) be a function that upper bounds the running time of the
algorithm. The function T is bounded by the following recurrence.

T (k, r, n, t) ≤ n · (t + 1)! · 3t · 2t+3 · k2 · 2T (k/2, r + t, n, t) when k ≥ 3

Here the factors in the recurrence reflect the number of possibilities for each
guess, except for the factor 2 in 2T (k/2, n, t) which reflects that GL and GR

are handled independently. Observe that n and t never increase throughout the
recurrence. When k < 3 we have that T (k, r, n, t) ≤ O(n3r!). Hence T (k, r, n, t)
can be bounded from above by

T (k, r, n, t) ≤ (nk2(t + 1)!6t+3)log k · n3(t log k)! ≤ (ntt)O(log k).

The space requirement of the algorithm is clearly polynomial. This concludes
the proof. ��

268 D. Lokshtanov, M. Mnich, and S. Saurabh

We are now in position to give the main result of this section.

Theorem 2. For every fixed graph H, there is an algorithm for k-Path on H-
minor-free graphs running in time 2O(

√
k log2 k)nO(1) and using polynomial space.

Proof. We use the fact that for any H there exists a constant h such that in
any H-minor-free graph of treewidth at least hk there is a k-path of length at
least k2 [4]. Set t = h

√
k, then if tw(G) ≥ t then G contains a k-path. We

use the approximation algorithm of Diestel et al [6] to either compute a tree-
decomposition of G of width at most 3t/2, or to conclude that the treewidth
of G is at least t, which implies that G has a k-path. Diestel et al’s algorithm
uses polynomial space and 2O(t)nO(1) time. If we obtain a tree-decomposition
we proceed as follows. If n ≤ 2

√
k apply the algorithm from Lemma 2 to solve

the problem in time 2O(
√

k log2 k)nO(1) and using polynomial space. If, on the
other hand n ≥ 2

√
k the standard dynamic programming algorithm on graphs

of bounded treewidth that uses at most 2O(
√

k)nO(1) time and space [7], runs in
polynomial time and space. This concludes the proof. ��
We remark that the algorithm presented in Theorem 2 for k-Path can be made
to run in time 2O(

√
k log k)nO(1) and space polynomial in n on planar graphs using

sphere cut decompositions introduced by Dorn et al. [9].

4 Conclusion and Discussion

We gave a subexponential time, polynomial space parameterized algorithm for
the k-Path problem on H-minor-free graphs. A key component of our algorithm
is a new (n ·tt)O(log k) time and polynomial space algorithm for k-Path in graphs
of treewidth at most t. In general, it is possible to design similar (n ·2t)O(log k) or
(n·tt)O(log k) time and polynomial space algorithms for many problems where one
is looking for a specific vertex set of size k in a graph of treewidth t. A concrete
example where this is useful is the k-Partial Vertex Cover problem. Here
we are given a graph G, positive integers k and t and we look for a subset
S ⊆ V (G) such that |S| ≤ k and the number of edges incident to S is at least t.
This problem is not known to admit a polynomial kernel, even on planar graphs.
However using the approach described in this paper for k-Path and combining
it with an algorithm of Fomin et al. [13] that in polynomial time either finds
a solution for an instance (G, k, t) or obtains an equivalent instance (G′, k, t)
such that tw(G′) ≤ O(

√
k), one can give a subexponential time, polynomial

space parameterized algorithm for k-Partial Vertex Cover on apex-minor-
free graphs.

We conclude with two open problems. First, is there a polynomial space pa-
rameterized algorithm for the k-Path problem on planar graphs with running
time 2O(

√
k)nO(1)? Second, by combining the well known 2tnO(1) time and space

algorithm for Independent Set in graphs of treewidth t, and the folklore nO(t)

time, polynomial space algorithm, Theorem 1 yields a 2O(t2) + n2 time and

Planar k-Path in Subexponential Time and Polynomial Space 269

polynomial space algorithm for Independent Set. Is there a polynomial space
algorithm for Independent Set on graphs of treewidth t with running time
2t2−ε

nO(1) for some ε > 0?.

References

1. Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view.
J. Comput. System Sci. 67(4), 808–832 (2003); Special issue on parameterized
computation and complexity

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)

3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) Kernelization. In: Proc. 50th Annual IEEE Symposium on
Foundations of Computer Science, pp. 629–638. IEEE Computer Society (2009)

4. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs. J.
ACM 52(6), 866–893 (electronic), (2005)

5. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. Comput. J. 51(3), 292–302 (2008)

6. Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets
and the excluded grid theorem. J. Comb. Theory, Ser. B 75(1), 61–73 (1999)

7. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic program-
ming in H-minor-free graphs. In: Proc. 19th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 631–640. ACM

8. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms.
Computer Science Review 2(1), 29–39 (2008)

9. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient Exact Algorithms
on Planar Graphs: Exploiting Sphere Cut Branch Decompositions. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg
(2005)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg

12. Fomin, F.V., Grandoni, F., Kratsch, D.: Faster Steiner Tree Computation in
Polynomial-Space. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS,
vol. 5193, pp. 430–441. Springer, Heidelberg (2008)

13. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. In: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science. Leibniz International Proc.
Informatics, vol. 4, pp. 193–201. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2009)

14. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 503–510. Society for Industrial and Applied Mathematics (2010)

15. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar hamiltonian circuit problem
is np-complete. SIAM J. Comput. 5(4), 704–714 (1976)

16. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, 85–103 (1972)

270 D. Lokshtanov, M. Mnich, and S. Saurabh

17. Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

18. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

19. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980)

20. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: STOC,
pp. 321–330 (2010)

21. Nederlof, J.: Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving
on Steiner Tree and Related Problems. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555,
pp. 713–725. Springer, Heidelberg (2009)

22. Niedermeier, R.: Invitation to Fixed-parameter Algorithms, Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press (2006)

23. Reed, B.A.: Tree width and tangles: a new connectivity measure and some appli-
cations. In: Surveys in Combinatorics, 1997, London. London Math. Soc. Lecture
Note Ser, vol. 241, pp. 87–162. Cambridge Univ. Press (1997)

24. Woeginger, G.J.: Space and Time Complexity of Exact Algorithms: Some Open
Problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

Approximability of the Path-Distance-Width
for AT-free Graphs

Yota Otachi1, Toshiki Saitoh2, Katsuhisa Yamanaka3, Shuji Kijima4,
Yoshio Okamoto5, Hirotaka Ono6, Yushi Uno7, and Koichi Yamazaki8

1 Graduate School of Information Sciences, Tohoku University,
Sendai 980-8579, Japan, JSPS Research Fellow

otachi@dais.is.tohoku.ac.jp
2 ERATO MINATO Discrete Structure Manipulation System Project,

Japan Science and Technology Agency, North 14, West 9, Sapporo, Hokkaido, 060-0814, Japan
t-saitoh@erato.ist.hokudai.ac.jp

3 Department of Electrical Engineering and Computer Science,
Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551, Japan

yamanaka@cis.iwate-u.ac.jp
4 Graduate School of Information Science and Electrical Engineering,

Kyushu University, Fukuoka, 819-0395, Japan
kijima@inf.kyushu-u.ac.jp

5 Center for Graduate Education Initiative, JAIST, Asahidai 1-1,
Nomi, Ishikawa 923-1292, Japan
okamotoy@jaist.ac.jp

6 Department of Economic Engineering, Kyushu University,
6-19-1 Hakozaki Higashi-ku, Fukuoka 812-8581, Japan

hirotaka@en.kyushu-u.ac.jp
7 Department of Mathematics and Information Sciences, Graduate School of Science,

Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
uno@mi.s.osakafu-u.ac.jp

8 Department of Computer Science, Gunma University,
1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515 Japan

koichi@cs.gunma-u.ac.jp

Abstract. The path-distance-width of a graph measures how close the graph is to
a path. We consider the problem of determining the path-distance-width for graphs
with chain-like structures such as k-cocomparability graphs, AT-free graphs, and
interval graphs. We first show that the problem is NP-hard even for a very restricted
subclass of AT-free graphs. Next we present simple approximation algorithms with
constant approximation ratios for graphs with chain-like structures. For instance,
our algorithm for AT-free graphs has approximation factor 3 and runs in linear
time. We also show that the problem is solvable in polynomial time for the class
of cochain graphs, which is a subclass of the class of proper interval graphs.

1 Introduction

The path-distance-width is a graph parameter to measure how close a graph is to a
path [19,18]. Roughly speaking, graphs of bounded path-distance-width, bounded band-
width, and bounded pathwidth have chain-like structures. It is known that for any

P. Kolman and J. Kratochvı́l (Eds.): WG 2011, LNCS 6986, pp. 271–282, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

272 Y. Otachi et al.

connected graph, its pathwidth is bounded by its bandwidth, and its bandwidth is less
than 2 times its path-distance-width [11,19]. By these relations, many useful properties
for bounded pathwidth graphs and bounded bandwidth graphs also hold for bounded
path-distance-width graphs. On the other hand, even if a problem is hard for bounded
pathwidth (or bandwidth) graphs, it may be tractable for bounded path-distance-width
graphs. Other than these, many chain-like graphs are studied, such as interval graphs,
AT-free graphs, and k-cocomparability graphs for small k. It is known that there are
relationships among those graph parameters and graph classes [11,19,2,3].

This study is motivated by the research on bandwidth of AT-free graphs [13,8]. To
see the motivation, let us briefly review the history of the research on bandwidth for
interval graphs and AT-free graphs. One may expect that if we restrict our input graphs
to interval graphs or AT-free graphs, then we would be able to easily find its chain-
like structure (such as an interval representation or a dominating pair), and then from
the chain-like structure we might be able to compute the bandwidth. The polynomial-
time computability of the bandwidth for interval graphs was an open problem [10],
but later a polynomial-time algorithm was discovered (see [12,15,17]). Since interval
graphs are AT-free graphs, it would be natural to ask whether or not the bandwidth
decision problem for AT-free graphs can be solved in polynomial-time. Unfortunately,
the bandwidth decision problem for AT-free graphs is shown to be NP-complete [16,13].
However, it is known that for AT-free graphs, the bandwidth can be approximated within
a factor 2 in O(mn) time [13], where m and n denote the number of edges and the number
of vertices, respectively.

From a computational view, bandwidth and path-distance-width have some similar-
ities. For example, both problems do not admit any PTAS even for trees [1,18]. Hence
it would be reasonable to ask the computational complexity of computing the path-
distance-width for AT-free graphs. Unfortunately, as we will prove in this paper, the
path-distance-width decision problem for AT-free graphs is also NP-complete. More
precisely, we will show that the problem is NP-complete for cobipartite graphs, which
is a subclass of AT-free graphs.

Although some techniques developed in the research on bandwidth can be carried
over into the research on path-distance-width, path-distance-width has a serious draw-
back which bandwidth does not have: path-distance-width is not closed under edge
deletion. In many cases, this drawback makes the design and analysis of algorithms
very difficult. In this study, however, we find that the restriction to AT-free graphs
is enough to overcome the drawback for achieving a constant-factor approximation.
We first present an approximation algorithm with approximation ratio 2k + 1 for the
path-distance-width of k-cocomparability graphs. Although this algorithm is a constant-
factor approximation for AT-free graphs, we present another approximation algorithm
for AT-free graphs, which has a better running time and a better approximation ratio.
We also consider polynomial-time solvable cases. We show that the problem is solvable
in linear time for cochain graphs.

2 Preliminaries

In this paper, graphs are finite, simple, and connected. We denote by V(G) and E(G) the
vertex set and the edge set of graph G, respectively. The complement of graph G is the

Approximability of the Path-Distance-Width for AT-free Graphs 273

graph G such that V
(
G
)
= V(G) and two distinct vertices are adjacent in G if and only

if they are not adjacent in G.
Let G be a connected graph. The distance between two vertices u, v ∈ V(G) in G, de-

noted dG(u, v), is the length of a shortest u–v path in G. We define the distance between
a vertex subset S ⊆ V(G) and a vertex v ∈ V(G) in G as dG(S , v) = minu∈S dG(u, v).
For S ⊆ V(G), we define the diameter of S in G as diamG(S) = maxu,v∈S dG(u, v). The
diameter of G is diam(G) = diamG(V(G)). The (open) neighborhood of a vertex v in G,
denoted NG(v), is the set of vertices adjacent to v; that is NG(v) = {u | {u, v} ∈ E(G)}.
The closed neighborhood of v in G, denoted NG[v], is the set {v} ∪ NG(v). The (open)
neighborhood of a vertex set S ⊆ V(G) in G, denoted NG(S), is the set of vertices not
in S and adjacent to some vertex u ∈ S ; that is NG(S) =

⋃
v∈S NG(v) \ S .

A sequence (L1, . . . , Lt) of subsets of vertices is a distance structure of a graph G if⋃
1≤i≤t Li = V(G) and Li = {v ∈ V(G) | dG(L1, v) = i − 1} for 1 ≤ i ≤ t. Each Li is a

level and especially L1 is the initial set. The width of (L1, . . . , Lt), denoted pdwL1
(G), is

max1≤i≤t |Li|. The path-distance-width of G, denoted pdw(G), is minS⊆V(G) pdwS (G).
If the initial set of a distance structure of G is a set which consists of only one vertex,

then we say that it is a rooted distance structure of G. The rooted path-distance-width of
G, denoted rpdw(G), is the minimum width over all its rooted distance structures; that
is, rpdw(G) = minv∈V(G) pdw{v}(G). The rooted path-distance-width can be computed in
O(mn) time, by running breadth-first search from every vertex.

Lemma 2.1. The rooted path-distance-width of a connected graph G with n vertices
and m edges can be computed in O(mn) time.

An interval graph is a graph whose vertices can be mapped to distinct intervals on the
real line in such a way that two vertices are adjacent in the graph if and only if the
corresponding intervals overlap. We call the set of intervals representing a graph an
interval representation of the graph. An interval representation is proper if no interval
properly contains other intervals in it. A graph is a proper interval graph if it has a
proper interval representation.

An independent set of three vertices is an asteroidal triple if every two of them
are connected by a path avoiding the neighborhood of the third. A graph is asteroidal
triple-free (AT-free for short), if it contains no asteroidal triple.

A graph G is a comparability graph if there exists a linear ordering < on V(G)
such that for any three vertices u < v < w, {u, v} ∈ E(G) and {v,w} ∈ E(G) imply
{u,w} ∈ E(G). A graph G is a cocomparability graph if G is the complement of a com-
parability graph. It is known that G is a cocomparability graph if and only if it has a
cocomparability ordering; that is, there exists a linear order < on V(G) such that for any
three vertices u < v < w, {u,w} ∈ E(G) implies {u, v} ∈ E(G) or {v,w} ∈ E(G).

Chang, Ho, and Ko [3] generalized cocomparability graphs to k-cocomparability
graphs. Let G be a graph, and let k be a positive integer. A k-cocomparability ordering
(k-CCPO) of G is a linear order < on V(G) such that for any three vertices u < v < w,
dG(u,w) ≤ k implies dG(u, v) ≤ k or dG(v,w) ≤ k. A graph is a k-cocomparability graph
if it admits a k-CCPO. Note that a 1-cocomparability ordering is just a cocomparability
ordering.

A graph G = (U,V; E) is a cobipartite graph if (U,V) is a nonempty partition of
V(G) and both U and V induce cliques. Thus a cobipartite graph is the complement

274 Y. Otachi et al.

of a bipartite graph. This implies that cobipartite graphs are cocomparability graphs,
since bipartite graphs are comparability graphs. A cobipartite graph H = (X, Y; E) is a
cochain graph if the elements of X and Y can be ordered as x1, . . . , x|X | and y1, . . . , y|Y |,
respectively, so that NG[x1] ⊆ · · · ⊆ NG[x|X |] and NG[y1] ⊆ · · · ⊆ NG[y|Y |].

It is known that cochain graphs ⊂ proper interval graphs ⊂ interval graphs ⊂ cocom-
parability graphs ⊂ AT-free graphs ⊂ 2-cocomparability graphs, and k-cocomparability
graphs ⊂ (k + 1)-cocomparability graphs for any k ≥ 1 (see [2,3]). It is easy to see that
any graph G is a kG-cocomparability graph for some kG ≤ diam(G).

In this paper, we present some algorithms approximating the path-distance-width for
k-cocomparability graphs and their subclasses such as AT-free graphs and proper inter-
val graphs. Each algorithm has a constant approximation ratio (if k is a fixed constant),
and runs in O(mn) or O(m + n) time. See Fig. 1.

k-cocomparability (k ≥ 2): 2k + 1

AT-free: 3

Cocomparability: 3 AT-free ∩ claw-free: 3

Interval: 3

Proper interval: 2 Cobipartite: 2

Cochain

Superclass: approx. ratio

Subclass: approx. ratio

NP-hard

Unknown

P

Fig. 1. Summary of results

3 NP-Hardness for Cobipartite Graphs

Before we present approximation algorithms, we show that the problem for determining
the path-distance-width is NP-hard even for a very restricted graph class, the class of
cobipartite graphs. To this end, we first prove the NP-completeness of an intermediate
problem, by constructing a polynomial-time reduction from the following well-known
NP-complete problem.

Problem: Set Cover [7, SP5]
Instance: A set C = {c1, . . . , cn}, a family F = {F1, . . . , Fm} ⊆ 2C , and a positive

integer h ≤ n.
Question: Is there X ⊆ F such that

⋃
Fi∈X Fi = C and |X| = h?

In any instance of Set Cover, we can assume without loss of generality that for every
ci ∈ C, there is a subset F j ∈ F such that ci ∈ F j, since otherwise the instance has no
cover. We also assume n > 1 and h < m, since otherwise the problem is trivial.

Approximability of the Path-Distance-Width for AT-free Graphs 275

Our intermediate problem is as follows.

Problem: Partial Cover in Bigraphs (PCB)
Instance: A bipartite graph G = (U,V; E), and a positive integer k ≤ |V |.
Question: Is there Y ⊆ U such that |NG(Y)| = k?

Kobayashi [14] pointed out that PCB is NP-complete. Here, we provide a full proof.

Lemma 3.1. PCB is NP-complete even if |V | > k + 2 and G has no isolated vertex.

Proof. From an instance (C,F , h) of Set Cover, we first construct a bipartite graph
G = (U,V; E) as follows: U = {u1, . . . , um}, V = {v1, . . . , vn}, and E = {{ui, v j} | c j ∈ Fi}.
The vertex sets U and V correspond to the family F and the ground set C, respectively.
The edge set E represents the containment relation between the elements of C and the
subsets in F . Next, by adding n + 1 pendant vertices to each ui ∈ U, we construct a
bipartite graph H = (U,V ′; E′). Clearly, this construction can be done in polynomial-
time. Note that |V ′| = n + (n + 1)m > n + (n + 1)h + 2 since n > 1 and m > h. Also note
that H has no isolated vertex.

Let k = n + (n + 1)h. We shall prove that C has a cover X ⊆ F of size |X| = h if and
only if there is a set Y ⊆ U such that |NH(Y)| = k.

(=⇒) Assume that there is X ⊆ F such that
⋃

Fi∈X Fi = C and |X| = h. We set
Y = {ui | Fi ∈ X}. Since X is a cover of C, |NH(Y) ∩ V | = |V | = n. Since |NH(Y) \ V | =
(n + 1)h,

|NH(Y)| = |NH(Y) ∩ V | + |NH(Y) \ V | = n + (n + 1)h = k.

(⇐=) Assume that there exists Y ⊆ U such that |NH(Y)| = k. We first prove |Y | = h.
If |Y | ≥ h + 1, then |NH(Y)| ≥ |NH(Y) \ V | ≥ (n + 1)(h + 1) > k. If |Y | ≤ h − 1, then
|NH(Y)| ≤ |V | + |NH(Y)| \ V | ≤ n + (n + 1)(h − 1) < k. Thus |Y | = h. Now we have

|NH(Y) ∩ V | = |NH(Y)| − |NH(Y) \ V | = k − (n + 1)h = n.

Therefore, if we set X = {Fi | ui ∈ Y}, then |X| = h and X covers the ground set C.
From the above observation the problem is NP-hard. Since the problem clearly be-

longs to NP, the lemma holds. �
Now we prove the NP-hardness of the path-distance-width problem for cobipartite
graphs, by constructing a polynomial-time reduction from PCB. We actually prove that
deciding whether pdw(G) = |V(G)|/3 is NP-complete for cobipartite graphs with diam-
eter 2.

Theorem 3.2. Given a cobipartite graph H with diam(H) = 2, it is NP-complete to
decide whether pdw(H) = |V(H)|/3.

Proof. Clearly, the problem is in NP. Thus we prove the NP-hardness. From an instance
(G = (U,V; E), k) of PCB satisfying the conditions in Lemma 3.1, we construct a co-
bipartite graph H = (U′,V ′; E′) as follows (see Fig. 2). Let S and T be two sets of
sizes |S | = |U | + k and |T | = |U | + 2|V | − k − 2, where S , T , U, and V are pairwise
non-intersecting. We set the vertex sets as U′ = U∪T ∪{a} and V ′ = V∪S ∪{b}, where
a and b are new vertices. In H, both U′ and V ′ induce cliques. Every edge in G is also

276 Y. Otachi et al.

T

V

U . . .

. . .

U′

V′ S

a

b

Fig. 2. Cobipartite graph H = (U′,V ′; E′)

in H. Additionally, a is adjacent to all vertices in S , and b is adjacent to all vertices in
T . This construction can be done in polynomial time.

Since G has no isolated vertex, diam(H) = 2. It is easy to see that |U′| = 2|U |+2|V |−
k − 1 and |V ′| = |V | + |U | + k + 1. Hence |V(H)| = |U′| + |V ′| = 3(|U | + |V |). We shall
show that (G, k) is a yes instance of PCB if and only if pdw(H) = |U | + |V |. Note that
pdw(H) ≥ |V(H)|/(diam(H) + 1) = |U | + |V |.

(=⇒) Assume that there exists Y ⊆ U such that |NG(Y)| = k. Let X = Y ∪ T ′, where
T ′ is any subset of T such that |T ′| = |U | + |V | − |Y |. Let (L1 = X, L2, L3) be the level
structure with the initial set X. Clearly, |L1| = |X| = |U | + |V |. The size of the second
level is

|L2| = |U ′ \ X| + |NH(Y) ∩ V ′| + |NH(T ′) ∩ V ′| = |U | + |V |. (1)

This also implies |L3| = |V(H)| − |L1| − |L2| = |U |+ |V |. Therefore, pdwX(H) = |U |+ |V |.
(⇐=) Assume that pdwX(H) = |U | + |V | for some X ⊆ V(H). If X intersects both

U′ and V ′, then the distance structure has at most two levels, and thus pdwX(H) ≥
|V(H)|/2 > |U | + |V |. Hence X is included in either U′ or V ′. Suppose X ⊆ V ′. Since
NH(T) ∩ V ′ = {b}, all vertices in T belong to the same level. Since |V | > k + 2, this
implies pdwX(H) ≥ |T | = |U | + 2|V | − k − 2 > |U | + |V |, which is a contradiction. Thus
we can conclude that X ⊆ U′.

Let (L1 = X, L2, L3) be the level structure with the initial set X. Since |V(H)| =
3(|U | + |V |) and pdwX(H) = |U | + |V |, each level Li has size |Li| = |U | + |V |. If a ∈ X,
then S ⊆ L2. This implies |L3| ≤ |V ′ \ S | = |V | + 1 < |U | + |V |, a contradiction. Hence
X ⊆ U ∪ T . Let Y = X ∩ U and T ′ = X ∩ T . Clearly, |NH(T ′) ∩ V ′| = |{b}| = 1. Since
|X| = |U | + |V |, we have |U′ \ X| = |U | + |V | − k − 1. Since Eq. (1) also holds here, we
have |NH(Y) ∩ V ′| = k. This implies NG(Y) = k, and completes the proof. �
Here, we note that there is a trivial factor-2 approximation algorithm for cobipartite
graphs. It is easy to see that a connected cobipartite graph G has diameter at most 3,
and thus pdw(G) ≥ �|V(G)|/4�. For any S ⊆ V(G) with |S | = �|V(G)|/2�, pdwS (G) =
�|V(G)|/2�. Therefore, pdwS (G) ≤ �|V(G)|/2� ≤ 2�|V(G)|/4� ≤ 2 · pdw(G).

Proposition 3.3. For a cobipartite graph with n vertices and m edges, the path-
distance-width can be approximated within a factor 2 in O(m + n) time.

Approximability of the Path-Distance-Width for AT-free Graphs 277

4 Approximating the Path-Distance-Width

In this section, we present our main results. Namely, approximation algorithms for path-
distance-width. Our algorithms are based on the following idea: bounding the diameter
of each level in distance structures. This yields the approximation guarantees. The al-
gorithms also have a special feature: we use rooted distance structures only. Thus our
algorithms are very simple, and clearly run in polynomial time.

We first establish a general lower bound, which will be the main tool to guarantee
the approximation ratios.

Proposition 4.1. Let (L1, . . . , Lt) be a distance structure of G. If u ∈ Li and v ∈ L j, then
dG(u, v) ≥ |i − j|.
Proof. Assume i ≤ j without loss of generality. Let (p0, p1, . . . , p�) be a shortest u–v
path, where p0 = u and p� = v. From the definition of distance structures, if pk ∈ Lh,
then pk+1 ∈ Lh−1 ∪ Lh ∪ Lh+1. Since p0 ∈ Li, p� ∈ L j, and i ≤ j, we need at least j − i
indices k such that pk ∈ Lh and pk+1 ∈ Lh+1. Thus � ≥ j − i. �
Lemma 4.2. If S ⊆ V(G), then pdw(G) ≥ |S |/(diamG(S) + 1).

Proof. Let (L1, . . . , Lt) be an optimal distance structure of G; that is, pdwL1
(G) =

pdw(G). Denote by I the set of the indices of levels having non-empty intersection
with S ; that is, I = {i ∈ {1, . . . , t} | Li ∩ S � ∅}. By Proposition 4.1, max I −
min I ≤ diamG(S). Thus the vertices of S are included in at most diamG(S) + 1 lev-
els {Lmin I , Lmin I+1, . . . , Lmax I}. This implies that there exists a level Li, i ∈ I, such that
|Li ∩ S | ≥ |S |/(diamG(S) + 1). Hence we have

pdw(G) = pdwL1
(G) ≥ |Li| ≥ |Li ∩ S | ≥ |S |/(diamG(S) + 1),

as required. �

4.1 Approximating the Path-Distance-Width for k-Cocomparability Graphs

By the property of k-CCPO, we are able to bound the diameter of each level in some dis-
tance structure of a k-cocomparability graph. Thus we have an approximation guarantee
as follows.

Lemma 4.3. Let G be a connected k-cocomparability graph, and x be the first vertex in
a k-CCPO of G. If (L1, . . . , Lt) is the distance structure of G with the initial set L1 = {x},
then diamG(Li) ≤ 2k for all i.

Proof. Fix i arbitrarily and let y, z ∈ Li. Without loss of generality, we may assume that
x < y < z in the k-CCPO. We show that dG(y, z) ≤ 2k. Since y and z lie in the same level,
dG(x, y) = dG(x, z). Let P be a shortest x–z path in G. Since dG(x, y) = dG(x, z), y is not in
P. Clearly, there exists an edge {v,w} in P such that v < y < w. Since dG(v,w) = 1 ≤ k,
we have dG(v, y) ≤ k or dG(y,w) ≤ k. If dG(v, y) ≤ k, then dG(x, y) ≤ dG(x, v) + k and
dG(y, z) ≤ dG(v, z) + k. This implies

dG(x, y) + dG(y, z) ≤ dG(x, v) + dG(v, z) + 2k = dG(x, z) + 2k.

Then dG(y, z) ≤ 2k, since dG(x, y) = dG(x, z). The case of dG(y,w) ≤ k is almost the
same. �

278 Y. Otachi et al.

Combining Lemmas 2.1, 4.2, and 4.3, we have the following general approximation
result.

Theorem 4.4. For a connected k-cocomparability graph G with n vertices and m edges,
the path-distance-width can be approximated within a factor 2k + 1 in O(mn) time.

4.2 Approximating the Path-Distance-Width for AT-free Graphs

Chang, Ho, and Ko [3] showed that AT-free graphs are 2-cocomparability graphs.
Hence, by Theorem 4.4, the path-distance-width of a connected AT-free graph with
n vertices and m edges can be approximated within a factor 5 in O(mn) time. The aim
of this subsection is to provide a better approximation algorithm for AT-free graphs by
using some properties of AT-free graphs. More precisely, we present an O(m + n)-time
3-approximation algorithm for AT-free graphs. A dominating pair (u, v) of a graph G is
a pair of vertices u, v ∈ V(G) such that for any u–v path P in G, V(P) is a dominating
set of V(G); that is, each vertex v ∈ V(G) \ V(P) has a neighbor in V(P).

Theorem 4.5 ([5,6]). Any connected AT-free graph has a dominating pair. A dominat-
ing pair of a connected AT-free graph can be found in linear-time.

Lemma 4.6. Let (u, v) be a dominating pair of an AT-free graph G. If (L1 = {u}, . . . , Lt)
is the distance structure rooted at the vertex u, then for any i, diamG(Li) ≤ 2.

Proof. Let (p1, . . . , p�) be a shortest u–v path in G, where p1 = u and p� = v. Clearly,
p j ∈ L j for all j. From the definition of distance structures and dominating pairs, a
vertex in a level Li must be adjacent to at least one of pi−1, pi, and pi+1, and cannot be
adjacent to any other p j, j � {i−1, i, i+1}. Fix i arbitrarily, and let x, y ∈ Li. We assume
pi � {x, y} since otherwise dG(x, y) ≤ 2. Let (q1, . . . , qi) be a shortest u–x path, where
q1 = u and qi = x. Obviously, q j ∈ L j for all j. We now have three cases (see Fig. 3).

[Case 1] {{x, pi+1}, {y, pi+1}} ∩ E(G) � ∅: By symmetry, we may assume {x, pi+1} =
{qi, pi+1} ∈ E(G). Then, (q1, . . . , qi, pi+1, . . . , p�) is a u–v path. Hence y has a neighbor
in {qi−1, qi, pi+1}. Since qi = x and {qi−1, qi}, {qi, pi+1} ∈ E(G), we have dG(x, y) ≤ 2.

[Case 2] {{x, pi}, {y, pi}}∩E(G) � ∅: By symmetry, we may assume {x, pi} = {qi, pi} ∈
E(G). Then, (q1, . . . , qi, pi, pi+1, . . . , p�) is a u–v path. Hence y has a neighbor in
{qi−1, qi, pi, pi+1}. By Case 1, if {y, pi+1} ∈ E(G), then dG(x, y) ≤ 2. Otherwise, y
has a neighbor in {qi−1, qi, pi}. Since qi = x and {qi−1, qi}, {qi, pi} ∈ E(G), we have
dG(x, y) ≤ 2.

[Case 3] {{x, pi−1}, {y, pi−1}} ∩ E(G) � ∅: By Cases 1 and 2, it suffices to consider
the case of {x, pi}, {x, pi+1}, {y, pi}, {y, pi+1} � E(G). Clearly, this assumption implies
{x, pi−1}, {y, pi−1} ∈ E(G), and hence dG(x, y) ≤ 2. �
Theorem 4.5 and Lemmas 4.2 and 4.6 imply the following better approximation result
for AT-free graphs.

Theorem 4.7. For a connected AT-free graph with n vertices and m edges, the path-
distance-width can be approximated within a factor 3 in O(m + n) time.

We now show that the factor 3 is the best possible even for interval graphs (thus for
AT-free graphs) if we use rooted distance structures.

Approximability of the Path-Distance-Width for AT-free Graphs 279

Li−1

Li

Li+1

v

u

qi−1

pi+1

Case 3Case 2Case 1

Li−1

Li

Li+1

pi

pi−1

pi+1

pi

pi−1

pi+1

pi

pi−1qi−1

x = qi x = qi yxyy

v

u

v

u

Li−1

Li

Li+1

Fig. 3. The cases in the proof of Lemma 4.6

Proposition 4.8. The approximation ratio 3 of the path-distance-width for interval
graphs cannot be improved if we select only one vertex as the initial set.

Proof. The friendship graph Fd is the graph with V(Fd) = {c} ∪ {ui, vi | 1 ≤ i ≤ d} and
E(Fd) = {{ui, vi} | 1 ≤ i ≤ d} ∪ {{c,w} | w ∈ V(Fd) \ {c}}. For any d, Fd is an interval
graph (see Fig. 4).

Let c be the center of F3d, and let w ∈ V(F3d) \ {c}. Clearly, pdw{c}(F3d) = 6d and
pdw{w}(F3d) = 6d − 2. On the other hand, if S = {ui | 1 ≤ i ≤ 2d}, then

pdwS (F3d) = max {|{ui | 1 ≤ i ≤ 2d}|, |{c} ∪ {vi | 1 ≤ i ≤ 2d}|, |{ui, vi | 2d + 1 ≤ i ≤ 3d}|}
= max{2d, 2d + 1, 2d} = 2d + 1.

Thus if we use only one vertex of F3d as an initial set, then the approximation ratio is
at least (6d − 2)/(2d + 1) = 3 − 5/(2d + 1). Since 5/(2d + 1) can be arbitrarily small by
increasing d, the proposition holds. �

4.3 Approximating the Path-Distance-Width for Proper Interval Graphs

Since proper interval graphs are AT-free, the result in the previous section provides
an approximation algorithm for proper interval graphs as well. Fortunately, if we use
proper interval representations, then we get a better approximation ratio.

Corneil, Kim, Natarajan, Olariu, and Sprague [4, Proposition 2.1(2)] showed that in
the rooted distance structure of a proper interval graphs rooted at the leftmost interval,
every level is a clique.

Proposition 4.9 ([4]). Let G be a connected proper interval graph, and let u ∈ V(G) be
the vertex with the leftmost starting point in some proper interval representation of G.
Let Li be the set of vertices of distance i from u; that is, Li = {v ∈ V(G) | dG(u, v) = i}.
Then, for any i, diamG(Li) = 1 if Li � ∅.
It is known that a proper interval representation of a proper interval graph can be com-
puted in linear time (see e.g. [4]). Thus the leftmost vertex u in the above proposition
and the rooted distance structure rooted at u can be found in linear time. Therefore, by
Lemma 4.2, the next theorem holds.

280 Y. Otachi et al.

v1

v2

v3

v4

u4

u3

u2 u1 u2 u3 u4
v1 v2 v3 v4
c

u1

c

Fig. 4. Friendship graph F4 and an interval representation of F4

Theorem 4.10. For a connected proper interval graph G with n vertices and m edges,
the path-distance-width can be approximated within a factor 2 in O(m + n)-time.

Since the complete graph K2n is a proper interval graph, pdw(K2n) = n, and rpdw(K2n) =
2n − 1, we can conclude that the factor 2 in the above theorem cannot be improved by
any algorithm using rooted distance structures only.

Proposition 4.11. The approximation ratio 2 of the path-distance-width for proper in-
terval graphs cannot be improved if we select only one vertex as the initial set.

5 A Polynomial-Time Solvable Case

In this section, we show that the path-distance-width of cochain graphs can be deter-
mined in linear time. Recall that every cochain graph is a proper interval graph.

Theorem 5.1 ([9]). Given a cochain graph G with n vertices and m edges, its bipar-
tition (X, Y) and orderings on X and Y (which satisfies the condition in the definition)
can be computed in O(m + n) time.

Theorem 5.2. The path-distance-width of a connected cochain graph G with n vertices
and m edges can be computed in O(m + n) time.

Proof. Let G be a cochain graph with a bipartition (X, Y). By Theorem 5.1, such a bipar-
tition can be found in O(m + n)-time. For convenience, let pdw(G, X) = min{pdwS (G) |
S ⊆ X} and pdw(G, Y) = min{pdwS (G) | S ⊆ Y}. If S ⊆ V(G) intersects both X
and Y, then pdwS (G) ≥ �|V(G)|/2�. It is easy to see that min{pdw(G, X), pdw(G, Y)} ≤
�|V(G)|/2�. Therefore,

pdw(G) = min
{
pdw(G, X), pdw(G, Y)

}
.

By symmetry, it is sufficient to show that pdw(G, X) can be computed in O(m+ n) time.
Let X = {x1, . . . , xp} and NG[x1] ⊆ NG[x2] ⊆ · · · ⊆ NG[xp]. By Theorem 5.1, such

an ordering can be computed in linear time. We also compute in linear time |X|, |Y |, and
degG(v) for all v ∈ V(G). Let Y∅ = {y ∈ Y | NG(y) ∩ X = ∅}. Clearly, Y∅ = {y ∈ Y |
degG(y) = |Y | − 1}, and thus |Y∅| can be obtained in linear time.

Approximability of the Path-Distance-Width for AT-free Graphs 281

S

X \ S

Y \ NY
G(xi)

NY
G(xi)

L1

L2

L3

S

X \ S

L1

L2

L3 Y

S

X \ S

L1

L2

L3 Y \ Y∅

L4 Y∅

Y

X X X

Y

Fig. 5. Three cases in the proof of Theorem 5.2

To compute pdw(G, X), we define pdw(G, X, i) as follows:

pdw(G, X, i) = min{pdwS (G) | S ⊆ X, i = max{ j | x j ∈ S }}.
For xi ∈ X, we denote NG(xi) ∩ Y by NY

G(xi). It is easy to see that |NY
G(xi)| = degG(xi) −

(|X| − 1). If i = max{ j | x j ∈ S } for some S ⊆ X, then NG(xi) ∩ Y = NG(S) ∩
Y since NG[x j] ⊆ NG[xi] for all j < i. Note that NY

G(xi) may be empty. We will
prove that pdw(G, X, i) can be computed in constant time by using |X|, |Y |, |Y∅|, and
|NY

G(xi)|. This will imply pdw(G, X) can be computed in linear time, since pdw(G, X) =
min1≤i≤p pdw(G, X, i).

Let S ⊆ {x1, . . . , xi} and xi ∈ S , and let D be the distance structure with the initial set
S . We have the following three cases (see Fig. 5):

D =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(S , (X \ S) ∪ NY
G(xi), Y \ NY

G(xi)) if NY
G(xi) � ∅,

(S , X \ S , Y) if NY
G(xi) = ∅ and Y∅ = ∅,

(S , X \ S , Y \ Y∅, Y∅) if NY
G(xi) = ∅ and Y∅ � ∅.

In any case, the average size of the first and second levels is (|X|+ |NY
G(xi)|)/2. Therefore,

by setting |S | = min{i, �(|X|+|NY
G(xi)|)/2�}, we can minimize the difference. One possible

solution is S = {xi} ∪ {x1, . . . , x|S |−1}. Since pdwS (G) can be computed in constant time
with |S |, |X|, |Y |, |Y∅|, and |NY

G(xi)|, the theorem holds. �
Note that cochain graphs, chain graphs, and threshold graphs have similar structures [9].
Thus one can design polynomial-time algorithms also for chain graphs and threshold
graphs. However, achieving linear-time algorithms for them is not obvious.

6 Concluding Remarks

We have considered the problem of determining the path-distance-width of graphs in
important graph classes. It turned out that the problem is NP-hard even for cobipartite
graphs, and thus for cocomparability graphs and AT-free graphs. However, using their
chain-like structures, we are able to present constant-factor approximation algorithms.
The algorithms are very simple and fast. We also present a linear-time (exact) algorithm
for cochain graphs. The computational complexity of the path-distance-width problem
for interval graphs and proper interval graphs remains unsettled.

282 Y. Otachi et al.

References

1. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth
problem, ECCC TR98-014 (1998)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
3. Chang, J.M., Ho, C.W., Ko, M.T.: Powers of asteroidal triple-free graphs with applications.

Ars Combin. 67, 161–173 (2003)
4. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recogni-

tion of unit interval graphs. Inform. Process. Lett. 55, 99–104 (1995)
5. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete

Math. 10, 399–430 (1997)
6. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in aster-

oidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman (1979)
8. Golovach, P., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Band-

width on AT-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 573–582. Springer, Heidelberg (2009)

9. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden in-
duced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

10. Johnson, D.S.: The NP-completeness column: An ongoing guide. J. Algorithms 6, 434–451
(1985)

11. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval
graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)

12. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete
Math. 3, 373–375 (1990)

13. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free
graphs. J. Algorithms 32, 41–57 (1999)

14. Kobayashi, Y.: Private communication (September 2010)
15. Mahesh, R., Rangan, C.P., Srinivasan, A.: On finding the minimum bandwidth of interval

graphs. Inform. and Comput. 95, 218–224 (1991)
16. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph em-

beddings. Discrete Appl. Math. 79, 171–188 (1997)
17. Sprague, A.P.: An O(n log n) algorithm for bandwidth of interval graphs. SIAM J. Discrete

Math. 7, 213–220 (1994)
18. Yamazaki, K.: On approximation intractability of the path-distance-width problem. Discrete

Appl. Math. 110, 317–325 (2001)
19. Yamazaki, K., Bodlaender, H.L., de Fuiter, B., Thilikos, D.M.: Isomorphism for graphs of

bounded distance width. Algorithmica 24, 105–127 (1999)

Hanani-Tutte and Monotone Drawings

Radoslav Fulek1,�, Michael J. Pelsmajer2,��,
Marcus Schaefer3, and Daniel Štefankovič4

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
radoslav.fulek@epfl.ch

2 Illinois Institute of Technology, Chicago, IL 60616, USA
pelsmajer@iit.edu

3 DePaul University, Chicago, IL 60604, USA
mschaefer@cs.depaul.edu

4 University of Rochester, Rochester, NY 14627, USA
stefanko@cs.rochester.edu

Abstract. A drawing of a graph is x-monotone if every edge intersects
every vertical line at most once and every vertical line contains at most
one vertex. Pach and Tóth showed that if a graph has an x-monotone
drawing in which every pair of edges crosses an even number of times,
then the graph has an x-monotone embedding in which the x-coordinates
of all vertices are unchanged. We give a new proof of this result and
strengthen it by showing that the conclusion remains true even if adjacent
edges are allowed to cross oddly. This answers a question posed by Pach
and Tóth. Moreover, we show that an extension of this result for graphs
with non-adjacent pairs of edges crossing oddly fails even if there exists
only one such pair in a graph.

1 Introduction

The classic Hanani-Tutte theorem states that if a graph can be drawn in the
plane so that no pair of independent edges crosses an odd number of times,
then it is planar [6,19]. (Two edges are independent if they do not have a shared
endpoint.) There are many ways to look at this result; for example, in algebraic
topology it is seen as a special case of the van Kampen-Flores theorem [9, Chap-
ter 5] which classifies obstructions to embeddability in topological spaces. This
point of view leads to challenging open questions (see, for example, [10]), but
even in 2-dimensional surfaces the problem is not understood well (see [18] for
a survey of what we do know).

Here, we study a variant of the problem for x-monotone drawings which was
introduced by Pach and Tóth [12]. A drawing of a graph is x-monotone if every
edge intersects every vertical line at most once and every vertical line contains
� The first author gratefully acknowledges support from the Swiss National Science

Foundation Grant No. 200021-125287/1.
�� The second author gratefully acknowledges the support from NSA Grant H98230-

08-1-0043 and the Swiss National Science Foundation Grant No. 200021-125287/1.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 283–294, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

284 R. Fulek et al.

at most one vertex. The natural analogue of the Hanani-Tutte theorem in this
context would state that every x-monotone drawing in which no pair of inde-
pendent edges crosses an odd number of times has an x-monotone embedding,
that is, a crossing-free drawing—without moving the vertices. The truth of this
result was left as an open problem by Pach and Tóth.We prove it as Theorem 2
in Section 3. The extension of this result in the spirit of [11,15] is not possible,
which is proved in Section 4.

The weak version of the classic Hanani-Tutte theorem states that if a graph
can be drawn so that no pair of edges crosses oddly, then it is planar. The
analogue for x-monotone drawings states that there is an x-monotone embedding
if there is an x-monotone drawing in which no pair of edges crosses an odd
number of times. This variant of the weak Hanani-Tutte theorem was first proved
by Pach and Tóth.1 We give a new proof of this result as Theorem 1 in Section 2,
which continues an elementary topological approach similar to earlier papers on
the Hanani-Tutte theorem, e.g. [15].

A traditional approach to Hanani-Tutte style results is via obstructions; this
sometimes leads to very slick proofs, like Kleitman’s proof of the Hanani-Tutte
theorem for the plane [7], but there are two drawbacks: complete obstruction
sets are not always known, e.g. for the torus or, in spite of several attempts, for
x-monotone embeddings (as discussed in [5]); and this approach is of little help
algorithmically. Pach and Tóth took another approach, building on a proof of
the weak Hanani-Tutte theorem for surfaces by Cairns and Nikolayevsky [2].

Before we begin, we introduce some basic terminology and notation. For any
graph G = (V, E) and S ⊆ V (G), let G[S] denote the subgraph induced by S;
that is, the graph on vertex set S with edge set {uv ∈ E(G) : u ∈ S, v ∈
S}. By a multigraph we understand a graph for which the set of edges is a
multiset. A topological graph is a graph drawn in the plane where the vertices
are represented by distinct points, and edges as Jordan arcs connecting the
incident vertices, but not passing through any other vertex and any pair of
edges crosses a finite number of times. Throughout the paper by a drawing of a
graph we understand its representation as a topological graph. By an embedding
of a graph we understand its (edge) crossing-free drawing.

The rotation at a vertex in a drawing of a graph is the clockwise ordering
of edges at that vertex. The rotation system of a graph is the collection of
rotations at its vertices. In an x-monotone drawing, the right (left) rotation
is the clockwise order of the edges leaving the vertex towards the right (left). So
(perhaps unfortunately), the right rotation is ordered from top to bottom, and
the left rotation is ordered from bottom to top. We will not carefully distinguish
between an abstract graph and a topological (drawn or embedded) graph, and
“vertex” and “edge” are used in both contexts. We use x(v) to denote the x-
coordinate of a vertex v located in the plane.

Remark 1. We are also preparing an extended version of this paper in which our
results are used to solve algorithmic questions regarding level-planarity.

1 There is a gap in the original argument; an updated version is now available [12,13].

Hanani-Tutte and Monotone Drawings 285

2 Weak Hanani-Tutte for Monotone Drawings

An edge is even if it crosses every other edges an even number of times (including
0 times). A drawing is even if all its edges are even.

Theorem 1 (Pach, Tóth [12,13]). If G has an x-monotone and even drawing,
then G has an x-monotone embedding in which each vertex keeps its x-coordinate
and the rotation system remains unchanged.

Remark 2. The weak Hanani-Tutte theorem states that every graph with an
even drawing is planar (without changing the rotation system). For background
and variants of the weak Hanani-Tutte theorem, see [18].

Theorem 1 remains true if we require the resulting embedding to be straight-
line. This has nothing to do with the Hanani-Tutte part of the result; it is entirely
due to the fact that any x-monotone embedding can be turned into a straight-line
embedding in which every vertex keeps its x-coordinate [4,12]. This redrawing
can lead to an exponential blow-up in the area required for the drawing [8] (the
examples in the paper allow multiple vertices in each layer, but these can be
replaced by the requirement that vertices are not too close to edges they are not
incident to).

Theorem 1 may prompt the reader familiar with Hanani-Tutte style results
(in particular [11, Theorem 1] and [15, Theorem 2.1]) to ask whether something
stronger is true: a “removing even crossings” lemma which would say that all
even edges can be made crossing-free in the drawing of a graph which contains
odd edges (while maintaining monotonicity). We will see in Section 4 that there
cannot be any such lemma for monotone drawings.

Nearly the same result is claimed by Pach and Tóth in [12, Theorem 1.1], but
instead of maintaining the rotation, Pach and Tóth state that we can find an
equivalent x-monotone embedding for a given x-monotone and even drawing of
G, where two drawings are equivalent if no edge changes whether it passes above
or below a vertex. However, there are simple examples that show that one cannot
hope to maintain equivalence in this sense, see Figure 1. The example can easily
be turned into a 2-connected graph by replacing edges and vertices with cycles,
so equivalence cannot be obtained by assuming 2-connectedness. On the other
hand, see Corollary 1 for a positive result.

The original proof by Pach and Tóth contains a gap: it is not immediately clear
how multiple faces that share a boundary can be embedded simultaneously.2

Filling in the details of this gap requires dropping equivalence. Pach and Tóth
have prepared an updated version of the paper that includes a more detailed
argument [13].3

2 In the text after Lemma 2.1 on page 42 of [12], Dκ cannot necessarily be glued
together without changing equivalence.

3 In this newer version, equivalence is redefined to mean having the same rotation
system.

286 R. Fulek et al.

u

v

x

y

Fig. 1. y lies above xv and x lies above uv. So in any equivalent x-monotone embedding
with the same relative x-order of the vertices, xv lies above uv, forcing y above uv; but
this contradicts y being below uv.

We approach Theorem 1 in the spirit of earlier papers on the Hanani-Tutte
theorem, e.g. [15]. The proof, which is omitted, repeatedly makes use of a simple
topological observation: suppose we are given two curves (not necessarily mono-
tone) starting at x = x1 and ending at x = x2 which lie entirely between x1 and
x2. The two curves cross an even number of times if and only if they have the
same vertical order at x = x1 and x = x2 (if they start or end in the same point
the vertical order at x is determined by the order in which they enter x).

We will also find the following redrawing tool useful.

Lemma 1. Suppose a multigraph G has an x-monotone embedding and let f
be an inner face of the embedding, with mf and Mf being the leftmost and the
rightmost vertex of f . If we add an edge mfMf so that mfMf lies in f , then the
resulting graph G∪{mfMf} has an x-monotone embedding in which the relative
x-order of the vertices and the rotation system remain the same. Note that we
do not require mfMf to be x-monotone initially and that there may be multiple
ways of inserting mfMf into the rotations at its endpoints.

Note that while the redrawing in Lemma 1 keeps the rotation system the same, it
will destroy equivalence in the sense of Pach and Tóth. Indeed, this is necessarily
the case as witnessed by a z-shaped corridor as the face in question:

mf Mf

Fig. 2. Adding a monotone edge mfMf into the corridor requires destroying
equivalence

Hanani-Tutte and Monotone Drawings 287

Proof (of Lemma 1). If G consists of multiple components, it is sufficient to prove
the result for the component containing f and shift its embedding vertically so
that it does not intersect any other component. This allows us to assume that
G is connected. Then every face is bounded by a closed walk.4 The boundary of
f can be broken into two mf , Mf -walks, B1, B2 with B1 starting above mfMf

in the rotation at mf , and B2 starting below.
Let Df be the drawing of G intersected with Uf := {(x, y) ∈ R2 : x(mf) <

x < x(Mf)}. (Df is a subset of the plane, not a graph.) We will locally redraw
G in Uf so that mfMf can be inserted as a straight-line segment. For each
(topologically) connected component Z of Df , either (i) for every x between
x(mf) and x(Mf), there is a y-value of B1 at x that is below all y-values of Z
at x, or (ii) for any x between x(mf) and x(Mf), there is a y-value of B2 at x
that is above all y-values of Z at x.

Let Z1 be the union of all components of the first type, and Z2 be the union
of all components of the second type. Let L be the line through mf and Mf .
We will show how to move Z1 to the half-plane above L, without changing the
x-value of any point in Z1 while fixing the points on the boundary of Uf . Let
P be an x-monotone curve with endpoints mf and Mf that lies strictly below
Z1 in Uf (note that mf and Mf do not belong to Uf). Now move every point
v of Z1 up by the vertical distance between P and L at x = x(v). We proceed
similarly to move Z2 strictly below L, at which point L is the desired embedding
of mfMf . ��
In the proof of Theorem 1, all redrawing steps maintain equivalence except for
applications of Lemma 1. This part of the proof, however, only arises in the case
that G−{v1, . . . , vi}, where vj denote j-th leftmost vertex of G, is not connected.
Hence, if we can make an assumption on G so that this case never occurs, we
can conclude that the resulting embedding is equivalent to the original drawing
in the sense of Pach and Tóth. We already saw that 2-connectedness is not
sufficient, however, another notion is: a graph in which the vertices are ordered
is a hierarchy if every vertex except the rightmost one has an edge leaving it
towards the right [3].

Corollary 1. If G has an x-monotone and even drawing and G is a hierarchy,
then G has an equivalent x-monotone embedding in which each vertex keeps its
x-coordinate and the rotation system remains unchanged.

The assumption in Theorem 1 can be weakened, somewhat surprisingly, replacing
x-monotonicity of edges by a weaker notion. Let us say that an edge uv in a
drawing is bounded if every interior point p of uv satisfies x(u) < x(p) < x(v).
That is, an edge is bounded if it lies strictly between its endpoints; it need not
be x-monotone within those bounds.

Lemma 2. Suppose we are given a drawing of a graph G with a bounded edge
e. Then e can be redrawn, without changing the remainder of the drawing or the
4 Walks are like paths except that vertices and edges can be repeated. In a closed walk

the last vertex is the same as the first vertex.

288 R. Fulek et al.

position of e in the rotations of its endpoints, so that e is x-monotone and the
parity of crossing between e and any other edge of G has not changed.

Proof. Suppose that e = ab and let v ∈ V (G) be an arbitrary vertex between a
and b: x(a) < x(v) < x(b). Now e has to cross the line x = x(v) an odd number
of times since it connects a to b. In particular, v splits x = x(v) into two: a
part which is crossed an odd number of times by e, and the other part which
is crossed evenly. In a small neighborhood of x = x(v) redraw G by pushing all
crossings of e with x = x(v) from the even side across v to the odd side. Note
that the odd side of x = x(v) remains odd and there are no crossing with e
left on the even side. Moreover, the parity of crossing between e and any other
edge does not change since e is moved an even number of times across v. Repeat
this for all v between a and b; now e only passes above or below each such v,
never both. We can now deform e into an x-monotone edge connecting a and
b, without having the edge pass over any vertices. Therefore, this deformation
does not affect the parity of crossing between e and any other edge, so we have
found the redrawing required by the lemma.

In hindsight we see that the redrawing of e is quite effective: for each vertex
v between a and b we only need to know whether e passes oddly above or below
it, and we can build a polygonal arc from a to b that passes each vertex on the
odd side. ��

3 Strong Hanani-Tutte for Monotone Drawings

Pach and Tóth [12] wrote “It is an interesting open problem to decide whether
[Theorem 1] remains true under the weaker assumption that any two non-
adjacent edges cross an an even number of times.” The goal of this section
is to establish this result, which was also conjectured in [18].

Theorem 2. If G has an x-monotone drawing in which every pair of indepen-
dent edges crosses evenly, then G has an x-monotone embedding in which each
vertex keeps its x-coordinate.

Remark 3. As in the case of Theorem 1, the statement of Theorem 2 remains
true if we only require edges to be bounded rather than x-monotone: simply
redraw edges one at a time using Lemma 2, before applying Theorem 2.

Let G = (V, E) and G′ = (V ′, E′) denote two graphs. We say that G < G′,
if |V | < |V ′| or if |V | = |V ′| and |E| < |E′|. In the sequel we consider mini-
mal counterexamples with respect to this relation. In a proof of the standard
Hanani-Tutte theorem, it is obvious that a minimal counterexample has to be
2-connected, since embedded subgraphs can be merged at a cut-vertex. Unfor-
tunately, the merge requires a redrawing that does not maintain monotonicity,
so here we must use structural properties that are more tailored to x-monotone
redrawings.

Lemma 3. Suppose that G is a minimal counterexample to Theorem 2. Then:

Hanani-Tutte and Monotone Drawings 289

a b
H

Fig. 3. Lemma 3(ii), forbidden subgraph H

a

b c
a

b

H ′

Fig. 4. Lemma 3(iii), forbidden edge ac (left) and forbidden subgraph H ′ (right)

(i) G is connected.
(ii) G has no subgraph H and vertices a, b ∈ V (G) \ V (H) such that x(a) <

x(v) < x(b) for all v ∈ V (H), N(H) = {a, b}, and V (G)\(V (H)∪{a, b})
=
∅.

(iii) If G has a cut-vertex a and G − {a} has a component H such that x(a) <
x(v) for all v ∈ V (H), then H has only one vertex b, and G has no edge
ac with x(b) < x(c). Also, in this case G has no induced subgraph H ′
= ∅
so that x(a) < x(v) < x(b) for all v ∈ V (H ′), a ∈ N(H ′)
= {a}, and
x(v) > x(b) for all v ∈ N(H ′) \ {a}.

Proof. If a minimal counterexample G is not connected, none of its components
are counterexamples to Theorem 2. But then we could embed each component
separately and stack the drawings vertically so they do not intersect each other,
yielding an embedding of G. This contradiction establishes (i).

Consider case (ii) (see Figure 3). Since G is a minimal counterexample, both
G−V (H) and G[V (H)∪{a, b}] have embeddings (both graphs are smaller than
G by assumption). We can deform the crossing-free drawing of G[V (H)∪{a, b}]
so that it becomes very flat. If ab ∈ E(G) we can then insert this drawing into
the drawing of G−V (H) near the edge ab, without adding crossings. This gives
us a crossing-free drawing of G, which is a contradiction. If ab
∈ E(G) then we
add ab to the drawing of G− V (H) so that it has no independent odd crossings
(we will presently see how this can be done); the resulting G−V (H)∪ {ab} has
fewer vertices than G so it also has an embedding, and we can proceed as in the
case that ab ∈ E(G), removing the edge ab in the end.

When ab
∈ E(G), here is how we draw the edge ab with no independent odd
crossings: Let P be any a, b-path with interior vertices in H . By suppressing the
interior vertices of P , we can consider it a bounded edge (in the sense defined
earlier) between a and b, so Lemma 2 tells us that we can draw an x-monotone
edge that has the same parity of crossing with all edges of G as does P .

Finally, we consider (iii) (see Figure 4), where H is a component of G − {a}
so that x(a) < x(v) for all v ∈ V (H). If |V (H)| > 1, let b be the vertex with the
largest x-value in H and apply the part (ii) with H := H − b. Since the previous
proof requires that H
= ∅, we are in the case that V (H) = {b}. If G has an edge

290 R. Fulek et al.

ac with x(b) < x(c), we can embed G−{b} (since it is smaller than G), and then
add ab and b to the embedding alongside of ac without crossings.

It remains to consider an induced subgraph H ′
= ∅ so that x(a) < x(v) < x(b)
for all v ∈ V (H ′), a ∈ N(H ′)
= {a}, and x(v) > x(b) for all v ∈ N(H ′) \
{a}. By minimality, G − {b} has an embedding. Consider the face which lies
immediately below H ′; let B be its boundary, and let c be the vertex on B with
maximum x-value. B is a closed walk that intersects H ′, and H ′ has edges to
the left and right, so B must contain neighbors of H ′ on its left and on its right.
Therefore, B contains a (to the left of H ′), and by the choice of H ′, x(c) > x(b).
Using Lemma 1, we can add the edge ac to the embedding of G − {b} without
introducing crossings. Since x(a) < x(b) < x(c), we can instead add ab to the
drawing without crossings, so G has an embedding which is a contradiction. ��

The proof of Theorem 2 now proceeds by induction on the number of odd pairs
(pairs of edges that cross an odd number of times). Roughly speaking: If we
encounter an odd pair (by necessity its edges are adjacent), we can either make
it cross evenly or we are in a situation which has been excluded by Lemma 3. To
realize this goal, we need more intermediate results. These results are not about
minimal counterexamples, but are true in general.

For the lemmas we introduce some new terminology generalizing our usual
notion of lying above or below a curve to curves with self-intersections: Let C be
a curve in the plane with endpoints p and r so that for every point c ∈ C \{p, r},
x(p) < x(c) < x(r). (This is similar to the definition of a bounded edge except
that we allow self-intersections.) Suppose that q is a point for which x(p) ≤
x(q) ≤ x(r). Extend C via a horizontal ray from p to x = −∞ and a horizontal
ray from r to x = ∞, and consider the plane R2 minus that extended curve. We
can 2-color its faces so that adjacent faces (faces whose boundaries intersect in
a nontrivial curve) have opposite colors. We say that q is above (below) C if q
lies in a face with the same color as the upper (lower) unbounded region.

In the following two lemmas, let G satisfy the assumption of Theorem 2,
that is, we assume that every pair of independent edges in G crosses evenly.
Both lemmas deal with the following scenario: G contains three edges ei = v0vi,
i ∈ {1, 2, 3} so that e3 lies between e1 and e2 in the right rotation of v0, with e1

above e2 at v0, e1 and e2 cross oddly, and e3 crosses each of the other two edges
evenly.

Lemma 4. With an arbitrary vertex vR > x(v0) define G′ as the graph induced
by G on vertices v with x(v0) < x(v) ≤ x(vR). Let G′

i be the component of G′

that contains vi. (If x(vi) > x(vR), then G′
i = ∅.)

If G′
1, G′

2, G′
3 are pairwise disjoint and if for every i there is a path Pi from

v0 through ei to some vertex v′i satisfying x(v′i) ≥ x(vR) so that all vertices v
of Pi satisfy x(v) ≥ x(v0), then each G′

i has no neighbors (in G) to the left of
x(v0), for i ∈ {1, 2, 3}.

Lemma 5. Suppose that for some distinct j, k ∈ {1, 2, 3}, there is a cycle C
that contains ej and ek such that every vertex v of C satisfies x(v) ≥ x(v0). Let

Hanani-Tutte and Monotone Drawings 291

vR be the vertex on C with largest x-value. Let i be the unique index such that
{i, j, k} = {1, 2, 3}. Suppose that vi is not in C.

Let G′
i be the component of G − V (C) that contains vi. Then every vertex v

of G′
i satisfies x(v0) < x(v) < x(vR).

We are finally in a position to prove Theorem 2. We need one more piece of
terminology: the distance between two edges e,f is the number of edge ends
between the ends of e,f in the right (or left) rotation. (We do not measure
distance within the entire rotation; only within the right or left rotation.)

Proof (of Theorem 2). Let G be a minimal counterexample to the theorem. Fix
a drawing of G which minimizes the number of odd pairs, that is, the number of
pairs of edges crossing oddly. If there are no odd pairs, then Theorem 1 completes
the proof.

Suppose that there are edges e1 and e2 that cross oddly. Then e1 and e2 have
a shared endpoint v0, and we may assume that v0 is the left endpoint of e1 and
e2. Choose e1 and e2 so that their ends at v0 have minimal distance in the right
rotation at v0, with e1 above (that is, preceding) e2. Then e1 and e2 are not
consecutive in the rotation at v0; if they were, they could be redrawn so that
they cross once more near v0, by switching their order in the rotation at v0; this
contradicts the choice of drawing of G. So there is at least one edge incident to
v0 that lies between e1 and e2 in the rotation at v0, and by minimality, all such
edges cross each other evenly and cross both e1 and e2 evenly. Pick one such
edge, e3. Let v1, v2, v3 be the right endpoints of e1, e2, e3, respectively, and let
G0 be the subgraph of G induced by all vertices v fulfilling x(v) ≥ x(v0).

Case 1. The right endpoints of e1, e2, e3 are in different components of G0 − v0.

In Case 1, for each i ∈ {1, 2, 3}, consider the component of G0−v0 that contains
vi and let v′i be its vertex with largest x-value. Assign i, j, k so that {i, j, k} =
{1, 2, 3}, and x(v′i) is smaller than x(v′j) and x(v′k). Apply Lemma 4 with xR =
x(v′i), which defines G′

i, G
′
j , G

′
k. By Lemma 3(iii), G′

i has only the one vertex
vi = v′i, and G′

j and G′
k are non-empty because x(vi) is greater than x(vj) and

x(vk) (using a = v0, c ∈ {vj , vk} and b = vi). Then we can apply the second
part of Lemma 3(iii) with H ′ equal to G′

j (or G′
k) restricted to the vertices with

x-coordinate smaller than x(v′i), and we are done.
If we are not in Case 1, then let vL be the vertex with x(vL) chosen to be

smallest such that the subgraph induced by vertices v such that x(v0) < x(v) ≤
x(vL) has a component that contains at least two right endpoints of e1,e2,e3.
Then there is a cycle C that contains ej and ek for some distinct k, j ∈ {1, 2, 3},
and so that x(v0) ≤ x(v) ≤ x(vL) for all v ∈ V (C). If vvL ∈ {e1, e2, e3}, then we
may assume that C contains vvL.

Let i be the unique index for which {i, j, k} = {1, 2, 3}. By the previous
assumption, vi
= vL. By Lemma 5, x(vi) < x(vL) or vi ∈ V (C) − vL.

Suppose that there is a path Q from vi to C so that x(v0) < x(v) < x(vL)
for all v ∈ V (Q). Then Q ∪ ei ∪ C − vL contains a cycle C′ with ei and either
ej or ek. But every vertex v of C′ satisfies x(v0) ≤ x(v) < x(vL) for all v in C′,
contradicting the choice of vL.

292 R. Fulek et al.

We can conclude that vi is not in V (C)−vL, and if we let G′
i be the component

of G − V (C) that contains vi, then G′
i has no neighbors in V (C) \ {v0, vL}. By

Lemma 5, G′
i lies between x = x(v0) and x = x(vL) (since vi
= vL). Let v′i be

the vertex of G′
i with largest x-value. Apply Lemma 4 with xR = x(v′i). This

defines G′
i, G

′
j , G

′
k.

Case 2. G′
i is not adjacent to vL.

(Same as Case 1:) By Lemma 3(iii), G′
i has only the one vertex vi = v′i, and G′

j

and G′
k are non-empty because x(vi) is greater than x(vj) and x(vk). Then we

can apply Lemma 3(iii) with H ′ equal to G′
j (or G′

k) restricted to the vertices
with the x-coordinate smaller than x(v′i), and we are done.

Case 3. There is an edge from G′
i to vL.

Apply Lemma 3(ii) with H = G′
i. This completes the proof of the theorem. ��

4 Monotone Crossing Numbers

Our Hanani-Tutte results can be recast as results about monotone crossing num-
bers. For a leveled graph (G, �) let mon-cr(G, �) be the smallest number of cross-
ings in any leveled drawing of (G, �). Similarly, we can define mon-ocr(G, �) as
the smallest number of pairs of edges that cross oddly in any leveled drawing
of (G, �). Finally, mon-iocr(G, �) is the smallest number of pairs of non-adjacent
edges that cross oddly in any leveled drawing of (G, �). We suppress � and sim-
ply write mon-cr(G), mon-ocr(G), and mon-iocr(G). With this notation we can
restate the original result by Pach and Tóth, our Theorem 1 as saying that
mon-ocr(G) = 0 implies mon-cr(G) = 0. Similarly, our Theorem 2 can be re-
stated as mon-iocr(G) = 0 implies mon-cr(G) = 0.

From this point of view we can now ask questions that parallel analogous prob-
lems for the regular (non-monotone) crossing number variants: cr, ocr, and iocr.
For example, we know that ocr(G) = cr(G) for ocr(G) ≤ 3 [16] and iocr(G) =
cr(G) for iocr(G) ≤ 2 [17]. Pach and Tóth showed that cr(G) ≤ (

ocr(G)
2

)
[11,15].

The core step in this result is a “removing even crossings” lemma, in this particu-
lar case: if G is drawn in the plane and E0 is the set of its even edges, then G can
be redrawn so that all edges in E0 are free of crossings. It immediately implies
cr(G) ≤ (

ocr(G)
2

)
, since only non-even edges can be involved in crossings (and

every pair of non-even edges needs to cross at most once). A similar result for
monotone drawings fails dramatically. In other words: even if there are only two
edges crossing oddly and all other edges are even, then any x-monotone drawing
of G with the given leveling may require an arbitrary number of crossings. Thus
we cannot hope to establish a “removing even crossings” lemma in the context
of x-monotone drawings since it would imply a bound on mon-cr(G) in terms of
mon-ocr(G).

Theorem 3. For every n there is a graph G so that mon-cr(G) ≥ n and
mon-ocr(G) = 1.

Hanani-Tutte and Monotone Drawings 293

5 Open Questions

We want to suggest some future avenues of research.

Monotone Crossing Numbers. The monotone crossing number of a leveled
graph G is the smallest number of crossings in any x-monotone drawing of
the leveled graph. This problem is known to be NP-hard (even for two levels)
and the monotone crossing number can be arbitrarily large, even for a planar
graph (consider nested >s). We get a more interesting question if we define
the monotone crossing number for unleveled graphs as the smallest crossing
number of any x-monotone drawing for any leveling of the graph. Is this
monotone crossing number bounded in the crossing number? For comparison,
rcr2(G) is at most

(
cr(G)

2

)
, where rcr2(G) allows straight-line edges with one

bend [1]. Pach and Tóth in [14] recently proved that monotone crossing
number for unleveled graphs is at most

(
cr(G)

2

)
. Then one can ask how far is

this bound from the truth ?
Bi-monotonicity. Let us define y-monotonicity like x-monotonicity after a 90-

degree rotation; not very exciting by itself, but what happens if we want
embeddings that are bi-monotone, that is, both x- and y-monotone?

– If a graph has both an x-monotone embedding and a y-monotone em-
bedding, does it always have a bi-monotone embedding?

– If there is a drawing of a graph which is bi-monotone, is there a straight-
line drawing with the same x and y ordering?

– What about bi-level-planarity?

As far as we know, bi-monotonicity and bi-level-planarity are new concepts,
however, they are quite natural: If we specify the relative locations of objects
on a map, we specify them in terms of “west/east of” and “north/south
of” which is exactly what bi-monotonicity models. Imagine specifying the
stations for a subway map: actual distance do not matter, what matters is
relative location in terms of x and y.

References

1. Bienstock, D., Dean, N.: Bounds for rectilinear crossing numbers. J. Graph The-
ory 17(3), 333–348 (1993)

2. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geom. 23(2), 191–206 (2000)

3. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Systems
Man Cybernet. 18(6), 1035–1046 (1988, 1989)

4. Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

5. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: On the Characterization of
Level Planar Trees by Minimal Patterns. In: Eppstein, D., Gansner, E.R. (eds.)
GD 2009. LNCS, vol. 5849, pp. 69–80. Springer, Heidelberg (2010)

6. Chojnacki, C., (Hanani, H.).: Über wesentlich unplättbare Kurven im drei-
dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)

294 R. Fulek et al.

7. Kleitman, D.J.: A note on the parity of the number of crossings of a graph. J.
Combinatorial Theory Ser. B 21(1), 88–89 (1976)

8. Lin, X., Eades, P.: Towards area requirements for drawing hierarchically planar
graphs. Theor. Comput. Sci. 292(3), 679–695 (2003)

9. Matoušek, J.: Using the Borsuk-Ulam theorem. Universitext. Springer, Berlin
(2003); Lectures on topological methods in combinatorics and geometry, Written
in cooperation with Anders Björner and Günter M. Ziegler

10. Matousek, J., Tancer, M., Wagner, U.: Hardness of embedding simplicial complexes
in Rd. In: Mathieu, C. (ed.) Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January
4-6, pp. 855–864. SIAM (2009)

11. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser.
B 80(2), 225–246 (2000)

12. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),
39–47 (2004)

13. Pach, J., Tóth Monotone, G.: Drawings of planar graphs. ArXiv e-prints (January
2011)

14. Pach, J., Tóth, G.: Monotone crossing number. In: Graph Drawing (to appear,
2011)

15. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Com-
bin. Theory Ser. B 97(4), 489–500 (2007)

16. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Odd crossing number and crossing
number are not the same. Discrete Comput. Geom. 39(1), 442–454 (2008)

17. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing independently even cross-
ings. SIAM Journal on Discrete Mathematics 24(2), 379–393 (2010)

18. Schaefer, M.: Hanani-Tutte and related results. To appear in Bolyai Memorial
Volume

19. Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8,
45–53 (1970)

On Collinear Sets in Straight-Line Drawings

Alexander Ravsky and Oleg Verbitsky�

Institute for Applied Problems of Mechanics and Mathematics
Naukova St. 3-B, Lviv 79060, Ukraine

Abstract. We consider straight-line drawings of a planar graph G with
possible edge crossings. The untangling problem is to eliminate all edge
crossings by moving as few vertices as possible to new positions. Let
fix (G) denote the maximum number of vertices that can be left fixed in
the worst case among all drawings of G. In the allocation problem, we
are given a planar graph G on n vertices together with an n-point set X
in the plane and have to draw G without edge crossings so that as many
vertices as possible are located in X. Let fit(G) denote the maximum
number of points fitting this purpose in the worst case among all n-point
sets X. As fix (G) ≤ fit(G), we are interested in upper bounds for the
latter and lower bounds for the former parameter.

For any ε > 0, we construct an infinite sequence of graphs with
fit(G) = O(nσ+ε), where σ < 0.99 is a known graph-theoretic constant,
namely the shortness exponent for the class of cubic polyhedral graphs.
On the other hand, we prove that fix (G) ≥ √

n/30 for any graph G of
tree-width at most 2. This extends the lower bound obtained by Goaoc
et al. [Discrete and Computational Geometry 42:542–569 (2009)] for out-
erplanar graphs. Our results are based on estimating the maximum num-
ber of vertices that can be put on a line in a straight-line crossing-free
drawing of a given planar graph.

1 Introduction

1.1 Basic Definitions

Let G be a planar graph. We will denote the vertex set of G by VG. The letter
n will be reserved to always denote the number of vertices in VG. By a drawing
of G we mean an arbitrary injective map π : VG → R2. The points in π(VG) will
be referred to as vertices of the drawing. For an edge uv of G, the segment with
endpoints π(u) and π(v) will be referred to as an edge of the drawing. Thus, we
always consider straight-line drawings. It is quite possible that in π we encounter
edge crossings and even overlaps. A drawing is plane (or crossing-free) if this
does not happen.

Given a drawing π of G, define

fix(G, π) = max
π′ plane

| {v ∈ VG : π′(v) = π(v)} |.
� Current address: Humboldt-Universität zu Berlin, Institut für Informatik, Unter den

Linden 6, D-10099 Berlin. E-mail: verbitsk@informatik.hu-berlin.de. Supported
by the Alexander von Humboldt Foundation.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 295–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

296 A. Ravsky and O. Verbitsky

Given an n-point set X in the plane, let

fixX(G) = min
π: π(VG)=X

fix(G, π).

Furthermore, we define

fix(G) = min
X

fixX(G) = min
π

fix(G, π). (1)

In other words, fix(G) is the maximum number of vertices which can be fixed in
any drawing of G while untangling it.

Given an n-point set X , consider now a related parameter

fitX(G) = max
π plane

|π(VG) ∩ X |.

In words, if we want to draw G allocating its vertices at points of X , then fitX(G)
tells us how many points of X can fit for this purpose. To analyze the allocation
problem in the worst case, we define

fit(G) = min
X

fitX(G).

Note that fitX(G) = maxπ: π(VG)=X fix(G, π). It follows that fixX(G) ≤ fitX(G)
and, therefore, fix(G) ≤ fit(G).

1.2 Known Results on the Untangling Problem

No efficient way for evaluating the parameter fix(G) is known. Note that comput-
ing fix (G, π) is NP-hard [7,15]. Considerable effort is needed to estimate fix(G)
even for cycles, for which we know the bounds

2−5/3n2/3 − O(n1/3) ≤ fix(Cn) ≤ O((n log n)2/3)

due to Cibulka [2] and Pach and Tardos [13], respectively. In the general case
Bose et al. [1] establish a lower bound

fix(G) ≥ (n/3)1/4. (2)

A better bound
fix(G) ≥

√
n/2 (3)

is proved for all trees (Bose et al. [1], Goaoc et al. [7]) and, more generally,
outerplanar graphs (Goaoc et al. [7], cf. Corollary 2 below).

On the other hand, [1,7,11] provide examples of planar graphs (even acyclic
ones) with

fix(G) = O(
√

n). (4)

In particular, for the fan graphs Fn we have

fixX(Fn) ≤ (2
√

2 + o(1))
√

n for every X, (5)

see [11]. Cibulka [2] establishes some general upper bounds, namely fix (G) =
O(

√
n(log n)3/2) for graphs whose maximum degree and diameter are bounded

by a logarithmic function of n and fix(G) = O((n log n)2/3) for 3-connected
graphs.

On Collinear Sets in Straight-Line Drawings 297

1.3 Known Results on the Allocation Problem

The question whether or not fitX(G) = n has been studied in the literature,
especially for X in general position. If X is in convex position, any triangulation
on X is outerplanar. By this reason, fitX(G) < n for all non-outerplanar graphs
G and all sets X in convex position. On the other hand, Gritzmann et al. [8]
proved that fitX(G) = n for all outerplanar G and all X in general position.
Other results and references on this subject can be found, e.g., in [5].

It is known that there are Ω(27.22n) unlabeled planar graphs with n vertices
[6], while a set of n points in convex position admits no more than O(11.66n)
plane drawings [4]. Combining the two results, we see that, if X is in convex
position, then fitX(G) < n for almost all planar G.

1.4 Our Present Contribution

We aim at proving upper bounds for fit(G) and lower bounds for fix (G). Our
approach to both problems is based on an analysis of collinear sets of vertices in
straight-line graph drawings. We show the relevance of the following questions.
How many collinear vertices can occur in a plane drawing of a graph G? If there
is a large collinear set, which useful features can it have?

Suppose that π is a crossing-free drawing of a graph G. A set S ⊆ π(VG) of
vertices in π is collinear if all of them lie on a common line �. By a displacement
of S we mean a relocation δ : S → � preserving the relative order in which the
vertices in S lie on �. We call S free if every displacement δ : S → � is extendable
to a mapping δ : π(VG) → R2 so that δ ◦ π is a crossing-free drawing of G (i.e.,
whenever we shift vertices in S along � without breaking their relative order,
then all edge crossings that may arise can be eliminated by subsequently moving
the vertices in π(VG) \ S). Let v̄(G, π) denote the maximum size of a collinear
set in π and ṽ(G, π) the maximum size of a free collinear set in π. Define

v̄(G) = max
π plane

v̄(G, π) and ṽ(G) = max
π plane

ṽ(G, π).

Obviously, ṽ(G) ≤ v̄(G). These parameters have a direct relation to fix(G) and
fit(G), namely √

ṽ(G) ≤ fix(G) ≤ fit(G) ≤ v̄(G). (6)

The last inequality follows directly from the definitions. The first inequality is
proved as Theorem 2 below.

In Section 3 we construct, for any ε > 0, an infinite sequence of graphs with
v̄(G) = O(nσ+ε) where σ ≤ log 26

log 27 is a known graph-theoretic constant, namely
the shortness exponent for the class of cubic polyhedral graphs (see Section 2
for the definition). To the best of our knowledge, this gives us the first example
of graphs with fit(G) = o(n). While the known upper bounds (4) for fix(G) are
still better, note that the problems of bounding fix(G) and fit(G) from above
are inequivalent. The two parameters can be far away from one another: for
example, in contrast to (5) we have fitX(Fn) ≥ n − 1 for any X .

298 A. Ravsky and O. Verbitsky

By the lower bound in (6), we have fix(G) = Ω(
√

n) whenever ṽ(G) = Ω(n).
Therefore, identification of classes of planar graphs with linear ṽ(G) is of big
interest. In Section 4 we show that ṽ(G) ≥ n/2 for every outerplanar graph G.
This gives us another proof of the bound fix(G) ≥ √

n/2 proved by Goaoc et
al. [7]1 for outerplanar graphs.

Furthermore, we consider the broader class of graphs with tree-width at most
2. It coincides with the class of partial 2-trees and contains also all series-parallel
graphs. For any graph G in this class, we prove that ṽ(G) ≥ n/30 and, therefore,
fix(G) ≥ √

n/30.

2 Preliminaries

Given a planar graph G, we denote the number of vertices, edges, and faces in
it by v(G), e(G), and f(G), respectively. The number of faces does not depend
on a particular plane embedding of G and hence is well defined.

A graph is k-connected if it has more than k vertices and stays connected
after removal of any set of at most k− 1 vertices. 3-connected planar graphs are
called polyhedral as, according to Steinitz’s theorem, these graphs are exactly the
1-skeletons of convex polyhedra. By Whitney’s theorem, all plane embeddings
of a polyhedral graph G are equivalent, that is, obtainable from one another by
a plane homeomorphism up to the choice of outer face. In particular, the set
of facial cycles (i.e., boundaries of faces) of G does not depend on a particular
plane embedding.

A planar graph G is maximal if adding an edge between any two non-adjacent
vertices of G violates planarity. Since all facial cycles in maximal planar graphs
on at least 3 vertices have length 3, such graphs are also called triangulations.
Every triangulation on more than 3 vertices is 3-connected, see, e.g., [12, Section
2.3].

The dual of a polyhedral graph G is a graph G∗ whose vertices are the faces of
G (represented by their facial cycles). Two faces are adjacent in G∗ if they share
a common edge. G∗ is also a polyhedral graph. If we consider (G∗)∗, we obtain
a graph isomorphic to G. In a cubic graph every vertex is incident to exactly 3
edges. As easily seen, the dual of a triangulation is a cubic graph. Conversely,
the dual of any cubic polyhedral graph is a triangulation.

The circumference of a graph G, denoted by c(G), is the length of a longest
cycle in G. The shortness exponent of a class G of graphs is the limit inferior of
quotients log c(G)/ log v(G) over all G ∈ G. Let σ denote the shortness exponent
for the class of cubic polyhedral graphs. It is known that

0.694 . . . = log2(1 +
√

5) − 1 ≤ σ ≤ log 26
log 27

= 0.988 . . .

(see [10] for the lower bound and [9] for the upper bound).

1 A preliminary version of [7] gave a somewhat worse bound of fix(G) ≥ √
n/3. An

improvement to
√

n/2 was made in the early version of the present paper indepen-
dently of [7].

On Collinear Sets in Straight-Line Drawings 299

3 Graphs with Small Collinear Sets

We now construct a sequence of triangulations G with v̄(G) = o(v(G)). For our
analysis, we need another parameter of a straight-line drawing. Given a crossing-
free drawing π of a graph G, let f̄(G, π) denote the maximum number of faces of
π whose interiors can be cut by a line. Furthermore, let f̄(G) = maxπ f̄(G, π).

For the triangulations constructed below, we will show that v̄(G) is small
with respect to v(G) because f̄(G) is small with respect to f(G) (though we
do not know any relation between v̄(G) and f̄(G) in general). Our construction
can be thought of as a recursive procedure for essentially decreasing the ratio
f̄(G)/f(G) at each recursion step provided that we initially have f̄(G) < f(G).

Fig. 1. An example of the construction: G1 = K4, G2, G3

Starting from an arbitrary triangulation G1 with at least four vertices, we
recursively define a sequence of triangulations G1, G2, To define Gk, we de-
scribe a spherical drawing δk of this graph. Let δ1 be an arbitrary drawing of G1

on a sphere. Furthermore, δi+1 is obtained from δi by triangulating each face of
δi so that this triangulation is isomorphic to G1. An example is shown in Fig. 1.
In general, upgrading δi to δi+1 can be done in different ways, that may lead to
non-isomorphic versions of Gi+1. We make an arbitrary choice and fix the result.
The following lemma points out a property of the initial triangulation G1 that
ensures the desired relation v̄(Gk) = o(v(Gk)).

Lemma 1. Denote f = f(G1), f̄ = f̄(G1), and α =
log(f̄ − 1)
log(f − 1)

.

1. f(Gk) = (f − 1)k−1f .
2. f̄(Gk) ≤ (f̄ − 1)k−1f̄ .
3. v̄(Gk) < c v(Gk)α, where c is a constant depending only on G1.

Proof. The first part follows from the obvious recurrence f(Gi+1) = f(Gi)(f−1).
We have to prove the other two parts.

300 A. Ravsky and O. Verbitsky

Consider an arbitrary crossing-free straight-line drawing πk of Gk. Recall that,
by construction, G1, . . . , Gk−1 is a chain of subgraphs of Gk with

VG1 ⊂ VG2 ⊂ . . . ⊂ VGk−1 ⊂ VGk
.

Let πi be the part of πk that is a drawing of the subgraph Gi. By the Whitney
theorem, πk can be obtained from δk (the spherical drawing defining Gk) by
an appropriate stereographic projection of the sphere to the plane combined
with a homeomorphism of the plane onto itself. It follows that, like δi+1 and δi,
drawings πi+1 and πi have the following property: the restriction of πi+1 to any
face of πi is a drawing of G1. Given a face F of πi, the restriction of πi+1 to F
(i.e., a plane graph isomorphic to G1) will be denoted by πi+1[F].

Consider now an arbitrary line �. Let f̄i denote the number of faces in πi cut
by �. By definition, we have

f̄1 ≤ f̄ . (7)

For each 1 ≤ i < k, we claim that

f̄i+1 ≤
{

f̄ if f̄i = 1,

(f̄ − 1)f̄i if f̄i > 1.
(8)

Indeed, let K denote the outer face of πi. Equality f̄i = 1 means that, of all faces
of πi, � cuts only K. Within K, � can cut only faces of πi+1[K] and, therefore,
f̄i+1 ≤ f̄ .

Assume that f̄i > 1. Within K, � can now cut at most f̄ − 1 faces of πi+1

(because � cuts R2 \K, a face of πi+1[K] outside K). Within any inner face F of
πi, � can cut at most f̄−1 faces of πi+1 (the subtrahend 1 corresponds to the outer
face of πi+1[F], which surely contributes to f̄ but is outside F). The number of
inner faces F cut by � is equal to f̄i − 1 (again, the subtrahend 1 corresponds to
the outer face of πi). We therefore have f̄i+1 ≤ (f̄−1)+(f̄i−1)(f̄−1) = (f̄−1)f̄i,
completing the proof of (8).

Using (7) and (8), a simple inductive argument gives us

f̄i ≤ (f̄ − 1)i−1f̄ (9)

for every i ≤ k. As πk and � are arbitrary, part 2 of the lemma is proved by
setting i = k in (9).

To prove part 3, we have to estimate from above v̄k = |�∩V (πk)|, the number
of vertices of πk on the line �. Put w̄1 = |�∩V (π1)| and w̄i = |�∩(V (πi)\V (πi−1))|
for 1 < i ≤ k. Clearly, v̄k =

∑k
i=1 w̄i. Abbreviate v = v(G1). It is easy to see

that w̄1 ≤ v − 2 and w̄i ≤ f̄i−1(v − 3) for all 1 < i ≤ k. It follows that

v̄k ≤ (v − 2) + (v − 3)
k−1∑
i=1

f̄i ≤ (v − 3)f̄
f̄ − 2

(f̄ − 1)k−1, (10)

On Collinear Sets in Straight-Line Drawings 301

where we use (9) for the latter estimate. It remains to express the obtained bound
in terms of v(Gk). By part 1 of the lemma, we have (f − 1)k−1f = f(Gk) =
2v(Gk) − 4 and, therefore,

(f̄ − 1)k−1 = (f − 1)α(k−1) < (2/f)α v(Gk)α.

Plugging this in to (10), we arrive at the desired bound for v̄k and hence for
v̄(Gk). ��
We now need an initial triangulation G1 with f̄(G1) < f(G1). The following
lemma shows a direction where one can seek for such triangulations.

Lemma 2. For every triangulation G with more than 3 vertices, we have
f̄(G) ≤ c(G∗).

Proof. Given a crossing-free drawing π of G and a line �, we have to show that
� crosses no more than c(G∗) faces of π. Shift � a little bit to a new position �′

so that �′ does not go through any vertex of π and still cuts all the faces that
are cut by �. Thus, �′ crosses boundaries of faces only via inner points of edges.
Each such crossing corresponds to transition from one vertex to another along
an edge in the dual graph G∗. Note that this walk is both started and finished
at the outer face of π. Since all faces are triangles, each of them is visited at
most once. Therefore, �′ determines a cycle in G∗, whose length is at least the
number of faces of π cut by �. ��
Lemma 2 suggests the following choice of G1: Take a cubic polyhedral graph H
getting close to the infimum of the set of quotients log(c(G) − 1)/ log(v(G) − 1)
over all cubic polyhedral graphs G and set G1 = H∗. In particular, we can get
arbitrarily close to the shortness exponent σ defined in Section 2. By Lemma
1.3, we arrive at the main result of this section.

Theorem 1. Let σ denote the shortness exponent of the class of cubic polyhedral
graphs. Then for any α > σ, there is a sequence of triangulations G with

v̄(G) = O(v(G)α).

Corollary 1. For infinitely many n there is a planar graph G on n vertices with
fit(G) = O(n0.99).

4 Graphs with Large Free Collinear Sets

Let π be a crossing-free drawing of a graph G, and let � be a line. Recall that a
set S ⊂ π(VG)∩ � is called free if, whenever we displace the vertices in S along �
without violating their mutual order (thereby introducing edge crossings), we are
able to untangle the modified drawing by only moving the vertices in π(VG) \S.
By ṽ(G) we denote the largest size of a free collinear set maximized over all
drawings of a graph G.

Theorem 2. fix(G) ≥ √
ṽ(G).

302 A. Ravsky and O. Verbitsky

Proof. Let fix−(G) be defined similarly to (1) but with minimization over all
collinear X (or over π such that π(VG) is collinear). Obviously, fix(G) ≤ fix−(G).
As proved by Kang et al. [11] (based on [1, Lemma 1]), we actually have

fix(G) = fix−(G). (11)

We use this equality here.
Choose an integer k such that (k − 1)2 < ṽ(G) ≤ k2. By (11), it suffices to

show that any drawing π : VG → � of G on a line � can be made crossing-free
while keeping k vertices fixed. Let ρ be a crossing-free drawing of G such that,
for some S ⊂ VG with |S| > (k − 1)2, ρ(S) is a free collinear set on �. By the
Erdős-Szekeres theorem, any two orderings of a set with cardinality more than
(k − 1)2 agree, up to reversal, on at least k elements. We, therefore, can find a
set F ⊂ S of k vertices such that π(F) and ρ(F) lie on � in the same order (up
to reversal). By the definition of a free set, there is a crossing-free drawing ρ′ of
G with ρ′(F) = π(F). Thus, we can come from π to ρ′ with F staying fixed. ��
Theorem 2 sometimes gives a short way of proving bounds of the kind fix(G) =
Ω(

√
n). For example, for the wheel graph Wn we immediately obtain fix(Wn) >√

n − 1 from the easy observation that ṽ(Wn) = n − 2 (in fact, this repeats the
argument of Pach and Tardos for cycles [13]). The classes of graphs with linear
ṽ(G) are therefore of big interest in the context of disentanglement of drawings.
One of these classes is addressed below.

Given a drawing π, we call it a track drawing if there are parallel lines, called
tracks, such that every vertex of π lies on one of the layers and every edge either
lies on one of the layers or connects endvertices lying on two consecutive layers.
We call a graph track drawable if it has a crossing-free track drawing. Note that
any displacement of the vertices on a track does not introduce edge crossings.

An obvious example of a track drawable graph is a grid graph Ps × Ps. It is
also easy to see that any tree is track drawable: two vertices are to be aligned
on the same layer if they are at the same distance from an arbitrarily assigned
root. The latter example can be considerably extended.

Call a drawing outerplanar if all the vertices lie on the outer face. An outer-
planar graph is a graph admitting an outerplanar drawing (this definition does
not depend on whether straight-line or curved drawings are considered). The
following fact is illustrated by Fig. 2.

Lemma 3 (Felsner, Liotta, and Wismath [3]). Outerplanar graphs are
track drawable.

Lemma 4. For any track drawable graph G on n vertices, it holds that
ṽ(G) ≥ n/2.

Proof. Let π be a track drawing of G with tracks t1, . . . , ts, lying in the plane
in this order. It is practical to assume that t1, . . . , ts are parallel straight-line
segments (rather than unbounded lines) containing all the vertices of π. Let �
be a horizontal line. Consider two redrawings of π.

On Collinear Sets in Straight-Line Drawings 303

t1

t2

t3

t4

t5

Fig. 2. An outerplanar graph and its track drawing

To make a redrawing π′, we put t1, t3, t5, . . . next to each other on �. For each
even index 2i, we drop a perpendicular p2i to � between the segments t2i−1 and
t2i+1. We then put each t2i on p2i so that t2i is in the upper half-plane if i is
odd and in the lower half-plane if i is even. It is clear that such a relocation
can be done so that π′ is crossing-free (the whole procedure can be thought of
as sequentially unfolding each strip between consecutive layers to a quadrant of
the plane, see the left side of Fig. 3).

It is clear that the vertices on � form a free collinear set: if the neighboring
vertices of t2i−1 and t2i+1 are displaced, then p2i is to be shifted appropriately.

In the redrawing π′′ the roles of odd and even indices are interchanged, that is,
t2, t4, t6, . . . are put on � and t1, t3, t5, . . . on perpendiculars (see the right side of
Fig. 3). It remains to observe that at least one of the inequalities ṽ(G, π′) ≥ n/2
and ṽ(G, π′′) ≥ n/2 must be true. ��

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

Fig. 3. Proof of Lemma 4: two redrawings of the graph from Fig. 2

Combining Lemmas 3 and 4 with Theorem 2, we obtain another proof for the
following result.

Corollary 2 (Goaoc et al. [7]). For any outerplanar graph G with n vertices,
it holds that fix(G) ≥√

n/2.

304 A. Ravsky and O. Verbitsky

Fig. 4. A 2-tree and its folded drawing

In fact, Theorem 2 has a much broader range of application. The class of
2-trees is defined recursively as follows:

– the graph consisting of two adjacent vertices is a 2-tree;
– if G is a 2-tree and H is obtained from G by adding a new vertex and

connecting it to two adjacent vertices of G, then H is a 2-tree.

A graph is a partial 2-tree if it is a subgraph of a 2-tree. It is well known that the
class of partial 2-trees coincides with the class of graphs with treewidth at most
2. Any outerplanar graph is a partial 2-tree, and the same holds for series-parallel
graphs.

Theorem 3. If G is a partial 2-tree with n vertices, then ṽ(G) > n/30.

Corollary 3. For any partial 2-tree G with n vertices, it holds that
fix(G) ≥√

n/30.

In the rest of this section we briefly discuss the proof of Theorem 3. It is not
hard to show that any partial 2-tree G with more than one vertex is a spanning
subgraph of some 2-tree H , that is, VG = VH . The following lemma, therefore,
shows that it is enough to prove Theorem 3 for 2-trees.

Lemma 5. If G is a spanning subgraph of a planar graph H, then ṽ(G) ≥ ṽ(H).

Proof. Any drawing of H specifies a drawing of G if we just ignore the edges of
H absent in G. It suffices to note that, if X is a free set of collinear vertices in
a drawing of H , then X stays free in the corresponding drawing of G. ��
Thus, from now on we suppose that G is a 2-tree. Call two triangles of G neigh-
bors if they share an edge. We consider plane drawings of G having a special
shape. Specifically, we call a drawing folded if for any two neighboring triangles,
one contains the other. Thus, a sequence of triangles sharing an edge forms a
containment chain, see Fig. 4. Folded drawings can be obtained by the following
recursive procedure. Suppose that G is obtained from a 2-tree G′ by attaching
a new vertex v to an edge e of G′. Then, once G′ is drawn, we put v inside
that triangular face of the current drawing of G′ whose boundary contains e.
The procedure can be implemented in many ways giving different outputs; all of
them are called folded drawings.

Using an inductive argument on the “depth” of a folded drawing (i.e., on
the maximum number of triangles in a containment chain), we can prove the
following fact.

On Collinear Sets in Straight-Line Drawings 305

Lemma 6. Every collinear set of vertices in a folded drawing is free.

Lemma 6 reduces our task to constructing folded drawings with linear number
of collinear vertices. We will need some notions.

Call v ∈ VG a leaf vertex if it has degree 2. The number of leaf vertices in
G will be denoted by t1(G). Call a triangle T in G linking if it has exactly two
neighbors and they are edge-disjoint. In other words, T shares one of its edges
with no other triangle and shares each of the other two edges with exactly one
triangle. The number of linking triangles in G will be denoted by t2(G). For the
graph G in Fig. 4, t1(G) = 5 and t2(G) = 2. Call a vertex interposed if it belongs
only to linking triangles.

Lemma 7. If G is a 2-tree with n ≥ 3 vertices, then 4t1(G) + t2(G) > n.

Lemma 7 implies that we always have t1(G) = Ω(n) or t2(G) = (1 − o(1))n.
To prove that ṽ(G) = Ω(n), it now suffices to show that we can always make
a constant fraction of all leaf vertices collinear and we also can make at least
t2(G)− εn interposed vertices collinear. This is ensured by the next two lemmas.

Lemma 8. Every 2-tree G has a folded drawing with at least 2
3 t1(G) collinear

leaf vertices.

Lemma 9. Every 2-tree G with n vertices has a folded drawing with more than
t2(G) − 4

5n collinear interposed vertices.

As a direct consequence of Lemmas 6–9, we obtain a bound ṽ(G) ≥ n/35, which
is weaker than the bound ṽ(G) ≥ n/30 stated in Theorem 3. The latter bound
is based on a hybrid of the drawings provided by Lemmas 8 and 9. The details
will appear in a full version of the paper and can currently be found in [14].

5 Further Questions

1. How far or close are parameters ṽ(G) and v̄(G)? It seems that a priori we
cannot even exclude equality.

2. Are there graphs with v̄(G) = O(
√

n)? If so, this could be considered a
strengthening of the examples of graphs with fix(G) = O(

√
n) given in [1,7,11].

Are there graphs with, at least, ṽ(G) = O(
√

n)? If not, by Theorem 2 this would
lead to an improvement of Bose et al.’s bound (2).

3. By Theorem 3, we have ṽ(G) ≥ n/30 for any graph G of tree-width no
more than 2. For Halin graphs, whose tree-width can attain 3, we can show that
ṽ(G) ≥ n/2. For which other classes of graphs do we have ṽ(G) = Ω(n) or, at
least, v̄(G) = Ω(n)? Classes of planar graphs with bounded tree-width or with
bounded vertex degrees are of especial interest.

Acknowledgement. We thank anonymous referees for their useful comments.

306 A. Ravsky and O. Verbitsky

References

1. Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A
polynomial bound for untangling geometric planar graphs. Discrete and Compu-
tational Geometry 42, 570–585 (2009)

2. Cibulka, J.: Untangling polygons and graphs. Discrete and Computational Geom-
etry 43, 402–411 (2010)

3. Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer
grids in two and three dimensions. J. Graph Algorithms Appl. 7, 363–398 (2003)

4. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Dis-
crete Mathematics 204, 203–229 (1999)

5. Garćıa, A., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic
plane graphs on given point sets. Comput. Geom. 42, 913–922 (2009)

6. Giménez, O., Noy, M.: Counting planar graphs and related families of graphs. In:
Surveys in Combinatorics 2009, pp. 169–210. Cambridge University Press, Cam-
bridge (2009)

7. Goaoc, X., Kratochv́ıl, J., Okamoto, Y., Shin, C.S., Spillner, A., Wolff, A.: Untan-
gling a planar graph. Discrete and Computational Geometry 42, 542–569 (2009)

8. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Amer. Math. Monthly 98, 165–166 (1991)

9. Grünbaum, B., Walther, H.: Shortness exponents of families of graphs. J. Combin.
Theory A 14, 364–385 (1973)

10. Jackson, B.: Longest cycles in 3-connected cubic graphs. J. Combin. Theory B 41,
17–26 (1986)

11. Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Untangling planar
graphs from a specified vertex position — Hard cases. Discrete Applied Mathemat-
ics 159, 789–799 (2011)

12. Mohar, B., Thomassen, C.: Graphs on surfaces. The John Hopkins University Press,
Baltimore (2001)

13. Pach, J., Tardos, G.: Untangling a polygon. Discrete and Computational Geome-
try 28, 585–592 (2002)

14. Ravsky, A., Verbitsky, O.: On collinear sets in straight-line drawings. E-print
(2011), http://arxiv.org/abs/0806.0253v3

15. Verbitsky, O.: On the obfuscation complexity of planar graphs. Theoretical Com-
puter Science 396, 294–300 (2008)

http://arxiv.org/abs/0806.0253v3

From Few Components to an Eulerian Graph

by Adding Arcs

Manuel Sorge�, René van Bevern��, Rolf Niedermeier, and Mathias Weller� � �

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany

{manuel.sorge,rene.vanbevern,
rolf.niedermeier,mathias.weller}@tu-berlin.de

Abstract. Eulerian Extension (EE) is the problem to make an arc-
weighted directed multigraph Eulerian by adding arcs of minimum to-
tal cost. EE is NP-hard and has been shown fixed-parameter tractable
with respect to the number of arc additions. Complementing this result,
on the way to answering an open question, we show that EE is fixed-
parameter tractable with respect to the combined parameter “number
of connected components in the underlying undirected multigraph” and
“sum of indeg(v) − outdeg(v) over all vertices v in the input multigraph
where this value is positive.” Moreover, we show that EE is unlikely to
admit a polynomial-size problem kernel for this parameter combination
and for the parameter “number of arc additions”.

1 Introduction

A directed (multi-)graph G is called Eulerian if it contains a tour that traverses
every arc in G exactly once. We study the following NP-complete decision prob-
lem:

Eulerian Extension (EE)
Input: A directed multigraph G = (V, A), a positive integer ωmax, and a

weight function ω : V × V → [0, ωmax] ∪ {∞}.
Question: Is there an Eulerian extension for G of weight at most ωmax?

Herein, an Eulerian extension is a multiset E over V ×V such that G′ = (V, A∪E)
is Eulerian. In the weight of an Eulerian extension, multiple arcs are counted
multiple times, according to their multiplicity. Recently, there has been renewed
interest in Eulerian Extension for at least two reasons. First, there are inter-
esting applications (of special cases) of Eulerian Extension for sequencing
problems [10]. Second, it has been pointed out that Eulerian Extension is
“parameterized equivalent” to Rural Postman [4], a famous arc routing prob-
lem in combinatorial optimization [6, 12]. The main focus of this paper is on

� Supported by the DFG, project AREG, NI 369/9 and project PABI, NI 369/7.
�� Supported by the DFG, project AREG, NI 369/9.

� � � Supported by the DFG, project DARE, NI 369/11.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 307–318, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

308 M. Sorge et al.

assessing the parameterized computational complexity of EE with respect to
the parameter c denoting the number of connected components of the underly-
ing undirected multigraph.

We are aware of only two papers explicitly dedicated to studying the parame-
terized complexity of Eulerian Extension [4, 17]. Dorn et al. [4] studied the
“standard parameterization” by the number k of extension arcs and their main
result was to show that Eulerian Extension is fixed-parameter tractable with
respect to k. Motivated by early work of Orloff [14, 15] and Frederickson [8, 9], we
complement the previous considerations and start a deeper study of Eulerian

Extension parameterized by the component parameter c. Frederickson [8, 9]
showed that Eulerian Extension is polynomial-time solvable for constant c.
However, in his algorithm c influences the degree of the polynomial and so this
only shows containment in the parameterized complexity class XP; it does not
yield fixed-parameter tractability with respect to parameter c. Already in the
1970’s Lenstra and Kan [12] and Orloff [15] pointed out the importance of the
“complexity parameter” c. Indeed, to date, it is open whether Eulerian Ex-

tension can be solved in (fixed-parameter tractable) time f(c) · nO(1) for an
n-vertex multigraph, f being an arbitrary computable function exclusively de-
pending on c. In companion work [17], we related Eulerian Extension to a
matching variant and derived fixed-parameter tractability with respect to c on
some special graph classes.

Our Results. We make some partial progress on resolving the complexity ques-
tion for Eulerian Extension with respect to the parameter c. More specif-
ically, we show that Eulerian Extension is fixed-parameter tractable with
respect to the combined parameter (b, c), where b denotes the sum of all positive
values indeg(v) − outdeg(v) over all vertices in the multigraph. See Orloff [15]
for an early indication towards the relevance of this combined parameter. No-
tably, both b and c are upper-bounded by k and should typically be significantly
smaller than k for most input multigraphs. In addition, we show that there is
no polynomial-size problem kernel for the single parameters b, c, or k, or the
combined parameter (b, c), unless coNP ⊆ NP/poly. To this end, we introduce
the NP-hard Switch Set Cover, a combinatorial problem of potentially inde-
pendent interest. Due to the lack of space, many details are deferred to a full
version of the paper.1

Preliminaries. We consider directed multigraphs G = (V, A), where V (G) := V is
the set of vertices and A(G) := A is the multiset of arcs. We use n := |V | and
m := |A|. A trail W in G is a sequence of arcs in G such that each arc ends in
the same vertex as the next arc starts in and such that no arc is used more often
than it is present in G. We use V (W) and A(W) to refer to the set of vertices in
which arcs of W start or end, and the multiset of arcs of W , respectively. A path
in the multigraph G is a trail that traverses every vertex of G at most once. A
closed trail that traverses its initial and terminal vertex exactly twice and every
other vertex of G at most once is called a cycle. A directed multigraph G is said

1 Further details can also be found in the first author’s diploma thesis [16].

From Few Components to an Eulerian Graph by Adding Arcs 309

to be weakly connected if every pair of vertices u, v ∈ V (G) is weakly connected,
that is, there is a path with the endpoints u, v in the underlying undirected multi-
graph of G. For brevity, we also write connected instead of weakly connected.
A connected component is a maximal vertex set C such that G[C] is connected.
We use balance(v) := indeg(v) − outdeg(v) to denote the balance of a vertex v
in G and I+

G and I−G to denote the set of all vertices v in G with balance(v) > 0
and balance(v) < 0, respectively. A vertex v is balanced if balance(v) = 0.

We use the following characterization of Eulerian multigraphs, due to Euler: A
multigraph is Eulerian if and only if all arcs are contained in the same connected
component and all vertices are balanced.

Our results are in the context of parameterized complexity, which is a two-
dimensional framework for studying computational complexity [5, 7, 13]. A pa-
rameterized problem L ⊆ Σ∗ ×N is called fixed-parameter tractable (FPT) with
respect to a parameter k if (x, k) ∈ L is decidable in f(k)·|x|O(1) time, where f is
a computable function depending only on k. For a language L ⊆ Σ∗×N, a reduc-
tion to a problem kernel is a function that takes as input an instance (x, k) and,
in time polynomial in |x|+k, outputs an instance (x′, k′) such that (x′, k′) ∈ L ⇔
(x, k) ∈ L, |x′| ≤ f(k), and k ≤ g(k). Here, f and g are computable functions
solely depending on k; f is called the size of the problem kernel. A polynomial-
parameter polynomial-time many-one reduction (≤PPP

m -reduction) from a param-
eterized problem L to a parameterized problem L′ is a polynomial-time com-
putable function f such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′, where (x′, k′) := f(x, k),
k′ ≤ p(k), and p is a polynomial depending only on k. If such a reduction exists,
we write L≤PPP

m L′.

2 Limiting Imbalance Helps

The fixed-parameter tractability of Eulerian Extension with respect to the
number c of connected components in the input multigraph is an open question
that arose implicitly in work of Frederickson [8, 9]. While we cannot answer
this question, this section presents a fixed-parameter algorithm for EE that,
additionally to the parameter c, uses the sum b of all positive balances of vertices
as parameter. An early indication that both parameters influence the complexity
of EE was given by Orloff [15].

Theorem 1. Eulerian Extension is solvable in O(4c log(bc2)n2(b2 +n log n)+
n2m) time. Here, c is the number of connected components in the input multi-
graph, and b is the sum of all positive balances of vertices in the input multigraph.

To prove Theorem 1, we consider a restricted version of EE that takes as input,
additionally to a regular EE-instance, an “advice” that determines how compo-
nents in the input multigraph are to be connected. Then, we will see that the
number of ways to connect two given components is upper-bounded in terms
of b.

More details follow. Let G = (V, A) be a directed multigraph. By CG we denote
the component graph, which is a clique whose vertices one-to-one correspond to

310 M. Sorge et al.

the weakly connected components of G. A hint for G is an undirected path
or cycle t of length at least one in the component graph CG together with the
information whether t shall form a cycle or a path in an Eulerian extension of G.2

We call the corresponding hints cycle hints and path hints, respectively. We say
a set of hints P is an advice to the multigraph G if the hints are edge-disjoint.3

For a trail t in the graph (V, V × V), we define CG(t) as the trail in CG that is
obtained by making t undirected and, for every connected component C of G,
substituting every maximum length subtrail t′ of t with V (t′) ⊆ C by the vertex
in CG corresponding to C. We say that a path p in the graph (V, V ×V) realizes
a path hint h if CG(p) = h and the initial vertex of p has positive balance and
the terminal vertex has negative balance in G. We say that a cycle c in the
graph (V, V × V) realizes a cycle hint h if CG(c) = h. We say that an Eulerian
extension E heeds the advice P if it can be decomposed into a number of paths
and cycles that realize all hints in P . An advice P is connecting if the hints
in P connect every pair of vertices in CG. Now consider the following restricted
version of EE:

Eulerian Extension with Minimal Connecting Advice (EEA)
Input: A directed multigraph G = (V, A), an integer ωmax, a weight func-

tion ω : V × V → [0, ωmax] ∪ {∞}, and a minimal connecting advice P .
Question: Is there an Eulerian extension E of G that is of weight at

most ωmax and heeds the advice P?

Section 2.1 first shows how to solve EE with help of an algorithm for EEA:

Lemma 1. EE can be solved by solving O(c4c−2) instances of EEA, where each
instance is computable in O(c3 + n + m) time.

Then, Section 2.2 shows an algorithm that solves EEA in the following time:

Proposition 1. EEA is solvable in O(4c log bn2(b2 + n log n) + n2m) time.

Then, Theorem 1 follows by combining Lemma 1 and Proposition 1. In order
to prove these, we first present two transformations that, applied to the input
multigraph, allow us to assume that each vertex has balance between −1 and 1
and to assume that weight functions abide the triangle inequality. For each given
transformation, we show that it is correct, that is, it transforms yes-instances
and only yes-instances to yes-instances.

Transformation 1 (Splitting Vertices). Let the multigraph G = (V, A), the
weight function ω, and the maximum weight ωmax constitute an instance of EE.
Compute a new instance as follows: Search for a vertex v with | balance(v)| > 1,
and introduce a new vertex u. If balance(v) > 0, choose an arbitrary arc (w, v),
delete it, and add the arc (w, u). Proceed analogously if balance(v) < 0. Add

2 The extra information is necessary because a hint to a path may be a cycle in CG.
3 Note the difference between advice in our sense and advice in computational com-

plexity theory. There, a piece of advice applies to every instance of a specific length.

From Few Components to an Eulerian Graph by Adding Arcs 311

the arcs (u, v), (v, u). Finally, define a new weight function ω′ for each pair of
vertices x, y ∈ V as follows.

ω′(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if (x = u ∧ y = v) ∨ (x = v ∧ y = u),
ω(v, y) if x = u,

ω(x, v) if y = u,

ω(x, y) otherwise

Lemma 2. Transformation 1 is correct. It can exhaustively be applied in O(n2m)
time. The resulting instance only contains vertices v with | balance(v)| ≤ 1.

A further preprocessing routine allows us to assume that weight functions abide
the triangle inequality.

Transformation 2 (Shortest-Path Preprocessing). For an input instance
of EE consisting of the directed multigraph G = (V, A), the weight function ω
and the maximum weight ωmax, derive a new instance by computing a new weight
function ω′, where for each u, v ∈ V , ω′(u, v) is the weight of a shortest path
from u to v in the graph (V, V × V).

Lemma 3. Transformation 2 is correct and can be applied in O(n3) time.

Observe that the number of components and the sum of all positive balances of
vertices in an instance of EE are invariant under Transformation 1 and Trans-
formation 2. In the following we assume all instances of EE and EEA to be
exhaustively preprocessed using Transformation 1 and Transformation 2.

2.1 Generating Advice for Eulerian Extension

This section shows how to generate advice for EE in order to solve EE with the
help of an algorithm for EEA, thus proving Lemma 1. To prove Theorem 1, it
then remains to prove Proposition 1, that is, to present an algorithm for EEA;
this is done in Section 2.2. To solve EE using an algorithm for EEA, we simply
try every minimal connecting advice and solve the resulting instances of EEA.
Exploiting the structure obtained by Transformations 1 and 2, one can show
that we only have to try very restricted forms of advice:

Lemma 4. Let G be a directed multigraph and let E be a minimum-weight Eu-
lerian extension with respect to a weight function ω : V × V → [0, ωmax] ∪ {∞}
for G. There is a minimal connecting advice P = {h1, . . . , hi} such that

(i) E heeds P and
(ii) the graph defined by the union of all trails h1, . . . , hi without their initial

vertices does not contain a cycle.

Using this restriction, we can enumerate all forests in CG and try all possibilities
to extend them to an advice. Thus, we can prove Lemma 1.

312 M. Sorge et al.

Proof (Lemma 1). We give an algorithm that decides EE by solving O(4c log(c2))
instances of EEA, each of which can be generated in O(c3 +n+m) time. Let the
directed multigraph G = (V, A) with c connected components and the weight
function ω : V × V → [0, ωmax] ∪ {∞} constitute an instance of EE.

We simply generate all possible pieces of advice and solve the so-obtained
EEA-instances. If one of these instances is a yes-instance, then, clearly, the
original instance is a yes-instance. Also, for every yes-instance of EE, there is
an advice derivable from a solution to the instance because of Lemma 4.

Concerning the generation of the advices, by Lemma 4 we may assume that
the hints without their initial vertices form a forest in CG. Thus, we may simply
enumerate all forests contained in CG, partition their edges into at most c hints
and try all possibilities to reinsert the initial vertices back onto the hints. To
enumerate all forests, we first partition the vertices into at most c cells (there
are at most cc such partitions), then enumerate all spanning trees in each cell
(in each cell there are at most cc−2 spanning trees [2] that can be numerated in
O(cc−2 + c2) time [11]).

Hence, in total, O(cccc−2) forests are computed. We partition the edges of
each forest into at most c hints (there are at most cc partitions for each for-
est), extend every hint by adding an initial vertex (for each of the c hints,
there are c possibilities, yielding cc possibilities in total) and check whether this
yields a valid advice—that is, we check whether the hints are paths or cycles
and whether the advice is connecting. In total, we generated O(cccc−2cccc) ⊆
O(c4c) = O(4c log(c2)) advices. The validity check for each advice can be carried
out in O(c3) time. Hence, each instance can be generated in O(c3 +n+m) time.

��
2.2 Solving Eulerian Extension with Advice

Having shown how EE can be solved using EEA, it remains to present an algo-
rithm for EEA to solve EE. To this end, this section proves Proposition 1. This
will conclude the proof of Theorem 1. To obtain an algorithm for EEA, we use
the fact that EE on connected multigraphs is solvable in O(n3 log n) time [4].
Hence, given an instance of EEA, we can solve it by realizing all hints given in the
given minimal connecting advice and then solving EE on the resulting connected
multigraph. In this approach, the parameter b helps to bound the number of pos-
sible ways we have to try to realize each hint. An algorithm that achieves the
running time given in Proposition 1 can simply try each combination of optimal
realizations of each hint in the given advice and then solve the resulting instance
comprising a connected multigraph via the polynomial-time algorithm of Dorn
et al. [4]. We denote a call to this algorithm by solve connected(G, ω), where G
is a connected multigraph and ω : V ×V → [0, ωmax]∪{∞} is a weight function.

Realizing Hints. First, we show how to realize a given path hint using a path
between two given vertices. Then, we can try all possible initial and terminal
vertices of such a path in order to optimally realize a path hint. For a directed
multigraph G = (V, A) and a weight function ω : V ×V → [0, ωmax]∪{∞}, let p

From Few Components to an Eulerian Graph by Adding Arcs 313

Algorithm SolveEEA. Solving EEA.
Input: A directed multigraph G = (V, A), a weight function ω : V × V →

[0, ωmax] ∪ {∞}, a cycle-less advice P , and an arc-set E.
Output: A minimum-weight Eulerian extension for G that heeds the advice P .

1 if P = ∅ then return E ∪ solve connected(G, ω);
2 else
3 h ← a hint in P ;
4 CA ← connected component of G corresponding to the initial vertex of h;
5 CΩ ← connected component of G corresponding to the terminal vertex of h;
6 MinEE ← ∅;
7 found solution ← false;

8 for (u, v) ∈ I+
G × I−

G such that u ∈ CA ∧ v ∈ CΩ or vice versa do
9 p ← minpath(G, ω, h, u, v);

10 ActEE ← SolveEEA(G + p, ω, P \ {h}, E ∪ A(p));
11 if (ω(ActEE) < ω(MinEE)) ∨ (found solution = false) then
12 found solution ← true;
13 MinEE ← ActEE;

14 return MinEE;

be a path in CG, let u be a vertex in the component of G that corresponds to
the initial vertex of p, and let v be a vertex in the component that corresponds
to the terminal vertex of p. Define minpath(G, ω, p, u, v) as a shortest path s
from u to v in the complete graph (V, V × V) such that CG(s) = p.

In the following, we show that the minpath function indeed yields realizations
of hints that can be assumed to be part of an optimal Eulerian extension and
how it can be computed in O(n2) time.

Observation 1. Let E be an Eulerian extension for the multigraph G that heeds
the advice P , let P contain a path-hint h, and let ω be a weight function V ×V →
[0, ωmax] ∪ {∞}. Then, there is an Eulerian extension E′ such that E′ heeds
the advice P , ω(E′) ≤ ω(E), and A(minpath(G, ω, h, u, v)) ⊆ E′. Here, u, v are
vertices contained in the connected components of G that correspond to the initial
and terminal vertices of h, respectively.

Exploiting the structure obtained by Transformations 1 and 2, we can show:

Lemma 5. minpath(G, ω, p, u, v) is computable in O(n2) time.

Having shown how to realize path hints, we can show how to realize all cycle
hints in an advice P in O(|P |n3) time.

Lemma 6. For a given directed multigraph G, a weight function ω : V × V →
[0, ωmax] ∪ {∞}, and an advice P , realizations of all cycle hints in P are com-
putable in O(|P |n3) time.

314 M. Sorge et al.

Solution Algorithm. We now give an algorithm for Eulerian Extension with

Minimal Connecting Advice, thus proving Proposition 1 and, therefore, prov-
ing Theorem 1.

Proof (Proposition 1). Given an instance of EEA, we first compute realizations
of all cycle hints in the advice P in O(|P |n3) time (see Lemma 6), add them to G
and remove all cycle hints from P . Hence, in the following, we assume that P only
contains path hints. Then, we apply Algorithm SolveEEA that solves instances of
EEA whose advice does not contain cycle hints. We first look at the correctness
of Algorithm SolveEEA and then analyze the overall running time.

Consider the return value E′ of Algorithm SolveEEA when called with an
initially empty arc set E and an instance of EEA consisting of the multi-
graph G, the weight function ω, and minimal connecting advice P without cy-
cle hints. For every hint in P there is realization in E′, that is, E′ connects
all connected components of G. Because of the call to solve connected(), the
set E′ also makes every vertex in G balanced. Hence, E′ is an Eulerian exten-
sion for G that heeds P . Also, E′ is of minimum weight among all Eulerian
extensions for G that heed the advice P . This is because, first, the solution
of solve connected() is weight-minimal and, second, because, by Observation 1,
we may assume that in a minimum-weight Eulerian extension all path hints h
are realized by minpath(G, ω, h, u, v) for appropriate vertices u, v.

Concerning the running time of the overall procedure, we have to preprocess
the input instance using Transformation 1 and Transformation 2 (recall that we
assume that all instances are preprocessed accordingly). By Lemmas 2 and 3 this
takes O(n3 + n2m) time. Next, all cycle hints are realized. By Lemma 6, this
is possible in O(|P |n3) time. Finally, we apply Algorithm SolveEEA: Obviously
its recursion depth is at most |P |. Because of b ≥ |I+

G | = |I−G |, every call of
Algorithm SolveEEA yields at most b2 recursive calls. This means that the sum of
all calls is b2|P |. The running time of one call is dominated by either the computa-
tion of b2 minpath instances which takes O(b2n2) time (Lemma 5) or the computa-
tion of solve connected() which takes O(n3 log n) time [4]. Thus, Algorithm Solve-
EEA can be executed in O(b2|P |(b2n2 + n3 log n)) = O(22|P | log(b)n2(b2 + n log n))
time. Since P is a minimal connecting advice, we have |P | ≤ c, and thus the over-
all procedure runs in O(22c log(b)n2(b2 +n log n)+ cn3 +n2m) = O(4c log(b)n2(b2 +
n log n) + n2m) time. ��

3 Non-existence of Polynomial-Size Problem Kernels

In this section, we prove the following theorem.

Theorem 2. Eulerian Extension does not admit a polynomial-size problem
kernel with respect to the parameters

(i) minimum number k of arcs in an Eulerian extension E with ω(E) ≤ ωmax,
(ii) sum b of positive balances,
(iii) number c of connected components in the input multigraph, or
(iv) the combined parameter (b, c),
unless coNP ⊆ NP/poly.

From Few Components to an Eulerian Graph by Adding Arcs 315

Since parameters b and c are upper-bounded by k, a polynomial-size problem
kernel with respect to the parameters b, c, or the combined parameter (b, c) would
imply a polynomial-size problem kernel with respect to the parameter k. Thus,
we only have to show the theorem for the parameter k. Instead of considering
the general problem EE, we show that Theorem 2 holds even for the following,
more restricted problem variant. Since this is a special case of EE, the hardness
result also holds for EE.

2-Dimensional Eulerian Extension (2DEE)
Input: A directed graph G = (V, A) with V ⊆ N × N.
Question: Is there an Eulerian extension E for G with ∀(u, v) ∈ E : u � v?

Herein, (u1, u2) � (v1, v2) means u1 ≤ v1 and u2 ≤ v2 and we call (u, v) ∈ V ×V
an allowed arc if u � v. The 2DEE problem stems from an application in sequenc-
ing [10]. In order to prove that 2DEE does not admit a polynomial-size problem
kernel, we use an intermediate problem called Switch Set Cover (SSC). To
define SSC, we use the following terminology. Let U be a non-empty set. A
U -position is a multiset with elements drawn from the universe U . A U -switch
is a multiset whose elements are U -positions. When the set U is clear from the
context, we simply speak of positions and switches.

Switch Set Cover (SSC)
Input: A set U and s switches each containing a number of positions.
Question: Is it possible to choose exactly one position in each switch such

that each element of U is contained in at least one of the chosen positions?

We show that we can derive a polynomial-size problem kernel for SSC with
respect to the combined parameter (s, |U |) from a polynomial-size problem kernel
for 2DEE with respect to the parameter k. This is done using a ≤PPP

m -reduction.

Proposition 2. SSC parameterized by (s, |U |) is ≤PPP
m -reducible to 2DEE pa-

rameterized by k.

We also use the fact that both 2DEE and SSC are NP-complete. For 2DEE

this is proven by Höhn et al. [10]. The same can be shown for SSC using a
simple reduction from the well-known NP-hard Set Cover problem. Given a
polynomial-size problem kernel for 2DEE, and an instance of SSC, we derive
a problem kernel for SSC as follows. First, we construct an equivalent instance
of 2DEE using the reduction from Proposition 2. Then, we reduce this instance
of 2DEE to a polynomial-size problem kernel and transform the kernel-instance
back to an equivalent instance of SSC using one of its NP-hardness reductions.
This procedure yields a polynomial-size problem kernel for SSC because the
first reduction increases the parameter at most polynomially, and the second
reduction increases the instance size at most polynomially. However, we also
prove that a polynomial-size problem kernel is unlikely to exist for SSC.

Proposition 3. Switch Set Cover does not admit a polynomial-size problem
kernel with respect to the combined parameter (s, |U |), unless coNP ⊆ NP/poly.

Consequently, in order to prove Theorem 2, we have to prove Proposition 2
and Proposition 3. To prove Proposition 3, we use a framework introduced by

316 M. Sorge et al.

Bodlaender et al. [1]: An or-composition algorithm for a parameterized prob-
lem L ⊆ Σ∗ × N is an algorithm that

(1) receives a number of instances (I1, k), . . . , (Im, k),
(2) runs in time that is polynomial in

∑m
i=1 |Ii| + k, and

(3) outputs an instance (I∗, k′), such that k′ is bounded by a polynomial in k
and (I∗, k′) ∈ L if and only if (Ij , k) ∈ L for some 1 ≤ j ≤ m.
A parameterized problem is called or-compositional if there is an or-composition
algorithm for it. Bodlaender et al. [1] showed that if an or-compositional parame-
terized problem admits a polynomial-size problem kernel, then coNP ⊆ NP/poly.

To prove that SSC is or-compositional with respect to the parameter (s, |U |),
we employ the following strategy, introduced by Dom et al. [3]: First, we prove
that Switch Set Cover is fixed-parameter tractable. More specifically, we
show that it is solvable in O∗(2s|U|) time.4 Then, in the composition algorithm,
if there are m ≥ 2s|U| input instances, then we can directly solve all the instances
in O∗(m2s|U|) ⊆ O∗(m2) time and return a trivial yes- or no-instance depending
on whether any of the m instances is a yes-instance. Thus, we may then assume
that m ≤ 2s|U| and, hence, log m ≤ s|U |. We exploit this to create an instance-
chooser gadget by introducing log m new switches and s log m new elements
into the output instance, increasing the parameter at most polynomially since
log m ≤ s|U |. Every possible way to choose positions in these new switches will
correspond to exactly one original instance that then is a yes-instance if the
composite instance is a yes-instance. If, however, there is a yes-instance among
the original instances, then the composite instance can be solved by simply
configuring the chooser for this instance. We obtain the following result:

Observation 2. Switch Set Cover is or-compositional with respect to the
combined parameter (s, |U |).
In order to prove that EE has no polynomial-size problem kernel, according to
our strategy, it remains to show the following:

Observation 3. Switch Set Cover can be solved in O∗(2s|U|) time.

Proof. An algorithm to solve SSC may simply try each combination of positions
for all the switches: We may assume that in every switch there are at most 2|U|

positions because positions containing the same elements as other positions may
be deleted and multiple copies of one element in one position may also be deleted.
Thus, there are at most (2|U|)s combinations of positions. ��
Next, we prove Proposition 2 by briefly sketching a ≤PPP

m -reduction from SSC

parameterized by the number of elements |U | and the number of switches s
to 2DEE parameterized by the number of extension arcs k. Since switches and
positions are multisets, we can assume without loss of generality that all positions
contain exactly |U | elements. If this is not already the case, we can simply repeat
elements or delete repeated elements.

4 Here, O∗ suppresses polynomial factors.

From Few Components to an Eulerian Graph by Adding Arcs 317

S

1
2
2

1
1
2

(a) A switch S in an in-
stance of SSC

u

v

1

2

2

1

1

2

(b) A gadget in the constructed instance
of 2DEE corresponding to S

Fig. 1. The imbalanced vertices u and v are part of the frame. 2DEE only allows
inserting arcs pointing to the lower left. Therefore, vertices in distinct white squares
are independent in the sense that no arcs may be inserted between them. Hence, only
one of the groups of three vertices in the white squares can be connected to the frame
and an algorithm for 2DEE has to choose which group to connect, thus choosing a
position for the switch S. Note that, since u and v are imbalanced, this gadget requires
adding at least one arc. Similarly to the pairwise independence of the white squares,
we ensure that all switch gadgets are pairwise independent.

The reduction uses the fact that, in 2DEE, all components of the input have to
be connected. Analogously, all elements of an SSC instance have to be covered.
We exploit this analogy by modeling elements as connected components. We
represent each of the elements in U by a different component and introduce
a special component, the “frame”, to which the element-components can be
connected. We use the geometrical restrictions of 2DEE to only allow connecting
elements of exactly one position for each switch. To this end, consider a switch S.
We introduce a gadget for S that allows connecting all elements of exactly one
position of S to the frame (see Figure 1). Each switch is represented by one of
these gadgets and we use the restrictions of 2DEE to ensure that each of these
gadgets is extended independently, thus representing the choice of a position for
each of the switches in the original instance. We note that a similar notion of
independence is also used in the NP-hardness proof for 2DEE by Höhn et al.
[10].

The described reduction runs in polynomial time. Furthermore, since each
position contains at most |U | elements, each gadget representing a switch allows
for at most |U | + 1 arcs added. Hence, at most s|U | + s arcs have to be added.
Hence, the presented construction constitutes a ≤PPP

m -reduction from SSC to
2DEE. Together with Proposition 3 and the NP-hardness of SSC, Theorem 2
follows.

318 M. Sorge et al.

4 Conclusion

The most important remaining open question is to determine whether Eulerian

Extension is fixed-parameter tractable solely with respect to the number of weakly
connected components. Furthermore, it seems worthwhile to search for more effi-
cient algorithms for the special case 2-Dimensional Eulerian Extension (see
Section 3). It would also be interesting to see whether the newly introducedSwitch

SetCover turns out be useful in other contexts. Having (almost) excluded the pos-
sibility of polynomial-size many-one problem kernels, it seems tempting to analyze
the potential existence of Turing problem kernels. Finally, the algorithms presented
and those of previous work [4] appear to be not only of theoretical interest, making
it promising to work on implementations and experiments with these algorithms.

References

[1] Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)

[2] Cayley, A.: A theorem on trees. Quart. J. Math. 23, 376–378 (1889)
[3] Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility Through Colors and IDs.

In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

[4] Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient Algorithms for Eule-
rian Extension. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 100–111.
Springer, Heidelberg (2010)

[5] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

[6] Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: The rural
postman problem. Oper. Res. 43(3), 399–414 (1995)

[7] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

[8] Frederickson, G.N.: Approximation Algorithms for NP-hard Routing Problems.
PhD thesis, Faculty of the Graduate School of the University of Maryland (1977)

[9] Frederickson, G.N.: Approximation algorithms for some postman problems.
J. ACM 26(3), 538–554 (1979)

[10] Höhn, W., Jacobs, T., Megow, N.: On Eulerian extensions and their application
to no-wait flowshop scheduling. J. Sched. (to appear, 2011)

[11] Kapoor, S., Ramesh, H.: Algorithms for enumerating all spanning trees of undi-
rected and weighted graphs. SIAM J. Comput. 24, 247–265 (1995)

[12] Lenstra, J.K., Kan, A.H.G.R.: On general routing problems. Networks 6(3), 273–
280 (1976)

[13] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

[14] Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)
[15] Orloff, C.S.: On general routing problems: Comments. Networks 6(3), 281–284

(1976)
[16] Sorge, M.: On Making Directed Graphs Eulerian. Diplomarbeit, Institut für Infor-

matik, Friedrich-Schiller-Universität Jena, Available electronically. arXiv:1101.4283
[cs.DM] (2011)

[17] Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A New View on Rural Post-
man Based on Eulerian Extension and Matching. In: Iliopoulos, C.S. (ed.) IWOCA
2011. LNCS, vol. 7056, pp. 310–322. Springer, Heidelberg (2011)

Recognizing Some Subclasses of Vertex

Intersection Graphs of 0-Bend Paths in a Grid�

Steven Chaplick1, Elad Cohen2, and Juraj Stacho2

1 Department of Computer Science, University of Toronto, 10 Kings College Road,
Toronto, Ontario M5S 3G4, Canada

chaplick@cs.toronto.edu
2 Caesarea Rothschild Institute, University of Haifa, Mt. Carmel, Haifa, Israel 31905

eladdc@gmail.com, stacho@cs.toronto.edu

Abstract. We investigate graphs that can be represented as vertex in-
tersections of horizontal and vertical paths in a grid, known as B0-VPG
graphs. Recognizing these graphs is an NP-hard problem. In light of this,
we focus on their subclasses. In the paper, we describe polynomial time
algorithms for recognizing chordal B0-VPG graphs, and for recognizing
B0-VPG graphs that have a representation on a grid with 2 rows.

1 Introduction

A VPG representation1 of a graph G is a collection of paths of the two-dimensional
grid where the paths represent the vertices of G in such a way that two vertices
of G are adjacent if and only if the corresponding paths share at least one vertex.
We focus on a special subclass of VPG representations.

A B0-VPG representation of G is a VPG representation in which all paths
in the collection have no bends. In other words, it is a representation of G by
the intersections of orthogonal segments of the plane. Here, we emphasize the
grid-based definition in order to focus on some properties of the underlying grid
(e.g. size). A graph is a B0-VPG graph if it has a B0-VPG representation.

Intersection representations of paths on grids arise naturally in the context of
circuit layout problems and layout optimization [18] where a layout is modeled
as paths (wires) on a grid. Often one seeks to minimize the number of times a
wire is bent [3,17] in order to minimize the cost or difficulty of production. Other
times layouts may consist of several layers where the wires on each layer are not
allowed to intersect. This is naturally modeled as the colouring problem on the
corresponding intersection graph.

VPG graphs were defined in [1,2] where, in particular, the subclasses with
bounded number of bends are studied. These classes are shown to have many
connections to other, more traditional graph classes such as interval graphs,
planar graphs, string graphs, segments graphs, circle graphs and circular-arc
graphs. Unfortunately, due to these connections, many natural problems for VPG
graphs are hard. For instance, colouring is NP-hard even for B0-VPG graphs,
� The authors wish to thank Krishnam Raju Jampani, Therese Biedl, and Martin

Charles Golumbic for fruitful discussions in the early stages of this work.
1 Representation by Vertex intersection of Paths in a Grid.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 319–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

320 S. Chaplick, E. Cohen, and J. Stacho

and recognition is NP-hard for both VPG and B0-VPG graphs (for more details
about these and related results, see [2,13,14]).

Thus, in the quest for polynomial algorithms, we need to restrict our attention
further to specific cases with (potentially) useful structure. In this respect, in [8],
certain subclasses of B0-VPG graphs have been characterized and shown to
admit polynomial time recognition; namely split, chordal claw-free, and chordal
bull-free B0-VPG graphs are discussed in [8].

In this paper, we continue this line of research by further investigating two
other subclasses of B0-VPG graphs. In particular, we describe a polynomial
time algorithm for recognizing chordal B0-VPG graphs, and a polynomial time
algorithm for recognizing 2-row B0-VPG graphs, i.e., B0-VPG graphs that can
be represented on a grid with just 2 rows (and arbitrary number of columns).
Note that the former generalizes [8] and one can easily verify that the underlying
grid graph induced by the paths of a chordal B0-VPG graph is, in fact, a tree.

Studying B0-VPG representation of chordal graphs is a natural choice as they
are precisely the intersection graphs of subtrees of a tree, and can be also seen
as the intersection graphs of leaf generated subtrees of a complete binary host
tree [11,16] which by [10] has a near optimal embedding on a grid. Moreover,
the colouring problem can be solved in linear time on chordal graphs (see [7]).
Similarly, the choice of 2-row representation of B0-VPG graphs is a natural one
since when considering embeddings of graphs in grids, one objective is to utilize
as little space as possible; in this context, 2-row representations constitute the
smallest non-trivial case one can study and one that has not been considered
before this work. In the conclusion of the paper, we discuss the complexity of
the colouring problem on such representations (with bounded number of rows).

Both our recognition algorithms are based on essentially the same idea which
follows from the realization that the rows and columns of the grid induce interval
representations. That is, a graph G is a B0-VPG graph if there is a partition
of its vertex set such that each class of the partition induces in G an interval
graph and the connections between the classes follow “certain” structure. There
are two specific problems related to this approach: we need to find the partition
(it is easy to test if each class is an interval graph), and we need an efficient way
to construct a representation of the connection graph of the classes.

We deal with these questions differently in each case. In the case of chordal
B0-VPG graphs, the classes are based on an equivalence relation on the vertices.
The connection graph turns out to be a tree, and we describe an algorithm to
find a layout of this tree which yields a representation of G. In the case of 2-row
B0-VPG graphs, the classes are found by splitting bisimplicial vertices (vertices
whose neighbourhood induces two cliques with no edges between them). The
connection graph of the classes is a planar graph that can be drawn on two
layers without crossings, and this drawing satisfies additional conditions.

The two cases are discussed separately in the following sections. We mostly
follow the definitions and notation from [7] and [19]. In the interest of brevity, we
shall assume some familiarity with chordal graphs, interval graphs, clique paths
(linear orderings of maximal cliques [6]), planar drawings, and PQ-trees [4].

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths 321

A vertex of G is horizontal, resp. vertical in a B0-VPG representation of G if
it is represented by a horizontal, resp. vertical path.

2 Chordal B0-VPG Graphs

In this section, we describe a polynomial time algorithm for recognizing chordal
B0-VPG graph. First, we recall the following lemma from [8].

(2.1) Diamond rule. Let G be the graph with V (G) = {u, v, x, y} and E(G) =
{uv, ux, uy, vx, vy}. Then in every B0-VPG representation of G, the two paths
representing u and v use a common horizontal or a common vertical line.

This inspires the following definition.
Let G be a graph. The binary relation ∼0 on V (G) is defined as follows:

u ∼0 v ⇐⇒ uv ∈ E(G) and ∃x, y ∈ N(u) ∩ N(v) with xy �∈ E(G)
In other words, u and v are related by ∼0 if they form the diagonal of some

diamond. Let ∼ denote the transitive closure of ∼0.

(2.2) Let G be a chordal graph, S be an equivalence class of ∼, and K be a
connected component of G−S. Then (N(S)∩K)∪ (N(K)∩S) is a clique of G.

Proof (Sketch). If there are no edges between K and S we are done. Otherwise,
suppose that there is x ∈ N(K) ∩ S and y ∈ N(S) ∩ K such that xy �∈ E(G).
Since x ∈ N(K), there exists y′ ∈ K with xy′ ∈ E(G), and since y ∈ N(S), there
is x′ ∈ S where x′y ∈ E(G). Choose x, y, x′, y′ so that dS(x, x′) + dK(y, y′) is
minimized where dS(x, x′) is the distance between x and x′ in G[S], and dK(y, y′)
is the distance between y and y′ in G[K]. By the minimality of the choice and
chordality of G, we conclude that xx′, yy′ ∈ E(G) and x′y′ ∈ E(G). This shows
that x′ ∼ y′ which is impossible, since x′ ∈ S, y′ �∈ S and S is an equivalence
class of ∼. So, there is no such x, y and the rest of the claim follows easily. �

The clique-class intersection graph (see Fig. 1) of G is the bipartite graph
whose vertices are the maximal cliques of G and the equivalence classes of ∼,
where a clique Q is adjacent to a class S just if they share at least one vertex.

(2.3) If G is a connected chordal B0-VPG graph, then the clique-class intersec-
tion graph of G is a tree.

(Note that the clique-class intersection graph of G is precisely the block-cutpoint
tree of the graph we obtain from G by contracting all equivalence classes of ∼.)

The proof of the following claim follows directly from (2.2).

(2.4) Let G be a chordal B0-VPG graph, and S be an equivalence class of ∼.
Then the closed neighbourhood N [S] of S induces in G an interval graph.

Consider a B0-VPG representation of G, and let Q be a maximal clique of G.
Let I denote the intersection of the paths representing the vertices in Q. By the
Helly property [2], the set I is non-empty. Let S be an equivalence class of ∼
such that Q ∩ S �= ∅. We say that Q is an end of S in this representation, if the
vertices of S \ Q are represented by paths that are either all to the right, or all
to the left, or all above, or all below all points in I.

322 S. Chaplick, E. Cohen, and J. Stacho

a b

c

d

e

f

g

h

i

j

k

l

o

p

m

n

a)

∗

∗

∗

eghi

g h i

gj hk il

j k l

be

bcebdeab

cda

df

f

emo

m

mn

n

o

op

p

b)

eghi

gj

hk

ilbcebdeab

df

emo

mn

op

c)

a
d

f

b

c

e

m

o

n

p j

k

l
h

g

i

d)

Fig. 1. a) Example chordal graph G, b) the clique-class intersection graph H of G
(edges with * are those marked by the algorithm), c) the graph T=the union of the
clique paths PS after identifying cliques, d) the corresponding B0-VPG representation

We say that Q is a forced end of S if Q is an end of S in every B0-VPG
representation of G. We say that Q is a forced midpoint of S if there is no B0-
VPG representation of G in which Q is an end of S.

The following two claims explain the role of forced ends and midpoints in
chordal B0-VPG graphs. They are simple consequences of (2.1), (2.2), and (2.4).

(2.5) Let G be a chordal B0-VPG graph. Let Q be a maximal clique of G, and let
S1, . . . , St be all the equivalence classes of ∼ that have non-empty intersection
with Q. Let r be the number of indices i ∈ {1 . . . t} for which Q is a forced
midpoint of Si. Let s be the number of indices i ∈ {1 . . . t} with Q ⊇ Si.

Then r+ t−s ≤ 4. Moreover, if there exists i ∈ {1 . . . t} such that Q is neither
a forced end of Si nor a forced midpoint of Si, then r + t − s ≤ 3.

(2.6) Let G be a chordal B0-VPG graph. Let S be an equivalence class of ∼, and
let Q1, . . . , Qt be the maximal cliques of G with non-empty intersection with S.

Construct a graph G′ starting from G[N [S]] as follows: for each i ∈ {1 . . . t}
such that Qi is a forced end of S, add a new vertex ui and make it adjacent to
each vertex in Qi \ S. Then G′ is an interval graph.

Moreover, if for i ∈ {1 . . . t} adding to G′ a vertex ui adjacent to each vertex
in Qi \ S results in a non-interval graph, then Qi is a forced midpoint of S.

2.1 Algorithm

Now, we are ready to describe our algorithm for recognition of chordal B0-VPG
graphs. Let G be a graph given as input. We may assume that G is connected.
Otherwise, we obtain a representation of G by finding a representation for each
of its connected components, and by putting the representations side-by-side.

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths 323

First, we check if G is chordal (see [7]). If not, we reject G. Otherwise, we
compute the maximal cliques of G and the equivalence classes of ∼. We test
if the closed neighbourhood of each equivalence class induces in G an interval
graph. If not, we reject G based on (2.4). Otherwise, we construct the clique-class
intersection graph H . By (2.3), the graph H is in fact a tree. The algorithm uses
dynamic programming on H to find out which cliques of G are forced ends or
forced midpoints of equivalence classes. To test this, we use (2.5) and (2.6).

We start by rooting H at an arbitrary node. The nodes of H are processed
bottom-up, processing a node only after all its descendants are processed. We
mark some edges of H in this process; initially, no edges are marked, and once
an edge becomes marked, it remains marked. The meaning of a marked edge e
between a clique Q and class S is the following. If Q is the parent of S, and e
becomes marked when processing S, then Q is a forced midpoint of S (otherwise,
Q is not is not a forced midpoint of S). Similarly, if Q is a child of S, and the
edge e becomes marked when processing Q, then Q is a forced end of S.

When processing a clique Q, we count the number of children S such that the
edge between Q and S is marked. Thus, Q is a forced midpoint in each such S
and is not a forced midpoint in all other children. If Q is the root of H , we apply
the test from (2.5). If this fails, we reject G. If Q has a parent S∗, we test (2.5)
assuming that Q is not a forced midpoint of S∗. If this fails, we reject G. If only
the second part of (2.5) fails, then Q is necessarily a forced end of S∗, and we
mark the edge between Q and S∗. Otherwise, we do not mark the edge.

Similarly, we process each class S using (2.6). First, we look at the marked
children Q of S; each such Q is a forced end of S, and we shall assume that all
other children are not. If S is the root of H , we just perform the first test from
(2.6), and if it fails, we reject G. Otherwise, if S has a parent Q∗, we use (2.6)
to determine whether or not Q∗ is a forced midpoint of S. If so, we mark the
edge between S and Q∗. If not, we conclude that Q∗ is not a forced midpoint
of S (by providing a representation), and thus we do not mark the edge.

It remains to explain how we obtain a representation of G if this process
finishes without rejecting G. For each class S, we assign to S the interval repre-
sentation of G′ guaranteed by (2.6); in this representation every forced end of S
is necessarily an end of S. If the parent of S is not a forced midpoint, we assign
to S the representation from the second part of (2.6); in this representation, the
parent of S is an end of S. From this representation, we remove the vertices that
are not in G (the vertices ui added in the process of creating G′), and consider
the resulting representation as an equivalent clique path that we denote by PS .
Observe that the cliques on this path are maximal cliques in G.

Now, consider the graph obtained by taking the disjoint union of the above
clique paths; each vertex corresponds to some maximal clique of G, and each
connected component is the path PS for some S. In this graph, for each clique Q,
we find all vertices that correspond to Q, and identify them to a single node. This
results in a graph T . We observe that T is a tree, since H is a tree. In fact, T is a
clique tree, since the paths PS are clique paths. By the choice of the paths using
(2.6) and since each clique Q satisfies (2.5), the tree T has maximum degree

324 S. Chaplick, E. Cohen, and J. Stacho

four, and hence, can be drawn in the plane so that the edges are represented by
horizontal or vertical segments. In fact (by appropriately permuting neighbors),
we can draw T so that each path PS is horizontal or vertical in the drawing.
Since each vertex of G belongs to exactly one equivalence class S, we conclude
that it appears only in cliques on the path PS , and we represent it by a path
connecting all such cliques on PS . This yields a B0-VPG representation of G.

That concludes the description of our algorithm. We now briefly analyze its
running time. Testing for chordality takes linear time (see [7]), so does computing
all maximal cliques (there is O(n) of them). Finding all diamonds and thus
computing the equivalence classes takes O(nm) time. Having done that, the
construction of the clique-class intersection graph H takes linear time. Finally,
since H has O(n) nodes, the dynamic programming takes O(nm) time.

Thus, the recognition algorithm runs in O(nm) time.

3 2-Row B0-VPG Graphs

A 2-row B0-VPG representation of G is a B0-VPG representation where the
underlying grid has two rows (and arbitrary number of columns). We call the
two rows layers and distinguish the top and the bottom layer. For simplicity,
any path of the representation that is a single grid-point is considered to be
horizontal. Thus, a vertical path always consists of exactly two points of the
grid (in the same column), one on the top and one on the bottom layer.

A graph is a 2-row B0-VPG graph if it has a 2-row B0-VPG representation.
In this section, we describe a polynomial time algorithm for recognizing 2-row
B0-VPG graphs. It suffices to focus on connected graphs. Also, it suffices to
consider graphs with no true twins, where u, v are true twins if N [u] = N [v].
Clearly, if u, v are true twins in G, then a representation of G can be obtained
from a representation of G − v by assigning to v the path corresponding to u.

A vertex v of G is bisimplicial if the neighbourhood of v in G induces a
disjoint union of two non-empty cliques. In other words, the set N(v) induces
in G a graph consisting of two non-empty cliques with no edges between them.
(See Fig. 2 for an illustration of this and subsequent notions.)

A B0-VPG representation of G is proper if for every path of the representation,
each of its endpoints belongs to at least one other path. It suffices to consider
only proper representations. We note the following properties.

(3.1) If v is a bisimplicial vertex of G, then in every B0-VPG representation
of G, some edge of the underlying grid belongs only to the path representing v.

(3.2) In each proper 2-row B0-VPG representation of a graph G with no true
twins, every vertical vertex is a bisimplicial vertex of G.

Proof. If v is a vertical vertex, then, since the representation is proper, the
vertical path P representing v intersects both a horizontal path on the top
layer and a horizontal path on the bottom layer of the representation. Thus
the horizontal paths intersecting P on the top layer and the horizontal paths
intersecting P at the bottom layer yield the two cliques in N(v) as required. �

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths 325

ab

c

d e

f

g

h i

j

k

l

m

n o

p

q

ra) cg fg ghj

ac ab ad def eh ei

rj ri rm rq

kl lm ln no oq op

c
f

h

j

d

i m
q

n

d)

ab

c′′c′

d′′

d′

e

f ′

f ′′

g

h′

h′′
i′

i′′

j′ j′′

k

l

m′

m′′

n′ n′′
o

p

q′

q′′

rb)

c f h

j

d

i m q

n

e)

cfghj

abcd defhi

ijmqr

klmn nopq

c
hf

j

d

i m q

n

c)

a

b

d e

g
j r

l

k

n o

p

c f h i m q

f)

Fig. 2. a) Example graph G (bisimplicial vertices shown in double circles), b) the
bisplitting of G, c) the bicontraction H of G, d) the graph H ′= substituting clique paths
to H , e) orthogonal drawing of H ′, f) the corresponding 2-row B0-VPG representation

The converse of (3.2) is false, i.e., not all bisimplicial vertices are necessarily
represented by vertical paths. To find out which are, we use two auxiliary graphs.

Let G be a graph. The bisplitting (see Fig. 2) of G is the graph obtained from
G as follows. We consider each bisimplicial vertex v of G and let Q1, Q2 denote
the two cliques induced by N(v). We remove v, add new vertices v′, v′′, make v′

adjacent to each vertex in Q1, and make v′′ adjacent to each vertex in Q2.

(3.3) If G is a 2-row B0-VPG graph with no true twins, then the bisplitting of
G is an interval graph.

Proof. Consider a proper 2-row B0-VPG representation of G. By (3.1), each
bisimplicial vertex v of G has an edge e of the underlying grid that only belongs
to v’s path P . We remove e from P to obtain two subpaths P1 and P2. Since the
representation is proper, the paths representing the vertices of one of the two
cliques in N(v) intersect P1, while the paths for the other clique intersect P2.
We represent v′ by P1 and v′′ by P2. Now, by (3.2), no vertical paths remain in
the representation. Thus the result is an interval representation. �

The bicontraction (see Fig. 2) of G is the multigraph H described as follows.
The vertex set of H is the set of connected components of the bisplitting of G.
There is an edge e with label v between connected components C′, C′′ if and only

326 S. Chaplick, E. Cohen, and J. Stacho

if v is a bisimplicial vertex of G that was “split” into v′ and v′′ where v′ ∈ C′

and v′′ ∈ C′′. We allow possibly C′ = C′′ in which case e is a loop.
For further use, we denote by QC′

e the closed neighbourhood of v′ in C′ and
denote by QC′′

e the closed neighbourhood of v′′ in C′′. Note that, by the definition
of bisplitting, QC′

e and QC′′
e are maximal cliques in C′ and C′′, respectively.

(3.4) If G is a 2-row B0-VPG graph, then the bicontraction of G contains no
loops, and no two parallel edges have labels that are adjacent in G.

3.1 LL-Drawings

A planar LL-drawing of a multigraph H is a planar embedding of H on two
layers. In other words, the vertices are placed on two horizontal lines such that
every edge is drawn (without crossing another edge) either between consecutive
vertices on a layer or between the two layers, and there are no parallel edges
between vertices on the same layer. A linear time algorithm for finding planar
LL-drawings is discussed in [5]. An edge of a planar LL-drawing is horizontal
(respectively vertical) if its endpoints are on one (respectively two) layers.

A vertical edge e of a planar LL-drawing E splits the drawing into two areas,
the area Le to left of e, and the area Re to the right e. For any edge e′, we write
e′ ≺E e (respectively e′ �E e) if the interior of e′ belongs to Le (respectively Re).
For all other pairs of edges, we derive ≺E by transitivity. Since there are no
crossings, the resulting relation ≺E is a partial order on the edges of E ; it is a
total order on the vertical edges of E . We refer to ≺E as the E-order of the edges.

Using the proof of (3.3), we now associate to each 2-row B0-VPG representa-
tion of G with no true twins a planar LL-drawing of the bicontraction of G.

We proceed as follows. Starting with a 2-row B0-VPG representation of G,
we denote by H0 the subgraph of the underlying grid obtained by taking the
union of all paths of the representation. Using the proof of (3.3), we obtain a
representation of the bisplitting G′ of G. During this process, a set F of edges
is removed from the paths of the representation. By definition, each edge in F
is also an edge of H0. Further, by the construction, each connected component
K of H0 − F corresponds to some connected component C of G′ in that K is a
horizontal path that includes all paths representing the vertices of C.

Now, label each edge e ∈ F with the bisimplicial vertex of G from whose path
we removed e. After that, consider the multigraph H obtained by contracting the
edges of H0 that are not in F (while keeping parallel edges). Notice that each
connected component of G′ shrinks to one point and F is the edge-set of H .
Thus, we conclude that H is the bicontraction of G.

Finally, note that H0 itself (as a subgraph of the underlying grid) is a planar
LL-drawing, and we obtained H by contracting horizontal edges in this drawing.
Thus, the result is a planar LL-drawing of H , the bicontraction of G, and we
associate it to the 2-row B0-VPG representation of G we started with.

Notice that this associated LL-drawing has some special properties. They are
summarized in the following definition. Again, let H be the bicontraction of G,
and let E be a planar LL-drawing of H . Let C be a vertex of H , and let e1, . . . , et

be the edges incident to C in H such that e1 ≺E . . . ≺E et.

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths 327

We say that C is good in E if there exists a clique path P of C such that
(L1) for all i < j, if QC

ei
�= QC

ej
, then QC

ei
appears before QC

ej
on P ,

(L2) for all i < j, if QC
ei

= QC
ej

, then at least one of the following holds:
(L2a) i = 1, j = 2, and e1 is a horizontal edge,
(L2b) i = (t − 1), j = t, and et is a horizontal edge,
(L2c) i = 1, j = t = 3, and QC

e1
= QC

e2
= QC

e3
,

(L3) if e1 is a horizontal edge, then QC
e1

is the first clique on P , and
if et is a horizontal edge and t ≥ 2, then QC

et
is the last clique on P .

We say that E is a good LL-drawing if every vertex of H is good in E .
It is not difficult to see that the associated planar LL-drawing of a 2-row B0-

VPG representation of G is a good LL-drawing. Namely, for each vertex C, we
use the clique path P corresponding to the interval representation of C induced
by the representation of G. Then P (or its reverse4) satisfies the above conditions.
It turns out that the converse is also true yielding the following characterization.

(3.5) A graph G has a 2-row B0-VPG representation if and only if there exists
a good LL-drawing of the bicontraction of G.

Proof. The forward direction is discussed above the claim. For the backward
direction, we consider a good LL-drawing of the bicontraction H of G. In the
drawing, we replace each vertex C by the clique path P of C satisfying (L1)-(L3).
We arrange the vertices of P from left to right in the order given4 by P . For each
edge e incident to C, we reattach e from C to QC

e (which is one of the vertices
on P). From (L1)-(L3) we conclude that the result of this process is a planar
LL-drawing of a graph H ′. In particular, the vertices of H ′ correspond precisely
to the maximal cliques of G. By (possibly) adding gaps between consecutive
vertices on layers, we modify the drawing so that every vertical edge of the
drawing is drawn as a vertical segment, and vertices are on integer coordinates.
Finally, we assign to each vertex v of G the path in the drawing connecting all
cliques of G that contain v. This yields a 2-row B0-VPG representation of G. �

3.2 PQ-Trees

To find a good LL-drawing of the bicontraction of G, we use the well-known
concept of a PQ-tree [4]. We briefly review some key properties of such trees.

A PQ-tree is a rooted ordered tree (children of each node are totally ordered)
where each internal node is either a P-node or a Q-node, and whose leaf order is
defined as the ordering of leaves in the traversal that visits the children of each
node in the given total order. Two PQ-trees are equivalent if one can be obtained
from the other by possibly permuting the children of some P-nodes and reversing
the order of children of some Q-nodes. A permutation π of a set is consistent
with a PQ-tree if there exists an equivalent PQ-tree whose leaf order is π.

If T , T ′ are PQ-trees with the same leaf-set, then the intersection of T and
T ′ is the PQ-tree whose consistent permutations are precisely those that are
consistent with both T and T ′. If no such permutations exist, the intersection is
the null tree. The intersection takes linear time to construct (for instance, see [9]).
4 If C belongs to only one horizontal edge, we may need to reverse P .

328 S. Chaplick, E. Cohen, and J. Stacho

3.3 Algorithm

Now, we are ready to describe our recognition algorithm for 2-row B0-VPG
graphs. By (3.5), it suffices for the algorithm to find a good LL-drawing of the bi-
contraction of the given graph G. This, up to minor technical details, boils down
to the following problem: given a multigraph H with a collection of PQ-trees
{Tv}v∈V (H), find a planar LL-drawing of H such that the clockwise ordering of
edges around each v ∈ V (H) is consistent with Tv. Our algorithm follows this
idea. We assign to each vertex C of the bicontraction H of G a PQ-tree TC built
as follows. Starting with the PQ-tree representing the clique paths of C, we re-
place the clique QC

e by e for each edge e incident to C in H (in case two such
cliques coincide we introduce a P-node). We further reduce this tree to account
for blocks and parallel edges in H (for brevity, we omit these technical details).

First, suppose that H is a 2-connected simple graph. Then, by [5], H has
a planar LL-drawing if and only if H is an outerplanar graph and in every
outerplanar embedding of H the bounded faces form a path in the dual graph.
As a planar LL-drawing, we notice that every face has exactly two vertical edges.
Further, every edge that belongs to two faces is vertical. This fixes the drawing
of every inner face on the path of the dual. For the end-faces, we try all possible
choices for the vertical edges. This results in O(|V (H)|2) choices that completely
cover all possible drawings. For each such choice, we use the PQ-trees TC to test
whether or not it corresponds to a good LL-drawing of H .

Next, if H is a simple graph but not 2-connected, we use dynamic program-
ming to process the blocks of H . For this, similarly to [5], we distinguish special
blocks in H . Let C be a vertex of H , and let K be a connected component of
H − C. Let {e1, . . . , et} be the edges of H between C and its neighbours in K.

We say that K is a fan of H attached to C if QC
e1

,. . . , QC
et

are distinct cliques,
and the subgraph of G corresponding to the union of C′ ∈ K is an interval
graph. A fan K is a tail of H if the subgraph of G corresponding to the union
of C and all C′ ∈ K is an interval graph. A fan is a proper fan if it is not a tail.

To illustrate these concepts, note that in Fig. 2 for C = ijmqr, the connected
component K = {klmn, nopq} of H − C is a fan attached to C but it is not a
tail, since G[{i, . . . , r}] is not an interval graph while G[{k, . . . , q}] is.

(3.6) Let K be a fan of H. If H has a good LL-drawing E, then there is a good
LL-drawing E ′ of H in which all vertices of K are on the same layer.

Let H ′ be obtained from H by removing all fans of H . We say that a block
of H is a proper block of H if it is also a block of H ′. A cutpoint C of H is a
proper cutpoint of H if it belongs to two proper blocks of H , or some component
of H − C is a proper fan, or if at least three components of H − C are tails.

For blocks B, B′, we write B ≺E B′ if e ≺E e′ for all e ∈ E(B), e′ ∈ E(B′).

(3.7) The proper blocks and proper cutpoints induce a path in the block-cutpoint
tree of H. If B1, . . . , Bk are the proper blocks on this path in this order, then
either B1 ≺E . . . ≺E Bk or Bk ≺E . . . ≺E B1 for every good LL-drawing E of H.

We process the proper blocks and cutpoints of H in the order B1, . . . , Bk given
by the above claim. For each proper block Bi, we consider Bi together with all
tails attached to it via non-proper cutpoints. We try all possible arrangements.

Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths 329

It can be shown that this results in a polynomial number of choices, and we test
each of them using the PQ-trees TC , and discard those that fail the test.

Next, we test consecutive blocks Bi, Bi+1; let C be the cutpoint they share.
We consider all possible good LL-drawings Ei of Bi and Ei+1 of Bi+1 that are
compatible (i.e., C is on the same layer in both drawings and is the rightmost,
resp. leftmost in Ei, resp. Ei+1). We try all such feasible drawings together with
all attached fans and tails. In this case, we do not try all possibilities directly
(since there may be exponentially many of them), but instead use the PQ-tree TC

to try them indirectly using an intersection with another PQ-tree representing
our choices. As discussed earlier, this can be done in linear time. In a similar
fashion, we deal with proper cutpoints that are not between proper blocks.

Finally, we deal with parallel edges which is done by incorporating additional
tests that do not increase the complexity by more than a constant factor.

Now, to obtain a good LL-drawing of H , we combine good LL-drawings of
compatible pairs of proper blocks and cutpoints (if possible). Since there are
polynomially many choices for each block, the resulting algorithm is polynomial.
We remark that the number of choices for each block can be further reduced to
a constant by additional tests. This produces a procedure whose complexity is
linear in the size of G. (For complete details, see the full version of the paper.)

We conclude by analyzing the total complexity of our algorithm. First, finding
all bisimplicial vertices of G can be done in O(nm) time by examining the neigh-
bourhood of each vertex in G. From this, the bisplitting and the bicontraction
H of G can be constructed in linear time. Also, checking for true twins in G and
for loops in H is a linear time procedure, and so is [4] the intervality test on H .
Similarly, constructing the PQ-trees for all vertices of H takes linear time [4],
and so do all other necessary operations on these PQ-trees. Finally, our dynamic
programming as described above can be also implemented to run in linear time.
Hence, the overall complexity of the algorithm is O(nm).

4 Conclusion

We studied recognition algorithms for special cases of Bk-VPG graphs, namely
chordal B0-VPG and 2-row B0-VPG graphs. For both cases, we described O(nm)
time algorithms for recognition. The interest in these types of representations
comes from applications in VLSI where they can be used to model some aspects
of electrical circuits. In particular, solving the colouring problem is of interest
but is unfortunately NP-complete [2] on Bk-VPG graphs for every fixed k ≥ 0.
It turns out that the problem is NP-complete already on �-row B0-VPG graphs
(B0-VPG graphs that have a representation with � rows) for every fixed � ≥ 2. In
contrast, one can decide in linear time if an �-row B0-VPG graph can be properly
coloured with t colours, when t is fixed, since in this case all yes-instances have
bounded pathwidth, while the problem is NP-complete on B0-VPG graphs for
every fixed t ≥ 3. In a similar vein, the independent set problem is NP-complete
on B0-VPG graphs [15] but can be solved in polynomial time on �-row Bk-VPG
graphs for all fixed k, �. Detailed proofs are in the full version of this paper.

As a continuation of this work, it may be interesting to look at other cases
where representation has bounded number of rows (three or more) or other

330 S. Chaplick, E. Cohen, and J. Stacho

structural restriction in order to overcome hardness of optimization problems on
these representations. It should be noted that the recognition of Bk-VPG graphs
for every k was recently proved to be NP-complete [12]. In that respect, it seems
natural to study as well special cases of these graphs, where for instance one only
allows certain types of paths in the representation. Specifically the case k = 1 is
already of interest and is currently a subject of our ongoing research.

References
1. Asinowski, A., et al.: String graphs of k-bend paths on a grid. Electronic Notes

in Discrete Mathematics 37, 141–146 (2011); LAGOS 2011 - VI Latin-American
Algorithms, Graphs and Optimization Symposium,
http://dx.doi.org/10.1016/j.endm.2011.05.025

2. Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.:
Intersection graphs of paths on a grid, technical report (2010)

3. Bandy, M., Sarrafzadeh, M.: Stretching a knock-knee layout for multilayer wiring.
IEEE Trans. Computing 39, 148–151 (1990)

4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences 13, 335–379 (1976)

5. Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines.
Journal of Graph Algorithms and Applications 8, 161–177 (2004)

6. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Jour-
nal of Mathematics 15, 835–855 (1965)

7. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, 2nd edn. North-
Holland (2004)

8. Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments
in the plane: characterizations of some subclasses of chordal graphs (submitted
manuscript, 2011)

9. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the
common graph is 2-connected. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part II. LNCS, vol. 6507, pp. 410–421. Springer, Heidelberg (2010)

10. Heckmann, R., Klasing, R., Monien, B., Unger, W.: Optimal Embedding of Com-
plete Binary Trees into Lines and Grids. In: Schmidt, G., Berghammer, R. (eds.)
WG 1991. LNCS, vol. 570, pp. 25–35. Springer, Heidelberg (1992)

11. Jamison, R.E., Mulder, H.M.: Constant tolerance intersection graphs of subtrees
of a tree. Discrete Mathematics 290, 27–46 (2005)

12. Kratochv́ıl, J.: Personal communication
13. Kratochv́ıl, J.: String graphs II. Recognizing string graphs is NP-hard. Journal of

Combinatorial Theory B 52, 67–78 (1991)
14. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. Journal of Combi-

natorial Theory Series B 62, 289–315 (1994)
15. Kratochv́ıl, J., Nešetřil, J.: Independent set and clique problems in intersection-

defined classes of graphs. Commentationes Mathematicae Universitatis Caroli-
nae 31, 85–93 (1990)

16. McMorris, F.R., Scheinerman, E.R.: Connectivity threshold for random chordal
graphs. Graphs and Combinatorics 7, 177–181 (1991)

17. Molitor, P.: A survey on wiring. EIK Journal of Information Processing and Cy-
bernetics 27, 3–19 (1991)

18. Sinden, F.: Topology of thin film circuits. Bell System Technical Journal 45,
1639–1662 (1966)

19. West, D.B.: Introduction to graph theory, 2nd edn. Prentice-Hall (2000)

http://dx.doi.org/10.1016/j.endm.2011.05.025

A Polynomial Time Algorithm for Bounded

Directed Pathwidth

Hisao Tamaki

Department of Computer Science, Meiji University
Kawasaki, Japan 214-8571
tamaki@cs.meiji.ac.jp

Abstract. We give a polynomial time algorithm for bounded directed
pathwidth. Given a positive integer k and a digraph G with n vertices
and m edges, it runs in O(mnk+1) time and constructs a directed path-
decomposition of G of width at most k if one exists and otherwise reports
the non-existence.

1 Introduction

According to Barát [3], the notion of directed pathwidth of digraphs was intro-
duced by Reed, Thomas, and Seymour around 1995. It is a generalization of
pathwidth [17], which is defined for undirected graphs, in the sense that if G is
an undirected graph and G′ is a digraph obtained from G by replacing each edge
by a pair of directed edges in both directions, then the directed pathwidth of G′

equals the pathwidth of G.
Following the tremendous success of the notion of treewidth [18] of undi-

rected graphs, as a key tool for the graph minor theory [19] and for designing
efficient algorithm [2], several authors have proposed extensions of this notion
to digraphs. Johnson, Robertson, Seymour, and Thomas introduced directed
treewidth [11], and showed that some NP-hard problems on digraphs including
the directed Hamilton cycle problem can be solved in polynomial time if the given
digraph has bounded directed treewidth. Since then, several variants of directed
treewidth have been proposed: D-width [20], DAG-width [16,4], and Kelly-width
[10]. It is the subject of ongoing active research to compare respective power of
these variants and other related digraph measures [9].

In contrast, the extension of the notion of pathwidth to digraphs seems stable.
Only one parameter, the directed pathwidth, has been proposed, which enjoys
several equivalent formulations just as undirected treewidth and pathwidth do.

Although the applicability of these digraph parameters in designing efficient
algorithms is provably limited in the sense that directed graph counterparts of
some fixed parameter tractable problems on undirected graphs are hard to solve
when parameterized by these width parameters [14], they are nonetheless fun-
damental digraph parameters that deserve further explorations for algorithmic
applications. For example, in [21], the present author used directed pathwidth
in a heuristic algorithm for exactly identifying the set of attractors of a given
boolean network and experimentally showed the effectiveness of the approach.

P. Kolman and J. Kratochv́ıl (Eds.): WG 2011, LNCS 6986, pp. 331–342, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

332 H. Tamaki

Since it is NP-complete to decide, given a positive integer k and an undirected
graph G, whether the pathwidth of G is at most k [12], the same holds for the
directed pathwidth. The situation is quite different between these problems if
k is fixed. In this case, the problem of deciding if an undirected graph G has
pathwidth at most k (and of constructing the associated path-decomposition)
can be solved in linear time [6,5]. In contrast, no polynomial time algorithm for
fixed k (even for k = 2) was previously known, that decides whether the directed
pathwidth of a given digraph is at most k.

In the undirected case, the fact that there is a polynomial time algorithm
for fixed k that decides whether a given graph has pathwidth at most k is
an immediate consequence of the graph minor theorem due to Robertson and
Seymour [19]: since the class of graphs with pathwidth k or smaller is closed
under taking minors, that class is characterized by a fixed set of forbidden minors
and therefore the membership to that class can be tested by checking if the given
graph contains any of the forbidden minors. This does not hold for the directed
case. Although the class of digraphs with directed pathwidth at most k, for
any fixed k, is closed under taking minors, with a suitable definition of digraph
minors [11], no counterpart of the graph minor theorem is known for digraphs.

The standard algorithmic approach for undirected pathwidth for fixed k that
leads to the linear time algorithm mentioned above is to first obtain a tree-
decomposition of width O(k) of the given graph and then perform a dynamic pro-
gramming on this tree-decomposition to optimally solve the problem. There are
again difficulties in extending this approach to the directed case. Although there
is a fast approximation algorithm [11] to obtain a directed tree-decomposition
of G of width O(k), given that G has directed pathwidth at most k, directed
tree-decompositions do not seem to support dynamic programming solutions to
the problem of exactly determining the directed pathwidth. We may try to use a
tree-decomposition of the underlying undirected graph, but since the treewidth
of the underlying undirected graph is not bounded by any function of the di-
rected pathwidth of the original digraph, we do not obtain a time bound that is
polynomial in the size of the digraph even if the directed pathwidth is bounded.

In this paper, we show that the directed pathwidth problem for fixed k can
be solved in polynomial time. We denote the directed pathwidth of digraph G
by dpw(G).

Theorem 1. Given a positive integer k and a digraph G of n vertices and m
edges, it can be decided in O(mnk+1) time whether dpw(G) ≤ k. Moreover, if
dpw(G) ≤ k, a directed path-decomposition of width at most k can be constructed
in the same amount of time.

Our algorithm is based on a lemma (Lemma 1), which enables us to prune the
natural search tree of factorial size into one of polynomial size. This lemma,
which we call the commitment lemma, asserts that if a descendant of a node
satisfies certain conditions then all other descendants of the node in the same
generation can be safely removed from the search tree.

Our algorithm is extremely simple and easy to implement. We remark that
even for undirected pathwidth, for which a fixed parameter linear-time algorithm

A Polynomial Time Algorithm for Bounded Directed Pathwidth 333

is known [6], our algorithm is a strong alternative for practical use, as the linear-
time algorithm depends exponentially on k3 and is considered highly impractical.
To the best of the present author’s knowledge, an explicit and implementable
nO(k) time algorithm has been known for treewidth [1] but not for pathwidth for
general fixed k. We also remark that, even for the ranges of n and k where the
time bound in Theorem 1 is practically useless, the commitment lemma would
be useful in designing heuristic algorithms.

The rest of this paper is organized as follows. After some preliminaries in
Section 2, we describe some basic ideas underlying the pruning of search trees in
Section 3, assuming the commitment lemma. The proof of this lemma is given in
Section 4. Section 5 provides some details of the algorithm which are necessary
to establish the exact running time bound stated in Theorem 1.

2 Preliminaries

Let G be a digraph. For each subset U of V (G), we denote by N−
G (U) the set of

in-neighbors of U , i.e., N−
G (U) = {v ∈ V (G) \ U | ∃u ∈ U : (v, u) ∈ E(G)}, and

d−G(U) = |N−
G (U)| the number of in-neighbors of U .

Rather than giving the standard definition of the directed pathwidth, we use
an alternative formulation called the directed vertex separation number, defined
below.

We call a sequence σ of vertices of G non-duplicating if each vertex of G occurs
at most once in σ. We denote by Σ(G) the set of all non-duplicating sequences
of vertices of G. For each sequence σ ∈ Σ(G), we denote by V (σ) the set of
vertices constituting σ and by |σ| = |V (σ)| the length of σ. For brevity, we write
d−G(σ) and N−

G (σ) for d−G(V (σ)) and N−
G (V (σ)), respectively.

For each pair of sequences σ, τ ∈ Σ(G) such that V (σ)∩V (τ) = ∅, we denote
by στ the sequence in Σ(G) that is σ followed by τ . If σ′ = στ for some τ , then
we say that σ is a prefix of σ′ and that σ′ is an extension of (or extends) σ; we
say that σ is a proper prefix of σ′ and that σ′ is a proper extension of σ if τ
is nonempty. For each non-empty sequence σ ∈ Σ(G), we denote by π(σ) the
prefix of σ with length |σ| − 1.

For σ, τ ∈ Σ(G), we say σ is a subsequence of τ if V (σ) ⊆ V (τ) and, for each
pair of distinct vertices u and v in V (σ), u occurs before v in σ if and only if u
occurs before v in τ .

Let G be a digraph and k a positive integer. We say σ ∈ Σ(G) is k-feasible
for G if d−G(σ′) ≤ k for every prefix σ′ of σ. We may drop the reference to G and
say σ is k-feasible when G is clear from the context.

Definition 1. The directed vertex separation number of digraph G, denoted
by dvsn(G), is the minimum integer k such that there is a k-feasible sequence
σ ∈ Σ(G) with V (σ) = V (G).

Note that, because of the equivalence of the directed vertex separation number
to the directed pathwidth stated below, this parameter is invariant under the
simultaneous reversal of all the edges.

334 H. Tamaki

It is known that dvsn(G) = dpw(G) for every digraph G [22] (see also [13] for
the undirected case) and the conversions between the sequences achieving the
directed vertex separation number and the optimal directed path decompositions
are simple. In particular, the conversion from the former to the latter can be done
in O(m + kn) time, where n = |V (G)|, m = |E(G)|, and k = dpw(G). Based
on these equivalence and conversion, we focus on computing the directed vertex
separation number and the corresponding sequence in the following sections.

3 Search Tree Pruning

Let digraph G be fixed and let n = |V (G)|. A straightforward exponential time
algorithm for deciding if dvsn(G) ≤ k constructs a search tree in which each
node at level i of the tree is a k-feasible sequence of length i and the parent of a
non-empty sequence σ is π(σ), the prefix of σ with length |σ| − 1. We show that
this search tree can be pruned into one with O(nk+1) nodes.

The key to this pruning is the notion of non-expanding extensions. We say
that an extension τ of σ ∈ Σ(G) is non-expanding if τ is a proper extension
of σ and d−G(τ) ≤ d−G(σ). Suppose σ is k-feasible and has an immediate non-
expanding extension σv, where v ∈ V (G) \ V (σ). Then it appears plausible to
hope that committing to this child of σ in the search tree, discarding all the
other children, is safe in the sense that if σ has a k-feasible extension of length n
then so does σv and therefore we do not lose completeness of the search through
this commitment. The following lemma states that this hope is true in a more
general manner: we may safely commit not only to an immediate non-expanding
extension but also to any shortest non-expanding extension. We say that an
element of Σ(G) is strongly k-feasible if it has a k-feasible extension of length n.

Lemma 1. (Commitment Lemma) Let σ be a strongly k-feasible sequence in
Σ(G) and let τ be a shortest non-expanding k-feasible extension of σ, that is,

1. d−G(τ) ≤ d−G(σ), and
2. d−G(τ ′) > d−G(σ) for every k-feasible proper extension τ ′ of σ with |τ ′| < |τ |.

Then, τ is strongly k-feasible.

The proof of this lemma is given in the next section.
In the following, we assume a fixed total ordering < on V (G) and use a

standard lexicographic ordering < on Σ(G) based on this total ordering. Let σ
and τ be sequences of equal length in Σ(G). We say that σ is preferable to τ ,
if either d−G(σ) < d−G(τ) or d−G(σ) = d−G(τ) and σ < τ . Clearly, this preferable-
to relation is a total ordering on the subset of Σ(G) consisting of sequences of
length i, for each 0 ≤ i ≤ n.

Let σ and τ be k-feasible sequences of equal length. We say that σ suppresses
τ , if σ and τ has a common prefix σ′ such that σ is a shortest non-expanding
k-feasible extension of σ′ and σ is preferable to τ .

A Polynomial Time Algorithm for Bounded Directed Pathwidth 335

Proposition 1. Let σ, τ , and η be k-feasible sequences of equal length. If σ
suppresses τ and τ suppresses η, then σ suppresses η.

Proof. Under the assumptions of the lemma, σ is preferable to η, since σ is
preferable to τ and τ is preferable to η. Therefore, it suffices to show that σ
and η has a common prefix α such that σ is a shortest non-expanding k-feasible
extension of α.

Since σ suppresses τ , there is a common prefix β of σ and τ such that σ is a
shortest non-expanding k-feasible extension of β. Similarly, there is a common
prefix γ of τ and η such that τ is a shortest non-expanding k-feasible extension of
γ. Since both β and γ are prefixes of τ , one is a prefix of the other. If β is a prefix
of γ, then we are done with α = β. If γ is a prefix of β, then γ is a common prefix
of σ and η. Since σ is preferable to τ , we have d−G(σ) ≤ d−G(τ). This, together
with the assumption that τ is a shortest non-expanding k-feasible extension of
γ implies that σ is also a shortest non-expanding k-feasible extension of γ. We
are done with α = γ. ��
It should be intuitively clear that suppressed sequences are not necessary in
the search tree, as a consequence of the commitment lemma. To formalize this
intuition, we define the set Si of unsuppressed k-feasible sequences of length i,
for each 0 ≤ i ≤ n, inductively as follows.

1. S0 consists of the empty sequence.
2. A k-feasible sequence σ of length i > 0 is in Si if and only if π(σ) ∈ Si−1

and there is no k-feasible sequence τ of length i such that π(τ) ∈ Si−1 and
τ suppresses σ.

Lemma 2. If there is a k-feasible sequence of length n in Σ(G), then there is
at least one such sequence in Sn.

Proof. For each k-feasible sequence σ of length n, let iσ denote the largest i,
0 ≤ i ≤ n, such that the prefix of σ of length i is in Si. If there is some k-feasible
σ of length n with iσ = n, then we are done. So, suppose otherwise and fix k-
feasible σ of length n so that iσ is the largest over all choices of σ. Let σ′ be the
prefix of σ of length iσ + 1. Then, since σ′ �∈ Siσ+1 and π(σ′) ∈ Siσ , σ′ must be
suppressed by some k-feasible sequence τ of length iσ + 1 such that π(τ) ∈ Siσ .
Choose τ so that it is the most preferable among all the candidates. Then, τ
is not suppressed by any τ ′ with π(τ ′) ∈ Siσ , since otherwise τ ′ suppresses σ′

by Proposition 1 and is preferable to τ , contradicting the choice of τ . Therefore
τ ∈ Siσ+1. But since τ is a shortest non-expanding k-feasible extension of some
prefix of σ′, which is strongly k-feasible because of its extension σ, τ is strongly
k-feasible by Lemma 1. This contradicts the choice of σ, since iη ≥ iσ + 1, where
η is a k-feasible extension of τ with length n. ��
Thus, in our pruned search, we need only to generate k-feasible sequences in Si,
for 1 ≤ i ≤ n.

To analyze the size of each set Si, we assign a signature sgn(σ) ∈ Σ(G) to
each k-feasible sequence σ ∈ Σ(G) as follows. Call a non-expanding k-feasible

336 H. Tamaki

extension τ of σ locally shortest, if no proper prefix of τ is a non-expanding
extension of σ. We define sgn(σ) inductively as follows.

1. If σ is empty then sgn(σ) is empty.
2. If σ is non-empty and is a locally shortest non-expanding extension of some

prefix of σ, then sgn(σ) = sgn(τ), where τ is the shortest prefix of σ such
that σ is a locally shortest non-expanding k-feasible extension of τ .

3. Otherwise sgn(σ) = sgn(π(σ))v, where v is the last vertex of σ (and hence
σ = π(σ)v).

Proposition 2. For each k-feasible sequence σ ∈ Σ(G), we have |sgn(σ)| ≤
d−G(σ).

Proof. The proof is by induction on the length of σ. The base case where σ
is empty is trivial. Suppose rule 2 of the definition of signatures applies to σ:
sgn(σ) = sgn(τ), where τ is the shortest prefix of σ such that σ is a locally
shortest non-expanding k-feasible extension of τ . If d−G(τ) = d−G(σ) then we are
done, since we have |sgn(σ)| = |sgn(τ)| ≤ d−G(τ) by the induction hypothesis. So
suppose d−G(τ) > d−G(σ). Let τ ′ be the shortest prefix of τ such that d−G(τ ′′) =
d−G(τ) for every prefix τ ′′ of τ that is an extension of τ ′, including τ ′ itself.
Then, we have sgn(σ) = sgn(τ) = sgn(τ ′) by a repeated application of rule 2.
Since d−G(τ ′) > 0, τ ′ is non-empty and we have d−G(π(τ ′)) < d−G(σ) since σ is
not a locally shortest non-expanding extension of π(τ ′) by the choice of τ . In
this case, τ ′ cannot be a locally shortest non-expanding extension of any of its
prefixes because d−G(π(τ ′)) < d−G(τ). Therefore, rule 3 applies to τ ′ and we have
|sgn(τ ′)| = |sgn(π(τ ′))| + 1 ≤ d−G(π(τ ′)) + 1 by the induction hypothesis and
therefore |sgn(σ)| = |sgn(τ ′)| ≤ d−G(σ). Finally suppose that rule 3 applies to
σ: sgn(σ) = sgn(π(σ))v, where v is the last vertex of σ. Since σ is not a non-
expanding extension of π(σ), we have d−G(σ) > d−G(π(σ)) and therefore |sgn(σ)| ≤
d−G(σ) follows from the induction hypothesis on π(σ). ��
The following observation is straightforward.

Proposition 3. Let σ be a k-feasible sequence of length i that belongs to Si.
Then v ∈ V (σ) does not appear in sgn(σ) if and only if there are prefixes σ1

and σ2 of σ such that v �∈ V (σ1), v ∈ V (σ2), and σ2 is a locally shortest non-
expanding k-feasible extension of σ1.

Lemma 3. Let i, 1 ≤ i ≤ n, be arbitrary. If σ and τ are distinct elements of Si

then neither sgn(σ) nor sgn(τ) is a prefix of the other.

Proof. Let σ, τ ∈ Si be distinct. For each j, 0 ≤ j ≤ i, let σj (τj , resp.) denote
the prefix of σ (τ , resp.) of length j. Let j0 be the smallest integer such that
σj0 �= τj0 . Let u0 be the last vertex of σj0 and v0 the last vertex of τj0 . We claim
that there is no pair of integers j1 and j2 such that 0 ≤ j1 < j0 ≤ j2 ≤ i and σj2

is a locally shortest non-expanding extension of σj1 . To see this, suppose such a
pair of integers j1 and j2 exists. If there is a non-expanding k-feasible extension of
σj1 shorter than σj2 then this extension is not a prefix of σj2 since σj2 is a locally

A Polynomial Time Algorithm for Bounded Directed Pathwidth 337

shortest non-expanding k-feasible extension of σj1 . But this is impossible because
then a prefix of σ would be suppressed and σ would not be in Si. Therefore, σj2

is a shortest non-expanding k-feasible extension of σj1 . Since σj1 is a common
prefix of σj2 and τj2 , τj2 is suppressed by σj2 if σj2 is preferable to τj2 . On the
other hand, if τj2 is preferable to σj2 , then d−G(τj2) ≤ d−G(σj2) ≤ d−G(σj1) and,
noting that σj1 = τj1 because j1 < j0, we see that τj2 is also a shortest non-
expanding k-feasible extension of σj1 and hence suppresses σj2 . In either case,
we have a contradiction to the fact that both σj2 and τj2 are in Sj2 . This verifies
the claim that there is no such pair j1, j2.

It follows from this claim and Proposition 3 that:

1. u0 appears in sgn(σ) and
2. each vertex in V (σj0−1) appears in sgn(σ) if and only if it appears in

sgn(σj0−1).

Similarly, we have:

1. v0 appears in sgn(τ) and
2. each vertex in V (τj0−1) appears in sgn(τ) if and only if it appears in

sgn(τj0−1).

Thus, sgn(σ) and sgn(τ) have a common prefix sgn(σj0−1) = sgn(τj0−1), which
is followed by u0 in sgn(σ) and by v0 in sgn(τ). Since u0 �= v0, neither sgn(σ)
nor sgn(τ) is a prefix of the other. ��
Our desired bound on |Si| immediately follows from this lemma and Proposi-
tion 2.

Corollary 1. |Si| ≤ nk holds for 0 ≤ i ≤ n.

From this corollary, it is clear that the directed pathwidth problem can be solved
in nk+O(1) time. Some implementation details needed to obtain the specific time
bound stated in Theorem 1 are given in Section 5.

4 Proof of the Commitment Lemma

The following observation that the function d−G is submodular is straightforward.
For self-containedness, we include a proof.

Proposition 4. Let G be a digraph and let X and Y be two arbitrary subsets
of V (G). Then, we have

d−G(X) + d−G(Y) ≥ d−G(X ∩ Y) + d−G(X ∪ Y). (1)

Proof. For each vertex v ∈ V (G), we show that the number of times v is counted
in the right-hand side of (1) does not exceed the number of times it is counted
in the left-hand side of (1). If v is counted both in d−G(X ∩ Y) and d−G(X ∪ Y)
then v �∈ X ∪Y and v has an out-neighbor in X ∩Y and, therefore, v is counted
both in d−G(X) and d−G(Y). If v is counted in d−G(X ∪ Y) then v �∈ X ∪ Y and

338 H. Tamaki

v has an out-neighbor in X ∪ Y and, therefore, v is counted either in d−G(X)
or in d−G(Y). If v is counted in d−G(X ∩ Y) then either v �∈ X or v �∈ Y and v
has an out-neighbor in X ∩ Y and, therefore, v is counted either in d−G(X) or in
d−G(Y). ��

Lemma 1 is a direct consequence of the following two lemmas.

Lemma 4. Let G be a directed graph and k a positive integer. Let σ be a strongly
k-feasible sequence in Σ(G) and τ a k-feasible proper extension of σ such that
d−G(X) ≥ d−G(τ) for every X with V (σ) ⊆ X ⊆ V (τ). Then, τ is strongly k-
feasible.

Proof. Let σ and τ be as in the statement of the lemma and σ′ a k-feasible
extension of σ of length n. Let α be the subsequence of σ′ such that V (α) =
V (G) \ V (τ). Let τ ′ = τα. Note that τ ′ ∈ Σ(G) and V (τ ′) = V (G). We claim
that τ ′ is k-feasible and therefore τ is strongly k-feasible.

Since the prefix τ of τ ′ is k-feasible, we only need to show that, for 1 ≤ i ≤ |α|,
d−G(V (τ) ∪ Vi(α)) ≤ k, where we denote by Vi(α) the set of first i vertices of α.

For each i, 1 ≤ i ≤ |α|, let σi denote the minimal prefix of σ′ such that
V (σi) \V (τ) = Vi(α). Since each member of σ precedes each member of α in σ′,
σ is a prefix of σi for 1 ≤ i ≤ |α|. Fix i, 1 ≤ i ≤ |α|. By the submodularity of
d−G, we have

d−G(τ) + d−G(σi) ≥ d−G(V (τ) ∩ V (σi)) + d−G(V (τ) ∪ V (σi)).

Since σ′ is k-feasible, we have d−G(σi) ≤ k. By the assumption on τ in the
statement of the lemma, we also have d−G(V (τ) ∩ V (σi)) ≥ d−G(τ) as V (σ) ⊆
V (τ)∩V (σi) ⊆ V (τ). Therefore we have d−G(V (τ)∪Vi(α)) = d−G(V (τ)∪V (σi)) ≤
k, which proves the claim. ��

Lemma 5. Let G be a directed graph and k a positive integer. Let σ be a k-
feasible sequence in Σ(G) and τ a shortest non-expanding k-feasible extension
of σ. Then, for every X such that V (σ) ⊆ X ⊆ V (τ), we have d−G(X) ≥ d−G(τ).

Proof. Suppose to the contrary that there is some X , V (σ) ⊆ X ⊆ V (τ), such
that d−G(X) < d−G(τ). Since d−G(σ) ≥ d−G(τ), we have V (σ) � X � V (τ). We show
that there is some non-expanding k-feasible extension η of σ that is shorter than
τ . This contradicts the assumption that τ is a shortest such extension, and
therefore we will be done.

Let α be the subsequence of τ such that V (α) = X . Note that α extends σ
since V (σ) ⊆ X . Let h be an integer, |σ| < h ≤ |X |, such that d−G(Vh(α)) is the
largest, where we denote by Vh(α) the set of first h vertices of α. If d−G(Vh(α)) ≤ k
then α is k-feasible and we are done with η = α: |α| < |τ | holds since V (α) = X
is a proper subset of V (τ).

Suppose d−G(Vh(α)) > k. Since d−G(X) < k, we have h < |X |. For each i,
0 ≤ i ≤ X , let τi denote the minimal prefix of τ such that V (τi) ∩ X = Vi(α).
Since V (σ) ⊆ X , we have τ|σ| = σ.

A Polynomial Time Algorithm for Bounded Directed Pathwidth 339

We set η = τhα′, where α′ is the subsequence of α consisting of its last |X |−h
elements, and verify that η is a non-expanding k-feasible extension of σ and is
shorter than τ . Let i be an integer, h ≤ i ≤ |X |. By the submodularity of d−G,
we have

d−G(τh) + d−G(Vi(α)) ≥ d−G(Vh(α)) + d−G(V (τh) ∪ Vi(α)), (2)

where we have used V (τh)∩ Vi(α) = Vh(α). We have d−G(Vi(α)) ≤ d−G(Vh(α)) by
the choice of h and moreover d−G(τh) ≤ k since τ is k-feasible. Therefore, we have
d−G(V (τh) ∪ Vi(α)) ≤ k. Since this holds for every i, h ≤ i ≤ |X |, η is k-feasible.
Since d−G(τh) ≤ k < d−G(Vh(α)), (2) also implies d−G(V (τh) ∪ Vi(α)) < d−G(Vi(α)).
Letting i = |X |, we have d−G(η) = d−G(V (τh) ∪ V (α)) < d−G(α) = d−G(X) <
d−G(τ) ≤ d−G(σ). Thus, η is a non-expanding extension of σ. Finally, the inclusion
V (η) ⊆ V (τ) and the strict inequality d−G(η) < d−G(τ) imply that η is shorter
than τ . ��
Proof. (of Lemma 1.) Let σ be a strongly k-feasible sequence in Σ(G) and τ a
shortest non-expanding k-feasible extension of σ. Then, by Lemma 5, we have
d−G(X) ≥ d−G(τ) for every X such that V (σ) ⊆ X ⊆ V (τ). Lemma 4 applies and
τ is strongly k-feasible. ��

5 Implementation Details

In this section, we verify that our algorithm can be implemented to run in the
time bound of O(mnk+1) stated in Theorem 1, where n = |V (G)| and m =
|E(G)|. We assume that G is strongly connected and hence m ≥ n.

Data Structures

We represent each nonempty sequence σ ∈ Σ(G) by a pair consisting of the last
vertex of σ and a pointer to the prefix π(σ) of σ of length |σ| − 1. Thus, the
elements of the sets Si, 0 ≤ i ≤ i, naturally form a rooted tree in which the
parent of each non-root node σ is π(σ) and the set of nodes at the ith level is
Si. In addition, we represent the set Si, for each 0 ≤ i ≤ n, as a list sorted in
the lexicographic ordering.

We assume the input digraph G is given in the in-neighbor list representation:
each vertex v has a list in(v) of its in-neighbors ordered in the assumed total
ordering < on V (G).

Constructing Immediate Extensions

In this step, we generate k-feasible extensions of each element of Si−1 and let the
set of all those extensions be Ti. Let σ be an element of Si−1 being processed.
We first construct the bit-vector representation of N−

G (σ) in O(n) time. Then,
we iterate through all the vertices in V (G). If v ∈ V (G) is not in σ, we compute
d−G(σv) in O(d−G(v)) time, using the bit-vector for N−

G (σ). If d−G(σv) ≤ k then
we add σv to our list of feasible extensions. Doing this for all elements of Si−1

in the sorted order, we obtain the set Ti in the form of a sorted list. The time
required for this step is O(mnk).

340 H. Tamaki

Identifying Shortest Non-expanding k-Feasible Extensions and
Inheritors

In this step, for each pair (τ, σ) such that σ ∈ Ti and σ is the most preferable
shortest non-expanding k-feasible extension of τ , we register σ as the inheritor
of τ .

We first observe that σ ∈ Ti can be a shortest non-expanding k-feasible ex-
tension of some proper prefix of σ only if d−G(σ) ≤ d−G(π(σ)). Moreover, for
each η ∈ Si−1, among the extensions of η in Ti satisfying d−G(σ) ≤ d−G(η), only
the most preferable one can be the most preferable shortest non-expanding k-
feasible extension of some sequence. Based on this observation, we collect, for
each η ∈ Si−1, at most one extension σ ∈ Ti of η: σ satisfies d−G(σ) ≤ d−G(η) and
is the most-preferable over all extensions of η in Ti. We let the resulting set T ′

i

and scan its elements in the lexicographic ordering.
Let σ be an element of T ′

i . For each proper prefix τ of σ, σ is a shortest
non-expanding k-feasible extension of τ if and only if σ is a locally shortest
non-expanding k-feasible extension of τ . The “only if” part is obvious. For the
“if” part, suppose τ has a non-expanding k-feasible extension τ ′ that is shorter
than σ but is not a prefix of σ. We assume τ ′ is the shortest among such and
hence is a shortest non-expanding k-feasible extension of τ . Let τ ′′ be a prefix
of σ of length |τ ′|. Since the presence of π(σ) in Si−1 implies that τ ′ does not
suppress τ ′′, it must hold that d−G(τ ′′) ≤ d−G(τ ′) ≤ d−G(τ) and therefore σ is not
a locally shortest non-expanding k-feasible extension of τ . Since d−G(τ) has been
calculated for every τ ∈ ⋃

j≤i Sj , the above condition can be tested in O(n) total
time for all prefixes τ of σ.

When we find a prefix τ of σ such that σ is a shortest k-feasible non-expanding
extension of τ , we check whether the inheritor of τ is already registered. If
not, then register σ as such. Otherwise, let σ′ be the registered extension. If
d−G(σ) < d−G(σ′) then we replace σ′ with σ; otherwise we retain σ′. Since we are
processing the elements of T ′

i in the lexicographic order, the registered inheritor
is correctly the most-preferable shortest k-feasible non-expanding extension after
all the elements of T ′

i are processed. The time required for this registering process
is also O(n) for each σ ∈ T ′

i . The overall processing time for this step is O(nk+1).

Filtering Out Suppressed Elements

In this step, we collect those elements of Ti that are not suppressed, obtaining
the set Si.

Let η ∈ Si−1. Suppose first that η does not have an extension in T ′
i , that

is, d−G(σ) > d−G(η) for every extension σ of η in Ti. In this case, if some prefix
of η has some inheritor registered then all extensions of η in Ti are suppressed;
otherwise, no prefix of η has a non-expanding k-feasible extension in Ti and
therefore none of the extensions of η in Ti is suppressed. Suppose next that η
has an extension σ in T ′

i (which is unique). Then all extensions of η in Ti but σ
are suppressed by σ. This extension σ is suppressed if and only if some prefix of
η has an inheritor other than σ registered.

A Polynomial Time Algorithm for Bounded Directed Pathwidth 341

In either case, the processing time for each η ∈ Si−1 is O(n) and therefore the
total time for this step is O(nk+1).

Overall Running Time

We repeat the above construction of Si for i = 1, 2, . . . , n in O(mnk+1) total
time. Checking whether Sn is empty is trivial. If it is not empty, any element of
Sn achieves the directed vertex separation number at most k.

6 Concluding Remarks

In the terminology of parameterized complexity theory [7,8,15], the result of
this paper puts the problem of deciding the directed pathwidth in class XP. It is
open whether it is in FPT, that is, if there is an algorithm that, given positive
integer k and digraph G, decides if dpw(G) ≤ k in time f(k)nO(1) where f is
some function independent of n.

It was pointed out, at the workshop site, by Sang-il Oum and by Hiroshi
Nagamochi that the commitment lemma holds in a more general setting, where
the in-degree function d−G is replaced by an arbitrary submodular function, and
thus may be useful in other contexts. Exploring such applications of the lemma
and the techniques in this work is also an attractive avenue of future research.

Acknowledgment. The author would like to thank Yuichiro Miyamoto, Ryuhei
Uehara, Hirotaka Ono, Takehiro Ito, Katsuhisa Yamanaka, Yasuaki Kobayashi,
and Fumihito Ohtaki for useful discussions. Thanks are also due to Hiroshi Nag-
amochi who read the submission version carefully and helped improve the pre-
sentation.

References

1. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in
a k-tree. SIAM Journal on Matrix Analysis and Applications 8(2), 277–284

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24

3. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics 22(2), 161–172 (2006)

4. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of Graphs. Journal of Algorithms 21, 358–402 (1996)

6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

342 H. Tamaki

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

9. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On
Digraph Width Measures in Parameterized Algorithmics. In: Chen, J., Fomin, F.V.
(eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)

10. Hunter, P., Kreutzer, S.: Digraph Measures: Kelly Decompositions, Games, and
Orderings. In: Proc. the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 637–644 (2007)

11. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Jour-
nal of Combinatorial Theory Series B 82(1), 138–154 (2001)

12. Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of finding a
minimum-clique-number interval graph containing a given graph as a subgraph.
In: Proc. International Symposium on Circuits and Systems, pp. 657–660 (1979)

13. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42, 345–350 (1992)

14. Lampis, M., Kaouri, G., Mitsou, V.: On the Algorithmic Effectiveness of Digraph
Decompositions and Complexity Measures. In: Proc. of 19th International Sympo-
sium on Algorithms and Computation, pp. 220–231 (2008)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

16. Obdržálek, J.: DAG-width - Connectivity Measure for Directed Graphs. In: Proc.
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821
(2006)

17. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Com-
binatorial Theory, Series B 35(1), 39–61 (1983)

18. Robertson, N., Seymour, P.: Graph minors III: Planar tree-width. Journal of Com-
binatorial Theory, Series B 36(1), 49–64 (1984)

19. Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B 92(2), 325–335 (2004)

20. Safari, M.A.: D-Width: A More Natural Measure for Directed Tree Width.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 745–756. Springer, Heidelberg (2005)

21. Tamaki, H.: A directed path-decomposition approach to exactly identifying attrac-
tors of boolean networks. In: Proc. 10th International Symposium on Communica-
tions and Information Technologies, pp. 844–849 (2010)

22. Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed
pathwidth. Discrete Applied Mathematics 156(10), 1822–1837 (2008)

Author Index

Alcón, Liliana 11
Arends, Felix 23
Auer, Christopher 35

Belmonte, Rémy 47
B́ılka, Ondřej 83
Bodlaender, Hans L. 59
Bodlaender, Marijke H.L. 71

Cechlárová, Kataŕına 95
Chaplick, Steven 319
Cheng, Christine 107
Cohen, Elad 319
Couturier, Jean-François 119
Cygan, Marek 131

Das, Shantanu 143

Faria, Luerbio 11
Feldmann, Andreas Emil 143
Figueiredo, Celina M.H. de 11
Flier, Holger 155
Fulek, Radoslav 283

Galč́ık, Frantǐsek 250
Gaspers, Serge 167
Gleißner, Andreas 35
Golovach, Petr A. 119
Gutierrez, Marisa 11

Halldórsson, Magnús M. 191
Hasunuma, Toru 203
Hermelin, Danny 215
Huang, Chien-Chung 215
Hurkens, Cor A.J. 71

Jeĺınková, Eva 95
Jirásek, Jozef 83
Junosza-Szaniawski, Konstanty 227

Kanj, Iyad A. 238
Katrenič, Ján 250
Kijima, Shuji 271
Kitaev, Sergey 191

Klav́ık, Pavel 83
Kratsch, Dieter 59, 119
Kratsch, Stefan 215

Liedloff, Mathieu 167
Lokshtanov, Daniel 262
Lonc, Zbigniew 227

Marchetti-Spaccamela, Alberto 1
Marx, Dániel 5, 131
McDermid, Eric 107
McGrae, Andrew R.A. 179
Mihalák, Matúš 155
Mnich, Matthias 262

Nagamochi, Hiroshi 203
Niedermeier, Rolf 307

Okamoto, Yoshio 271
Ono, Hirotaka 271
Otachi, Yota 271
Ouaknine, Joël 23

Paulusma, Daniël 119
Pelsmajer, Michael J. 283
Pilipczuk, Marcin 131
Pilipczuk, Micha�l 131
Pyatkin, Artem 191

Ravsky, Alexander 295

Saitoh, Toshiki 271
Saurabh, Saket 262
Schaefer, Marcus 283
Schlotter, Ildikó 131
Semanǐsin, Gabriel 250
Sorge, Manuel 307
Stacho, Juraj 319
Štefankovič, Daniel 283
Stein, Maya 167
Suchan, Karol 167
Suzuki, Ichiro 107

Tamaki, Hisao 331
Tancer, Martin 83
Tuczyński, Micha�l 227

344 Author Index

Uno, Yushi 271

van Bevern, René 307
Vatshelle, Martin 47
Verbitsky, Oleg 295
Volec, Jan 83

Wahlström, Magnus 215
Wampler, Charles W. 23
Weller, Mathias 307

Widmayer, Peter 143, 155
Woeginger, Gerhard J. 71

Yamanaka, Katsuhisa 271
Yamazaki, Koichi 271

Zhang, Fenghui 238
Zito, Michele 179
Zych, Anna 155

	Title page
	Preface
	Organization
	Table of Contents
	Structures and Hyperstructures in Metabolic Networks
	Introduction
	Structural Characterization
	Dynamic Characterization
	References

	Important Separators and Parameterized Algorithms
	Introduction
	Multiway Cut
	Directed Graphs
	Conclusions
	References

	Split Clique Graph Complexity
	Introduction
	NP-Complete Split Clique Graph Classes
	Polynomially Solvable Split Clique Graph Classes
	Open Related Problems
	References

	On Searching for Small Kochen-Specker Vector Systems
	Introduction
	Kochen-Specker Vector Systems
	Embeddability
	Lower Bounds
	Conclusion
	References

	Characterizations of Deque and Queue Graphs
	Introduction
	Preliminaries
	Deque Graphs
	Characterizing Deque Graphs
	Hamiltonian Paths in Deque and Queue Graphs
	Deciding If a Graph Is a Deque Graph Is NP-Complete

	Queue Graphs
	Conclusion
	References

	Graph Classes with Structured Neighborhoods and Algorithmic Applications
	Introduction
	Framework
	Upper Bounds on Boolean-Width of Graph Classes
	Vertex Partitioning Problems
	Lower Bounds
	Conclusion
	References

	Exact Algorithms for Kayles
	Introduction
	Preliminaries
	An Upper Bound on the Number of K-sets
	A Bound on the Number of K-sets in Trees
	The Exact Algorithm
	Lower Bounds
	Conclusions
	References

	The Cinderella Game on Holes and Anti-holes
	Introduction
	Definitions and First Results
	The Game on General Graphs
	The Game on Holes
	Proof of the Upper Bound for GREEDY
	Proof of the Lower Bound for GREEDY

	The Game on Anti-holes
	Conclusions and Conjectures
	References

	On the Complexity of Planar Covering of Small Graphs
	Introduction
	Hardness of Planar Covering of K_6
	Hardness of Planar Covering of K_4, K_5, K_4+ and K_5-
	Hardness of Planar Covering of the Dumbbell Graph
	Conclusions
	References

	Approximability of Economic Equilibrium for Housing Markets with Duplicate Houses
	Introduction
	Preliminaries
	Bounds for sat(M)
	Inapproximability
	The Transformation
	Inapproximability for Max-SHDTri
	Inapproximability for Max-SHDTies

	Conclusion and Open Problems
	References

	Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs
	Introduction
	Preliminaries and Definitions
	Simplifying the Graph
	Finding Large Planar Subgraphs
	Induced Planar Subgraphs
	Planar Subgraphs

	Acyclic Colorings
	Acyclically Coloring $GR=K_4$
	NP-Hardness for $d ≥ 4$

	References

	List Coloring in the Absence of a Linear Forest
	Introduction
	A Generic Approach for Coloring H-Free Graphs
	Coloring $(rP1+P5)$-Free Graphs
	Parameterized Complexity Results
	Future Work
	References

	Parameterized Complexity of Eulerian Deletion Problems
	Introduction
	Notation and Preliminaries
	Polynomial-Time Solvable Cases
	Eulerian Edge-Deletion Problems
	FPT Algorithms
	Non-existence of a Polynomial Kernel for Undirected and Directed Eulerian Edge Deletion

	Node-Deletion Problems
	Conclusion
	References

	Restricted Cuts for Bisections in Solid Grids: A Proof via Polygons
	Comparing Optimal with Restricted Cuts
	Cuts in Polygons
	Removing Rectangular Lines
	Removing Staircase Lines
	Converting Lines in Polygons to Segments in Grids
	References

	Maximum Independent Set in 2-Direction Outersegment Graphs
	Introduction
	Solving the Tripartite MIS-2-Dir-Outer-SEG
	Structure of an Optimal Solution
	Algorithm for Tripartite MIS-2-Dir-Outer-SEG

	Decomposing MIS-2-Dir-Outer-SEG
	References

	Complexity of Splits Reconstruction for Low-Degree Trees
	Introduction
	WSR2is Strongly NP-Complete
	Algorithm for WSR2 with Few Distinct Vertex Weights
	SR3is NP-Complete
	Freely Choosable Weights
	Conclusion
	References

	Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem
	Introduction
	Algorithms
	A Useful Reduction
	Forests of Paths
	Trees
	General Planar Graphs
	References

	Alternation Graphs
	Introduction
	Definitions, Notation, and Known Results
	Characterization of Alternation Graphs by Orientability
	The Alternation Number of Graphs
	Characteristics of Alternation Graphs
	Concluding Remarks and Open Questions
	References

	Improved Bounds for Minimum Fault-Tolerant Gossip Graphs
	Introduction
	Construction of Fault-Tolerant Gossip Graphs
	Fault-Tolerant Gossip Graphs Based on Hypercubes
	Fault-Tolerant Gossip Graphs Based on Circulant Graphs
	A Lower Bound
	References

	Parameterized Two-Player Nash Equilibrium
	Introduction
	Preliminaries
	Sparse Games
	Non-negative Payoffs
	No Polynomial Kernels

	Locally Bounded Treewidth Games
	Unbalanced Games
	Conclusions
	References

	Counting Independent Sets in Claw-Free Graphs
	Introduction
	Preliminaries
	Procedures
	FOLDING
	REDUCTION
	BRANCHING

	Algorithm TCOUNT3
	Algorithm TCOUNT6
	Algorithm TCOUNT
	References

	On the Independence Number of Graphs with Maximum Degree 3
	Introduction
	Preliminaries
	Structural Results
	A Combinatorial Result
	The First Phase
	The Second Phase
	The Third Phase

	The Kernel
	References

	On Computing an Optimal Semi-matching
	Introduction
	Preliminaries
	Balancing Subroutine
	Dividing Subroutine

	The Main Algorithm
	Conclusion
	References

	Planar k-Path in Subexponential Time and Polynomial Space
	Introduction
	Definitions and Notations
	Polynomial Space Algorithm for the k-Path Problem
	Conclusion and Discussion
	References

	Approximability of the Path-Distance-Width for AT-free Graphs
	Introduction
	Preliminaries
	NP-Hardness for Cobipartite Graphs
	Approximating the Path-Distance-Width
	Approximating the Path-Distance-Width for k-Cocomparability Graphs
	Approximating the Path-Distance-Width for AT-free Graphs
	Approximating the Path-Distance-Width for Proper Interval Graphs

	A Polynomial-Time Solvable Case
	Concluding Remarks
	References

	Hanani-Tutte and Monotone Drawings
	Introduction
	Weak Hanani-Tutte for Monotone Drawings
	Strong Hanani-Tutte for Monotone Drawings
	Monotone Crossing Numbers
	Open Questions
	References

	On Collinear Sets in Straight-Line Drawings
	Introduction
	Basic Definitions
	Known Results on the Untangling Problem
	Known Results on the Allocation Problem
	Our Present Contribution

	Preliminaries
	Graphs with Small Collinear Sets
	Graphs with Large Free Collinear Sets
	Further Questions
	References

	From Few Components to an Eulerian Graph by Adding Arcs
	Introduction
	Limiting Imbalance Helps
	Generating Advice for Eulerian Extension
	Solving Eulerian Extension with Advice

	Non-existence of Polynomial-Size Problem Kernels
	Conclusion
	References

	Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths in a Grid
	Introduction
	Chordal B0-VPG Graphs
	Algorithm

	2-RowB0-VPG Graphs
	LL-Drawings
	PQ-Trees
	Algorithm

	Conclusion
	References

	A Polynomial Time Algorithm for Bounded Directed Pathwidth
	Introduction
	Preliminaries
	Search Tree Pruning
	Proof of the Commitment Lemma
	Implementation Details
	Concluding Remarks
	References

	Author Index

