
J. Tang et al. (Eds.): ADMA 2011, Part II, LNAI 7121, pp. 180–194, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Mining Top-K Sequential Rules

Philippe Fournier-Viger and Vincent S. Tseng

Department of Computer Science and Information Engineering
National Cheng Kung University

philippe.fv@gmail.com, tsengsm@mail.ncku.edu.tw

Abstract. Mining sequential rules requires specifying parameters that are often
difficult to set (the minimal confidence and minimal support). Depending on the
choice of these parameters, current algorithms can become very slow and
generate an extremely large amount of results or generate too few results,
omitting valuable information. This is a serious problem because in practice
users have limited resources for analyzing the results and thus are often only
interested in discovering a certain amount of results, and fine-tuning the
parameters can be very time-consuming. In this paper, we address this problem
by proposing TopSeqRules, an efficient algorithm for mining the top-k
sequential rules from sequence databases, where k is the number of sequential
rules to be found and is set by the user. Experimental results on real-life
datasets show that the algorithm has excellent performance and scalability.

1 Introduction

Nowadays, huge amounts of sequential information are stored in databases (e.g. stock
market data, biological data and customer data). Discovering patterns in such databas-
es is important in many domains, as it provides a better understanding of the data. For
example, in international trade, one could be interested in discovering temporal rela-
tions between the appreciations of currencies to make trade decisions. Various me-
thods have been proposed for mining patterns in sequential databases such as mining
repetitive patterns, trends and sequential patterns (see [1] for a survey). Among them,
mining sequential patterns is probably the most popular set of techniques (e.g. [2, 3,
4]). It consists of finding subsequences appearing frequently in a database. However,
knowing that a sequence appear frequently in a database is not sufficient for making
prediction [5]. An alternative that addresses the problem of prediction is sequential
rule mining [5-12]. A sequential rule indicates that if some item(s) occurred, some
other item (s) are likely to occur with a given confidence or probability afterward.
Sequential rule mining has many applications (e.g. stock market [7], weather observa-
tion [9], drought management [10] and e-learning [5, 6]).

Sequential rule mining algorithms have been developed for discovering rules in a
single sequence (e.g. [9, 12]) or in multiple sequences (e.g. [5, 6, 7, 10, 11]). To mine
sequential rules, users typically have to set two parameters: (1) a minimum support
threshold and (2) a minimal confidence threshold. But one important question that has
not been addressed in previous research is: “How can we choose appropriate values
for these parameters if we don’t have any background knowledge about the data-

 Mining Top-K Sequential Rules 181

base?” It is an important question because if these parameters are set too high, few
patterns are found and algorithms have to be rerun to find more patterns, and if para-
meters are set too low, algorithms become incredibly slow and generate an extremely
large amount of results. In practice, to find appropriate values for these parameters,
people generally successively try different values by guessing and executing the algo-
rithms over and over until being satisfied by the results, which can be very time-
consuming. However, in data mining, users are often only interested in discovering
the “top” patterns in a database because they have limited resources for analyzing
patterns that are found [13-16]. In this paper, we address this issue for the task of
mining sequential rules in sequence databases. We propose TopSeqRules, an algo-
rithm for mining only the top-k sequential rules, where k is a parameter set by the
user. This allows the user to specify for example, that he wants to discover the top
500 rules. Although several top-k pattern mining algorithms have been designed for
mining patterns like frequent itemsets (e.g. [13, 14, 16]) and sequential patterns (e.g.
[15]), we are the first to address the problem for sequential rules. The rest of this pa-
per is organized as follows. Section 2 reports related work and defines the problem of
top-k sequential rule mining. Section 3 describes TopSeqRules, optimizations and
extensions. Then, section 4 presents the evaluation. Finally, Section 5 presents the
conclusion.

2 Problem Definition and Related Work

There exist several definitions of what is sequential rule mining [5-12] (see [5] for a
literature review). In this paper, we use the definition of [6] for discovering sequential
rules common to multiple sequences because it has two reported real applications [6]
and because not many works have addressed the case of multiple sequences, despite
that it has many potential applications. According to this definition, a sequence data-
base (defined as in sequential pattern mining [2]) is a set of sequences S={s1, s2…ss}
and a set of items I={i1, i2,…it} occurring in these sequences. A sequence is defined
as an ordered list of itemsets (sets of items) sx=I1, I2, … In such that I1, I2, …In ⊆ I, and
where each sequence is assigned a unique sid (sequence id). As an example, figure 1.a
depicts a sequence database containing four sequences with sids seq1, seq2, seq3 and
seq4. In this example, each single letter represents an item. Items between curly
brackets represent an itemset. For instance, the sequence seq1 means that items a and
b occurred at the same time, and were followed successively by c, f, g and e. A se-
quential rule X⇒Y is defined as a relationship between two itemsets X, Y ⊆ I such
that X∩Y = Ø and X, Y ≠ Ø. Note that X and Y are unordered. The interpretation of a
rule X⇒Y is that if the items of X occur in a sequence, the items in Y will occur af-
terward in the same sequence. Formally, a rule X⇒Y is said to occur in a sequence
sx=I1, I2 … In if there exists an integer u such that 1 ≤ u < n, X ⊆ I and Y ⊆ I . For example, the rule {a, b, c}⇒{e, f, g} occurs in the sequence {a, b},
{c}, {f}, {g}, {e}, whereas the rule {a, b, f}⇒{c} does not because item c does not
occur after f. A rule X⇒Y is said to be of size v*w if |X| = v and |Y| = w. For example,
the rules {a, b, c}⇒{e, f, g} and {a}⇒{e, f} are of size 3*3 and 1*2 respectively.

182 P. Fournier-Viger and V.S. Tseng

Furthermore, a rule of size f *g is said to be larger than another rule of size h*i if f >
h and g ≥ i, or if f ≥ h and g > i. For a given sequence database and a rule X⇒Y, the
notation sids(X⇒Y) represents the sids set (the set of sequence ids) of the sequences
where the rule occurs. For instance, sids({a}⇒{b}) = {seq2, seq3}. For an itemset X
and a sequence database, the notation sids(X) denotes the sids set corresponding to
sequences where all the items of X appears. For example, sids({a, b, c}) = {seq1,
seq2}. For the sake of brevity, in the rest of this paper, curly brackets will be omitted
when using the “sids” notation with itemsets containing a single item. Two interest-
ingness measures are defined for sequential rules, which are similar to those used in
association rule mining [17]. The support of a rule X⇒Y is defined as sup(X⇒Y) =
|sids(X⇒Y)| / |S|. The confidence is defined as conf(X⇒Y) = |sids(X⇒Y)| / |sids(X)|.
The problem of mining sequential rules common to multiple sequences is to find all
valid rules in a sequence database [6]. A valid rule is a rule such that its support and
confidence are respectively no less than user-defined thresholds minsup and minconf.
For example, figure 1.b illustrates some valid rules found in the database shown in
figure 1.a for minsup = 0.5 and minconf = 0.5. Moreover, a rule having a support
higher or equal to minsup is said to be a frequent rule. Thus, by definition, valid rules
are a subset of frequent rules.

a) ID Sequences b) ID Rule Support Conf.
 seq1

seq2
seq3
seq4

{a, b},{c},{f},{g},{e}
{a, d},{c},{b},{a, b, e, f}
{a},{b},{f},{e}
{b},{f, g}

r1
r2
r3
r4
r5
r6
r7
…

{a, b, c}⇒{e}
{a}⇒{c, e, f}
{a, b}⇒{e, f}
{b}⇒{e, f}
{a}⇒{e, f}
{c}⇒{f}
{a}⇒{b}
…

0.5
0.5
0.5
0.75
0.75
0.5
0.5
…

1.0
0.66
1.0
0.75
1.0
1.0
0.66
…

Fig. 1. A sequence database (left) and some sequential rule found (right)

To define an algorithm for discovering the “top-k” sequential rules, we first need to
define what a “top-k sequential rule” is. In frequent pattern mining, top-k pattern min-
ing algorithms have been defined principally for mining frequent itemsets [13, 14, 16]
and sequential patterns [15]. For discovering these types of patterns only the mini-
mum support is generally used. Consequently, the problem of mining the top-k pat-
terns for these types of patterns is defined as discovering the k patterns having the
highest support [13- 16]. For sequential rule mining, however, the problem of mining
the top-k sequential rules could be stated in different ways because two interesting-
ness measures are used (the support and the confidence) instead of one. We thus see
two possible definitions: (I) to discover the k rules having the highest support such
that their confidence is higher than minconf, (II) to discover the k rules having the
highest confidence such that their support is higher than minsup.

For this paper, we choose definition I over definition II because in practice the pa-
rameter minconf is much easier to set than minsup because minconf represents the
minimum confidence that a user want in rules, while choosing an appropriate value
for minsup depends solely on the characteristics of the database and it is impossible to

 Mining Top-K Sequential Rules 183

know a priori what is an appropriate value for minsup. However, later on, in section
3.4 we will explain how TopSeqRules could be adapted for definitions I. Based on
definition II, we define the problem of mining the top-k sequential rules as follows:

Definition 1 (top-k sequential rule mining): To discover in a sequence database a
set L containing k rules such that for each rule rm ∈ L, conf(rm) ≥ minconf, and there
does not exist a rule rn ∉ L such that sup(rn) > sup(rm) and conf(rn) ≥ minconf.

To mine top-k patterns, all top-k pattern mining algorithms (e.g. [13-16]) follow a
same general process, although they have several differences. The general process for
mining top-k patterns from a database is the following. Initially, a top-k algorithm
sets the minimum interestingness criterion (e.g. minsup) to the lowest possible value
to ensure that all the top-k patterns will be found. Then, the algorithm starts searching
for patterns by using a search strategy. As soon as a pattern is found, it is added to a
list of patterns L ordered by the interestingness of patterns. The list is used to main-
tain the top-k patterns found until now. Once k patterns are found, the value for the
minimum interestingness criterion is raised to the interestingness value of the least
interesting pattern in L. Raising the minimum interestingness value is used to prune
the search space when searching for more patterns. Thereafter, each time a pattern is
found that meets the minimum interestingness criterion, the pattern is inserted in L,
the pattern(s) in L not respecting the minimum interestingness criterion anymore are
removed from L, and the minimum interestingness criterion is raised to the value of
the least interesting pattern in L. The algorithm continues searching for more patterns
until no pattern are found by the search strategy.

What distinguish top-k pattern mining algorithms are their data structures, input, out-
put and search strategies to discover patterns. As any other data mining algorithms, a
top-k algorithm needs to use appropriate data structures and search strategies to be effi-
cient in both memory and execution time. But besides that, the efficiency of a top-k
algorithm depends largely on how fast it can raise the minimum interestingness criterion
(e.g. minsup) to prune the search space. To raise the support quickly, it is desirable that
a top-k pattern mining algorithm uses strategies to find the most interesting patterns as
early as possible. Hence, to design an efficient top-k sequential rule mining algorithm,
several questions have to be addressed such as “Which search strategy and data struc-
tures should be used?”, and “What optimizations can be applied?”

3 The TopSeqRules Algorithm

To answer this challenge, we propose TopSeqRules, a top-k algorithm based on the
search strategy of RuleGrowth for generating valid rules [5]. RuleGrowth is the cur-
rent best algorithm for mining sequential rules according to the definition of section 2.
Its search strategy consists of first finding rules containing only two items and then to
find larger rules by recursively growing the rules by scanning the sequences contain-
ing them to find single items that could expand their left or right parts. These two
processes for expanding rules are named left expansion and right expansion. TopSe-
qRules integrates these processes with the general process for mining top-k patterns

184 P. Fournier-Viger and V.S. Tseng

described in section 2. Furthermore, to mine the top-k rules efficiently, it also add
optimizations and the strategy of always trying to generate the most promising rules
first, to try to prune the search space quickly by raising minsup.

Before presenting TopSeqRules, we introduce preliminary definitions and proper-
ties related to left/right expansions. A left expansion is the process of adding an item i
to the left side of a rule X⇒Y to obtain a larger rule X∪{i}⇒Y. Similarly, a right
expansion is the process of adding an item i to the right side of a rule X⇒Y to obtain
a rule X⇒Y∪{i}. Left/right expansions have four important properties.

Property 1 (left expansion, effect on support): If an item i is added to the left side
of a rule r:X⇒Y, the support of the resulting rule r’:X∪{i}⇒Y can only be lower or
equal to sup(r). Proof: The support of r and r’ are respectively |sids(X⇒Y)| / |S| and
|sids(X∪{i}⇒Y)| / |S|. Since |sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)|, sup(r) ≥ sup(r’).

Property 2 (right expansion, effect on support): If an item i is added to the right
side of a rule r:X⇒Y, the support of the resulting rule r’:X⇒Y∪{i} can only be lower
or equal to sup(r). Proof: The support of r and r’ are respectively |sids(X⇒Y)| / |S|
and |sids(X⇒Y∪{i})| / |S|. Since |sids(X⇒Y)| ≥ |sids(X⇒Y∪{i})|, sup(r) ≥ sup(r’).

Properties 1 and 2 imply that the support is monotonic with respect to left/right ex-
pansions. In other words, performing any combinations of left/right expansions of a
rule can only result in rules having a support that is lower or equal to the original rule.
Therefore, all the frequent can be found by recursively performing expansions on
frequent rules of size 1*1. Moreover, property 1 and 2 guarantee that expanding a rule
having a support less than minsup will not result in a frequent rule. The confidence is
not monotonic with respect to expansions, as next properties demonstrate.

Property 3 (left expansion, effect on confidence): If an item i is added to the left
side of a rule r:X⇒Y, the confidence of the resulting rule r’: X∪{i}⇒Y can be lower,
higher or equal to the confidence of r. Proof: The confidence of r and r’ are respec-
tively |sids(X⇒Y)| / |sids(X)| and |sids(X∪{i}⇒Y)| / |sids(X∪{i})|. Because
|sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)| and |sids(X)| ≥ |sids(X∪{i})|, conf(r) can be lower,
higher or equal to conf(r’).

Property 4 (right expansion, effect on confidence): If an item i is added to the right
side of a rule r:X⇒Y, the confidence of the resulting rule r’: X⇒Y∪{i} is lower or
equal to the confidence of r. Proof: The confidence of r and r’ are respectively |sids
(X⇒Y)| / |sids(X)| and |sids(X⇒Y∪{i})| / |sids(X)|. Since |sids(X⇒Y)| ≥
|sids(X⇒Y∪{i})|, conf(r) ≥ conf(r’).

TopSeqRules relies on sids sets to calculate the support and confidence of rules ob-
tained by left or right expansions. Sids sets have two important properties.

Property 5 (sids set of a rule and its itemsets): For any sequential rule X⇒Y,
sids(X⇒Y) ⊆ sids(X) ∩ sids(Y). Proof: A rule can only occur in a sequence if all
items from its left and right parts appear in it.

Property 6 (sids set of a rule obtained by left/right expansion): For any sequential
rule r’ obtained by a left or right expansion of a rule r, the relationship sids(r’) ⊆

 Mining Top-K Sequential Rules 185

sids(r) holds. Proof. If the rule r does not occur in a sequence, the rule r’ also cannot.
Therefore, the sids set of r’ must be a subset of the sids set of r.

3.1 The Algorithm

TopSeqRules takes as input a sequence database S, a number k of rules that the user
wants to discover, and the minconf threshold. The algorithm uses three main internal
variables. The first one is minsup, wich is initially set to 0 and is raised dynamically
as soon as k rules are found, as it will be explained. The second variable is a set
named L to keep the top-k rules found until now that have a support and confidence
higher or equals to minsup and minconf. The third variable is a set named R to store
the rules that should be expanded to have a chance of finding more valid rules.

The Main Procedure. The main procedure of TopSeqRules is shown in figure 2. The
algorithm first scans the database once to calculate sids(c) for each item c. Then, the
algorithm generates all valid rules of size 1*1. This is done by taking each pair of
items i, j, where i and j each have at least minsup×|S| sids (if this condition is not met,
no rule having at least the minimum support can be created with i and j). The algo-
rithm then scans sequences in sids(i) ∩ sids(j) to calculate sids(i⇒j) and sids(j⇒i), the
sids of sequences where the rule {i}⇒{j} and {j}⇒{i} occur, respectively (because of
property 5). After this, the support of the rule {i}⇒{j} is obtained by dividing
|sids(i⇒j)| by |S|. For each rule {i}⇒{j} or {j}⇒{i} that is valid, the procedure SAVE
is called with the rule and L as parameters so that the rule is recorded in the set L of
the current top-k rules found. Also, each rule {i}⇒{j} or {j}⇒{i} that is frequent is
added to the set R, to be later considered for expansion.

After that, a loop is performed to recursively select the rule r with the highest sup-
port in R such that sup(r) ≥ minsup and expand it. The idea behind this loop is to
always expand the rule from R having the highest support first because it is more
likely to generate rules having a high support and thus to allow to raise minsup more
quickly for pruning the search space. The loop terminates when there is no more rule
in R having a support higher or equal to minsup. For expanding a rule, a flag
expandLR indicates if the rule should be left and right expanded by calling the
procedure EXPAND-L and EXPAND-R or just left expanded by calling EXPAND-L.
For all rules of size 1*1, this flag is set to true. The utility of this flag for larger rules
will be explained later.

The Save Procedure. The role of SAVE (figure 3) is to raise minsup and update the
list L when a new valid rule r is found. The first step of SAVE is to add the rule r to
L. Then, if L contains more than k rules and the support is higher than minsup, rules
from L that have exactly the support equal to minsup can be removed until only k
rules are kept. Finally, minsup is raised to the support of the rule in L having the low-
est support. By this simple scheme, the top-k rules found are maintained in L.

Now that we have described how rules of size 1*1 are generated and the mechan-
ism for maintaining the top-k rules in L, we explain how rules of size 1*1 are ex-
panded to find larger rules. Without loss of generality, we can ignore the top-k aspect
for the explanation and consider the problem of generating all valid rules. To recur-
sively expand rules and find all valid rules starting from rules of size 1*1, a few prob-
lems had to be solved.

186 P. Fournier-Viger and V.S. Tseng

Problem 1: How can we guarantee that all valid rules are found by recursively
performing left/right expansions starting from rules of size 1*1? The answer is
found in properties 1 and 2, which states that the support of a rule is monotonic with
respect to left/right expansions. This implies that all rules can be discovered by recur-
sively performing expansions starting from frequent rules of size 1*1. Moreover,
these properties imply that infrequent rules should not be expanded because they will
not lead to valid rules. However, no similar pruning can be done for the confidence
because it is not monotonic with respect to left expansion (property 3).

Problem 2: How we can guarantee that no rules are found twice by recursively
making left/right expansions? To guarantee this, two sub-problems had to be solved.
First, if we grow rules by performing expansions recursively, some rules can be found
by different combinations of left/right expansions. For example, consider the rule {a,
b} ⇒{c, d}. By performing, a left and then a right expansion of {a} ⇒ {c}, one can
obtain the rule {a, b} ⇒ {c, d}. But this rule can also be obtained by performing a
right and then a left expansion of {a} ⇒ {c}. A simple solution to avoid this problem
is to forbid performing a right expansion after a left expansion but to allow perform-
ing a left expansion after a right expansion. An alternative solution is to not allow a
left expansion after a right expansion.

TOPSEQRULES (S, k, minconf)
1. R := Ø. L := Ø. minsup := 0.
2. Scan the database S once. Record the sids set of each item c in a variable sids(c).
3. FOR each pairs of items i, j such that |sids(i)|≥ minsup and ∩ |sids(j)|≥ minsup:
4. sids(i⇒j) := Ø. sids(j⇒i) := Ø.
5. FOR each sid s ∈ (sids(i) ∩ sids(j):
6. IF i occurs before j in s THEN sids(i⇒j) := sids(i⇒j) ∪ {s}.
7. IF j occurs before i in s THEN sids(j⇒i) := sids(j⇒ i) ∪ {s}.
8. END FOR
9. IF |sids(i⇒j)| / |S| ≥ minsup THEN
10. conf({i}⇒{j}) := |sids(i⇒j)| / | sids(i).
11. IF conf({i}⇒{j}) ≥ minconf THEN SAVE({i}⇒{j}, L, k, minsup).
12. Set flag expandLR of {i}⇒{j}to true.
13. R := R∪{{i}⇒{j}}.
14. END IF
 … [lines 9 to 14 are repeated here with i and j swapped] …
15. END FOR
16. WHILE ∃r ∈ R AND sup(r) ≥ minsup DO
17. Select the rule rule having the highest support in R
18. IF rule.expandLR = true THEN
19. EXPAND-L(rule, L, R, k, minsup, minconf).
20. EXPAND-R(rule, L, R, k, minsup, minconf).
21. ELSE EXPAND-R(rule, L, R, k, minsup, minconf).
22. REMOVE rule from R. REMOVE from R all rules r ∈ R | sup(r) <minsup.
23. END WHILE

Fig. 2. The TopSeqRules algorithm

The second sub-problem is that rules can be found several times by performing
left/right expansions with different items. For example, consider the rule {b, c}⇒{d}.

 Mining Top-K Sequential Rules 187

SAVE(r, R, k, minsup)
1. L := L∪{r}.
2. IF |L| ≥ k THEN
3. IF sup(r) > minsup THEN
4. WHILE |L| > k AND ∃s ∈ L | sup(s) = minsup
5. REMOVE s from L.
6. END IF
7. Set minsup to the lowest support of rules in L.
8. END IF

Fig. 3. The SAVE procedure

A left expansion of {b}⇒{d} with item c can result in the rule {b, c}⇒{d}. But that latter
rule can also be found by performing a left expansion of {c}⇒{d} with b. To solve this
problem, a solution is to only add an item to an itemset of a rule if the item is greater than
each item in the itemset according to the lexicographic ordering. In the previous example,
this would mean that item c would be added to the left itemset of {b}⇒{d}. But b would
not be added to the left itemset of {c}⇒{d} because b is not greater than c. By using this
strategy and the previous one, no rules are found twice. We now explain how EXPAND-
L and EXPAND-R have been implemented based on these strategies.

The EXPAND-R Procedure. The procedure EXPAND-R (cf. figure 4) takes as pa-
rameters a rule I⇒J to be expanded, L, R, k, minsup and minconf. To expand I⇒J,
EXPAND-R has to identify items that can expand the rule I⇒J to produce a valid rule.
By exploiting the fact that any valid rule is a frequent rule, this problem is decom-
posed into two sub-problems, which are (1) determining items that can expand a rule
I⇒J to produce a frequent rule and (2) assessing if a frequent rule obtained by an ex-
pansion is valid. The first sub-problem is solved as follows. To identify items that can
expand a rule I⇒J and produce a frequent rule, the algorithm scans each sequence sid
from sids(I∩J). During this scan, for each item c∉I appearing in sequence sid after I,
the algorithm adds sid to a variable sids(I⇒J∪{c}) if c is lexically larger than all items
in J (this latter condition is to ensure that no duplicated rules will be generated, as
explained). When the scan is completed, for each item c such that |sids(I⇒J∪{c})| / |S|
≥ minsup, the rule I⇒J∪{c} is deemed frequent and is added to the set R so that it will
be later considered for expansion. Note that the flag expandLR of each such rule is set
to false so that each generated rule will only be considered for right expansions (to
make sure that no rules are found twice by different combinations of left/right expan-
sions, as explained). Finally, the confidence of each frequent rule I⇒J∪{c} is calcu-
lated to see if the rule is valid, by dividing |sids(I⇒J∪{c})| by |sids(I)|, the value
sids(I) having already been calculated for I⇒J. If the confidence of I⇒J∪{c} is no
less than minconf, then the rule is valid and the procedure SAVE is called to add the
rule to L, the list of the current top-k rules.

The EXPAND-L Procedure. The procedure EXPAND-L (cf. figure 5) takes as pa-
rameters a rule I⇒J to be expanded, L, R, k, minsup and minconf. This procedure is
similar to EXPAND-R. The only extra step that is performed compared to EXPAND-
R is that for each rule I∪{c}⇒J obtained by the expansion of I⇒J with an item c, the
value sids(I∪{c}) necessary for calculating the confidence is obtained by intersecting
sids(I) with sids(c). The value sids(c) is known from the initial database scan.

188 P. Fournier-Viger and V.S. Tseng

3.2 Implementing TopSeqRules Efficiently

We implemented TopSeqRules in Java. We used two optimizations, which greatly
improve TopSeqRules’ execution time in our experiments (cf. section 4).

Optimization 1: Implementing L and R with Efficient Data Structures. TopSeqRules
performs three operations on L, which are insertion, deletion and finding the rule having
the lowest support. The three same operations are performed on R plus finding the rule
having the highest support (to select the most promising rules from R). Because these
operations are performed constantly by TopSeqRules, it is important to implement L and
R with data structures that support performing these operations efficiently. To address
this issue, we implement L with a Fibonacci heap sorted by the support of the rules. It
has an amortized time cost of O(1) for insertion and obtaining the minimum, and
O(log(n)) for deletion [18]. For R, we used a red-black tree because we also need the
operation of finding the maximum. A red-black tree guarantees a O(log(n)) worst-case
time cost for the four operations [18] .

Optimization 2: Merging Database Scans for the Left/Right Expansions of a
Rule. The second optimization reduces the number of database scans. Recall that
EXPAND-L and EXPAND-R are both applied to each rule I⇒J having the flag
expandLR set to true. Performing EXPAND-L and EXPAND-R each requires to scan
each sequence from sids(I⇒J) once. A simple optimization is to combine the database

EXPAND-R(I⇒J, L, R, k, minsup, minconf)
1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item c appearing in sequence

sid that is lexically larger than all items in J and appear after I, record sid in a variable
sids(I⇒J∪{c}).

2. FOR each item c such that |sids(I⇒J∪{c})| ≥ minsup×|S| :
3. Set flag expandLR of I⇒J∪{c} to false.
4. R := R∪{I⇒J∪{c}}.
5. IF | sids (I⇒J∪{c})| / | sids (I)| ≥ minconf THEN SAVE(I⇒J∪{c}, L, k, minsup).
6. END FOR
7. END FOR

Fig. 4. The EXPAND-R procedure

EXPAND-L(I⇒J, L, R, k, minsup, minconf)

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item c∉J appearing in se-
quence sid that is lexically larger than all items in I and appear before J, record sid in a va-
riable sids(I∪{c}⇒J)

2. FOR each item c such that |sids (I∪{c}⇒J)| / |S| ≥ minsup :
3. Set flag expandLR of I⇒J∪{c} to true.
4. sids(I∪{c}) := Ø.
5. FOR each sid ∈ sids(I) such that sid ∈ sids(c), sids(I∪{c}):= sids(I∪{c}) ∪{sid}.
6. SAVE(I∪{c}⇒J, L, k, minsup).
7. IF |sids(I∪{c}⇒J)| / |sids(I∪{c})| ≥ minconf THEN R := R∪{I∪{c}⇒J}.
8. END FOR

Fig. 5. The EXPAND-L procedure

 Mining Top-K Sequential Rules 189

scans of EXPAND-L and EXPAND-R so that they use the same database scan for
identifying left and right expansions, when the flag expandLR is set to true.

3.3 Extensions

The TopSeqRules algorithm can be extended in several ways. We list two.

Extension 1: Using a different definition of what is a top-k sequential rule. In
section 2, we presented two possible definitions of what is a top-k sequential rule, and
selected definition I for presenting the algorithm. However, TopSeqRules could easily
be modified so that the support is fixed instead of the confidence for finding the top-k
rules. This would result in a mining algorithm for definition II. However, the resulting
algorithm would be inefficient unless the support is set high, because the confidence
could not be raised dynamically to prune the search space because the confidence is
not monotonic with respect to left/right expansions (cf. section 3).

Extension2: Using different interestingness measures. This paper considered the
confidence and support because they are the standard measures for sequential rules.
But other measures could be used. For example, more than twenty interestingness
measures have been proposed for association rule mining [17]. Many of those could
be adapted for sequential rule mining and integrated in the TopSeqRules algorithm
because the calculation is done similarly to the calculation of the confidence and sup-
port. For example, the lift [17] could be adapted for sequential rules as lift(I⇒J) =
sup(I⇒J)/ (sup(I) × sup(J)) for a sequential rule I⇒J. Compared to the confidence,
using the lift would just require to calculate sup(J) for each rule in addition to sup(I).
However, to be able to prune the search space, it is necessary that the “top-k” condi-
tion is defined on a monotonic interestingness measure like the support. For example,
with just a few modifications, one could mine the k rules having a support higher or
equal to minsup such that their lift is no less than a minlift threshold.

4 Evaluation

We evaluated TopSeqRules on a notebook with a 2.53 Ghz processor, Windows XP
and 1 GB of free RAM. Experiments were carried on three real-life datasets
representing three types of data. Table 1 summarizes the characteristics of the data-
sets. BMSWebview1 was downloaded from http://fimi.ua.ac.be/data/. Sign was down-
loaded from http://cs-people.bu.edu/panagpap/Research/asl_mining.htm. Snake was
obtained from the authors of [4].

Table 1. Datasets characteristics

Datasets |S| |I| Avg. item count / sequence Type of data
BMSWebView1 59601 497 2.5 (σ = 4.85) click-stream from web store

Sign 730 310 93.39 (σ = 4.59) language utterances

Snake 163 20 60.61 5 (σ = 0.89) protein sequence

190 P. Fournier-Viger and V.S. Tseng

4.1 Influence of k

The first experiment was done to evaluate the influence of k on the execution time and
the memory consumption. We ran TopSeqRules with minconf = 0.3 on each dataset
while varying k from 500 to 5000. Results are shown in figure 6. Our first observation
is that the execution time and the maximum memory consumption is excellent for
these real-life datasets (in the worst case, the algorithm took a little less than 1 minute
to terminate and used about 1 gigabyte of memory). Furthermore, it can be seen that
the algorithm performance and memory usage grows linearly with k. The only excep-
tion is for k=3000 to k=4500 for the BMS-WebView1 dataset where the memory usage
remains the same and the execution time increases more quickly. We found that this is
not caused by the algorithm design. But it is caused by the Java garbage collection
mechanism overhead when the memory usage is close to the 1GB limit set for the
experiment.

Execution time (seconds)
 BMSWebview1 Sign Snake

Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 6. Results of varying k

4.2 Influence of minconf

In a second experiment, we tested the influence of minconf on the execution time and
memory consumption. We ran TopSeqRules on the same datasets with k = 1000 while
varying minconf to observe its influence on the execution time and the memory usage.
Results are shown in figure 7. It can be seen that as the confidence increases, the ex-
ecution time and memory usage increase in an exponential manner. The reason is that
setting the confidence higher means that the algorithm has to generate more rules to
be able to raise the minimum support threshold when searching for the top-k sequen-
tial rules. Nevertheless, the algorithm ran successfully with high minconf thresholds in
our experiment within the memory limit (up to 0.7, 0.85 and 0.99, respectively for
BMSWebview1, Sign and Snake).

0

20

40

60

0 1000 2000 3000 4000 5000
k

0

10

20

30

0 1000 2000 3000 4000 5000
k

0

5

0 1000 2000 3000 4000 5000
k

0

500

1000

0 1000 2000 3000 4000 5000
k

0

500

1000

0 1000 2000 3000 4000 5000
k

0

50

100

150

0 1000 2000 3000 4000 5000
k

 Mining Top-K Sequential Rules 191

Execution time (seconds)
 BMSWebview1 Sign Snake

Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 7. Results of varying minconf

4.3 Influence of |S|

In a third experiment, we tested the scalability with respect to the number of se-
quences, by applying TopSeqRules with minconf=0.3 and k=1000 on 50% to 100 %
of the sequences of each dataset. Figure 8 shows the results. It can be seen that the
execution time and memory usage increase slowly when the number of sequences
increases. This is because the performance of TopSeqRules depends more on the
number of rules generated and stored in R than the number of sequences, and the
number of rules generated remains more or less the same when the database size in-
crease. This shows that TopSeqRules has an excellent scalability.

Execution time (seconds)

 BMSWebview1 Sign Snake

Maximum memory usage (megabytes)
 BMSWebview1 Sign Snake

Fig. 8. Results of varying the database size

0

100

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7
minconf

0

10

20

30

0 0.5 1
minconf

0

5

10

15

0.5 0.75 1
minconf

0

100

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7
minconf

0

500

1000

0 0.2 0.4 0.6 0.8 1
k

0

50

100

0.5 0.75 1
minconf

8

9

10

11

0.5 0.6 0.7 0.8 0.9 1
% of |S|

4

6

8

10

0.5 0.6 0.7 0.8 0.9 1
% of |S|

0

1

2

3

0.5 0.6 0.7 0.8 0.9 1
% of |S|

300

320

340

0.5 0.6 0.7 0.8 0.9 1
% of |S|

125

127

129

131

0.5 0.6 0.7 0.8 0.9 1
% of |S|

30

40

50

0.5 0.6 0.7 0.8 0.9 1
% of |S|

192 P. Fournier-Viger and V.S. Tseng

4.4 Performance Comparison

In a fourth experiment, we compared the performance of TopSeqRules with Rule-
Growth [6] (also implemented in Java), the state of the art algorithm for the problem
of mining sequential rules presented in section 2. To compare their performance, we
first considered the scenario where the user would choose the optimal parameters for
RuleGrowth to produce the same amount of result produced by TopSeqRules. For this
scenario, we ran TopSeqRules on the three datasets with the parameters used in sec-
tion 4.1. We then ran RuleGrowth with minsup equals to the lowest support for the
rules found by TopSeqRules, for each k and each dataset. Results are shown in figure
10. It can be observed that the execution time of TopSeqRules is generally close to
RuleGrowth’s execution time except for BMSWebView1 where the gap is larger. But
the main difference between the performance of TopSeqRules and RuleGrowth is in
the memory usage. TopSeqRules uses more memory because it keeps the set R of
rules to be expanded into memory. For this reason, as k is set to larger value, the
memory requirement of TopSeqRules increases. These results are excellent consider-
ing that the parameters of RuleGrowth were chosen optimally, which is rarely the
case in real-life if the user has no a priori knowledge of the database. If the parameters
of RuleGrowth are not chosen optimally, it can run much slower than TopSeqRules,
or generate too few or too many results. For example, consider the case where the
user wants to discover the top 1000 rules from a database and do not want to find
more than 2000 rules. To find this amount of rules, the user needs to choose minsup
from a very narrow range of values (shown in Table 2 for each dataset). For example,
for BMSWebView1, the range of minsup values that will satisfy the user is 0.0011 to
0.0009. This means that a user having no a priori knowledge of the database has only
a 0.02 % chance of selecting a minsup value that will make him satisfied. If the users
choose a higher minsup, not enough rules will be found, and if minsup is set lower,
too many rules will be found and the algorithm may become slow. This clearly shows
the benefits of using TopSeqRules.

Execution time (seconds)

 BMSWebview1 Sign Snake

 Maximum memory usage (megabytes)

 BMSWebview1 Sign Snake

Fig. 9. Performance comparison for optimal parameters selection

0

5

10

15

20

250 500 750 10001250150017502000
k

TopSeqRules
RuleGrowth

0

10

20

30

0 2000 4000k

0

5

0 2000 4000
k

0

200

400

600

800

250 500 750 10001250150017502000
k

TopSeqRules
RuleGrowth

0

200

400

600

0 2000 4000
k

0

50

100

150

0 2000 4000
k

 Mining Top-K Sequential Rules 193

Table 2. Interval of minsup values to find the top 1000 to 2000 rules for each dataset

Datasets minsup for k=1000 minsup for k=2000 interval size
BMSWebView1 0.0011 0.0009 0.0002

Sign 0.420 0.384 0.036
Snake 0.960 0.944 0.016

4.5 Influence of Optimizations and of Expanding the Most Promising Rules
First

Lastly, we evaluated the benefit of using the optimizations and of expanding the most
promising rules first. Due to space limitations, we do not show the results as charts.
We observed that optimization 1 (data structures) and optimization 2 (merging data-
base scans) each reduce the execution time by about 20% to 40 % on all datasets. For
the strategy of expanding the most promising rules first with the set R, we found that
if this strategy is deactivated, the algorithm cannot terminate within 1 hour on all
datasets because the algorithm cannot prune the search space efficiently. This is be-
cause in the worst case a top-k algorithm has to explore the whole search space before
finding the top-k rules. If there are d items, the number of rules to consider is in the

worst case 123×
1

1 1
+−=

 −

 −

=

−

=
ddd

k

kd

j j

kd

k

d
, which is exponential. For this reason,

it is necessary to use the set R to expand the most promising rules first to try to raise
minsup as fast as possible and prune the search space.

5 Conclusion

Mining sequential rules requires specifying parameters (e.g. the minimal confidence
and the minimal support) that are difficult to set. To address this problem, we propose
an efficient algorithm named TopSeqRules that let the user specify k, the amount of
sequential rules to be output. Experimental results with real-life datasets show that the
algorithm has excellent scalability, that its execution time linearly increases with the
parameter k and that the algorithm had no problem running in reasonable time and
memory limits for k values of up to 5000 for all datasets. Results also show that when
parameters are chosen optimally, RuleGrowth can be slightly faster than TopSe-
qRules. However, if minsup is set higher than a narrow range of values, RuleGrowth
generates too few results and if it is set lower, it generates too many results and can
become much slower. This clearly shows the benefit of using TopSeqRules when the
user has no a priori knowledge about a sequence database.

References

1. Laxman, S., Sastry, P.: A survey of temporal data mining. Sadhana 3, 173–198 (2006)
2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. ICDE 1995, pp. 3–14

(1995)

194 P. Fournier-Viger and V.S. Tseng

3. Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning 42(1/2), 31–60 (2001)

4. Jonassen, I., Collins, J.F., Higgins, D.G.: Finding flexible patterns in unaligned protein se-
quences. Protein Science 4(8), 1587–1595 (1995)

5. Fournier-Viger, P., Nkambou, R., Tseng, V.S.: RuleGrowth: Mining Sequential Rules
Common to Several Sequences by Pattern-Growth. In: Proc. SAC 2011, pp. 954–959
(2011)

6. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E.: CMRules: Mining Se-
quential Rules Common to Several Sequences. Knowledge-based Systems 25(1), 63–76
(2012)

7. Das, G., Lin, K.-I., Mannila, H., Renganathan, G., Smyth, P.: Rule Discovery from Time
Series. In: Proc. ACM SIGKDD 1998, pp. 16–22 (1998)

8. Deogun, J.S., Jiang, L.: Prediction Mining – An Approach to Mining Association Rules for
Prediction. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC
2005, Part II. LNCS (LNAI), vol. 3642, pp. 98–108. Springer, Heidelberg (2005)

9. Hamilton, H.J., Karimi, K.: The TIMERS II Algorithm for the Discovery of Causality. In:
Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 744–
750. Springer, Heidelberg (2005)

10. Harms, S.K., Deogun, J.S., Tadesse, T.: Discovering Sequential Association Rules with
Constraints and Time Lags in Multiple Sequences. In: Hacid, M.-S., Raś, Z.W., Zighed,
D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 432–441. Springer,
Heidelberg (2002)

11. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rules – Theory and algorithm.
Information Systems 34(4-5), 438–453 (2009)

12. Mannila, H., Toivonen, H., Verkano, A.I.: Discovery of frequent episodes in event se-
quences. Data Mining and Knowledge Discovery 1(1), 259–289 (1997)

13. Wang, J., Han, J., Lu, Y., Tzvetkov, P.: TFP: An Efficient Algorithm for Mining Top-k
Frequent Closed Itemsets. IEEE TKDE 17(5), 652–664 (2005)

14. Pietracaprina, A., Vandin, F.: Efficient Incremental Mining of top-K Frequent Closed
Itemsets. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI),
vol. 4755, pp. 275–280. Springer, Heidelberg (2007)

15. Tzvetkov, P., Yan, X., Han, J.: TSP: Mining top-k closed sequential patterns. Knowledge
and Information Systems 7(4), 438–457 (2005)

16. Chuang, K.-T., Huang, J.-L., Chen, M.-S.: Mining top-k frequent patterns in the presence
of the memory constraint. VLDB 17(5), 1321–1344 (2008)

17. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association
analysis. Information Systems 29(4), 293–313 (2004)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd
edn. MIT Press (2009)

	Mining Top-K Sequential Rules
	Introduction
	Problem Definition and Related Work
	The TopSeqRules Algorithm
	The Algorithm
	Implementing TopSeqRules Efficiently
	Extensions

	Evaluation
	Influence of k
	Influence of minconf
	Influence of |S|
	Performance Comparison
	Influence of Optimizations and of Expanding the Most Promising Rules First

	Conclusion
	References

