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Abstract. Cluster ensembles aim to generate a stable and robust con-
sensus clustering by combining multiple different clustering results of a
dataset. Multiple clusterings can be represented either by multiple co-
association pairwise relations or cluster based features. Traditional clus-
tering ensemble algorithms learn the consensus clustering using either
of the two representations, but not both. In this paper, we propose to
integrate the two representations in a unified framework by means of
weighted graph regularized nonnegative matrix factorization. Such inte-
gration makes the two representations complementary to each other and
thus outperforms both of them in clustering accuracy and stability. Ex-
tensive experimental results on a number of datasets further demonstrate
this.
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1 Introduction

It is well recognized that different clustering methods may produce different
clustering results on a given data set. The reason for this is that each clustering
algorithm has its own bias resulting from different criteria. Therefore, cluster en-
sembles have emerged in recent years as a technique to overcome such problems
[1,2,3,4]. This technique is also known as clustering ensemble [5], clustering ag-
gregation [6] or consensus clustering [7]. It reconciles multiple clustering results
of a data set into a single consolidated clustering using a consensus function.

Cluster ensembles contain two key components, i.e. a representation of input
clusterings and a consensus function. Two representations are currently widely
used; one is multiple co-association matrices [2,4] and the other cluster based
features [1]. To the best of our knowledge, current cluster ensembles approaches
learn their consensus functions using either of the two representations, but not
both. On the one hand, the multiple co-association matrices contain pairwise re-
lationships of different clusterings and the averaged co-association matrix can be
seen as the consensus similarity of input clusterings. On the other hand, a dataset
can be represented using cluster based features, which contain connections be-
tween data points and clusters. Although both the co-association matrices and
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cluster based features can be used independently to obtain consensus clustering,
algorithms that make use of them simultaneously should be able to generate
more meaningful clustering structures; similar idea has also been explored in
clustering problem [8].

Besides, each partition may have different clustering performance. It is also
required to automatically identify better clusterings from all partitions. One
natural idea is to assign different weights to input clusterings based on there
contributions for the cluster ensembles [2,4].

Based on the above observations, in this paper we propose a Weighted Graph
regularized Nonnegative Matrix Factorization (WGNMF) model for cluster en-
sembles by integrating the above two representations into a unified framework
and learn the weights of different clusterings. The basic idea is as follows: We
construct two matrices; one is a consensus affinity matrix from multiple co-
association matrices and the other is a cluster feature matrix from cluster based
features. These two matrices are used in a regularization process, where we learn
an implicit consensus function from the cluster feature matrix by nonnegative
matrix factorization (NMF) while the factorization procedure is regularized with
the consensus affinity matrix. In our WGNMF model, the weights of input clus-
terings are learned during the factorization process. We empirically evaluate
WGNMF model over benchmark data sets, which demonstrates that it outper-
forms existing approaches using only one of the above two representations.

The rest of paper is organized as follows. Section 2 reviews related work on
cluster ensembles. Section 3 presents our WGNMF model. Section 4 reports the
experimental results, and Section 5 concludes the paper with some future work.

2 Related Work

We briefly review some related work on cluster ensembles. Previous work on
learning consensus functions are mainly based on the two representations of
input clusterings: the multiple co-association matrices and the cluster based
features.

One popular strategy of building consensus functions is to utilize multiple
co-association matrices [9] (also known as connectivity matrices in [7,2,4]). The
averaged co-association matrix coming from input clusterings can be seen as a
new data matrix in a new feature space or a similarity matrix, and thus tradi-
tional approaches operated on data matrix or similarity can be deployed. Had-
jitodorov et al. [10] showed that good clustering results can be obtained by run-
ning Kmeans on the averaged co-association matrix. Li et al. used nonnegative
matrix factorization (NMF) on the averaged co-association matrix to generate
the final consensus clustering. Li and Ding [2] proposed to learn the weighted
co-association matrix within an NMF procedure. Wang et al. proposed general-
ized weighted cluster aggregation (GWCA) [4] to learn the consensus function by
minimizing the sum of the Bregman divergence between the consensus function
and all of the co-association matrices.

Another different strategy is to construct consensus functions implicitly from
the representation of cluster based features. These implicit consensus functions
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can be roughly grouped in two categories. The first category is graph based
approaches in which a graph is constructed from the cluster based features
and some graph partition algorithms are used for the final consensus cluster-
ing. Strehl et.al. [1] proposed three graph-based approaches: Cluster-based Sim-
ilarity Partition Algorithm (CSPA), HyperGraph Partition Algorithm (HGPA),
and MetaClustering Algorithm (MCLA). In CSPA, A binary similarity matrix
is constructed and specific algorithms like METIS [11] is used to partition the
graph. HGPA utilizes the HMETIS [11] algorithm to partition the hypergraph
where each hyperedge represents a cluster of an input clusterings. MCLA col-
lapses related hyperedges and assigns each object to the collapsed hyperedge in
which it participates most strongly. Fern and Brodley [12] proposed the hybrid
bipartite graph partition algorithm, which partitions the bipartite graph using
spectral graph partition algorithms. Al-Razgan and Domeniconi [9] proposed
an approach to partitioning a weighted similarity graph. The second category
makes use of probabilistic graphical models. Topchy et al. [13] proposed a prob-
abilistic model using a finite mixture of multinomial distributions in the space
of input clusterings. Wang et al. [3] proposed an generative probabilistic model
Bayesian cluster ensembles (BCE) for cluster ensembles, which is derived from
Latent Dirichlet Allocation (LDA) [14].

3 WGNMF

We first introduce some notation and briefly review NMF [15] which is used
to learn the consensus function implicitly form cluster based representation.
We then describe our WGNMF model which integrates multiple co-association
matrices and the representation of cluster based features within the process of
NMF. We also present specific optimization techniques for WGNMF.

3.1 Notation

Given a data set of n points and a collection of m clustering solutions P =
{P1,P2, . . . ,Pm}. Each clustering solution Pc for c = 1, . . . , m is a partition of
the data set. A partitioning of these n points into k clusters can be represented
as a set of k clusters {C1, . . . , Ck} or a label vector Pc ∈ R

n, where k is the
number of clusters. Note that the number of clusters k in different Pc could be
different.

The cluster-based representation [1] can be constructed as follows. For each
clustering Pc, we construct the binary membership indicator matrix Hc ∈ Rn×k,
where each column corresponds a cluster and each row is a point. Hc

ij = 1
if the point i is assigned to cluster j in partition c, and Hc

ij = 0 otherwise.
The concatenated matrix X = (H1, H2, . . . , Hm) is used to represent the data
matrix in a new feature space.

The co-association matrix [7] of partition Pc is defined as a n × n squared
matrix W c, where W c

ij = 1 if points i and j are assigned to the same cluster,
and W c

ij = 0 otherwise.
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Example 1. Suppose we have 5 samples and 2 clusterings each with 3 clusters.
Then we have 2 partitions P1 = [1, 1, 2, 3, 3] and P2 = [2, 3, 3, 1, 1]. The cluster-
based representation X and the co-association matrices W 1 for P1 and W 2 for
P2 of these samples are given below.

X =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

W 1 =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

W 2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

3.2 NMF and Extensions

Non-negative Matrix Factorization [15] is a factorization algorithm focused on
the analysis of nonnegative matrix. Given a nonnegative matrix X ∈ Rn×d

+ ,
where each row of X is a data point, NMF approximates X using two low-rank
nonnegative matrices U ∈ Rn×k

+ and V ∈ Rd×k
+ . There are two cost functions

commonly used to measure the quality of the approximation. The first one is
the square of the Euclidean distance between two matrices

O1 = ||X − UV T ||2F (1)

where || · ||F is Frobenius norm. The second one is the divergence between two
matrices

O2 = D(X||UV T ) =
n∑

i=1

d∑
j=1

(Xij log
Xij

Yij
− Xij + Yij) (2)

where Yij = UiV
T

j .
Recently, Cai et al. [16] proposed Graph regularized NMF (GNMF). It aims at

learn a compact representation which uncovers the hidden semantics and simul-
taneously preserves the intrinsic local geometric structure. The basic assumption
behind is that if two data points are similar, then their low dimensional repre-
sentations are also close to each other.

3.3 Weighted Graph Regularized NMF

In subsection 3.1, we obtained a matrix X = (H1, H2, . . . , Hm) from the cluster
based representation of input clusterings. Here, we use NMF to find two low-
rank matrices U and V to approximate it. Due to the close connection between
NMF and clustering, the obtained U can be used to extract the final consensus
clustering.

To obtain a better approximation of X by U and V , inspired by [16], we
incorporate the multiple co-association matrices {W c}m

c=1 into NMF. To apply
this idea in cluster ensembles, we define a consensus graph, where the affinity
matrix Ŵ is constructed by linearly combining the given multiple co-association
matrices
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Ŵ =
m∑
c

αcW
c

m∑
c=1

αc = 1, αc ≥ 0

where αc, c = 1, 2, . . . , m, is the weight associated with partition Pc. Recall that
the co-association matrix of W c for Pc can be seen as a binary similarity matrix,
and it defines a coarse affinity graph. We expect that the weighed combination
of multiple co-association matrices can better capture the similarities between
data points. The learned weights also provide clues to select individual input
cluterings. The reason is that an input clustering with larger weight contributes
more to the consensus affinity graph and the final clustering.

Given the above definition of consensus affinity graph, we can use the following
two functions to measure the smoothness of the low dimensional representation
of data points:

R1 =
1
2

m∑
c=1

∑
i,j

αcW
c
ij ||Ui − Uj ||2

=
m∑

c=1

αc

⎛
⎝∑

i

Dc
iiUiU

T
i −

∑
i,j

W c
ijUiU

T
j

⎞
⎠

=
m∑

c=1

αc

(
tr(UT DcU) − tr(UT W cU)

)

= tr(UT (
m∑

c=1

αcL
c)U) (3)

and

R2 =
1
2

m∑
c=1

∑
i,j

αcW
c
ij (D(Ui||Uj) + D(Uj ||Ui))

=
1
2

m∑
c=1

∑
i,j

∑
l

αcW
c
ij(Uil log

Uil

Ujl
+ Ujl log

Ujl

Uil
) (4)

where tr(·) denotes the trace of a matrix and D is a diagonal matrix with
Dc

ii =
∑

j W c
ij . Lc = Dc − W c is called the graph Laplacian.

Combining the weighted affinity graph together with the above smoothness
functions with NMF leads to our Weighted Graph regularized Non-negative
Factorization (WGNMF) model: If the Euclidean distances is used, WGNMF
minimizes the following objective function:

O1 = ||X − UV T ||2 + λtr(UT (
m∑

c=1

αcL
c)U)

s.t. U ≥ 0, V ≥ 0,
m∑

c=1

αc = 1, αc ≥ 0 (5)
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If the divergence is used, WGNMF minimizes the following objective function:

O2 =
n∑

i=1

d∑
j=1

(Xij log
Xij∑k

l=1 UilVjl

− Xij +
k∑

l=1

UilVjl)

+
λ

2

m∑
c=1

n∑
i=1

d∑
j=1

k∑
l=1

αcW
c
ij(Uil log

Uil

Ujl
+ Ujl log

Ujl

Uil
)

s.t. U ≥ 0, V ≥ 0,
m∑

c=1

αc = 1, αc ≥ 0 (6)

where the regularization parameter λ ≥ 0 controls the smoothness of the low
dimensional representations.

3.4 Optimization

In O1 (Eq. (5)) and O2 (Eq. (6)), there are 3 unknown variables, U , V and α.
When two of them are fixed, the subproblem of computing the optimal value
for the other variable is easy to solve. Hence, O1 and O2 can be solved by
iteratively updating U , V and α, so that the value of the objective functions
gradually decrease. This process can be viewed as a ”block coordinate descent”
process [17]. We describe this process for O1 and O2 separately.

Minimizing O1. When α is fixed, the optimization problem of computing U ,
V becomes

L = tr(XXT ) − 2tr(XV UT ) + tr(UV T V UT )

+ λ
m∑

c=1

αctr(UT LcU) + tr(ΦUT ) + tr(ΨV T ) (7)

where Φ and Ψ are the lagrange multiplier for the nonnegative constraints.
Notice that the above optimization problem is equivalent to GNMF [16] with

a combined Laplacian matrix. Thus, the estimation for U and V will be exactly
same as that in GNMF with a combined Laplacian matrix. It is [16]:

Uil = Uil
(XV + λ(

∑m
c=1 αcW

c)U)il

(UV T V + λ(
∑m

c=1 αcDc)U)il
(8)

Vil = Vil
(XT U)il

(V UT U)il
(9)

When U and V are fixed, the optimization problem for α is equivalent to solving
the following problem

minα

m∑
c=1

αctr(UT LcU), s.t.
m∑

c=1

αc = 1, αc ≥ 0 (10)
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which is a linear programming problem and can be efficiently solved. However,
the solution will always be

αc =

{
1, if c = argminc tr(UT LcU)
0, otherwise

(11)

To avoid this trivial solution, we propose to add one regularization term to (10)
and solve the following problem

minα

m∑
c=1

αctr(UT LcU) + λ2||α||2, s.t.
m∑

c=1

αc = 1, αc ≥ 0 (12)

where λ2 ≥ 0 is a tradeoff parameter. In this way, we will solve a quadratic
programming (QP) problem with respect to α when U and V are fixed.

Minimizing O2. When α is fixed, the optimization problem of computing U ,
V becomes

L =
n∑

i=1

d∑
j=1

(Xij log
Xij∑k

l=1 UilVjl

− Xij +
k∑

l=1

UilVjl)

+
λ

2

m∑
c=1

n∑
i=1

d∑
j=1

k∑
l=1

αcW
c
ij(Uil log

Uil

Ujl
+ Ujl log

Ujl

Uil
)

+ tr(ΦUT ) + tr(ΨV T ) (13)

Similarly, the above optimization is equivalent to GNMF-KL [16] with a com-
bined Laplacian matrix. We give the linear system for update U

⎛
⎝∑

j

vjlI + λ(
∑

c

Lc)

⎞
⎠ ul =

⎡
⎢⎢⎣

u1l

∑
j(x1jvjl/

∑
l u1lvjl)

u2l

∑
j(x2jvjl/

∑
l u2lvjl)

. . .
unl

∑
j(xnjvjl/

∑
l unlvjl)

⎤
⎥⎥⎦ (14)

The above linear system can be solved either by the matrix inverse or some
efficient iterative algorithms. The correspond update rule for V is given below.

Vjl = Vjl

∑
i(XijUil/

∑
l UilVjl)∑

i Uil
(15)

When U and V are fixed, a similar QP problem with respect to the weights α
becomes

minα

m∑
c=1

αc

⎡
⎣

n∑
i=1

d∑
j=1

k∑
l=1

W c
ij(Uil log

Uil

Ujl
+ Ujl log

Ujl

Uil
)

⎤
⎦ + λ2||α||2

s.t.
m∑

c=1

αc = 1, αc ≥ 0 (16)
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Algorithm 1. Minimizing O1 and O2

Input: Partitions {Pi}m
i=1, the number of clusters k and regularization parameter λ

Output: U , V and α
1: Construct m co-association matrix {W c}m

c=1

2: Initialize U , V and set α = [1/m, 1/m, . . . , 1/m]T

3: repeat
4: Compute the weighted graph Laplacian based on α
5: Update Uil according to Eq. (8) for O1 or (14) for O2

6: Update Vjl according to Eq. (9) for O1 or (15) for O2

7: Update α by solving the QP programming in Eq. (12) for O1 or (16) for O2

8: until convergence
9: return U , V and α

The whole process of estimating the low-rank matrices U , V and the combina-
tion weights α is described in Algorithm 1.

The above learning algorithm will converge. In each iteration the objective
function value always decreases. On the one hand, when U and V are fixed,
WGNMF solves a quadratic programming problem. On the other hand, when α
is fixed WGNMF boils down to GNMF, the update rules of U and V are similar
to the update rules in GNMF and therefore Cai’s [16] proof can also be applied.

4 Experiments

In this section, we conduct experiments on a number of real-world datasets to
evaluate of the effectiveness of the proposed method.

4.1 Datasets

We use a variety of datasets (see Table 1) to evaluate the accuracy of the pro-
posed method. The number of classes is ranged from 3 to 40, the number of
samples ranged from 47 to 2340, and the number of dimension ranged from 4 to
21839. Details are as follows:

– Five datasets (Iris, Glass, Ecoli, Soybean, Zoo) are from UCI data repository
[18].

– The COIL dataset is an image library from Columbia with 20 objects. The
images of each objects were taken 5 degrees apart as the object is rotated
on a turntable and each object has 72 images.

– The ORL dataset is a face database from Olivetti Research Laboratory. It
consists of 400 face images with 40 people (10 samples per person). The im-
ages were captured at different times and have different variations including
expressions (open or closed eyes, smiling or non-smiling) and facial details
(glasses or no glasses).

– The WebACE dataset is from WebACE project and has been used for docu-
ment clustering. It contains 2340 documents consisting of news article from
Reuters new service of 20 different categories collected in October 1997.
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Table 1. Descriptions of datasets.

Data sets Samples Dimensions Classes

Iris 150 4 3
Glass 214 9 6
Ecoli 336 7 8
Soybean 47 35 4
Zoo 101 18 7
COIL 1440 1024 20
ORL 400 1024 40
WebACE 2340 21839 20
Tr11 414 6429 9
Tr12 313 5804 8

– Tr11, Tr12, these datasets are derived from the TREC 1 collection , which
are often used in document clustering.

The size of each image in COIL and ORL is 32× 32 pixels, with 256 grey levels
per pixel. Thus, each image is represented by a 1024-dimensional vector.

4.2 Evaluation Criteria

In the experiments, we set the number of clusters equal to the number of classes k
for all the cluster ensembles algorithms. To evaluate their performance, we com-
pare the clustering results generated by these algorithms with the true classes
by computing two performance measures, Clustering Accuracy (Acc) and Nor-
malized Mutual Information (NMI) [1].

For a sample xi, the cluster label assigned by the algorithm is denoted as ri,
and ground true label is yi. The accuracy is defined as follows:

Acc =
∑n

i=1 δ(yi, map(ri))
n

where n is the total number of samples and δ(x, y) is the indicator function that
equals 1 if x = y and equals 0 otherwise, and map(ri) is the permutation map-
ping function that maps the obtained labels ri to the equivalent label from the
data set. The best mapping function can be found by using the Kuhn-Munkres
algorithm [19]. The value of Acc equals 1 if and only if the clustering result
and the true label are identical. Larger values of Acc indicate better clustering
performance.

Given a clustering P and the true partitioning Y (class labels). The number
of clusters in P and classes in Y are both k. Suppose ni is the number of objects
in the i-th cluster, nj is the number of objects in the j-th class and nij is the
number of objects which belongs to the i-th cluster and j-th class. NMI between
P and Y is calculated as follows [1]:

1 http://trec.nist.gov

http://trec.nist.gov
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NMI(P ,Y) =

∑k
i=1

∑k
j=1 nij log n·nij

ni·nj√∑k
i=1 ni log ni

n

∑k
j=1 nj log nj

n

The value of NMI equals 1 if and only if P and Y are identical and is close to
0 if P is a random partitioning. Larger values of NMI indicate better clustering
performance.

Table 2. Experimental Results in Clustering Accuracy

Kmeans KC CSPA HGPA MCLA BCE GWCA WGNMF-Euc WGNMF-KL

Iris 0.81 0.85 0.87 0.62 0.89 0.89 0.89 0.89 0.89

Glass 0.42 0.49 0.43 0.40 0.46 0.49 0.53 0.54 0.51

Ecoli 0.65 0.64 0.56 0.51 0.61 0.66 0.64 0.67 0.65

Soybean 0.72 0.65 0.69 0.72 0.73 0.70 0.73 0.75 0.73

Zoo 0.69 0.67 0.58 0.55 0.74 0.67 0.74 0.77 0.73

COIL 0.59 0.62 0.69 0.55 0.69 0.67 0.58 0.69 0.71

ORL 0.50 0.53 0.58 0.60 0.60 0.51 0.52 0.56 0.60

WebACE 0.43 0.46 0.40 0.35 0.47 0.48 0.47 0.46 0.48

Tr11 0.52 0.57 0.49 0.47 0.52 0.58 0.58 0.60 0.60

Tr12 0.47 0.56 0.54 0.52 0.57 0.58 0.58 0.57 0.60

4.3 Comparison Settings

To generate the input for cluster ensembles algorithms, we adopt a common
strategy [3] by running Kmeans 200 times with random initiation and then
splitting each 20 clustering results as input. In this way, we repeat the cluster
ensembles algorithms 10 times. We report the averaged performance over 10
rounds.

To demonstrate how the clustering performance can be improved by our
method, we compare the following clustering ensemble algorithms.

– Standard Kmeans clustering algorithm (Kmeans).
– Kmeans clustering on Consensus matrix (KC). The consensus function is

defined as the averaged co-association matrix.
– The Cluster-based Similarity Partitioning Algorithm (CSPA), Hyper Graph

Partitioning Algorithm (HGPA) and MetaClustering Algorithm (MCLA) are
three algorithms described in [1]. We use the author’s matlab implementation
ClusterPack2.

– Bayesian Cluster Ensembles [3] (BCE) is a generative probabilistic model
which learns the implicit consensus function from the cluster-based repre-
sentation.

– Generalized Weighted Cluster Aggregation [4] (GWCA) define the consen-
sus function by the weighted averaged co-association matrix. We use the
Euclidean distance to learn the weighted consensus matrix and the spectral
clustering algorithm3 is further used to derive the final clustering.

2 www.lans.ece.utexas.edu/~strehl
3 http://www.cis.upenn.edu/~jshi/software/

www.lans.ece.utexas.edu/~strehl
http://www.cis.upenn.edu/~jshi/software/
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Table 3. Experimental Results in Normalized Mutual Information

Kmeans KC CSPA HGPA MCLA BCE GWCA WGNMF-Euc WGNMF-KL

Iris 0.69 0.72 0.71 0.39 0.74 0.74 0.75 0.74 0.74

Glass 0.31 0.33 0.29 0.26 0.32 0.35 0.37 0.38 0.37

Ecoli 0.58 0.59 0.51 0.40 0.56 0.59 0.57 0.59 0.58

Soybean 0.72 0.67 0.63 0.69 0.71 0.69 0.71 0.73 0.71

Zoo 0.69 0.70 0.59 0.60 0.74 0.70 0.73 0.74 0.73

COIL 0.73 0.75 0.76 0.69 0.78 0.77 0.73 0.79 0.80

ORL 0.71 0.74 0.76 0.77 0.77 0.69 0.73 0.75 78

WebACE 0.53 0.55 0.51 0.45 0.54 0.57 0.56 0.58 0.57

Tr11 0.48 0.58 0.52 0.48 0.52 0.60 0.56 0.59 0.60

Tr12 0.38 0.54 0.49 0.43 0.50 0.57 0.50 0.57 0.59

We present the results of our WGNMF algorithm under the Euclidean distance
and KL divergence (denoted as WGNMF-Euc and WGNMF-KL). The regular-
ization paramter λ is selected via a coarse grid search process.

4.4 Experimental Results

The experimental results are summarized in Tables 2 and 3. From these two ta-
bles we observe that our WGNMF improves Kmeans clustering on all datasets.
Moreover, WGNMF ( WGNMF-Euc or WNGMF-KL) achieves the best perfor-
mance on 9 out of 10 datasets and its performance on the remaining datasets
is close to the best results. In summary, the experiments clear show the effec-
tiveness of weighted graph regularized NMF for improving the cluster ensembles
algorithms in terms of clustering accuracy and NMI.

4.5 Individual Clustering Selection

A useful byproduct of WGNMF is that the learned weights can be used to select
individual input clusterings, i.e. asses how important of each input clusterings.
The reason is that an input clustering with larger weight contributes more to
the consensus affinity graph and the final clustering. We compare the top-5
selected clustering based on the weights learned from WGNMF and GWCA
[4], the latter is a weighted consensus clustering technique and also learn the
combination weights, with the results of all clusterings. The results are given in
Figure 1. We observe that the input clusterings which obtain larger weights are
generally good clusterings.

4.6 Impact of Parameter λ

In our model λ is used to control the smoothness of the low dimensional repre-
sentations. We run WGNMF with varying λ from a coarse grid (0.1, 1, 10, 100).
Table 4 shows the impact of λ on Acc and NMI with some datasets. We observe
that WGNMF achieves good performance in a wide range and it is easy to tune.
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Fig. 1. Performance comparison of All clusterings vs. Top-5 clusterings

Table 4. The performance of WGNMF vs. parameter λ

Acc NMI
0.1 1 10 100 0.1 1 10 100

Iris 0.89 0.89 0.89 0.89 0.74 0.74 0.74 0.74

Glass 0.53 0.54 0.52 0.52 0.37 0.38 0.37 0.37

Soybean 0.73 0.73 0.73 0.75 0.71 0.71 0.71 0.73

Zoo 0.75 0.75 0.77 0.68 0.73 0.74 0.74 0.70

5 Conclusion and Future Work

In this paper, we propose a weighted graph regularized nonnegative matrix fac-
torization model for cluster ensembles task. We integrate two representations of
input clustering, multiple co-association matrices and cluster feature matrix in a
unified regularization framework. We learn the implicit consensus function from
cluster feature matrix by NMF procedure while the factorization is regularized
with consensus matrix. The weights of input clusterings are learned within the
factorization process. Extensive experiments on a number of real-world datasets
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demonstrate that the proposed method mostly outperforms the other cluster
ensemble algorithms.

In future work, we want to extend the idea of this paper to other statistical
models, such as topic modeling, to integrate different representations of input
clusterings beyond the multiple co-association matrices and the cluster based
matrix.
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