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Abstract. In an auction market where the price of each selling item is restricted
to an admissible interval (price rigidities), a Walrasian equilibrium usually fails to
exist. Dreze (1975) introduced a variant concept of Walrasian equilibrium based
on rationing systems, named constrained Walrasian equilibrium, for modelling an
economy with price rigidities. Talman and Yang (2008) further refined the con-
cept and proposed a dynamic auction procedure that converges to a constrained
Walrasian equilibrium. However, a constrained Walrasian equilibrium does not
guarantee market efficiency. In other words, a constrained Walrasian equilibrium
allocation does not necessarily lead to the best market value. In this paper, we
introduce a concept of competitive equilibrium by weakening the concept of con-
strained Walrasian equilibrium and devise an dynamic auction procedure that
generates an efficient competitive equilibrium.

1 Introduction

Auctions have been widely used for discovering market-clearing prices and efficient
allocations [1]. However, in many market situations, the price of an item cannot be
fully determined by its market. There are certain exogenous reasons that could cause
the price of a selling item not completely flexible. For instance, price ceilings and floors
in stock markets to prevent breakdown; price controls to reduce inflation or deflation;
and imposing upper prices to protect low-income buyers [2,3,4]. Such a phenomenon is
normally referred to as price rigidities in economics.

In a market with price rigidities, certain rationing mechanism is normally needed
to facilitate the distribution of commodities among agents in additional to the price
leverage. Dreze (1975) introduced a variant concept of Walrasian equilibrium based on
rationing, named constrained Walrasian equilibrium, for economies with price rigidi-
ties [2]. Talman and Yang (2008) further refined the concept and proposed a dynamic
auction procedure that produces a constrained Walrasian equilibrium outcome in a finite
number of steps [4]. However, as we will show in this paper, a constrained equilibrium
under Talman and Yang’s definition does not guarantee market efficiency.

At first glance, it seems impossible for a dynamic auction procedure to achieve mar-
ket efficiency in a market with price rigidities because the market value of an item over
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its price upper limit can never be discovered by any auction procedure. However, if we
count bidders’ contributions to the market value within the constraint price intervals,
market efficiency will be achievable.

Similar to Talman and Yang (2008), we study the market situations where the fol-
lowing conditions hold:

– The commodities to be sold are heterogeneous and indivisible, such as cars and
houses;

– Each buyer can buy at most one item at each auction;
– The price restriction on each item is represented by an interval, the lower bound and

the upper bound, which is given to the auctioneer as a reservation at the beginning
of an auction procedure.

The rest of the paper is organised in the following. Section 2 sets up the model of the
underlying markets. Section 3 presents our dynamic auction procedure and prove that
the procedure can find an efficient competitive equilibrium in a finite number of steps.
Section 4 gives an example of how the procedure runs. Finally we conclude the work
with brief remarks on the related work.

2 The Market Model

Consider a market situation where a seller wishes to sell a finite set of items to a finite
number of buyers. Each item is indivisible and the items are heterogeneous. Each buyer
has a private value over each item. Formally, let X be the set of items on offer, N the
set of buyers, and vi the value function of buyer i (i ∈ N). We assume that the seller
values each item in X at zero. We also assume that among the items in X , there is a
specific item, called the dummy item, which value is zero to each buyer and the seller.
For sake of simplicity, we let N = {1, 2, · · · , n} and X = {0, 1, · · · , m}, where item 0
represents the dummy item.

We assume that each buyer i has an integer value function, i.e., vi : X → Z
+, which

assigns each item j ∈ X an integer vi(j) (in the unit of money) with vi(0) = 0.
A price vector p is a function p : X → Z

+ that assigns a non-negative integer to
each item in X . For each j ∈ X , we write pj , instead of p(j), to indicate the price of
item j under the price vector p.

As we have mentioned in the previous section, we will consider in this paper the
problem of price discovery under price rigidities. We assume that the price of each item
j ∈ X is restricted to an interval [p

j
, pj ], where p

j
and pj are integers and 0 ≤ p

j
≤

pj < +∞. Specifically, we assume that p
0

= p0 = 0, which means that the price of the
dummy item can only be zero. pj = +∞ means that there is no upper bound limit of
price to item j. We say that a price vector p is admissible if p

j
≤ pj ≤ pj for all j ∈ X .

Traditionally, the following defines the demand correspondence of bidder i at price
vector p:

Di(p) = {j ∈ X | vi(j) − pj ≥ vi(k) − pk, ∀k ∈ X}. (1)

The following defines all the items that the bidder i would demand thus we call it the
demand set of bidder i at p:

M i(p) = {j ∈ X \ {0} | vi(j) ≥ pj} (2)
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In a competitive market, it is possible that one item is demanded by more than one
bidders. The following notation represents all the items that are demanded by more
than one buyers at price vector p, called over-demanded set:

O(p) = {j ∈ X : ∃i, i′ ∈ N(i 	= i′ & j ∈ M i(p) ∩ M i′(p))} (3)

Following the assumption of Talman and Yang [4], we assume in this paper that each
buyer can only receive one item and each item, except the dummy item, can only be
allocated to one buyer. Based on the assumption, an allocation of X can be represented
as a function π : N → X that satisfies the following condition:

– If π(i) = π(i′) and i 	= i′, then π(i) = π(i′) = 0.

Traditionally, an allocation π∗ being efficient means that it gives the best market value,
i.e., for any allocation π of X in N ,

∑

i∈N

vi(π∗(i)) ≥
∑

i∈N

vi(π(i))

However, such a traditional definition of efficiency is not applicable to the markets with
price rigidities because the market value of an item over its price upper limit can never
be discovered by any auction procedure. For this reason, we redefine the concept of
market efficiency as follows.

Definition 1. Let π be an allocation π of X , the market value of π at price vector p
under price rigidities is

∑
i∈N (min(vi(π(i)), p̄π(i)) − p

π(i)
), where vi is the value

function of bidder i.

Note that the market rule means the totally value the market generates. No value can be
generated under the lower bound.

Definition 2. An allocation π∗ of X is efficient if, for any allocation π of X ,
∑

i∈N

(min{vi(π∗(i)), p̄π∗(i)} − p
π∗(i)

) ≥
∑

i∈N

(min{vi(π(i)), p̄π(i)} − p
π(i)

) (4)

In economics, a rationing system describes a set of market rules. Formally, a rationing
system R = (Ri

j)i∈N,j∈X is a |N | × |X | matrix, which element has a value either 1 or
0. For each i ∈ N and j ∈ X , Ri

j = 1 means that buyer i has right to buy item j while
Ri

j = 0 indicates that buyer i is prohibited to buy item j. With a rationing system R,
the demand correspondence can be re-defined as follows:

Di(p, R)={j ∈ X | Ri
j =1 and min{vi(j), p̄j}−pj ≥ max{min{vi(h), p̄h}−ph | Ri

h =1}}
(5)

Based on a rationing system, Talman and Yang [4] gave the following variation of Wal-
rasian equilibrium:

Definition 3. [4] A tuple (p∗, π∗, R∗) is a constrained Walrasian equilibrium if

1. π∗ is an allocation, p∗ is an admissible price vector, and R∗ is a rationing system;
2. π∗(i) ∈ Di(p∗, R∗) for all i ∈ N ;
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3. p∗j = p
j
, if π∗(i) 	= j for all i ∈ N ;

4. p∗j = p̄j and π(h) = j for some h ∈ N if R∗i
j = 0 for some i ∈ N ;

5. j ∈ Di(p∗, R∗i
−j) if R∗i

j = 0.

where R∗i
−j denote that Ri

j is being ignored and bidder i is allowed to demand item j
(see [4]).

Talman and Yang devised a dynamic auction procedure that can generate a constrained
Walrasian equilibrium [4].

Theorem 1. [4] There exists at least one constrained Walrasian equilibrium in the
model under price rigidities.

Unfortunately, the allocation of a constrained Walrasian equilibrium is not necessarily
efficient.

Example 1. Suppose that N = {1, 2, 3} and X = {0, 1, 2, 3}. The lower and upper
bound of prices are p = {0, 0, 0, 0, } and p = {0, 10, 10, 30}. Bidders’ values are given
as follows:

item 0 item 1 item 2 item 3
Bider 1 0 6 7 38
Bider 2 0 8 6 40
Bider 3 0 0 0 28

There are two constrained Walrasian equilibria. The price vector of both equilibria
is p∗ = (0, 0, 30). The allocation and rationing system of the first equilibrium is π∗ =
(2, 3, 1) and R∗ = ((1, 1, 0), (1, 1, 1), (1, 1, 0)). The equilibrium gives a market value
7 + 30 + 0 = 37. The other equilibrium is p′∗ = (0, 0, 30), π′∗ = (3, 1, 2) and R′∗ =
((1, 1, 1), (1, 1, 0), (1, 1, 0)). The market value of this equilibrium is 30 + 8 + 0 = 38.
However, if the allocation is (2, 1, 3), which is not a constrained Walrasian equilibrium
allocation, the market value can be 7 + 8 + 28 = 44.

The above example shows that an efficient allocation may not be a constrained Wal-
rasian equilibrium allocation. Therefore, if our target is to get an efficient allocation,
we have to weaken the concept of constrained Walrasian equilibrium. The following
definition of competitive equilibrium is actual a weak version Talman and Yang’s con-
cept of constrained Walrasian equilibrium:

Definition 4. A competitive equilibrium with rationing is a triple (p∗, π∗, R∗), where
p∗ is an admissible price vector, π∗ is an allocation and R∗ is a rationing scheme at
p∗ such that

1. π∗(i) ∈ Di(p∗, R∗) for all i ∈ N .
2. p∗j = p

j
, if π∗(i) 	= j for all i ∈ N ;

3. min(vi(j), p̄j) ≥ min(vi′ (j), p̄j) and π∗(i′) = j if R∗i
j = 0 for some i ∈ N .

A competitive equilibrium with rationing (p∗, R∗, π∗) is efficient if the allocation π∗ is
efficient.
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The first two conditions are exactly the same as Talman and Yang’s definition. The
third reads a bid strange: only the bidders who has the highest value on the item get
rationed. In fact, rationing is a privilege of the auctioneer to govern a market and only
those bidders who have high valuation on an item need to be rationed (because they
are more likely to get the goods). For instance, a government could ban high-income
people applying for public housing.

Lemma 1. Each constrained Walrasian equilibrium is a competitive equilibrium with
rationing.

Proof. Assume that (p∗, R∗, π∗) is a constrained Walrasian equilibrium. Then the first
two conditions for a competitive equilibrium with a rationing system is satisfied. Now
we prove that the third condition holds. Let R∗i

j = 0 for some i ∈ N . According to
Condition 4 for a constrained Walrasian equilibrium, we have p∗j = p̄j and π(h) = j

for some h 	= i. It turns out that min(vi(j), p̄j) = p̄j and min(vh(j), p̄j) = p̄j .
Consequently, min(vi(j), p̄j) = min(vh(j), p̄j), as desired. ��
As we have shown in above example, an efficient competitive equilibrium with rationing
is not necessarily a constrained Walrasian equilibrium.

3 Dynamic Auction Procedure under Price Rigidities

In this section, we will introduce a dynamic auction procedure that can generate an
efficient competitive equilibrium with rationing.

Given a set N = {1, 2, · · · , n} of bidders and a set X = {0, 1, 2, · · · , m} of items
on offer, where 0 is a dummy item which can be allocated to more than one bidders. p̄
and p are the upper price bound and the lower price bound respectively. The dynamic
auction procedure consists of the following steps:

Step 1. Set the initial price vector p := p and the initial rationing scheme Ri
j = 1 for

all i ∈ N, j ∈ X . Let S = (Si,j)i∈N,j∈X be a n × m matrix initiated as follows:

S =

⎛

⎜⎜⎜⎜⎝

0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞

⎞

⎟⎟⎟⎟⎠
(6)

In this matrix, the rows represent the bidders and the column for items. The ele-
ments are initiated by Si,j := −∞ for all i ∈ N, j ∈ X except zero for the dummy
item.

Step 2. Auctioneer announces the price vector p and invites all the buyers to submit
their demand set M i(p). For all j ∈ M i(p), Si,j := pj .

Step 3. Calculate over-demanded set O(p). If O(p) 	= ∅ and pj < p̄j for all j ∈ O(p),
then go to Step 4. Otherwise go to Step 5.



814 J. Zhu and D. Zhang

Step 4. For all j ∈ O(p) such that pj < p̄j , let pj := pj + 1. Go back to Step 2.

Step 5. Construct a weighted bipartite graph G = (N ∪ X, E, W ), where
– E ⊆ N × X such that ei,j ∈ E iff Si,j 	= −∞ for all i ∈ N, j ∈ X
– W : E → Z such that W (ei,j) = Si,j − p

j
for each ei,j ∈ E.

Step 6. Let Ω ⊆ E be a maximum weighted bipartite matching in G1.

Step 7. For each i ∈ N , if ei,j ∈ Ω, let π∗(i) = j and p∗j = Si,j ; Meanwhile, for each
k ∈ N such that k 	= i and Sk,π∗(i) ≥ Si,π∗(i), let R∗k

π∗(i) := 0.

Since each item has a finite price upper bound, the above dynamic auction procedure
terminates in finite number of steps. Let (p∗, R∗, π∗) be the outcome of the procedure
when it terminates.

Lemma 2. π∗(i) ∈ Di(p∗, R∗).

Proof. Let π∗(i) = j. Firstly, Si,j 	= −∞ because no edge links between i and j in
the associated bipartite graph. For all k ∈ N , if k 	= i and Sk,j ≥ Si,j , then R∗k

j = 0.
Assume that there is a h ∈ X such that min{vi(h), p̄h} − p∗h > min{vi(j), p̄j} − p∗j
and Ri

h = 1. If p∗h < p̄h, it means that only i bids for h at price ph. We change the
matching from π∗(i) = j to π∗(i) = h and keep the other allocation unchanged. We
can then increase the weight of the matching, which contradicts the fact that π∗ is a
maximum weighted matching. If p∗h = p̄h, then we have vi(j) < p∗j . It implies that
Si,j < p∗j . By the construction of the rationing system, R∗k

j = 0 for all k 	= i and
Sk,j >= Si,j . In other words, vi(j)− p∗j ≥ max{vi(h)− p∗h | Ri

h = 1}. Therefore we
have π∗(i) ∈ Di(p∗, R∗). ��
Theorem 2. (p∗, R∗, π∗) is an efficient competitive equilibrium.

Proof. Lemma 2 has shown that the dynamic auction mentioned above can yield a
competitive equilibrium (p∗, R∗, π∗). We now prove that π∗ is an efficient allocation.

π∗ is the maximum weighted matching of the weighted graph G = (N ∪ X, E, W )
as defined in the auction procedure. Assume that there is π

′
is efficient allocation, which

obviously satisfies the following inequality:
∑

i∈N

(min{vi(π
′
(i)), p̄π′ (i)} − p

π′ (i)
) >

∑

i∈N

(min{vi(π∗(i)), p̄π∗(i)} − p
π(i)

) (7)

Note that the allocation π′ also determines a matching in the weighted bipartite graph
unless there is an i such that Si,π′(i) = −∞. In this case, vi(π′(i)) < p

π(i)
. Now

we define a new allocation π′′ such that π′′(i) = 0 and π′′(j) = π′(j) for all j 	= i.
It turns out that π′′ can implement more market value than π′, which contradicts to
the assumption. On the other hand, π′ cannot be a maximum weighted matching of
G because otherwise π will not be a maximum weighted matching of G. Therefore
(p∗, R∗, π∗) is an efficient competitive equilibrium. ��

1 We omit the algorithm for finding a maximum weighted matching in a bipartite graph. In fact,
any maximum weighted bipartite matching algorithm is applicable. The reader is referred to
the algorithm in [5].
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4 Calculation and Comparison

To compare our auction procedure with Talman and Yang’s, we use the same exam-
ple that has been used in [4] to demonstrate how to calculate an efficient competitive
equilibrium with rationing by using the dynamic auction procedure introduced in the
previous section.

Example 2. Suppose that there are five bidders N = {a, b, c, d, e} and five items X =
{0, 1, 2, 3, 4} in a market, where 0 is a dummy item and the others are real items. The
lower and upper price vectors are p = (0, 5, 4, 1, 5) and p̄ = (0, 6, 6, 4, 7), respectively.
Bidders’ values are given by the following table.

Item dummy 1 2 3 4
Bidder a 0 4 3 5 7
Bidder b 0 7 6 8 3
Bidder c 0 5 5 7 7
Bidder d 0 9 4 3 2
Bidder e 0 6 2 4 10

Initially, we set p = p and S as follows.

S =

⎛

⎜⎜⎜⎜⎝

0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞

⎞

⎟⎟⎟⎟⎠
(8)

After p is announced to all bidders by the auctioneer, they submit their M i(p) respec-
tively:

Ma(p)={3, 4}
M b(p)={1, 2, 3}
M c(p)={2, 3, 4}
Md(p)={1, 3}
M e(p)={1, 3, 4}.

For each j ∈ M i(p), let Si,j := pj , then the matrix S becomes:

S =

⎛

⎜⎜⎜⎜⎝

0 −∞ −∞ 1 5
0 5 4 1 −∞
0 5 4 1 5
0 5 4 1 −∞
0 5 −∞ 1 5

⎞

⎟⎟⎟⎟⎠
(9)

Now O(p) = {1, 2, 3, 4}, i.e., all the items except the dummy item are over-demanded.
p1 < p̄1, p2 < p̄2, p3 < p̄3 and p4 < p̄4. We then let p1 := p1 + 1, p2 := p2 + 1,
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p3 := p3 + 1, p4 := p4 + 1, and the price vector is adjusted to p = (0, 6, 5, 2, 6). The
auctioneer announces the new price vector and asks all bidders resubmit their demand
sets, which areMa(p) = {3, 4}, M b(p) = {1, 2, 3}, M c(p) = {3, 4}, Md(p) =
{1, 3}, and M e(p) = {3, 4}.

Use the demand sets and the new price to update matrix S as follows:

S =

⎛

⎜⎜⎜⎜⎝

0 −∞ −∞ 2 6
0 6 5 2 −∞
0 5 5 2 6
0 6 4 2 −∞
0 6 −∞ 2 6

⎞

⎟⎟⎟⎟⎠
(10)

In this case, O(p) = {1, 3, 4}, p1 = p̄1, p2 < p̄2, p3 < p̄3 and p4 < p̄4. Let p2 :=
p2 + 1, p3 := p3 + 1 and p4 := p4 + 1. The auctioneer announces the new price vector
p = (0, 6, 6, 3, 7) and requests the bidders to report their new demands. Assume the
new demand sets are:

Ma(p) = {3},
M b(p) = {1, 2, 3},
M c(p) = {3},
Md(p) = {1} and
M e(p) = {4}.

Then the matrix S becomes

S =

⎛

⎜⎜⎜⎜⎝

0 −∞ −∞ 3 7
0 6 6 3 −∞
0 5 5 3 7
0 6 4 3 −∞
0 6 −∞ 3 7

⎞

⎟⎟⎟⎟⎠
(11)

Increase one unit of the price of item 3 because O(p) = {1, 3} and p3 < p̄3. After
the auctioneer announces p = (0, 6, 6, 4, 7), the bidders report their demands again:
Ma(p) = {3}, M b(p) = {1, 2, 3}, M c(p) = {3}, Md(p) = {1} and M e(p) = {4}.
The matrix S can be rebuilt according to the current demands and price vector p.

S =

⎛

⎜⎜⎜⎜⎝

0 −∞ −∞ 4 7
0 6 6 4 −∞
0 5 5 4 7
0 6 4 3 −∞
0 6 −∞ 4 7

⎞

⎟⎟⎟⎟⎠
(12)

At this time, we find that only item 1 and item 3 are over-demanded, but their prices
have both reached their upper bound. The auction procedure stops because pj = p̄j for
all j ∈ O(p).

According to matrix S, we build a weighted graph G = (N ∪ X, E, W ), where
Si,j ∈ E iff Si,j 	= −∞ and W (ei,j) = Si,j for each i ∈ N, j ∈ X . It is easy to verify
that Ω = {(a, 3), (b, 2), (c, 0), (d, 1), (e, 4)} is a maximum weight matching, which
determines an allocation π∗ = (3, 2, 0, 1, 4). The following picture shows the weighted
graph. Bold lines represent the maximum weight matching.
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a

0

0

3

3

4

2

b

0

1

1

2

23

c

0 0 132

d

0 1 00

e

0 112

The rationing system is then R∗ = (R∗a, R∗b, R∗c, R∗d, R∗e) where
R∗a = (1, 1, 1, 1, 0)
R∗b = (1, 0, 1, 0, 1)
R∗c = (1, 1, 1, 0, 0)
R∗d = (1, 1, 1, 1, 1)
R∗e = (1, 0, 1, 0, 1).

The equilibrium price is P ∗ = (0, 6, 6, 4, 7). The equilibrium implements a market
value at 8.

We would like to remark that the constrained Walrasian equilibrium allocation under
Talman and Yang’s definition is (0, 3, 2, 1, 4) at price (0, 5, 4, 2, 5). The associated mar-
ket value is 7, which is lower than the efficient competitive equilibrium.

5 Conclusion and Related Work

In this paper, we have introduced a concept of competitive equilibrium by weakening
the concept of constrained Walrasian equilibrium. We have devised an dynamic auction
procedure and prove that it can generates an efficient competitive equilibrium for any
economy for selling in dividable items with price rigidities.

For the purpose of controlling price macroscopically, preventing speculation or pro-
tecting the profits of low-incoming buyers, price rigidity is widely adopted to restrict
the price of each item to an interval. The phenomenon of price rigidity, i.e., the persis-
tence of price at which supply and demand are not equal, is frequently observed, and
plays an important role in some macro-economic models [2]. After investigating the
ability of nominal price rigidity, a dynamic general equilibrium model is constructed
by [6] with the introduction of monopolistic competition and nominal price rigidity in
a standard real business cycle model, allowing for an endogenous money supply rule.
From the aspect of banking industry, the price rigidity is significantly greater in markets
characterised by higher levels of concentration [7].

Ausubel proposed a dynamic auction procedure for auctioning multiple heteroge-
neous commodities, and this auction yields a Walrasian equilibrium price and an ef-
ficient allocation without considering price rigidities [8]. The Vickrey and Groves-
Clarke auctions can be generalised to attain efficiency when there are common values,
if each buyers’ information can be represented as a one-dimensional signal. Also, when
a buyer’s information is multidimensional, no auction is generally efficient [9].

Subsequently, Talman and Yang proposed a dynamic auction for differentiated items
under price rigidities and by which yielded a constrained Walrasian equilibrium in finite
steps [4]. As can be seen from the procedure of dynamic auction, a group of constrained
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Walrasian equilibria taking the form (p∗, π∗, R∗) can be generated. It is obviously that
each of their social efficiencies at certain price vector p can be computed, but not all
of them have the same efficiency. So, these constrained Walrasian equilibria are not
efficient.

Motivated by the difficulty to achieve the social efficiency under price rigidities, the
dynamic auction, suggested by this paper, invite bidders to present their demand set for
all items so as to promote the possibility to be allotted an item and drive price ascending
under over demands. The efficient competitive equilibrium can be found by the dynamic
auction procedure in a finite number of step. Also, this dynamic auction procedure is
useful to discover the social revenue of auctioneer. For the further research, we will
devote ourself to analysis, present and value the relations among different items, such
as substitute relation and complement relation, because these relations effect bidders’
strength of demands and the distance of price ascending.
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