Reasoning over OWL/SWRL Ontologies under
CWA and UNA for Industrial Applications

Qingmai Wang and Xinghuo Yu

School of Electrical and Computer Engineering, RMIT University,
Melbourne, VIC 3001, Australia
qingmai.w@gmail.com, x.yu@rmit.edu.au

Abstract. As expressive schema languages, Web Ontology Language
(OWL) and Semantic Web Rule Language (SWRL) have been widely
introduced to many industrial applications. Most existing OWL reason-
ers hold Open World Assumption (OWA) and do not hold Unique Name
Assumption (UNA). They lack efficiency when they are applied to indus-
trial models which capture information under Closed World Assumption
(CWA) and UNA. To overcome the problem, this paper proposes a novel
backward chained ABox reasoner which efficiently reasons through OWL
and SWRL under CWA and UNA.

Keywords: Ontology and rules, ABox query, Backward chaining.

1 Introduction

Ontology-based approaches have been widely used in many industrial applica-
tions. In those applications, OWL is mostly used to represent concepts and their
relationships, and SWRL is usually used as an rule extension of OWL to im-
prove the expressivity. Existing OWL reasoners, such as Pellet [11], Racer [4],
and Kaon2 [7], do not make CWA and UNA. This is reasonable because OWL
and SWRL originally focus on the Semantic Web (SW) in which the internet
can be seen as an unlimited knowledge resource. However, when they are applied
to some industrial areas where the information is usually captured under CWA
and UNA, some incorrect results may be produced.

For example, OWL and SWRL have been used a lot in computer-aided Prod-
uct Design and Manufacturing (PDM) to address the semantic interoperability
issues [0] [12] [1] [13] [2]. In PDM, the STEP standard [9] captures information of
a product under CWA and UNA. Those existing works mainly focus on how to
map the STEP-based product information to the ontology while the reasoning
issues are rarely mentioned. Most of them simply choose one of the general ontol-
ogy reasoners for their reasoning tasks without evaluating the reasoner, whereas
the reasoner may result some errors due to CWA/OWA and UNA issues, e.g.,
for an geometrical ontology which captures information of STEP-based product
shape, existing reasoners cannot automatically find out any 4-edge face because
the reasoners always assume that a face may have countless unknown edges
which are not explicitly expressed in the STEP file.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 789 2011.
© Springer-Verlag Berlin Heidelberg 2011

790 Q. Wang and X. Yu

This paper proposes a novel Backward Chained ABox Reasoner (BCAR) to
address the above problem. The objective of BCAR is to provide efficient ABox
query reasoning for ontology-based industrial models. Features of BCAR are
highlighted below:

1. BCAR partly interprets OWL and SWRL under CWA and UNA (only for
ABox) to improve the reasoning for closed world based industrial models.

2. Some existing OWL reasoners support SWRL by translating SWRL to some
other formats (Jess, Jena or Seasame) [6] [§]. BCAR directly works on SWRL
without any translation, which improves the efficiency.

3. BCAR adopts backward reasoning similar to the Prolog derivation tree. Re-
ordering technique from Optimized Conjunctive Query (OCQ) [I0] is inte-
grated to improve the performance.

The rest of the paper is organized as follows: section 2 introduces technical details
of BCAR; section 3 discusses the experiments and section 4 concludes the paper.

2 Technical Details

BCAR only focuses on ABox query reasoning for two reasons: 1)In most of the
industrial applications, TBox is always decided by the valid and fixed schema of
mature information models, e.g. STEP. The TBox reasoning is not necessary in
this case. 2)The TBox reasoning under CWA may result inconsistence (ABox can
completely determine its TBox under CWA, which may conflict with the source
schema). Generally, the objective of BCAR is to help users to find out implicit
instances or fillers for some defined classes or properties. For this purpose, BCAR
holds following assumptions:

1. Assumption 1: The ontology contains only the explicitly expressed individ-
uals. There is not any unknown individuals.

2. Assumption 2: Only defined classes (or properties) are allowed to have im-
plicit instances (or fillers). Other classes (or properties) only contains in-
stances (or fillers) that are explicitly expressed.

3. Assumption 3: If a class (or property) cannot be proved to contain an in-
stance (or filler), then the class (or property) does not contain the instance
(or filler). If a class (or property) cannot be proved to contain any instance
(or filler), then the class (or property) contains nothing (negation as failure).

4. Assumption 4: Two individuals are same if and only if their names are same.

In OWL/SWRL ontologies, the most two popular methods to define classes and
properties are SWRL rules and OWL Equivalent Class Axiom (ECA). BCAR
only considers classes (or properties) which have corresponding ECAs or appear
in heads of SWRL rules as defined classes (or properties), and the corresponding
ECAs and SWRL rules are their definitions.

In the rest of this section, the concept framework of BCAR is firstly given;
how to create a rule base is secondly introduced followed by details of reasoning
algorithm; some special cases of reasoning are finally discussed.

Reasoning Over OWL/SWRL Ontologies under CWA and UNA 791

> ‘ ? Reasoning Engme}-)

—- C
Ontology

Fig. 1. Cocnept framework of BCAR

2.1 Concept Framework

Fig.1 shows the concept framework. BCAR firstly creates a unified rule base
with SWRL rules and OWL ECAs. Once a query is inputted, the rule which
matches the query fires. The reasoning engine is then applied to the firing rule
to search for solutions for the firing rule. The engine requires information from
the ABox and also may fire some other rules if required. After the searching is
finished, query result is then generated based on the achieved solutions.

2.2 Building Rule Base

As mentioned above, BCAR only accepts two ways to define classes and prop-
erties: SWRL rule and ECA. Since that the backward chained reasoning engine
requires a unified rule base, there is a need to translate ECAs to SWRL-like
rules. The translation is generally based on the FOL semantics of the OWL con-
structs, and is described in Tab.1. (A, B, C are classes, P is a property, I is an
individual and n is a number).

Normally, ECAs cannot be translated to rules directly since that they rep-
resent bidirectional relationships. However, BCAR consider ECAs only as class
definition rules, and process ECAs equally with SWRL rules. In this case, inter-
pret ECA as one direction logic, from definition to the class, is reasonable.

2.3 Reasoning Algorithm

In BCAR, retrieving instances (or fillers) of defined classes (or properties) fires
their definition rules. The process of query is then transformed to a process of
searching the ABox for solutions for the definition rule. Reasoning results are
generated based on the solutions. In the following discussion, the solution is
firstly defined, the searching algorithm is secondly given, how to generate results
based on solutions is then described, the backward chaining in the rule base is
finally discussed.

792 Q. Wang and X. Yu

Table 1. Translating ECA to SWRL-like rules

owl: intersectionOf C=AandB A(?x) AB(?x) -> C(?x)
owl: unionOf C=AorB A(?x) -> C(?x)
B(?x) -> C(?x)
owl: complementOf C=notA Not (A(?x))-> C(?x)
owl: someValuesFrom C=RsomeA R(?x,?y)MA(?y) -> C(?x)
owl: allValuesFrom C=RonlyA v 2y(R(?x,?y) A(?y))->C(?x)
owl: hasValue C=Rhas| R(?x, 1) -> C(?x)
owl: minCardinality C=Rminn (R>=n) (?x) ->C(?x)
owl: maxCardinality C=Rmaxn (R <=n) (?x) ->C(?x)
owl: cardinality C=Rexactlyn (R=n) (?x) -> C(?x)
Complex ECA C=Aand (R some B) R(?x,?y)"B(?y) -> H(?x) (create an

intermediate class H)
A(?x)MH(?x) -> C(?x)

For the purpose of simplicity, we introduce following terms to represent rea-
soning tasks (¢ and & are defined class and property respectively):

%(7) : query for all the instances of €
% (? = a) : check whether a is an instance of ¢
P(?,7) : query for all the fillers of property &2
P(? =a,?): query for the instances which are the property values of a for &2
P(?,7 = a) : query for the instances whose property value is a for &
P(?=a,? =0b) : check whether (a,b) is a filler of property &2

The example ontology given below is for the following algorithm discussion:
TBox

Atomic Classes:A; B; C; D

Defined Class:E = OP4 some C

Object Properties:OP1(Domain : A, Range : B); OP2(Domain : B, Range : C, D)
Defined Object Property:OP4(Domain : A, Range : C)

rulel(SWRL):OP1(?z, 7y) A OP2(?y,?z) A C(?z) — OP4(?z, 7z)

ABox

A{A1l; A2; A3}; B{B1; B2; B3; B4}; C{C1;C2; C3;C4}; D{D1; D2}

OP1{(A1, B1); (A1, B2); (A2, B3); (A3, B3); (A3, B4)}

OP2{(B2,C2); (B2,C3): (B3, D1); (B4,C4)}

Solution. In a solution, all the variables in the rule are bound to a value (value
can be individuals or datatype values such as integer and string), which makes
all the atoms in the rule body hold true. In the example ontology, rulel has three
variables: ?x, 7y, 7z. With the above ABox, solutions for rulel are:

{7z «— Al;?7y «— B2;7z «— C2}
{7z — Al;?7y «— B2;7z «— C3}
{7z «— A3;?7y «— B4;7z «— C4}

Reasoning Over OWL/SWRL Ontologies under CWA and UNA 793

OP1/r0P2/C Temporary Atom List

X<~ ?y<_ ?7<- Value binding

A1,A2, B1,B2, C(C1,C2, valuerange
A3 B3,B4 (3,¢4

Fig. 2. The root of searching tree

All the reasoning results of BCAR is generated based on solutions, details of
which is discussed later.

Searching for Solutions. Searching for solutions is the key of BCAR. The
searching process in BCAR is generally an OCQ process based on the well-
known Prolog derivation tree. The idea of atoms reordering [10] is integrated to
improve the performance.

Taking the example ontology, assuming the reasoning task is OP4(?,?), rulel
fires. The search is then started with the following steps:

1. Preprocessing: Build a Temporary Atom List (TAL) from the rule body.
Define a Value Range (VR) for each variable based on the Assumption 2.
In the example, from rule 1 it is easy to find out that 7z belongs to A, 7y
belongs to B, and 7z belongs to C. Based on Assumption 2, 7z, 7y and 7z
can only be the explicitly asserted members of A, B and C respectively.
Fig.2 shows the TAL and VRs of the example. Other cases are listed below:
(a) The VR of 7z (or ?y) contains only Al (or B1) if the reasoning task is

OP4(? = Al1,7) (or OP4(?,7 = B1));
(b) For constant, BCAR create new variables whose VR only contain the
constant’s value;
(c) For variable belonging to a defined class, the VR = T (Assumption3);
(d) For datatype variable, the VR = oo

2. Variable choosing and branching: The performance of CQ heavily relies
on the query ordering. In BCAR, the reasoning always start from the variable
which has minimal size of VR and have not been bound to a value, so that
the number of branches of the searching tree is minimized. The selected
variable is called SV. In the example, 7z is SV since it has minimal size of
VR among all the variables. BCAR then generate branches for each value in
VR of ?z.

3. Binding and intersecting: In each branch, the SV is bound to a value.
BCAR then processes the atoms related to the SV in TAL, which may re-
duce the VR of SV or other variables which are related to SV by an inter-
secting process. After that, the processed atoms are removed from TAL. In
the example, 7z is bound to Al in the first branch. BCAR then processes
OP1(?z(= Al),?y) which is the only atom related to ?z in TAL. Based on
the ABox and Assumption 3, 7y can only be either B1 or B2. BCAR then
intersects {B1, B2} with ?y’s original VR {B1, B2, B3, B4} to be the new
VR of 7y, as Fig.3 shows:

794 Q. Wang and X. Yu

OP17r0P2/C

Px<- Pyi<- Pz:<-

ALA2, B1B2 (1,2,
A3 B3,B4 (3,4

x <- X <-
tet y &.et x<- A2 %X A3
oP22C oP22C opP2/C

X<-Al Py Pzi<- X<-A2 Py Pzi<- X<-A3 Pyi<- Pzi<-
Al B1,B2 (1,02, A2 B (G123 A3 B3,B4 (1,02,
C3,¢4 C3,¢4 C3,¢4

Fig. 3. Generating branches

OP170P2/C

Px<- Py:<- Pz:<-

A1,A2, B1,B2, C(1C2,
A3 B3,B4 C3,¢4

X <- X <-
Ley’ l}et x<- A2 &" <A
op2nc op27c op21c

Px<-Al Pyi<- Pzi<- X<-A2 Pyi<- Pzi<- X<-A3 Py:<- Pz<-
Al B1,B2 C1,C2, A2 B3 (1,c2, A3 B3,B4 (1,C2,
C3,¢4 C3,c4 C3,¢4
I’4 |2 N
?x<-Al ?y:<-B1 ?z:<- Px<-A2 ?y:<-B3 ?z:<- PX<-A3 Py:<-B4 ?z:<-
Al B1 2 A2 B3 2 A3 B4 4
Unsolvable Unsolvable
’X<-Al ?Py:<-B2 ?z:<- Px<-A3 ?y:<-B3 ?z:<-
Al B2 C2,c3 A3 B3]

¥ ~ J
I N vovae

?x<-Al ?y:<-B2 ?z:<-C2 ?x<-Al ?y:<-B2 ?z:<-C3 Px<-A3 ?y:<-B4 ?z:<-C4
Al B2 c2 Al B2 c3 A3 B4 c4
Solution Solution Solution

Fig. 4. Searching tree

4. Termination: BCAR repeats the above step 2 and step 3 until: 1)VR of
any variable turns out to be empty (based on Assumption 1&2, it means this
variable is unsolvable in this branch); 2)All the variables have been bound
to a value (a solution has been found in this branch); Fig4. shows how the
search tree find solutions and how it is terminated.

Generating Reasoning Results. With solutions, BCAR generate results for
every reasoning tasks as follows (assuming the head of the definition rule of ¥
and & are € (?x) and Z(?z,7y) respectively):

1. €(?) : return all the values of 7z from all the solutions;
2. €(? = a) : set the initial VR of ?z to be {a}, check wether a solution can be

found;

Reasoning Over OWL/SWRL Ontologies under CWA and UNA 795

b

P(?,7) : pick up all the values of ?z and ?y from all the solutions;

4. P(? =a,?)(orP(?,a)) : set the initial VR of ?x (or ?y) to be {a}, return
all the values of 7y (or 7z) from all the solutions;

5. Z(? =a,? =0b) : set the initial VR of 7z and ?y to be {a} and {b} respec-

tively, check wether a solution can be found;

Backward Chaining. In the “Binding and intersecting” step of the searching
process, if BCAR need to process an atom corresponding to a defined class
or property, another rule fires. For example, considering defined class E =
OP4 some A, from Tab.1 the translation rule is OP4(?z,?y) A D(?y) — E(?x).
Assuming the reasoning task (goal) is E(? = Al), when searching for the so-
lutions for the translation rule, the “Binding and intersecting” step will add
another reasoning task (new goal) OP4(? = Al1,7?) and rule 1 consequently fires.
This is so-called backward chained reasoning.

2.4 Handling Special Rules and Atoms

In Tab.1, some of the translation rules can be solved normally using the above
algorithm (e.g. owl:intersectionOf; owl:unionOf; owl:someValuesFrom), while the
others can not. This section generally discusses how BCAR handles some special
rules and atoms.

owl:complementOf. C = notA is translated to Not(A(?x)) — C(?z). Based
on Assumption 3 (negation as failure), BCAR handles the translation rule as
follows:

1. C(?) : return the individuals which cannot be proved to be instances of A;
2. C(? = a) : return false if a is proved to be an instance of A, otherwise return
true;

owl:allValuesFrom. C' = R only A is translated to V?y(R(?z, 7y) A A(?y)) —
C(?z) . Based on Assumption 2, BCAR handles the translation rule as follows:

1. C(?) : return the individuals which are proved to have some property values
for R and all these values are proved to be instances to A;

2. C(? = a) : return true if a is proved to have some property values for R and
all these values are proved to be instances of A, otherwise return false;

owl:minCardinality /maxCardinality /cardinality. C = min or max or
exactly a is translated to (R > or < or = a)(?z) — ¢(?z). Based on Assumption
2, BCAR handles the translation rule as follows:

1. C(?7) : return the individuals which are proved to have more than or less
than or exactly a different property values for R;

2. C(? = a) : return true if a is proved to have more than or less than or exactly
a property values for R, otherwise return false;

796 Q. Wang and X. Yu

Complex ECA. A complex ECA is a combination of basic OWL constructs.
As Tab.1 shows, BCAR transform complex ECA to multiple basic rules with
self-created intermediate classes between them.

swrl:differentFrom/sameAs. An SWRL rule may contains atoms such as
“differentFrom(?x,?7y)” and “sameAs(?7x,?y)”. In this case, BCAR firstly remove
these atoms from TAL before searching for solutions. After solutions are found,
these comparison atoms are used to validate each solution based on Assumption
4. Only validated solutions are outputted in the end.

swrl:built-in. BCAR only supports built-Ins for comparison in current stage.
BCAR process built-In atom similar to the “differentFrom/sameAs” atoms. The
only difference is “differentFrom/sameAs” atoms focus on comparing individuals
while built-In atoms focus on comparing datatype values.

3 Experiments

In this section, two experiments has been done to test the performance of search-
ing and the effectiveness of BCAR in industrial applications.

The first experiment tests BCAR with LUBM]J1,0] [3] which contains 103074
triples, and compares the performance with popular reasoner Pellet and Racer-
Pro. The 14 standard quires are transferred to rules for BCAR. An example of
transfer is shown below:

ub : GraduateStudent(?z) A ub : takesCourse(?x, hitp :
/ /www.Department0.University0.edu/GraduateCourse0) — Query01(?x)

As mentioned before, in BCAR, generating results for Query01(?) is the process
of searching for solutions for rule body. And searching for solutions is essentially
a conjunctive query of body atoms. In this way, the 14 standard quires of LUBM
are used to test the searching performance of BCAR.

Table 2. Experimental result (Unit: ms)

T T | | s | s | as | @ | s | o lowlon|an|an o
BCAR <1 340 4 <1 112 670 12 966 380 1 N/A 6 7 660

Pellet 78 536 2 8 34 97 11 1102 867 8 35 38 2 88
RacerPro 308 896 24 201 66 899 1033 1297 1156 92 43 881 306 630

The experimental result is shown in Tab.2. Currently BCAR doesn’t sup-
port transitive roles, so no result can be found for Query 11. Generally BCAR
shows a decent performance comparing with other two reasoners. Especially for
quires which require only small part of ABox information, BCAR performs very

Reasoning Over OWL/SWRL Ontologies under CWA and UNA 797

Rule1: face(? x) A face_has_face_bounds(?x,?y)
A face_edge(?y)
A face_bound_has_bound(?y,?z)
A edge_loop_has_edges(?z,7? m)
— face_has_edges(?x,? m)
Rule2: face(?x) A face(?y) A face_has_edges(?x,?z)
A face_has_edges(?y,?z)
A differentFrom(?x,?y)
— face_has_neighbor_faces(?x,?y)
Rule3: edge(?x) A edge_has_angle(?x,?y)
Asmaller(?y, 180)
— concave_angular_edge(? x)
ECA1: face N Vface_has_edges. concave_angular_edge
= pocket_bottom_face
ECAZ2: face M 3face_has_heighbor_face. pocket_bottom_face
= pocket_wall_face

Fig. 6. Visualization of query result

good since that backward reasoning guarantees only necessary information is
processed.

Another experiment tests the effectiveness of applying BCAR to an industrial
model as shown in the left of Fig.5. The model comes from a STEP file which
captures the geometric information of a product. After transferring from STEP
to OWL, the ontology contains classes such as faces, edges and points. Instances
of the STEP file are mapped to OWL individuals. Several SWRL rules and
OWL ECAs (shown in right of Fig.5) are added to the ontology to define a
class pocket bottom face, and BCAR is applied to find out all the members of
pocket bottom face. The visualization of query result is shown in Fig.6.

Other reasoners are not applicable in this case for the UNA and OWA /CWA
issues. For example, without making UNA the atom dif ferentFrom(?z,?y) in
Rule2 always returns false because the STEP file doesn’t explicitly mention that
an instance is different from another instance. Similarly, the universal quantifi-
cation in ECA1 always returns false, because under OWA the reasoners always
believe there must exist some unknown edges.

4 Conclusion

This paper has proposed a novel Backward Chained ABox reasoner which pro-
vides efficient ABox query reasoning under CWA and UNA for industrial

798 Q. Wang and X. Yu

applications. The reasoner firstly translated OWL ECAs to SWRL-like rules,
and then backward reason through the unified rule base of the ontology to re-
trieval instances for query tasks.

Experiments shows that the BCAR, can effectively execute queries for indus-
trial models under CWA and UNA, and also demonstrates that it has a decent
performance. Future works will focus on improving the reasoner to support more
OWL constructs and evaluating the reasoner using more practical industrial
cases.

References

1. Abdul-Ghafour, S., Ghodous, P., Shariat, B., Perna, E.: Towards an intelligent cad
models sharing based on semantic web technologies. In: Curran, R., Chou, S.-Y.,
Trappey, A. (eds.) Collaborative Product and Service Life Cycle Management for
a Sustainable World. Advanced Concurrent Engineering, pp. 195-203. Springer,
Heidelberg (2008)

2. Andersen, O.A., Vasilakis, G.: Building an ontology of cad model information. In:
Hasle, G., Lie, K.-A., Quak, E. (eds.) Geometric Modelling, Numerical Simulation,
and Optimization, pp. 11-40. Springer, Heidelberg (2007)

3. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knolwedge base systems.
Journal of Web Semantics 3, 158-182 (2005)

4. Haarslev, V., Moller, R.: Racer: An owl reasoning agent for the semantic web. In:
Proceedings of the International Workshop on Applications, Products and Services
of Web-based Support Systems, pp. 91-95 (2003)

5. Kim, K.Y., Manley, D.G., Yang, H.: Ontology-based assembly design and informa-
tion sharing for collaborative product development. Computer-Aided Design 38,
1233-1250 (2006)

6. Mei, J., Paslaru, E.B.: Reasoning paradigms for swrl-enabled ontologies (2005),
http://www.inf.fu-berlin.de/inst/pubs/tr-b-04

7. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, University of KarLsruhe, Karlsruhe, Germany (January
2006)

8. O’Connor, M.F., Knublauch, H., Tu, S., Grosof, B.N., Dean, M., Grosso, W.,
Musen, M.A.: Supporting Rule System Interoperability on the Semantic Web with
SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 974-986. Springer, Heidelberg (2005)

9. Owen, J.: STEP: An Introduction. Information Geometers (1997)

10. Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries: First
results. In: Proc. of the Int. Description Logics Workshop, DL (2006)

11. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 55,
51-53 (2007)

12. Yang, D., Dong, M., Miao, R.: Development of a product configuration system with
an ontology-based approach. Computer-Aided Design 40, 863-878 (2008)

13. Zhao, W., Liu, J.K.: Owl/swrl representation methodology for express-driven prod-
uct information model: Part 1. implementation methodology. Computers in Indus-
try 59, 580-589 (2008)

http://www.inf.fu-berlin.de/inst/pubs/tr-b-04

	Reasoning over OWL/SWRL Ontologies under
CWA and UNA for Industrial Applications
	Introduction
	Technical Details
	Concept Framework
	Building Rule Base
	Reasoning Algorithm
	Solution.
	Searching for Solutions.
	Generating Reasoning Results.
	Backward Chaining.

	Handling Special Rules and Atoms
	owl:complementOf.
	owl:allValuesFrom.
	owl:minCardinality/maxCardinality/cardinality.
	Complex ECA.
	swrl:differentFrom/sameAs.
	swrl:built-in.

	Experiments
	Conclusion
	References

