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Abstract. Modeling of financial time series data by methods of artifi-
cial intelligence is difficult because of the extremely noisy nature of the
data. A common and simple form of filter to reduce the noise originated
in signal processing, the finite impulse response (FIR) filter. There are
several of these noise reduction methods used throughout the financial
instrument trading community. The major issue with these filters is the
delay between the filtered data and the noisy data. This delay only in-
creases as more noise reduction is desired. In the present marketplace,
where investors are competing for quality and timely information, this
delay can be a hindrance. This paper proposes a new FIR filter derived
with the aim of maximizing the level of noise reduction and minimizing
the delay. The model is modified from the old problem of time series
graduation by penalized least squares. Comparison between five differ-
ent methods has been done and experiment results have shown that our
method is significantly superior to the alternatives in both delay and
smoothness over short and middle range delay periods.

Keywords: Penalized least squares, Time series analysis, Financial
analysis, Finite impulse response, Time series data mining.

1 Introduction

The presence of noise in time series data severely limits the ability to extract
useful information [21]. Two types of noise have been identified, dynamical [8, 22]
and measurement [8, 22, 24] noise. Dynamical noise is within the system and
measurement noise is the result of less than perfect measurement instruments.
Noise reduction is a broad term where the goal is to remove from a time series
some unwanted component which itself is made up of noise [8].

Noise reduction of time series can be placed into four groups; graduation,
prediction, filtering and smoothing. Graduation assumes that the signal has fin-
ished, thus allowing the use of all the data to be used to reduce the noise. This
has been a very big area of research with models such as wavelets [2, 3], singular
value decomposition [29, 34], empirical mode decomposition [1, 4], particle filters
[10, 20], and singular spectrum analysis [12, 13]. Prediction involves estimating
the future noise free values using old data. A very common and simple series of
models for this purpose are the exponential smoothing models [9]. Filter models
estimate the current noise free price using all available information. A famous
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filter, the Kalman filter [17], has been used since it’s derivation in 1960. Smooth-
ing models are identical to filters with the exception of an added delay [26], they
use some future data to reduce the noise such as in [32]. The models provide
more accurate estimates at the cost of using some future data (the delay).

For noise reduction of financial data, it would appear that smoothing models
are the most ideal. They are calculated in real time as the financial data stream
is received, and they provide the best estimate in comparison to filters or predic-
tors. The problem with these models, however, is the obvious lag. For example,
the smoothed value at time t reflects the correct smoothed value for time t − l,
where l is the lag. With the reduction of lag comes reduction of smoothness.

It has been shown that perfectly reducing the noise of the streaming time
series increases the performance of data mining and forecasting methods [19, 31].
Investors use various combinations of these filters to produce trading rules, based
on the reduced level of noise, to assist with buy and sell decisions. A comparison
of two types of filters for this purpose was performed by [7] while [15] optimized
the rules with a particle swarm algorithm. This paper will be concerned with a
form of filter that is in wide spread use for security price analysis, finite impulse
response (FIR) filters – or more commonly known in the financial industry as
moving averages. The current methods will be presented and a new method with
theoretical basis will be proposed to address the issue of lag within the limitation
of the FIR filter.

The rest of this paper is outlined as follows, Sect. 2 will show the variations
on the finite impulse response filter that are used. Section 3 proposes a new
model with a theoretical basis. Section 4 describes the experiment performed
to compare the various models and the results are presented in Sect. 5. Finally,
Sect. 6 discusses the conclusions.

2 Current Methods

Finite impulse response (FIR) filters in the financial literature are more com-
monly known as moving averages, they can be generalized as:

ŷt =
n∑

i=1

αiyt−n+i (1)

Where α = [α1, α2, · · · , αn] is the set of model coefficients. The number of coef-
ficients is denoted n, otherwise known as the FIR window size. There are only a
handful of different methods of selecting these coefficients. The simple moving
average (SMA) [5] sets α1 = α2 = . . . = αn = 1/n. Analysts changed the coef-
ficients to increase the weight on the most recent data with the aim of reducing
the lag. The weighted moving average (WMA) [5] is one of these changes
which sets the vector α = [1, 2, . . . , n] · [n(n + 1)2−1]−1. The hull moving av-
erage (HMA) [16] is a modification of the WMA, which has less lag. Given that
WMA(y, n) is the WMA of series y with n coefficients, the HMA is calculated
as:
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ŷ = WMA(2 · WMA(y,
n

2
) − WMA(y, n),

√
n) (2)

A Gaussian implementation, where α is selected from a Gaussian kernel [11],
is commonly known as the Arnaud Legoux moving average (ALMA) [23]
which uses an offset O:

ŷt =
∑n−1

i=0 Kσ(i − O)yt−i∑n−1
i=0 Kσ(i − O)

, Kσ(x) = e−
x2

2σ2 (3)

There are other methods for selecting the coefficient vector α, however, they are
unsuitable for financial data. For example, the least mean squares filter [30] is an
adaptive moving average, the coefficients change with time. To calculate α, one
must first know the smoothed series, quite impossible in finance and economics.
The FIR wiener filter [18] also requires knowledge of the smoothed series.

Each of these FIR designs aims to maintain a smooth output while attempting
to reduce lag. The following section shows a derivation of the coefficient vector
α which is optimized to give the smoothest curve on a training data set after
specifying the FIR window size.

3 Our Proposed Method

Our proposed method for real time noise reduction is based on the penalized
least squares (PLS) graduation method [6, 14, 33]. The PLS method balances
two conflicting attributes of the final curve: (1) the accuracy of the curve to the
original series and (2) the smoothness of the curve. The accuracy is expressed in
matrix notation with the normal least squares method ||y−ŷ||2. The smoothness
can be measured with differencing where ∇ŷx = ŷx − ŷx−1 and ∇2ŷx = ∇(∇ŷx).
The differencing can be expressed in matrix notation where D is a matrix such
that Ddŷ = ∇dŷ where d ∈ Z. For example, if the size of the y vector is 5 and
d = 1 then:

D1 =

⎡

⎢⎢⎣

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⎤

⎥⎥⎦ (4)

The problem is then expressed in least squares form as:

Q = ||y − ŷ||2 + λ||Ddŷ||2 (5)

Where λ is a smoothing factor. Differentiating both sides with respect to ŷ and
setting to zero leads to the following solution where ŷ is a graduation of y:

ŷ = (I + λDT
d Dd)−1y (6)
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Penalized least squares moving average (PLSMA) is the proposed model
which modifies the PLS method to calculate optimal moving average coefficients.
To change the problem to a moving average model the underlying time series
needs to be represented in a trajectory matrix ȳ and the corresponding time
series vector y needs to be adjusted to match. The trajectory matrix is calculated
as follows, considering the time series y = [y1, y2, . . . , yN ] let n be the number
of coefficients in the model, then:

ȳ =

⎡

⎢⎢⎢⎣

y1 y2 . . . yn

y2 y3 . . . yn+1

...
...

. . .
...

yN−n+1 yN−n+2 . . . yN

⎤

⎥⎥⎥⎦ (7)

While the corresponding time series vector y is the last column of ȳ.
The model coefficients are represented in a column vector α, consistent with

(1), and ŷ is then replaced by ȳα in (5):

Q = ||y − ȳα||2 + λ||Ddȳα||2 (8)

Differentiating both sides with respect to α and setting to zero gives the solution:

α = [ȳT ȳ + λ(Ddȳ)TDdȳ]−1ȳTy (9)

Now, α are FIR coefficients. While training data is needed to compute these
coefficients, they can be used to smooth future data in an online fashion with
increased smoothness (reduced lag) over the given data.

This raw method does come with some problems. (1) As λ increases the curve
gets smoother until a point is reached where it cannot be any smoother and still
remain on the same scale as y. Then, ŷ → 0 as λ → ∞. (2) As λ → ∞ the
matrix ȳT ȳ + λ(Ddȳ)TDdȳ becomes singular – non-invertible. (3) most of the
current filters have one or two inputs, this method has three inputs, FIR size, d,
and λ.

The first problem is solved by normalizing α by the sum of α. The second
problem is rectified by noting that λ is used to change the proportion of the least
squares equation by increasing the smoothness penalty. This ratio is maintained
if the error part of the equation is multiplied by λ−1 and the smoothness penalty
is left without a multiplier. Thus, (8) & (9) become:

Q = λ−1||y − ȳα||2 + ||Ddȳα||2 (10)

α = [λ−1ȳT ȳ + (Ddȳ)TDdȳ]−1λ−1ȳTy (11)

Because of normalization, (11) can drop the second λ−1:

α = [λ−1ȳT ȳ + (Ddȳ)TDdȳ]−1ȳTy (12)

The third problem is overcome by noting that the goal is to achieve the greatest
smoothing. Thus, λ ought to be maximized. Taking the limit:



76 A. Letchford, J. Gao, and L. Zheng

α = lim
λ→∞

[λ−1ȳT ȳ + (Ddȳ)TDdȳ]−1ȳTy (13)

= [(Ddȳ)TDdȳ]−1ȳTy (14)

4 Experiment Description

The models were compared over several data sets with a cross validation method.
To calculate the performance of each model two measures were developed. One
for measuring how smooth the new time series is and the other to calculate how
much lag it has. The rest of this section presents the details of this experiment
and these statistical measures.

4.1 Data

Six real world time series were used for these experiments; AUD/USD, EUR/USD,
GOOG, INDU, NASDAQ, and XAU/USD, all daily prices each around 2000
samples. Table 1 shows the range and description of each series. In addition, two
randomly generated series were also used. Both have 2000 random prices with
returns generated from the standard normal distribution.

Table 1. Names and description of the time series used in the experiment

Series Name Range Description

AUD/USD 20/10/2003 - 14/06/2011 Australian Dollar to U.S.A. Dollar
EUR/USD 15/10/2003 - 31/05/2011 Euro to the U.S.A. Dollar
GOOG 25/10/2004 - 14/06/2011 Stock for Google
INDU 21/07/2003 - 14/06/2011 Index for Dow Jones Industrial Average
NASDAQ 10/04/2003 - 14/06/2011 NASDAQ market index
XAU/USD 22/10/2003 - 14/06/2011 Gold to U.S.A. Dollar
Random 1 2000 random prices
Random 2 2000 random prices

4.2 Smoothness (Noise) Function

Previously, to calculate the level of noise reduction, the signal to noise ratio
(SNR) would be used [27]. However, it assumes that the clean signal is known,
and assumes that ŷ has no delay. In previous research, measures have been used
which do not hold these assumptions. For example, autocorrelation and power
spectrum are used in [25]. Unfortunately, these methods output the result in
a large dimension resulting in comparison issues when processing thousands of
comparisons. The measure for smoothness used here builds upon ||Ddŷ||2 used
in the PLS equation. Some considerations are made, if d = 1, then the error
stems from using the previous value of ŷ, similarly, d = 2 is using the previous
rate of change (ROC) to forecast. However, the ROC may be smooth, where
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d = 3 would result in a smaller error. Thus, the smoothness of ŷ is the minimum
of the following function with respect to d normalized by the smoothness of y:

S(ŷ) = min {||Ddŷ||} , d ∈ N (15)

S(y, ŷ) = 1 − S(ŷ)
S(y)

(16)

Which can be interpreted as the percentage of noise filtered from the original
series y to produce the smooth curve ŷ. Unlike the SNR, the S function does not
assume that the clean signal is known, and does not make assumptions about
the lag.

Usually, noise is measured as an error between values such as in prediction
problems or when using the SNR. However, as this paper is not dealing with
estimating exact unknown quantities, this is redundant. Instead, the aim is the
online reduction of noise in known noisy data. Thus, a natural conclusion would
be to reduce the variance between values. As this would result in producing
a straight line, instead of following the time series, the smoothness function
extends this to reducing the variance at the best derivative level. As a result,
small values for S(y) means that y is smooth and takes on the form of a curve.

4.3 Lag Function

Cross correlation is adapted to calculate the lag between y and a given ŷ. After
calculating the smoothed series ŷ of a testing data, the entire training-testing
window (y) and ŷ are lined up by their right side. This is lag 0 and the correlation
is calculated between ŷ and the adjacent values in y. Then ŷ is shifted left by 1,
corresponding to lag 1, and the correlation is again calculated. This process is
continued and the lag with the highest correlation is taken to be the lag of the
smoothed series.

4.4 Cross Validation

The five models in Sect. 2 and 3 were compared by using a cross validation
method. The best window size for the training data was 800 and the testing
data was 400. Due to the large size of this combined window (1,200), it was
shifted by 100 rather than 400 to maintain enough sample optimizations.

The aim of the experiment was to find out which model has greater smoothing
for a given amount of lag. There is no direct input for lag, however, as FIR filters,
the lag is related to the size of the filter. Thus, the size (n) was iterated between
2-150 and the remaining variables were optimized at each iteration.

As has been shown, the SMA, WMA, and HMA have a single input, the FIR
window size (n). As a result, these three models do not need optimization. The
smoothed series is simply calculated over each testing set, and the smoothness
and lag are averaged for each value of n.
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For each n ∈ [2−150], the ALMA is optimized 5 times over each set of training-
testing data using 1 − S(y, ŷ). The best parameters out of the 5 are chosen for
that data set. The variables σ and O are optimized over the ranges 1 to 50 and
-50 to 50 respectively. The optimization algorithm is simulated annealing, see
[28]. Put simply, simulated annealing takes an initial starting point and “jitters”
it around the error surface with a tendency to move around local minima. The
jittering gradually comes to a halt where the point is expected to be in a local
minima. The standard MatLab algorithm with default parameters was used.

The PLSMA model optimization is performed differently. The only parameter
to be optimized is d and this is an integer. After a few trials of different FIR
window sizes up to 150 it seemed that the optimal d did not go over 10. d was
evaluated over the range [1-10] and the best value according to the smoothness
measure was selected.

Figure 1 is the pseudocode of the cross validation algorithm.

foreach model

foreach time series

for n = 2-150

foreach CV window

Optimize model on training data

Apply model to testing data

calculate smoothness and lag

Calculate average smoothness and lag over the CV windows

Calculate average smoothness for each lag

Fig. 1. Pseudocode for the cross-validation algorithm

Once the average smoothness for each lag had been obtained for each of
the models on each of the time series, summary statistics were compiled. The
percentage of superior lags in comparison to the other models on each time
series is calculated. The model with the highest percentage of superior lags is
considered to be the best model.

5 Results

A clear indication of each model’s performance is shown in Tbl. 2. The %Lags
column shows the percentage of lags for which that model is superior, and the
Range column shows the range of those lags. These comparisons were different
for each model, as each model spans a different range in relation to the others.
For example, the HMA only goes as far as 17 delay periods on the AUD/USD
data. Thus, these figures are for the comparable range of each model on each
data set.

The SMA is the worst model with no suitable lag periods except for the
XAU/USD series where it is superior for lag 1. The WMA falls next being only
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Table 2. Percent improvement, lag range, and algorithm complexity

SMA WMA HMA ALMA PLSMA
%Lags Range %Lags Range %Lags Range %Lags Range %Lags Range

Random 1 0.0% [] 3.0% [1] 5.3% [2] 31.8% [31-44] 58.3% [3-30]
Random 2 0.0% [] 2.4% [1] 11.1% [2-3] 24.0% [39-50] 57.4% [4-38]
INDU 0.0% [] 2.6% [1] 11.8% [2-3] 28.0% [37-50] 49.3% [5-36]
AUD/USD 0.0% [] 2.4% [1] 11.8% [2-3] 30.0% [36-50] 50.8% [4-35]
EUR/USD 0.0% [] 0.0% [] 23.5% [1-4] 28.0% [37-50] 47.1% [5-36]
GOOG 0.0% [] 0.0% [] 11.8% [2-3] 24.0% [39-50] 48.6% [1, 4-38]
NASDAQ 0.0% [] 2.4% [1] 11.8% [2-3] 26.0% [38-50] 47.2% [4-37]
XAU/USD 2.1% [1] 0.0% [] 11.1% [2-3] 19.0% [35-42] 66.0% [4-34]
Average 0.3% 1.6% 12.3% 26.4% 53.1%
Complexity O(n) O(n) O(n2) O(n) O(n3)

superior on average by lag 1. The HMA is approximately on the range 2-3.
The ALMA takes a much wider range of about 37-48 lag periods. The PLSMA
model (our proposed model) is shown to be the best smoother. Being the most
smoothest model for 48.6%+ of the lag periods. It appears that the PLSMA is
superior over short to middle term lag periods of about 4-36 while the ALMA
smoother is best for longer term lag periods.

Once the FIR coefficients for each model has been calculated, applying the filter
to the financial data stream is of O(n) complexity. However, the models do have
varying degrees of complexity for the calculation of the FIR coefficients. PLSMA
excluded, the best model is the ALMA which is of complexity O(n). The improve-
ment that PLSMA brings comes at a complexity cost, with the model sitting at
O(n3). However, this is not a setback in online applications as the FIR coefficients
are calculated offline. The complexity for each model is shown in Tbl 2.

6 Conclusions

In this paper, we have shown some of the different FIR filters used by investors to
smooth security prices. It is noted that the output of a FIR filter is delayed with
respect to the underlying time series. In addition, there is a positive relationship
between the smoothness of the resulting curve and the lag which is undesirable.
A method was proposed to derive an impulse response which maximizes the
smoothness and minimizes the delay. As there is no assurance of optimality over
any future data the filter may be applied to, this model was compared against
five common models with a cross validation process. It was discovered that the
proposed model achieves greater overall smoothing, more specifically for the
short to middle range lag periods. While the very short term (4 or less periods)
and longer term (37+ periods) were dominated by other models.

Future research will expand the analysis in this paper to include noise re-
duction models that are not otherwise used for financial pre-processing. Further
experiments will also be conducted to discover the level of improvement for data
mining and forecasting algorithms as previous research implies.
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