
A Divide-and-Conquer Tabu Search Approach
for Online Test Paper Generation

Minh Luan Nguyen1, Siu Cheung Hui1, and Alvis C.M. Fong2

1 Nanyang Technological University, Singapore
{NGUY0093,asschui}@ntu.edu.sg

2 Auckland University of Technology, New Zealand
acmfong@gmail.com

Abstract. Online Test Paper Generation (Online-TPG) is a promising approach
for Web-based testing and intelligent tutoring. It generates a test paper automati-
cally online according to user specification based on multiple assessment criteria,
and the generated test paper can then be attempted over the Web by user for
self-assessment. Online-TPG is challenging as it is a multi-objective optimiza-
tion problem on constraint satisfaction that is NP-hard, and it is also required
to satisfy the online runtime requirement. The current techniques such as dy-
namic programming, tabu search, swarm intelligence and biologically inspired
algorithms are ineffective for Online-TPG as these techniques generally require
long runtime for generating good quality test papers. In this paper, we propose
an efficient approach, called DAC-TS, which is based on the principle of
constraint-based divide-and-conquer (DAC) and tabu search (TS) for constraint
decomposition and multi-objective optimization for Online-TPG. Our empirical
performance results have shown that the proposed DAC-TS approach has outper-
formed other techniques in terms of runtime and paper quality.

Keywords: Online test paper generation, multi-objective optimization, web-based
testing, intelligent tutoring system.

1 Introduction

With the rapid growth of E-learning, Web-based testing and intelligent tutoring [2, 5,
13] have become popular for self-assessment and learning in an educational environ-
ment. To support Web-based testing and intelligent tutoring, Online Test Paper Genera-
tion (Online-TPG) is a promising approach which generates a test paper automatically
online according to user specification based on multiple assessment criteria, and the
generated test paper can then be attempted over the Web by user. More specifically,
Online-TPG aims to find an optimal subset of questions from a question database to
form a test paper based on criteria such as total time, topic distribution, difficulty de-
gree, discrimination degree, etc.

Online-TPG is a challenging problem. Firstly, TPG is categorized as a multi-objective
optimization problem on constraint satisfaction which is NP-hard [10]. Secondly, the
current TPG techniques [6–10, 12, 16] have not taken the online generation requirement
into consideration as TPG is traditionally considered as an offline process similar to other
multi-objective optimization problems such as timetabling and job-shop scheduling [4].

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 717–726, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

718 M.L. Nguyen, S.C. Hui, and A.C.M. Fong

These current techniques have optimized an objective function based on multi-criteria
constraints and weighting parameters for test paper quality. However, determining ap-
propriate weighting parameters is quite difficult and computationally expensive. And
these techniques generally require long runtime for generating good quality test papers.

In this paper, we propose an efficient approach, called DAC-TS, which is based on
the principle of constraint-based divide-and-conquer (DAC) and tabu search (TS) for
Online-TPG. The rest of the paper is organized as follows. Section 2 reviews the related
techniques for automatic test paper generation. Section 3 gives the problem specifica-
tion. The proposed DAC-TS approach for Online-TPG is presented in Section 4. Section
5 gives the performance evaluation of the proposed approach and its comparison with
other TPG techniques. Finally, Section 6 gives the conclusion.

2 Related Work

In [10], tabu search (TS) was proposed to construct test papers by defining an objec-
tive function based on multi-criteria constraints and weighting parameters for test paper
quality. TS optimized test paper quality by the evaluation of the objective function. In
[8], dynamic programming optimized an objective function incrementally based on the
recursive optimal relation of the objective function. In [9], a genetic algorithm (GA) was
proposed to generate quality test papers by optimizing a fitness ranking function based on
the principle of population evolution. In [16], differential evolution (DE) was proposed
for test paper generation. DE is similar to the spirit of GA with some modifications on so-
lution representation, fitness ranking function, and the crossover and mutation operations
to improve the performance. In [12], an artificial immune system (AIS) was proposed to
use the clonal selection principle to deal with the highly similar antibodies for elitist se-
lection in order to maintain the best test papers for different generations.

In addition, swarm intelligence algorithms such as particle swarm optimization and
ant colony optimization have also been investigated for TPG. In [6], particle swarm
optimization (PSO) was proposed to generate multiple test papers by optimizing a fit-
ness function which is defined based on multi-criteria constraints. In [7], ant colony
optimization (ACO) was proposed to generate quality test papers by optimizing an ob-
jective function which is based on the simulation of the foraging behavior of real ants.

3 Problem Specification

Let Q = {q1, q2, .., qn} be a dataset consisting of n questions, C = {c1, c2, .., cm} be
a set of m topics, and Y = {y1, y2, .., yk} be a set of k question types such as multiple
choice questions, fill-in-the-blanks and long questions. Each question qi ∈ Q, where
i ∈ {1, 2, .., n}, has 8 attributes A = {q, o, a, e, t, d, c, y}, where q is the question
identity, o is the question content, a is the question answer, e is the discrimination
degree, t is the question time, d is the difficulty degree, c is the related topic and y is
the question type. Table 1 shows a sample Math question dataset.

A test paper specification S = 〈N, T, D, C, Y 〉 is a tuple of 5 attributes which are
defined based on the attributes of the selected questions as follows: N is the number of
questions, T is the total time, D is the average difficulty degree, C = {(c1, pc1),.., (cM ,

A Divide-and-Conquer Tabu Search Approach for Online Test Paper Generation 719

Table 1. An Example of Math Dataset

(a) Question Table

Q ID o a e t d c y

q1 4 8 1 c1 y2

q2 7 9 2 c1 y2

q3 4 6 6 c2 y1

q4 5 9 9 c2 y2

q5 4 7 4 c1 y1

q6 7 4 7 c2 y1

(b) Topic Table

C ID name

c1 Integration
c2 Differentiation

(c) Question Type Table

Y ID name

y1 Multiple choice
y2 Fill-in-the-blank

pcM)} is the specified proportion for topic distribution and Y = {(y1, py1),.., ((yK ,
pyK)} is the specified proportion for question type distribution.

The test paper generation process aims to find a subset of questions from a question
dataset Q = {q1, q2, .., qn} to form a test paper P with specification SP that maxi-
mizes the average discrimination degree and satisfies the test paper specification such
that SP = S. It is important to note that the test paper generation process occurs over
the Web where user expects to generate a test paper within an acceptable response time.
Therefore, Online-TPG is as hard as other optimization problems due to its computa-
tional NP-hardness, and it is also required to be solved efficiently in runtime.

4 Proposed Approach

In this paper, we propose a constraint-based Divide-And-Conquer Tabu Search (DAC-
TS) approach for Online-TPG. As the constraints specified in the test paper specification
can be formulated as a standard 0-1 fractional Integer Linear Programming (ILP) prob-
lem [10] in the form of linear equality constraints, we can decompose the constraints
into two independent subsets, namely content constraints and assessment constraints,
which can then be solved separately and progressively. In the test paper specification
S = 〈N, T, D, C, Y 〉, the content constraints include the constraints on topic distribu-
tion C and question type distribution Y , whereas the assessment constraints include the
constraints on total time T and average difficulty degree D.

Question R-Tree

Test Specification Test Paper

Offline Index Construction

Online Test Paper Generation

Index
Construction

Content
Constraint

Satisfaction

Assessment
Constraint

Optimization

Fig. 1. The Proposed DAC-TS Approach

720 M.L. Nguyen, S.C. Hui, and A.C.M. Fong

The proposed DAC-TS approach, as shown in Figure 1, consists of 2 main processes:
Offline Index Construction and Online Test Paper Generation. In the Offline Index Con-
struction process, it constructs an effective indexing structure for supporting tabu search
to improve the quality of the generated paper. In the Online Test Paper Generation pro-
cess, it generates a high quality test paper that satisfies the specified content constraints
and assessment constraints. As illustrated in Figure 1, it consists of 2 major steps: Con-
tent Constraint Satisfaction and Assessment Constraint Optimization.

4.1 R-Tree Index Construction

We propose to use an effective 2-dimensional data structure, called R-Tree, to store
questions based on the time and difficulty degree attributes. R-Tree has been widely
used for processing queries on 2-dimensional spatial databases. As there is no specified
rule on grouping of data into nodes in R-Tree, different versions of R-tree have been
proposed [1, 14]. The R-Tree used here is similar to the R-tree version discussed in
[1], with some modifications on index construction in order to enhance the efficiency.
Some of the modified operations include insertion, subtree selection, overflow handling,
and node splitting for index construction. Each leaf node in a R-Tree is a Minimum
Bounding Rectangle (MBR) which is the smallest rectangle in the spatial representation
that tightly encloses all data points located in the leaf node. Each non-leaf node has
child nodes, which contain MBRs at the lower level. Figure 2 illustrates the R-Tree
constructed from the Math dataset.

Ti
m

e
(t)

Difficulty (d)
2 64 8 10

4

6

8 q1

q2 q4

q5

q6

q3

Spatial Representation of Questions

MBR r1

MBR r2

r1

q1 q2 q5 q3 q4 q6

r2

u1 u2

u3

R-Tree

Leaf node

Non-leaf node

Question

MBR

Fig. 2. An Example R-Tree

4.2 Content Constraint Satisfaction

It is quite straightforward to generate an initial test paper that satisfies the content con-
straints based on the number of questions N . Specifically, the number of questions
of each topic cl is pcl ∗ N, l = 1..M . Similarly, the number of questions of each
question type yj is pyj ∗ N, j = 1..K . There are several ways to assign the N pairs
of topic-question type to satisfy the content constraints. Here, we have devised an ap-
proach which applies a heuristic to try to achieve the specified total time early. To satisfy
the content constraints, the round-robin technique is used for question selection. More
specifically, for each topic cl, l = 1..M , we assign questions alternately with various
question types yj , j = 1..K , as much as possible according to the number of questions.

A Divide-and-Conquer Tabu Search Approach for Online Test Paper Generation 721

Then, for each of the N pairs of topic-question type (cl, yj) obtained from the round-
robin selection step, we assign a question q from the corresponding topic-question type
(cl, yj) that has the highest question time to satisfy the total time early.

4.3 Assessment Constraint Optimization

Assessment Constraint Violation indicates the differences between the test paper spec-
ification and the generated test paper according to the total time constraint �T (SP ,S)
and the average difficulty degree constraint �D(SP ,S) as follows:

�T (SP ,S) = |TP −T |
T and � D(SP ,S) = |DP −D|

D

A generated test paper P with specification SP = 〈N, TP , DP , CP , YP 〉 is said to sat-
isfy the assessment constraints in S if �T (SP ,S) ≤ α and �D(SP ,S) ≤ β, where α
and β are two predefined thresholds that indicate the acceptable quality satisfaction on
total time and average difficulty degree respectively.

In addition, an objective function is defined for evaluating the quality of test papers
based on assessment constraint violations. The quality of a generated test paper P is
defined by the following objective function:

f(P) = �T (SP ,S)2 + �D(SP ,S)2

In Assessment Constraint Optimization, we conduct tabu search to improve the qual-
ity of the test paper by minimizing assessment constraint violations. This optimization
process is repeated until the termination conditions are reached.

4.4 Tabu Search

Tabu search [3] is an iterative search method, which aims to find better questions to sub-
stitute the existing questions in the test paper in order to minimize assessment constraint
violation. To form a new test paper, each question qk in the original test paper P0 is sub-
stituted by another better question qm which has the same topic and question type such
that assessment constraint violations are minimized. The tabu search comprises a local
search with 3 strategies: Memory Usage, Up-hill Movement and Memory Relaxation.
The termination conditions for the tabu search are based on the quality satisfaction and
the maximum number of iterations in which no better test paper can be found.

In memory usage, DAC-TS uses a short-term memory and a long-term memory to
avoid visiting a solution repeatedly. The recency-based short-term memory is used to
prevent the substitution of a specific question in the current test paper for some steps
after it has just been substituted. This short-term memory, namely TS, is implemented
as follows: when a question qi is substituted, the position i of that question is put into
the short-term tabu list TS with a tenure tTS . After each move, the tenure of the current
entries in the TS is decreased by 1 and those entries with zero tenure are dropped from
the TS. Whereas the transitional frequency-based long-term memory is used to dynam-
ically avoid using over-active questions that have a specific topic-question type in order
to help diversification and prevent cycling. To achieve this, a Move Frequency Table
(MFT) has been incorporated into the tabu search process to store the move frequency
of each topic-question type. This long-term memory, namely TL, is implemented as
follows: when a question qi is substituted, the move frequency of the topic-question

722 M.L. Nguyen, S.C. Hui, and A.C.M. Fong

type of that question is incremented by 1. If an entry x has been moved more than two
times and TL is not full, it will be put into TL. If TL is full and some entries y in TL
have a lower move frequency than x, we remove y from TL and add x into TL.

In up-hill movement, tabu search can accept a move even if the quality of the next
solution is worse than that of the current solution. The reason is to escape the local
optimal region and explore other new promising regions in the search space. However,
to ensure that the up-hill process will not go too far from the current best solution,
we set the following condition: f(P)−fbest

fbest
≤ r where r is a predefined threshold, and

f(P) and fbest are the values of the objective function of the current test paper P and
the current best solution respectively.

Finally, memory relaxation is used to relax the tabu lists. If a given number of itera-
tions has elapsed and TL is full since the last best solution was found, or if the current
solution is much worse than the last best solution, we empty all entries in both TS and
TL. Relaxation of the tabu lists will change the neighborhood of the current solution
drastically, which may drive the search into a new promising region and increase the
likelihood of finding a better solution.

Pruning Search Space. As the neighborhood region is very large, we need to prune
the search space to find a 2-dimensional region W that contains possible questions
for substitution. Let SP0 = 〈N, T0, D0, C0, Y0〉 be the specification of a test paper
P0 generated from a specification S = 〈N, T, D, C, Y 〉. Let P1 be the test paper cre-
ated after substituting a question qk of P0 by another question qm ∈ Q with SP1 =
〈N, T1, D1, C1, Y1〉. The relations of total time and average difficulty degree between
P1 and P0 can be expressed as follows:

T1 = T0+tm−tk (1)
D1 = D0+ dm

N − dk

N (2)
where tk and tm are the question time of qk and qm respectively, and dk and dm are the
difficulty degree of qk and qm respectively.

Let’s consider the total time violation of P0. If �T (SP0 ,S) = |T0−T |
T ≥ α and

T0 ≤ T , where α is the predefined threshold. To improve the total time satisfaction of
P1, qm should have the question time value of tk + (T − T0) such that �T (SP1 ,S) is
minimized. Furthermore, as �T (SP1 ,S) = |T1−T |

T ≤ α, qm should have the total time
tm in the interval tk + (T − T0) ± αT . Therefore, we have tm ∈ [tk + T − T0 − αT,

tk + T − T0 + αT]. If �T (SP0 ,S) = |T0−T |
T ≥ α and T0 > T , we can also derive

the same result. Similarly, we can derive the result for the difficulty degree of qm:
dm ∈ [dk + N(D −D0)− βND, dk + N(D−D0) + βND], where D0, D and β are
the average difficulty degree of P0 and S, and the predefined threshold respectively.

Finding the Best Question for Substitution. Among all the questions located in the
2-dimensional region W , it finds the best question that minimizes the objective function
in order to enhance the test paper quality. Consider question qm as a pair of variables
on its question time t and difficulty degree d. The objective function f(P1) can be
considered as a multivariate function f(t, d):

A Divide-and-Conquer Tabu Search Approach for Online Test Paper Generation 723

f(P1) = f(t, d) = �T (SP1 ,S)2 +�D(SP1 ,S)2 = (
T1 − T

T
)
2

+ (
D1 −D

D
)
2

From Equations (1) and (2), we have:

f(t, d) =
(t − T + T0 − tk)2

T 2
+

(d − ND + ND0 − dk)2

D2
=

(t − t∗)2

T 2
+

(d − d∗)2

D2

≥ (t − t∗)2 + (d − d∗)2

T 2 + D2
=

distance2(qm, q∗)
T 2 + D2

where q∗ is a question having question time t∗ = T − T0 + tk and difficulty degree
d∗ = ND − ND0 + dk.

As T and D are predefined constants and q∗ is a fixed point in the 2-dimensional
space, the good question qm to replace question qk in P0 is the question point that is
the nearest neighbor to the point q∗ (i.e., the minimum value of the function f(P1))
and located in the region W . To find the good question qm for substitution efficiently,
we perform the Best First Search (BFS) [15] with the R-Tree. BFS recursively visits
the nearest question whose region is close to q∗. For efficiency, BFS uses a memory-
resident heap H to manage all the questions in the R-tree that have been accessed. This
continues until a question de-heaped fromH is located in W . We note that because there
may be more than one good question found as mentioned above, the actual best question
should has the maximum discrimination degree among these questions such that the
average discrimination degree of the generated test paper is maximized. Algorithm 1
presents the overall Tabu Search algorithm for the assessment constraint optimization.

5 Performance Evaluation

As there is no benchmark datasets available in the research community, we generate 4
large-sized synthetic datasets, namely D1, D2, D3 and D4 with number of questions of
20000, 30000, 40000 and 50000 respectively for performance evaluation. The values of
each attribute in the 4 datasets are generated according to a normal distribution. Table
2 shows the summary of the 4 datasets. In addition, we have designed 12 test specifi-
cations with different parameters. The experiments are conducted in the Windows XP
environment running on an Intel Core 2 Quad 2.66 GHz CPU with 3.37 GB memory.
We evaluate the performance based on the 12 test specifications for each of the fol-
lowing 6 algorithms: GA, PSO, DE, ACO, TS and DAC-TS. We measure the runtime
and quality of the generated test papers for each experiment. The 3 parameters of the
DAC-TS are set experimentally as follows: tTS = 30, lTL = 200, r = 0.6.

To evaluate the quality of k generated test papers on a dataset D w.r.t. any arbitrary
test paper specification S, we use Mean Discrimination Degree and Mean Constraint
Violation. Let P1, P2, ..., Pk be the generated test papers on a question dataset D w.r.t.

Table 2. Test Datasets

D1 D2 D3 D4

Number of Questions 20000 30000 40000 50000
Number of Topics 40 50 55 60

Number of Question Types 3 3 3 3

724 M.L. Nguyen, S.C. Hui, and A.C.M. Fong

Algorithm 1 . Tabu Search for Assessment Constraint Satisfaction

Input:
S = (N, T, D, C, Y) - test paper specification; P0 ={q1, q2, .., qN} - initial test paper;
tTS - short-term memory tenure; lTL - long-term memory length; r - relaxation ratio;
R - R-Tree index

Output:
P ∗ - Improved test paper

Process:

1: P ← {P0}; MFT ← ∅; TS ← ∅; TL← ∅; nbmax = 3lTL; nbiter = bestiter = 0
2: while Pbest is not satisfied and (nbiter − bestiter) < nbmax do
3: nbiter := nbiter + 1; optiter := optiter + 1;
4: for each qi in P0 do
5: Compute 2-dimensional range W /* pruning search space*/
6: qm ← Best First Search(qi, W ,R);
7: P1 ← {P0 − {qi}} ∪ {qm}
8: if (qi /∈ TS and (ci, yi) /∈ TL) or f(P1) < f(Pbest) then
9: Inserting new test paper P1 into P

10: end if
11: end for
12: P ∗ ← argmin

P ′∈P
f(P1) ; P ← {P ∗} /* best move*/

13: Update MFT (cm, ym), Update TS(qi), Update TL(cm, ym);
14: if f(P ∗) < f(Pbest) then
15: Pbest = P ∗; bestiter = nbiter; optiter := 0
16: else if optiter > 2lTL or f(P)−fbest

fbest
> r then

17: optiter := 0; TS ← ∅; TL← ∅ /* memory relaxation*/
18: end if
19: end while
20: return P ∗

different test paper specifications Si, i = 1..k. Let EPi be the average discrimination
degree of Pi. The Mean Discrimination Degree MD

d is defined as:

MD
d =

∑ k
i=1 EPi

k

The Mean Constraint Violation consists of two components: Assessment Constraint Vi-
olation and Content Constraint Violation. In Content Constraint Violation, Kullback-
Leibler (KL) Divergence [11] is used to measure the topic distribution violation
�C(SP ,S) and question type distribution violation �Y (SP ,S) between the gener-
ated test paper specification SP and the test paper specification S as follows:

�C(SP ,S) = DKL(pcp||pc) =
∑M

i=1 pcp(i) log pcp(i)
pc(i)

�Y (SP ,S) = DKL(pyp||py) =
∑K

j=1 pyp(j) log pyp(j)
py(j)

The Constraint Violation (CV) of a generated test paper P w.r.t. S is defined as:

CV (P,S) =
λ ∗ �T + λ ∗ �D + log�C + log�Y

4

A Divide-and-Conquer Tabu Search Approach for Online Test Paper Generation 725

where λ = 100 is a constant used to scale the value to a range between 0-100. The Mean
Constraint Violation MD

c of k generated test papers P1, ..., Pk on a question dataset D
w.r.t different test paper specifications Si, i = 1..k, is defined as:

MD
c =

∑ k
i=1 CV (Pi,Si)

k

Figure 3 gives the runtime performance of the proposed approach in comparison with
other techniques on the 4 datasets. The results have shown that DAC-TS outperforms
other techniques in runtime. In Figure 3, it also shows that DAC-TS satisfies the runtime
requirement as it generally requires less than 2 minutes to complete the paper genera-
tion process for various dataset sizes. In addition, the DAC-TS approach is scalable
in runtime. Figure 4 shows the quality performance of DAC-TS and other techniques
based on Mean Discrimination Degree MD

d and Mean Constraint Violation MD
c for the

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14
15

Test Specification S

T
im

e
(in

 m
in

)

GA
PSO
DE
ACO
TS
DAC−TS

(a) Dataset D1

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

8

12

16

20

Test Specification S

T
im

e
(in

 m
in

)

GA
PSO
DE
ACO
TS
DAC−TS

(b) Dataset D2

1 2 3 4 5 6 7 8 9 10 11 12
0
2
4

8

12

16

20

24

Test Specification S

T
im

e
(in

 m
in

)

GA
PSO
DE
ACO
TS
DAC−TS

(c) Dataset D3

1 2 3 4 5 6 7 8 9 10 11 12
0
2
4

8

12

16

20

24

28
30

Test Specification S

T
im

e
(in

 m
in

)

GA
PSO
DE
ACO
TS
DAC−TS

(d) Dataset D4

Fig. 3. Performance Results Based on Runtime

D1 D2 D3 D4
0

1

2

3

4

5

6

7

Dataset

M
ea

n
D

is
cr

im
in

at
io

n
D

eg
re

e

GA
PSO
DE
ACO
TS
DAC−TS

(a) Mean Discrimination Degree

D1 D2 D3 D4
0

10

20

30

40

50

Dataset

M
ea

n
C

on
st

ra
in

t V
io

la
tio

n

GA
PSO
DE
ACO
TS
DAC−TS

(b) Mean Constraint Violation

Fig. 4. Performance Results based on Quality

726 M.L. Nguyen, S.C. Hui, and A.C.M. Fong

4 datasets. As can be seen, DAC-TS has consistently outperformed other techniques. As
such, DAC-TS is able to generate higher quality test papers than other techniques.

6 Conclusion

In this paper, we have proposed an efficient constraint-based Divide-And-Conquer Tabu
Search (DAC-TS) approach for online test paper generation. The performance results
have shown that the DAC-TS approach has not only achieved good quality test papers,
but also satisfied the online runtime requirement even for large datasets in compari-
son with other techniques. Thus, the proposed research is particularly useful for Web-
based testing and intelligent tutoring in an educational environment. For future work,
we would like to combine the DAC-TS with the integer linear programming to further
enhance the constraint satisfaction and runtime efficiency of the DAC-TS approach.

References

1. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust
access method for points and rectangles. ACM SIGMOD Record 19(2), 322–331 (1990)

2. Conejo, R., Guzmn, E., Milln, E., Trella, M., Prez-De-La-Cruz, J.L., Ros, A.: Siette: a
web-based tool for adaptive testing. International Journal of Artificial Intelligence in Ed-
ucation 14(1), 29–61 (2004)

3. Glover, F., Laguna, F.: Tabu Search. Kluwer Academic Publishers (1997)
4. Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics. Chapman &

Hall/Crc Computer & Information Science Series (2007)
5. Guzman, E., Conejo, R.: Improving student performance using self-assessment tests. IEEE

Intelligent Systems 22(4), 46–52 (2007)
6. Ho, T.F., Yin, P.Y., Hwang, G.J., Shyu, S.J.,Yean, Y.N.: Multi-objective parallel test-sheet com-

position using enhanced particle swarm optimization. Journal of ETS 12(4), 193–206 (2008)
7. Hu, X.M., Zhang, J., Chung, H.S.H., Liu, O., Xiao, J.: An intelligent testing system embed-

ded with an ant-colony-optimization-based test composition method. IEEE Transactions on
Systems, Man, and Cybernetics 39(6), 659–669 (2009)

8. Hwang, G.J.: A test-sheet-generating algorithm for multiple assessment requirements. IEEE
Transactions on Education 46(3), 329–337 (2003)

9. Hwang, G.J., Lin, B., Tseng, H.H., Lin, T.L.: On the development of a computer-assisted
testing system with genetic test sheet-generating approach. IEEE Transactions on Systems,
Man, and Cybernetics 35(4), 590–594 (2005)

10. Hwang, G.J., Yin, P.Y., Yeh, S.H.: A tabu search approach to generating test sheets for mul-
tiple assessment criteria. IEEE Transactions on Education 49(1), 88–97 (2006)

11. Kullback, S.: Information theory and statistics. Dover Publisher (1997)
12. Lee, C.-L., Huang, C.-H., Lin, C.-J.: Test-Sheet Composition Using Immune Algorithm for

E-Learning Application. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI),
vol. 4570, pp. 823–833. Springer, Heidelberg (2007)

13. Li, Q.: Guest editors’ introduction: Emerging internet technologies for e-learning. IEEE In-
ternet Computing 13(4), 11–17 (2009)

14. Manolopoulos, Y., Nanopoulos, A.: R-trees: Theory and Applications. Springer, Heidelberg
(2006)

15. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proceedings of the
ACM SIGMOD, pp. 71–79 (1995)

16. Rui, W.F., Hong, W.W., Ke, P.Q., Chao, Z.F., Liang, J.J.: A novel online test-sheet compo-
sition approach for web-based testing. In: Symposium on IT in Medicine & Education, pp.
700–705 (2009)

	A Divide-and-Conquer Tabu Search Approach for Online Test Paper Generation
	Introduction
	Related Work
	Problem Specification
	Proposed Approach
	R-Tree Index Construction
	Content Constraint Satisfaction
	Assessment Constraint Optimization
	Tabu Search

	Performance Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

