
Speeding Up Bipartite Graph Visualization Method

Takayasu Fushimi1, Yamato Kubota2, Kazumi Saito1�2, Masahiro Kimura3,
Kouzou Ohara4, and Hiroshi Motoda5

1 Graduate School of Management and Information of Innovation,
University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

����������	
������	�����
�����
����
2 School of Management and Information,

University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
����������	
������	�����
�����
����

3 Department of Electronics and Informatics, Ryukoku University,
Otsu, Shiga 520-2194, Japan

�����
����	��������
����
4 Department of Integrated Information Technology,

Aoyama Gakuin University, Kanagawa 229-8558, Japan
�
�
����
�
�
�
����

5 Institute of Scientific and Industrial Research, Osaka University,
Osaka 567-0047, Japan

���
�
��	
�����	
�
���
����

Abstract. We address the problem of visualizing structure of bipartite graphs
such as relations between pairs of objects and their multi-labeled categories. For
this task, the existing spherical embedding method, as well as the other standard
graph embedding methods, can be used. However, these existing methods either
produce poor visualization results or require extremely large computation time to
obtain the final results. In order to overcome these shortcomings, we propose a
new spherical embedding method based on a power iteration, which additionally
performs two operations on the position vectors: double-centering and normal-
izing operations. Moreover, we theoretically prove that the proposed method al-
ways converges. In our experiments using bipartite graphs constructed from the
Japanese sites of Yahoo!Movies and Yahoo!Answers, we show that the proposed
method works much faster than these existing methods and still the visualization
results are comparable to the best available so far.

1 Introduction

Visualization by embedding graphs into a low dimensional Euclidean space plays an
important role to intuitively understand the essential structure of graphs (networks). To
this end, various graph embedding methods have been proposed in the past that include
multi-dimensional scaling [6], spectral embedding [1], spring force embedding [2],
cross-entropy embedding [7]. Each method has its own advantages and disadvantages.

In this paper, we address the problem of visualizing structure of bipartite graphs such
as relations between pairs of objects and their multi-labeled categories. More specifi-
cally, relations of this kind include pairs of movies and their associated genres, pairs

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 697–706, 2011.
c� Springer-Verlag Berlin Heidelberg 2011



698 T. Fushimi et al.

of persons and their interested genres, pairs of researchers and their coauthoring pa-
pers, pairs of words and their appearing documents, and many more. Clearly, we can
straightforwardly apply any one of the above-mentioned embedding methods for the
visualization. However, we note that these standard methods have an intrinsic limita-
tion because they cannot make much use of the essential structure of bipartite graphs.
Indeed, the existing spherical embedding method has been proposed for the purpose of
visualizing bipartite graphs [5]. In this method, the position vectors are embedded on
two concentric spheres (circles) with di�erent radii. We consider that such a spherical
embedding can be a natural representation for bipartite graphs. However, the biggest
problem with the existing method is that it often requires an extremely large computa-
tion time to obtain the final visualization results.

In this paper, to overcome these shortcomings, we propose a new spherical embed-
ding method based on a power iteration, which adopts two operations to iteratively ad-
just the positioning vectors: double-centering and normalizing operations. We further
show theoretically that the convergence of the proposed algorithm is always guaran-
teed. In our experiments that use bipartite graphs constructed from the Japanese sites
of Yahoo!Movies and Yahoo!Answers, we show that the proposed method works much
faster than these existing methods, and yet the visualization results are comparable to
the best available so far.

2 Problem Framework

We describe the problem framework of embedding the bipartite graph G � (V� E) into a
K-dimensional Euclidean space, where V � VA � VB, VA � VB � �, and E � VA � VB.
For the sake of technical convenience, we identify each set of the nodes, VA and VB,
by two di�erent series of positive integers, i.e., VA � �1� � � � �m� � � � � M� and VB �

�1� � � � � n� � � � � N�. Here M and N are the numbers of the nodes in VA and VB , i.e.,
	VA	 � M and 	VB	 � N, respectively. Then, we can define the M � N adjacency matrix
A � �am�n� by setting am�n � 1 if (m� n) 
 E; am�n � 0 otherwise. We denote the K-
dimensional embedding position vectors by xm for the node m 
 VA and yn for the
node n 
 VB. Then we can construct M � K and N � K matrices consisting of these
position vectors, i.e., X � (x1� � � �xM)T and Y � (y1� � � �yN)T . Here XT stands for the
transposition of X.

According to the work on the existing spherical embedding method [5], we explain
the framework of spherical embedding of bipartite graph. In Fig. 1, we show an example
in a two-dimensional Euclidean space, i.e., unlike the standard visualization scheme
shown in Fig. 1a, we consider locating the position vectors on two concentric spheres
(circles) as shown in Fig. 1b. We believe that this kind of spherical embedding is natural
to represent bipartite graphs, and its usefulness has been reported [5]. Hereafter, we
assume that nodes in subset VA are located on the inner circle �A with radius rA � 1,
while nodes in VB are located on the outer circle �B with radius rB � 2. Note that
�xm� � 1, �yn� � 2. Then, our aim is to locate the position vectors of the nodes having
similar connection patterns closely to each other.



Speeding Up Bipartite Graph Visualization Method 699

(a) Bipartite Graph (b) Spherical Embedding

Fig. 1. Spherical Embedding for Bipartite Graph

3 Proposed Method

3.1 Proposed Algorithm

The new spherical embedding method is based on a power iteration. It has two opera-
tions on the positioning vectors which we call double-centering operation and normal-
izing operation. In order to describe our algorithm, we need to introduce the centering
matrices and normalizing operations. The centering (Young-Householder transforma-
tion) matrices are defined as HM � IM � 1

M 1M1T
M� HN � IN � 1

N 1N1T
N where IM and

IN stands for M � M and N � N identity matrices, respectively, and 1M and 1N are
M- and N-dimensional vectors whose elements are all one. Clearly, the mean vector of
the resulting position vectors becomes 0 by the operations HMX and HNY. On the other
hand, the normalizing operations are defined as�M(X) � rAdiag(XXT )�1�2X� �N(Y) �
rBdiag(YYT )�1�2Y, where diag(�) is an operation to set all the non-diagonal elements to
zero, i.e., diag(XXT ) is a diagonal matrix whose m-th element is xT

mxm.
Intuitively, the basic procedure of our proposed algorithm is that the position vector

xm is repeatedly moved to the position calculated by adding the position vectors �yn�

that are connected to xm. Of course, we need to perform a normalizing operation so as
to satisfy the spherical constraints. Below we describe our proposed algorithm.

1. Initialize the matrix X and Y.
2. Update the matrix X  �M(HMAHNY).
3. Update the matrix Y  �N(HNAT HMX).
4. Terminate if the changes for the position vectors X and Y are small.
5. Return to the step 2.

As the basic framework, our proposed algorithm employs a power iteration, just like the
HITS algorithm [3], which utilizes A and AT , does. However, the main di�erences are
use of the double-centering operations by HM and HN and the normalizing operations



700 T. Fushimi et al.

by �M(�) and �N(�). Here note that the double-centering operation is also employed in
the standard multidimensional scaling method [6].

Now we briefly mention the computational complexity of our algorithm. Clearly,
the main computational complexity of one-iteration comes from the multiplication by
the matrix A (or AT ) which is the most intensive part and is proportional to the num-
ber of links in the bipartite graph. Thus, the proposed algorithm is expected to work
much faster especially for a sparse bipartite graph, compared with the existing spheri-
cal embedding algorithm that require a nonlinear optimization just like a spring force
embedding [2] does. In fact, it has been well known that the PageRank algorithm based
on a power iteration works very fast for a large and sparse network [4].

3.2 Convergence Proof

We prove the convergence property of the algorithm. To do this, we first introduce the
double-centered matrix B � �bm�n� that is calculated from the adjacency matrix A i.e.,
B � HMAHN . Then, by using the matrix B, we can consider the following objective
function with respect to the position vectors X � (x1� � � � � xM)T and Y � (y1� � � � � yN)T .

J(X�Y) �
M�

m�1

N�

n�1

bm�n
xT

m

rA

yn

rB
�

1
2

M�

m�1

�m(r2
A � xT

mxm) �
1
2

N�

n�1

�n(r2
B � yT

n yn)� (1)

where ��m 	 m � 1� � � � � M� and ��n 	 n � 1� � � � � N� correspond to Lagrange multipliers
for the spherical constraints, i.e., xT

mxm � r2
A and yT

n yn � r2
B for 1 � m � M and

1 � n � N.
Now we consider maximizing J(X�Y) defined in Equation (1) by use of a coordinate

strategy. Note that maximizing J(X�Y) pushes the pairs xm and yn to the same direction
if they are connected and pushes them to the opposite direction if they are unconnected,
and realizes the intended visualization. We repeat the following two steps: maximizing
J(X�Y) with respect to X by fixing the matrix Y first, and maximizing J(X�Y) with
respect to Y by fixing the matrix X next. If the maximization of these steps are achieved
by the above algorithm’s step 2 and 3, respectively, we can guarantee the convergence
of our proposed algorithm.

In order to confirm these facts, we consider the following gradient vector of the
objective function J(X�Y) with respect to xm.

�J(X�Y)
�xm

�
1

rArB

N�

n�1

bm�nyn � �mxm� (2)

Thus, for a fixed matrix Y, we obtain the optimal position vector xm which maximizes
the objective function J(X�Y) as xm �

rA
�x̃m�

x̃m, where x̃m �
�N

n�1 bm�nyn. Here note
that the optimal vector xm is calculated by using the matrix Y only. Thus, for m �

1� � � � � M, by using the normalizing operation �M(�) whose diagonal elements become
rA��x̃1�� � � � � rA��x̃M�, we can obtain the solution in the matrix representation, i.e.,

X � �M(BY) � �M(HMAHNY)� (3)



Speeding Up Bipartite Graph Visualization Method 701

1 Science Fiction/Fantasy red circle

2 Action/Adventure black square

3 Animation green diamond

4 Comedy blue star

5 Suspense maroon hexagon

6 Teen orange triangle−up

7 Western purple triangle−down

8 War navy triangle−left

9 Documentary olive triangle−right

10 Drama lime cross

11 Family darkgold plus

12 Horror darkcyan asterisk

13 Musical magenta circle

14 Romance cyan square

15 Special Effects yellow diamond

16 Others gray star

Fig. 2. category names in Japanese Yahoo!Movies site

Recall that Equation (3) performs centering the matrix Y by the matrix HN , multiplies
the adjacency matrix A, performs re-centering the matrix by multiplying the matrix HM,
and normalizes so as to guarantee spherical constraints. By this formula, we can obtain
the optimal solution of position vectors X by fixing the matrix Y.

Similarly, we can also obtain the following optimal solution of position vector
yn by fixing the matrix X as yn �

rB
�ỹn�

ỹn, where ỹn �
�M

m�1 bm�nxm. Thus, for
n � 1� � � � � N, by using the normalizing operation �N(�) whose diagonal elements be-
come rB��ỹ1�� � � � � rB��ỹN�, we can obtain the solution in the matrix representation,
i.e.,

Y � �N(BT X) � �N(HNAT HMX)� (4)

Therefore, since the finite objective function J(X�Y) defined in Equation (1) has the
analytical optimal solution under the condition that either X or Y is fixed, and is always
maximized by performing the step 2 and 3 of the algorithm, we can guarantee that the
algorithm always converges.

4 Evaluation by Experiments

4.1 Network Data

We constructed the bipartite graphs from the Japanese sites of Yahoo!Movies and Ya-
hoo!Answers, and experimentally evaluated the proposed method by comparing it with
the existing embedding methods in terms of both the eÆciency of the algorithms and
ease of interpretability of the visualization results.

We regard the movies as nodes in VB, and their genres as nodes in VA for the Japanese
Yahoo!Movies site 1. Note that each movie is associated with more than or equal to one
genre. In Fig. 2, we show their genre names used in our experiments, and for our vi-
sual analyses purpose, we assign an individual marker with a di�erent color to each
genre as shown in this figure. In order to evaluate our proposed method by using a
set of di�erent bipartite graphs, we classify these movies into 7 groups according to
their release dates(1950-59, 1960-69, 1970-79, 1980-89, 1990-99, 2000-04 and 2005-
09). Here the number of genres is 	VA	 � 16 for all the periods, the numbers of movies

1 �������� ��	��
�������

http://movies.yahoo.co.jp/


702 T. Fushimi et al.

	VB	 are 594, 1079, 1314, 1805, 2659, 2948 and 3264, and the numbers of links 	E	 are
899, 1617, 2071, 2994, 4424, 6057 and 6564 for each period.

We regard the users who answered questions as nodes in VB, and the genres of these
questions as nodes in VA for the Japanese Yahoo!Answers site 2. Note that although each
question belongs to only one genre, the same user frequently answers several questions
belonging to a wide variety of genres. Thus we can obtain bipartite graphs between the
pairs of the users and the genres they answered. In our experiments, we utilized a set
of data from April, 2004, to October, 2005. Again, in order to evaluate our proposed
method by using a set of di�erent bipartite graphs, we classify these questions into 6
groups according to their submission dates(2004-2nd, 3rd, 4th, 2005-1st, 2nd and 3rd).
Here the number of genres is 	VA	 � 10 for all the periods, the numbers of users 	VB	 are
11871, 27446, 35907, 39451, 42884 and 46834, and the numbers of links 	E	 are 30849,
80664, 96926, 95714, 102086 and 112548 for each period.

4.2 Brief Description of Other Visualization Methods Used for Comparison

We first explain the existing spherical embedding method as our primal comparison
method, whose problem framework is the same to ours. In this method the follow-
ing objective function is directly minimized with respect to the position vectors X �

(x1� � � � � xM)T and Y � (y1� � � � � yN)T under the constraints that xT
mxm � r2

A and yT
n yn �

r2
B for 1 � m � M and 1 � n � N. The objective function is defined as �(X�Y) �

1
2

�M
m�1

�N
n�1

�
cm�nrArB � xT

myn

�2
, where cm�n � 2am�n � 1, i.e., cm�n � 1 if (m� n) 
 E;

cm�n � �1 otherwise. In order to obtain the solution vectors, this method repeatedly
moves each position vector by using the Newton method in a framework of nonlin-
ear optimization, i.e., it repeats the following two steps: First, minimizing �(X�Y) for
xm by fixing �x1� � � � xM� � xm and �y1� � � �yN �, and next minimizing �(X�Y) for yn by
fixing �x1� � � � xM� and �y1� � � �yN� � yn. Thus this method requires an extremely large
computation time to obtain the final results.

We have further compared the proposed method with the four well known embed-
ding methods: multi-dimensional scaling [6], spectral embedding [1], spring force em-
bedding [2], and cross-entropy embedding [7]. Here the former two perform a power
iteration with respect to either a double-centered distance matrix or a graph Laplacian
matrix which is calculated from a given graph, just like our proposed spherical embed-
ding method does, while the latter two repeatedly move each position vector by using
the Newton method in a framework of nonlinear optimization, just like the existing
spherical embedding method does. Note that these four methods are not designed for
embedding bipartite graphs, but as mentioned earlier, we can straightforwardly apply
them for our purpose because a bipartite graph is regarded as an instance of general
undirected graph.

In what follows in this subsection, we regard a bipartite graph as an undirected
graph G � (V� E) to describe the basic ideas of these standard embedding methods,
and then consider a framework of embedding it into a K-dimensional Euclidean space.
In this framework, we identify the set of the nodes by a positive integer, i.e., V �

�1� � � � � l� � � � � L�, 	V 	 � L and L � M � N. Then, we can define the L � L adjacency

2 ������������������
�������

http://chiebukuro.yahoo.co.jp/


Speeding Up Bipartite Graph Visualization Method 703

matrix A � �am�n� by setting am�n � 1 if (m� n) 
 E; am�n � 0 otherwise. We denote
the K-dimensional embedding position vectors by xm for the node m 
 V , and then
construct an L � K matrix consisting of these position vectors, i.e., X � (x1� � � �xL)T .
We also denote the graph distance matrix by G � �gm�n�, each element of which is the
minimum path length between node m and node n.

Multi-dimensional scaling method [6] first calculates the distance matrix G, and per-
forms the double centering operation (HL � IL �

1
L 1L1T

L ) to the distance matrix. Math-
ematically it is formulated as minimizing �(X) � 1

2

�K
k�1 zT

k (HLGHL)zk, where zk �

(x1�k� � � � � xL�k)T , and �z1� � � � � zK� need to be orthonormal vectors, i.e., zT
k zk � 1 and

zT
k zk� � 0 if k � k�. Spectral embedding method [1] tries to directly minimize distances

between position vectors of connecting nodes. Mathematically it is formulated as mini-
mizing �(X) �

�K
k�1 zT

k (D �A)zk, where D is a diagonal matrix each element of which
is the degree of node (number of links). Note that (D�A) is referred to as a graph Lapla-
cian matrix. Again, we set zk � (x1�k� � � � � xL�k)T , and �z1� � � � � zK� need to be orthonor-
mal vectors, which excludes the trivial vector expressed as z � 1L. Spring force em-
bedding method [2] assumes that there is a hypothetical spring between each connected
node pair and locates nodes such that the distance of each node pair is closest to its mini-
mum path length at equilibrium. Mathematically it is formulated as minimizing�(X) ��L�1

m�1
�L

n�m�1 �m�n(gm�n � �xm � xn�)2, where �m�n is a spring constant which is normally
set to 1�(2g2

u�v). Cross-entropy embedding method [7] first defines a similarity 	(xm� xn)
between the embedding positions xm and xn and uses the corresponding element am�n

of the adjacency matrix as a measure of distance between the node pair, and tries to
minimize the total cross entropy between these two. Mathematically it is formulated as
minimizing �(X) � �

�L�1
m�1

�L
n�m�1

�
am�n log 	(xm� xn) � (1 � am�n) log(1 � 	(xm� xn))

�
.

Here, note that we used the function 	(xm� xn) � exp(� 1
2 		xm � xn		

2) in our experiments.

4.3 Experimental Results

We first evaluated the eÆciency of our proposed method in comparison with the existing
methods. We show our experimental results in Fig. 3, where Spec, MDS, SF, CE, eSE
and pSE stand for the spectral embedding, multi-dimensional scaling, spring force em-
bedding, cross-entropy embedding, existing spherical embedding and proposed spher-
ical embedding methods, respectively (machine used is Intel(R) Xeon(R) CPU X5472
@3.0GHz with 64GB memory). Here Figs. 3a and 3b correspond to the results by using
the bipartite graphs constructed from the Yahoo!Movies and Yahoo!Answers sites, re-
spectively. In these figures, we plotted the average processing time (sec.) over 10 trials
by changing the initial position vectors, where the horizontal and vertical axes stand for
the number of nodes in VB and the processing times, respectively. Here recall that the
number of nodes in VB is di�erent for each bipartite graph as mentioned above.

As expected, these figures show that our proposed spherical embedding (pSE) method
works much faster than all the existing methods we compared. More specifically, the
spectral embedding (Spec) method works comparable to our method. This is because
these methods perform a power iteration on a sparse adjacency matrix. In fact, the multi-
dimensional scaling (MDS) method requires a substantially large computation time be-
cause it needs to perform a power iteration on a full distance matrix. All the other
methods including the existing spherical embedding (eSE) method, which repeatedly



704 T. Fushimi et al.

500 1000 1500 2000 2500 3000 3500
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of nodes

av
er

ag
e 

co
m

pu
ta

tio
n 

tim
e 

(s
ec

.)

 

 

Spec MDS SF CE eSE pSE

(a) Yahoo!Movies

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

number of nodes

av
er

ag
e 

co
m

pu
ta

tio
n 

tim
e 

(s
ec

.)

 

 

Spec
MDS
SF
CE
eSE
pSE

(b) Yahoo!Answers

Fig. 3. Comparison of processing times

move each position vector by using the Newton method, generally require an extremely
large computation time before the final results are obtained. Especially, both the spring
force embedding (SF) and cross-entropy embedding (SE) methods require more than
three days to obtain the final results even for one trial when the numbers of nodes for
the Yahoo!Answers graphs become more than 40,000; thus we omitted these results in
Fig. 3b. Here we should emphasize that the scale of the vertical axis of these figures is
logarithmic.

Next we evaluated the visualization results of our proposed method in comparison
with the existing methods. Due to a space limitation, we only show our experimental
results obtained for a bipartite graph constructed from the Japanese Yahoo!Movies sites
in Fig. 4. Here recall that the genre information has been shown in Fig. 2. In Fig. 4a,
we show the visualization result by our proposed method, which we consider intuitively
natural. Actually, we can see that the genre nodes of Action�Adventure (black square)
and Suspense (maroon hexagon) are located in near positions at the right-side of the
inner circle (�A), while at the opposite left-side of this circle, the genre nodes of Teen
(orange triangle up) and Romance (cyan square) are located in near positions. Overall,
we can observe that the similar genres are located closely on the inner circle (�A).

Now we compare the above results with the five existing methods. The first one is the
visualization result by the existing spherical embedding method shown in Fig. 4b. We
see that there are several minor di�erences but we consider this result comparable to
the result by our method. However, this one is very slow and ineÆcient. Our method is
much faster. The second one is the visualization result by the multidimensional scaling
method shown in Fig. 4c. We can observe some clusters of genres. Although this result
might indicate some intrinsic property, we feel that the spherical embedding scheme
is a more natural representation of bipartite graphs. The third one is the visualization
result by the spectral embedding method shown in Fig. 4d. This one is relatively poor in
our own experiments. In fact, the two genres of Drama (lime cross) at the bottom-right
and Documentary (Olive triangle right) at the top-left are too much isolated, although
this method works reasonably fast among the existing methods.The fourth and the fifth



Speeding Up Bipartite Graph Visualization Method 705

(a) proposed spherical embedding (pSE) (b) existing spherical embedding (eSE)

(c) multi-dimensional scaling (MDS) (d) spectral embedding (Spec)

(e) spring force embedding (SF) (f) cross-entropy embedding (CE)

Fig. 4. experimental results obtained for a bipartite graph constructed from the Japanese Ya-
hoo!Movies sites(1950 - 1959)



706 T. Fushimi et al.

ones are the visualization results by the spring force embedding method and the cross-
entropy embedding method shown in Figs. 4e and 4f. We can observe a similar tendency
between these two, e.g., we can easily see that the genre node of Drama (lime cross) is
much isolated in both. The main di�erence in these methods is that we can observe that
some genre nodes are clustered for the spring force embedding method, but there are no
such clusters and all the genres are scattered for the cross-entropy embedding method.
Overall, although each embedding method might have its own characteristics that are
both advantageous and disadvantageous, we believe that our proposed spherical embed-
ding method is most e�ective for visualizing bipartite graphs in terms of eÆciency and
interpretability.

Last but not least, we evaluated our proposed method only in the case of two-
dimensional embedding for our visualization purpose, but this does not mean that it
is limited to two-dimensional embedding. It is quite easy to extend it to the general
K-dimension embedding. We plan to evaluate our method as a powerful technique for
both dimensional reduction and clustering as a future work.

5 Conclusion

In this paper, we addressed the problem of visualizing structure of bipartite graphs such
as relations between pairs of objects and their multi-labeled categories, and proposed a
new spherical embedding method that is based on a power iteration. The key features
of this method is that it employs two operations on the positioning vectors, one called
double-centering operation and the other called normalizing operation. This enables
the iterative approach to be equivalent to maximizing an objective function which is
guaranteed to converge. Thus, our algorithm is theoretically guaranteed to converge.
We applied our method to a set of bipartite graphs with di�erent sizes and connections,
and compared the results with five existing visualization methods. The results showed
that the proposed method works much faster than all the five existing methods, and the
visualization results are intuitively understandable and comparable to the best available
so far known. In future, we plan to apply the new method to evaluate its performance
and robustness for a wide variety of bipartite graphs.

References

1. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics,
vol. (92). American Mathematical Society (February 1997)

2. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process.
Lett. 31, 7–15 (1989)

3. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632
(1999)

4. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics 1 (2004)
5. Naud, A.P., Usui, S., Ueda, N., Taniguchi, T.: Visualization of documents and concepts in

neuroinformatics with the 3d-se viewer. Frontiers in Neuroinformatics 1, Article 7 (2007)
6. Torgerson, W.S.: Theory and methods of scaling. John Wiley & Sons Inc. (1958)
7. Yamada, T., Saito, K., Ueda, N.: Cross-entropy directed embedding of network data. In: Pro-

ceedings of the 20th International Conference on Machine Learning (ICML 2003), pp. 832–839
(2003)


	Speeding Up Bipartite Graph Visualization Method
	Introduction
	Problem Framework
	Proposed Method
	Proposed Algorithm
	Convergence Proof

	Evaluation by Experiments
	Network Data
	Brief Description of Other Visualization Methods Used for Comparison
	Experimental Results

	Conclusion
	References




