
Executability in the Situation Calculus

Timothy Cerexhe and Maurice Pagnucco

ARC Centre of Excellence in Autonomous Systems,
School of Computer Science and Engineering, UNSW,

Sydney, NSW, 2052, Australia
{timothyc,morri}@cse.unsw.edu.au

Abstract. This paper establishes a formal relationship between theories
of computation and certain types of reasoning about action theories ex-
pressed in the situation calculus. In particular it establishes a formal cor-
respondence between Deterministic Finite-State Automata (DFAs) and
the ‘literal-based’ class of basic action theory, and identifies the special
case of DFAs equivalent to ‘context-free’ action theories. These results
formally describe the relative expressivity of different action theories. We
intend to exploit these results to drive more efficient implementations for
planning, legality checking, and modelling in the situation calculus.

Keywords: Reasoning about Action and Change, Situation Calculus,
Theory of Computation.

1 Introduction

The situation calculus is a general-purpose dialect of first-order logic for reason-
ing about the effects of actions in dynamic domains. It allows us to model the
state of a changing world, or determine which sequence of actions will achieve
a goal. However not all sequences will be executable—the effects of one action
may violate the preconditions of another. In this light, the set of executable se-
quences of actions for a given theory corresponds to the more general concept
of a language whose strings are built from an alphabet of actions.

Executability in the situation calculus has been briefly defined and discussed
by Reiter [5]. However there has been no attempt to describe the complexity of
an action theory based on the language of sequences of actions it accepts. This is
surprising since, compared with logic-based action calculi, automata theory pro-
vides a powerful and more thoroughly studied means of classifying the ‘hardness’
of different computational machinery—including those required for recognising
or constructing action theories.

In this paper we identify several existing special cases of action theories in
the situation calculus and prove their equivalence with classes of deterministic
finite automata. This facilitates a greater understanding of the expressivity of
situation calculus theories. We also expect it to lead to more efficient techniques
for representing and manipulating action theories, such as in planning problems
or in new interpreters for the cognitive robotics language Golog [1] whose se-
mantics are based on the situation calculus. By the same token, our translations

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 677–686, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

678 T. Cerexhe and M. Pagnucco

allow AI behaviours encoded via finite state machines—such as XABSL [3] used
for robotics—to be converted to the situation calculus where it may be formally
reasoned about.

2 Background

The situation calculus is a sorted first-order logic for reasoning about actions
in dynamic systems with several distinguished elements. Situation terms are
histories (sequences of actions) composed of the binary do(a, s) function which
returns the situation that results from performing action a in situation s. Thus
do(an, . . . , do(a2, do(a1, S0))) represents the situation after performing the ac-
tions a1, a2, . . . , an in that order, starting from the distinguished initial situation
S0. Arbitrary situations can be constructed this way. Fluents are functions that
represent properties of the world. Their value may be modified by performing
actions, so they have situation terms as their last argument. We require that the
initial situation be fully axiomatised—every fluent must have a known value in
S0. Precondition axioms defining poss(a, s) specify the conditions under which
action a may be performed in situation s. Effect axioms specify the resulting
fluent values after performing an action a in situation s.

A situation-suppressed fluent f represents the partial function f(s) without
its situation term. A situation-independent formula does not expect a situation
term. A formula is uniform in s if it does not mention poss or do, or quantify over
situations, and s is the only situation term that occurs. Essentially it restricts
the use of the situation terms to querying the current value of fluents in only
that situation.

Note that rather than use effect axioms we adopt Reiter’s successor state
axioms (SSAs)—one per fluent—that provide a solution to the frame problem.1

SSAs can be automatically generated from effect axioms. This gives the following
‘template’ for successor state axioms:

f(do(a, s)) = y ≡ γ+(a, y, s) ∨ (f(s) = y ∧ ¬∃z . γ−(a, z, s))

where γ+, γ− are the positive and negative effects respectively—the conditions
that describe when a value becomes true or false. This formula expresses that
fluent f has the value y after performing action a in situation s whenever the
conditions that make the fluent assume that value hold (γ+) or f already has
the value y and nothing occurs to make it false (γ−). Note that we will only
consider functional fluents in this paper, so a positive effect for one value must
coincide with negative effects for all other values in the domain of that fluent.

The above SSA describes the value of fluent f in situation do(a, s) given its
previous value f(s) and the conditions that update its value (γ+) or the absence
of effects that make it false (γ−). This last component provides ‘inertia’—the

1 A discussion of the frame problem is beyond the scope of this paper, suffice to
say that it represents an explosion of axioms required to logically model fluents in
dynamic systems that do not change their value as a result of performing an action.

Executability in the Situation Calculus 679

logical assertion that fluents are not affected by unrelated actions. For example
the colour of a block does not change as a result of picking it up.

Systems always start in the distinguished initial situation S0. The value of
a fluent f in a later situation s can be determined by regressing2 back to S0

and simulating the update axioms on f for each action in s. We are now in a
position to define a basic action theory which represents a rudimentary type of
action theory.

Definition 1. A finite basic action theory (BAT) is a bounded theory in the
situation calculus B = Σsitcalc ∪ Buna ∪ Bss ∪ Bap ∪ BS0 , where:

1. Σsitcalc are the foundational axioms for the situation calculus that logically
describe what a situation looks like.

2. Buna are unique names assumptions—logical assertions that distinct names
(including fluent, action, and object names) are treated as distinct concepts.

3. Bss is a finite set of successor state axioms of the form above.
4. Bap is a finite set of action precondition axioms of the form poss(a, s) ≡

Πa(s), one for each action. Πa must be uniform in s.
5. BS0 is a finite set of first-order sentences defining the initial situation S0.
6. There are three finite sets of fluent names, actions, and objects. All ground

fluents and actions are constructed from these sets. We shall refer to the sets
of ground terms as F , A, and O, and assume that each has an arbitrary
but fixed ordering.

For an arbitrary machine M , we say its language L(M) is some (possibly infi-
nite) set of accepted words w ∈ L(M). We will consider a BAT of the situation
calculus to be one such machine, as well as more conventional machines like
Deterministic Finite-State Automata (DFAs). Both machines depend on a tran-
sition mechanism. DFAs use a function δ to map states and symbols to new
states. The situation calculus analogue is the function do that maps situations
and actions to new situations.

Definition 2. A DFA D is a 5-tuple:

D = 〈Q,Σ, q0, δ, F 〉

where Q is a finite, non-empty set of states, Σ is the input alphabet. The (total)
transition function δ : Q×Σ → Q maps a state and a symbol to a new state. The
system starts in state q0 and transitions according to δ. The set F ⊆ Q identifies
the final (accepting) states of Q. If the system reaches one of these states it may
accept—the current string of symbols is a word in the language—or continue
running to accept a longer string.

The transition function of an automaton encapsulates the pre- and post- con-
ditions of a transition. These are separated in the situation calculus as action

2 See Reiter [5]. We leave the alternative method—progression—for future work.

680 T. Cerexhe and M. Pagnucco

preconditions (poss) and fluent successor state axiom postconditions. It is rel-
evant then to define executable situations as a sequence of actions where one
action’s postconditions are sufficient to guarantee the preconditions of the next:

exec(do(a, s)) ≡ exec(s) ∧ poss(a, s) (exec)

and
B ∪ (exec) |= exec(s)

This is one of Reiter’s definitions of executability. Note that exec(S0) is consid-
ered trivially true, though it is also easily derivable from alternate (equivalent)
definitions [5].

Many automata explicitly define a set of final states. In contrast, the situation
calculus makes no such distinction. To this end, we introduce an artificial finality
condition—a situation s is final iff a distinguished formula, fhalt(s), is true
in that situation. This has applications to planning problems, where the goal
is often specified by a formula goal(s) identifying final states/situations. It is
necessary in this paper for fhalt to be uniform in s. This would restrict goal
formulas to being Markovian.

Finally, we define acceptance as:

Definition 3. A DFA accepts a sequence if the corresponding transitions pro-
duce a final state. A BAT accepts a situation (sequence of actions) if that situ-
ation is executable and satisfies some theory-specific halt (goal) condition.

w ∈ L(DFA) iff δ̂(q0, w) ∈ F

w ∈ E(BAT) iff BAT |= fhalt(d̂o(w, S0)) ∧ exec(d̂o(w, S0))

where δ̂, d̂o represent repeated applications of the corresponding transition
functions.

Informally, L(D) is the set of words that transition to a final state in DFA D.
E(B) is the set of legal, ‘halting’ situations in BAT B—to distinguish it from
logically derivable sentences L in a typical knowledge base.

3 DFA—Literal-Based BAT Equivalence

In this section we prove the formal equivalence between DFAs and the ‘literal-
based’ class of basic action theories. Petrick and Levesque defined literal-based
BATs while establishing knowledge equivalence [4]. The functional form was left
as an exercise and so we provide the following definition:

Definition 4. A literal-based BAT (LB-BAT) is a finite BAT of the above form,
but with restricted use of the situation term in the positive and negative effects
(γ+, γ−) of the successor state axioms:

Executability in the Situation Calculus 681

γ+
F (y, a, s), γ−F (y, a, s)

def
=

k∨

i=1

πi(y, a, s)

where each πi is: πi(y, a, s)
def
= ∃zi . a = βi(zi) ∧ ψi(y, zi, a)∧
P1(zi, s) = c1 ∧ . . . ∧ Pl(zi, s) = cl

where P1, . . . , Pl are fluent literals, c1, . . . , cl are constants, the (possibly empty)
vector of variables zi must be an argument to the action term βi. To maintain the
functional property, we also require that all separate πs are mutually inconsistent.

Informally, SSAs may now only use the situation term to mention a finite con-
junction of fluent literals, or to implement inertia.

Fluent values are typically encapsulated in situations, which may grow arbi-
trarily long. However literal-based BATs have finite domains, so we can define
equivalence classes of situations that represent the finite state space of distinct
fluent values. This formulation is suitable for an automaton.

Definition 5. state is a function from executable situations in BAT B to or-
dered tuples of fluent values:

state(s) =
{ 〈 B |= f(s) 〉f∈F if B |= exec(s)

⊥ otherwise

where F is the finite (ordered) set of unique ground fluents in B. Note that
non-executable situations all map to a distinguished failure state ⊥.

Definition 6. The BAT-state construction takes a literal-based basic action the-
ory B and produces a finite state machine D = 〈Q, q0, Σ, δ, FD〉 where:

Q = {state(s) s is an executable situation} ∪ {⊥} (set of states)
q0 = state(S0) (initial state)
Σ = the set of ground action terms (alphabet)

δ(state(s), a) = state(do(a, s)) (transition function Q×Σ → Q)
δ(⊥, a) = ⊥

FD = {state(s) B |= fhalt(s)} (final states ⊆ Q)

Note also that state maps infinitely-many situations (histories) to finitely-many
‘states’; the domain of each fluent dom(f) is finite, and both literal-based precon-
ditions and successor-state axioms are finite and uniform. The set of states Q in
our DFA is an equivalence class of situations with the same fluent-value bindings.

We illustrate this conversion with an example. Our hero, Maxwell, walks down
a corridor full of doors on his way to work. At the end of the corridor is a phone
booth in which he dials a passcode. Such a procedure may be represented as a
literal-based action theory where we keep walking until we non-deterministically
decide that we have reached the phone, at which point we enter and dial. This
would typically be augmented with sensing actions, though we prefer to save a
discussion of this mechanism for Section 5.

682 T. Cerexhe and M. Pagnucco

actions: {walk, enter, dial}

fluents: {dialled, in booth}

initially: dialled(S0) = F
in booth(S0) = F

termination: fhalt(s) ≡ dialled(s)

preconditions: poss(walk, s) ≡ ¬in booth(s)
poss(enter, s) ≡ ¬in booth(s)
poss(dial, s) ≡ in booth(s)

SSAs: dialled(do(a, s)) = y ≡ (a = dial ∧ y = T) ∨ (dialled(s) = y ∧ a �= dial)
in booth(do(a, s)) = y ≡ (a = enter ∧ y = T) ∨ (in booth(s) = y ∧ a �= enter)

(a) An LB-BAT for ‘corridor world’

q0start booth

⊥

dial

walk

enter

dial

dial

dial

walk, enter

walk, enter

(b) Corresponding DFA

Fig. 1. Corridor World

We can now apply our construction to this action theory. First, our alphabet
is the set of actions Σ = {walk, enter, dial}. Each fluent has a Boolean domain,
so our state-space is:

Q = {〈〉 , 〈in booth〉 , 〈dialled, in booth〉 ,⊥}
For clarity we represent a state as the tuple of true fluents in that state. The
initial situation has both fluents false, that is q0 = 〈〉. Termination is defined as
any states that have dialled true:

FD = {〈dialled, in booth〉}
Finally, the update function maps the following states:

δ(〈〉 , walk) = 〈〉 δ(〈in booth〉 , dial) = 〈dialled, in booth〉
δ(〈〉 , enter) = 〈in booth〉 δ(〈dialled, in booth〉 , dial) = 〈dialled, in booth〉

All other transitions are illegal (violate poss axioms).

Theorem 1. If B is a literal-based BAT and D is the DFA obtained by applying
the BAT-state construction on B, then E(B) = L(D).

We propose a similar construction in the reverse direction:

Definition 7. The fluent construction takes a DFA D and produces a literal-
based BAT B = Σsitcalc ∪ Bss ∪ Bap ∪ Buna ∪ BS0 where:

1. flu : Q→ F maps states to unique fluent names.
2. Σsitcalc ≡ situation calculus foundational axioms.

Executability in the Situation Calculus 683

3. Bss ≡
⋃

f∈flu

SSAf ; the effect axioms are the set of SSAs for each fluent name

in flu.
4. Bap ≡

⋃

a∈ΣD

poss(a, s); the action preconditions are the set of poss axioms

for each action in the DFA alphabet ΣD.
5. poss(a, s) ≡

∨

q

fluq(s) = T where δ(q, a) = ⊥; action a is possible in any

state where it won’t transition to the sink.
6. γ+

f (T, α, s) ≡ γ−f (F, α, s) ≡
∨

q

(α = a∧fluq(s) = T) where f = fluδ(q,a); ac-

tion a makes fluent f true if the current f ′ state (q ⇒ f ′(s)) would transition
to the f state (δ(q, a) ⇒ f(do(a, s))).

7. γ−f (F, α, s) ≡ γ+
f (T, α, s) ≡ dual of γ+

f (F, α, s).
8. BS0 ≡ initial situation. The initial state’s fluent is true: fluq0(S0) = T . All

other fluents are false: f(S0) = F . Also, the initial situation is final iff the
initial state is: fhalt(S0) ≡ q0 ∈ FD.

9. fhalt(s) ≡
∨

q∈FD

fluq(s) = T ; the halt condition holds iff any final state’s

fluent does.

And Buna ensures that the actions a ∈ ΣD for distinct transition labels and the
fluents f ∈ flu ∪ {fhalt} for distinct states are all logically unique.

Note that the preconditions are uniform, the successor state axioms are uniform
and literal-based, and fhalt /∈ flu.

Theorem 2. If D is a DFA and B is the literal-based BAT obtained by applying
the fluent construction on D, then L(D) = E(B).

Corollary 1. DFAs and LB-BATs are equivalent:

L(DFA) = E(LB-BAT).

4 Lattice DFA–Context-Free BAT Equivalence

The ‘context free’ successor state axioms are a weak special case of the literal-
based SSAs. This means that the DFA construction in Definition 6 still applies.
The DFA that we get will be severely restricted though—a visual indication
of the restrictiveness of context-free BATS (CF-BATs). We identify this class
as ‘Lattice’ DFAs because of their high geometric symmetry, and prove their
equivalence to CF-BATs.

Definition 8. A context-free BAT (CF-BAT) is a special case of LB-BAT with
additional restrictions on SSAs—the positive and negative effects (γ+, γ−) can
have no situation dependence:

f(do(a, s)) = y ≡ γ+
f (a, y) ∨ (f(s) = y ∧ ¬∃z . γ−f (a, z))

684 T. Cerexhe and M. Pagnucco

Definition 9. A Lattice DFA is a DFA whose states can be partitioned in one
or more ways such that all reachable transitions satisfy the following conditions:

1. The transitions in a partition wrt an action (an (action, partition) pair)
must be ‘fixed’ or ‘inertial’:
(a) Fixed — all states transition into the same part.
(b) Inertial — no state can transition between parts.

2. If every partition is Inertial wrt action a, then a can only label self-loops.
3. If every partition is Fixed wrt action a, then a must always transition to the

same state.
4. There cannot be more partitions than states.
5. There cannot be more parts in a partition than the number of actions.
6. No two states can appear in the same part across every partition (indistin-

guishable).

All other transitions must enter the inescapable sink state ⊥. Note that Condi-
tions 2 and 3 motivate multiple partitions for most useful Lattice DFAs.

Each partition is a distinct view of the same set of states and represents how
states are distinguishable under action transitions—both as a dimension of sym-
metry in the DFA, and the domain of a fluent in the corresponding CF-BAT.

The following heuristic is useful for categorising (action, partition) pairs:

1. If action a transitions between two distinct parts of partition p, then p must
be Fixed wrt a;

2. Otherwise, if there are transitions starting within two separate parts of par-
tition p, then p must be Inertial wrt a; and,

3. Otherwise, it can be either, subject to Conditions 2+3.

Definition 10. partf takes a state and returns the index of its part along the
f th partition:

partf : Q→ N

Note that the conjunction of part indices across all partitions uniquely defines
the state, q ≡ ∧

f partf (q).

The Lattice DFA is heavily restricted and impractical as a modelling tool, but
we show that it can represent any context-free BAT. Note first that the BAT-
state construction from Definition 6 is sufficient to convert CF-BATs into DFAs
since CF-BATS are a special case of LB-BAT. The partitions of the DFA in
this case correspond directly to the fluents. If you construct a DFA from a
CF-BAT with n fluents, such that states with the same fluent-value all lie on
an (n − 1)-dimensional hyperplane, then you get an n-dimensional lattice. The
distinct parts of each partition (the hyperplanes) represent the domain of the
corresponding fluent. This geometrical interpretation represents the restrictions
that context-free SSAs place on transitions—we can not compile out the fluents,
so instead the transitions exhibit high dimensional symmetry, and the fluents
remain partially represented in the physical construction of the automata.

Executability in the Situation Calculus 685

11
10

1
0start

3

2

5
4

7
6

9

8

at(package)

loaded

at(truck)

Fig. 2. A 3D Lattice DFA

Table 1. The (action, partition) types

partition

loaded at(package) at(truck)

a
c
ti
o
n

dropdepot fixed fixed either

pickup fixed fixed inertial

dropPerth fixed fixed either

drivedepot inertial inertial fixed

drivePerth inertial inertial fixed

loaded 0 1 2 3 4 5 6 7 8 9 10 11

at(package) 0 3 6 9 1 4 7 10 2 5 8 11

at(truck) 3 4 5 9 10 11 0 1 2 6 7 8

drive

pickup

drop

No Yes

depot in-truck Perth

depot Perth

Fig. 3. The partitions of the DFA

We illustrate with a reduced Depot Problem. The part labels in Figure 3 (eg.
Perth under at(truck)) indicate that the start state (0) has the truck at Perth
and the package unloaded, at the depot. Note that all drive-transitions stay
in their original part in the loaded and at(package) partitions and hence are
inertial—the drive action does not affect these fluents. Conversely, the two drop
actions may be either inertial or fixed on the at(truck) partition as the truck’s
location does not change (inertial), but may equivalently be set by the action
effects (fixed).

Theorem 3. If B is a context-free BAT and D is the DFA obtained by applying
BAT-state construction on B, then D will be a Lattice DFA and L(D) = E(B).

Definition 11. The Lattice-BAT construction takes a Lattice DFA D and pro-
duces a context-free BAT B such that:

1. actions = ΣB

2. fluents = {fi 0 ≤ i < |partitions of D|}
3. poss(a, s) ≡

∨

q∈Q

∧

i

fi(s) = partfi(q) ∧ δ(q, a) = ⊥

4. fi(do(a, s)) = y ≡ γ+
fi

(a, y) ∨ (fi(s) = y ∧ ¬∃z . γ−fi
(a, z))

where γ+
fi

(a, y) ≡ ∃q . δ(q, a) = q ∧ δ(q, a) = ⊥ ∧ partfi(δ(q, a)) = y

γ−fi
(a, y) ≡ dual of γ+

fi
if it exists

686 T. Cerexhe and M. Pagnucco

5. DS0 ≡ {fi(S0) = partfi (q0) 0 ≤ i < |partitions of D|}
6. fhalt(s) ≡

∨

q∈FD

∧

fi

fi(S0) = partfi(q).

Note that the γ+ construction only exists if the transition has a change of state —
a Fixed transition. Inertial transitions are handled by the absence of γ+ and γ−

axioms for that action. There can be at most one γ+ and one γ− for an action
because the arguments do not provide greater granularity. This is why each
(action, partition) pair must satisfy either the Fixed or Inertial requirements.

Theorem 4. Every Lattice DFA D can be converted to an equivalent context-
free BAT B such that L(D) = E(B).

Corollary 2. Lattice DFAs and CF-BATs are equivalent:

L(Lattice DFA) = E(CF-BAT).

5 Conclusion

The situation calculus contains other types of actions beside the ‘primitive’ ac-
tions used above. Sensing actions update fluents directly based on a sensed value,
rather than by an effect axiom. Exogenous actions are actions performed exter-
nally, but whose effects must be detected so that the internal model can remain
consistent with the state of the actual world.

These are technically extra-automata features, however, the situation calculus
model is from ‘god’s eye’ or meta view—we assume the logical state mirrors the
world it models. In this light exogenous actions are simply regular actions fired by
a different hand—a distinction that is irrelevant from an automaton perspective.
Similarly, sensing actions can be modeled by non-deterministically selecting a
sensing action that returns the correct result. Introducing Lin’s indeterminate
effects axioms [2] to the situation calculus should facilitate this aspect.

We also intend to investigate the application of these results to planning
problems. We believe that analysing special cases like the Lattice DFA will help
identify tractable domains.

References

1. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic
programming language for dynamic domains. J. Log. Program. 31(1-3), 59–83 (1997)

2. Lin, F.: Embracing causality in specifying the indeterminate effects of actions. In:
Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI
1996, vol. 1, pp. 670–676. AAAI Press (1996)

3. Lötzsch, M., Bach, J., Burkhard, H.-D., Jüngel, M.: Designing Agent Behavior
with the Extensible Agent Behavior Specification Language XABSL. In: Polani,
D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI),
vol. 3020, pp. 114–124. Springer, Heidelberg (2004)

4. Petrick, R.P.A., Levesque, H.J.: Knowledge equivalence in combined action theories.
In: KR 2002, pp. 303–314 (2002)

5. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. illustrated edn. The MIT Press (September 2001)

	Executability in the Situation Calculus
	Introduction
	Background
	DFA—Literal-Based BAT Equivalence
	Lattice DFA–Context-Free BAT Equivalence
	Conclusion
	References

