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Abstract. This paper investigates the effects of applying different well-
known static and dynamic neighbourhood topologies on the efficiency
and effectiveness of a particle swarm optimisation-based edge detection
algorithm. Our experiments show that the use of different topologies in a
PSO-based edge detection algorithm does not have any significant effect
on the accuracy of the algorithm for noisy images in most cases. That is
in contrast to many reported results in the literature which claim that
the selection of the neighbourhood topology affects the robustness of the
algorithm to premature convergence and its accuracy. However, the fully
connected topology in which all particles are connected to each other and
exchange information performs more efficiently than other topologies in
the PSO-based based edge detector.

Keywords: particle swarm optimisation, edge detection, noisy images,
neighbourhood topology.

1 Introduction

Edges as low level features in an image contain important information that are
utilised in image analysis and computer vision systems. Many algorithms have
been proposed to detect edges for different applications using various different
paradigms such as curve fitting [4], optimization of a criterion [3], statistical test-
ing [9] and soft computing [2] to detect edges. The selection of an edge detection
algorithm for a particular application depends on its performance in variant en-
vironmental conditions (such as illumination and noise) and the requirements of
the system of interest (such as real time ability, continuity of edges, thinness of
edges and scale insensitivity).

PSO as a meta-heuristic method has been used to successfully solve global
optimisation problems and was introduced by Kennedy and Eberhart in 1995
[7]. The main general advantages of PSO in comparison with other heuris-
tic methods such as genetic algorithms, are ease of its implementation, fewer
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operators, a limited memory for each particle and high speed of convergence
[1]. As PSO has a high capability to optimise noisy functions [12], it has been
successfully applied to many problems in noisy environments, such as image seg-
mentation and vision tracking [20].

We previously applied two PSO-based algorithms with different encoding
schemes and fitness functions to noisy binary images containing simple shapes,
such as rectangles, squares, circles, crosses and triangles [16]. Their performances
were acceptable in the binary images but they were inefficient and did not op-
erate well on non-binary images. We revised our PSO-based algorithm through
developing a new encoding scheme and fitness function and examined it on real
images corrupted by two different types of noise (Gaussian and impulsive) [19].
The main idea in this algorithm was to maximise interset distance between the
average pixel intensities of two regions separated by a continuous edge repre-
sented by a particle and minimise intraset distances within both regions. Our
experiments showed that this version could outperform the Canny algorithm as
a Gaussian filter-based algorithm especially in the images with high levels of
noise. However, it produced jagged edges and its overall performance was worse
than robust-rank order (RRO) algorithm as a statistical-based edge detection
algorithm and was slower than the Canny and RRO algorithms. We changed
the fitness function of our PSO-based algorithm through considering a larger
area around each single pixel on a continuous edge than the previous version of
our algorithm and introducing a curvature cost of a continuous edge to reduce
the effect of producing jagged edges [19]. The experiments showed that the new
revised version could detect edges more accurate, more continuous, smoother
than the older version introduced in [17], the Canny and RRO algorithms. But,
the new algorithm was still slower than Canny and RRO. We introduced a dis-
crete constrained PSO-based algorithm with two constraints and used a penal-
ising method to handle these constraints to detect edges [18]. Our experiments
showed that the new algorithm is faster than the algorithm presented in [19]
and there was no significant difference between the localisation accuracy of the
algorithms. In all experiments, we have utilised the fully connected graph as a
neighbourhood structure in our PSO-based edge detection algorithm and never
investigated the influence of the chosen topology on the performance of the
algorithm.

In many cases, researchers use the same social topologies (fully connected
and ring graph) in the PSO algorithm to solve an optimisation problem, but
there is a strong relationship between the selection of the social topology and
the robustness of the algorithm to premature convergence [5]. Therefore it is
needed to investigate which topology is more efficient and more accurate for
the PSO-based edge detection algorithm and how we can improve accuracy
or speed of the algorithm. In this paper, the influence of the chosen topology
on the accuracy and speed of the PSO-based edge detection algorithm will be
investigated.
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2 Background

2.1 Particle Swarm Optimisation

PSO as a branch of swarm intelligence was inspired by the social behavior of
animals and simulated a simplified social model such as flocking of birds and
schooling of fish.

In PSO, there is a population of m particles. The position of ith particle in
an n-dimensional search space at time t is represented as the vector Xi(t) =
(xi1(t), xi2(t), ..., xin(t)). The position of the particle is influenced by its own
experience (particle and memory influence) and that of its neighbours (swarm
influence). Each particle of the population has a velocity represented by V i(t)
that is used to update Xi(t) at each iteration of PSO as in equation (1).

X i(t + 1) = X i(t) + V i(t + 1). (1)

The velocity is updated according to three components: current motion influence,
particle memory influence, and swarm influence:

V i(t + 1) = wV i(t) + C1r1(Xpbesti − X i(t)) + C2r2(X leader − X i(t)) (2)

where r1 and r2 are uniform random variables between 0 and 1; w denotes the
inertia weight that controls the impact of the previous velocity; C1 and C2 are
the self and swarm confidence learning factors respectively; Xpbest represents
the personal best position of each particle so far; and X leader is the position of
the leader which is the particle that is defined by a neighbourhood topology and
guides other particles toward better regions of the search space.

2.2 Neighbourhood Topologies

An important feature of the PSO algorithm is the topology which defines how
particles are connected to each other as an information sharing or exchang-
ing mechanism [14]. A topology defines the social structure among a swarm’s
particles. The topology specifies the leader of each particle based on a typical
neighbourhood graph. There are several typical neighbourhood topologies that
have been proposed in the literature as follows:

– Fully connected graph (FCG): In this case, each particle is fully con-
nected to the other particles (the opposite of the empty topology) [7]. In this
topology, each particle is influenced by the best particle of the entire swarm
(gbest), as well as its own past experience (pbest). In this case, the leader is
global best particle (leader = gbest in equation (2)). This topology is shown
in Figure 1(a).

– Local best graph (LBG): There are k immediate neighbours for each par-
ticle in the graph [7]. It means each particle has a local best particle among k
particles within its neighbourhood. In this topology, each particle is influenced
by a leader in its local neighbourhood plus its own past experience (pbest). In
this case, the leader is called the local best (lbest) particle. This topology is
shown in Figure 1(b). This topology does not need to be symmetrical.
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– Ring topology (RT): This topology is a special representation of the local
best topology in which k = 2 [7]. It means, each particle has just two particles
in its neighbourhood as shown in Figure 1(c).

– Star graph (SG): In this case, one particle is just connected to all other par-
ticles [14] as shown in Figure 1(d). It is called the focal particle. In this topol-
ogy, particles are isolated from each other and they communicate through
the focal particle. This topology is sometime called the wheel topology. In
this topology, leader = focal in equation (2).

– Tree-based graph (TBG): each particle corresponds to one node in a tree
[14]. An example of this topology is shown in Figure 1(e). In this case, the
leader of each particle is its parent in the tree. Whenever each child particle
finds a solution better than the best particle found by its parent, the child
and parent particle are exchanged. In this topology, leader = pbestparent in
equation (2).

– The von Neumann topology (VNT): in this case, each particle has four
neighbourswithin its neighbourhoodandexchanges the informationwith them
[14]. These particles are usually located in its four different directions. An ex-
ample of this topology in 2-dimensional search space is shown in Figure 1(f).

In some papers (e.g., [10], [5]), it has been indicated that if the neighbourhood
size of a particle increases, the performance of the swarm may deteriorate. On
the other hand, if it decreases, the run time of the algorithm may be increased.
In [11], it has been shown that there is a strong relation between the chosen
topology for the PSO algorithm and its robustness to premature convergence
to optimise some benchmark fitness functions. It has been pointed out that
the main cause of premature convergence in the PSO algorithm is the kind of
topology which is chosen for it [5]. In many applications of PSO algorithm, the
fully connected or local best graph is mostly utilised.

2.3 PSO-Based Edge Detection Algorithm

The most important goals of the PSO-based edge detection algorithm is to detect
continuous edges in noisy images. Therefore, to reduce broken edges, we proposed
an encoding scheme for the particles where each particle represents the global
structure of a continuous edge [19]. This edge partitions an area of an image
into two regions, the light and dark regions as can be seen in Figure 2(b), such
that it maximises interset distance between the average pixel intensities of two
regions and minimises intraset distances within both regions.

A continuous edge is encoded into a particle as 〈〈o1, o2〉, 〈m1, m2, . . . , mmax/2〉
, 〈mmax/2+1, . . . , mmax〉〉, where max + 1 is the number of pixels on the edge.
The encoding scheme has three parts: the offsets of the closest edge to each pixel
of the image (〈o1, o2〉) and two sets of movement direction sequences from the
pixel (〈m1, m2, . . . , mmax/2〉 and 〈mmax/2+1, mmax/2+2, . . . , mmax〉). The values
of two offsets (o1 and o2) are integers ranging from 0 to SqrSize − 1 and mi

ranging from 0 to 7. Here, mi shows the movement direction from a pixel to one of
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Some well-known topologies used in PSO: (a) FCG (b) LBG, (c) RT, (d) ST,
(e) TBG and (f) VNT

the eight possible adjacent pixels in its neighbourhood along the continuous edge
as shown in Figure 2(a). For example, the particle encoding for the continuous
edge in Figure 2(b) can be seen in Figure 2(c).

(a) (b)

3 3 1 1 0 1 1 4 4 5 5 4
(c)

(d)

Fig. 2. The particle encoding scheme [18]: (a) eight movement directions from a pixel
P ; (b) an example of a curve with two regions; (c) the particle representing the curve
with max = 10; (d) eight moving ways from pixel P to its neighbours
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For evaluation of each particle at each generation of the PSO algorithm, at the
first step, the intraset and interset distances of each single pixel on the continuous
edge represented by the particle are calculated by the equations proposed in [18]
according to eight moving ways from the pixel to its neighbours (see Figure
2(d)). Then the possibility score (PScore) and curvature cost factor (CCost) of
the curve fitting on a continuous edge are computed as the proposed equations
in [18]. The score in conjunction with the curvature cost factor as equation (3)
is used for evaluation of each particle [18],

Fitness(C) = PScore(C) − CCost(C) (3)

subject to two constraints:

Cross(C) = 0 and PScore(C) > HP

where C is the curve represented by a particle, Cross(C) shows how many times
the curve C crosses itself and HP is a threshold value which is defined by the
user. The curves, represented by the particles, may sometimes intersect them-
selves, so we set a constraint Cross(C) = 0. On the other hand, PScore(C)
should be larger than HP to avoid false alarms. Therefore, PScore(C) > HP as
another constraint should be satisfied in the PSO algorithm. We proposed a non-
stationary and multi-stage penalising method to handle these two constraints in
[18]. In all experiments that we have arranged so far, the fully connected topology
has been used in the PSO-based algorithm. Therefore, to evaluate the influence
of using different topologies on the accuracy of the algorithm, we change the
velocity equation in [18] as the equation (2) in order to specify the leader’s posi-
tion according to the chosen topology which defines the neighborhood structure
of each particle in the PSO algorithm.

3 Experiment Design

We will compare the performance of PSO with six topologies for edge detection
in noisy environment. We will describe the image set first and then the perfor-
mance measure used in this paper.

To investigate the influence of chosen topology on the efficiency and effective-
ness of the algorithms, we apply the algorithm on a set of benchmark images
including four real images (Saturn, multi-cube, wall and road). The real images
and their ground truth edge maps are available from [6]. The size of each image
is 256 × 256 pixels and their resolution is 8 bits per pixel. These images are
shown in Figure 3. All images are corrupted by two different types of noise. The
noise probability for the impulsive noise ranges from 0.1 to 0.5 with a step size
of 0.1. The peak signal-to-noise ratio (PSNR) value ranges from 0 to 22dB with
a step size of 4dB for the Gaussian noise.

To compare the accuracy of the PSO-based edge detection algorithm with
different described neighbourhood topologies, Pratt’s Figure of Merit (PFOM)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)–(h) four real image from the UCO university and (e)–(h) their manual
ground truth images [6]

is used as a quantitative measure. This measure is commonly utilised to com-
pare the localisation accuracy of edge detection algorithms [13]. This measure is
defined by equation (4),

RPFOM =
1

max(II , IA)

IA∑

i=1

1
1 + βd(i)2

(4)

where II and IA indicate the number of ideal and actual edge points in the
ground truth and the generated edge map images, d(i) is the distance between
the pixel i in the generated edge map and the nearest ideal edge point in the
ideal edge map, and β is a constant scale factor which is typically set to 1

9 . The
ideal value of RPFOM is 1.0 and the minimum could be very small. A larger
value indicates stronger performance.

We use the values w = 0.7298, C1 = 1.4962, C2 = 1.4962 for PSO parameters
in equation (2). The population size was set at 50 and the maximum number of
iterations was 200. These values were chosen based on common settings [8]. In
the PSO-based edge detection algorithm, the minimum length of a continuous
edge, max+1 was set at 21, SqrSize at 4, and HP at 0.5 [18]. For the tree-based
topology, the branching factor was set at 3 [15].

4 Results

Table 1 shows PFOM estimated from the resulting images after applying the
the PSO-based algorithm with different topologies. G6, G10, G14, G18 and G22
represent PSNR from 6dB to 22dB for Gaussian noise and N0.1, N0.2, N0.3,
N0.4 and N0.5 represent noise probability from 0.1 to 0.5 for impulsive noise.
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The columns FCG, LBG, RT, SG, TBG and VNT show the 95% confidence
intervals for the localisation accuracy of the PSO-based algorithm with the fully
connected, local best, ring, star, tree-based and von Neoman topologies after
30 runs for each image in each noise level. The Student two paired t-test was
used to compare the pairwise accuracy means of the topologies. Alternative
hypothesis was inequality of the means. The statistical analysis showed that
the null hypothesis was accepted in most cases, i.e, there is often no significant
difference between their means. This suggests that the topology does not have
any influence on the accuracy of the algorithm.

Table 1. Comparison of accuracy of the PSO-based algorithm with different topologies

Image
Noise 95% Confidence Interval for Accuracy
Level FCG LBG RT SG TBG VNT

Sat G22 0.7728±0.00320.7688±0.00330.7684±0.00370.7649±0.00590.7568±0.00480.7533±0.0032
Sat G18 0.8534±0.00260.8582±0.00220.8595±0.00180.8547±0.00220.8561±0.00400.8584±0.0021
Sat G14 0.7846±0.00280.7867±0.00560.7924±0.00750.7953±0.00750.7918±0.00990.7976±0.0094
Sat G10 0.8832±0.00320.8817±0.00230.8871±0.00730.8899±0.00500.8836±0.00710.8802±0.0068
Sat G6 0.7674±0.00280.7668±0.00330.7630±0.00500.7660±0.00650.7707±0.00710.7670±0.0074

Cube G22 0.6182±0.00320.6178±0.00200.6263±0.00080.6287±0.00130.6270±0.00110.6229±0.0011
Cube G18 0.6466±0.00250.6399±0.00180.6359±0.00110.6384±0.00810.6414±0.00030.6440±0.0019
Cube G14 0.5166±0.00300.5145±0.00180.5152±0.00240.5099±0.00860.5121±0.00420.5089±0.0062
Cube G10 0.6333±0.00270.6316±0.00530.6346±0.00440.6344±0.00530.6368±0.00540.6301±0.0054
Cube G6 0.5892±0.00270.5851±0.00360.5860±0.00150.5819±0.00400.5774±0.00160.5767±0.0014
Wall G22 0.7466±0.00290.7585±0.00510.7602±0.00350.7453±0.00410.7659±0.00340.7649±0.0016
Wall G18 0.7470±0.00300.7504±0.00330.7495±0.00080.7367±0.00080.7372±0.00940.7463±0.0034
Wall G14 0.7913±0.00340.7933±0.00390.7977±0.00540.7922±0.00260.7939±0.00310.7939±0.0021
Wall G10 0.8063±0.00300.8115±0.00000.8034±0.00030.7953±0.00020.7894±0.00060.7957±0.0004
Wall G6 0.7805±0.00280.7820±0.00390.7756±0.00090.7796±0.00190.7772±0.00480.7789±0.0037
Street G22 0.8091±0.00270.8086±0.00340.8046±0.00130.8101±0.00130.8208±0.00320.8158±0.0027
Street G18 0.7440±0.00310.7510±0.00360.7515±0.00140.7442±0.00360.7607±0.00340.7514±0.0083
Street G14 0.7468±0.00290.7480±0.00380.7562±0.00520.7524±0.00750.7532±0.00810.7537±0.0075
Street G10 0.6412±0.00320.6388±0.00290.6318±0.00370.6337±0.00470.6352±0.00260.6347±0.0092
Street G6 0.7502±0.00350.7539±0.00210.7504±0.00350.7448±0.00620.7353±0.00730.7314±0.0085
Sat N0.1 0.4218±0.00270.4209±0.00630.4305±0.00450.4289±0.00730.4215±0.00650.4149±0.0080
Sat N0.2 0.4701±0.00270.4693±0.00270.4677±0.00260.4656±0.00130.4712±0.00260.4746±0.0035
Sat N0.3 0.4836±0.00290.4913±0.00280.4918±0.00300.4866±0.00380.4845±0.00210.4885±0.0055
Sat N0.4 0.1912±0.00310.1886±0.00340.1873±0.00260.1934±0.00280.1932±0.00180.1933±0.0025
Sat N0.5 0.1925±0.00270.1904±0.00130.1897±0.00050.1964±0.00260.1997±0.00120.2002±0.0018

Cube N0.1 0.5698±0.00300.5707±0.00230.5706±0.00160.5699±0.00300.5700±0.00490.5685±0.0064
Cube N0.2 0.5356±0.00290.5417±0.00220.5383±0.00230.5263±0.00940.5289±0.00020.5267±0.0011
Cube N0.3 0.5344±0.00290.5463±0.00250.5515±0.00320.5457±0.00160.5369±0.00820.5427±0.0094
Cube N0.4 0.4066±0.00250.4077±0.00100.4045±0.00220.4024±0.00450.3967±0.00240.3995±0.0027
Cube N0.5 0.2914±0.00310.3035±0.00410.3028±0.00720.2909±0.00810.3061±0.00750.3012±0.0098
Wall N0.1 0.4772±0.00250.4788±0.00400.4736±0.00750.4749±0.00460.4773±0.00090.4834±0.0014
Wall N0.2 0.4887±0.00280.4922±0.00210.5005±0.00640.4881±0.00690.5002±0.00620.4964±0.0062
Wall N0.3 0.5822±0.00300.5841±0.00270.5834±0.00370.5740±0.00400.5735±0.00950.5777±0.0065
Wall N0.4 0.4400±0.00270.4389±0.00300.4322±0.00280.4374±0.00360.4431±0.00170.4433±0.0037
Wall N0.5 0.2564±0.00300.2578±0.00070.2579±0.00330.2568±0.00220.2585±0.00060.2530±0.0017
Street N0.1 0.5421±0.00300.5414±0.00190.5563±0.00200.5548±0.00030.5538±0.00050.5438±0.0010
Street N0.2 0.3814±0.00300.3835±0.00200.3831±0.00260.3900±0.00280.3908±0.00850.3792±0.0039
Street N0.3 0.4565±0.00280.4582±0.00390.4561±0.00230.4595±0.00100.4491±0.00010.4468±0.0046
Street N0.4 0.4133±0.00220.4082±0.00170.4139±0.00270.4067±0.00350.3983±0.00020.3989±0.0001
Street N0.5 0.2755±0.00330.2689±0.00460.2713±0.00460.2731±0.00530.2764±0.00370.2759±0.0035
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Table 2 gives the 95% confidence intervals for the number of fitness function
evaluations of the PSO-based algorithm with the described topologies after 30
runs for each image at each noise level. Statistic analysis showed that the number
of fitness function evaluations of the algorithm with the fully connected graph is
less than that of the PSO-based algorithm with the other topologies. This implies
that the algorithm with the fully connected graph is faster than the algorithm
with the other topologies. However, the accuracy of the algorithm with the fully
connected graph topology does not have any significant difference with those of
the algorithm with the other topologies. This suggests that the fully connected
graph is the best topology for the PSO-based algorithm in terms of efficiency.

Table 2. Comparison of the number of the fitness function evaluations for PSO with
different topologies

ImageNoise Level
Number of Fitness Function Evaluation

FCG LBG RT SG TBG VNT
Sat N0.1 354948±589 356011±571 358978±582 359835±585 358119±634 356935±654
Sat N0.2 385045±1069386010±1056389105±1001389909±1143388017±969 387110±1055
Sat G22 342871±414 343867±426 346829±476 347672±373 345831±412 344754±411
Sat G14 367991±733 368995±746 372131±666 372950±651 371062±834 369955±736

Cube N0.1 345031±361 346036±311 348974±323 350176±448 347902±393 347018±415
Cube N0.2 374948±589 375972±582 379052±475 380050±701 377892±591 376899±639
Cube G22 342654±297 343700±335 346492±353 347747±319 345544±245 344688±335
Cube G14 362553±519 363527±497 366575±432 367584±522 365590±474 364609±508
Wall N0.1 365010±1239365996±1277369095±1236370103±1249368229±1214366920±1232
Wall N0.2 394998±1472395949±1451399121±1473400005±1493397851±1515396965±1476
Wall G22 351359±918 352454±925 355419±817 356295±888 354417±994 353319±919
Wall G14 378192±1319379201±1338382203±1383383247±1327381161±1372380146±1317
Street N0.1 294990±503 295954±477 299021±559 300025±541 297816±473 297039±500
Street N0.2 324903±693 325845±680 328845±741 329780±801 327720±626 326989±753
Street G22 271502±376 272557±382 275574±393 276416±359 274472±402 273500±375
Street G14 310648±710 311589±662 314668±735 315693±728 313716±645 312486±709

5 Conclusions

For the PSO-based edge detection algorithm with two different constraints, it was
demonstrated that the fully connected topology is the superior to the other de-
scribed topologies in terms of efficiency. However the accuracy of the PSO-based
edge detection algorithms was not influenced by the use of different topologies
and there is no significant difference among their accuracies. These results are in
contrast to the comments in the literature that the fully connected neighbour-
hood topology may converge to a local optima since all particles are connected
together and they quickly communicate and share acquired information in the
swarm. The results also showed that if the size of the particle neighbourhood is
increased in the PSO-based edge detection algorithm, the algorithm speeds up
meanwhile the accuracy of the algorithm is not significantly changed.
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