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Abstract. This paper presents a classifier which uses a tree-based Neu-
ral Network (NN), and uses both, unlabeled and labeled instances. First,
we learn the structure of the data distribution in an unsupervised man-
ner. After convergence, and once labeled data become available, our
strategy tags each of the clusters according to the evidence provided
by the instances. Unlike other neighborhood-based schemes, our clas-
sifier uses only a small set of representatives whose cardinality can be
much smaller than that of the input set. Our experiments show that, on
average, the accuracy of such classifier is reasonably comparable to those
obtained by some of the state-of-the-art classification schemes that only
use labeled instances during the training phase. The experiments also
show that improved levels of accuracy can be obtained by imposing trees
with a larger number of nodes.

Keywords: Hierarchical SOM, Topology-Based Self-Organization, Pat-
tern Recognition, Semi-Supervised Learning.

1 Introduction

The literature includes scores of algorithms which can achieve supervised Pattern
Recognition (PR) [5]. Such schemes assume the full specification of the identity
of each training instance. In the unsupervised model [10], the class labels of
the instances are assumed to be unknown. Rather, the algorithm attempts to
infer the distinct group of items, a process which might be time consuming,
especially for large datasets. We propose using the Tree-based Topology Oriented
SOM (TTOSOM) [1] for classification, attempting to bridge the two paradigms
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by following the so-called semi-supervised approach, explained by Zhu [15]. Using
an unsupervised approach, we will first train a TTOSOM in which the neural
tree mimics the properties of the input set. Subsequently, we assign a class label
to every single node in the NN1 by using a voting scheme.

On receiving the testing data, one determines the closest neuron to the testing
sample and assigns the sample to the corresponding class.

Once the TTOSOM has been computed, the complexity of the testing is linear,
not in cardinality of the training set, but in the size of the neural tree.

Such a nearest-neighbor type testing is similar to the ones used by prototype
reduction schemes [13]. However, in our case, the prototypes are not unrelated
to each other. Rather, they are constrained by the tree structure.

We cannot expect an accuracy greater than that which a true nearest neighbor
classifier yields, because we could be only using a small set (e.g., 25 prototypes)
instead of the entire set, which could consist of thousands of points. Further,
by starving the classifier of information of the class labels, one can expect the
accuracy to be even less. What is astonishing, however, is the fact that our
“semi-supervised” TTOSOM-based classifier achieves an accuracy which is only
marginally less than state-of-the-art supervised classifiers reported.

The remainder of the paper is organized as follows: We first summarize the
TTOSOM. Subsequently, we present the details of the design and implementa-
tion of our TTOSOM-based classifier. Thereafter, we provide the experimental
results, and finally, we conclude the paper with a discussion of the results of our
study.

2 The Tree-Based Topology Oriented SOM

The authors of [1] presented the Tree-based Topology Oriented SOM (TTOSOM),
a technique by which the user can represent data points using prototypes, both
with respect to the underlying distribution and an arbitrary tree-like topology.
Since the topology can be fairly arbitrary, the TTOSOM defines a Bubble of
Activity (BoA) different from the ones defined in the prior literature, both struc-
turally and conceptually. As we can see, the map learned as a consequence of the
training process is able to infer both the distribution and, simultaneously, the
structured topology of the data. This was verified by extensive experiments. The
strategy proposed reduces to the traditional 1-dimensional SOM when the tree
is a linear sequence of nodes. In other words, the traditional SOM is a special
case of the family of ANNs proposed in [1].

Acquiring information about a set of stimuli in an unsupervised manner usu-
ally demands the deduction of its structure. In general, the topology employed
by any ANN possessing this ability has an important impact on the manner
by which it will “absorb” and display the properties of the input set. Consider
the following example: A user may want to devise an algorithm that is capa-
ble of learning a triangle-shaped distribution as the one depicted in Figure 1.
1 This can be done in numerous ways, but we have chosen to do it using a simplistic

Euclidean criterion.
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The SOM tries to achieve this by defining an underlying grid-based topology
and to fit the grid within the overall shape, as shown in Figure 1a (duplicated
from [12]). However, according to the authors of [1], a grid-like topology does
not naturally fit a triangular-shaped distribution, and thus, one experiences a
deformation of the original lattice during the modeling phase. As opposed to
this, Figure 1b, shows the result of applying the TTOSOM. As the reader can
observe from Figure 1b, a 3-ary tree seems to be a far more superior choice for
representing the particular shape in question.

(a) (b)

Fig. 1. How a triangle-shaped distribution is learned through unsupervised learning.
(a) The grid learned by the SOM. (b) The tree learned by the TTOSOM.

On closer inspection, Figure 1b depicts how the complete tree fills in the
triangle formed by the set of stimuli, and further, seems to do it uniformly. The
final position of the nodes of the tree suggests that the underlying structure of
the data distribution corresponds to the triangle. Additionally, the root of the
tree is placed roughly in the center of mass of the triangle. It is also interesting
to note that each of the three main branches of the tree, cover the areas directed
towards a vertex of the triangle respectively, and their sub-branches fill in the
surrounding space around them in a recursive manner, which the authors of [1]
identify as being a holograph-like behavior. The results of [1] also showed how
the TTOSOM can be used to obtain the skeleton structure of an image being
examined, and its Pattern Recognition (PR) capabilities.

3 The TTOSOM-Based Classifier

Zhu, in [15], proposed the concept that clustering algorithms could be employed
to perform pattern classification. As per his solution methodology, one alter-
native is to perform classification by applying the so-called Cluster-then-Label
method. Prior research to the latter approach includes [3,4,9], among others.
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Given a clustering algorithm AC , a set of labeled instances XL, a set of unla-
beled instances XU , and a supervised learning algorithm AS , the Cluster-then-
Label method works as follows: First, we identify the clusters of the input man-
ifold using the clustering algorithm AC . Secondly, we determine which of the
labeled samples fall in each cluster. For each cluster we determine a decision
boundary based on the supervised algorithm AS , and the labeled samples as-
signed to that cluster, which, in turn, allows the prediction of the label of every
cluster. Finally, each uncategorized item is labeled according to the predicted
class of the cluster in which it is contained.

According to the author of [15], the performance of this approach is dependent
on the capabilities of the clustering algorithm to mimic the properties of the
original data distribution.

Our aim is to devise a classifier that works in 2 stages. First, we learn the
stochastic properties of the data in an unsupervised manner. Secondly, we use
some labeled items to tag the decision regions created previously. The resultant
TTOSOM-based classifier is described in Algorithm 1.

In order to learn the decision boundaries, the TTOSOM algorithm is employed
to train a tree structure so as to mimic the properties of the distribution of data
points of all the classes, which is done without the necessity of providing the
actual class labels of the items. This corresponds to line 1 of Algorithm 1. The
output of this initial phase is a TTOSOM tree structure, where each of the neural
nodes are optimally placed in the feature space so as to glean the properties of
the data distribution. Our hypothesis is that these neurons represent regions of
the hyper-space belonging to the same taxonomy, whose label is unknown. The
problem then is to accurately guess the actual label of that taxonomy.

In the subsequent phase (see line 2 of Algorithm 1), our classifier determines
which subset of the labeled instances are represented by each neuron. In an
ideal scenario, where a neuron is the Best Matching Unit (BMU) of instances
belonging to the same category, the decision of tagging the unlabeled instances
falling into the region will be trivial. Unfortunately, as the authors of [3] point
out, the latter does not occur necessarily. For this reason a general mechanism
is required which permits the a posterior decision about the class to be assigned
to each neuron. We thus maintain a statistical record of the number of instances
belonging to each category that fall in a particular region where a neuron is the
BMU.

The next phase (see line 3 of Algorithm 1), consists of a supervised phase
in which class labels are assigned to each neuron in the tree. From a statistical
perspective, when the functions that dictate the probability of finding an item
in a certain region of the hyperspace are known, the problem of deciding the
category of a particular sample in the area can be optimally determined by the
function which maximizes its probability where the query item is positioned.
However, as per our problem statement, these probability density functions are
not known, and so if one employs an approach like the one described above, we
must have an “approximation of sorts” of such functions. Fortunately, there is
a simple way to have a rough estimation of the probability functions, i.e., by
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using the information provided by the labeled training set. Each neuron in the
tree is thus assigned a label based on the k-Nearest Neighbor (k-NN) rule [5].
On closer inspection, the label of each neuron will be the one which occurs more
frequently among the k nearest samples, where k is the number of data points
for which the particular neuron is the BMU.

Algorithm 1. TTOSOM-Build-Classifier(XU,XL)
Input:

i) XU , the set of unlabeled instances.

ii) XL, the set of labeled instances.
Output:

i) A set of labels YU of the unlabeled samples XU .
Method:
1: Train a TTOSOM tree using XU ∪ XL.
2: Determine the subset X i

L ∈ XL for which the neuron i is the BMU.
3: Label each neuron using X i

L and the k-nearest neighbors rule, where k = |X i
L|.

4: Label each sample in XU as per the label of its respective BMU.
End Algorithm

The final step (line 4 of Algorithm 1) consists in predicting the class label
of each of the unlabeled instances. In our method, this is done by taking a
particular instance referred to as the “query” instance and finding its, BMU,
i.e., the closest neuron in the feature space, which is basically the notion of a
Vector Quantization (VQ) query. The class label of the query instance will be
same as the class label of the neuron which is “representing” it. Given the nature
of the TTOSOM, some of the neurons act as a “joint” within the tree, reflecting
the concentration of other smaller clusters in its vicinity. It is likely, that these
joints may not represent any sample in particular, and therefore, one needs an
additional assumption in order to define its class label. In our case, we have
simply decided to exclude them from the competitive learning process. In that
sense, the search for the BMU in the classifier is slightly different from the one
utilized by the TTOSOM (and inherited from the SOM). In this case, the label
of the neuron is examined, and when it is undefined, the respective neuron is
excluded from the “competition” process, which is a phenomenon that we call
supervised BMU search.

4 Experimental Setup

The Classifiers: The classifiers considered in this study are 5 supervised classi-
fiers, namely, Bayesian Network (BN), Näıve Bayes (NB), C4.5, k-NN and LVQ1,
and 2 “semi-supervised” classifiers, namely, the TTOSOM and the SOM. The
reader may consult [5] for a general overview of these schemes.

Performance Metrics for Comparing Classifiers: In this study, we shall
utilize the most simple and widely-used performance metric, i.e., the accuracy of
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the classifier [6]. Even though the accuracy measure is, in many contexts, inade-
quate, our experience is that the inferences gleaned from using it are identical to
those obtained by using a more elaborate measure such as the Area Under the
ROC Curve (AUC). For a comprehensive examination of metrics for quantifying
the quality of a classifier, the interested reader is requested to consult [2,14].

Stochastic Sampling: In this study, we use the technique referred to as “Strati-
fied 10-fold cross-validation”. Here, the training samples are roughly divided into
10 equal partitions. Each fold is further used for testing the classifier, while the
remainder 9 are employed for training. The process is then repeated for each
of the folds. The term stratified, comes from the statistical concept known as
“stratified sampling”, which is a sampling method that draws items from the
different categories so as to obtain relatively homogeneous subgroups.

The Datasets: To test the ability of the TTOSOM for classifying items be-
longing to the real world domain, we have 6 datasets from the UCI Machine
Learning repository [8]. These datasets are Iris, Wisconsin Diagnostic Breast
Cancer (WDBC), Wine, Yeast, Wine Quality, and Glass.

The datasets used in these experiments have different numbers of output
classes, ranging from 2 to 10. Additionally, their features pertain primarily to the
continuous domain, whose dimensions varies from 4 up to 30. Table 1 describes
the different aspects of each dataset, including its name, number of instances,
number of attributes, number of output classes and problem type.

Table 1. Datasets selected for the comparison of the classifiers

Dataset Instances Attributes Classes Problem Type

Iris 150 4 3 classification
WDBC 569 30 2 classification
Wine 178 13 3 classification
Yeast 1,484 8 10 classification

Wine Quality (red) 1,599 11 6 classification/regression
Glass 214 9 6 classification

The Parameters: The respective parameters for the algorithms were rendered
to be the same across all the different datasets, and no algorithm possessed pa-
rameter values that were tuned for the datasets. In particular, the 3 strategies
based on VQ, i.e., the TTOSOM, the SOM and the LVQ1 utilized the same
number of iterations (50, 000). Additionally, they all used the same initial learn-
ing rate (0.5), and the radius of the BoA was chosen in such a way that initially,
all the neurons were considered as part of the BoA, i.e., twice the depth of the
tree in the case of the TTOSOM, and the width plus the height in the case
of the SOM. Observe that LVQ1, as defined in [11], does not consider a BoA.
As well, the three schemes utilized the same (linear) decaying schedule for its
parameters.
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5 Results

Comparison to Other Classifiers: The results of the performance of the
different classifiers (columns) across all the dataset (rows) is summarized in
Table 2. Specifically, we are interested in the performance of our classifier on
problems across a diversity of domains in which labeled and unlabeled data is
available2. For example, Table 2 shows that the TTOSOM classifier, using only
15 neurons, is able to accurately predict with an accuracy of 89.33% the correct
label of the instances belonging the wine dataset. On the other hand, the SOM
classifies correctly the same dataset with an accuracy of only 67.98%.

One possibility for quantifying the quality of our method is to consider the
family of classifiers inheriting the VQ mechanism. One such strategy that be-
longs to the supervised family is the LVQ1, while the SOM and the TTOSOM
primarily learn the distributions using the unsupervised learning paradigm. The
three classifiers utilized the same parameters, which are described in Section 4.
Besides, while the LVQ1 and the SOM utilized 128 neurons, the results shown
for the TTOSOM include only 15 neurons. As per our results, the TTOSOM,
using only a small percentage of the neurons used in the SOM and LVQ1 (almost
10%), outperforms their recognition capabilities in all six datasets.

Apart from the above, observe that the classification results offered by the
TTOSOM are comparable to the ones obtained by the k-NN. However, both
approaches present important differences in how they perform learning. First
of all, the k-NN, being a supervised classifier, requires all the instances to be
properly labeled. Secondly, due to its “laziness”, the computations for the k-
NN are left until a query is performed, which implies that the whole manifold
is visited so as to create the ordering of the samples, as per their proximity
to the query sampl6 years since the date of the TRes. On the other hand, the
TTOSOM only requires a small subset of the tagged labels, and is able to learn
from unlabeled samples. Also, the query is done by using the TTOSOM tree and
the respective labels of the neurons, and only requires the comparison with the
total number of neurons, which is usually significantly smaller than the entire
dataset. Even though our method internally uses the k-NN to tag the neurons,
we note that this is done only once, i.e., when the tree is being learned, and
furthermore, the computations are performed only for each neuron instead of
the whole dataset.

Another perspective by which we can compare the schemes is to consider
the “most” competitive supervised classifiers. In this case, except for the LVQ1,
they outperformed the accuracy produced by the unsupervised strategies. This
is an expected behavior, because the supervised classifiers had access to the class
labels of all the instances. However, in environments where only few tags are
available, traditional supervised classifiers struggle to extract useful information
from unlabeled instances. Indeed, experiments performed by Gabrys et al. [9],
showed that when a sufficiently large number of labeled instances were utilized,
2 Our hypothesis is that one should use as much labeled data as is available. Since the

datasets mentioned above are all composed of labeled instances, we have opted to
use all this information in the “supervised” phase of our algorithm.



28 C.A. Astudillo and B.J. Oommen

the semi-supervised schemes included in their study achieved levels of accuracy
that were comparable to the ones obtained by the supervised classifiers that
incorporated a much higher number of labeled samples.

Table 2. General classification results of the methods investigated, reported in terms
of accuracy (shown in percentages)

Dataset TTOSOM15 BN NB C4.5 k-NN LVQ1 SOM

iris 96.67 92.67 96.00 96.00 95.33 96.00 84.67

wdbc 93.32 95.08 93.15 93.15 96.66 92.09 90.51

glass 67.29 71.96 49.07 67.76 67.76 61.22 63.08

wine 89.33 98.88 97.19 93.82 94.94 74.16 67.98

yeast 54.18 56.74 57.61 55.86 54.78 24.33 46.16

wine quality 51.91 57.72 55.03 62.91 57.79 44.15 49.59

Effect of the Number of Neurons: Another set of experiments were con-
ducted so as to observe the effect of the number of neurons on the classification
accuracy. To test this, we systematically increased the size of the TTOSOM tree.
In order to retain the desired property that, initially, all the neurons are con-
sidered as part of the BoA, in each case we adjusted the radius to be twice the
depth of the tree. Even though the size of the tree was increased, we decided to
maintain the number of training iterations to be unchanged.

We identified an increase in the performance as the number of neurons is
increased. For example, for the wine dataset, an accuracy of 64.61% was obtained
when using 15 nodes, and increased to 76.40% when using 1023 nodes. Similarly,
for the glass dataset, we obtained an accuracy of 69.16% when we used 15 nodes,
which increased to 71.96% when the number of nodes was 127.

Additionally, we noted that a lesser number of neurons, which implies a lower
computational requirement, outputs a fairly good approximation to the one of-
fered by the reported supervised classifiers.

Changing the Distance Measure: In all the results presented so far, we as-
sumed that the data was previously normalized. Specifically, the classifiers uti-
lized the so-called Local Normalization [7], in which the range of every dimension
was scaled to be between 0 and unity so as to have them equally weighted. We
performed additional experiments so as to observe how the technique behave if
we maintain all the parameters at their original values, and simultaneously not
perform any type of normalization prior to the training process.

As a general remark we note that one observes differences with respect to the
case when the data was normalized. For example, in the glass dataset it was
possible to obtain an accuracy of 71.96% when using 127 neurons which is an
index equivalent to the one provided by the best supervised classifier (BN) for
this specific problem domain. It is even more interesting to see that when the
number of neurons was increased to 1,023, the accuracy obtained was 74.30%,
which is the best reported accuracy obtained for the glass dataset, when one
includes all the supervised classifiers displayed in Table 2.
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However, we have noticed as well, that in some problem sets, as in the case
of the wine dataset, the classification accuracies are inferior to those obtained
when an a priori normalization was invoked.

Our explanation for this phenomenon is that, when we do not normalize the
feature vectors before processing them, the classifier weights those features with
larger ranges for its values, more, and in certain cases it happens that these
features are exactly the ones that help to advantageously discriminate between
the different categories. This reasoning also explains the scenario when poorer
results are obtained. This is apparently a consequence of weighting certain fea-
tures (i.e., those which possess a high variance) more, i.e., those which offer
inadequate discriminating aspects. Those features do not provide information
that is too useful for effectively building the discrimination regions.

Using Trees Other Than Binary Trees: All the experiments presented previ-
ously in this section have employed a binary tree structure. To further investigate
the power of the TTOSOM, we performed another set of experiments so as to
test the effect of using trees with a higher branching factor, i.e., the number of
children that a particular node had.

In particular we tested the algorithm using trees with a branching factor of 3.
As far as we could observe, there were no noticeable changes in accuracy when
the branching factor per node is increased from 2 to 3.

In [1], when we focused on the clustering properties on the TTOSOM, we
showed how different branching factors led to a “better representation” of cer-
tain shapes. By better representation, in this case, we meant that the basic
properties of some objects were preserved, so that the human eye could per-
ceive the essential characteristics of the original object by merely looking at the
learned structure. The above mentioned paper included examples, including a
triangle and a rectangle, which were represented in a superior manner using
specific branching factors (c.f., the representations in [12], which correspond to
neural structures for the triangle using a grid and a line, respectively).

The clustering property mentioned above suggests that the symmetry pre-
sented in some data sets could be better exploited by a TTOSOM-based clas-
sifier using the adequate branching factor. However our preliminary evidence
shows us that at least for the real-world dataset that we tested, the classifier
is not noticeably affected by incrementing the number of branches in the tree.
Instead, the number of neurons utilized, regardless of the branching factor of the
tree, seems to be more pertinent when it concerns the resultant accuracy. This
certainly is an avenue for further research.

6 Conclusions

The purpose of this paper was to design and present an experimental analy-
sis of a novel PR scheme based on the TTOSOM. Our classifier combined the
information provided by labeled and unlabeled instances simultaneously.

Our experimental results showed that the TTOSOM classifier possesses
an improved classification accuracy in comparison to other VQ-based classifiers.
Additionally, these accuracies are comparable to the one attained by the
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state-of-the-art schemes, even when the number of neurons utilized is only a
small fraction of the cardinality of the dataset.

Moreover, increasingly superior recognition capabilities could be obtained
when training trees with a larger number of neurons. In particular, our results
suggest a “monotonic” improvement of the mean classifier performance as the
size of the tree is increased. We believe that this occurs because of the desirable
properties of the TTOSOM to mimic the underlying distribution of the points,
and its capability to represent the stochastic and structural characteristics more
accurately by utilizing a larger tree.
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