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Abstract. This work is motivated by the need for consensus clustering
methods using multiple datasets, applicable to microarray data. It intro-
duces a new method for clustering samples with similar genetic profiles,
in an unsupervised fashion, using information from two or more datasets.
The method was tested using two breast cancer gene expression microar-
ray datasets, with 295 and 249 samples; and 12,325 common genes. Four
subtypeswith similar genetic profiles were identified in both datasets. Clin-
ical information was analysed for the subtypes found and they confirmed
different levels of tumour aggressiveness, measured by the time of metas-
tasis, thus indicating a connection between different genetic profiles and
prognosis. Finally, the subtypes identified were compared to already es-
tablished subtypes of breast cancer. That indicates that the new approach
managed to detect similar gene expression profile patterns across the two
datasets without any a priori knowledge. The two datasets used in this
work, as well as all the figures, are available for download from the web-
site http://www.cs.newcastle.edu.au/∼mendes/BreastCancer.html.

Keywords: Bioinformatics, breast cancer, data mining, genetic
algorithms.

1 Introduction

The introduction of the microarray technology imposed a series of new chal-
lenges in terms of producing relevant and statistically sound results. Current
research indicates that with the amount of data publicly available, the use of a
single dataset is no longer acceptable to justify new medical discoveries. Com-
parisons with previous, similar studies need to be carried out. A problem that
arises in this situation is that microarray data is highly heterogeneous, noisy,
and in general, different unsupervised techniques will find different configura-
tions of clusters for the same dataset. In addition, clusters found using a specific
dataset sometimes are not observed in other datasets. Consensus clustering tech-
niques try to overcome these problems, with two main types being found in the
literature.
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The first deals with single datasets and proposes the concurrent use of several
unsupervised clustering techniques, which will likely produce different partitions
of the samples. A consensus clustering is then determined using information
from all clusters found, usually based on some similarity measure among ele-
ments [15,10,4]. The second type of consensus clustering involves finding clus-
ters which have similar profiles across multiple datasets. This is the goal of
the method introduced in this paper, and two previous works should be cited.
First, Filkov and Skiena (2003) [2] modeled the consensus clustering of multi-
ple datasets as a median partition problem and use three types of heuristics
(local search, greedy and simulated annealing) to address it. Then, in Hoshida
et al. (2007) [5], the authors use a statistical test to find the consensus clus-
ters. The literature on consensus clustering and microarrays is extensive and
even though several methods are available, no single approach dominates the
scientific literature.

This paper offers a new consensus clustering technique, which differs from the
previous ones mainly because it optimizes three criteria at once. Those are the
number of biomarkers that characterize the clusters; consistency of the clusters
across datasets; and statistical relevance of the clusters, measured by a classifi-
cation test.

The method introduced in this work extends the study in Mendes (2008) [8].
It uses a Genetic Algorithm as the search engine and was tested with two well-
known datasets from previous breast cancer studies. The first contains 24,158
probes, 295 samples and was introduced in Vijver et al. (2002) [16]. The sec-
ond dataset has 44,928 probes, 249 samples and was introduced in Miller et
al. (2005) [9].

The results presented in this work show the clustering of breast cancer samples
into four subtypes. These subtypes were then compared to subtypes of breast
cancer already established in the medical literature, using well-known markers.
Finally, the subtypes are justified from a clinical standpoint as well, by per-
forming an analysis of the time of metastasis associated to the samples in each
subtype. Even though such clinical information was not directly used in the
determination of the subtypes by our method, the Kaplan-Meier curves of the
time of metastasis are consistently distinct in both datasets. In other words, the
subtypes found share similar genotypical and phenotypical profiles in the two
datasets, even though the method only uses genotypical information.

2 The Consensus Clustering Problem

The consensus clustering problem addressed in this work can be described as
follows. Given k input datasets (D1, D2,..., Dk), identify partitions of the samples
in D1, D2,..., Dk into two clusters, which:

– Are supported by the same set of biomarkers; and preferably by a large
number of them (higher statistical significance of genetic signatures);

– Have a high accuracy classification of the samples in each dataset (higher
intra-cluster similarity and inter-cluster dissimilarity);
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– Present a similar proportion of samples in both clusters for all datasets (both
clusters should be observed in all datasets to indicate consistency).

The large number of biomarkers indicate that the clusters are not product of
a statistical artifact. Although in practice biologists will use just a small num-
ber of biomarkers for classification purposes, or when designing a diagnostic kit,
a relatively large number of biomarkers is generally recommended for the de-
termination of subtypes. That follows the ‘data-driven’ approach to biomarker
discovery, which is discussed in reference [17] (i.e. analyzing the entire genome
rather that working from a hypothesis about one or few candidate genes).

The second characteristic is the classification accuracy obtained with a cross-
validation procedure, associated to a classification model. High classification
accuracy can be associated to high intra-cluster similarity and inter-cluster dis-
similarity, and will reflect on the accuracy of future classifiers for prognosis.

Finally, the third characteristic is the proportion of the samples in each sub-
type and in each dataset, which reflects the consistency of these subtypes across
datasets.

These three characteristics are combined into a single objective function used
to assess the quality of putative partitions of the samples. Next, we formalize
the objective function, but before doing so, consider the following notation:

– D = {D1, D2,...,Dk}: Set of k datasets;
– C = {c1, c2}: Set of classes. In every iteration, the samples are partitioned

into two classes: c1/c2;
– SDi : Set of samples in Di; |SDi | = mDi ;
– SDi(cj): set of samples in Di that belong to class cj ; |SDi(cj)| = mDi(cj).

The identification of breast cancer subtypes is done iteratively. Initially, the
samples are divided into two clusters. Then, those two clusters are further divided
into four, and so on, resulting in a binary tree structure. The criterion to stop
the division was based on the clinical analysis of the time of metastasis for the
samples in each cluster. When no significant difference is observed between two
new clusters, in terms of the time of metastasis, we consider that they actually
represent the same subtype of the disease, and stop the division.

2.1 Objective Function

The objective function takes into account three characteristics that should be
observed in high quality partitions.

- Partitions should be supported by a large number of biomarkers: In
each division, the partitions should be supported by the same set of biomarkers
in all datasets; and preferably be composed of a large number of them. The
method implementation played an important role in this aspect. If we considered
all k datasets separately and tried putative partitions for each of them, the
search space would be prohibitively large and the sets of biomarkers would be



Identification of Breast Cancer Subtypes 95

considerably different for each partition in each dataset; i.e. there would be no
consistency between biomarkers for any given subtype across datasets.

To overcome this, first we force all datasets D1, D2,...,Dk to contain the
same genes; i.e. any gene that is not present in all datasets is removed from the
analysis. Then, one of the datasets is selected as the main dataset. This main
dataset will have its samples partitioned first, and this partition will induce the
partitions in the other k − 1 datasets.

Let the main dataset chosen be D1. Given a putative partition for the samples
in D1 into classes c1 and c2, a t-Student statistical test is used to determine the
nmarkers associated biomarkers (p < 0.01). The biomarkers for the partition in
D1 are then used to induce partitions in the other datasets D2,...,Dk. A Nearest
Neighbor classification model [19] is created with the biomarkers and samples in
D1 and then used to assign the samples in D2,...,Dk either to class c1 or c2.

- High accuracy classification of samples in all datasets: The high accu-
racy classification of the samples in all datasets acts as a proxy for high intra-
cluster similarity and inter-cluster dissimilarity. Given the nearest neighbor-
based classification model from D1 and the partitions of the samples in D1,
D2,...,Dk, we perform a 10-fold cross-validation [19] in all datasets Di, calculat-
ing the accuracy of each classification accDi . The overall accuracy accD is:

accD =
1
k

k∑

i=1

accDi (1)

- Similar proportion of samples in clusters across all datasets: It is
arguably recommended to have a similar proportion of samples in each cluster,
across all datasets. First, this would indicate that subtypes of diseases identified
are present in all datasets. Moreover, the proportion of the number of samples
in each class indicates that a subtype of the disease, more/less common in a
dataset, should be more/less common in all other datasets as well. This is a
strong assumption, which only holds if different cohorts share similar sampling
characteristics. The balance of the partition of the samples is denoted as B, and
is calculated as follows. First, let:

mcj =
1
k

k∑

i=1

mDi(cj)

mDi

(2)

be the average proportion of samples in class cj in all datasets. The balance
should be optimum when mDi(cj)/mDi , i.e. the proportion of samples clustered
in cj is the same in every dataset Di. The equation for the balance is:

B =
k∑

i=1

∣∣∣mc1 −
mDi(c1)

mDi

∣∣∣ +
k∑

i=1

∣∣∣mc2 −
mDi(c2)

mDi

∣∣∣ (3)

Finally, the objective function used in this work is stated as:
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obj = nmarkers ∗ accD ∗ 1
B + ε

(4)

The objective function aims at a trade-off between large number of biomarkers
for D1 (nmarkers); high average accuracy of the classification across datasets
(accD); and good balance of classes across datasets (B ≈ 0).

2.2 The Genetic Algorithm

The problem of finding the partition of the samples that maximizes Eq. 4 was
addressed using a Genetic Algorithm (GA). GAs are population-based search
methods [3] where a population of solutions evolves through the application of
special operators (recombination and mutation), and selection pressure.

- Representation: The search space of the consensus clustering problem con-
sists of all the possible partitions of the samples in the dataset D1 into two
classes. In terms of genetic algorithm implementation, a partition P is repre-
sented as a binary array P = [p1, p2, ..., pmD1

], with pi ∈ {0, 1}.

- Population structure: The GA employs a population structure that follows
a complete ternary tree with three levels, i.e. 13 individuals. This structure was
object of study in the past, and genetic/memetic algorithms using it performed
better compared to non-structured approaches in several combinatorial opti-
mization problems [1,11]. Also, the use of fewer individuals is critical because,
in this problem, the objective function calculation is very time-consuming, as it
involves several, complex steps.

- Mutation: The mutation operator implemented was the bit-swap. A sample
is chosen uniformly at random and moves from a class to another, i.e. either
c1 → c2 or c2 → c1. This 1-bit mutation is applied to 10% of the offspring
created, also chosen uniformly at random.

- Recombination and acceptance policy: The recombination operator cho-
sen was the uniform crossover (UX) [12]. In every generation, a number of in-
dividuals equal to the size of the population is created and evaluated. Offspring
that are better than at least one of their parents survive to the next genera-
tion, directly replacing their worst parent. Even though this scheme creates a
strong evolutionary pressure, premature convergence is controlled by checking
population diversity and applying restart procedures.

- Population diversity and restart: The diversity check procedure verifies at
every generation whether any offspring created was better than at least one of its
parents. If none was better, a population restart follows, which keeps the current
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best solution within the population (elitist restart), and replaces all others by
randomly-generated solutions. Indeed, if no solution created within a generation
was better than one of its parents, that indicates that the current population
has evolved enough generations to be consisted of high-quality individuals only,
which are also likely to be very similar.

3 The Breast Cancer Datasets

Two breast cancer microarray datasets were used in this work. The first one
(dataset D1) is from a study with 295 patients diagnosed with primary breast
carcinomas presented in Vijver et al. (2002) [16]. A 25,000-gene cDNA array
consisting of 24,479 probes was used for each patient. The second dataset (D2)
comes from a study comprising 259 primary breast cancer patients presented in
Miller et al. (2005) [9]. Each patient was sampled using an Affymetrix genechip
with 38,061 probes.

A first pre-processing procedure removed duplicate genes from both datasets,
resulting in D1 keeping 14,547 unique genes; and D2 keeping 18,342 unique
genes. A second step involved forcing the two datasets to contain exactly the
same genes (to enforce consistency of classifiers’ attributes). Using the gene
symbols as identifiers, there was a total of 12,325 common genes.

4 Results

After applying the clustering algorithm to the two datasets, a binary tree with
the partition of the breast cancer samples was produced. It is shown in Fig-
ure 1 and depicts the types found, the biomarkers for the partitions found in
both datasets, and the Kaplan-Meier (K-M) curves for the time of metastasis
associated to the types identified.

Samples were first divided into two subtypes (Types 1 and 2) and then into
four others (Types 3 to 6). Note that the biomarkers in each specific division are
the same for the two datasets D1 and D2, and the types have a similar clinical
profile in terms of prognosis. Type 2 is more aggressive than Type 1; and Types
3 and 5 are more aggressive as well, compared to Types 4 and 6.

Additional divisions of Types 3 to 6 into more subtypes were tested, but the
clinical profiles obtained were not consistent across the two datasets. The classi-
fication shown in Figure 1 contains only those subtypes that present consistent
clinical profiles.

4.1 Comparison with Existing Subtypes

There are five subtypes of breast cancer broadly accepted by the medical com-
munity: normal breast-like, basal, luminal A, luminal B, and HER2+/ER-. In
order to compare the four subtypes identified in this work with them, we ana-
lyzed a number of genetic markers associated to breast cancer, collected from
the following studies:
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Fig. 1. (a) Classification of breast cancer subtypes for Vijver’s dataset. Samples were
initially divided into two subtypes – Types 1 and 2 – which were further divided into
the final four subtypes – Types 3 to 6. For each division we present a genetic signature
with the biomarkers obtained by a t-student statistical test (p < 0.01). Next to each
signature we present the associated Kaplan-Meier curves for the time of metastasis. (b)
Classification of breast cancer subtypes for Miller’s dataset. The subtypes are analogous
to the ones identified in (a).

– Perreard et al. (2006) [14]: 53 biomarkers for different subtypes of breast
cancer – 37 so-called ‘intrinsic’ genes to classify the subtypes, plus PGR,
EGFR and 14 proliferation-related genes.

– Hu et al. (2009) [6]: 9 oncogenes and tumor suppressor genes.
– Paik et al. (2004) [13] – Oncogene DX : a breast cancer prognosis kit based

on 21 genes for ER+, lymph node-negative patients.
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The expression profiles of the genetic markers mentioned in the three studies
above are shown in Figure 2. They were divided according to the study and the
dataset. Samples are ordered from Type 3 to Type 6, in all figures.

Basal tumors are characterized by being ESR1, PGR and ERBB2 negative,
i.e. these three markers are under-expressed. This subtype is also referred to as
triple receptor negative [7]. Type 5 is the cluster where those genes are the least
expressed. This is an aggressive subtype and that behaviour agrees with K-M
curves in Figure 1a-b. Therefore, we can associate Type 5 to the basal breast
cancer subtype.

Two other types are also identifiable: Luminal A and luminal B. These types
are molecularly similar, being characterized by the over-expression of ESR1,
PGR, GATA3 and FOXA1. That occurs in both Types 4 and 6. The main

(a) Vijver’s dataset (D1) – Oncotype DX markers (Paik et al., 2004)   (b) Miller’s dataset (D2) – Oncotype DX markers (Paik et al., 2004) 

   
     Type 3   Type 4                Type 5             Type 6       Type 3             Type 4     Type 5  Type 6 

(c) Vijver’s dataset (D1) – Hu et al. (2009) markers     (d) Miller’s dataset (D2) – Hu et al. (2009) markers 

   
     Type 3   Type 4                Type 5             Type 6       Type 3             Type 4     Type 5  Type 6 

(e) Vijver’s dataset (D1) – Perreard et al. (2006) markers    (f) Miller’s dataset (D2) – Perreard et al. (2006) markers 

   
     Type 3   Type 4                Type 5             Type 6       Type 3             Type 4     Type 5  Type 6 

Fig. 2. Gene expression of breast cancer markers found in the literature, considering
the four subtypes identified in Figure 1a-b. Three sets of genetic markers are compared:
(a-b) Oncotype DX [13], (c-d) Hu et al. (2009) [6] and (e-f) Perreard et al. (2006) [14].
Based on the markers’ expression, we can make the following mapping: Type 5 corre-
sponds to basal samples. Basal is one of the most aggressive subtypes of breast cancer,
which is in agreement with the Kaplan-Meier curves in Figure 1a-b. Types 4 and 6
correspond to Luminal A and Luminal B samples, respectively. They are similar with
respect to the biomarkers, but proliferation-related genes are under-regulated in Type
4 and over-regulated in Type 3. Finally, Type 3 corresponds to HER2+/ER- tumors,
which is also a very aggressive subtype – again showing agreement with the K-M curves
in Figure 1a-b.
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difference between luminal A and B is that proliferation-related genes are under-
expressed and over-expressed in those subtypes, respectively [18]. The prolifer-
ation genes that we refer to are listed in Perreard et al. (2006) [14] (HSPA14,
GTPBP4, PCNA, CKS2, NEK2, TOP2A, BUB1, TTK, FAM54A, MKI67,
MYBL2, BIRC5 and CENPF). This difference indicates that Type 4 corresponds
to luminal A and Type 6 to luminal B.

Finally, Type 3 appears to correspond to HER2+/ER- tumors. This type is
characterized by the under-expression of ESR1 and PGR; and over-expression
of ERBB2. In addition, proliferation-related genes are over-expressed. From the
clinical standpoint, HER2+/ER- is, together with basal, one of the most ag-
gressive breast cancer tumor subtype. That would be in agreement with the
K-M curves in Figure 2. These findings illustrate how the method managed to
identify, across two distinct datasets, four subtypes broadly accepted by the sci-
entific community. Moreover, the clinical aspects have also shown consistency
across datasets and agreed with the scientific literature for the subtypes.

5 Conclusion

In this paper we introduce a new method to perform classification of microar-
ray samples using multiple datasets, and test the approach using two publicly
available breast cancer datasets. Four subtypes were identified and presented
similar gene expression profiles across both datasets, as well as similar clinical
profiles (based on time of metastasis). A subsequent analysis comparing those
four subtypes with the currently accepted subtypes of breast cancer in the sci-
entific community provided a mapping between them. The types basal, luminal
A, luminal B and HER2+/ER- were mapped into the four subtypes identified
by our algorithm by analyzing the expression profile of several markers reported
in the literature. That result was also corroborated by the analysis of the time
of metastasis, which shows that the types mapped into basal and HER2+/ER-
subtypes have a more aggressive behavior.

It is worth emphasizing that the method introduced in this study successfully
discovered subtypes in an unsupervised, unbiased (data-driven) fashion, using
data from a genetically heterogeneous disease. It has the potential to impact the
discovery of subtypes of other heterogeneous diseases for which microarray data
is available.
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