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Preface

The Australasian Joint Conference on Artificial Intelligence (AI) is an annual
conference that brings together researchers and practitioners in areas related
to artificial intelligence for promoting research and scientific discussions. This
volume contains 82 papers presented at the 24th AI conference held in Perth,
Western Australia, December 5–8, 2011.

The AI 2011 call for papers solicited contributions across a wide range of areas
of research in artificial intelligence. This year’s conference received 193 submis-
sions, including papers from authors in Australia, Japan, Malaysia, China, Iran,
New Zealand, India, USA, Poland, Canada, Singapore and 19 other countries.
The topics addressed by the submitted papers illustrated the broadness of the
discipline.

The conference featured three distinguished keynote speakers, Witold Pedrycz
(Department of Electrical and Computer Engineering, University of Alberta, Ed-
monton, Canada), Kit Po Wong (Department of Electrical Engineering, Hong
Kong Polytechnic University) and Kay Chen Tan (Department of Electrical and
Computer Engineering, National University of Singapore). Their talks were of
great interest to the attendees.

This year, AI 2011 incorporated the 5th Australian Conference on Artificial
Life (ACAL11). ACAL papers were submitted and reviewed along with the AI
2011 papers, and accepted papers appear here in the AI 2011 proceedings. AI
2011 also included two tutorial workshops, the Australasian Ontology Workshop
(AOW 2011) and the First Australian Workshop on Artificial Intelligence in
Health (AIH 2011). There is a growing community of researchers in Australia
and New Zealand working on various aspects of ontologies. The primary aim of
AOW 2011 was to bring together ontology researchers in the region. The AIH
workshop was a first-of-its-kind national initiative to bring together scholars
and practitioners in the field of artificial intelligence-driven health informatics
to present and discuss their research, share their knowledge and experiences,
define key research challenges and explore possible collaborations so as to ad-
vance e-Health development nationally and internationally. These tutorials and
workshops together provided an excellent start to the event.

The contributed talks of AI 2011 were organized into 18 sessions including two
special sessions, a special session on “Modern Machine Learning in Intelligent
Image Processing” and a special session on “Information Processing, Inference
and Learning”. The latter also included a special session keynote presented by
Martin Riedmiller (Albert Ludwigs University Freiburg).

The Program Committee consisted of 135 highly regarded academics from 20
countries including Australia, New Zealand, China, UK and Germany. All papers
were peer reviewed by at least three Program Committee members, and, in some
cases, external reviewers. Of the 193 papers submitted, 82 were selected for
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presentation at the conference. We would like to thank all authors who submitted
papers and all conference participants for helping to make the conference a
success. We also would like to thank the members of the Program Committee
and the external referees for their expertise in carefully reviewing the papers. We
were grateful to Springer for its assistance in the production of the proceedings.

Many thanks to the School of Information Technology at Murdoch University
for providing all the local support for organizing the conference. We would like to
express our appreciation to the General Conference Chairs, Kevin Wong, Lance
Fung and Hussein Abbas, for their tireless work. Thanks too, to the Publicity
Chairs, Yew Soon Ong, Yasufumi Takama, and Wanquan Liu. Last, but not
least, we express gratitude to our hosts in Perth and in particular Hong Xie and
Shri Rai, the local Organizing Chairs and their helpers.

October 2011 Dianhui Wang
Mark Reynolds



Organization

Program Committee

Hussein Abbass UNSW@ADFA, Australia
Yun Bai University of Western Sydney, Australia
James Bailey University of Melbourne, Australia
Timothy Baldwin University of Melbourne, Australia
Peter Baumgartner National ICT Australia, Australia
Lubica Benuskova University of Otago, New Zealand
Ghassan Beydoun University of Wollongong, Australia
Richard Booth University of Luxembourg, Luxembourg
Sebastian Brand University of Melbourne, Australia
Thomas Braunl University of Western Australia, Australia
Bob Brown University of Wollongong, Australia
Jinhai Cai University of South Australia, Australia
Lawrence Cavedon NICTA and RMIT University, Australia
Stephan Chalup The University of Newcastle, Australia
Chia-Yen Chen The University of Auckland, New Zealand
Ling Chen University of Technology, Sydney, Australia
Songcan Chen Nanjing University of Aeronautics and

Astronautics, China
Andrew Chiou Central Queensland University, Australia
Dominique Chu University of Kent, UK
Vic Ciesielski RMIT University, Australia
David Cornforth CSIRO Energy Technology, Australia
Stephen Cranefield University of Otago, New Zealand
Michael Cree University of Waikato, New Zealand
Corbett Daniel DARPA, USA
Hepu Deng RMIT University, Australia
Jeremiah D. Deng University of Otago, New Zealand
Grant Dick University of Otago, New Zealand
Xiangjun Dong Shandong Institute of Light Industry, China
David Dowe Monash University, Australia
Atilla Elci Toros University, Turkey
Mark Ellison University of Western Australia, Australia
Esra Erdem Sabanci University, Turkey
Cesar Ferri DSIC, Universitat Politecnica de València,
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Abstract. XCS is a learning classifier system that combines a reinforce-
ment learning scheme with evolutionary algorithms to evolve a popula-
tion of classifiers in the form of condition-action rules. In this paper,
we investigate the effectiveness of XCS in high-dimensional classification
problems where the number of features greatly exceeds the number of
data instances – common characteristics of microarray gene expression
classification tasks. We introduce a new guided rule discovery mecha-
nisms for XCS, inspired by feature selection techniques commonly used
in machine learning. The extracted feature quality information is used to
bias the evolutionary operators. The performance of the proposed model
is compared with the standard XCS model and a number of well-known
machine learning algorithms using benchmark binary classification tasks
and gene expression data sets. Experimental results suggests that the
guided rule discovery mechanism is computationally efficient, and pro-
motes the evolution of more accurate solutions. The proposed model
performs significantly better than comparative algorithms when tackling
high-dimensional classification problems.

1 Introduction

Learning classifier systems (LCS) combine machine learning with metaheuristics
to build models that learn to solve a particular classification problem (see [8,18]
for detailed reviews). The eXtended classifier system (XCS) is a well-known
LCS that maintains a population of classifiers [21]. Each classifier consists of
a condition-action-prediction rule with an associated fitness value, which repre-
sents the accuracy of the predicted reward. Through an iterative learning pro-
cess, the population of classifiers evolves. A key step in this iterative process is
the rule discovery component that creates new classifiers that are added to the
bounded population pool.

One of the challenges when designing a LCS, is to build flexibility and robust-
ness into the model such that it is capable of handling large scale data mining
and classification problems. Consider a prototypical high-dimensional data set,
such as a microarrray gene expression data set, that has several thousands genes
(features) but only a small number of samples [24]. Standard XCS implementa-
tions, and many other machine learning algorithms for that matter, are typically

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 1–10, 2011.
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less effective in this high-dimensional space. It is difficult to effectively explore
the solution space and build an appropriate classification model. In such circum-
stances, feature selection pre-processing can be used [14]. Such approaches can
reduce the negative effect of the irrelevant features on the learning task, and
speed up the learning process significantly.

In this paper, a new guided rule discovery mechanisms is proposed for XCS
for high-dimensional classification problems. Our model (GRD-XCS), is inspired
by feature selection techniques commonly used in machine learning. Typically,
filtering techniques assess the relevance of features in the data set, with the low-
scoring features subsequently being removed. A subset of the “more important”
features is then presented as input to the classification algorithm. However, in
our model the filtering process is used to build a probability distribution that
biases the evolutionary operators encapsulated in the rule discovery component
of XCS. This probability distribution can be thought of as a mask that biases
the uniform crossover and mutation operators. This flexible approach is scalable,
thus the enhanced XCS can be used to tackle high-dimensional classification
tasks without reducing the dimensionality of the data set.

To test the efficacy of the new GRD-XCS, a systematic set of experiments
were carried out using benchmark binary classification tasks and a suite of gene
expression microarray data sets. The proposed model was compared to XCS and
a range of well-known machine learning algorithms. The results show that the
new guided rule discovery mechanisms leads to improved accuracy, particularly
for high dimensional binary classification problems.

The remainder of this paper is organized as follows: In section 2 we present
background material related to XCS and related work. In section 3 we describe
the guided rule discovery mechanism in detail. The experiments and results
appear in Section 4. We conclude the paper by summarizing the contributions
and identifying the possible future directions.

2 Background

2.1 XCS Overview

In this section, we provide a brief overview of the functionality XCS. See [21,8,18]
for detailed discussion of LCS in general.

XCS maintains a population of classifiers. Each classifier consists of a
condition-action-prediction rule, which maps input features to the output sig-
nal (or class). A ternary representation of the form 0,1,# (where # is don’t
care) for the condition and 0,1 for the action can be used. In addition, real
encoding can also be used [22].

At each time step, the classifier system receives a problem instance – input
in the form of a vector of features – which requires a decision, that is an action
to be performed next. A match set [M ] is created consisting of rules (classifiers)
that can be “triggered” by the given data instance. A covering operator is used
to create new matching classifiers when [M ] is empty. A prediction array [PA]
is calculated for [M ] that contains an estimation of the corresponding rewards
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Algorithm 1. High level overview of XCS
Require: Input data:σ, Population:[Δ]

repeat
σ ← env
[M ] ← GetMatchSet(σ,[Δ])
[PA] ← CreatePredictionArray([M ])
act← SelectAnAction([PA])
[A] ← CreateActionSet([M ], act)
R← ExecutingActionOnENV (act)
[A] ← UpdateSet([A],R)
[Δ] ← RuleDiscovery([A],[Δ])

until terminating conditions are not met

for each of the possible actions. Based on the values in the prediction array,
an action, act, is selected. Those classifiers which support the predicted action
make up the Action Set [A]. In response to act, the reinforcement mechanism
is invoked and the prediction (p), prediction error, accuracy, and fitness of the
[A] classifiers are updated. The corresponding numerical reward is distributed
to the rules accountable for it so as to improve the estimates of the action values
(see algorithm 1).

The rule discovery module is a key component of XCS. During the evolution-
ary process, fitness-proportionate selection is applied to [A]. Standard evolution-
ary operators, uniform crossover and mutation, are then applied to the selected
individuals. In addition, a second mutation-style operator – the don’t care op-
erator – is used to randomly modify a condition part of a classifier to the don’t
care value #. The newly created offspring (classifiers) are then added to the
bounded population. A form of niching is then used to determine if the offspring
survive in the population and/or which of the old members of the population are
deleted to make room for the new classifiers (offspring). A subsumption mecha-
nism combines similar classifiers and a randomized deletion mechanism removes
classifiers with a low fitness from the population.

It is important to note that the XCS population consists of a set unique macro-
classifiers – a set of classifiers that have same condition part and same action
part. Every macro-classifier has an associated numerosity value, which records
how many instances of that specific classifier actually exists in the population.

2.2 Related Work

It is well documented in the evolutionary computation literature that the imple-
mentation of the genetic operators can influence the trajectory of the evolving
population. However, there has been a paucity of studies focussed specifically on
the impact of selected evolutionary operator implementations in LCS. We briefly
discuss some of the key studies related to XCS/LCS below.
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In one of the first studies focussed on the rule discovery component specifically
for XCS, Butz et al. [6] have shown that uniform crossover can ensure success-
ful learning in many tasks. In subsequent work, Butz et al. [5] introduced an
informed crossover operator, which extended the usual uniform operator such
that exchanges of effective building blocks occurred. This approach helped to
avoid the over-generalization phenomena inherent in XCS [13]. In other work,
Bacardit et al. [3] customized the GAssist crossover operator to switch between
the standard crossover or a new simple crossover, SX, randomly. SX is a heuristic
selection approach to take a minimum number of rules from the parents (more
than two), which can obtain maximum accuracy. Morales-Ortigosa et al. [16]
have also proposed a new XCS crossover operator, BLX, which allowed for the
creation of multiple offspring with a diversity parameter to control differences
between offspring and parents. Finally, in a more comprehensive overview pa-
per, Morales-Ortigosa et al. [17] present a systematic experimental analysis of
the rule discovery component in LCS. Subsequently, they developed crossover
operators to enhance the discovery component based on evolution strategies with
significant performance improvements.

Other work focussed on biased evolutionary operators in LCS include the
work of Luis et al. [12], who introduced a hybridized GA - Tabu Search (GA-
TS) method that employed modified mutation and crossover operators. Here, the
operator probabilities were tuned by analyzing all the fitness values of individuals
during the evolution process. Wang et. al. [20] used information gain as the
fitness function in a GA. They reported improved results when comparing their
model to other machine learning algorithms. Recently, Huerta et al. [4] combined
linear discriminant analysis with a GA to evaluate the fitness of individuals
and associated discriminate coefficients for crossover and mutation operators.
Moore et al. [15] argue that the biasing of the initial population, based on
expert knowledge preprocessing, should lead to improved performance in LCS.
In their approach, a statistical method, Tuned ReliefF, was used to determine the
dependencies between features to seed the initial population. A modified fitness
function and a new guided mutation operator based on features dependency was
also introduced, leading to significantly improved performance.

3 Model

The motivation behind the design and development of the GRD-XCS was to im-
prove classifier performance especially for high-dimensional classification prob-
lems. Our goal was to make the overall task computationally faster, without
degrading accuracy. To meet this goal, GRD-XCS introduces a probabilistically
guided rule discovery mechanism for XCS. Here, two distinct phases are used. In
the pre-processing phase, each feature is examined independently of all others
and assigned a rank. This rank is then used when generating the probability
distribution used to bias the evolutionary operators, which are deployed during
the second phase – the generation of classifiers in XCS.
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The evolution process is regulated by a rule discovery probability vector,
RDP , which controls the bitwise crossover, mutation and don’t care operators.
Each value in the vector is associated with the corresponding feature, and is
allocated a value in the range [0, 1.0]. The RDP values are determined based
on a ranked Information Gain (IG) measure [11]. The IG measure is defined
as entropy reduction:

IG = H(C) − H(C|fi) (1)

where H represent entropy, F = {f0, f1, ...fi, ..., fn} is the feature set, and C the
classes in this context. Entropy is a measure to quantify the information content,
it is calculated using the formula:

H(C) =
∑
j∈C

pj log2 pj (2)

where pj is the probability of having j in C, and the conditional entropy is
calculated as:

H(C|fi) =
∑
j∈C

pj log2 H(C|fi = j) (3)

The actual values in the RDP vector are calculated based on the IG values as
described below:

RDPi =

⎧⎨
⎩

1−γ
Λ × (Λ − i) + γ if i ≤ Λ

ξ otherwise
(4)

where i represents the rank index in ascending order for the selected features. The
probability values associated with the other features are given a very low value
(ξ). Thus, all features have a chance to participate in the rule discovery process.
However, the Λ-top ranked features have a greater chance of being selected (see
figure 1).

Fig. 1. Information Gain is used to rank the features. The top Λ features (in this
example Λ =5) are selected and allocated relatively large probability values ∈ [γ, 1].
The RDP vector maintains these values. The highest ranked feature value is set to
1.0. Other features receive smaller values relative to their rank (in this example γ
=0.5). Features that are not selected based on information gain, are assigned very
small probability values (in this example ξ = 0.1).
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GRD-XCS uses the probability values recorded in the RDP vector in the pre-
processing phase to bias the evolutionary operators used in the rule discovery
phase of XCS. The modified algorithms describing the crossover, mutation and
don’t care operators in GRD-XCS are very similar to standard XCS operators:

GRD-XCS crossover operator: The crossover operator is a hybrid uniform
/n-point function. Here, an additional check of each feature is carried out
before exchange of genetic material. If rand() < RDP [i] then feature i is
swapped between the selected parents.

GRD-XCS mutation operator: Uses the RDP vector to determine if feature
i undergoes a mutation, if the feature was randomly selected to be mutated.

GRD-XCS don’t care operator: In this special mutation operator, the val-
ues in the RDP vector are used in the reverse order. That is, if the feature
i has been selected to be mutated and rand() < (1 − RDP [i]), then feature
i is changed to # (don’t care).

The application of the RDP reduces the crossover and mutation probabilities
for “uninformative” features. However, it increases the don’t care operator prob-
ability for the same feature. Therefore, the more informative features (based on
the Information Gain measure in this case) should appear in rules more often
than the uninformative ones.

4 Experiments

A series of independent experiments were conducted to verify if the guided rule
discovery mechanism for XCS was able to find accurate classifiers. In particular,
we wished to establish if the proposed model had statistically significantly im-
proved accuracy values when compared to the standard XCS across a suite of
benchmark classification problems. All experiments have been conducted with
N-fold cross validation over 100 trials. The average accuracy values for specific
scenarios have been reported using the Area Under the ROC Curve (AUC) value.
Paired t-tests are used for statistical comparisons.

4.1 Data Sets

Table 1 lists the data set characteristics used in the experiments. Two different
types of data sets have been used in these experiments: data sets with either
a small number of features with many samples (low-dimensional data set) ob-
tained from the UCI [1] machine learning repository; and DNA Microarray Gene
Expression data sets with a large number of features with few samples (high-
dimensional data set). Gene expression profiles provide important insights into,
and further our understanding of, biological processes. As such, they are key
tools used in medical diagnosis, treatment and drug design [23].
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Table 1. Data set details

Data Set #Instances #Features Cross Validation Reference

Low-dimensional data sets (UCI examples)
Pima 768 8 10 [1]
WBC 699 9 10 [1]
Hepatits 155 19 10 [1]
Parkinson 197 23 10 [1]

High-dimensional data sets (Microarray DNA gene expression)
Breast Cancer 22 3226 3 [10]
Colon Cancer 62 2000 10 [2]
Leukemia Cancer 72 7129 10 [9]
Prostate Cancer 136 12600 10 [19]

4.2 Parameters

Default parameter values as recommended in [7] have been used to configure
the underlying XCS model in GRD-XCS. However, in the case of the high-
dimensional data sets it was necessary to scale-up the population to 2000 in-
dividuals as compared with 1000 individuals for the low-dimensional data sets.
The number of iterations was capped at 5000.

The guided rule discovery module relies on the ranking of feature. Here, we
have limited the ranking to the top 64 features (Λ= 64) for the gene expres-
sion profiles classifications. For the low dimensional data sets, all features were
used when building the probability models (see section 3). The limits used in
probability values calculations in equation 4 were γ=0.5 and ξ=0.1.

4.3 Results

Tables 2 and 3 lists accuracy results for the low-dimensional data sets and high-
dimensional gene expression data sets respectively. Results for GRD-XCS, the
standard XCS and a range of machine learning algorithms (using default Weka
implementations) are listed for each data set. The bold value in each column
indicates the highest mean accuracy value over all trials. The †symbol indicates
that the result for the classifier listed in the row was significantly better than
the GRD-XCS result based on a paired t-test (p < 0.05).

For the low-dimensional data sets considered, the GRD-XCS results were bet-
ter than the standard XCS, although this difference was not always statistically
significant. When compared against the other machine learning algorithms, the
GRD-XCS results were somewhat mixed. GRD-XCS performed best for one data
set only – the Parkinson data set. In contrast, for the high-dimensional data sets
the results for GRD-XCS were significantly better than the other machine learn-
ing algorithms based on paired t-tests. A direct comparison between GRD-XCS
and the standard XCS clearly illustrates that the guided rule discovery mecha-
nisms leads to improved performance.
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Table 2. AUC results for low-dimensional data sets

Classifier Pima WBC Hepatit Parkinson

j48 0.75 ± 0.01 † 0.94 ± 0.01 0.60± 0.04 0.78 ± 0.03
SVM 0.71 ± 0.01 † 0.96± 0.01 0.75 ± 0.02 0.75 ± 0.01

Naive Bayes Classifier 0.81 ± 0.01 † 0.98 ± 0.01 † 0.84± 0.01 † 0.85 ± 0.01

NBTree 0.80 ± 0.01 † 0.98 ± 0.01 † 0.76± 0.03 0.88 ± 0.02
One Rule 0.65 ± 0.01 0.90 ± 0.01 0.56± 0.02 0.77 ± 0.01

Random Forest 0.79 ± 0.01 † 0.98 ± 0.01 † 0.81± 0.02 † 0.94 ± 0.01 †

XCS 0.70± 0.03 0.98 ± 0.01 † 0.81 ± 0.11 † 0.93 ± 0.08

GRD-XCS 0.72± 0.03 0.98 ± 0.01 0.82 ± 0.13 0.94 ± 0.07

Table 3. AUC results for high-dimensional data sets

Classifier Breast Cancer Colon Cancer Leukemia Prostate Cancer

j48 0.43 ± 0.09 0.76 ± 0.04 0.79 ± 0.03 0.79 ± 0.02
SVM 0.63 ± 0.06 0.81 ± 0.03 0.97 ± 0.01 0.91 ± 0.01
Naive Bayes 0.55 ± 0.02 0.64 ± 0.02 0.98 ± 0.01 0.58 ± 0.01
NBTree 0.66 ± 0.03 0.75 ± 0.05 0.97 ± 0.01 0.90 ± 0.01
One Rule 0.42 ± 0.05 0.66 ± 0.04 0.82 ± 0.02 0.81 ± 0.02
Random Forest 0.67 ± 0.09 0.82 ± 0.03 0.92 ± 0.02 0.88 ± 0.01
XCS 0.66 ± 0.12 0.74 ± 0.18 0.93 ± 0.11 0.83 ± 0.09

GRD-XCS 0.74 ± 0.19 0.86 ± 0.14 0.99 ± 0.01 0.93 ± 0.05
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(b) Leukemia data set

Fig. 2. Accuracy and the number of macro-classifier versus the number of iteration
comparisons for the base line XCS model and GRD-XCS for representative low-
dimensional (dotted lines) and high-dimensional (solid lines) data sets

To further explore the efficacy of the proposed guided rule discovery enhance-
ments, figure 2 plots time series values for overall accuracy and the number of
macro-classifiers in the evolving population for both the GRD-XCS and the stan-
dard XCS for a representative low-dimensional dat set and a high-dimensional
gene expression data set. Space constraints preclude the inclusion of plots for all
data sets, however, the general trends for other data sets is qualitatively similar.
There is a correlation between the accuracy of the model and the number of
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macro-classifiers in the population for high-dimensional classification problems
examined. As expected, the number of unique classifiers (individuals) in the pop-
ulation for both XCS and GRD-XCS decreases over time. However, GRD-XCS
typically maintains a smaller number of macro-classifiers.

5 Conclusions

In this paper, we have introduced a guided rule discovery component designed
specifically for XCS when tackling high-dimensional classification problems. Here,
a filtering or feature ranking process is used to build a probabilistic model of fea-
ture importance in a pre-processing phase. This probability distribution is then
used to bias the evolutionary operators in the underlying XCS model. Compre-
hensive numerical simulations have shown that the guided rule discovery mecha-
nism improves the performance of XCS in terms of accuracy and more generally
in terms of classifier diversity in the population, particularly for high-dimensional
classification problems.

We have limited the feature ranking process in this study to simple entropy
analysis. In future work, we will explore the use of alternative metrics to rank
the features. In the case of microarray data, there is scope to incorporate domain
specific knowledge when building the probabilistic rule discovery mask. A second
research direction that we will consider will focus on designing a distributed and
parallel deployment of the scalable model.

References

1. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/
2. Alon, U., Barkai, N., Notterman, D.A., Gishdagger, K., Ybarradagger, S.,

Mackdagger, D., Levine, A.J.: Broad patterns of gene expression revealed by clus-
tering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.
Proc. of the National Academy of Sciences of the USA 96, 6745–6750 (1999)

3. Bacardit, J., Krasnogor, N.: Smart crossover operator with multiple parents for
a Pittsburgh learning classifier system. In: Proceedings of the 8th Conference on
GECCO, pp. 1441–1448. ACM (2006)

4. Bonilla Huerta, E., Hernández Hernández, J.C., Hernández Montiel, L.A.: A New
Combined Filter-Wrapper Framework for Gene Subset Selection with Specialized
Genetic Operators. In: Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J.
(eds.) MCPR 2010. LNCS, vol. 6256, pp. 250–259. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-15992-3_27

5. Butz, M., Pelikan, M., Lloral, X., Goldberg, D.E.: Automated global structure
extraction for effective local building block processing in XCS. Evolutionary Com-
putation 14(3), 345–380 (2006)

6. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fit-
ness exploitation in XCS: bounding models, tournament selection, and bilateral
accuracy. Evol. Comput. 11, 239–277 (2003)

7. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996,
pp. 253–274. Springer, Heidelberg (2001)

http://archive.ics.uci.edu/ml/
http://dx.doi.org/10.1007/978-3-642-15992-3_27


10 M. Abedini and M. Kirley

8. Fernandndez, A., Garcianda, S., Luengo, J., Bernado-Mansilla, E., Herrera, F.:
Genetics-based machine learning for rule induction: State of the art, taxonomy,
and comparative study. IEEE Transactions on Evolutionary Computation 14(6),
913–941 (2010)

9. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.: Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286, 531–537 (1999)

10. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R.,
Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg,
A., Trent, J.: Gene-Expression profiles in hereditary breast cancer. N. Engl. J.
Med. 344(8), 539–548 (2001)

11. Isabelle Guyon, M.N., Gunn, S., Zadeh, L. (eds.): Feature Extraction, Foundations
and Applications. Springer, Heidelberg (2006)

12. Jose-Revuelta, L.M.S.: A Hybrid GA-TS Technique with Dynamic Operators and
its Application to Channel Equalization and Fiber Tracking. I-Tech Education and
Publishing (2008)

13. Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Bäck, T. (ed.)
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Abstract. Time series clustering by k-Means algorithm still has to overcome 
the dilemma of choosing the initial cluster centers. In this paper, we present a 
new method for initializing the k-Means clustering algorithm of time series 
data. Our initialization method hinges on the use of time series motif 
information detected by a previous task in choosing k time series in the database 
to be the seeds. Experimental results show that our proposed clustering 
approach performs better than ordinary k-Means in terms of clustering quality, 
robustness and running time.  

Keywords: time series, k-Means clustering, initialization, motif discovery. 

1 Introduction 

One of the crucial tasks in time series data mining which have received an increasing 
amount of attention lately is time series clustering. Given a set of unlabeled time 
series, it is often desirable to determine groups of similar time series in such a way 
that time series belonging to the same group are more “similar” to each other rather 
than time series from different groups. Although there have been several research 
works on clustering in general, most classic data mining algorithms do not work well 
for time series due to their unique characteristics. In particular, the high 
dimensionality not only slows the clustering process but also degrades it.  

The k-Means is one of the popular algorithms for clustering time series data ([11], 
[8]). However, k-Means still suffers one shortcoming: the initial cluster centers are 
still chosen randomly and hence the clustering quality depends significantly on these 
initial centers. In this paper, we present a new method for initializing the k-Means 
clustering algorithm of time series data. Our initialization method hinges on the use of 
time series motifs discovered by a previous task in choosing k time series in the 
database to be the initial centroids. A motif of a time series is the most frequently 
occurring pattern in that time series ([7]). There exist a few efficient motif discovery 
algorithms for time series, exact as well as approximate algorithms ([2], [7], [9]). 
Although motif discovery algorithm could be used as subroutine in various other data 
mining tasks, so far, surprisingly, there have been so few applications of motifs in 
time series data mining tasks. Recently, only two research works are reported in 
literature: Jiang et al., 2009 in [3] proposed a method to apply motifs in financial time 
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series prediction and Buza and Thieme, 2010 in [1] proposed a method to apply 
motifs in time series classification using Bayesian networks and SVMs.  

The use of motifs in initialization for k-Means clustering of time series can be seen 
as one of our attempts to utilize motif information in some time series data mining 
tasks. To the best of our knowledge, our initialization technique for k-Means time 
series clustering is completely novel. We experimented our proposed clustering 
scheme on synthetic and real world datasets. Experimental results show that our 
proposed clustering approach performs better than ordinary k-Means clustering for 
time series in terms of clustering quality, number of iterations and running time. 

2 Background 

2.1 Dimensionality Reduction 

In order to adapt the various clustering algorithms to massive time series datasets, one 
can reduce the dimensionality of the time series. For time series, one tries to find a 
representation at a lower dimensionality that preserves the original information and 
describes the original shape of the time series data as closely as possible. Many 
methods have been proposed in the literature, including Discrete Fourier Transform 
(DFT), Discrete Wavelet Transform (DWT), Piecewise Aggregate Approximation 
(PAA), Adaptive Piecewise Constant Approximation (APCA). PAA ([4]) is chosen in 
our work due to its popularity and ease-to-implement property. In PAA, the time 
series is divided into equal sized segments and the vector consisting of the mean 
values of the segments becomes the reduced representation of the time series. 

2.2 Clustering for Time Series Data 

A fast method to perform clustering of time series data is k-Means and its variants 
([11], [8]). The basic idea behind k-Means is the continuous reassignment of objects 
into different clusters, so that the within-cluster distance is minimized. Therefore, if x 
are the objects and c are the cluster centers, k-Means seeks to optimize the following 
objective function  

 
 
 

 
Unfortunately, the k-Means algorithm is a local optimization strategy, therefore it is 
guaranteed to converge to a local but not necessarily global optimum. Besides, it is 
sensitive to the choices of the initial positions of the cluster centers. These initial 
center locations are often termed the seeds for the k-Means algorithm.  

2.3 Time Series Motifs and the Brute-Force Algorithm for Finding Motifs  

In this work, we use the definition of motif first introduced by Lin et al., 2002 ([7]). 
This nontrivial definition of motif requires some other terminology and definitions 
given as follows.  
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Definition 1. Time series: A time series T = t1 t2…, tm is an ordered set of m real-
valued points. 

Definition 2. Subsequence: Given a time series T of length m, a subsequence C of T is 
a sampling of length n < m of contiguous position from T, that is, C= tp… tp+n-1 for 1 ≤ 
p ≤ m – n + 1. 

Definition 3. Match: Given a real number R and a time series T, containing a 
subsequence C beginning at position p and a subsequence M  beginning at q, if 
D(C,M) <=R  then M is called a matching subsequence of C. 

Definition 4. Trivial match: Given a time series T containing a subsequence C 
beginning at position p and a matching subsequence M beginning at q, we say that M 
is a trivial match to C if either p = q or there does not exists a subsequence M’ 
beginning at q’ such that D(C, M’)>R and either q<q’<p or p<q’<q. 

Definition 5.  K-Motifs: Given a time series T, a subsequence length n and a range R, 
the most significant motif in T (called thereafter 1-Motif) is a subsequence C1 that has 
the highest count of non-trivial matches (ties are broken by choosing the motif whose 
matches have a lower variance). The Kth most significant motif in T (called thereafter 
K-Motif) is the subsequence Ck that has the highest count of non-trivial matches and 
satisfies D(Ck, Ci) >2R , for all 1< i <K. 

Lin et al. ([7]) also introduced the brute-force algorithm to find 1-motif (see Fig. 1). 
This brute-force algorithm works directly on raw time series and requires O(m2) calls 
to the distance function (m is the length of the time series).  

 
Algorithm Find-1-Motif-Brute-Force(T, n, R) 
best_motif_count_so_far = 0 
best_motif_location_so_far = null;   
for i = 1 to length(T) – n + 1 
    count = 0;  pointers = null; 
    for j = 1 to length(T) – n + 1 
         if Non_Trivial_Match (C[i: i + n – 1], C[j: j + n – 1], R ) then 
               count = count + 1; 
               pointers = append (pointers, j); 
          end 
     end 
     if count > best_motif_count_so_far then 
         best_motif_count_so_far = count; 
         best_motif_location_so_far = i; 
         motif_matches = pointers; 
     end 
   end 

Fig. 1. The outline of brute-force algorithm for 1-motif discovery 
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3 The Proposed Clustering Method for Time Series Data 

In this work, we propose a new method for initializing the k-Means clustering 
algorithm of time series data. Our initialization method is based on the use of time 
series motif information discovered by a previous step in choosing k time series in the 
database to be the initial centroids. Our proposed approach to perform clustering of 
time series data is outlined in Fig. 2.  

 
Step 1: We find 1-motifs for all time series in the database using the brute-force 1-

motif discovery algorithm. 
Step 2: We apply k-Means clustering on the 1-motifs of all time series to obtain the 

clusters of motifs. From the centroids of the motif clusters, we derive the 
associated time series and choose these time series as initial centroids for the k-
Means clustering in the step 4. 

Step 3: PAA transform is computed for all time series data in the database to reduce 
their dimensionality. 

Step 4: We perform k-Means algorithm on the reduced time series using the initial 
centroids obtained in Step 2. 

Fig. 2. The algorithm for the proposed clustering approach 

To have an efficient implementation of our proposed clustering approach, we try to 
speed up Step 1 and Step 2. To make the brute-force algorithm for finding 1-motif 
more efficiently in a clustering context, we apply some state-of-the-art techniques to 
improve it. Furthermore, we devise another technique to derive the initial centroids 
from the results of k-Means clustering on motifs. 

3.1 How to Speed Up the Brute-Force Algorithm for Finding 1-Motifs 

To speed up significantly the brute-force algorithm for finding 1-motif (Step 1 in our 
proposed method of time series clustering), we achieve four improvement techniques. 
Three among the four techniques are similar in spirit to those were used in the exact 
algorithm of time series motif discovery proposed by Mueen et al., 2009 ([9]) even 
though the definition of motif in our work is somewhat different from their simple 
definition of motif. Thank to the three techniques, the algorithm proposed by Mueen et 
al. (called MK [9]) is up to three orders of magnitude faster than brute-force algorithm. 

 
Exploiting the Symmetry of Euclidean Distance 

The brute-force algorithm requires approximately O(m2) calls of distance function (m is 
the length of time series). However, by exploiting the symmetry of Euclidean distance 
([4]), that means D(A, B) = D(B, A), we can prune off a half of the distance 
computations by storing D(A, B) and reusing the value when it is necessary to find D(B, 
A). Therefore, the algorithm only needs to compute and save m(m-1)/2 distance values. 
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Exploiting Triangular Inequality and Reference Point 

In order to check whether two subsequences Ca and Cb are non-trivial matches, the 
brute-force algorithm has to check if D(Ca, Cb) is greater than a given range R (R > 0) 
or not rather than to compute a real value for this distance. Basing on this observation, 
we can apply triangular inequality and the reference point technique proposed by 
Mueen et al. in [9] as described follows.  

Given a reference subsequence Q we have to compute the distances from Q to all 
the subsequences in time series Ti. That means we have to compute D(Q, ti) for each 
subsequence ti in the time series Ti. 

Observe that given two subsequences Ca and Cb. By triangular inequality, we have  
 D(Q, Ca) ≤ D(Q, Cb) + D(Ca, Cb). From that, we can derive: D(Ca, Cb) ≥ D(Q, Ca) – 
D(Q, Cb). Thus, if we want to check whether D(Ca, Cb) ≥ R , we only need to look at 
D(Q, Ca) – D(Q, Cb). If D(Q, Ca) – D(Q, Cb) ≥ R, we can conclude that D(Ca, Cb) ≥ R  
since D(Ca, Cb) ≥  D(Q, Ca) – D(Q, Cb). 

When applying reference point technique, we have to deal with the problem how to 
select an appropriate reference subsequence Q. To apply the triangular inequality for a 
tighter checking, we should select one subsequence Q to be reference subsequence 
such that the difference D(Q, Ca) – D(Q, Cb) gets the large value. Hence, in this work 
we choose a subsequence Q which stays outside of all the other subsequences as 
reference subsequence. For more details about the reference point technique, 
interested readers can refer to [9]. 

 
Applying Early Abandoning 

In the case the triangular inequality can not help to check if D(Ca, Cb) ≥ R or not since 
D(Q, Ca) – D(Q, Cb) <R, we have to compute the Euclidean distance D(Ca, Cb) 
between them. In this case we can apply early abandoning technique. The idea of this 
technique is that we can abandon the Euclidean distance computation as soon as the 
cumulative sum during distance computation goes beyond the range R. 

 
A Dynamic-Programming Technique to Improve Non_Trivial_Match Checking 

Beside the three above-mentioned techniques, we devise a dynamic programming 
technique in order to improve the non-trivial match checking between two 
subsequences C[i: i+n-1] and C[j: j+n-1]. This technique has the same spirit of dynamic 
programming but does not require any array to keep intermediate computed results. 

To perform non-trivial match checking between two subsequences C[i: i+n-1] and  
C[j: j+n-1], we look at the non-trivial match check between two subsequences C[i: i+n-1] 
and C[k: k+n-1] for k ∈ [i +1, j-1]. At the previous step k we have already checked 
whether D(C[i: i+n-1], C[k: k+n-1]) > R. We can use a flag variable Flag initiated with false 
value. If there exists a value k for which we have D(C[i: i+n-1], C[k: k+n-1]) >R, then we 
set Flag = true. Later, when we need to perform non-trivial match checking between 
C[i: i+n-1] and C[j: j+n-1], we first check whether D(C[i: i+n-1], C[j: j+n-1]) > 0 by using early 
abandoning technique. If  D(C[i: i+n-1], C[j: j+n-1]) > R, we set Flag = true to serve the 
non-trivial match checking between two subsequences C[i: i+n-1] and C[l: l+n-1] for some 
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l > j and conclude that C[i: i+n-1] is not a non-trivial match with C[j: j+n-1]. Otherwise, if 
D(C[i: i+n-1], C[k: k+n-1]) ≤ R, we check the Flag variable.  

• If Flag = true, then there exists some k ∈ [i +1, j-1] such that D(C[i: i+n-1], C[k: k+n-

1]) >R. Therefore, we conclude that C[i: i+n-1] is a non-trivial match with C[j: j+n-1].  

• Otherwise, we can not find any k ∈ [i +1, j-1] such that D(C[i: i+n-1], C[k: k+n-1]) >R,  
hence, we conclude that C[i: i+n-1] is not non-trivial match with C[j: j+n-1].  

Now we can come to the final version of our brute-force algorithm for time series 1-
motif discovery. But due to limited space, we could not describe the algorithm here. 
For more details about this algorithm, interested readers can refer to [6]. 

3.2 How to Derive Initial Centers from Results of K-Means Clustering on 1-
Motifs 

After applying k-Means clustering on the 1-motifs of all time series, we obtain the 
clusters of motifs and the centers of these motif clusters. Remember that the centers of 
these motif clusters are just computed subsequences, they have no connection to any 
time series in the database. Therefore for each such cluster, we find a particular motif 
which distance to the cluster center is smallest and then from this particular motif, we 
access to the corresponding time series and use this time series as one initial center for  
k-Means clustering in Step 4 of the clustering approach given in Figure 2.  

To speed up the finding of the specific motif that is closest to its cluster center, we 
can apply the early abandoning technique as follows. Given a motif cluster G, we 
have to compute the distances from all motifs in G to its center. For a motif Ti in 
cluster G, if D(center(G), Ti) = R and for some other motif Tj in G we want to check if 
D(center(G), Tj) is greater than R or not. If the cumulative sum so far in the Euclidean 
distance computation for D(center(G), Tj) goes beyond R, we can abandon the 
distance computation and conclude that D(center(G), Tj) >= D(center(G), Ti).   

4 Experimental Evaluation 

In this experiment, we compare the performance of our proposed clustering approach 
with classical k-Means. We implemented the two algorithms with Microsoft Visual 
C#  and conducted the experiments on a Intel(R) Pentium(R) Dual CPU T2370 & 
1.73 GHz, 2GB RAM PC. 
   
Clustering Quality Evaluation Criteria 

We can use classified datasets and compare how good the clustered results fit with the 
data labels, which is the popular clustering evaluation method. Five objective 
clustering evaluation criteria were used in our experiments: Jaccard, Rand, FM, CSM 
and NMI. The definitions of these evaluation criteria can be found in [11].  

Besides, since k-Means seeks to optimize the objective function by minimizing the 
sum of squared intra-cluster error, we can also evaluate the quality of clustering by 
using the  objective function given in the subsection 2.2. 



 Motif-Based Method for Initialization the K-Means Clustering for Time Series Data 17 

Data Description 

We tested on two publicly available datasets : Heterogeneous and Stock. The 
Heterogeneous, which is obtained from the UCR Time Series Data Mining Archive 
[5], is the classified dataset, therefore we can use it to evaluate the accuracy of the 
clustering algorithms. The Stock dataset is the stock data of year 1998 from Historical 
Data for S&P 500 Stocks [10] and each stock time series consists of 252 points 
representing the open prices of a particular stock. 

We conduct the experiments on the two datasets with cardinalities ranging from 1000 
to 10000 for each dataset. In the Heterogeneous dataset, each time series consists of 
1024 points. In the Stock dataset, the length of each time series has been set to 252. 

The Heterogeneous dataset is generated from a mixture of 10 real time series data 
from the UCR Time Series Data Mining Archive. Using the 10 time-series as seeds, 
we produced variation of the original patterns by adding small time shifting (2-3 % of 
the series length), and interpolated Gaussian noise. Gaussian noisy peaks are 
interpolated using splines to create smooth random variations. 
 
Experimental Results 

For the Heterogeneous dataset we tested on 1000 time series. In this dataset, each 
time series consists of 1024 points. We used the brute-force 1-motif discovery 
algorithm with the parameter setting: the length of the motif n = 16 and the range R = 
0.008. Here, we applied PAA as a feature extraction method with the length of each 
segment l = 8. We compare the performance of k-Means on time series reduced by 
PAA (called K-Means/PAA) and k-Means initialized with motif information on time 
series reduced by PAA (called K-Means/PAA+Motif). Since the Heterogeneous 
dataset is a classified dataset, we have the knowledge of correct clustering results in 
advance. In this case, we can compute the evaluation criteria such as Jaccard, Rand, 
FM, CSM, and NMI to assess the clustering quality of the competing algorithms.  

Table 1. Evaluation criteria values obtained from two clustering algorithms with 
Heterogeneous dataset 

Clustering Algorithm Jaccard Rand FM CSM NMI 

K-Means/ PAA 0.5623 0.9303 0.7351 0.8 0.8956 

K-Means/ PAA+Motif 0.7899 0.9749 0.8848 0.9 0.9543 

 
Table 1 shows the criteria values obtained from the experiments on the two 

algorithms: K-Means/PAA and K-Means/PAA + Motif. As we can see from Table 1, 
our new algorithm (K-Means/PAA+Motif) results in better criteria values than the 
classical K-Means (K-Means/PAA). 

In Fig. 3 we show the objective function from the experiments with the two 
methods: K-Means/PAA and K-Means/PAA+Motif on the Heterogeneous dataset 
over different widths of PAA segment. Again, we can observe that K-
Means/PAA+Motif produces a better objective function value than K-Means/PAA, 
especially when PAA segment is fixed with the appropriate width (l = 8). Besides, we 
can note that the high reduction ratio of the feature extraction stage may negatively 
impact on the quality of clustering when using motif information for initialization.  
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Fig. 3. K-Means/PAA vs. K-Means/PAA+Motif in terms of objective function (Heterogeneous 
dataset) 

In Fig. 4 we show the number of iterations from the experiments with the two 
clustering methods: K-Means/PAA and K-Means/PAA+Motif on the Heterogeneous 
dataset, over different lengths of time series. Again, we can see that K-Means/PAA + 
Motif requires a smaller number of iterations than K-Means/PAA. 
 

 

Fig 4. K-Means/PAA vs. K-Means/PAA+Motif in terms of the number of iterations over 
different lengths of time series (Heterogeneous dataset) 

Since motif discovery is an important task in time series data mining, this task 
should be included in any time series data mining systems beside similarity search, 
classification, clustering, rule discovery, prediction and anomaly detection. In real 
world applications, motif discovery helps to provide the most representative pattern or 
a good summary about a time series. Therefore, it is a task that should be done before 
several other time series data mining tasks such as classification, clustering, rule  
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5 Conclusions 

Time series motif discovery is a crucial task in time series data mining since it brings 
out the most representative pattern of a time series. In this paper, we have presented a 
motif-based technique for initializing the k-Means algorithm for time series 
clustering. We use motif information to derive the initial centers for clustering rather 
than selecting them in a random manner. Examining the experimental results of the 
proposed clustering approach against classical k-Means algorithm, we see that our 
method of seed selection for k-Means clustering of time series data provides a fast and 
reasonably reliable way to initialization. 

To make brute-force algorithm for 1-motif discovery applicable in clustering, we 
exploit some state-of-the-art techniques to speed up the algorithm such as applying 
the triangular inequality, the symmetry of Euclidean distance, early abandoning and 
using a reference point. We also devise a dynamic programming technique to improve 
the non-trivial match checking between two subsequences in the brute-force 
algorithm for 1-motif discovery. 
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castudillo@utalca.cl,

http://ing.utalca.cl/~castudillo/
2 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6

oommen@scs.carleton.ca

http://scs.carleton.ca/~oommen/

Abstract. This paper presents a classifier which uses a tree-based Neu-
ral Network (NN), and uses both, unlabeled and labeled instances. First,
we learn the structure of the data distribution in an unsupervised man-
ner. After convergence, and once labeled data become available, our
strategy tags each of the clusters according to the evidence provided
by the instances. Unlike other neighborhood-based schemes, our clas-
sifier uses only a small set of representatives whose cardinality can be
much smaller than that of the input set. Our experiments show that, on
average, the accuracy of such classifier is reasonably comparable to those
obtained by some of the state-of-the-art classification schemes that only
use labeled instances during the training phase. The experiments also
show that improved levels of accuracy can be obtained by imposing trees
with a larger number of nodes.

Keywords: Hierarchical SOM, Topology-Based Self-Organization, Pat-
tern Recognition, Semi-Supervised Learning.

1 Introduction

The literature includes scores of algorithms which can achieve supervised Pattern
Recognition (PR) [5]. Such schemes assume the full specification of the identity
of each training instance. In the unsupervised model [10], the class labels of
the instances are assumed to be unknown. Rather, the algorithm attempts to
infer the distinct group of items, a process which might be time consuming,
especially for large datasets. We propose using the Tree-based Topology Oriented
SOM (TTOSOM) [1] for classification, attempting to bridge the two paradigms
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by following the so-called semi-supervised approach, explained by Zhu [15]. Using
an unsupervised approach, we will first train a TTOSOM in which the neural
tree mimics the properties of the input set. Subsequently, we assign a class label
to every single node in the NN1 by using a voting scheme.

On receiving the testing data, one determines the closest neuron to the testing
sample and assigns the sample to the corresponding class.

Once the TTOSOM has been computed, the complexity of the testing is linear,
not in cardinality of the training set, but in the size of the neural tree.

Such a nearest-neighbor type testing is similar to the ones used by prototype
reduction schemes [13]. However, in our case, the prototypes are not unrelated
to each other. Rather, they are constrained by the tree structure.

We cannot expect an accuracy greater than that which a true nearest neighbor
classifier yields, because we could be only using a small set (e.g., 25 prototypes)
instead of the entire set, which could consist of thousands of points. Further,
by starving the classifier of information of the class labels, one can expect the
accuracy to be even less. What is astonishing, however, is the fact that our
“semi-supervised” TTOSOM-based classifier achieves an accuracy which is only
marginally less than state-of-the-art supervised classifiers reported.

The remainder of the paper is organized as follows: We first summarize the
TTOSOM. Subsequently, we present the details of the design and implementa-
tion of our TTOSOM-based classifier. Thereafter, we provide the experimental
results, and finally, we conclude the paper with a discussion of the results of our
study.

2 The Tree-Based Topology Oriented SOM

The authors of [1] presented the Tree-based Topology Oriented SOM (TTOSOM),
a technique by which the user can represent data points using prototypes, both
with respect to the underlying distribution and an arbitrary tree-like topology.
Since the topology can be fairly arbitrary, the TTOSOM defines a Bubble of
Activity (BoA) different from the ones defined in the prior literature, both struc-
turally and conceptually. As we can see, the map learned as a consequence of the
training process is able to infer both the distribution and, simultaneously, the
structured topology of the data. This was verified by extensive experiments. The
strategy proposed reduces to the traditional 1-dimensional SOM when the tree
is a linear sequence of nodes. In other words, the traditional SOM is a special
case of the family of ANNs proposed in [1].

Acquiring information about a set of stimuli in an unsupervised manner usu-
ally demands the deduction of its structure. In general, the topology employed
by any ANN possessing this ability has an important impact on the manner
by which it will “absorb” and display the properties of the input set. Consider
the following example: A user may want to devise an algorithm that is capa-
ble of learning a triangle-shaped distribution as the one depicted in Figure 1.
1 This can be done in numerous ways, but we have chosen to do it using a simplistic

Euclidean criterion.
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The SOM tries to achieve this by defining an underlying grid-based topology
and to fit the grid within the overall shape, as shown in Figure 1a (duplicated
from [12]). However, according to the authors of [1], a grid-like topology does
not naturally fit a triangular-shaped distribution, and thus, one experiences a
deformation of the original lattice during the modeling phase. As opposed to
this, Figure 1b, shows the result of applying the TTOSOM. As the reader can
observe from Figure 1b, a 3-ary tree seems to be a far more superior choice for
representing the particular shape in question.

(a) (b)

Fig. 1. How a triangle-shaped distribution is learned through unsupervised learning.
(a) The grid learned by the SOM. (b) The tree learned by the TTOSOM.

On closer inspection, Figure 1b depicts how the complete tree fills in the
triangle formed by the set of stimuli, and further, seems to do it uniformly. The
final position of the nodes of the tree suggests that the underlying structure of
the data distribution corresponds to the triangle. Additionally, the root of the
tree is placed roughly in the center of mass of the triangle. It is also interesting
to note that each of the three main branches of the tree, cover the areas directed
towards a vertex of the triangle respectively, and their sub-branches fill in the
surrounding space around them in a recursive manner, which the authors of [1]
identify as being a holograph-like behavior. The results of [1] also showed how
the TTOSOM can be used to obtain the skeleton structure of an image being
examined, and its Pattern Recognition (PR) capabilities.

3 The TTOSOM-Based Classifier

Zhu, in [15], proposed the concept that clustering algorithms could be employed
to perform pattern classification. As per his solution methodology, one alter-
native is to perform classification by applying the so-called Cluster-then-Label
method. Prior research to the latter approach includes [3,4,9], among others.
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Given a clustering algorithm AC , a set of labeled instances XL, a set of unla-
beled instances XU , and a supervised learning algorithm AS , the Cluster-then-
Label method works as follows: First, we identify the clusters of the input man-
ifold using the clustering algorithm AC . Secondly, we determine which of the
labeled samples fall in each cluster. For each cluster we determine a decision
boundary based on the supervised algorithm AS , and the labeled samples as-
signed to that cluster, which, in turn, allows the prediction of the label of every
cluster. Finally, each uncategorized item is labeled according to the predicted
class of the cluster in which it is contained.

According to the author of [15], the performance of this approach is dependent
on the capabilities of the clustering algorithm to mimic the properties of the
original data distribution.

Our aim is to devise a classifier that works in 2 stages. First, we learn the
stochastic properties of the data in an unsupervised manner. Secondly, we use
some labeled items to tag the decision regions created previously. The resultant
TTOSOM-based classifier is described in Algorithm 1.

In order to learn the decision boundaries, the TTOSOM algorithm is employed
to train a tree structure so as to mimic the properties of the distribution of data
points of all the classes, which is done without the necessity of providing the
actual class labels of the items. This corresponds to line 1 of Algorithm 1. The
output of this initial phase is a TTOSOM tree structure, where each of the neural
nodes are optimally placed in the feature space so as to glean the properties of
the data distribution. Our hypothesis is that these neurons represent regions of
the hyper-space belonging to the same taxonomy, whose label is unknown. The
problem then is to accurately guess the actual label of that taxonomy.

In the subsequent phase (see line 2 of Algorithm 1), our classifier determines
which subset of the labeled instances are represented by each neuron. In an
ideal scenario, where a neuron is the Best Matching Unit (BMU) of instances
belonging to the same category, the decision of tagging the unlabeled instances
falling into the region will be trivial. Unfortunately, as the authors of [3] point
out, the latter does not occur necessarily. For this reason a general mechanism
is required which permits the a posterior decision about the class to be assigned
to each neuron. We thus maintain a statistical record of the number of instances
belonging to each category that fall in a particular region where a neuron is the
BMU.

The next phase (see line 3 of Algorithm 1), consists of a supervised phase
in which class labels are assigned to each neuron in the tree. From a statistical
perspective, when the functions that dictate the probability of finding an item
in a certain region of the hyperspace are known, the problem of deciding the
category of a particular sample in the area can be optimally determined by the
function which maximizes its probability where the query item is positioned.
However, as per our problem statement, these probability density functions are
not known, and so if one employs an approach like the one described above, we
must have an “approximation of sorts” of such functions. Fortunately, there is
a simple way to have a rough estimation of the probability functions, i.e., by
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using the information provided by the labeled training set. Each neuron in the
tree is thus assigned a label based on the k-Nearest Neighbor (k-NN) rule [5].
On closer inspection, the label of each neuron will be the one which occurs more
frequently among the k nearest samples, where k is the number of data points
for which the particular neuron is the BMU.

Algorithm 1. TTOSOM-Build-Classifier(XU,XL)
Input:

i) XU , the set of unlabeled instances.

ii) XL, the set of labeled instances.
Output:

i) A set of labels YU of the unlabeled samples XU .
Method:
1: Train a TTOSOM tree using XU ∪ XL.
2: Determine the subset X i

L ∈ XL for which the neuron i is the BMU.
3: Label each neuron using X i

L and the k-nearest neighbors rule, where k = |X i
L|.

4: Label each sample in XU as per the label of its respective BMU.
End Algorithm

The final step (line 4 of Algorithm 1) consists in predicting the class label
of each of the unlabeled instances. In our method, this is done by taking a
particular instance referred to as the “query” instance and finding its, BMU,
i.e., the closest neuron in the feature space, which is basically the notion of a
Vector Quantization (VQ) query. The class label of the query instance will be
same as the class label of the neuron which is “representing” it. Given the nature
of the TTOSOM, some of the neurons act as a “joint” within the tree, reflecting
the concentration of other smaller clusters in its vicinity. It is likely, that these
joints may not represent any sample in particular, and therefore, one needs an
additional assumption in order to define its class label. In our case, we have
simply decided to exclude them from the competitive learning process. In that
sense, the search for the BMU in the classifier is slightly different from the one
utilized by the TTOSOM (and inherited from the SOM). In this case, the label
of the neuron is examined, and when it is undefined, the respective neuron is
excluded from the “competition” process, which is a phenomenon that we call
supervised BMU search.

4 Experimental Setup

The Classifiers: The classifiers considered in this study are 5 supervised classi-
fiers, namely, Bayesian Network (BN), Näıve Bayes (NB), C4.5, k-NN and LVQ1,
and 2 “semi-supervised” classifiers, namely, the TTOSOM and the SOM. The
reader may consult [5] for a general overview of these schemes.

Performance Metrics for Comparing Classifiers: In this study, we shall
utilize the most simple and widely-used performance metric, i.e., the accuracy of
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the classifier [6]. Even though the accuracy measure is, in many contexts, inade-
quate, our experience is that the inferences gleaned from using it are identical to
those obtained by using a more elaborate measure such as the Area Under the
ROC Curve (AUC). For a comprehensive examination of metrics for quantifying
the quality of a classifier, the interested reader is requested to consult [2,14].

Stochastic Sampling: In this study, we use the technique referred to as “Strati-
fied 10-fold cross-validation”. Here, the training samples are roughly divided into
10 equal partitions. Each fold is further used for testing the classifier, while the
remainder 9 are employed for training. The process is then repeated for each
of the folds. The term stratified, comes from the statistical concept known as
“stratified sampling”, which is a sampling method that draws items from the
different categories so as to obtain relatively homogeneous subgroups.

The Datasets: To test the ability of the TTOSOM for classifying items be-
longing to the real world domain, we have 6 datasets from the UCI Machine
Learning repository [8]. These datasets are Iris, Wisconsin Diagnostic Breast
Cancer (WDBC), Wine, Yeast, Wine Quality, and Glass.

The datasets used in these experiments have different numbers of output
classes, ranging from 2 to 10. Additionally, their features pertain primarily to the
continuous domain, whose dimensions varies from 4 up to 30. Table 1 describes
the different aspects of each dataset, including its name, number of instances,
number of attributes, number of output classes and problem type.

Table 1. Datasets selected for the comparison of the classifiers

Dataset Instances Attributes Classes Problem Type

Iris 150 4 3 classification
WDBC 569 30 2 classification
Wine 178 13 3 classification
Yeast 1,484 8 10 classification

Wine Quality (red) 1,599 11 6 classification/regression
Glass 214 9 6 classification

The Parameters: The respective parameters for the algorithms were rendered
to be the same across all the different datasets, and no algorithm possessed pa-
rameter values that were tuned for the datasets. In particular, the 3 strategies
based on VQ, i.e., the TTOSOM, the SOM and the LVQ1 utilized the same
number of iterations (50, 000). Additionally, they all used the same initial learn-
ing rate (0.5), and the radius of the BoA was chosen in such a way that initially,
all the neurons were considered as part of the BoA, i.e., twice the depth of the
tree in the case of the TTOSOM, and the width plus the height in the case
of the SOM. Observe that LVQ1, as defined in [11], does not consider a BoA.
As well, the three schemes utilized the same (linear) decaying schedule for its
parameters.
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5 Results

Comparison to Other Classifiers: The results of the performance of the
different classifiers (columns) across all the dataset (rows) is summarized in
Table 2. Specifically, we are interested in the performance of our classifier on
problems across a diversity of domains in which labeled and unlabeled data is
available2. For example, Table 2 shows that the TTOSOM classifier, using only
15 neurons, is able to accurately predict with an accuracy of 89.33% the correct
label of the instances belonging the wine dataset. On the other hand, the SOM
classifies correctly the same dataset with an accuracy of only 67.98%.

One possibility for quantifying the quality of our method is to consider the
family of classifiers inheriting the VQ mechanism. One such strategy that be-
longs to the supervised family is the LVQ1, while the SOM and the TTOSOM
primarily learn the distributions using the unsupervised learning paradigm. The
three classifiers utilized the same parameters, which are described in Section 4.
Besides, while the LVQ1 and the SOM utilized 128 neurons, the results shown
for the TTOSOM include only 15 neurons. As per our results, the TTOSOM,
using only a small percentage of the neurons used in the SOM and LVQ1 (almost
10%), outperforms their recognition capabilities in all six datasets.

Apart from the above, observe that the classification results offered by the
TTOSOM are comparable to the ones obtained by the k-NN. However, both
approaches present important differences in how they perform learning. First
of all, the k-NN, being a supervised classifier, requires all the instances to be
properly labeled. Secondly, due to its “laziness”, the computations for the k-
NN are left until a query is performed, which implies that the whole manifold
is visited so as to create the ordering of the samples, as per their proximity
to the query sampl6 years since the date of the TRes. On the other hand, the
TTOSOM only requires a small subset of the tagged labels, and is able to learn
from unlabeled samples. Also, the query is done by using the TTOSOM tree and
the respective labels of the neurons, and only requires the comparison with the
total number of neurons, which is usually significantly smaller than the entire
dataset. Even though our method internally uses the k-NN to tag the neurons,
we note that this is done only once, i.e., when the tree is being learned, and
furthermore, the computations are performed only for each neuron instead of
the whole dataset.

Another perspective by which we can compare the schemes is to consider
the “most” competitive supervised classifiers. In this case, except for the LVQ1,
they outperformed the accuracy produced by the unsupervised strategies. This
is an expected behavior, because the supervised classifiers had access to the class
labels of all the instances. However, in environments where only few tags are
available, traditional supervised classifiers struggle to extract useful information
from unlabeled instances. Indeed, experiments performed by Gabrys et al. [9],
showed that when a sufficiently large number of labeled instances were utilized,
2 Our hypothesis is that one should use as much labeled data as is available. Since the

datasets mentioned above are all composed of labeled instances, we have opted to
use all this information in the “supervised” phase of our algorithm.
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the semi-supervised schemes included in their study achieved levels of accuracy
that were comparable to the ones obtained by the supervised classifiers that
incorporated a much higher number of labeled samples.

Table 2. General classification results of the methods investigated, reported in terms
of accuracy (shown in percentages)

Dataset TTOSOM15 BN NB C4.5 k-NN LVQ1 SOM

iris 96.67 92.67 96.00 96.00 95.33 96.00 84.67

wdbc 93.32 95.08 93.15 93.15 96.66 92.09 90.51

glass 67.29 71.96 49.07 67.76 67.76 61.22 63.08

wine 89.33 98.88 97.19 93.82 94.94 74.16 67.98

yeast 54.18 56.74 57.61 55.86 54.78 24.33 46.16

wine quality 51.91 57.72 55.03 62.91 57.79 44.15 49.59

Effect of the Number of Neurons: Another set of experiments were con-
ducted so as to observe the effect of the number of neurons on the classification
accuracy. To test this, we systematically increased the size of the TTOSOM tree.
In order to retain the desired property that, initially, all the neurons are con-
sidered as part of the BoA, in each case we adjusted the radius to be twice the
depth of the tree. Even though the size of the tree was increased, we decided to
maintain the number of training iterations to be unchanged.

We identified an increase in the performance as the number of neurons is
increased. For example, for the wine dataset, an accuracy of 64.61% was obtained
when using 15 nodes, and increased to 76.40% when using 1023 nodes. Similarly,
for the glass dataset, we obtained an accuracy of 69.16% when we used 15 nodes,
which increased to 71.96% when the number of nodes was 127.

Additionally, we noted that a lesser number of neurons, which implies a lower
computational requirement, outputs a fairly good approximation to the one of-
fered by the reported supervised classifiers.

Changing the Distance Measure: In all the results presented so far, we as-
sumed that the data was previously normalized. Specifically, the classifiers uti-
lized the so-called Local Normalization [7], in which the range of every dimension
was scaled to be between 0 and unity so as to have them equally weighted. We
performed additional experiments so as to observe how the technique behave if
we maintain all the parameters at their original values, and simultaneously not
perform any type of normalization prior to the training process.

As a general remark we note that one observes differences with respect to the
case when the data was normalized. For example, in the glass dataset it was
possible to obtain an accuracy of 71.96% when using 127 neurons which is an
index equivalent to the one provided by the best supervised classifier (BN) for
this specific problem domain. It is even more interesting to see that when the
number of neurons was increased to 1,023, the accuracy obtained was 74.30%,
which is the best reported accuracy obtained for the glass dataset, when one
includes all the supervised classifiers displayed in Table 2.
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However, we have noticed as well, that in some problem sets, as in the case
of the wine dataset, the classification accuracies are inferior to those obtained
when an a priori normalization was invoked.

Our explanation for this phenomenon is that, when we do not normalize the
feature vectors before processing them, the classifier weights those features with
larger ranges for its values, more, and in certain cases it happens that these
features are exactly the ones that help to advantageously discriminate between
the different categories. This reasoning also explains the scenario when poorer
results are obtained. This is apparently a consequence of weighting certain fea-
tures (i.e., those which possess a high variance) more, i.e., those which offer
inadequate discriminating aspects. Those features do not provide information
that is too useful for effectively building the discrimination regions.

Using Trees Other Than Binary Trees: All the experiments presented previ-
ously in this section have employed a binary tree structure. To further investigate
the power of the TTOSOM, we performed another set of experiments so as to
test the effect of using trees with a higher branching factor, i.e., the number of
children that a particular node had.

In particular we tested the algorithm using trees with a branching factor of 3.
As far as we could observe, there were no noticeable changes in accuracy when
the branching factor per node is increased from 2 to 3.

In [1], when we focused on the clustering properties on the TTOSOM, we
showed how different branching factors led to a “better representation” of cer-
tain shapes. By better representation, in this case, we meant that the basic
properties of some objects were preserved, so that the human eye could per-
ceive the essential characteristics of the original object by merely looking at the
learned structure. The above mentioned paper included examples, including a
triangle and a rectangle, which were represented in a superior manner using
specific branching factors (c.f., the representations in [12], which correspond to
neural structures for the triangle using a grid and a line, respectively).

The clustering property mentioned above suggests that the symmetry pre-
sented in some data sets could be better exploited by a TTOSOM-based clas-
sifier using the adequate branching factor. However our preliminary evidence
shows us that at least for the real-world dataset that we tested, the classifier
is not noticeably affected by incrementing the number of branches in the tree.
Instead, the number of neurons utilized, regardless of the branching factor of the
tree, seems to be more pertinent when it concerns the resultant accuracy. This
certainly is an avenue for further research.

6 Conclusions

The purpose of this paper was to design and present an experimental analy-
sis of a novel PR scheme based on the TTOSOM. Our classifier combined the
information provided by labeled and unlabeled instances simultaneously.

Our experimental results showed that the TTOSOM classifier possesses
an improved classification accuracy in comparison to other VQ-based classifiers.
Additionally, these accuracies are comparable to the one attained by the
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state-of-the-art schemes, even when the number of neurons utilized is only a
small fraction of the cardinality of the dataset.

Moreover, increasingly superior recognition capabilities could be obtained
when training trees with a larger number of neurons. In particular, our results
suggest a “monotonic” improvement of the mean classifier performance as the
size of the tree is increased. We believe that this occurs because of the desirable
properties of the TTOSOM to mimic the underlying distribution of the points,
and its capability to represent the stochastic and structural characteristics more
accurately by utilizing a larger tree.
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Abstract. Rule and tree based classifier learning systems can employ
the idea of order on discrete attribute and class values to aid in classifi-
cation. Much work has been done on using both orders on class values
and monotonic relationships between class and attribute orders. In con-
trast to this, we examine the usefulness of order specifically on attribute
values, and present and evaluate three new methods for recovering or
discovering such orders, showing that under some circumstances they
can significantly improve accuracy. In addition we introduce the use of
classifier ensembles that use random value orders as a source of variation,
and show that this can also lead to significant accuracy gains.

Keywords: machine learning, classifier learning, decision trees, ordinal
attributes, ensemble classifiers, ordinal aggregation.

1 Introduction

Decision tree based classifier learners typically use two kinds of attributes, nomi-
nal and numeric. Nominal attributes are discrete and unordered. When creating
a node involving a nominal attribute a tree classifier learner typically creates
a branch for each different value. Numeric attributes are continuous and or-
dered. For numeric attributes two branches are typically created, one branch
with lesser values and one with greater, with a split value determined by the
classifier learner separating them. J4.8 [12], the tree classifier we have chosen to
use as a reference, exhibits these behaviours.

There is also a third kind of attribute, ordinal. Ordinal attributes are both
discrete and ordered. An example is T-shirt sizes (S, M, L, XL): they are logically
discrete but also have an implied order, and if you are considering which one to
buy then knowledge of that order is potentially useful.

A decision tree can use such order information by treating an ordinal attribute
as a numeric attribute, and searching for binary splits of the values rather than
splitting the tree one way for each different value [12]. This may be advantageous
because by comparison with the one branch per value case, during the training
process more test cases are available at each of the lower nodes to use in decision
making, possibly increasing accuracy.
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Several researchers have looked at the issue of ordinal class values in gen-
eral [4,5]. Ordinal monotonicity, where class and attribute value orders have an
enforced relationship, has also been a very active field of research [1,7]. It is
therefore somewhat surprising that little general research has been done on the
discovery and possible uses of orders in attribute values, although order discovery
has been pursued in other contexts (e.g. [3]).

This paper investigates the usefulness of ordinal information for classifier
learning, both on specific datasets and in general. We focus on decision tree
learning, but the methods can also be applied in rule learning where similar
threshold tests are used, and may be applicable in other classifier learning.

We present methods for predicting an order on a nominal attribute from a
data set, and test these methods for effectiveness at improving classification
accuracy for classifier learners.

Furthermore we present and investigate extensions to ensemble classifiers by
applying random orders to nominal attributes as a novel form of creating variance
through modifying the data presented to a classifier learner (which need not be
able to handle weighted instances).

For the purpose of this paper we compared our method with Bagging [2],
which seems the most directly comparable well known method, but there has
been much other noteworthy work in the area of randomization, e.g [6].

2 Value of Ordinal Information

When there is a discrete ordinal attribute in a problem, it can be treated as either
an ordinal attribute or a nominal attribute for the purposes of classification.
Whether or not there is any benefit to treating ordinal attributes as ordinal
rather than nominal is an important question which has received little general
attention. There are two major factors which will affect how useful an ordinal
attribute is - how relevant the order is to solving the problem, and how much
of an advantage is gained by using binary splits. The difference between these
two factors can be measured experimentally using the idea of a random ordinal
attribute - this provides a binary split without the potentially beneficial order
information.

2.1 Testing

To test the usefulness of ordinal attributes, a large number of datasets relying
on primarily ordinal attributes is required. As there are not many such standard
data sets, we chose to create ordinal data sets by discretizing the numeric at-
tributes of primarily numeric standard data sets from the UCI collection [10].
This gives a large number of sets of data with orders implied from the original
numeric nature of the attributes.

Experiments were run on these data sets with five distinct methods, shown
below. We used the J4.8 version of C4.5 from WEKA 3-4 as the base tree classifier
learner for all tests in this paper. We ran 10 separate 10 fold cross validations and
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used a two-tailed confidence test with 0.05 confidence to determine significant
improvement or degradation in accuracy between two methods on a data set.

The methods used were with discretized nominal data (Nom), original undis-
cretized data (UD), discretized data marked as ordinal with the original order
(S. Ord), discretized data marked as ordinal with randomized orders (R. Ord),
and versions of S. Ord and R. Ord with both the (discretized) nominal and the
modified ordinal version of the attribute available to the classifier learner.

Discretization was performed on numeric attributes using six bins and equal
frequency binning. These attributes were then treated differently for each method
tested. Nominal is the discretized data only, which is the baseline here for im-
provement or degradation.

2.2 Results

There was no general statistical difference across the datasets (in a win/loss
sense) between the ordinal (S. Ord) and non-ordinal discretized (Nom) meth-
ods. However, on four of the datasets the ordinal method (S. Ord) signifi-
cantly outperformed the unordered method (Nom), and on no datasets was it

Table 1. Discretized Numeric Order Discovery : Classifier Accuracy

Data Set Nom UD S. Ord R. Ord S. O+N R. O+N

anneal 98.92 98.57 98.78 98.62 98.76 98.86
autos 79.48 81.77 80.53 77.47 79.50 80.11
w-b-cancer 95.08 95.01 94.78 93.79 94.74 94.67
c-rating 87.22 85.57 86.26 84.78 • 86.59 86.61
g-credit 72.12 71.25 71.71 70.68 72.24 72.01
diabetes 75.22 74.49 74.18 71.46 • 74.13 73.18
glass 62.47 67.63 76.23 ◦ 64.34 72.79 ◦ 63.98
c-heart 78.92 76.94 76.70 76.81 76.73 77.53
h-heart 80.53 80.22 79.99 79.20 80.91 80.53
hepatitis 82.46 79.22 81.36 78.32 82.27 80.85
hypothyroid 94.17 99.54 ◦ 94.48 94.16 94.30 94.24
ionosphere 88.92 89.74 90.17 87.07 89.86 88.56
iris 93.40 94.73 92.80 93.47 92.67 93.40
letter 80.91 88.03 ◦ 87.20 ◦ 82.37 ◦ 86.50 ◦ 82.96 ◦
segment 94.59 96.79 ◦ 95.93 ◦ 94.44 95.70 ◦ 94.75
sonar 68.20 73.61 74.39 67.03 75.98 68.98
vehicle 68.43 72.28 69.13 66.80 69.08 68.18
vowel 72.63 80.20 ◦ 79.91 ◦ 74.39 78.19 ◦ 73.22

Win/Draw/Loss vs Nominal
- 10/0/8 9/0/9 4/0/14 10/0/8 7/2/9

Win/Draw/Loss vs Random Ordinal
17/0/1 14/0/4 16/0/2 - 16/0/2 15/0/3

◦ significant improvement against Nominal
• significant degradation against Nominal
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significantly outperformed. This makes it clear that under some circumstances
an ordinal style split is of great importance to classification.

The correct order method (S. Ord) outperformed the random method (R. Ord)
16 out of 18 times, across a wide variety of datasets; this is strong evidence that if
an ordinal split is employed, correct ordinal information is vital to classification
as opposed to just using random information. This is unsurprising but important.

These results add value to investigating if it is possible to recover or discover
orders, since those orders can be of significant benefit in classification.

3 Discovering Orders

We developed three related methods for finding attribute orders on typical nom-
inal attributes. To narrow the scope and focus on improving classification we
made a fundamental assumption that the order of an attribute would be related
to the class value, which is reasonable because if an attribute is present in a
dataset it is likely there because of an initial suspicion that it is related to the
solution. There are potential problems however, for example if we classify our
T-shirts sizes by how well they fit a medium size person, we could end up with
S and XXL on one end of an order and M on the other.

For the purpose of simplicity and generality we assume no known order on
the class value.

3.1 Developing Methods

The basis for all our methods is a solution to problems with two class values only.
In this case we use the Laplace equation, a probabilistic estimator, to measure
the probability of each nominal value for an attribute being classified as the first
class (this method has the disadvantage of making the assumption of an even
spread of cases within the data set). This gives each value a positive probability
between 0 and 1 which provides an obvious ranking for correlation to the class
value.

This approach is simple but will not work for problems with multiple classes,
since there is no obvious way to split the classes into a single ranking. Our first
method solves this problem by using Principal Component Analysis (a linear al-
gebra technique) [8]. For an n class problem each attribute value is represented
by a point in n−1 dimensional space, with each dimension being the probability
of classification as the mth class (the last class’s probabilities would be com-
pletely correlated to the other n− 1 probabilities and so are omitted). Principal
Component Analysis gives a major axis of variance in this space, which in turn
gives a ranking based on distance along that axis.

This method is mathematically clean but relies on every class having a mostly
linear spread of points, which is an indication of a direct linear relationship
between class and values. To offset this problem we also considered alternative
approaches based on building up orders by combining orders from subproblems.
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To combine subproblem orders we used a weighted voting system similar to the
Borda Count [11]. Given a number of orders with a real number weighting, each
order is converted to a ranking and the values are multiplied by the weighting for
the order and then summed, and a new order is obtained from that sum (with
arbitrary tiebreaking).

Given wi is the weighting for subproblem i, n is the number of subproblem,
rj,i is the ranking of element j in subproblem i, and vote(aj) is the final weighted
score for element j:

vote(aj) =
∑

n
i=1(wi ∗ ro,i) (1)

When merging orders generated from subproblems we also need to remember
that the direction of the order is not well defined - inverted orders may need
to be combined with direct orders, which will cause problems in our weighted
sum method because they will cancel each other out. To solve this problem, each
order is compared against the order with the most weight using a least squares
difference. The smaller difference of the direct order and the reverse order is
taken, and the corresponding order is used.

Our correspondence algorithm is as follows; given r, t are orders of the n
values, posk(i) is the position of element i in order k, and n is the number of
attributes:

correspondence(r, t) =
∑

n
i=1(posr(i) − post(i))2 (2)

Our first order combination method, multi-class discovery, uses the probabil-
ity of an attribute classifying as each individual class as a subproblem. This
gives a subproblem for each class value. Per class weightings for merging are the
proportion of the class value in the test data.

The second order combination method, tree based discovery, creates a decision
tree with large leaves using the J4.8 classifier learner and very heavy pruning
with a minimum leaf size. Each leaf is treated as a separate subproblem, and the
orders from leaf subproblems are merged, with the size of the leaf determining
the weighting. When learning the tree to find the leaves, the attribute for which
an order is being sought is not split on. For each leaf we take the probability of
classification as the most common class in the leaf, a heuristic which assumes a
much simplified decision structure, which is reasonable because the tree structure
will reduce the effects of other attributes. The best leaf size is likely problem
dependent, but we chose a flat minimum size of 50.

The main purpose of considering subproblems after a level of tree build-
ing is to handle probability distorting imbalances in the frequency of differ-
ent areas of data, and to remove the skewing effect of highly distinguishing
attributes.
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3.2 Testing Order Discovery

The three new methods were tested in two ways, firstly on several datasets with
known useful orders to determine whether correct orders could be recovered.
These results are too long and database specific to present in full, but typically
multi-class discovery performed best followed by PCA. Tree discovery was more
variable due to highly branching attributes often leading to non useful division
of the data into subproblems. When this was not a problem it performed equiv-
alently to multi-class.

The second testing method was to apply the order learning methods to real
datasets to determine if classification accuracy gains could be made by using
these methods. The discretized numeric datasets seen earlier were tested first.

The six methods tested are all based on the discretized data. They are the
discretized data seen previously without ordinal set (Nom), with ordinal set (S.
Ord), the randomly ordered discretized data (R. Ord) based on a different seed
to Table 1, the Principal Components Analysis method (PCA), the multi-class
method (MC), and the tree method (Tree).

Table 2. Discretized Numeric Order Discovery: Classifier Accuracy

Data Set Nom S. Ord R. Ord PCA MC Tree

anneal 98.92 98.78 98.60 98.73 99.03 98.68
autos 79.48 80.53 78.46 79.31 77.45 79.45
w-b-cancer 95.08 94.78 94.25 95.01 95.01 95.14
c-rating 87.22 86.26 84.62 • 84.80 • 86.90 85.36
g-credit 72.12 71.71 70.86 71.99 71.99 71.28
diabetes 75.22 74.18 71.23 • 73.36 73.36 72.76
glass 62.47 76.23 ◦ 63.89 70.24 ◦ 70.51 ◦ 68.91
c-heart 78.92 76.70 76.78 76.17 75.44 76.47
h-heart 80.53 79.99 79.47 79.06 79.79 80.02
hepatitis 82.46 81.36 80.37 81.61 81.78 81.78
hypothyroid 94.17 94.48 94.19 94.26 94.24 94.36
ionosphere 88.92 90.17 87.85 87.07 90.23 90.23
iris 93.40 92.80 93.87 92.87 93.20 93.80
letter 80.91 87.20 ◦ 82.86 ◦ 85.45 ◦ 85.71 ◦ 85.45 ◦
segment 94.59 95.93 ◦ 94.48 95.21 95.26 95.39
sonar 68.20 74.39 68.90 71.57 74.92 74.92
vehicle 68.43 69.13 66.42 69.06 69.12 67.68
vowel 72.63 79.91 ◦ 74.17 78.52 ◦ 77.31 ◦ 76.70 ◦
Win/Draw/Loss vs Standard Ordinal

9/0/9 - 2/0/16 4/0/14 8/0/10 6/0/12

Win/Draw/Loss vs Random Ordinal
12/0/6 16/0/2 - 14/0/4 15/0/3 16/0/2

◦ significant improvement against Nominal
• significant degradation against Nominal
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The order methods showed strong accuracy ratios across the data sets against
the random order method, evidence that regardless of correctness the orders re-
covered were almost always preferable to random orders. On the four datasets
where correct ordinal splitting was previously shown to be of significant im-
portance, that significance of improvement was retained on three datasets by
multi-class and PCA, and on two by tree. This is evidence that significant im-
provements are possible using order recovery where an order is already known
to be of value.

Multi-class was generally the strongest method, with a win/loss ratio com-
petitive with the original known orders.

Finally, the order recovery methods were tested on 18 primarily nominal at-
tribute datasets from the UCI collection where there was no general reason to
suppose that an order existed.

In addition to the previously introduced methods we used WEKA’s binary
split setting (Bin. S), which tests single element subsets, to provide some com-
parison with an alternative form of binary split.

Table 3. Nominal Order Discovery : Classifier Accuracy

Data Set Nom Bin. S R. Ord PCA MC Tree

audiology 77.26 76.92 76.92 76.51 77.88 76.92
b-cancer 74.28 70.50 72.24 72.11 72.11 71.94
bridges 57.42 66.00 64.71 64.79 63.85 63.36
car-eval 92.22 96.63 ◦ 95.49 ◦ 96.74 ◦ 96.65 ◦ 96.96 ◦
cmc 51.44 52.26 52.23 51.92 53.02 52.86
colic 85.16 85.34 85.18 83.93 83.93 84.69
c-rating 85.57 85.20 85.03 83.97 84.59 84.33
g-credit 71.25 70.64 70.75 70.98 70.98 71.36
dermatology 94.10 95.90 95.71 95.20 95.23 94.70
c-heart 76.94 78.17 78.22 78.74 78.05 78.18
h-heart 80.22 78.95 78.48 78.08 77.77 77.73
lymph 75.84 76.59 77.97 79.45 78.71 79.26
nursery 97.18 99.36 ◦ 98.92 ◦ 99.28 ◦ 99.46 ◦ 98.88 ◦
postop 69.78 70.11 70.00 70.22 71.11 71.00
p-tumor 41.39 41.19 41.54 41.04 41.42 41.28
soybean 91.78 92.30 91.08 91.80 91.75 92.18
splice 94.03 94.48 93.03 93.45 93.81 93.21
tic-tac-toe 85.28 93.79 ◦ 92.51 ◦ 92.48 ◦ 93.78 ◦ 93.95 ◦
Win/Draw/Loss vs Nominal

- 12/0/6 11/0/7 10/0/8 11/0/7 11/0/7

Win/Draw/Loss vs Binary Split
6/0/12 - 5/1/12 6/0/12 9/0/9 9/1/8

Win/Draw/Loss vs Random Ordinal
7/0/11 12/1/5 - 9/0/9 10/0/8 8/1/9

◦ significant improvement against Nominal
• significant degradation against Nominal
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The results show no general advantage to using order, with a mostly even
ratio to the purely nominal method. Significant gains on three databases were
observed over nominal, although these were shared by all binary split meth-
ods including the random order method. The general equivalence of the order
discovery methods to the random ordinal method suggests that orders useful
to classification were not generally found. This is perhaps not surprising as
there is no reason to assume that these useful orders existed on these nominal
data sets.

4 Random Orders for Ensemble Classifiers

To this point we have investigated the direct application of orders to single tree
classification. We now look at using attribute orders in a different scenario, this
time as a source of variance inside an ensemble classifier method.

The standard Bagging algorithm ([2]) induces variation between its base clas-
sifiers by randomly resampling the data presented to each classifier. Since ele-
ments are removed, this means that fewer of the original instances are available
to each classifier, so the internal base classifiers are likely to be less accurate
than a single classifier built on the original data. We propose an alternative, to
mark all nominal attributes as ordinal and randomize the orders of the values
between base classifier instances. This induces a novel form of randomization and
differentiation without reducing the size of the test data. We call this method
Ordinal Aggregation.

It is worth noting that this method will only be of direct use for data sets
with largely nominal attributes, as only the nominal attributes will be randomly
re-ordered. For other data sets it would be possible to discretize the numeric
attributes first, but we did not attempt to test this.

We also considered a hybrid method which first applies the test data random-
ization of bagging, and then applies random ordinalization to all nominal at-
tributes as per Ordinal Aggregation. This produces an ensemble classifier which
combines the variance from both methods.

We compared the methods experimentally using the same primarily nomi-
nal attribute datasets as earlier. All ensemble classifiers had 10 internal J4.8
classifiers. We ran ten 10-fold cross validations for each method.

The methods tested were J4.8, Bagging (Bag), Bagging with WEKA binary
splits (BagB), Ordinal Aggregation (OA), and the hybrid method (B/OA).

The results show that the ordinal method is competitive with standard bag-
ging, with a fairly even 10 wins 8 losses and also, although not shown here, a
statistically significant improvement on bagging on two datasets, with significant
losses on none. The composite method on the other hand performed very well,
beating bagging on 17 of the 18 datasets, and J4.8 on 14. Both these margins
are statistically significant at a 0.05 confidence level using a one tailed sign test.
This is a very promising sign. It could indicate that the methods were simply not
introducing enough variance on their own. Since neither method would generally
allow you to set the variance required arbitrarily it would be worth investigating
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Table 4. Random Ensemble Orders : Classifier Accuracy

Data Set J4.8 Bag BagB OA B/OA

audiology 77.26 81.07 ◦ 80.44 ◦ 77.87 81.33 ◦
b-cancer 74.28 69.40 • 68.36 • 69.28 • 70.33
bridges 57.42 65.56 ◦ 70.22 ◦ 66.77 64.68
car-eval 92.22 93.98 ◦ 97.54 ◦ 97.23 96.90
cmc 51.44 51.20 ◦ 52.03 ◦ 51.88 ◦ 52.08 ◦
colic 85.16 84.88 84.88 84.48 84.99
c-rating 85.57 84.93 85.12 84.03 86.07
g-credit 71.25 72.17 73.21 72.46 73.57
dermatology 94.10 96.67 ◦ 96.29 97.05 ◦ 97.62 ◦
c-heart 76.94 79.21 81.76 ◦ 78.33 80.60
h-heart 80.22 78.93 78.68 78.18 78.99
lymph 75.84 78.53 80.28 80.81 80.28
nursery 97.18 98.57 ◦ 99.66 ◦ 99.68 ◦ 99.64 ◦
postop 69.78 59.56 • 62.22 • 58.00 • 61.67 •
p-tumor 41.39 42.86 43.04 42.43 42.93
soybean 91.78 91.78 92.37 92.96 92.96
splice 94.03 94.16 95.25 ◦ 95.62 ◦ 95.36 ◦
tic-tac-toe 85.28 94.41 ◦ 97.53 ◦ 96.24 ◦ 97.44 ◦
Win/Draw/Loss vs J4.8

- 11/1/6 13/0/5 13/0/5 14/0/4

Win/Draw/Loss vs Bagging
6/1/11 - 13/1/4 10/0/8 17/0/1

Win/Draw/Loss vs Bagging with Binary Splits
5/0/13 4/1/13 - 6/0/12 10/1/7

◦ significant improvement against J4.8
• significant degradation against J4.8

if there is a general value to this kind of composition. However, the compari-
son with Bagging with WEKA’s binary splits shows that the binary splitting
alone proves a useful enhancement to Bagging, so the extra value of the ordinal
method may be more limited than the comparison with Bagging suggested.

Given the positive results with Bagging we also ran some tests on both stan-
dard and composite Multiboost classifiers [13]. The results suggested that adding
ordinal randomization to boosting may give a slight general improvement to ac-
curacy, but not on the order of that shown for Bagging.

5 Conclusions and Further Work

Ordinal attributes were found to be of significant benefit to accuracy in cer-
tain classification problems, but not in general across a wide range of problems.
Where there was a reason to suggest an order existed, having the correct order
appeared to be generally useful.
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Three new methods for discovering orders on attribute values were presented
and evaluated. The most effective method was the multi-class method, which
correctly recovered known orders and gave classification accuracies almost equiv-
alent to the original orders on problems where orders were known to be present.

Our results show that methods such as these could likely be applied to new
problems to deduce or confirm useful orders on attribute values. If a new problem
has unknown but relevant orders in its attributes then order discovery could be
used to improve classification accuracy.

We also found that the idea of inducing variance inside ensemble classifiers
using random orders could provide a benefit to classification accuracy.

This research throws up a lot of questions about how to best balance the use
of ordinal attributes with nominal attributes (feature selection). The eventual
goal of this line of investigation is to gain a better understanding of the inter-
nal organization and relationship between attributes, and to consider learning
more descriptive and featureful attributes for the purpose of augmenting existing
classifier learner methods, including methods other than decision tree learners.
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Abstract. MITI is a simple and elegant decision tree learner designed
for multi-instance classification problems, where examples for learning
consist of bags of instances. MITI grows a tree in best-first manner by
maintaining a priority queue containing the unexpanded nodes in the
fringe of the tree. When the head node contains instances from posi-
tive examples only, it is made into a leaf, and any bag of data that is
associated with this leaf is removed. In this paper we first revisit the
basic algorithm and consider the effect of parameter settings on classi-
fication accuracy, using several benchmark datasets. We show that the
chosen splitting criterion in particular can have a significant effect on ac-
curacy. We identify a potential weakness of the algorithm—subtrees can
contain structure that has been created using data that is subsequently
removed—and show that a simple modification turns the algorithm into
a rule learner that avoids this problem. This rule learner produces more
compact classifiers with comparable accuracy on the benchmark datasets
we consider. Finally, we present randomized algorithm variants that en-
able us to generate ensemble classifiers. We show that these can yield
substantially improved classification accuracy.

1 Introduction

Multi-instance classification differs from standard propositional classification in
that examples for learning consist of bags of instances. Potential application
domains are drug activity prediction, where instances can be feature vectors
describing different conformations of a molecule [5], and content-based image
classification, where they are associated with different regions in an image [13].
In either case, a class label—indicating, e.g., whether a molecule is “active” or
“inactive”—is available only for the entire example (i.e. bag), not the individual
instances it contains, which renders this learning setting a challenging one.

In this paper we consider induction of decision trees and classification rules
for multi-instance problems, and also consider ensemble learning. Decision tree
induction is a popular learning method in standard propositional problems be-
cause of its computational efficiency and the interpretability of the output it
generates. It can also yield highly competitive classification accuracy when used
to learn ensembles. In this paper, we first revisit an existing decision tree in-
duction method for multi-instance learning [2], called MITI, in Section 2, and
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evaluate its performance on a collection of benchmark datasets based on differ-
ent configurations of the algorithm. Then, in Section 3, we show how we can
apply a simple modification to this algorithm to yield a rule learner, which we
call MIRI, that yields a compact set of classification rules for multi-instance
problems. Finally, in Section 4, we show how accurate ensembles can be learned
using randomisation, and summarise our main findings in Section 5.

2 The MITI Algorithm

The standard assumption in multi-instance learning—based on classification
problems with two classes, positive and negative—is that a bag is positive if
and only if it contains a positive instance, and negative otherwise [5,12]. The
key problem is that instance-level class labels are unknown for positive bags. All
instances in negative bags must necessarily be true negative instances—otherwise
the bag-level class label could not be negative. In contrast, it is possible that all
but one of the instances in a positive bag are in fact false positives.

A common learning strategy under the standard assumption is to identify
regions in instance space where positive bags overlap, i.e. regions of the instance
space that contain positive instances from a non-trivial number of positive bags.
This basic strategy was employed in the two oldest methods for multi-instance
learning: in [5] a hyperrectangle is learned to describe the region where posi-
tive bags overlap and in [12] the maximum diverse density approach identifies
parameters of a probabilistic model that is centered in such a region.

The multi-instance tree inducer (MITI) proposed by Blockeel et al. [2] is a
learning algorithm based on the same standard assumption. It implements the
top-down decision tree learning approach known from propositional tree inducers
such as C4.5 [18], with two key modifications: (a) nodes are expanded in best-
first order guided by a heuristic that aims to identify pure positive leaf nodes
as quickly as possible, and (b) whenever a pure positive leaf node is created, all
positive bags containing instances in this leaf node are deactivated.

A pure positive leaf node in this context is a node that only contains in-
stances from positive bags. The assumption underlying this approach is that an
instance’s presence in a pure positive leaf is a strong indication that it is a true
positive instance, and that all instances in the same bag that are not in the leaf
should be eliminated from further consideration in the learning process because
they are potentially false positives.

Pseudo code for MITI is shown in Algorithm 1. The algorithm is as originally
presented in [2], with one small difference. On some of the datasets considered
in our study, it can happen that the current node cannot be split any further
because it contains identical instances from bags with different class labels. In
that case, a leaf node is created based on the majority class.

Standard propositional tree induction normally proceeds in depth-first fash-
ion, which can be implemented in a non-recursive fashion by storing unexpanded
nodes in a last-in first-out (LIFO) queue. In MITI, this LIFO queue is replaced
by a priority queue in which nodes are sorted in descending order according to
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Algorithm 1. Pseudo code for MITI, based on [2]
let Q = root node
while Q is not empty do

remove the first node N from Q
if N is pure positive then

make N a positive leaf and deactivate all bags with instances in N
else if N is pure negative then

make N a negative leaf
else

find the best split S for N
if N cannot be split then

make N a leaf with majority label and deactivate bags if necessary
else

split N according to S and add the child nodes of N to Q
end if

end if
sort Q

end while

the proportion of positive instances they contain. When calculating this propor-
tion, each instance is weighted by 1/|B|, where |B| is the size of the bag that
contains the instance, to give each bag the same total weight, namely 1. Assum-
ing wp is the sum of weights of “positive” instances in the node concerned (note
that this includes any potential false positives in the node), and wn is the sum
of weights of negative instances, the ratio wp

(wp+wn+k) is used to sort the nodes
in the priority queue, where k is a parameter to the algorithm. This measure is
called the tozero(k) estimate in [2].

Given numeric attributes, MITI applies binary splits to divide the data into
two subsets at each internal node. Split selection is another important aspect
of tree induction. [2] considers several measures to identify the best split at a
particular node in the tree, but finds negligible differences for most of them. In
the following, we consider two of the split selection criteria from [2]: max-bepp,
which uses the maximum of the two estimated proportions of positives for the
two subsets created by a split as the split quality score, and the standard Gini
index, applied with the same estimate of the proportion of positives. Note that
in the Prolog implementation of MITI kindly provided by the authors of [2], the
Gini index is calculated without taking subset weights into account—the Gini-
based impurity scores from each of the two subsets concerned are combined
using a simple unweighted average. In this paper, we use branch weights in the
standard fashion to combine the two subset scores for a split when calculating
its Gini index.

2.1 Experimental Results

In [2], Blockeel et al. evaluate classification accuracy of MITI on synthetic
data and two real-world multi-instance domains— the musk and mutagenesis
problems—but splitting criteria are only compared on the synthetic data. In
this section, we present a more extensive evaluation of MITI on benchmark
data, including data from image classification problems, where we consider two
splitting criteria (max-bepp and Gini index) and two values for the parameter k
in the tozero(k) heuristic: 5, the default value from [2], and 0, which means that
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an unbiased estimate of the proportion of positives is applied. We also report
tree size, which gives an indication of interpretability and is not considered in [2].

All experimental results presented in this paper are based on stratified 10-
fold cross-validation, repeated 10 times, to yield 100 performance estimates for
each dataset/algorithm combination. Tables show average accuracy as well as
standard deviation across the 100 estimates. To test for statistical significance
of individual differences, the corrected resampled paired t-test [16] is used, which
is a conservative version of the standard paired t-test that is adjusted for de-
pendency of estimates due to data reuse. This test is the standard test available
in the Experimenter facility available in the WEKA workbench [10], which we
used for the experiments. The significance level was left at the default value 0.05.
Algorithms were implemented in Java and integrated into WEKA.

Table 1 shows estimated classification accuracy for the datasets included in
our experiments. Table 2 shows tree size. The datasets used are those employed
in [7].1 These include mutagenicity prediction [19]—which was originally con-
sidered for multi-instance tree and rule learning in [21]—based on three differ-
ent representations of molecules as bags of instances (muta-atoms, muta-bonds,
muta-chains), the well-known trains problem from ILP [15] (eastwest, westeast),
the two musk datasets [5], the thioredoxin protein identification task [20], and
two groups of content-based image classification datasets (elephant, fox, tiger [1]
and bikes, cars, people respectively, the latter group with Ohta-based features as
in [14], derived from the GRAZ02 dataset [17]). We also included the synthetic
maron problem [12,8]. In this problem, instances are uniformly distributed in a
2D space and bags are classified as positive if they contain at least one instance
that is located in a small area in the center of this space.

Considering classification accuracy, we can see that adjusting the value of the
parameter k is important when using the special-purpose max-bepp split selec-
tion heuristic from [2] in MITI. Using the raw estimated proportion of positives
(k=0) yields significantly more accurate classifiers on the thioredoxin problem,
but applying a biased estimate of proportion (k=5) produces significantly higher
accuracy on all but one of the image classification problems. In contrast, the re-
sults obtained using the Gini index appear less sensitive to the choice of k, but
k = 0 yields higher estimated accuracy for all datasets apart from musk1, with
two significant differences (not shown in the table)—on cars and thioredoxin re-
spectively. The results for the Gini index with k = 0 are the best ones overall:
this method dominates the max-bepp baseline in 12 out of 15 cases and yields
statistically significant improvements in two cases. The results provide evidence
that (a) biasing the estimate of proportion is generally detrimental when using
the standard Gini index in MITI, and (b) the special-purpose max-bepp heuristic
is generally inferior to the Gini index.

The results in Table 2 reinforce this message: trees grown using the Gini
index with k = 0 are often substantially smaller than those generated using the
other three variants. This also has a strong impact on runtime (not shown here)
because the smaller trees can be grown more quickly.

1 Excluding the suramin data, which contains missing values.
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Table 1. Classification accuracy for different parameter settings in MITI

Dataset MITI MITI MITI MITI
max-bepp Gini index max-bepp Gini index

k=5 k=5 k=0 k=0
eastwest 55.5±32.5 60.5± 34.3 67.0±32.7 62.5± 35.1
westeast 30.5±31.7 52.5± 34.4 47.0±26.4 58.5± 35.6
musk1 70.4±16.5 83.3± 12.7 ◦ 60.3±14.5 82.2± 12.7 ◦
musk2 71.0±15.3 73.2± 13.1 62.7±14.5 74.4± 14.1
muta-atoms 80.2± 8.2 82.0± 8.3 80.5± 8.4 84.3± 7.9
muta-bonds 80.6± 7.9 81.2± 8.3 85.7± 8.8 81.9± 8.4
muta-chains 83.4± 7.7 84.4± 7.2 83.5± 8.5 87.2± 8.5
maron 50.0±10.1 55.6± 17.4 48.6±22.4 56.2± 22.9
elephant 77.6± 9.4 77.4± 9.3 72.0±10.5 77.9± 9.5
fox 61.7± 8.7 60.8± 9.6 49.7±11.0 • 61.7± 10.4
tiger 74.7±10.0 70.3± 10.6 62.8±10.9 • 74.0± 9.8
bikes 76.5± 5.2 74.6± 5.0 68.4± 5.0 • 76.1± 5.1
cars 67.9± 4.3 63.7± 5.0 58.2± 5.8 • 69.6± 4.9
people 73.4± 5.6 73.0± 4.8 66.1± 5.7 • 74.8± 5.3
thioredoxin 35.7±11.0 62.7± 14.5 ◦ 80.0± 8.1 ◦ 82.1± 9.6 ◦

◦, •: statistically significant compared to 2nd column

Table 2. Tree size for different parameter settings in MITI

Dataset MITI MITI MITI MITI
max-bepp Gini index max-bepp Gini index

k=5 k=5 k=0 k=0
eastwest 25.8± 6.5 10.6± 4.3 • 11.0± 1.9 • 10.0± 3.2 •
westeast 36.8± 5.3 23.4± 6.0 • 14.8± 3.0 • 12.8± 3.1 •
musk1 20.1± 2.2 20.6± 2.2 50.4± 2.2 ◦ 22.8± 3.6 ◦
musk2 43.1± 16.0 41.3±13.2 44.7± 2.2 33.1± 3.7
muta-atoms 261.7± 16.9 163.1±10.0 • 62.7± 3.5 • 62.5± 4.3 •
muta-bonds 286.4± 30.5 157.8±11.4 • 67.9± 4.2 • 62.2± 6.0 •
muta-chains 419.7± 44.5 198.1±11.4 • 90.4± 7.5 • 55.6± 7.5 •
maron 902.5± 32.2 177.7±34.9 • 30.5± 2.4 • 17.5± 3.0 •
elephant 46.6± 22.0 218.7±39.0 ◦ 102.0± 2.7 ◦ 32.3± 3.5
fox 166.5± 50.7 167.4±18.5 107.8± 3.3 • 51.2± 4.8 •
tiger 55.8± 16.8 160.2±20.2 ◦ 79.5± 5.0 ◦ 32.4± 4.1 •
bikes 248.9± 83.1 634.7±96.3 ◦ 288.3±10.3 84.4± 4.2 •
cars 219.4± 70.6 474.3±42.3 ◦ 387.4±15.6 ◦ 110.2± 5.5 •
people 165.9± 45.4 662.7±61.5 ◦ 285.4±14.8 ◦ 90.2± 5.3 •
thioredoxin 2202.2±207.5 250.4±43.7 • 42.2± 3.3 • 35.9± 5.7 •

◦, •: statistically significant compared to 2nd column

The results on the maron data are particularly noteworthy because here the
standard multi-instance assumption is known to hold by construction. Note that
the max-bepp split selection criterion requires only one of the two subsets created
by a split to exhibit high purity for it to be rated highly. The other subset can be
poor and may thus need to be expanded into a large subtree—unless positive data
in this subset can be successfully deactivated before this happens. In contrast,
the Gini index combines impurity scores from both subsets in a weighted fashion.

3 MIRI: Using MITI to Learn Rule Sets

Whenever a positive leaf node is created, the MITI algorithm disables all in-
stances of all bags that are associated with this leaf: any positive bag that has
at least one positive instance in the leaf is disabled. The corresponding data is
removed from all unexpanded nodes waiting in the priority queue and will thus



46 L. Bjerring and E. Frank

not influence subsequent tree growth. However, tree structure that has already
been created is left untouched. Conceptually, this is a potential drawback of the
algorithm because data is removed from partially grown subtrees elsewhere in
the overall tree structure. Splitting and node selection decisions that generated
those existing incomplete subtrees should be revised to accommodate the new
data distribution. At the very least, one would expect this to produce a more
compact classifier because the amount of relevant training data is reduced.

Implementing this idea yields an algorithm whose output can be more natu-
rally represented as a set of classification rules: when a positive leaf is encoun-
tered in the basic MITI algorithm, all positive bags associated with the leaf are
removed from the training data, the path from the root node to this leaf node
is turned into an if-then rule, and the algorithm is restarted on the remaining
data. The tree structure is discarded and grown from scratch on the reduced
data. We call this algorithm MIRI, for multi-instance rule induction.

Clearly, this approach will not generate any output that is due to potentially
suboptimal split and node selection decisions based on outdated data because
the entire tree structure is discarded after a positive leaf node has been turned
into an if-then rule. When no positive leaf node can be created, the algorithm
stops and appends a final default rule to the rule set that predicts the negative
class. This will normally only happen when all positive data has been exhausted
because the priority queue used in the best-first expansion method is ordered
based on the proportion of positive data in each node located in the queue.
Consequently it is appropriate to create a “catch-all” rule that simply predicts
the negative class when the first negative leaf node is encountered.

There are pathological scenarios where positive data remains that is not cov-
ered by any positive rule, namely when there are identical instances that are
located in both positive and negative bags. In that case it can happen that a
node has to be turned into a leaf node even if it contains both positive and nega-
tive data. If the sum of weights for the negative instances in this node is greater
than the sum of weights for the positive instances, then the node is turned into
a negative leaf and the algorithm stops. On the other hand, if the positive data
outweighs the negative data, the node is turned into a positive leaf and the asso-
ciated positive bags are deactivated in the standard manner. This heuristic does
not appear to cause problems on the benchmark datasets we consider.

The algorithm just described implements the standard separate-and-conquer
rule learning strategy, where a rule is generated, the data covered by this rule
is removed (i.e. separated out), and the remaining data is used to generate
further rules. In contrast to most separate-and-conquer rule learners, a partial
tree structure is induced to find the next rule to add to the rule set. In the
context of propositional rule learning, where each example for learning consists
of a single instance, this strategy is used in the rule learner PART [9], which
generates a partial decision tree using the C4.5 tree learner [18].

It appears wasteful to generate a partial tree just to subsequently discard it.
In practice, on the datasets we consider, MIRI’s runtimes are within an order
of magnitude of MITI’s ones (which never requires more than a few seconds
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Table 3. Accuracy and classifier size for MITI and MIRI (k = 0, Gini index)

Classification accuracy Classifier size
Dataset MITI MIRI MITI MIRI
eastwest 62.5±35.1 69.0±33.9 13.1± 4.7 7.9± 2.1 •
westeast 58.5±35.6 67.0±32.7 21.2± 6.0 11.6± 2.0 •
musk1 82.2±12.7 80.6±12.6 23.6± 3.8 21.8± 3.4 •
musk2 74.4±14.1 75.1±12.9 47.4± 7.9 36.4± 5.3 •
muta-atoms 84.3± 7.9 82.9± 8.3 241.7±27.9 95.2±11.2 •
muta-bonds 81.9± 8.4 81.6± 7.9 270.1±48.3 98.6±13.7 •
muta-chains 87.2± 8.5 83.3± 8.2 233.5±59.5 81.2±14.6 •
maron 56.2±22.9 59.6±25.1 54.3±16.7 18.7± 4.3 •
elephant 77.9± 9.5 78.7± 9.3 75.2±16.1 31.9± 3.5 •
fox 61.7±10.4 59.9±10.8 166.1±34.0 61.1± 6.1 •
tiger 74.0± 9.8 75.7± 9.9 66.4±17.3 31.4± 3.9 •
bikes 76.1± 5.1 76.5± 5.0 295.4±33.7 102.2± 7.0 •
cars 69.6± 4.9 67.9± 4.5 435.3±48.6 145.1±10.9 •
people 74.8± 5.3 73.5± 4.9 326.2±36.5 115.7± 8.2 •
thioredoxin 82.1± 9.6 82.9± 8.5 84.3±27.7 48.0±13.2 •

◦, •: statistically significant difference

to generate a tree when using k = 0 and the Gini index): MIRI is never more
than five times slower. The best-first node expansion strategy is very effective
in homing in on positive leaf nodes, which means that little additional tree
structure is generated before a rule can be obtained. In the best case, only one
path is created because only nodes leading to the relevant leaf node are expanded.
Note also that many challenging multi-instance problems exhibit large bags of
instances, which means that creation of a rule removes a substantial amount of
instance-level data that will not need to be considered in subsequent iterations.

3.1 Experimental Results

Table 3 shows classification accuracy and classifier size for MITI and MIRI.
Classifier size is measured by counting the number of tests in all positive rules
included in the classifier. In MITI, positive rules correspond to leafs with a
positive classification. In both cases, k = 0 was used (no bias in the estimated
proportion of positives), and the Gini index was applied for split selection.

The results paint a clear picture: there is no statistically significant difference
in classification accuracy between MITI and MIRI on the benchmark datasets
we consider, but the classifiers learned by MIRI are significantly more compact
in all cases. Hence, MIRI’s ability to discard structure grown from outdated data
does not have a significant impact on classification accuracy. Nevertheless, for
data mining practitioners who are concerned with interpretability of the output,
MIRI appears to provide a useful alternative to MITI.

4 Building Ensemble Classifiers

Although individual decision trees and rule sets can provide valuable insight
into the structure underlying a dataset, and are thus an important tool for
descriptive data mining, they are known to be inferior to ensemble classifiers
in predictive tasks. A well-known strategy for generating an ensemble classifier



48 L. Bjerring and E. Frank

is randomisation [6], in which the learning algorithm is randomised such that
different classification models can be obtained from the same dataset, thereby
yielding an ensemble. Predictions are then commonly obtained by voting.

In the propositional context, the random forest method [3] has proven partic-
ularly successful. Consequently we apply the basic strategy of this method to the
multi-instance learning algorithms discussed above and evaluate whether similar
gains in predictive accuracy can be obtained. In the random forest method, a
decision tree learner is randomised by introducing non-determinism in the at-
tribute selection step that is performed at each node. More specifically, rather
than choosing the best split amongst all m available attributes, l attributes are
selected at random first, where this randomly chosen subset can be different for
each node, and then the best split amongst those l attributes is picked (where
split quality is measured using a standard criterion such as the Gini index).

We can directly apply this method in MITI, and, consequently, also in MIRI.
Large values of l decrease randomness and thus diversity, small values increase
diversity but may yield ensemble members that are individually not very accu-
rate. Both, accuracy of individual ensemble members and their diversity, will
affect the accuracy of the final vote-based ensemble classifier.

4.1 Experimental Results

We generated empirical results using 100 ensemble members based on two val-
ues of l by applying WEKA’s RandomCommittee method in conjunction with
both MITI and MIRI as the base learner, yielding four configurations in total.
Recent versions of WEKA allow parallel computation of ensemble members us-
ing RandomCommittee on multiple cores and this was exploited to obtain the
results in a timely manner. The Gini index was used in MITI and MIRI and an
unbiased estimate of positive proportion was applied (k = 0). The two values
for l we consider are l = 1, which implies completely random attribute selection,
and l =

√
m + 1, where m is the number of attributes in the dataset concerned,

yielding a semi-random strategy. Results are provided in Table 4.
These results show that there is no noteworthy difference between MITI and

MIRI ensembles in the case of semi-random attribute selection. However, when
selecting attributes completely randomly, the MIRI-based ensemble performs
worse. Thus selecting informative attributes appears more important when MIRI
is used. Comparing semi-random selection with completely random selection, we
can see that the latter strategy generally performs worse. The win/loss ratio is
10/4 in favour of semi-random selection in the case of MITI, although none of
the differences are individually statistically significant. The semi-random selec-
tion method appears to have an edge on the datasets with a larger number of
attributes (the image datasets and the musk problems) but on the datasets with
a small number of attributes (maron and mutagenesis) there is no advantage.
This makes sense intuitively: when there are many attributes, it is less likely
that any one of them will be relevant to the classification.

Comparing these results to the ones in Tables 3 for individual trees and rule
sets, we can see that the ensemble approach yields substantial improvements
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Table 4. Classification accuracy for MITI and MIRI ensembles

Dataset MITI MITI MIRI MIRI
Ensemble Ensemble Ensemble Ensemble
semi-r. random semi-r. random

eastwest 72.5±31.3 72.5±27.9 75.5±32.2 72.5±29.6
westeast 37.5±32.9 31.5±33.1 48.5±34.4 30.5±33.3
musk1 86.5±11.5 80.7±12.6 85.0±11.7 78.6±12.3 •
musk2 79.1±10.9 74.2±12.5 77.5±11.7 72.4±13.1
muta-atoms 85.3± 7.9 86.9± 7.7 85.4± 7.7 87.5± 7.1
muta-bonds 85.4± 7.5 86.3± 7.6 85.0± 7.5 85.7± 7.4
muta-chains 87.7± 8.6 87.1± 8.4 85.6± 8.4 86.4± 7.6
maron 56.2±22.9 66.4±22.7 59.6±25.1 60.6±21.5
elephant 88.5± 7.1 87.7± 6.8 86.9± 7.7 82.8± 8.5
fox 68.3± 8.8 61.4±10.7 66.3± 8.7 55.8±10.4 •
tiger 82.8± 8.1 80.6± 8.4 83.2± 8.2 78.5± 9.7
bikes 84.1± 4.8 83.4± 4.6 84.9± 4.8 82.9± 4.8
cars 77.8± 4.1 76.3± 4.4 77.9± 4.1 74.6± 4.7 •
people 81.9± 4.1 82.2± 4.0 82.4± 4.0 81.3± 4.1
thioredoxin 90.4± 6.1 89.4± 5.5 87.9± 7.0 86.9± 4.7

◦, •: statistically significant compared to 2nd column

most cases. Thus it is clear that the success of randomisation in the propositional
case translates into the realm of multi-instance problems.

It is also interesting to compare these results to those that can be obtained
with other high-performance multi-instance classifiers on the same datasets. As
an indicative baseline, we can draw on the results for various variants of the
well-known MILES method for multi-instance learning [4] that are presented
in [7], and the best results for two simple propositionalisation methods that
can also be found in [7]. The estimated accuracies for the muta-atoms, muta-
chains, thioredoxin, elephant, fox, bikes and cars datasets obtained from the
semi-random MITI ensembles are greater than the best ones in [7], which were
generated under exactly the same experimental conditions. The only real-world
dataset where accuracy is noticeably below the best result in [7] is musk2.

On the elphant, fox, tiger and musk datasets, we can also compare to the
results in [11], which are for the so-called MIForest method (Table 1 in [11]).
This method generates a random forest ensemble for multi-instance learning
using optimisation based on deterministic annealing. The estimated accuracy
for our semi-random MITI ensemble is greater for four of the five datasets,
indicating that our method is indeed competitive.

5 Conclusions

In this paper we have (a) presented a comparison of multi-instance decision trees
learned by different MITI configurations on a collection of benchmark datasets,
(b) shown how a simple modification enables us to learn rule sets rather than
trees—yielding the MIRI algorithm—and (c) considered the effect of randomi-
sation for ensemble learning using both MITI and MIRI.

Our results provide evidence that the standard Gini index is an appropriate
splitting criterion forMITI, in particular if anunbiased estimate is used for the pro-
portion of positives (k = 0): trees are generally more accurate and compact than
those learned using the special-purpose max-bepp criterion. We have also shown
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that MIRI generates even more compact classifiers than MITI while maintaining
comparable accuracy. Finally, we obtained highly competitive classification accu-
racy by applying randomisation to generate MITI and MIRI-based ensembles.
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Abstract. The amount of user generated content on the Web is growing
and identifying high quality content in a timely manner has become a
problem. Many forums rely on its users to manually rate content quality
but this often results in gathering insufficient rating. Automated quality
assessment models have largely evaluated linguistic features but these
techniques are less adaptive for the diverse writing styles and terminolo-
gies used by different forum communities. Therefore, we propose a novel
model that evaluates content, usage, reputation, temporal and structural
features of user generated content to address these limitations. We em-
ployed a rule learner, a fuzzy classifier and Support Vector Machines
to validate our model on three operational forums. Our model outper-
formed the existing models in our experiments and we verified that our
performance improvements were statistically significant.

Keywords: content quality assessment, user generated content, forums.

1 Introduction

Forums websites allows people to engage in online discussions. There are millions
of forums on the Web and each forum can host large volumes of User Generated
Content (UGC). However, forum users are being overwhelmed with excessive
amounts of UGC and it is becoming more difficult to identify high quality con-
tent in a timely manner. Currently, many forums and Web 2.0 websites rely
on its users to manually rate the quality of content to handle this problem [5].
However, there are a number of problems with relying solely on user ratings.
Firstly, rating is voluntary so a large percentage of content often receives a lack
of rating [22,19]. Secondly, users may not have sufficient knowledge and exper-
tise to provide accurate ratings [17]. Lastly, reliance on manual user ratings
becomes an ongoing problem if UGC is created at a faster speed than which it
can be sufficiently rated [4]. Therefore, the objective of this paper is to propose
a novel model that automatically measures the quality of UGC in forums. More
specifically, the contributions of this paper are to:
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– Present a model that evaluates content, usage, reputation, temporal and
structural features for assessing forum post quality.

– Validate our model against three operational forums using supervised ma-
chine learning techniques and compare its performance against existing mod-
els in the literature.

2 Problem Definition

We formally define the problem of measuring the quality of forum posts as a
multi-class classification problem. The forum dataset is described by a set of
posts P = {p1, p2, ..., pi, ..., p|P |} and a set of post quality classes C = {c1 =
low, c2 = medium, c3 = high} where pi is the i-th post in P . Furthermore, posts
are represented as a set of content quality features F = {f1, f2, ..., fj , ..., f|F |} in
our model as defined for pi in 1.

pi = {f i
1, f

i
2, ..., f

i
j , ..., f

i
|F |} (1)

φ(pi, ck) is a Boolean function that is used to determine whether pi belongs to
ck where k = {1, 2, 3} as defined in 2.

φ(pi, ck) : P × C → {True, False} (2)

The task of performing automated post quality classification is to evaluate this
function for all posts in a given forum dataset.

3 UGCQ Assessment Model

In recent work [4] we proposed a model that measures the quality of forum
posts based upon its usage within a forum community. We extend this work
by proposing a UGC Quality (UGCQ) model that evaluates content, usage,
reputation, structural and temporal features for quality assessment.

Content features represent intrinsic information about the forum post such as
features related to its textual content. Usage features represent the popularity
of postings and usage data is obtained using the post usage tracking framework
developed in our previous work [4]. Usage features evaluate view counts, dwell
time as well as mouse and keyboard interactions between users and posts.

Reputation features evaluate the activeness, accountability and authority of
post authors to gauge their overall reputation for quality assessment. Temporal
features represent time-based characteristics of postings and evaluate the time-
liness of when a forum post is created and edited. Structural features evaluate
the position and visibility of postings within a forum thread.

As a result, we propose 46 post quality features based on these categories
in the UGCQ model as presented in Table 1. An in-depth explanation of each
feature and how it is measured is provided in [3].
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Table 1. UGCQ Model Features

ID Name

Content

f1 Word count
f2 Unique word count
f3 Ratio word count to average word count in thread
f4 Quoted word count
f5 Original word count
f6 Ratio original word count to word count
f7 Formatting tag count
f8 Ratio formatting tag count to formatting tag count in thread
f9 Hyperlink count
f10 External hyperlink count
f11 Internal hyperlink count
f12 Ratio hyperlink count to hyperlink count in thread
f13 Attachment count
f14 Ratio attachment count to attachment count in the thread
f15 Attachment download count
f16 Ratio attachment download count to thread downloads
f17 Post edit count
f18 Post reported count
f19 Is post created by thread author

Usage

f20 Post view count
f21 Distinct user view count
f22 Distinct users that revisit in different sessions count
f23 Total dwell time
f24 Average dwell time
f25 Text selection count
f26 Total number of characters selected
f27 Average number of characters selected
f28 Text copy count
f29 Total number of characters copied
f30 Average number of characters copied

Reputation

f31 First name, last name and location provided
f32 E-mail displayed to public
f33 Website URL provided
f34 Membership group (member, moderator, administrator)
f35 Number of posts created by user
f36 Membership age

Temporal

f37 Age
f38 Post edit time difference
f39 Previous post time difference
f40 Previous post time difference to thread average difference
f41 Following post time difference

Structural

f42 Is first post
f43 Is displayed on first thread page
f44 Is last post
f45 Is displayed on last thread page
f46 Thread position to thread post count
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4 Experiment

4.1 Datasets

We obtain three forum datasets for evaluating the performance of the UGCQ
model. Firstly, data from http://remnantsguild.com/ was collected from the
July 21, 2009 to October 16 2009. Secondly, data from http://nabble.com/ [22]
and http://slashdot.org/ [21] are obtained for experimentation. The Nabble
dataset contains data from April 1, 2002 to July 24, 2006. The Slashdot dataset
contains posts created from September 10, 2007 to September 24, 2007. Details
of the datasets are displayed in Table 2.

Table 2. Forum Datasets

Remnantsguild Nabble Slashdot

Users 54 1,832 3,893
Topics 114 2,956 191
Rated posts 531 4,291 7,847
Low quality posts 288 (54%) 2,037 (48%) 4,026 (51%)
Medium quality posts 166 (31%) 515 (12%) 2,693 (34%)
High quality posts 77 (15%) 1,739 (40%) 1,128 (15%)

Hsu et al. (2003) [12] showed that they could improve the performance of
their Support Vector Machines (SVM) classifier by performing data normali-
sation. Therefore, we adopt a min-max data normalisation approach to scale
feature values to a range of [0, 1] to avoid features in larger numeric ranges
from dominating those in smaller ranges. Additionally, classifier performance
can be improved when continuous features are discretised into ranked intervals
[8]. Therefore, we use the Fayyad & Iranis Minimum Description Length method
[9] for data discretisation. The datasets are split into complementary training
and test sets using 10 fold cross-validation in our experiments.

4.2 Feature Selection

A number of features in the UGCQ model could not be evaluated for the Nabble
and Slashdot datasets due to missing data. For example, usage data was not
collected from Nabble and Slashdot because the datasets were provided to us.
We had collected usage data from the Remnantsguild forum with our post usage
tracking framework we proposed in [4]. As a result, the set of features evaluated
for each dataset is (refer to Table 1 for feature names):

http://remnantsguild.com/
http://nabble.com/
http://slashdot.org/
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– Remnantsguild: 46 features {f1-f46}
– Nabble: 24 features {f1-f12, f19, f35, f37-f46} with 22 features missing
– Slashdot: 23 features {f1-f12, f19, f35, f37, f39-f46} with 23 features missing

We perform feature selection using a sequential forward selection approach. The
purpose of conducting feature selection is to identify the set of most important
and relevant features for classifying the quality of forum posts. Waikato Envi-
ronment for Knowledge Analysis (WEKA) [11] is a data mining tool that we use
to perform feature selection and classification in our experiments. The selected
feature sets generated for each forum dataset are:

– Remnantsguild: 8 features {f1-f3, f5, f8, f9, f24, f38}
– Nabble: 4 features {f5, f12, f35, f37}
– Slashdot: 4 features {f35, f39, f45, f46}.

4.3 Performance Evaluation

We use the classification accuracy and Matthews Correlation Coefficient (MCC)
to evaluate the performance of our model and existing models in the literature.
MCC is considered one of the best for evaluating classifier performance on the
imbalanced data [2] as in our experiment (See Table 2). This metric provides a
correlation value between -1 to 1 where -1 represents perfect inverse prediction,
0 represents random prediction and 1 represents perfect prediction.

A MCC value is calculated from a classifiers confusion matrix for each quality
class (i.e. low, medium and high). The MCC performance measure is defined in
3 where TP = true positives, TN = true negatives, FP = false positives and
FN = false negatives.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

4.4 Post Quality Classification

We developed the UGCQ model into a working prototype and implemented the
models proposed by Weimer & Gurevych (2007) [22] and Wanas et al. (2008)
[21]. We classify the quality of forum posts from each dataset using WEKA
[11]. More specifically, we use WEKA’s implementation of the Sequential Mini-
mal Optimisation (SMO) algorithm [18] for SVM, the rule based learner JRIP
which is based on Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) [6] as well as the fuzzy rule learner FURIA [13].

We perform a number of classification experiments so we introduce a naming
scheme to label each experiment in the form of [model name] [classifier] [encoding]
[selection] and the values of each of these fields is displayed in Table 3. For example, the
experiment with the UGCQ framework, FURIA algorithm, normalisation and feature
selection is labelled as UGCQ FURIA N FS.
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Table 3. Forum Post Classification Experiment Labels

Field Values Comments

model name
UGCQ, Weimer, Baseline refers to the majority class classifier
Wanas, Baseline

classifier
JRIP,

Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) variant algorithm,

FURIA, Fuzzy Unordered Rule Induction Algorithm,
SVM Support Vector Machines

encoding N, D Normalisation, discrestiation

selection FS Feature selection

5 Results

The experimental results obtained from the Remnantsguild, Nabble and Slash-
dot datasets are presented in Table 4. The UGCQ model using the JRIP on the
normalised Remnantsguild dataset achieved the best results with 68.55% accu-
racy and an average MCC value of 0.45. The Weimer model also achieved 68.55%
accuracy but with a lower average MCC of 0.43 while the Wanas model achieved
63.84% with an average MCC value of 0.30. All CQA models outperformed the
majority class baseline of 54.24% for Remnantsguild.

The UGCQ model using SVM on the discretised Nabble dataset achieved the
best results with 69.98% accuracy and an average MCC value of 0.40. Addition-
ally, the Weimer model achieved 65.07% accuracy with an average MCC of 0.28
while the Wanas model achieved 58.24% with an average MCC value of 0.19. All
CQA models outperformed the majority class baseline of 47.47% for Nabble.

The UGCQ model using SVM on the normalised Slashdot dataset achieved
the best accuracy of 53.94% accuracy but with an average MCC value of 0.12.
The FURIA algorithm on the discretised dataset however achieved the highest
average MCC value of 0.15 but with a lower accuracy of 51.20%. Additionally,
the Weimer model achieved 51.29% accuracy with an average MCC of 0 while
the Wanas model achieved 51.31% with an average MCC value of 0.01. The
UGCQ model using SVM on the normalised dataset slightly outperformed the
majority class baseline of 51.31% while the Weimer model under performed and
the Wanas model achieved equivalent performance to the baseline for Slashdot.

5.1 Friedman Test

Demšar (2006) [7] surveyed papers published from the International Conference
of Machine Learning in 1999 to 2003 and discovered that the majority of au-
thors did not statistically verify whether their classifier(s) produced significant
performance improvements.Therefore, a number of suitable statistical tests were
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Table 4. Ranking Comparison of Classifiers over all Datasets

Classifier Remnantsguild Nabble Slashdot Rankavg

UGCQ SVM D 66.29% (4) 69.98% (1) 52.66% (2.5) 2.5

UGCQ JRIP N 68.55% (1.5) 68.49% (3) 52.31% (4.5) 3

UGCQ SVM D FS 65.16% (7) 68.10% (4) 52.66% (2.5) 4.5

UGCQ JRIP D 66.85% (3) 66.98% (7) 52.31% (4.5) 4.83

UGCQ FURIA N 65.35% (6) 67.78% (5) 52.03% (6) 5.67

UGCQ JRIP N FS 63.47% (10) 68.93% (2) 51.56% (7) 6.33

UGCQ SVM N 63.65% (9) 64.18% (12) 53.94% (1) 7.33

Weimer 68.55% (1.5) 65.07% (11) 51.29% (13) 8.5

UGCQ FURIA D 65.72% (5) 66.25% (8) 51.20% (14) 9

UGCQ JRIP D FS 61.39% (13) 66.16% (9) 51.31% (8) 10

UGCQ FURIA D FS 62.90% (11) 66.05% (10) 51.31% (10.5) 10.5

Wanas 63.84% (8) 58.24% (14) 51.31% (10.5) 10.83

UGCQ FURIA N FS 62.71% (12) 67.28% (6) 50.69% (15) 11

UGCQ SVM N FS 59.89% (14) 63.34% (13) 51.31% (10.5) 12.5

Baseline 54.24% (15) 47.47% (15) 51.31% (10.5) 13.50

recommended based on the characteristics of a given experiment. We follow this
recommendation by performing the Friedman test [10] for verifying if there is a
significant statistical difference between the performance of multiple classifiers
over multiple datasets.

Firstly, we rank classifiers within each dataset in terms of their classification
accuracy. We use accuracy rather than the MCC average to include the baseline
classifier for evaluation. The average rank for each classifier over all the datasets
is presented in Table 4 in decreasing order of rank. Secondly, we evaluate the null
hypothesis H0 and alternate hypothesis Ha to determine if the average ranks of
these classifiers over all datasets are significantly different:

– H0: There is no difference in the average ranks for classifiers over the datasets.
– Ha: A difference exists in the average ranks for classifiers over the datasets.

We use statistical analysis tool, R [20] and conducted the Friedman test [10]
to obtain a chi-squared χ2 value of 24.84 with 14 degrees of freedom df and a
p-value of 0.03618. The critical value of α based on the χ2 value and df for the
χ2 distribution is 0.05. Therefore, we reject H0 and accept Ha because 0.03618
(p-value) < 0.05 (α).

5.2 Nemenyi Test

We discovered from the Friedman test that some classifiers are significantly dif-
ferent to others but we do not know which specific classifiers are different. There-
fore, we can use the Nemenyi test [16] to evaluate all pairs of classifiers (

∑k−1
i=1 i

permutations) to determine which classifiers are significantly different to each
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other. The critical distance qα for the two-tailed Nemenyi test with α = 0.05
(significance level) and k = 15 (number of classifiers) is 3.391.

We first calculate the distance between the average ranks between all pairs
of classifiers. The distance between the average ranks of two classifiers must
be ≥ 3.391 to be considered as significant with 95% probability. 56 out of 105
significant differences were identified from the pair-wise comparisons between
the classifiers.

We compare our top UGCQ classifier (UGCQ SVM D) along with the existing
models in the literature as shown in Table 5. The number shown in parenthesis
depicts the rank of the classifier over all datasets identified from Table 4. These
results show that the performance of the UGCQ classifier is significantly different
from these models while the differences between the Weimer and Wanas classifier
and, the Wanas and Baseline classifier are not significant.

Table 5. Comparisons between UGCQ and Existing CQA Models

Classifier A Classifier B Difference Sig. (diff ≥ 3.391)

UGCQ SVM D (1) Weimer (8) 6.00 Yes

UGCQ SVM D (1) Wanas (12) 8.30 Yes

UGCQ SVM D (1) Baseline (15) 11.00 Yes

Weimer (8) Wanas (12) 2.33 No

Weimer (8) Baseline (15) 5.00 Yes

Wanas (12) Baseline (15) 2.67 No

6 Discussion

Seven out of twelve UGCQ classifiers outperformed the CQA models proposed
by [22], [21] over the three datasets as shown in Table 4. Additionally, we statisti-
cally verified our highest ranking UGCQ classifier (UGCQ SVM D) significantly
outperformed these models as highlighted in Table 5.

A large number of UGCQ features were not evaluated for the Nabble and
Slashdot datasets due to missing data. For example, the average dwell time
was identified as an important quality feature on the Remnantsguild dataset
but could not be evaluated for the other datasets. The inclusion of our missing
features could further improve the performance of the UGCQ classifiers.

We calculate the average MCC low, medium and high values excluding the
baseline classifier for each dataset. The results indicate that CQA models per-
formed better in classifying low and high quality posts than medium quality. This
supports our intuition of how classifiers could misclassify low and high quality
posts that neighbour closely with the medium quality class and vice versa.
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7 Related Work

Chai et al. (2009) [5] conducted a comprehensive review of 19 content quality re-
lated assessment frameworks for forums, question & answering (Q&A) websites,
blogs and wikis. Additionally, Zhu et al. 2009 [23] proposed and validated a multi-
dimensional framework for assessing the quality of answers in Q&A websites.

Weimer & Gurevych (2007) [22] was first to propose a model for measuring
the quality of forum posts and classified posts into two quality classes (high
and low) by assessing surface, lexical, syntactic, similarity and forum specific
post features. This work was extended by Wanas et al. (2008) [21] by classifying
posts into 3 quality classes (low, medium and high) and evaluated features such
as relevance, originality, post component, surface and forum-specific features. Lui
& Baldwin (2009) [15] evaluated bag-of-words features and features proposed by
[21] on the dataset collected by [22] for classifying good and bad posts.

Agichtein et al. (2008) [1] evaluated usage statistics of questions and answers
in Yahoo! Answers to find high quality content. Additionally, the number of times
an answer was copied by users was proposed as a feature by Jeon et al. (2006)
[14] for measuring the quality of answers in Naver! (Korean Q&A website). Our
previous work, Chai et al. (2010) [4] extended these ideas to track how users
interact with forum posts to predict its quality.

We gained a number of insights from these related studies to propose our
UGCQ model that measures the content, usage, reputation, temporal and struc-
tural features of UGC for quality assessment. We provide a detailed review of
the related work in the area of content quality assessment in Chai (2011) [3].

8 Conclusion

We have proposed the UGCQ model that evaluates the content, usage, reptuation,
temporal and structural features of forum UGC for quality assessment. We imple-
mented our model into a prototype and validated its performance on the Rem-
nantsguild, Nabble and Slashdot forums. Additionally, we implemented two exist-
ing models in the literature for performance comparison with the UGCQ model.
We discovered that our model outperformed the existing models in the literature
over all forum datasets and the performance increasewas statistically significantly.
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Abstract. Using gray-scale texture features has recently become a new
trend in supervised machine learning crater detection algorithms. To pro-
vide better classification of craters in planetary images, feature subset
selection is used to reduce irrelevant and redundant features. Feature
selection is known to be NP-hard. To provide an efficient suboptimal
solution, three genetic algorithms are proposed to use greedy selection,
weighted random selection, and simulated annealing to distinguish dis-
criminate features from indiscriminate features. A significant increase in
the classification ability of a Bayesian classifier in crater detection using
image texture features.

Keywords: machine learning, genetic algorithms, crater detection,
bayesian classifier.

1 Introduction

Impact craters are structures formed by collisions of meteoroids with the plane-
tary surface. The importance of impact craters stems from the wealth of informa-
tion that detailed analysis of their distributions and morphology can bring forth.
Crater counting is the only technique for establishing relative chronology of dif-
ferent planetary surfaces. However, crater detection from planetary images is a
difficult problem because of the complex geological surface structure of remote
planets. If an acceptable solution is found it will enable many studies including
determining the geologically active regions of a planet, relatively dating sections
of a planet, and determining both landing and exploration sites for interplane-
tary robots. The challenge currently is to achieve an acceptable level of accuracy
as required by planetary domain scientists [11] [5] [10] [6] [12].

The state of the art method of crater detection involves utilizing the texture
and contrast of the crater image [3]. This is achieved by extracting numerical
features from an image, each representing a particular texture or contrast, and
then applying machine learning to decide if potential crater images are in fact
craters. Haar features, a gray-scale image texture features, are especially useful
because of their ability to be calculated efficiently using a data structure called
integral images [13].
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The challenge in using Haar features is that the number of Haar features can
easily be tens of thousands. Many Haar features are redundant or even irrelevant.
The curse of dimensionality is inevitable if we do not select subsets of features
that are useful to build a good classifier. All features generated from the image can
be broken down into discriminate features and indiscriminate features. Discrimi-
nate features contain information that is useful during classification. Indiscrimi-
nate features provide no information to the classifier or misguiding information.

The goal of feature selection is to select the optimal subset of features for some
classifier. Feature subset selection is known to be NP-hard. Exhaustive search is
the only way to find the optimal subset of a set of features. To find, for certain,
the optimal solution all permutations must be considered. The search space is
2f where f is the number of features. For an example with only 58 features it
would take 91,336,645.5 years to compute all classifiers if a classifier took 0.10
seconds to create and evaluate.

Three algorithms are presented in this paper, using approaches of highest
fitness selection, weighted random selection, and simulated annealing, to select
discriminate features that a classifier will use to classify images. These algorithms
are given a set of features and return a suboptimal subset. The algorithms pre-
sented in this paper aim to reduce the search space automatically. They will
automatically create a relevant subset of features utilizing a wrapped classifier
fitness function. A significant increase in the classification ability of a Bayesian
classifier in crater detection using image texture features.

2 Related Work

There have been many methods used to automatically detect craters. R. Honda
[4] built a SOM using Hough transforms to extract geometric features. They then
perform best parameter selection to reduce duplicate detections using a genetic
algorithm based on the center location and radius of the detected crater. In this
work we use genetic algorithms to choose the best features to build a classifier
with which is different from R. Honda’s method.

This paper uses standard classification methods to determine the probability
that an image is in fact a crater as inspired by W. Ding [3] and L. Banderia [1]. Y.
Cheng [2]. They used the concept of a confidence evaluation to detect craters and
J. Kim [5] used a fitness check to determine if the candidate was a crater or not.

This work utilizes Haar features to perform candidate image classification.
Haar features were used by W. Ding [3] L. Banderia [1], and S. Liu [7] and are the
state of the art in crater detection because of their adaptive and discriminative
ability. They are used in this work as crater features.

3 Genetically Enhanced Feature Selection

This section presents three genetic algorithms used for feature subset selection.
Each algorithm builds upon the one before it in an attempt to achieve better
results. The first algorithm is explained in detail and then only modifications
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are explained for the next two algorithms. First the main concepts of genetic
algorithms, genetic representation, and fitness are discussed. For each algorithm
there is an initial plan, explanation of steps, and a complexity analysis.

The three proposed methods of genetically enhanced feature selection are
shown in Algorithms 3, 4, and 5. These vary in the way feature subsets are
chosen to be crossed over. The goal is to pick the best feature subsets so that
when they are combined will generate a feature subset with a higher fitness
score than either of the original. The first algorithm attempts to choose the best
two feature subsets and use them as parents while the later algorithms attempt
to introduce controlled randomness. Controlled randomness is introduced by
randomly selecting from feature subsets that are weighted based on their fitness
score. Later simulated annealing is used to introduce more randomness at the
beginning of the algorithm.

3.1 Genetic Representation

In these algorithms the genetic representation is a subset of features that are
used in building a classifier. This is referred to in this work as a feature subset
but is also called an individual or chromosome. The representation is treated
as a subset and as a vector. This is achieved using the concept of a bitvector
to set features as on or off. Each index of the bitvector represents one feature.
The contents of a subset are the on features represented by the bitvector. The
magnitude of the subset is the sum of all possible features.

3.2 Wrapped Classifier Fitness Function

The fitness function used in the following algorithms is modeled as an evaluation
function in the F1 search space. It can be said that the fitness function is wrapped
around a classifier. The F1 fitness metric, fitness = F1 = 2

1
recall +

1
Precision

, takes
into account two important attributes of a classifier, precision and recall. This
allows us to compare two classifiers using one value. Using the F1 measure also
allows the priority queue datastructure to be used. The calculation for preci-
sion, Precision = truepositives

truepositives+falsepositives , takes into account how generously
the classifier predicted something was a positive example. This metric fails to
describe the situation when the classifier has ignored many positive examples.
Recall, Recall = truepositives

truepositives+falsenegatives , fixes this problem by describing the
ability of the classifier to predict all the positive examples correctly. It can be
thought of as describing the coverage of classifier. Recall by itself cannot describe
the classifier because it does not take into account the case where the classifier
marked everything as a positive instance.

3.3 Random Crossover

Instead of splitting the feature subset somewhere in the middle so the order is
preserved at a loss for feature equality [9], we use random crossover to ensure
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Algorithm 1. Preform Random Crossover f1
⊗

f2
Input: Feature Subset Vector f1

Feature Subset Vector f2
Output: Feature Subset Vector f3

1 for |f1| do
2 if 0.5 < Random(0, 1) then
3 f3i = f1i

4 else
5 f3i = f2i

Algorithm 2. Preform Random Mutation M(f1, δ)
Input: Feature subset f1

Percentage to mutate δ
Output: Feature subset vector f2

1 for δ of |f3| do
2 r = Random(0, |f3|) // random index
3 f3r = ¬f3r

that element of the feature subset has an equal chance of being preserved. This
change is due to the absence of order that is involved with features.

The random crossover used, as shown in Algorithm 1, is the process of merging
two parent subsets to make a new child subset. This resulting child subset is
composed of the parent subsets. This process is used to simulate the mixing
of chromosomes during natures genetic process. If a feature is enabled in both
parents then it will be enabled in the child. If it varies in the parents then there
is a 50% chance it will be preserved in the child. If a feature is turned off in both
parents it will be turned off in the child. If this method was used exclusively in
the algorithms then the children would converge to a local or global maximum
fitness. This convergence is not desired because we want to avoid local maximums
so the feature subsets are also mutated.

3.4 Mutation

Mutation is used to avoid the convergence of algorithms at a local maximum. As
shown in Algorithm 2; mutation involves randomly flipping a percentage of bits
in the feature subset to enable or disable features. Mutation as described here
takes a percentage as an argument and mutates that percentage of the feature
subset. This is used to simulate natures genetic mutations.

3.5 Highest Fitness (Greedy) Selection

Also called GHF (Genetic Highest Fitness), the initial plan for this algorithm
was to greedily select the best two feature subsets. This would then concentrate
the randomness to the crossover and mutation phases. The expectation is that
combining good feature subsets will produce better feature subsets.
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Algorithm 3. Highest Fitness (Greedy) Selection (GHF)
Input: Features Γ

Iterations I
Inital random subsets s
Percentage to mutate m
Maximum size of Υ size

Output: Feature subset Γ ′

1 Add a full instance of Γ to Υ
2 Add s random subsets of Γ to Υ
3 for each i in I do
4 {f1|f ∈ Υ, fitness(f1) ≥ fitness(f)}
5 {f2|f ∈ (Υ ∩ ¬{f1}), fitness(f2) ≥ fitness(f)}
6 f3 = f1

⊗
f2 // crossover subset

7 f3′ = M(f3, m) // mutate subset m percent
8 {Υ |f ∈ Υ ∩ {f3′}}
9 {Γ ′|Γ ′ ∈ Υ, f ∈ Υ, fitness(Γ ′) ≥ fitness(f)}

The GHF steps are explained now. Step 1: seed the algorithm with a subset
that contains all features. Step 2: seed the algorithm with an initial set of feature
subsets. Step 3: we loop some number of times to simulate many generations of
evolution. Step 4: we select a parent from the set of feature subsets that has
the best fitness score. Step 5: remove the already selected feature subset and
then select the feature subset with the highest fitness score. Step 6: randomly
crossover f1 and f2 to create f3. Step 7: mutate m percent of this new feature
subset. Step 8: define upsilon to contain the mutated f3. Step 9: define Gamma
prime to be a feature subset that has the highest fitness score in upsilon.

3.6 Weighted Random Selection

Also called GWR (Genetic Weighted Random), the initial plan for this algorithm
was to increase the chance that a feature subset with better complementing
features would be chosen. This is implemented using a weighting method. The
feature subsets are selected at random but weighted based on their fitness values.
To explain this sample data is shown in Figure 2. The sample data points are the
values 0.95, 0.90, 0.80 and 0.70. To the right of the image those values have been
scaled to 0.284, 0.269, 0.239, and 0.209. This allows a random number between
0 and 1 to select a feature. Figure 1 shows the result of the highest fitness score
removed. The fitness values are normalized again to handle this change so that
a new random number between 0 and 1 will select a feature subset.

Algorithm 4 has it’s feature subset selection method modified. Steps 3 and 4
are changed now to call a GetWeightedSubset method. In GetWeightedSubset
Step 10: defines a sub routine. Step 11: defines that fn is a element of upsilon.
Step 12: produces a normalized version of the feature subset and a fitness value
to be used below only. Step 13: generates an r between 0 and 1 that we will
subtract from to pick a feature subset. Step 14: loops for each feature subset.
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Algorithm 4. Weighted Random Selection
Input: Features Γ

Iterations I
Inital random subsets s
Percentage to mutate m
Maximum size of Υ size

Output: Feature subset Γ ′

1 Add a full instance of Γ to Υ
2 Add s random subsets of Γ to Υ
3 for each i in I do
4 f1 = GetWeightedSubset(Υ )
5 f2 = GetWeightedSubset(Υ ∩ ¬{f1})
6 f3 = f1

⊗
f2 // crossover subset

7 f3′ = M(f3, m) // mutate subset m percent
8 {Υ |f ∈ Υ ∩ {f3′}}
9 {Γ ′|Γ ′ ∈ Υ, f ∈ Υ, fitness(Γ ′) ≥ fitness(f)}

10 GetWeightedSubset :
Input: Current set of feature subsets Υ
Output: Feature subset f2

11 fn ∈ Υ

12 {f̂n|∑n fn = 1}
13 r = Random(0, 1)

14 foreach f̂n do

15 r = r − f̂n
16 if r < 0 then
17 returnf

Step 15: subtracts the current feature subsets normalized fitness value from r.
Step 16+17: if r has gone below 0 then we select that feature subset.

Fig. 1. Left: Sample values weighted based on fitness score, Right: Sample values
weighted based on fitness score after one feature subset is removed
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3.7 Weighted Random Selection with Simulated Annealing

Also called GWRSA (Genetic Weighted Random w/ Simulated Annealing), the
idea for this algorithm is to initially weight all feature subsets the same during
feature subset selection and then gradually weight them by their fitness score as
the number of iterations increases.

As shown in Algorithm 5 the GetWeightedSubset method has been modified
to take the current iteration as an argument. Steps 1 and 2 use this iteration
value to drive the weighting to be close to equal at the beginning and properly
weighted when iterations are at the end.

Algorithm 5. GetWeightedSubset w/ Simulated Annealing
Input: Current set of feature subsets Υ
Input: Current iteration i
Output: Feature subset f2

1 annealing = I − i

2 {f̂n|∑n fn + annealing = 1}
3 r = Random(0, 1)

4 foreach f̂n do

5 r = r − f̂n
6 if r < 0 then
7 returnf

3.8 Complexity

GHF is the most efficient algorithm out of the three. GWR and GWRSA have
an added penalty due to the way they use randomness to avoid local maxi-
mums. The complexity of GHF is O(icΓ ) where i is the number of iterations,
c is the complexity of the classifier used to calculate the fitness score, and Γ
is the number of features used. In GWR the change from selecting the feature
subset with the highest fitness score to weighting and selecting causes the al-
gorithm to increase in complexity. All the fitness values must now be added to
create a normalization term. This increases the complexity to O(icΓ 2). A limit
on the number of feature subsets in Γ would reduce the complexity but that
method is not used in this algorithm. The complexity of GWRSA does not in-
crease the complexity of GWR because the only change is an addition during
the computation of the normalization term.

4 Experimental Results

This section analyses the advantages of using these feature selection algorithms.
This is done by creating a super set of features that contain discriminate and
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Fig. 2. Images used for positive examples

indiscriminate features. The goal of the feature selection algorithm will be to
remove the indiscriminate features and return a feature subset with only dis-
criminate ones.

A challenge of experimenting with these algorithms is finding their optimal
parameters. This section will also analyze the mutation rate, number of iter-
ations, maximum number of feature subsets accumulated, and the number of
feature subsets generated for the initial pool. This section will also compare this
algorithm to a variety of other algorithms applied to the same dataset.

In these experiments the training set consists of 166 positive examples of
craters and 343 negative examples of ground without cratering are used from the
HRSC h0905 0000 nadir panchromatic image. This training set used is selected
to simulate crater detection and was inspired by the ones used by W. Ding [3]
and L. Banderia [1]. Positive examples contain craters centered and cropped as
shown in Figure 2. This training set provides the ability to analyze the algorithms
without dealing with the size and complexity of applied crater detection.

To evaluate the proposed algorithms Haar features are used in combination
with a Bayesian classifier. Haar features have a proven ability to detect craters
[3]. A Bayesian classifier is used because of it’s naive use of all features. Haar
features were first proposed by Papageorgiou [8], then applied to face detection
by Viola and Jones [13], and then applied to crater detection by W. Ding [3]. Haar
features are described using feature masks that specify white and black regions.
The masks are overlaid on the crater image and the sum of each region’s pixel
values are calculated and then the difference is taken. In Figure 3 the masks above
A are basic Haar feature masks. The masks above B and C are horizontally and
vertically scaled to capture contrast and texture that will not fit into a square.
The features extracted depend on the image format for precision and size. Haar
features can be optimized for speed using a technique discussed by Viola and
Jones [13] that allows for O(1) calculations of Haar features from an image that
has had a corresponding Integral Image computed.
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Fig. 3. Left: Haar Feature Masks Used, Right: Coverage of Haar Features on Crater
Image

In the following experiments 58 Haar features are used. Figure 3 shows the
outlines of these features to specify the coverage area. They were chosen to
provide a challenge to the classifier while still providing discriminating features.

The initial pool size is the set of feature subsets that are given to the
algorithm to start the process. There needs to be two or more feature subsets
to start. Values from 10 to 700 are used over 1000 iterations at 5% mutation
to determine the optimal value. There does not seem to be any advantage to
varying this parameter.

The maximum feature subsets accumulated variable is the limit of fea-
ture subsets that will be maintained in memory during the program execution.
This is only used for the Weighted Random selection and the Weighted Random
Simulated annealing feature selections. Values are sampled from 3 to 1000 dur-
ing 10000 iterations at 5% mutation. The scale starts at 3 because otherwise it
is the Highest Fitness Score feature selection. The Highest Fitness Score feature
selection method keeps only 2 feature subsets in memory so there is no collection
of feature subsets to vary. Figure 4 shows that the optimal values appears to be
around 10.

Fig. 4. Left: Initial Pool Sized vs Fitness, Right: Maximum Feature Subsets Accumu-
lated vs Fitness

A mutation rate needs to be chosen for GHF, GWR, and GWRSA. The
rate is the percentage of the feature subset that will be randomly turned on
or off. A constant percentage is used for every iteration. The elements that are
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Fig. 5. Left: Average Percentage of Mutation Effectiveness, Right: Average Iteration
Effect on Fitness

Fig. 6. Comparison of Classifiers

changed are randomly selected each iteration. An experiment was performed
using 10,000 iterations, 10 randomly generated initial feature subsets, and a
Naive Bayes Classifier. In Figure 5, 5% is shown to be the best mutation rate.

The number of iterations used would be a limiting factor in the application
of these algorithms. Figure 5 shows all three proposed algorithm’s fitness score
grouped by iterations but varying in configurations.

A classifier comparison is shown in Figure 6. The best performance of
these algorithms is compared to the standard Naive Bayes classifier result. The
algorithms always start with the standard Naive Bayes result because they use
all the features which ensures the result will never decline. The results show
that genetically enhanced feature selection offers a significant increase in the
classification ability to the standard Naive Bayes classifier.

5 Conclusion

This paper presented three feature selection algorithms that increase the clas-
sification ability of the Naive Bayes classifier. This is necessary because during
applications of machine learning the classifier is presented with discriminate and
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indiscriminate features. This increase in classification ability is caused by train-
ing the classifier with a subset of features containing discriminate features. This
algorithm is shown to boost the classification ability of a classifier that does not
perform feature selection itself.
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NNX09AK86G and NSF Grant 1062749.
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Abstract. Modeling of financial time series data by methods of artifi-
cial intelligence is difficult because of the extremely noisy nature of the
data. A common and simple form of filter to reduce the noise originated
in signal processing, the finite impulse response (FIR) filter. There are
several of these noise reduction methods used throughout the financial
instrument trading community. The major issue with these filters is the
delay between the filtered data and the noisy data. This delay only in-
creases as more noise reduction is desired. In the present marketplace,
where investors are competing for quality and timely information, this
delay can be a hindrance. This paper proposes a new FIR filter derived
with the aim of maximizing the level of noise reduction and minimizing
the delay. The model is modified from the old problem of time series
graduation by penalized least squares. Comparison between five differ-
ent methods has been done and experiment results have shown that our
method is significantly superior to the alternatives in both delay and
smoothness over short and middle range delay periods.

Keywords: Penalized least squares, Time series analysis, Financial
analysis, Finite impulse response, Time series data mining.

1 Introduction

The presence of noise in time series data severely limits the ability to extract
useful information [21]. Two types of noise have been identified, dynamical [8, 22]
and measurement [8, 22, 24] noise. Dynamical noise is within the system and
measurement noise is the result of less than perfect measurement instruments.
Noise reduction is a broad term where the goal is to remove from a time series
some unwanted component which itself is made up of noise [8].

Noise reduction of time series can be placed into four groups; graduation,
prediction, filtering and smoothing. Graduation assumes that the signal has fin-
ished, thus allowing the use of all the data to be used to reduce the noise. This
has been a very big area of research with models such as wavelets [2, 3], singular
value decomposition [29, 34], empirical mode decomposition [1, 4], particle filters
[10, 20], and singular spectrum analysis [12, 13]. Prediction involves estimating
the future noise free values using old data. A very common and simple series of
models for this purpose are the exponential smoothing models [9]. Filter models
estimate the current noise free price using all available information. A famous
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filter, the Kalman filter [17], has been used since it’s derivation in 1960. Smooth-
ing models are identical to filters with the exception of an added delay [26], they
use some future data to reduce the noise such as in [32]. The models provide
more accurate estimates at the cost of using some future data (the delay).

For noise reduction of financial data, it would appear that smoothing models
are the most ideal. They are calculated in real time as the financial data stream
is received, and they provide the best estimate in comparison to filters or predic-
tors. The problem with these models, however, is the obvious lag. For example,
the smoothed value at time t reflects the correct smoothed value for time t − l,
where l is the lag. With the reduction of lag comes reduction of smoothness.

It has been shown that perfectly reducing the noise of the streaming time
series increases the performance of data mining and forecasting methods [19, 31].
Investors use various combinations of these filters to produce trading rules, based
on the reduced level of noise, to assist with buy and sell decisions. A comparison
of two types of filters for this purpose was performed by [7] while [15] optimized
the rules with a particle swarm algorithm. This paper will be concerned with a
form of filter that is in wide spread use for security price analysis, finite impulse
response (FIR) filters – or more commonly known in the financial industry as
moving averages. The current methods will be presented and a new method with
theoretical basis will be proposed to address the issue of lag within the limitation
of the FIR filter.

The rest of this paper is outlined as follows, Sect. 2 will show the variations
on the finite impulse response filter that are used. Section 3 proposes a new
model with a theoretical basis. Section 4 describes the experiment performed
to compare the various models and the results are presented in Sect. 5. Finally,
Sect. 6 discusses the conclusions.

2 Current Methods

Finite impulse response (FIR) filters in the financial literature are more com-
monly known as moving averages, they can be generalized as:

ŷt =
n∑

i=1

αiyt−n+i (1)

Where α = [α1, α2, · · · , αn] is the set of model coefficients. The number of coef-
ficients is denoted n, otherwise known as the FIR window size. There are only a
handful of different methods of selecting these coefficients. The simple moving
average (SMA) [5] sets α1 = α2 = . . . = αn = 1/n. Analysts changed the coef-
ficients to increase the weight on the most recent data with the aim of reducing
the lag. The weighted moving average (WMA) [5] is one of these changes
which sets the vector α = [1, 2, . . . , n] · [n(n + 1)2−1]−1. The hull moving av-
erage (HMA) [16] is a modification of the WMA, which has less lag. Given that
WMA(y, n) is the WMA of series y with n coefficients, the HMA is calculated
as:
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ŷ = WMA(2 · WMA(y,
n

2
) − WMA(y, n),

√
n) (2)

A Gaussian implementation, where α is selected from a Gaussian kernel [11],
is commonly known as the Arnaud Legoux moving average (ALMA) [23]
which uses an offset O:

ŷt =
∑n−1

i=0 Kσ(i − O)yt−i∑n−1
i=0 Kσ(i − O)

, Kσ(x) = e−
x2

2σ2 (3)

There are other methods for selecting the coefficient vector α, however, they are
unsuitable for financial data. For example, the least mean squares filter [30] is an
adaptive moving average, the coefficients change with time. To calculate α, one
must first know the smoothed series, quite impossible in finance and economics.
The FIR wiener filter [18] also requires knowledge of the smoothed series.

Each of these FIR designs aims to maintain a smooth output while attempting
to reduce lag. The following section shows a derivation of the coefficient vector
α which is optimized to give the smoothest curve on a training data set after
specifying the FIR window size.

3 Our Proposed Method

Our proposed method for real time noise reduction is based on the penalized
least squares (PLS) graduation method [6, 14, 33]. The PLS method balances
two conflicting attributes of the final curve: (1) the accuracy of the curve to the
original series and (2) the smoothness of the curve. The accuracy is expressed in
matrix notation with the normal least squares method ||y−ŷ||2. The smoothness
can be measured with differencing where ∇ŷx = ŷx − ŷx−1 and ∇2ŷx = ∇(∇ŷx).
The differencing can be expressed in matrix notation where D is a matrix such
that Ddŷ = ∇dŷ where d ∈ Z. For example, if the size of the y vector is 5 and
d = 1 then:

D1 =

⎡
⎢⎢⎣
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⎤
⎥⎥⎦ (4)

The problem is then expressed in least squares form as:

Q = ||y − ŷ||2 + λ||Ddŷ||2 (5)

Where λ is a smoothing factor. Differentiating both sides with respect to ŷ and
setting to zero leads to the following solution where ŷ is a graduation of y:

ŷ = (I + λDT
d Dd)−1y (6)
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Penalized least squares moving average (PLSMA) is the proposed model
which modifies the PLS method to calculate optimal moving average coefficients.
To change the problem to a moving average model the underlying time series
needs to be represented in a trajectory matrix ȳ and the corresponding time
series vector y needs to be adjusted to match. The trajectory matrix is calculated
as follows, considering the time series y = [y1, y2, . . . , yN ] let n be the number
of coefficients in the model, then:

ȳ =

⎡
⎢⎢⎢⎣

y1 y2 . . . yn

y2 y3 . . . yn+1

...
...

. . .
...

yN−n+1 yN−n+2 . . . yN

⎤
⎥⎥⎥⎦ (7)

While the corresponding time series vector y is the last column of ȳ.
The model coefficients are represented in a column vector α, consistent with

(1), and ŷ is then replaced by ȳα in (5):

Q = ||y − ȳα||2 + λ||Ddȳα||2 (8)

Differentiating both sides with respect to α and setting to zero gives the solution:

α = [ȳT ȳ + λ(Ddȳ)TDdȳ]−1ȳTy (9)

Now, α are FIR coefficients. While training data is needed to compute these
coefficients, they can be used to smooth future data in an online fashion with
increased smoothness (reduced lag) over the given data.

This raw method does come with some problems. (1) As λ increases the curve
gets smoother until a point is reached where it cannot be any smoother and still
remain on the same scale as y. Then, ŷ → 0 as λ → ∞. (2) As λ → ∞ the
matrix ȳT ȳ + λ(Ddȳ)TDdȳ becomes singular – non-invertible. (3) most of the
current filters have one or two inputs, this method has three inputs, FIR size, d,
and λ.

The first problem is solved by normalizing α by the sum of α. The second
problem is rectified by noting that λ is used to change the proportion of the least
squares equation by increasing the smoothness penalty. This ratio is maintained
if the error part of the equation is multiplied by λ−1 and the smoothness penalty
is left without a multiplier. Thus, (8) & (9) become:

Q = λ−1||y − ȳα||2 + ||Ddȳα||2 (10)

α = [λ−1ȳT ȳ + (Ddȳ)TDdȳ]−1λ−1ȳTy (11)

Because of normalization, (11) can drop the second λ−1:

α = [λ−1ȳT ȳ + (Ddȳ)TDdȳ]−1ȳTy (12)

The third problem is overcome by noting that the goal is to achieve the greatest
smoothing. Thus, λ ought to be maximized. Taking the limit:
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α = lim
λ→∞

[λ−1ȳT ȳ + (Ddȳ)TDdȳ]−1ȳTy (13)

= [(Ddȳ)TDdȳ]−1ȳTy (14)

4 Experiment Description

The models were compared over several data sets with a cross validation method.
To calculate the performance of each model two measures were developed. One
for measuring how smooth the new time series is and the other to calculate how
much lag it has. The rest of this section presents the details of this experiment
and these statistical measures.

4.1 Data

Six real world time series were used for these experiments; AUD/USD, EUR/USD,
GOOG, INDU, NASDAQ, and XAU/USD, all daily prices each around 2000
samples. Table 1 shows the range and description of each series. In addition, two
randomly generated series were also used. Both have 2000 random prices with
returns generated from the standard normal distribution.

Table 1. Names and description of the time series used in the experiment

Series Name Range Description

AUD/USD 20/10/2003 - 14/06/2011 Australian Dollar to U.S.A. Dollar
EUR/USD 15/10/2003 - 31/05/2011 Euro to the U.S.A. Dollar
GOOG 25/10/2004 - 14/06/2011 Stock for Google
INDU 21/07/2003 - 14/06/2011 Index for Dow Jones Industrial Average
NASDAQ 10/04/2003 - 14/06/2011 NASDAQ market index
XAU/USD 22/10/2003 - 14/06/2011 Gold to U.S.A. Dollar
Random 1 2000 random prices
Random 2 2000 random prices

4.2 Smoothness (Noise) Function

Previously, to calculate the level of noise reduction, the signal to noise ratio
(SNR) would be used [27]. However, it assumes that the clean signal is known,
and assumes that ŷ has no delay. In previous research, measures have been used
which do not hold these assumptions. For example, autocorrelation and power
spectrum are used in [25]. Unfortunately, these methods output the result in
a large dimension resulting in comparison issues when processing thousands of
comparisons. The measure for smoothness used here builds upon ||Ddŷ||2 used
in the PLS equation. Some considerations are made, if d = 1, then the error
stems from using the previous value of ŷ, similarly, d = 2 is using the previous
rate of change (ROC) to forecast. However, the ROC may be smooth, where
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d = 3 would result in a smaller error. Thus, the smoothness of ŷ is the minimum
of the following function with respect to d normalized by the smoothness of y:

S(ŷ) = min {||Ddŷ||} , d ∈ N (15)

S(y, ŷ) = 1 − S(ŷ)
S(y)

(16)

Which can be interpreted as the percentage of noise filtered from the original
series y to produce the smooth curve ŷ. Unlike the SNR, the S function does not
assume that the clean signal is known, and does not make assumptions about
the lag.

Usually, noise is measured as an error between values such as in prediction
problems or when using the SNR. However, as this paper is not dealing with
estimating exact unknown quantities, this is redundant. Instead, the aim is the
online reduction of noise in known noisy data. Thus, a natural conclusion would
be to reduce the variance between values. As this would result in producing
a straight line, instead of following the time series, the smoothness function
extends this to reducing the variance at the best derivative level. As a result,
small values for S(y) means that y is smooth and takes on the form of a curve.

4.3 Lag Function

Cross correlation is adapted to calculate the lag between y and a given ŷ. After
calculating the smoothed series ŷ of a testing data, the entire training-testing
window (y) and ŷ are lined up by their right side. This is lag 0 and the correlation
is calculated between ŷ and the adjacent values in y. Then ŷ is shifted left by 1,
corresponding to lag 1, and the correlation is again calculated. This process is
continued and the lag with the highest correlation is taken to be the lag of the
smoothed series.

4.4 Cross Validation

The five models in Sect. 2 and 3 were compared by using a cross validation
method. The best window size for the training data was 800 and the testing
data was 400. Due to the large size of this combined window (1,200), it was
shifted by 100 rather than 400 to maintain enough sample optimizations.

The aim of the experiment was to find out which model has greater smoothing
for a given amount of lag. There is no direct input for lag, however, as FIR filters,
the lag is related to the size of the filter. Thus, the size (n) was iterated between
2-150 and the remaining variables were optimized at each iteration.

As has been shown, the SMA, WMA, and HMA have a single input, the FIR
window size (n). As a result, these three models do not need optimization. The
smoothed series is simply calculated over each testing set, and the smoothness
and lag are averaged for each value of n.
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For each n ∈ [2−150], the ALMA is optimized 5 times over each set of training-
testing data using 1 − S(y, ŷ). The best parameters out of the 5 are chosen for
that data set. The variables σ and O are optimized over the ranges 1 to 50 and
-50 to 50 respectively. The optimization algorithm is simulated annealing, see
[28]. Put simply, simulated annealing takes an initial starting point and “jitters”
it around the error surface with a tendency to move around local minima. The
jittering gradually comes to a halt where the point is expected to be in a local
minima. The standard MatLab algorithm with default parameters was used.

The PLSMA model optimization is performed differently. The only parameter
to be optimized is d and this is an integer. After a few trials of different FIR
window sizes up to 150 it seemed that the optimal d did not go over 10. d was
evaluated over the range [1-10] and the best value according to the smoothness
measure was selected.

Figure 1 is the pseudocode of the cross validation algorithm.

foreach model

foreach time series

for n = 2-150

foreach CV window

Optimize model on training data

Apply model to testing data

calculate smoothness and lag

Calculate average smoothness and lag over the CV windows

Calculate average smoothness for each lag

Fig. 1. Pseudocode for the cross-validation algorithm

Once the average smoothness for each lag had been obtained for each of
the models on each of the time series, summary statistics were compiled. The
percentage of superior lags in comparison to the other models on each time
series is calculated. The model with the highest percentage of superior lags is
considered to be the best model.

5 Results

A clear indication of each model’s performance is shown in Tbl. 2. The %Lags
column shows the percentage of lags for which that model is superior, and the
Range column shows the range of those lags. These comparisons were different
for each model, as each model spans a different range in relation to the others.
For example, the HMA only goes as far as 17 delay periods on the AUD/USD
data. Thus, these figures are for the comparable range of each model on each
data set.

The SMA is the worst model with no suitable lag periods except for the
XAU/USD series where it is superior for lag 1. The WMA falls next being only
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Table 2. Percent improvement, lag range, and algorithm complexity

SMA WMA HMA ALMA PLSMA
%Lags Range %Lags Range %Lags Range %Lags Range %Lags Range

Random 1 0.0% [] 3.0% [1] 5.3% [2] 31.8% [31-44] 58.3% [3-30]
Random 2 0.0% [] 2.4% [1] 11.1% [2-3] 24.0% [39-50] 57.4% [4-38]
INDU 0.0% [] 2.6% [1] 11.8% [2-3] 28.0% [37-50] 49.3% [5-36]
AUD/USD 0.0% [] 2.4% [1] 11.8% [2-3] 30.0% [36-50] 50.8% [4-35]
EUR/USD 0.0% [] 0.0% [] 23.5% [1-4] 28.0% [37-50] 47.1% [5-36]
GOOG 0.0% [] 0.0% [] 11.8% [2-3] 24.0% [39-50] 48.6% [1, 4-38]
NASDAQ 0.0% [] 2.4% [1] 11.8% [2-3] 26.0% [38-50] 47.2% [4-37]
XAU/USD 2.1% [1] 0.0% [] 11.1% [2-3] 19.0% [35-42] 66.0% [4-34]
Average 0.3% 1.6% 12.3% 26.4% 53.1%
Complexity O(n) O(n) O(n2) O(n) O(n3)

superior on average by lag 1. The HMA is approximately on the range 2-3.
The ALMA takes a much wider range of about 37-48 lag periods. The PLSMA
model (our proposed model) is shown to be the best smoother. Being the most
smoothest model for 48.6%+ of the lag periods. It appears that the PLSMA is
superior over short to middle term lag periods of about 4-36 while the ALMA
smoother is best for longer term lag periods.

Once the FIR coefficients for each model has been calculated, applying the filter
to the financial data stream is of O(n) complexity. However, the models do have
varying degrees of complexity for the calculation of the FIR coefficients. PLSMA
excluded, the best model is the ALMA which is of complexity O(n). The improve-
ment that PLSMA brings comes at a complexity cost, with the model sitting at
O(n3). However, this is not a setback in online applications as the FIR coefficients
are calculated offline. The complexity for each model is shown in Tbl 2.

6 Conclusions

In this paper, we have shown some of the different FIR filters used by investors to
smooth security prices. It is noted that the output of a FIR filter is delayed with
respect to the underlying time series. In addition, there is a positive relationship
between the smoothness of the resulting curve and the lag which is undesirable.
A method was proposed to derive an impulse response which maximizes the
smoothness and minimizes the delay. As there is no assurance of optimality over
any future data the filter may be applied to, this model was compared against
five common models with a cross validation process. It was discovered that the
proposed model achieves greater overall smoothing, more specifically for the
short to middle range lag periods. While the very short term (4 or less periods)
and longer term (37+ periods) were dominated by other models.

Future research will expand the analysis in this paper to include noise re-
duction models that are not otherwise used for financial pre-processing. Further
experiments will also be conducted to discover the level of improvement for data
mining and forecasting algorithms as previous research implies.
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Abstract. Logistic regression is one of the most commonly applied sta-
tistical methods for binary classification problems. This paper considers
the nonnegative garrote regularization penalty in logistic models and
derives an optimization algorithm for minimizing the resultant penalty
function. The search algorithm is computationally efficient and can be
used even when the number of regressors is much larger than the num-
ber of samples. As the nonnegative garrote requires an initial estimate
of the parameters, a number of possible estimators are compared and
contrasted. Logistic regression with the nonnegative garrote is then com-
pared with several popular regularization methods in a set of compre-
hensive numerical simulations. The proposed method attained excellent
performance in terms of prediction rate and variable selection accuracy
on both real and artificially generated data.

1 Introduction

Logistic regression is one of the most commonly applied statistical methods for
binary classification problems. Here, one observes n data samples

{(yi, xi1, . . . , xip), i = 1, . . . , n}
comprising p predictor variables and a binary class indicator y ∈ {−1, +1} which
denotes the class membership of the observed predictors. The conditional prob-
ability that a vector of covariates x = (x1, . . . , xp)′ is assigned to class y is

p(y = ±1|x, β) =
1

1 + exp(−yx′β)
(1)

where β = (β1, . . . , βp)′ ∈ Rp are the regression coefficients. The log-likelihood
of a logistic regression is then given by

l(β) = −
n∑

i=1

log (1 + exp(−yix′
iβ)) (2)

which is a function of the regression parameters β. The regression coefficients
determine the probability of the target variable. That is, a positive regression co-
efficient for a predictor implies that the predictor is associated with an increased
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probability of the response (y = +1), while a negative parameter coefficient re-
duces the response probability. A regression coefficient of zero has no effect on
the conditional class probability and should ideally be excluded from the final
model. The main task in inference of logistic models is to estimate the parameter
coefficients β and select which of the p observed covariate vectors, if any, are
useful in explaining the target variable.

This paper applies the nonnegative garrote to logistic regression models and
examines the performance of the resulting procedure under various settings of
sample size, number of predictors and regressor correlation. There are three main
contributions in the paper: (1) an efficient algorithm for the implementation of
NNG in logistic regression models, (2) empirical evaluation of several initial
estimators for the NNG, and (3) extensive performance comparison in terms of
prediction and variable selection of the NNG procedure with several popular
regularization algorithms.

2 Nonnegative Garrote

Let β∗ ∈ Rp be an initial estimate of the logistic regression parameters, for
example, the maximum likelihood estimate or a ridge regression estimate. Denote
a shrunken estimate of β∗ as β̃(c) = (c 
 β∗) where c = (c1, . . . , cp)′ and the
operator 
 is the Hadamard (element-wise) product. The nonnegative garrote
estimate [1] is defined as the solution to

βλ = arg max
β̃(c)

{
l(β̃)

}
= argmin

β̃(c)

⎧⎨
⎩

n∑
i=1

log
(
1 + exp(−yix′

iβ̃)
)

+ λ

p∑
j=1

cj

⎫⎬
⎭ (3)

subject to the constraints

cj ≥ 0, (j = 1, 2, . . . , p) (4)

and assuming that the initial parameter estimate β∗ is kept fixed. The NNG
shrinks the initial parameter estimates by varying the multiplier c. The regular-
ization parameter λ > 0 controls the amount of shrinkage that is applied to the
initial parameter estimates. Increasing λ (tightening the garrote) results in more
of the initial parameters being set to zero and greater shrinkage of the non-zero
components of β∗. In contrast, decreasing the regularization parameter induces
less shrinkage leading to a final solution that is closer to the starting parame-
ter estimates. In this way, the NNG allows for both parameter shrinkage and
variable selection automatically. In practice, the regularization parameter may
be selected using a model selection criterion such as the Bayesian information
criterion (BIC) [2].

There is no clear consensus as to which initial estimator should be used with
the NNG. Breiman [1] originally advocated the maximum likelihood estimator to
be used as the initial estimate in linear models. There are three disadvantages of
this approach in logistic regression: (1) the maximum likelihood estimator cannot
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Algorithm 1. Cyclic coordinate descent for nonnegative garrote (nng)
input : data matrix X ∈ Rn×p, target vector y ∈ {−1, +1}n, initial

estimate β∗ ∈ Rp, regularization parameter λ > 0
output: NNG estimate β ∈ Rp

1 initialize Δj ← 1 for j = 1, . . . , p, Δri ← 0 for i = 1, . . . , n
2 r ← y �Xβ∗ (� denotes element-wise product)

3 xi ← xi � β∗ (i = 1, . . . , n) (rescale data)

4 β ← (1, . . . , 1)′ (start search from β∗)

5 for t← 1, 2, . . . to convergence do
6 for j ← 1, 2, . . . to p do
7 Fi ←

min(0.25, 1/(2 exp(−Δj |xij |) + exp(ri −Δj |xij |) + exp(Δj |xij | − ri))
(i = 1, . . . , n)

8 Δvj ←
(∑n

i=1 xijyi/(1 + exp(ri))− λ
)
/(
∑n

i=1 x2
ijFi)

(Newton--Raphson update)

9 if βj = 0 then
10 if Δvj ≤ 0 then
11 Δvj = 0
12 end

13 else
14 if βj + Δvj < 0 then
15 Δvj = −βj (if sign change, set βj to zero)

16 end

17 end
18 Δβj ← min(max(Δvj ,−Δj), Δj) (limit step size to trust

region)

19 Δri ← ΔβjXijyi, ri ← ri + Δri (i = 1, . . . , n)
20 βj ← βj + Δβj

21 Δj ← max(2|Δβj |, Δj/2) (update trust region size)

22 end

23 end
24 β ← β � β∗ (use original scale)

be used if the number of predictors is greater than the number of samples (p > n
setting) or the covariates are highly correlated, (2) the maximum likelihood
estimator performs poorly when the sample size is small, and (3) the maximum
likelihood estimator does not exist if the data is quasicompletely or completely
separable [3]. In this paper, following [4], we compare and contrast a number of
alternative initial estimators.

A software implementation of NNG logistic regression requires some thought
since the standard convex programming solution to (3)-(4) is not feasible when
the number of covariates is large. The NNG solution was originally implemented
using constrained least squares minimization in the linear regression setting. This
approach is however not possible in logistic regression models and subsequently
a number of alternative optimization routines have been proposed [5,6,7]. This
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paper employs a numerical optimization routine based on the cyclic coordinate
descent method detailed in [5]. The cyclic coordinate descent method was chosen
because of the low computational complexity and the fact that the algorithm
can be used when the number of predictors is large, potentially much larger than
the sample size. The pseudo-code for the proposed optimization routine is shown
in in Algorithm 1.

Our modified algorithm, henceforth NNG_OPT, begins by transforming the data
matrix X and the initial parameter vector β∗ in such a way that the transformed
regression parameters are restricted to be positive (lines 3–4). Contrary to the
LASSO where a variable can change signs during the optimization, the NNG
multiplier factor c is strictly positive. Subsequently, our algorithm checks for
sign changes in variables (lines 9–17) and does not allow negative multiplier
parameters. A Newton–Raphson update is then performed for each regression
parameter, while all the remaining parameters are kept fixed (lines 19–20). Dur-
ing the optimization, the variable r is used to keep track of the product y 
Xβ
for speed purposes. The optimization steps are performed until convergence is
reached; NNG_OPT uses the convergence criterion recommended in [5]. Note, when
implementing NNG_OPT, special care needs to be taken for the constant regressor
which should not be subject to shrinkage. A MATLABTM implementation of
NNG_OPT is available from the authors upon request.

3 Simulation

This section examines finite sample performance of the NNG estimator using
artificially generated data (see Section 3.1) as well as real data (see Section 3.4).
Since the performance of the NNG estimator depends on the initial estimate [4],
four different initial estimates are considered: (1) stepwise forward selection
(fwd), (2) ridge regression (rr) [8], (3) the least angle shrinkage and selection
operators (lasso) [9], and (4) the elastic net (enet) [10]. For completeness, a
method that uses several possible ridge regression estimates, denoted nng, is
also considered. The resulting NNG estimates are compared against the stan-
dard stepwise forward selection (fwd), ridge regression (rr), LASSO (lasso)
and elastic net (enet) estimates. Furthermore, we have also included the iter-
ated LASSO estimate (ilasso) [11] in all our comparisons, though it is not used
as an initial estimate for an NNG solution. The performance of each method is
measured using a variety of metrics including classification accuracy, size of the
final model, the mean number of false positive regressors and the mean number
of false negative regressors. Note that the constant regressor was included in all
subsequent simulation runs but was not used when tabulating results.

3.1 Simulated Data

3.2 Path Consistency

The first simulation examined how often the NNG estimator and the popular
LASSO estimator select only the true regression coefficients from artificially
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generated data. This property is known as path consistency. The simulation
closely followed the setup in ([4], Example 1) for linear regression models. Here,
the regressor matrix X consists of four regressors (p = 4) generated from:

xi = (1, X1, X2, X3)′ X1, X2 ∼ N(0, 1), X3 ∼ N(α(X1+X2), 1−2α2) (5)

where N(·, ·) denotes the univariate normal distribution, α ∈ {0.35, 0.55} and
i = (1, . . . , n). The true regression coefficients were set to

β = (0, 1, 1, 0)′ (6)

In all simulations, the class indicators y ∈ {−1, +1}n were independently gen-
erated with probability given by (1). For each value of α, we generated training
data with the following sample sizes n = {20, 50, 100, 200, 500}. The regulariza-
tion parameter for both the LASSO and NNG algorithms was selected using the
log-likelihood of an independently generated validation data set. The validation
data set was of the same size as the corresponding training data set. The range
of regularization parameters considered was chosen to comprise 1000 values of
λ uniformly spaced between 10−5 and 102. The simulation comprised 100 train-
ing and validation data sets generated for each (n, α) pair. For each run, we
recorded the number of times the LASSO and NNG correctly identified the true
regression coefficients and excluded the noise variables. The NNG estimator was
selected as follows: (1) train a number of initial models using ridge regression
estimates, (2) obtain a NNG solution for each ridge regression model, and (3) use
the validation data set to select the NNG model with the largest log-likelihood.
Figure 1 depicts the frequency of true model identification by both LASSO and
NNG.
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(a) α = 0.35
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(b) α = 0.55

Fig. 1. Path consistency of the LASSO and NNG estimators

When α = 0.35, the NNG and LASSO select the true model with frequencies
of 30% and 20% respectively for smaller samples (n < 50). As the sample size is
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increased, the frequency of true model detection dramatically increases for the
NNG and increases only slightly for the LASSO. At n = 500, for example, the
NNG correctly identifies the true model 60% of the time, compared to about
25% for the LASSO. As noted in [4], increasing the value of α increases the
difficulty of true model identification. At α = 0.55, the LASSO is no longer path
consistent and selects the true model approximately 20% of the time irrespective
of the sample size. In contrast, the NNG remains path consistent and selects the
true model with increasing frequency for larger sample sizes.

3.3 Initial Estimates for the NNG

The simulation involved generating 1000 training and validation data sets of n ∈
{20, 50, 100} samples. The regularization parameters for each run were selected
based on the log-likelihood of an independently generated validation set. The
best subset for the stepwise forward selection method was selected using the same
approach. In all simulations, the class indicators y ∈ {−1, +1}n were generated
independently with probability given by (1). Performance metrics recorded in
each test run were: (1) negative log-likelihood, (2) model size, (3) the number of
false positive regressors, and (4) the number of false negative regressors included
in the best model. A regressor that was inferred to be zero is deemed to be a
false positive if the data generating model has the corresponding coefficient set
to a non-zero value, and similarly for false negative regressors. The following two
simulation models were considered:

1. The true regression coefficients were set to β = (3, 1·5, 0, 0, 2, 0, 0, 0)′. The
pairwise correlation between predictors i and j was corr(i, j) = 0.5|i−j| [9].

2. Same as Example (1), except βi = 0.85 for all i [9].

The constant regressor was included in all simulations but was not used when
tabulating results.

Example 1. The data generating model in this scenario is of medium sparsity
with five out of eight regressors being noise. It is expected that ridge regression
will not perform as well as the alternative methods given the level of spar-
sity. In contrast, the LASSO should do quite well as the data generating model
does not contain highly correlated regressors. Simulation results for the test
are shown in Table 1. The stepwise forward regression method (fwd) achieved
the worst median negative log-likelihood from all the methods tested, with the
performance being clearly inferior to other methods when the sample size was
small (n = 20). From the four initial estimators tested, the grr method (NNG
initialized with ridge regression) achieved the best median log-likelihood for the
smallest sample size. However, as the sample size was increased, all four methods
performed approximately equally well. In comparison to the starting estimates,
the corresponding NNG method exhibited slightly more false positive regressors
and significantly less false negative regressors. Additionally, the models selected
by the NNG methods were generally smaller than any of the initial models.
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Table 1. Simulation results for Example 1; median negative log-likelihood (NLL), mean
model size (Size), mean number of false positive regressors (FP) and mean number of
false negative regressors (FN) included in the selected model. Tests are based on 1000
iterations with standard errors included in parentheses.

Methods n = 20 n = 50 n = 100

NLL Size FP FN NLL Size FP FN NLL Size FP FN

fwd 30·70 1·24 1·96 0·20 7·12 2·79 0·63 0·42 2·92 3·46 0·11 0·57
(0·80) (0·04) (0·03) (0·02) (0·07) (0·04) (0·03) (0·03) (0·01) (0·04) (0·01) (0·04)

gfwd 26·64 1·18 1·97 0·15 6·74 2·75 0·64 0·38 2·84 3·36 0·12 0·47
(0·41) (0·04) (0·03) (0·02) (0·05) (0·04) (0·02) (0·03) (0·01) (0·04) (0·01) (0·03)

lasso 21·13 4·53 0·50 2·03 6·50 5·78 0·05 2·83 2·91 6·20 0·01 3·20
(0·15) (0·05) (0·02) (0·04) (0·04) (0·04) (0·01) (0·04) (0·01) (0·04) (0·00) (0·04)

glasso 22·40 2·89 0·93 0·82 6·44 3·97 0·23 1·20 2·85 4·33 0·02 1·35
(0·18) (0·04) (0·03) (0·03) (0·05) (0·04) (0·01) (0·04) (0·01) (0·04) (0·00) (0·04)

rr 21·13 8·00 0·00 5·00 6·76 8·00 0·00 5·00 3·00 8·00 0·00 5·00
(0·14) (0·00) (0·00) (0·00) (0·03) (0·00) (0·00) (0·00) (0·01) (0·00) (0·00) (0·00)

grr 21·86 3·37 0·77 1·14 6·45 4·32 0·17 1·49 2·86 4·51 0·02 1·53
(0·21) (0·05) (0·02) (0·03) (0·03) (0·04) (0·01) (0·04) (0·01) (0·04) (0·00) (0·04)

enet 20·64 6·10 0·21 3·31 6·50 6·40 0·02 3·42 2·92 6·50 0·00 3·51
(0·12) (0·05) (0·01) (0·05) (0·03) (0·04) (0·00) (0·04) (0·01) (0·04) (0·00) (0·04)

genet 22·20 3·07 0·85 0·92 6·42 4·06 0·20 1·26 2·85 4·34 0·02 1·36
(0·22) (0·04) (0·02) (0·03) (0·04) (0·04) (0·01) (0·04) (0·01) (0·04) (0·00) (0·04)

ilasso 22·41 2·90 0·93 0·83 6·42 3·98 0·22 1·20 2·85 4·33 0·02 1·35
(0·19) (0·04) (0·02) (0·03) (0·05) (0·04) (0·01) (0·04) (0·01) (0·04) (0·00) (0·04)

nng 21·34 3·50 0·66 1·16 6·34 4·35 0·11 1·46 2·84 4·51 0·01 1·52
(0·25) (0·04) (0·02) (0·03) (0·03) (0·04) (0·01) (0·04) (0·01) (0·04) (0·00) (0·04)

As the sample size was increased to n = 100, all methods performed equally well
in terms of log-likelihood. Interestingly, the nng solution appeared to perform
the same as using only the single best ridge regression estimate (grr) in this
example.

Example 2. The true model is now dense and does not include any noise re-
gressors which would make ridge regression the ideal solution for this type of
problem. Table 2 depicts the corresponding simulation results. As in Example 1,
all methods performed equally well given enough data. It is therefore of interest
to examine regularization performance under small sample sizes (n = 20). Step-
wise forward selection (fwd) attained the highest negative log-likelihood of all
the regularization methods tested. The performance of fwd was especially poor
when n = 20, obtaining the highest negative log-likelihood and largest number
of false positives. Ridge regression achieved the smallest negative log-likelihood
(rr) of all the methods tested for all sample sizes. This is not surprising give that
the generating model is dense and ridge regression cannot zero out individual
regressors. In contrast, using the NNG with LASSO, ridge regression and elastic
net resulted in a somewhat worse log-likelihood and a significantly sparser solu-
tion, compared to the original model. This indicates that the NNG is producing
models that are too sparse which agrees with the findings in [4]. Models superior
to the corresponding initial estimates were obtained only when the NNG was
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Table 2. Simulation results for Example 2; median negative log-likelihood (NLL), mean
model size (Size), mean number of false positive regressors (FP) and mean number of
false negative regressors (FN) included in the selected model. Tests are based on 1000
iterations with standard errors included in parentheses.

Methods n = 20 n = 50 n = 100

NLL Size FP FN NLL Size FP FN NLL Size FP FN

fwd 35·10 1·17 6·83 0·00 10·20 4·27 3·73 0·00 3·73 6·94 1·06 0·00
(0·08) (0·05) (0·05) (0·00) (0·09) (0·07) (0·07) (0·00) (0·02) (0·05) (0·05) (0·00)

gfwd 34·66 1·11 6·89 0·00 9·19 4·05 3·94 0·00 3·68 6·69 1·31 0·00
(0·03) (0·04) (0·04) (0·00) (0·08) (0·07) (0·07) (0·00) (0·02) (0·05) (0·05) (0·00)

lasso 24·83 4·95 3·06 0·00 7·76 6·94 1·06 0·00 3·50 7·76 0·23 0·00
(0·19) (0·05) (0·05) (0·00) (0·04) (0·03) (0·03) (0·00) (0·01) (0·01) (0·01) (0·00)

glasso 28·24 3·14 4·86 0·00 8·44 5·66 2·34 0·00 3·62 7·24 0·76 0·00
(0·19) (0·05) (0·05) (0·00) (0·05) (0·05) (0·05) (0·00) (0·02) (0·03) (0·03) (0·00)

rr 21·23 8·00 0·00 0·00 7·18 8·00 0·00 0·00 3·38 8·00 0·00 0·00
(0·11) (0·00) (0·00) (0·00) (0·03) (0·00) (0·00) (0·00) (0·01) (0·00) (0·00) (0·00)

grr 26·97 3·80 4·20 0·00 8·23 6·10 1·90 0·00 3·59 7·42 0·58 0·00
(0·19) (0·05) (0·05) (0·00) (0·04) (0·04) (0·04) (0·00) (0·02) (0·03) (0·03) (0·00)

enet 21·59 7·40 0·60 0·00 7·24 7·88 0·12 0·00 3·38 7·98 0·02 0·00
(0·12) (0·04) (0·04) (0·00) (0·02) (0·01) (0·01) (0·00) (0·01) (0·00) (0·00) (0·00)

genet 27·20 3·65 4·35 0·00 8·24 6·06 1·94 0·00 3·59 7·42 0·58 0·00
(0·22) (0·05) (0·05) (0·00) (0·04) (0·04) (0·04) (0·00) (0·02) (0·03) (0·03) (0·00)

ilasso 28·23 3·15 4·85 0·00 8·44 5·67 2·33 0·00 3·62 7·24 0·76 0·00
(0·21) (0·05) (0·05) (0·00) (0·05) (0·05) (0·05) (0·00) (0·02) (0·03) (0·03) (0·00)

nng 26·49 4·08 3·92 0·00 8·05 6·33 1·67 0·00 3·54 7·57 0·43 0·00
(0·23) (0·05) (0·05) (0·00) (0·04) (0·04) (0·04) (0·00) (0·01) (0·02) (0·02) (0·00)

used with stepwise forward selection. The nng approach attained the best nega-
tive log-likelihood and somewhat larger models in contrast to alternative NNG
strategies.

3.4 Real Data

This section examines the performance of logistic regression regularization so-
lutions using six real data sets from the UCI Machine Learning repository. The
number of regressors, excluding the constant regressor, ranged from small (p = 4
in “transfusion”) to moderate (p = 60 in “sonar”). All data sets were standard-
ized to have ||xj || = 1 (j = 1, . . . , p), where || · || denotes the Euclidean norm.
For each data set, we randomly split the available data into a training, a vali-
dation and a test subset. The training data set was used to infer the parameter
estimates, while the validation data set was used for selecting the regularization
parameters. All tabulated results are based only on the test set. There were 100
simulation runs for each data set. For each iteration, two performance metrics
were recorded: (1) classification accuracy, and (2) model size in terms of the
number of regressors remaining. Stepwise forward selection was not included in
this test due to its poor performance in previous experiments as well as the
relatively high computational complexity of the method. The simulation results
are shown in Table 3.

On the pima data set, the best classification accuracy of all the methods tested
was attained by nng, closely followed by grr and genet. Although rr resulted
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Table 3. Simulation results for real data. Median classification accuracy (in percent)
is shown along with bootstrap estimates of standard error. Mean model size is included
in parentheses. Tests are based on 100 iterations.

Methods Datasets
pima wdbc spambase ionosphere transfusion sonar

lasso 74.82 ± 0.30 95.53 ± 0.18 91.62 ± 0.09 79.68 ± 0.69 78.46 ± 0.29 71.02 ± 0.29
(6.52) (7.78) (48.09) (7.73) (3.68) (10.81)

glasso 74.82 ± 0.28 95.12 ± 0.20 91.79 ± 0.09 79.68 ± 0.58 78.35 ± 0.29 69.32 ± 0.29
(4.61) (4.64) (35.22) (3.67) (3.42) (4.57)

rr 74.30 ± 0.32 95.93 ± 0.16 91.45 ± 0.12 81.27 ± 0.53 78.57 ± 0.20 75.00 ± 0.20
(8.00) (30.00) (57.00) (32.00) (4.00) (60.00)

grr 75.18 ± 0.29 95.39 ± 0.15 91.75 ± 0.11 79.88 ± 0.32 78.79 ± 0.33 69.89 ± 0.33
(4.77) (6.21) (39.04) (5.53) (3.53) (7.54)

enet 74.65 ± 0.31 96.21 ± 0.16 91.48 ± 0.11 81.27 ± 0.40 78.57 ± 0.19 75.00 ± 0.19
(7.05) (23.03) (51.61) (22.27) (3.92) (53.06)

genet 75.00 ± 0.23 95.12 ± 0.16 91.77 ± 0.09 80.28 ± 0.41 78.79 ± 0.35 68.75 ± 0.35
(4.70) (5.82) (37.47) (5.10) (3.52) (7.20)

ilasso 74.82 ± 0.27 95.12 ± 0.20 91.77 ± 0.08 79.88 ± 0.55 78.35 ± 0.29 69.32 ± 0.29
(4.61) (4.82) (35.28) (3.79) (3.44) (4.75)

nng 75.35 ± 0.21 95.66 ± 0.19 91.77 ± 0.08 80.48 ± 0.36 78.35 ± 0.37 71.59 ± 0.37
(4.80) (6.63) (40.49) (6.53) (3.49) (7.94)

in the lowest classification accuracy on this data set, the difference between rr
and nng was only about 1%. It is clear that applying the NNG to any initial
estimate has again resulted in a more parsimonous model, which is still highly
predictive. For example, lasso models have on average 6.5 regressors compared
to 4.6 for the glasso for about the same classification accuracy. Although the
iterated LASSO did not improve on the LASSO, it generally inferred sparser
models. The elastic net obtained the best classification accuracy on the wdbc
data set out of all the methods tested. However, the average model inferred by
enet was approximately four times the size of the average nng model, while the
classification accuracy of nng was only slightly smaller (95.6% for nng versus
96.2% for enet).

All methods performed equally well on the spambase dataset in terms of clas-
sification accuracy. In terms of model complexity, the LASSO and the elastic net
resulted in the largest models, while the NNG based methods as well as the iter-
ative LASSO inferred models with about 10 regressors less, on average. Similar
findings can be noted for the ionosphere, transfusion and sonar data sets. We did
observe an interesting anomaly on the sonar dataset. The elastic net and ridge
regression obtained significantly higher prediction accuracy and larger average
model size, in contrast to all other methods considered. For example, the nng
inferred models were significantly simpler and resulted in reduced classification
accuracy of about 5%. Given the size of the test data, an increase in accuracy
of 5% equates to four extra samples being correctly classified by enet and rr,
which is not a highly significant improvement.

3.5 Discussion and Recommendations

Simulations in Section 3.3 clearly show that stepwise forward selection commonly
resulted in models which generalize poorly, especially given small to medium
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sample sizes. Predictive performance of stepwise methods remained poor irre-
spective of the sparsity of the data generating model. The nonnegative garrote, or
the iterated LASSO, is recommended if the data generating model is expected to
be (highly) sparse. While most of the considered regularization strategies showed
promising performance in the sparse setting, the consistency of NNG and the
iterated LASSO (see Section 3.2) make the techniques highly suitable. Models
inferred by the NNG were consistently simpler and attained significantly smaller
numbers of false negatives in contrast to most other methods considered. Inter-
estingly, the iterated LASSO has outperformed the original LASSO in terms of
prediction and model size and is thus recommended for logistic regression if a
LASSO-type penalty is desired. Although the elastic net achieved similar classifi-
cation performance to the NNG, the models inferred by the elastic net consisted
of significantly more regressors.

A ridge regression estimate is recommended as the starting point for NNG over
maximum likelihood or LASSO-type solutions. Ridge regression allows the NNG
to be applied to collinear models which is otherwise not possible with the maxi-
mum likelihood approach. Unlike ridge regression, LASSO and the elastic net gen-
erate sparse models which implies that some coefficients will be set to zero prior to
running the NNG. Due to the form of the NNG penalty, regression coefficients are
not altered once set to zero. Thus, if a sparse solution, like the LASSO, is used for
the initial estimates, coefficients that the NNG would normally retain may be ren-
dered insignificant. Our recommendation of ridge regression as an initial solution
to NNG is in agreement with the findings published in [4].
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Abstract. This work is motivated by the need for consensus clustering
methods using multiple datasets, applicable to microarray data. It intro-
duces a new method for clustering samples with similar genetic profiles,
in an unsupervised fashion, using information from two or more datasets.
The method was tested using two breast cancer gene expression microar-
ray datasets, with 295 and 249 samples; and 12,325 common genes. Four
subtypeswith similar genetic profiles were identified in both datasets. Clin-
ical information was analysed for the subtypes found and they confirmed
different levels of tumour aggressiveness, measured by the time of metas-
tasis, thus indicating a connection between different genetic profiles and
prognosis. Finally, the subtypes identified were compared to already es-
tablished subtypes of breast cancer. That indicates that the new approach
managed to detect similar gene expression profile patterns across the two
datasets without any a priori knowledge. The two datasets used in this
work, as well as all the figures, are available for download from the web-
site http://www.cs.newcastle.edu.au/∼mendes/BreastCancer.html.

Keywords: Bioinformatics, breast cancer, data mining, genetic
algorithms.

1 Introduction

The introduction of the microarray technology imposed a series of new chal-
lenges in terms of producing relevant and statistically sound results. Current
research indicates that with the amount of data publicly available, the use of a
single dataset is no longer acceptable to justify new medical discoveries. Com-
parisons with previous, similar studies need to be carried out. A problem that
arises in this situation is that microarray data is highly heterogeneous, noisy,
and in general, different unsupervised techniques will find different configura-
tions of clusters for the same dataset. In addition, clusters found using a specific
dataset sometimes are not observed in other datasets. Consensus clustering tech-
niques try to overcome these problems, with two main types being found in the
literature.
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The first deals with single datasets and proposes the concurrent use of several
unsupervised clustering techniques, which will likely produce different partitions
of the samples. A consensus clustering is then determined using information
from all clusters found, usually based on some similarity measure among ele-
ments [15,10,4]. The second type of consensus clustering involves finding clus-
ters which have similar profiles across multiple datasets. This is the goal of
the method introduced in this paper, and two previous works should be cited.
First, Filkov and Skiena (2003) [2] modeled the consensus clustering of multi-
ple datasets as a median partition problem and use three types of heuristics
(local search, greedy and simulated annealing) to address it. Then, in Hoshida
et al. (2007) [5], the authors use a statistical test to find the consensus clus-
ters. The literature on consensus clustering and microarrays is extensive and
even though several methods are available, no single approach dominates the
scientific literature.

This paper offers a new consensus clustering technique, which differs from the
previous ones mainly because it optimizes three criteria at once. Those are the
number of biomarkers that characterize the clusters; consistency of the clusters
across datasets; and statistical relevance of the clusters, measured by a classifi-
cation test.

The method introduced in this work extends the study in Mendes (2008) [8].
It uses a Genetic Algorithm as the search engine and was tested with two well-
known datasets from previous breast cancer studies. The first contains 24,158
probes, 295 samples and was introduced in Vijver et al. (2002) [16]. The sec-
ond dataset has 44,928 probes, 249 samples and was introduced in Miller et
al. (2005) [9].

The results presented in this work show the clustering of breast cancer samples
into four subtypes. These subtypes were then compared to subtypes of breast
cancer already established in the medical literature, using well-known markers.
Finally, the subtypes are justified from a clinical standpoint as well, by per-
forming an analysis of the time of metastasis associated to the samples in each
subtype. Even though such clinical information was not directly used in the
determination of the subtypes by our method, the Kaplan-Meier curves of the
time of metastasis are consistently distinct in both datasets. In other words, the
subtypes found share similar genotypical and phenotypical profiles in the two
datasets, even though the method only uses genotypical information.

2 The Consensus Clustering Problem

The consensus clustering problem addressed in this work can be described as
follows. Given k input datasets (D1, D2,..., Dk), identify partitions of the samples
in D1, D2,..., Dk into two clusters, which:

– Are supported by the same set of biomarkers; and preferably by a large
number of them (higher statistical significance of genetic signatures);

– Have a high accuracy classification of the samples in each dataset (higher
intra-cluster similarity and inter-cluster dissimilarity);
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– Present a similar proportion of samples in both clusters for all datasets (both
clusters should be observed in all datasets to indicate consistency).

The large number of biomarkers indicate that the clusters are not product of
a statistical artifact. Although in practice biologists will use just a small num-
ber of biomarkers for classification purposes, or when designing a diagnostic kit,
a relatively large number of biomarkers is generally recommended for the de-
termination of subtypes. That follows the ‘data-driven’ approach to biomarker
discovery, which is discussed in reference [17] (i.e. analyzing the entire genome
rather that working from a hypothesis about one or few candidate genes).

The second characteristic is the classification accuracy obtained with a cross-
validation procedure, associated to a classification model. High classification
accuracy can be associated to high intra-cluster similarity and inter-cluster dis-
similarity, and will reflect on the accuracy of future classifiers for prognosis.

Finally, the third characteristic is the proportion of the samples in each sub-
type and in each dataset, which reflects the consistency of these subtypes across
datasets.

These three characteristics are combined into a single objective function used
to assess the quality of putative partitions of the samples. Next, we formalize
the objective function, but before doing so, consider the following notation:

– D = {D1, D2,...,Dk}: Set of k datasets;
– C = {c1, c2}: Set of classes. In every iteration, the samples are partitioned

into two classes: c1/c2;
– SDi : Set of samples in Di; |SDi | = mDi ;
– SDi(cj): set of samples in Di that belong to class cj ; |SDi(cj)| = mDi(cj).

The identification of breast cancer subtypes is done iteratively. Initially, the
samples are divided into two clusters. Then, those two clusters are further divided
into four, and so on, resulting in a binary tree structure. The criterion to stop
the division was based on the clinical analysis of the time of metastasis for the
samples in each cluster. When no significant difference is observed between two
new clusters, in terms of the time of metastasis, we consider that they actually
represent the same subtype of the disease, and stop the division.

2.1 Objective Function

The objective function takes into account three characteristics that should be
observed in high quality partitions.

- Partitions should be supported by a large number of biomarkers: In
each division, the partitions should be supported by the same set of biomarkers
in all datasets; and preferably be composed of a large number of them. The
method implementation played an important role in this aspect. If we considered
all k datasets separately and tried putative partitions for each of them, the
search space would be prohibitively large and the sets of biomarkers would be
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considerably different for each partition in each dataset; i.e. there would be no
consistency between biomarkers for any given subtype across datasets.

To overcome this, first we force all datasets D1, D2,...,Dk to contain the
same genes; i.e. any gene that is not present in all datasets is removed from the
analysis. Then, one of the datasets is selected as the main dataset. This main
dataset will have its samples partitioned first, and this partition will induce the
partitions in the other k − 1 datasets.

Let the main dataset chosen be D1. Given a putative partition for the samples
in D1 into classes c1 and c2, a t-Student statistical test is used to determine the
nmarkers associated biomarkers (p < 0.01). The biomarkers for the partition in
D1 are then used to induce partitions in the other datasets D2,...,Dk. A Nearest
Neighbor classification model [19] is created with the biomarkers and samples in
D1 and then used to assign the samples in D2,...,Dk either to class c1 or c2.

- High accuracy classification of samples in all datasets: The high accu-
racy classification of the samples in all datasets acts as a proxy for high intra-
cluster similarity and inter-cluster dissimilarity. Given the nearest neighbor-
based classification model from D1 and the partitions of the samples in D1,
D2,...,Dk, we perform a 10-fold cross-validation [19] in all datasets Di, calculat-
ing the accuracy of each classification accDi . The overall accuracy accD is:

accD =
1
k

k∑
i=1

accDi (1)

- Similar proportion of samples in clusters across all datasets: It is
arguably recommended to have a similar proportion of samples in each cluster,
across all datasets. First, this would indicate that subtypes of diseases identified
are present in all datasets. Moreover, the proportion of the number of samples
in each class indicates that a subtype of the disease, more/less common in a
dataset, should be more/less common in all other datasets as well. This is a
strong assumption, which only holds if different cohorts share similar sampling
characteristics. The balance of the partition of the samples is denoted as B, and
is calculated as follows. First, let:

mcj =
1
k

k∑
i=1

mDi(cj)

mDi

(2)

be the average proportion of samples in class cj in all datasets. The balance
should be optimum when mDi(cj)/mDi , i.e. the proportion of samples clustered
in cj is the same in every dataset Di. The equation for the balance is:

B =
k∑

i=1

∣∣∣mc1 −
mDi(c1)

mDi

∣∣∣+
k∑

i=1

∣∣∣mc2 −
mDi(c2)

mDi

∣∣∣ (3)

Finally, the objective function used in this work is stated as:
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obj = nmarkers ∗ accD ∗ 1
B + ε

(4)

The objective function aims at a trade-off between large number of biomarkers
for D1 (nmarkers); high average accuracy of the classification across datasets
(accD); and good balance of classes across datasets (B ≈ 0).

2.2 The Genetic Algorithm

The problem of finding the partition of the samples that maximizes Eq. 4 was
addressed using a Genetic Algorithm (GA). GAs are population-based search
methods [3] where a population of solutions evolves through the application of
special operators (recombination and mutation), and selection pressure.

- Representation: The search space of the consensus clustering problem con-
sists of all the possible partitions of the samples in the dataset D1 into two
classes. In terms of genetic algorithm implementation, a partition P is repre-
sented as a binary array P = [p1, p2, ..., pmD1

], with pi ∈ {0, 1}.

- Population structure: The GA employs a population structure that follows
a complete ternary tree with three levels, i.e. 13 individuals. This structure was
object of study in the past, and genetic/memetic algorithms using it performed
better compared to non-structured approaches in several combinatorial opti-
mization problems [1,11]. Also, the use of fewer individuals is critical because,
in this problem, the objective function calculation is very time-consuming, as it
involves several, complex steps.

- Mutation: The mutation operator implemented was the bit-swap. A sample
is chosen uniformly at random and moves from a class to another, i.e. either
c1 → c2 or c2 → c1. This 1-bit mutation is applied to 10% of the offspring
created, also chosen uniformly at random.

- Recombination and acceptance policy: The recombination operator cho-
sen was the uniform crossover (UX) [12]. In every generation, a number of in-
dividuals equal to the size of the population is created and evaluated. Offspring
that are better than at least one of their parents survive to the next genera-
tion, directly replacing their worst parent. Even though this scheme creates a
strong evolutionary pressure, premature convergence is controlled by checking
population diversity and applying restart procedures.

- Population diversity and restart: The diversity check procedure verifies at
every generation whether any offspring created was better than at least one of its
parents. If none was better, a population restart follows, which keeps the current
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best solution within the population (elitist restart), and replaces all others by
randomly-generated solutions. Indeed, if no solution created within a generation
was better than one of its parents, that indicates that the current population
has evolved enough generations to be consisted of high-quality individuals only,
which are also likely to be very similar.

3 The Breast Cancer Datasets

Two breast cancer microarray datasets were used in this work. The first one
(dataset D1) is from a study with 295 patients diagnosed with primary breast
carcinomas presented in Vijver et al. (2002) [16]. A 25,000-gene cDNA array
consisting of 24,479 probes was used for each patient. The second dataset (D2)
comes from a study comprising 259 primary breast cancer patients presented in
Miller et al. (2005) [9]. Each patient was sampled using an Affymetrix genechip
with 38,061 probes.

A first pre-processing procedure removed duplicate genes from both datasets,
resulting in D1 keeping 14,547 unique genes; and D2 keeping 18,342 unique
genes. A second step involved forcing the two datasets to contain exactly the
same genes (to enforce consistency of classifiers’ attributes). Using the gene
symbols as identifiers, there was a total of 12,325 common genes.

4 Results

After applying the clustering algorithm to the two datasets, a binary tree with
the partition of the breast cancer samples was produced. It is shown in Fig-
ure 1 and depicts the types found, the biomarkers for the partitions found in
both datasets, and the Kaplan-Meier (K-M) curves for the time of metastasis
associated to the types identified.

Samples were first divided into two subtypes (Types 1 and 2) and then into
four others (Types 3 to 6). Note that the biomarkers in each specific division are
the same for the two datasets D1 and D2, and the types have a similar clinical
profile in terms of prognosis. Type 2 is more aggressive than Type 1; and Types
3 and 5 are more aggressive as well, compared to Types 4 and 6.

Additional divisions of Types 3 to 6 into more subtypes were tested, but the
clinical profiles obtained were not consistent across the two datasets. The classi-
fication shown in Figure 1 contains only those subtypes that present consistent
clinical profiles.

4.1 Comparison with Existing Subtypes

There are five subtypes of breast cancer broadly accepted by the medical com-
munity: normal breast-like, basal, luminal A, luminal B, and HER2+/ER-. In
order to compare the four subtypes identified in this work with them, we ana-
lyzed a number of genetic markers associated to breast cancer, collected from
the following studies:
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Fig. 1. (a) Classification of breast cancer subtypes for Vijver’s dataset. Samples were
initially divided into two subtypes – Types 1 and 2 – which were further divided into
the final four subtypes – Types 3 to 6. For each division we present a genetic signature
with the biomarkers obtained by a t-student statistical test (p < 0.01). Next to each
signature we present the associated Kaplan-Meier curves for the time of metastasis. (b)
Classification of breast cancer subtypes for Miller’s dataset. The subtypes are analogous
to the ones identified in (a).

– Perreard et al. (2006) [14]: 53 biomarkers for different subtypes of breast
cancer – 37 so-called ‘intrinsic’ genes to classify the subtypes, plus PGR,
EGFR and 14 proliferation-related genes.

– Hu et al. (2009) [6]: 9 oncogenes and tumor suppressor genes.
– Paik et al. (2004) [13] – Oncogene DX : a breast cancer prognosis kit based

on 21 genes for ER+, lymph node-negative patients.
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The expression profiles of the genetic markers mentioned in the three studies
above are shown in Figure 2. They were divided according to the study and the
dataset. Samples are ordered from Type 3 to Type 6, in all figures.

Basal tumors are characterized by being ESR1, PGR and ERBB2 negative,
i.e. these three markers are under-expressed. This subtype is also referred to as
triple receptor negative [7]. Type 5 is the cluster where those genes are the least
expressed. This is an aggressive subtype and that behaviour agrees with K-M
curves in Figure 1a-b. Therefore, we can associate Type 5 to the basal breast
cancer subtype.

Two other types are also identifiable: Luminal A and luminal B. These types
are molecularly similar, being characterized by the over-expression of ESR1,
PGR, GATA3 and FOXA1. That occurs in both Types 4 and 6. The main

(a) Vijver’s dataset (D1) – Oncotype DX markers (Paik et al., 2004)   (b) Miller’s dataset (D2) – Oncotype DX markers (Paik et al., 2004) 

   
     Type 3   Type 4                Type 5             Type 6       Type 3             Type 4     Type 5  Type 6 

(c) Vijver’s dataset (D1) – Hu et al. (2009) markers     (d) Miller’s dataset (D2) – Hu et al. (2009) markers 

   
     Type 3   Type 4                Type 5             Type 6       Type 3             Type 4     Type 5  Type 6 

(e) Vijver’s dataset (D1) – Perreard et al. (2006) markers    (f) Miller’s dataset (D2) – Perreard et al. (2006) markers 

   
     Type 3   Type 4                Type 5             Type 6       Type 3             Type 4     Type 5  Type 6 

Fig. 2. Gene expression of breast cancer markers found in the literature, considering
the four subtypes identified in Figure 1a-b. Three sets of genetic markers are compared:
(a-b) Oncotype DX [13], (c-d) Hu et al. (2009) [6] and (e-f) Perreard et al. (2006) [14].
Based on the markers’ expression, we can make the following mapping: Type 5 corre-
sponds to basal samples. Basal is one of the most aggressive subtypes of breast cancer,
which is in agreement with the Kaplan-Meier curves in Figure 1a-b. Types 4 and 6
correspond to Luminal A and Luminal B samples, respectively. They are similar with
respect to the biomarkers, but proliferation-related genes are under-regulated in Type
4 and over-regulated in Type 3. Finally, Type 3 corresponds to HER2+/ER- tumors,
which is also a very aggressive subtype – again showing agreement with the K-M curves
in Figure 1a-b.
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difference between luminal A and B is that proliferation-related genes are under-
expressed and over-expressed in those subtypes, respectively [18]. The prolifer-
ation genes that we refer to are listed in Perreard et al. (2006) [14] (HSPA14,
GTPBP4, PCNA, CKS2, NEK2, TOP2A, BUB1, TTK, FAM54A, MKI67,
MYBL2, BIRC5 and CENPF). This difference indicates that Type 4 corresponds
to luminal A and Type 6 to luminal B.

Finally, Type 3 appears to correspond to HER2+/ER- tumors. This type is
characterized by the under-expression of ESR1 and PGR; and over-expression
of ERBB2. In addition, proliferation-related genes are over-expressed. From the
clinical standpoint, HER2+/ER- is, together with basal, one of the most ag-
gressive breast cancer tumor subtype. That would be in agreement with the
K-M curves in Figure 2. These findings illustrate how the method managed to
identify, across two distinct datasets, four subtypes broadly accepted by the sci-
entific community. Moreover, the clinical aspects have also shown consistency
across datasets and agreed with the scientific literature for the subtypes.

5 Conclusion

In this paper we introduce a new method to perform classification of microar-
ray samples using multiple datasets, and test the approach using two publicly
available breast cancer datasets. Four subtypes were identified and presented
similar gene expression profiles across both datasets, as well as similar clinical
profiles (based on time of metastasis). A subsequent analysis comparing those
four subtypes with the currently accepted subtypes of breast cancer in the sci-
entific community provided a mapping between them. The types basal, luminal
A, luminal B and HER2+/ER- were mapped into the four subtypes identified
by our algorithm by analyzing the expression profile of several markers reported
in the literature. That result was also corroborated by the analysis of the time
of metastasis, which shows that the types mapped into basal and HER2+/ER-
subtypes have a more aggressive behavior.

It is worth emphasizing that the method introduced in this study successfully
discovered subtypes in an unsupervised, unbiased (data-driven) fashion, using
data from a genetically heterogeneous disease. It has the potential to impact the
discovery of subtypes of other heterogeneous diseases for which microarray data
is available.
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Abstract. Understanding the way how genes interact is one of the fun-
damental questions in systems biology. The modeling of gene regulations
currently assumes that genes interact either instantaneously or with a
certain amount of time delay. In this paper, we propose an information
theory based novel two-phase gene regulatory network (GRN) inference
algorithm using the Bayesian network formalism that can model both
instantaneous and single-step time-delayed interactions between genes
simultaneously. We show the effectiveness of our approach by applying it
to the analysis of synthetic data as well as the Saccharomyces cerevisiae
gene expression data.
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1 Introduction

Development of high-throughput DNA microarray technologies has made the
deciphering of regulatory interactions between genes feasible. Due to the fact
that the system level view of gene functionalities provided by such gene regula-
tory networks (GRN) can aid in complex disease treatment, drug discovery, and
also in designing environment friendly and efficient production of biofuels, this
problem has received considerable interest in the recent years.

Bayesian networks (BN)[1, 2] have been used extensively for the inference
of gene regulatory networks. Due to the firm statistical foundation, a BN can
deal with the stochastic aspects of gene expression and the noisy measurements
of microarray data in a natural way[2]. However, temporal dynamic aspects of
gene regulation are not considered in BN-based models[1]. Dynamic Bayesian
networks (DBN)[3–6], an extension of static Bayesian networks, can effectively
deal with the temporal aspects of gene regulation. This, in effect, enables it to
model feedback loops, which are an integral part of regulatory networks.

Although there is not much study on the type of interactions that occur among
genes, it is natural that the interactions can be (almost) instantaneous or time-
delayed. The biological intuition behind the first type of regulation is that, the
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effect of a change in the expression level of a regulator gene can be carried on
to the regulated gene (almost) instantaneously and in these scenarios, the effect
will be reflected (almost) immediately in the regulated genes expression level. On
the other hand, in cases where regulatory interactions are slower, the effect may
be seen on the regulated gene after some time. To our knowledge, the currently
existing BN-based techniques that use time series data assume either of the two,
but not both.

To achieve the objective of capturing both types of interactions, we first de-
scribe a framework that can represent both types of interactions. A novel gene
regulatory network reconstruction algorithm employing information theoretic
quantities is then proposed. The approach is validated by carrying out experi-
ments using both synthetic and real-life data. The comparison with other meth-
ods shows the effectiveness of our approach.

The rest of the paper is organized as follows. In Section 2, brief background in-
formation on Bayesian networks and information theoretic quantities is provided.
Section 3 explains the proposed methodology and its formalization. Section 4
discusses the synthetic and real-life networks used for assessing our approach
and also its comparison with other techniques. Section 5 concludes with some
observations and remarks.

2 Background

In this section, we briefly discuss the formalizations behind the main concepts
involved in this paper: Bayesian networks (BN), dynamic Bayesian Networks
(DBN) and information theoretic quantities.

2.1 Bayesian Network (BN)

Formally, a Bayesian network for a set of random variables X = {X1, X2, · · · ,
Xn}, is represented by B = {G, θ}, where G = {V;E} is a directed acyclic graph
(DAG), having V as the vertex set and E as the edge set; θ= {θ1, · · · , θn} corre-
sponds to the parameter set storing the conditional joint probability distribution
over X and θi = θ(Xi|Pa(Xi)) is the conditional probability distribution of Xi

given all the parents of Xi (denoted by P (Xi|Pa(Xi))).
In a BN, the joint distribution can be decomposed in the product form:

P (X1, · · · , Xn) =
n∏

i=1

P (Xi|Pa (Xi)) (1)

where Pa(Xi) is the parent set of gene Xi in G.

2.2 Dynamic Bayesian Network (DBN)

Considering X to be a set of attributes changing in a temporal process of T
time slices, a DBN represents the joint probability distribution over the variables
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X [0]
⋃

X [1]
⋃ · · ·⋃X [T − 1], where random variable Xi[t] denotes the value of

node Xi at time slice t, and X [t] denotes the set of variables {Xi[t]|1 ≤ i ≤ n},
for 0 ≤ t ≤ T − 1 [3, 4].

In this paper we work with first-order Markov DBN, which is based on the
following two assumptions:

1. First Order Markov Property:

P (X [t]|X [t − 1], · · · , X [0]) = P (X [t]|X [t − 1]) (2)

the equation means that the value of a variable at a time point depends only
on the previous time point.

2. Stationarity:
P (X [t]|X [t− 1]) is independent of t.

2.3 Information Theoretic Quantities

Decomposition Property of Mutual Information. In a BN, if Pa(Xi) is
the parent set of a node Xi (Xik ∈ Pa(Xi), k = 1, . . . si), and the cardinality of
the set is si, the following identity holds[9]:

MI(Xi, Pa (Xi)) = MI (Xi, Xi1) +
si∑

j=2

MI
(
Xi, Xij |

{
Xi1, · · · , Xi(j−1))

})
(3)

Directionality Index (DI). The Directionality Index[10] between genes X
and Y is defined as:

DIXY =
MIX→Y − MIY →X

MIX→Y + MIY →X
(4)

where the quantities MIX→Y and MIY →X are defined by the following equa-
tions:

MIX→Y =
1
N

N∑
δ=1

MIδ
X→Y (5)

MIY →X =
1
N

N∑
δ=1

MIδ
Y →X (6)

Here, the quantities in the left side of the equation (5) and (6) quantify the
information that is gained from the gene X (or Y ) about the gene Y (or X ) at
some later point in time and N is the maximal later point.

If we assume that the quantity Xδ (or Yδ) is an observable derived from
the state of the gene X (or Y ) δ steps in the future, i.e. Xδ : xt+δ = xt (or
Y : yt+δ = yt), MIδ

X→Y and MIδ
Y →X can be defined in terms of Conditional

Mutual Information (CMI) by the following equations:

MIδ
X→Y = MI (X, Yδ|Y ) (7)
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MIδ
Y →X = MI (Y, Xδ|X) (8)

The value of DIXY ranges from -1 to +1. A positive value means that the
direction of regulation between X and Y is from X to Y , whereas a negative
value implies the inverse direction.

3 The Method

3.1 The Framework for Representation

We employ information theoretic quantities to the problem of building a Bayesian
Network from data which can capture both instantaneous and time delayed
interactions. Let us model a GRN containing n genes (denoted by X1, X2, Xn),
with a corresponding microarray dataset having tn time points. A DBN-based
method would try to find associations between genes Xi and Xj by taking into
consideration the data xi1, . . . , xi(tn−1) and xj2, . . . , xjtn or vice versa (small
case letters mean data values in the microarray). This will effectively enable it
to capture single-step time delayed interactions. On the other hand, a BN-based
strategy would use the whole tn time points and it will capture regulations that
are effective instantaneously.

Now, let us double the number of nodes. The first n nodes of this new network
model will correspond to the data xk1, . . . , xk(tn−1) whereas the second half
will contain xk2, . . . , xktn , k = 1, 2, . . . , 2n. So, from this data, if we use the
BN formalism to construct a final network where we see, for example, edge
X1 → Xn+2, we conclude that the inter-slice arc (or time-delayed interaction)
between X1 and X2 is recovered. Similarly, if we find that X2 → X5, we say that
the intra-slice arc (or instantaneous interaction) between X2 and X5 is recovered.
In this way, we can capture both types of interactions. However, the following
two conditions must be satisfied in any resulting network: (i) The network must
be a DAG, (ii) The inter-slice arcs must go in the correct direction (no backward
arc). Finally, the stationarity assumption must also hold.

3.2 Finding the Appropriate Search Strategy

Let us consider the mutual information between a gene Xi and its parents,
Pa(Xi) in a DAG G. According to the decomposition property of MI (equa-
tion (3)), the elements in the decomposition on the right side can be interpreted
as follows:

We find the best parent for gene Xi (first term in the right side of equation
5) by calculating its MI with all the other potential parent candidates and select
the gene Xj for which MI(Xi, Xj) is maximum. This approach helps us in
discarding potential indirect regulators (parents) of gene Xi. This is because of
the Data Processing Inequality (DPI)[8], which states that if genes Xi and Xk

are connected through an intermediate gene Xj ,

MI(Xi, Xk) = min{MI(Xi, Xj), MI(Xj , Xk)} (9)
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i.e., the lowest MI value corresponds to either the indirect relationship or an-
other less strong regulatory relationship. Next, while adding subsequent parents,
we calculate how much additional information we get about Xi by adding a can-
didate parent (Xj) as a parent of this gene, using MI(Xi, XCPk(Xi)|Pac(Xi)),
where XCPk(Xi) represents genes that are in the current candidate parent set of
the gene Xi and Pac(Xi) represents the current parent set of Xi. The candidate
gene which can best explain the unexplained uncertainty of Xi relative to the
current parent set of this gene is added as the parent of Xi.

However, merely getting a high MI value does not suffice to make it sta-
tistically significant. To assess whether the gain in information is statistically
significant, we use a theorem of Kullbak[11]. According to the theorem, for a
particular confidence level α, determining the value of χ(α, dfik) such that

p(χ2(dfik) ≤ χ(α, dfik)) = α (10)

represents a statistical test of conditional independence[9]. Here dfik is the de-
grees of freedom defined by the following equation:

dfik =
{

(ri − 1)(rik − 1)
∏k−1

m=1 rim, k ≥ 2
(ri − 1)(rik − 1), k = 1

(11)

where rim is defined by:

rim = config(Xm),
Xm ∈ Pac(Xi)

(12)

here config(Xm) is the number of possible states/values that gene Xm can take.
Based on the theorem, we can say that the test for statistical significance would
assert that the genes are dependent, if in a data set containing N elements,

2N.MI(Xi, XCPk(Xi)|Pac(Xi))  χ(α, dfik) (13)

Conversely, the genes are conditionally independent if

2N.MI(Xi, XCPk(Xi)|Pac(Xi)) < χ(α, dfik) (14)

Thus, if the maximum CMI value for the current candidate parent set fails this
test, we stop adding parents to gene Xi.

3.3 Finding the Intra-slice Arc Directions

The inter-slice arcs in the network can be deduced uniquely since for this part,
we are effectively calculating MI(Xk[t], Xi[t + 1]|Pac(Xi[t])). However, this is
not the case with intra-slice arc additions. Since MI is symmetric, the directions
of the intra-slice arcs cannot be uniquely determined. To determine the direction
of the intra-slice arcs, we use the directionality index, DIXY .

Although Directionality Indices can be used for deducing the direction of reg-
ulation, due to finite size of the data, it may be erroneous. As a result, while
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applying the direction suggested by the directionality index, if any of the con-
ditions listed in part 1 of this Section is violated (e.g., the direction violates
the DAG property), we reverse the direction suggested by the directionality in-
dex and if it does not violate the properties, we apply that direction to the
corresponding edge .

The approaches described in the previous paragraphs are summarized in Ta-
ble 1 as a 2-phase algorithm. In the first phase, the inter-slice portion of the
network is built. The second phase builds the intra-slice portion and the direc-
tionality index is applied to each intra-slice edge to determine the direction of
interactions. The two networks are then combined to give a final gene regulatory
network.

Table 1. The Algorithm

Phase 1:

for each gene Xi ∈ Xn+1,...,2n do
CP (Xi)← findParentCandidates(Xi, Pac(Xi))
find Xk ∈ CP (Xi) for which MI(Xk[t], Xi[t + 1]|Pac(Xi[t])) is maximum
if ((maximumMI ≥ χ(α, dfik)) and graphRemainV alid(Xk, Xi)) then

Pac(Xi)← Pac(Xi) ∪Xk

end if
continue inclusion until the above test fails

end for

Phase 2:

for each gene Xi ∈ X1,...,n do
CP (Xi)← findParentCandidates(Xi, Pac(Xi))
find gene Xk ∈ CP (Xi) for which MI(Xk, Xi|Pac(Xi)) is maximum
if (maximum MI ≥ χ(α, dfik)) ) then

if ( DIXkXi > 0 and graphRemainV alid(Xk, Xi)) then
Pac(Xi)← Pac(Xi) ∪Xk

else if (graphRemainV alid(Xk, Xi)) then
Pac(Xk)← Pac(Xk) ∪Xi

end if
end if
continue inclusion until the above test fails

end for

combine the two networks and get final network, G

4 Simulation and Results

We evaluate our proposed method by both synthetic network and real-life biolog-
ical network of Saccharomyces cerevisiae (yeast). We applied four widely known
performance measures, namely Sensitivity (Se), Specificity (Sp), Precision (Pr)
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and F-Score (F ) and compared our method with some recent methods as well
as some traditional methods.

Our method uses discrete data for the statistical significance tests and con-
tinuous data for the Directionality Index calculations. We used the Persist[12]
algorithm to discretize the data into 3 levels. The value of confidence level (α)
used was 0.9. We used the Gaussian Kernel estimator to calculate MI[13, 14]
from continuous data. The maximum value of the lag-parameter (δ) was set
to 5. For all the experiments related to synthetic network, we used 3 different
datasets for each experiment and combined these 3 datasets using the procedure
described in[15].

4.1 Synthetic Network

As a first step towards evaluating the performance of our method, we consider the
5 gene target network given in Figure 1[15–17]. We use R-K integration method
to obtain 3 sets of time series data, each having 30 time points. We use 5 such
different ’combined’ datasets in our simulations and calculate the above four
performance measures using our technique and compare the performance with
four other DBN-based techniques, namely, BITGRN[18], DBN(DP)[6], dynamic
differential Bayesian network (DDBN)[15], and DBN(NPR)[5]. The results are
shown in Table 2, where we observe that the values of Se and F-Score of our
method are higher than the corresponding values of the other methods. The Sp
and Pr values are also comparable to the other methods.

Fig. 1. 5-gene target network [17]

Table 2. Performance comparison of our
method with, BITGRN, DBN (DP), DDBN
and, DBN (NPR)

Effect of the Size of the Network, Number of Data Points and Noise.
To study the effect of the size of the network, we use the network shown in Fig-
ure 2[19]. The network is composed of 20 nodes. We used the same parameters
as described in[19] for data generation. The number of data points was varied
to observe the effect of data points (20 and 30 data points for each dataset).
To study the effect of noise, we added 6 different levels of noise (random Gaus-
sian noise with zero mean and variance, σ2 = 0, 0.01, 0.02, 0.05, 0.1, 0.2). Each
experiment was done using 5 different datasets and the averages of these results
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are shown in Figure 3. Rectangles are used in the figure for the results from
the 20-datapoints experiment whereas triangles represent results from the 30-
datapoints experiment. Vertical lines denote standard deviation. From the figure,
we observe that increasing the number of samples increases both the accuracy of
the method and the noise performance. For higher levels of noise, the more the
number of data points, the better is the performance. Moreover, for low values
of noise, the performance measures are similar for both the datasets, indicating
that the method is not very data hungry in these cases.

Fig. 2. 20-node target
network

Fig. 3. Effect of noise and data points on the performance
of the algorithm. X axes represent the variance values of
the 6 noise levels used. Y axes represent the corresponding
performance measure.

4.2 Real-Life Biological Data

To validate our method with a real-life biological gene regulatory network, we in-
vestigate a recent network reported in[20]. The network is composed of five genes
regulating each other; it is also negligibly affected by endogenous genes. There are
two sets of gene profiles called Switch ON and Switch OFF for this network, each
containing 16 and 21 time series data points, respectively. A ’simplified’ network,
ignoring some protein level interactions, is also reported. We compare our recon-
struction method with 5 other methods, namely, BITGRN[18], TDARACNE[13],
NIR and TSNI[21], BANJO[2] and ARACNE[14]. These methods have been suc-
cessfully used for reconstructing the networks under consideration previously.

IRMA ON Dataset. There are a total of 8 arcs in the original IRMA network.
Using the ON dataset, our method correctly identified 6 arcs, corresponding
to a Sensitivity, Precision and F-Score of 0.75. For the simplified network, the
method correctly recovered 4 arcs. The performance comparison amongst various
methods is shown in Table 3. From the table, we can clearly see that the overall
performance of our method is quite satisfactory.

IRMA OFF Dataset. Due to the lack of ’stimulus’, it is difficult to reconstruct
the exact network from the OFF dataset[13]. The overall performances of all the
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Table 3. Performance comparison based on IRMA ON dataset

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

Our Method 0.75 0.88 0.75 0.75 0.67 0.89 0.67 0.67
BITGRN 0.63 0.94 0.83 0.71 0.67 1 1 0.80

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73
NIR & TSNI 0.50 0.94 0.80 0.62 0.67 1 1 0.80

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50
ARACNE 0.60 - 0.50 0.54 0.50 - 0.50 0.50

Table 4. Performance comparison based on IRMA OFF dataset

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

Our Method 0.63 0.82 0.56 0.59 0.83 0.84 0.63 0.71
BITGRN 0.63 0.71 0.50 0.56 0.67 0.60 0.50 0.56

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60
NIR & TSNI 0.38 0.88 0.60 0.47 0.50 0.90 0.75 0.60

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44
ARACNE 0.33 - 0.25 0.28 0.60 - 0.50 0.54

algorithms suffer as a result. The comparison is shown in Table 4. As we can see,
the four performance measures of our method are either higher or comparable
to the other methods, thereby outperforming them.

5 Conclusion

Accurate reconstruction of gene regulatory networks is considered difficult due
to various difficulties and challenges. In this paper we have proposed a novel
mutual information based algorithm for reconstructing gene regulatory networks
that can detect both instantaneous and time-delayed interactions between genes.
The performance as measured by the four widely accepted performance measures
show the effectiveness of our employed approach in discovering meaningful reg-
ulatory relationships. Due to the computational efficiency of the approach, we
are focusing our current research on its application for inferring large networks.
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Abstract. Spectral graph theoretic methods such as Laplacian Eigen-
maps are among the most popular algorithms for manifold learning and
clustering. One drawback of these methods is, however, that they do
not provide a natural out-of-sample extension. They only provide an
embedding for the given training data. We propose to use sparse grid
functions to approximate the eigenfunctions of the Laplace-Beltrami op-
erator. We then have an explicit mapping between ambient and latent
space. Thus, out-of-sample points can be mapped as well. We present re-
sults for synthetic and real-world examples to support the effectiveness
of the sparse-grid-based explicit mapping.

Keywords: spectral methods, manifold learning, clustering, sparse grids.

1 Introduction

Spectral methods have emerged as promising techniques for dimensionality re-
duction and clustering. All of these methods use the eigenvector of some affinity
matrix to derive a low-dimensional embedding or cluster assignment.

Today, many algorithms can be seen as spectral methods. In particular, a
whole family of spectral clustering algorithms exists, see the survey [12]. In the
following, we will concentrate on Laplacian Eigenmaps (LE) because this method
provides a low-dimensional embedding of the training data which can be used
not only for a clustering assignment, but also for dimensionality reduction [2].

One drawback of LE is that it learns only the embedding (or clustering) of the
training data at hand. There is no natural way to treat out-of-sample (or test)
points, i.e. assign new points, which are not available during the computation
of the eigenvectors, to clusters. Besides the obvious situation where not all data
is available from the beginning, out-of-sample extensions can also be helpful if
there are too many points to create the graph, the matrices, and to finally solve
the eigenproblem in feasible time. In such situations, it is convenient if one can
partition the data points into a (small) training and a (large) test data set. The
LE are then computed for the training set, and the out-of-sample extension is
used to approximate the embedding for the test data.

The most common out-of-sample extension for LE and other spectral meth-
ods is based on the Nyström method. It has been proposed as an out-of-sample
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extension for spectral methods in [3]. Since then it has been applied to various
problems, see, e.g., [6,17]. This out-of-sample extension is based on the assump-
tion that we can represent the similarity measure as a kernel function K. In
[3], to each data point a kernel function is assigned. They are then utilized to
compute the embedding of out-of-sample points.

Besides this kernel-based method, there have been efforts to create methods
based on linear projections, see, e.g., [8,10]. However, since the underlying lin-
earity assumption cannot always be assumed that easily, they already fail for
simple problems (e.g. swiss roll, see Sec. 5) [10]. A more sophisticated approach
based on polynomials has been presented in [15]. But as far as computational
complexity is concerned, the method becomes infeasible very quickly.

In contrast, we propose to approximate the eigenfunctions of the Laplace-
Beltrami operator by functions discretized on sparse grids. We then have an
explicit mapping between ambient and latent space and can treat out-of-sample
points in a natural way. Usually, grid-based approaches are not feasible in high
dimensional settings because the number of grid points grows exponentially
with the number of dimensions for straightforward discretizations. However,
sparse grids allow us to cope with this so-called curse of dimensionality to
some extent. They have been applied in various fields of application, see the
survey [5].

2 Laplacian Eigenmaps and Spectral Clustering

For a given data set {x1, . . . , xM} ⊂ Rd of M points we construct a weighted
graph G = (V, E) where the weights wij ≥ 0 correspond to some similarity
measure between the data points xi and xj . The (weighted) adjacency matrix
of the graph is the matrix W with entries wij . The degree di of the i-th vertex
of the graph is defined by di =

∑
j wij . We can then define the degree matrix

D with d1, . . . , dM on the diagonal and zero elsewhere. If not otherwise stated,
we will use the well-known Gaussian kernel with bandwidth σ as the similarity
measure.

wij = e−
‖xi−xj‖2

σ2 . (1)

Note that we always assume that the graph is connected.
In the following we need the so-called (unnormalized) graph Laplacian L =

D − W . An overview of many properties of L can be found in [12] and the
references therein. We only want to recall that the smallest eigenvalue of L is 0
and the corresponding eigenvector is the constant vector 1.

The bipartitioning of a graph G means the division of the set of vertices V
into two disjoint sets A, B ⊂ V with A∪B = V based on a cut criterion. In our
case, we want to minimize the sum of weights (“flow”) of edges connecting the
points between the two sets A and B, i.e. we want to minimize

cut(A, B) =
∑

i∈A,j∈B

wij .
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In order to avoid a partitioning of the graph which just cuts off outliers, we
consider the Normalized Cut between A and B

Ncut(A, B) = cut(A, B)
(

1
vol(A)

+
1

vol(B)

)
,

where vol(A) =
∑

i∈A di is the so-called volume of A. The minimization of
the Ncut is a well-studied problem. The result is a vector y ∈ {0, 1}M which
indicates if a vertex belongs to either A or B. Although the problem as stated is
NP-complete [2], the relaxation to real values leads to a problem which can be
solved in polynomial time [12]. Let y ∈ RM and let L be the unnormalized graph
Laplacian, then the solution can be found by minimizing the Rayleigh quotient

yT Ly

yT Dy
, (2)

under the constraint yT D1 = 0. Thus, the minimum is achieved for the eigenvec-
tor corresponding to the second smallest eigenvalue of the generalized eigenvalue
problem

Ly = λDy , (3)

see, e.g., [2,12]. In the following, we always assume an ascending order of the
eigenvalues.

Since the components of the eigenvectors are real-valued they do not provide a
clear assignment of the data points into clusters. However, due to the properties
of the graph Laplacian, the change of representation from data points xi to the
components yi of the eigenvectors enhances the cluster-properties of the data
set [12]. That is why we can simply apply k-means to obtain the final cluster
indicators.

The solution of (2) can also be considered as an optimal embedding of the
data points {x1, . . . , xM} preserving local information in the following sense: If
xi and xj are close with respect to the weight wij , their embedding yi and yj

should be close as well [2]. From that point of view we compute a low-dimensional
embedding of the high-dimensional data points {x1, . . . , xM}. In this context of
dimensionality reduction the above described approach is usually referred to as
Laplacian Eigenmaps (LE).

As far as computational costs are concerned, the by far most expensive part is
the solution of the generalized eigenproblem (3). Since this is usually in O(M3),
large amounts of data are impractical to process with this method.

3 Sparse Grids

As we have already mentioned at the beginning, very often the Nyström method
is used for a data-based out-of-sample extension for LE. A kernel is associated
to each data point. These are then combined to approximate the eigenfunctions
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corresponding to the eigenproblem (3). We propose a grid-based approach, i.e.
our functions fN ∈ VN can be represented as a linear combination with coeffi-
cients αi

fN (x) =
N∑

i=1

αiφi(x) ,

where the basis Φ = {φi}N
i=1 comes from a grid and spans the function space VN .

Hence, the number of basis functions does not increase with the number of data
points in contrast to classical approaches. Unfortunately, a straightforward con-
ventional discretization with N grid points in each dimension suffers the curse
of dimensionality: The number of grid points is of the order O(Nd), depend-
ing exponentially on the dimension d. In our case, the dimension d equals the
dimension of the ambient space, i.e. the usually high-dimensional space where
our data points come from. For sufficiently smooth functions, sparse grids en-
able us to reduce the number of grid points by orders of magnitude to only
O(N log(N)d−1) while keeping a similar accuracy as in the full grid case. Even
though theory requires certain smoothness assumptions, sparse grids have also
been successfully applied for not so smooth functions, see, e.g., [14,13,16]. In the
following, we describe the very basics of sparse grids as briefly as possible, see
[5,13] for more details.

The underlying principle of sparse grids is a one-dimensional hierarchical
system of basis functions (see Fig. 1, left) which is then extended to the d-
dimensional case by taking the product of the one-dimensional basis functions.
These span subspaces Wl where the level l = (l1, . . . , ld) determines the mesh size
in each direction. We show in Fig. 1 (middle) the grids of the two-dimensional
hierarchical increments Wl up to level 3 in each dimension.

Starting from a hierarchical scheme as in Fig. 1 we select only those subspaces
that contribute most to the overall solution. The optimal choice is to cut off
the tableau in Fig. 1 along the diagonal if the error is measured in the L2- or
maximum norm, see [5]. Thus, the sparse grid space of level n is

V (1)
n :=

⊕
|l|1≤n+d−1

Wl ,

where |l|1 denotes the sum of the one-dimensional levels. In the example of Fig. 1
(middle) we can neglect the grayed out subspaces (many grid points with little
contribution) and obtain the regular sparse grid in Fig. 1 (right top).

In order to reach higher dimensions further considerations are needed. First,
we can use spatial (local) adaptivity to further reduce the number of unknowns
needed to solve a problem up to some required accuracy. We start with a rather
coarse sparse grid and use a suitable adaptivity criterion to add points in those
regions of the domain that are most important, compare Fig. 1 (right bottom). A
simple (though typically very effective) criterion for adaptive refinement, which
we use in the following, is to select the refinement candidates with the highest
absolute values of their hierarchical surpluses (coefficients αi). Second, the or-
dinary basis functions at the boundary become infeasible in higher dimensions.
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Fig. 1. One-dimensional hierarchical basis (left), the tableau of hierarchical increments
Wl up to level 3 (middle) and the corresponding regular sparse grid (right top) and an
adaptively refined sparse grid (right bottom)

Therefore, we omit the basis functions at the boundary and use modified basis
functions adjacent to the boundary. These then extrapolate linearly towards the
boundary, for details see [13].

4 Sparse-Grid-Based Out-of-Sample Extension

In this section, we present an out-of-sample extension which uses sparse grid
functions f ∈ V

(1)
n to approximate the eigenfunctions corresponding to the LE

embedding.
Let f be a function of the sparse grid space V

(1)
n . We can represent such

a function as a linear combination of the hierarchical basis Φ = {φi}N
i=1 with

coefficients α = (α1, . . . , αN )

f(x) =
N∑

i=1

αiφi(x) . (4)

Let f̃ = (f(x1), . . . , f(xM )) be the vector of the function values at the data
points X = {x1, . . . , xM}. We then look for coefficients α such that the Rayleigh
quotient

f̃T Lf̃

f̃T Df̃
, (5)

is minimized, where L and D are the graph Laplacian and degree matrix, re-
spectively. Again we find the minimum by solving an eigenproblem. Instead of
Ly = λDy as in (3) we now have

BT LBα = λBT DBα , (6)

where B is a M × N matrix with bij = φj(xi). Note that matrix B becomes
singular if there exists a basis function which is not “hit” by any data point. More
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precisely, let φk be a basis function with support sk. If sk ∩ {x1, . . . , xM} = ∅
then column k of B has only zero entries. Hence, B is singular.

We show that even if B is singular, the eigenproblem (6) need not be singular
and can thus be solved. For that purpose we rewrite the eigenproblem (6) as

μBT LBα = νBT DBα , (7)

with λ = ν/μ, and we assume the graph is not empty (V �= ∅) and con-
nected, i.e. yT Ly = 0 ⇐⇒ y = 1. The eigenproblem is called singular if
ν = μ = 0 [1]. Suppose we have an eigenvector α ∈ RN with ν = μ = 0. This
means BT LBα = 0 and BT DBα = 0. Because our graph is connected we have
αT BT LBα = 0 ⇒ yT Ly = 0 ⇒ y = 1. But then we obtain BT Dy = BT d
with d = (d11, . . . , dMM ) > 0 component-wise. Since BT has only non-negative
entries and at least one entry > 0, BT DBα has to have at least one entry > 0.
Hence μ �= 0. So there cannot be an eigenvector α ∈ RN with μ = ν = 0.

Note that we simply ignore eigenvectors to eigenvalues λ = ν/μ with μ = 0.
Note further that the graph Laplacian property yT Ly = 0 ⇐⇒ y = 1 still
holds for BT LB.

It is common in other settings to add a smoothness constraint to the minimiza-
tion problem, e.g., the identity matrix, see, e.g., [13,7] for the case of classification
with sparse grids. That is why we add a regularization term C and obtain the
minimization problem

αT
(
γC + BT LB

)
α

αT BT DBα
, (8)

with the corresponding eigenproblem(
γC + BT LB

)
α = λBT DBα ,

under the constraint that we skip the (constant) eigenvector with eigenvalue 0.
With the regularization parameter γ we can balance the demand for closeness
to the minimum and the smoothness constraint. However, our experiments have
shown that γ only slightly influences the result.

The algorithm for the proposed out-of-sample extension can be summarized as
follows. Let Xtrain and Xtest be the set of training and test points, respectively.
We obtain the sparse grid function f by solving the minimization problem (8) for
the training set Xtrain. The low-dimensional embedding for the training points
is given by the function values. We can further compute a cluster assignment by
using k-means on the function values of f at x ∈ Xtrain. However, we now can
also evaluate f at test points x ∈ Xtest and thus find an embedding and cluster
assignment for these out-of-sample points.

Finally, we want to discuss the computational complexity of our out-of-sample
extension. Let us first consider the eigenproblem. With our grid-based approach,
the dimension of the eigenproblem becomes data-independent, i.e. the solution
of the eigenproblem can be obtained in O(N3), where N is the number of grid
points, rather than in O(M3). For huge data sets where M  N (e.g. image
segmentation) this is a distinct improvement. The same holds for the out-of-
sample extension. In our case, the computation of an embedding of an out-of-
sample point just results in a function evaluation. For sparse grid functions in
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V
(1)
n with level n, this can be accomplished in O(nd), thus, the complexity of

a function evaluation is again data-independent. Furthermore, this can be done
with very efficient parallel methods suitable for huge data sets [9].

5 Experiments

We start with the two moons data set, see Fig. 2 (right). We generate five training
sets with 500 points each and compute the cluster assignment as discussed in the
previous section. We then determine the ARI (adjusted rand index) [11] with the
proposed sparse-grid-based out-of-sample extension on five test sets with 5,000
points each. The mean over all these ARI values is plotted in Fig. 2 against the
σ2 of the Gaussian kernel. We compare functions on sparse grids of level 4, 5
and 6.
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Fig. 2. The mean ARI for the two moons data set against the σ2 of the Gaussian kernel
for functions on sparse grids of level 4, 5 and 6 (left). The approximation of the second
eigenfunction on a sparse grid of level 5 (right).

We clearly see that we already achieve a mean ARI of more than 0.95 with
only 81 grid points. Hence, only very few grid points are required for a reason-
able approximation of the eigenfunction. However, we also see that really high
accuracies can be obtained if we increase the grid level n. This gives a good indi-
cation that our approximation really converges towards the eigenfunction. The
approximation of the second eigenfunction on a sparse grid of level 5 is shown
in Fig. 2 (right).

The next example is the swiss roll with 2000 training and 2000 test data
points, see Fig. 3 (left). It is a two-dimensional submanifold of R3 and it has
been shown that it can be “unrolled” with LE [2]. In order to compute the
two-dimensional embedding we have to approximate the second and third eigen-
functions corresponding to the eigenproblem of LE. We then obtain a function
fn : R3 → R2 with
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fn(x1, x2, x3) =
(

f1
n(x1, x2, x3)

f2
n(x1, x2, x3)

)
,

where f1
n and f2

n are the sparse grid functions approximating the second and
third eigenfunction, respectively. In Fig. 3 we show the two-dimensional embed-
ding of the swiss roll. If we compare the proposed out-of-sample extension with
the results shown in [2], we already obtain good results in the case of level 5 (705
grid points). Again we have distinctly less grid points than data points, thus,
the dimension of the eigenproblem is reduced.

Fig. 3. Swiss roll (left) embedding of training (middle) and test (right) data with sparse
grid functions on grid of level 5 (705 grid points). The parameter σ2 of the Gaussian
kernel is set to 6.0.

Next we consider the oil flow data set introduced in [4]. This is a 12-di-
mensional data set with three classes called “configurations”. Because the data
points corresponding to the “stratified configuration” are scattered into several
smaller clusters, we consider the data points of the two remaining configurations.
Furthermore, we add the validation data points to our training data. We then
have a data set of 1318 training and 687 test data points representing two non-
linearly separable clusters.

In order to cope with the 12-dimensional problem, we use the modified basis
functions near the boundary. First, we consider the results for the regular grid
of level 4 with N = 3249 grid points, see Fig. 4. We see that it performs better
than the Nyström method for both training and test data. However, in this case
we have more grid than training points. Therefore we employ adaptivity. We
start with the (12-dimensional) sparse grid of level 2 and apply three refinement
steps with the criterion from Sec. 3. In each refinement step we refine another 10
percent of grid points. For the reasonable kernel bandwidths (σ2 between 0.08
to 0.1) we do not have more grid than training data points. With the adaptively
refined grid we get about the same behavior as with the regular grid. Hence, the
proposed method achieves, again, a higher ARI than the Nyström method. Fur-
thermore, we do not have more grid than training data points, thus, we reduce
the dimension of the eigenproblem as well.
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Fig. 4. Results for the oil flow data set. Comparison of the Nyström and proposed
method with regular and adaptive sparse grids. Mean ARI for training (left) and test
(right) data set.

6 Conclusion

We presented a novel out-of-sample extension for Laplacian Eigenmaps. It uses
sparse grids to compute an explicit mapping between ambient and latent space.
This grid-based approach is feasible because sparse grids allow us to cope with
the curse of dimensionality to some extent. The advantages of the grid-based
approach are obvious. Both the dimension of the eigenproblem as well as the
computation of an embedding for an out-of-sample point are independent from
the number of training data points.

We illustrated the sparse-grid-based out-of-sample extension by various ex-
amples. We have studied synthetic benchmark data sets for clustering as well as
dimensionality reduction. The results have shown that the out-of-sample points
are mapped reasonably from ambient to latent space. The same holds for the real-
world example where we studied the 12-dimensional oil flow data set. The pro-
posed grid-based method achieved better results than the usually used Nyström
method.

Overall, the experiments have validated the effectiveness of the proposed out-
of-sample extension based on sparse grids.
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Abstract. Changes in the distribution of financial time series, particularly stock 
market prices, can happen at a very high frequency. Such changes make the 
prediction of future behavior very challenging. Application of traditional 
regression algorithms in this scenario is based on the assumption that all data 
samples are equally important for model building. Our work examines the use 
of an alternative data pre-processing approach, whereby knowledge of 
distribution changes is used to pre-filter the training dataset. Experimental 
results indicate that this simple and efficient technique can produce effective 
results and obtain improvements in prediction accuracy when used in 
conjunction with a range of forecasting techniques.   

            Keywords: Time series classification, regression, distribution change. 

1 Introduction 

Prediction techniques for the behavior of financial time series have been intensively 
studied [1][2].  A prime example is the forecasting of stock prices, which aims to 
forecast the future values of the price of a stock, in order to obtain information about 
its trends and direction of movement and thus allow the development of 
buying/selling strategies to gain competitive advantage. 

Classic and popular methods for stock price forecasting [3][4] for both univariate 
and multivariate time series data include linear regression, hidden markov models, 
neural networks [11] and support vector machines [7].  

The underlying data for financial time series may span a frequency as small as 
hourly or as long as several years. The longer the time interval, the more likely it is 
that the data samples will not follow the same distribution [8]. The classic statistical 
[13] and data mining time series prediction methods [14], at least in their simple form, 
do not take into consideration that such changes in distribution over time may occur 
with financial time series data. This can lead to a loss in prediction accuracy, since the 
prediction model that is built places equal value on all samples, even those whose 
distribution is not close to the distribution of the samples in the most recent past. 

In this paper, we address the challenge of forecasting the behavior of time series 
using distribution change.  In particular, we propose a technique for filtering the 
samples in such time series, in order to project out those samples which appear least 
relevant and retain those samples which appear most relevant for prediction. Our 
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proposed Distribution Based Samples Removing (DBSR) algorithm operates by i) 
initially analyzing the time series to determine its different distributions, and then ii) 
reducing the time series by filtering out the samples whose distribution is furthest 
from the recent past. We develop two versions of the algorithm, one parametric and 
the other non-parametric. Our approach is designed to work for regression with 
univariate series that use a five day relative difference in percentage of price (RDP) 
format [16], but the approach can also be applied to original univariate time regressed 
on itself, as well as multivariate time series.   

 Our proposed data filtering method has a number of desirable properties: i) it is 
clean, simple and intuitive, ii) it is easy to implement and runs efficiently, since it is a 
data pre-processing step and thus iii) it can be used in conjunction with many existing 
time series prediction methods. Finally, we find that iv) it can help obtain 
improvements in prediction performance when used as a prior step to produce input 
for classic time series prediction algorithms. 

2 Related Work  

There is a large amount of literature dealing with classification and regression for 
financial time series. Descriptions of classic methods can be found in standard 
textbooks such as [1][2][3].  Instead we briefly review related work that can be used 
for dataset filtering or pre-processing, since this is an essential feature of our 
approach. 

Selecting samples from a set can be performed by simple random sampling, 
cluster sampling, systematic sampling, or load shedding [5], but most of these 
methods do not consider the time element that is present when dealing with financial 
time series. Efforts have been by [21][22] to improve these methods and to include 
the time element, by using strategies based on sliding windows [22]. Nevertheless, 
sample selection in time series mostly consists of only selecting a continuous sample 
set, without the possibly of removing non contiguous ranges of samples from the set. 

Investigating the changes in distribution that occur over time within the financial 
time series data and including them in the learning process is an ongoing research 
direction [9] [10] [12]. The benefits of the research in this area are not only 
algorithms that are adjusted to cope with the time element present in the data, but also 
algorithms that run online and can process data streams as well [15].   

3 Distribution Based Samples Removing Algorithm 

The notion of examining the nature of distribution change in a time series and using it 
to filter the data samples is inspired by the technique of load shedding [22] using 
sliding windows.  In order to develop an algorithm that can filter based on distribution 
change, we will first need to decide on an appropriate statistic for measuring 
differences in distribution.  

We choose to use the Wilcoxon rank sum method (WXN) [13], which is a non-
parametric test that assesses whether two sets of data samples follow the same 
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distribution. It is easy to implement, efficient and a well known statistical test. We 
adopt the WXN method and use the change points it detects. The WXN paradigm is 
as follows: we set a fixed window on n points, [1,n], and starting after it, a sliding 
window of n points as well, [n+1, 2n], as shown in Figure 1. We move the second 
window and compare if the samples in both windows follow same distribution: if that 
is the case, we continue moving the second window, until the distribution changes. 
The change point will be at the last sample of the second window (point 2n+k); we 
move the first window just after that point [2n+k+1, 3n+k], the second window comes 
after the first one [3n+k+1, 4n+k] and we repeat the process for the rest of the dataset. 

 

 

Fig. 1. The Wilcoxon method with fixed reference window 

After the WXN method has detected all the distribution change points in the 
training set of the time series, the mean (average) value of each window is calculated 
and compared to the mean value of the last (most recent in time) window: the 
difference between the mean value for a given window with index j, and the mean 
value of the last window, called ∆avg[j,last]=meanj-meanlast is calculated, all  
differences are then normalized into the range of [0,1], giving us the value for 
dj=∆avg[j,last]Normalized.  

 

    d j = Δavg[ j, last]Normalized = abs(
Δavg[ j, last]

max
i

(Δavg[i,last])
)               (1) 

 

To gain an idea about likely behavior, we ran the WXN method on several real life 
time series (described in detail later in the paper) and the results showed the general 
pattern of Figure 2: some samples in the distant past were more similar to the most 
recent window than were some samples in the more recent past. We can see from 
Figure 2 moving left to right, there are windows in the most distant past with very 
similar distribution (windows 1 and 2) to the last window, and also windows in the 
not so distant past with quite different distribution (window 8) to the distribution of 
the last window. This confirmed our belief that many real time series are non-
stationary, and that it is potentially promising to investigate methods for the filtering 
of samples based on similarity of distribution. 

 



 Distribution Based Data Filtering for Financial Time Series Forecasting 125 

 

Fig. 2. Example of dj =∆avg[j,last]Normalized value between the distribution windows 

We develop two versions of a Distribution Based Samples Removing (DBSR) 
Algorithm, one parametric and the other non-parametric. They both use information 
about the distribution changes in the time series for making the decision about which 
samples of the dataset to remove. 

3.1  Distance Value – Threshold Based Decision 

The parametric based DBSR (P-DBSR) algorithm requires the user to analyze the 
distribution change data: the size of the windows and the value of the distance to the 
most recent window. It requires a threshold value, between 0 and 1, and removes the 
samples from the windows where the distance to the most recent window is above the 
threshold value. The structure of the P-DBSR algorithm is as follows: 

 
Algorithm P-DBSR 

  Stage 1: change point detection 
1:   Input:  time series dataset X = {xi | i = 1..m } 
2:  Output: reduced time series X = {xi | i = 1..k, k<m } 
3:   Initial: reference windows W1 and W2, window size n, threshold value p,  

 W1={x1, ..xn}, W2={xn+1,..,X2n}, number of change points cPoints=0, distance 
      values dj=∆avg[j,last]Normalized. 

4:   While not the end of dataset 
5:    Compare distribution for W1 and W2 
6:  If W1 and W2from the same distribution 
7:   Move W2 one sample forward 
8:  Else 
9:   Detect change point, cPoints += 1 
10:   Set W1 to start after W2, then W2 after W1    
11:  EndIf 
12:  EndWhile 
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  Stage 2: parameter based dataset reduction 
13:  Calculate normalized distance values to the last window dj, j=1.. cPoints+1 
14:  For all windows 
15:   If window distance dj > p value 
16:    Remove the current window 
17:  EndIf 
18:  EndFor 
19:  Return reduced dataset X = {xi | i = 1..k, k<m } 

 

 

Fig. 3. The parametric DBSR datasets, before and after removing the windows 

This version of the algorithm has several advantages: the user has access to the 
detailed information about the distribution, and can see how it changes over time, 
therefore getting insight into the volatility of the samples that will be used for 
forecasting; it will also indicate regions where the data may be noisy, and thus 
beneficial to remove. 

We choose such value for p that would result in an amount is large enough for us 
to expect the final regression to be significantly different. Shown in Figure 3, the 
samples where the normalized distance was greater than the p value are in the black 
sections, and are removed at the end of the algorithm.   

We assessed the algorithm over a range of values for the threshold - between 0.3 
and 0.8. Some datasets had many windows with distributions similar to that of the last 
window, and in order to remove a significant amount of samples (around 30-35 %), 
those datasets required the threshold value set low. The datasets where there were 
windows with distribution quite different from the one of the last windows needed a 
threshold value set usually around 0.7 to remove the same percentage (30-35%) of 
samples. Even though the value for p was different for each dataset, the amount of 
samples removed was roughly the same for all datasets. We did so as we prefer to 
have same ratio of before and after dataset size, in order to test if removing such large 
amount of samples would be beneficial, regardless off the dataset. 
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3.2  Distance Value – Percentage Based Decision 

Our non-parametric DBSR (NP-DBSR) algorithm again accesses information about 
the distribution change and distribution distance with respect to the most recent 
window.  As the distance is normalized in the range of 0-1, the algorithm uses that 
value to determine the portion of the window to be removed – e.g. if the normalized 
distance value for a given window is 0.7, the algorithm will remove 70% of the 
samples of that window. In other words, the samples from each window are filtered in 
proportion to the amount of their dissimilarity to the last window.  This gives 
windows with a moderate value (moderate dissimilarity) for the distance some chance 
to contribute samples. Since distances are normalized, it will result in the most distant 
window having all of its instances removed, and the most recent window having no 
instances removed.  Shown in Figure 4, we can see we have the same windows with 
different distributions (marked with different patterns) before and after, with the 
windows after being smaller, as the have samples being removed from them.  

 The structure of the NP-DBSR algorithm is as follows: 
 

Algorithm NP-DBSR 
 

Stage 1: change point detection (lines 1 - 12) 
 Stage 2: parameter free dataset reduction 

13:  Calculate normalized distance values to the last window d 
dj=∆avg[j,last]Normalized.j, j=1.. cPoints+1 

14:  For all windows 
15:   Remove dj *100 percent of the samples of the current window 
16:  EndFor 
17:  Return reduced dataset X = {xi | i = 1..k, k<m } 
 
 

 

Fig. 4. Non parametric DBSR, before and after reducing the windows 
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4 Datasets  

Our research was focused on forecasting stock market prices, as they are continuous 
series that can change very quickly, and are of great interest to both investors and 
researchers. We tested stock market prices of 12 random companies, with each dataset 
containing between 290 and 700 samples, recorded daily from a randomly chosen 
period between 1997 and 2010 [17][19]. We also tested a simulated dataset, where there 
did not exist many changes in the distribution, as well as the S&P quarterly index time 
series [18]. The stock market datasets were divided into a training and testing set, in the 
ratio of 9:1. We only focused on short term forecasting, so that the learning time of the 
machine learning models was small. The names of the companies, along with the 
number of samples and windows (changes) detected are listed in Table 1. 

Since our technique focuses on data pre-processing, it can be used in conjunction 
with a large class of existing algorithms for time series prediction.  We evaluated the 
use of our technique in conjunction with Linear Regression (LR), Pace Regression 
(PR), Support Vector machines (SVM) and Multilayer Perceptron (MLP). We did not 
evaluate the use of the popular ARIMA model, since that required an incompatible 
dataset format. We used the WEKA [19] software to run our experiments. 

Table 1. Datasets used in the experiments 

ID Name 
Samples/ 
windows 

ID Name 
Samples/ 
windows 
(changes) 

1 Amazon.com 422/13 8 
Hewlett-
Packard 

612/27 

2 Apple Computer 461/23 9 IBM 309/16 

3 American Express 415/20 10 
Island Pacific, 
Inc. 

520/17 

4 
British Airways 
(ADS) 

260/8 11 
Johnson &  
Johnson 

406/16 

5 
Colgate-Palmolive 
Co. 

462/25 12 
Simulated 
Dataset 

475/22 

6 eBay Inc. 520/22 13 
S&P Quarterly  
Index   

323/17 

7 FedEx 423/17 14 
Walt Disney  
Company 

428/13 

 
We used the five day relative difference in percentage of price (RDP) format [16]. 

The attributes by which the forecasted value was calculated were the 5, 10, 15 and 20 
past days difference in percentage (RDP-5, RDP-10, RDP-15 and RDP-20), as well as  
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a 15 day exponential moving average (EMA15). This type of transformation makes 
the data more symmetrical and closer to a normal distribution. The formulas that 
describe the RDP data format are listed in Table 2. 

Table 2. RDP data format - attributes and forecast output 

Input variables Output variable 

EMA15 p(t)-EMA15(t) 

RDP+5 
 
 

100*)(/))()5(( ipipip −+  

)()( 3 iEMAip =  

RDP-5 (p(t)-p(t-5))/p(t-5)*100 

RDP-10 (p(t)-p(t-10))/p(t-10) *100 

RDP-15 (p(t)-p(t-15))/p(t-15)*100 

RDP-20 (p(t)-p(t-20))/p(t-20)*100 

5 Experiments 

The performances of the two versions of the algorithm were evaluated through the 
root mean square error (RMSE) metric. The results presented in Table 3 show the 
change in the RMSE value as captured in the formula:  

 
(DBSR reduced dataset RMSE value) / (Full dataset RMSE value) * 100,  
 

for both versions of the algorithm. i.e. The relative error using the filtered time series 
compared to using the full time series.  In many cases for the machine learning 
methods, both versions of datasets filtered with our algorithms performed better than 
the machine learning methods trained on the full dataset, and in virtually all of them, 
employing at least one version of the algorithm resulted in a RMSE smaller than the 
methods trained on the full dataset.  

The parametric method often yielded a smaller RMSE than the non-parametric 
method. The results in Table 3 also highlight some stability properties of the learning 
methods. As we can see from the RMSE reductions, the Linear Regression, Pace 
Regression and Support Vector Machines performed very similar when trained on the 
full datasets and on the reduced datasets as well, while Multilayer Perceptron 
performed poorly when trained on the full dataset, but had quite an improvement in 
performance when trained on some datasets filtered by the DBSR algorithm, but also 
had a large decrease in other cases. 
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Table 3. DBSMR algorithm change in RMSE values.  Performances show percentage of 
RMSE error using our filtering approach compared to error without our filtering approach.  
Lower numbers indicate better performance for our filtering approach.  

ID 
P-

DBSR 

p-val 

LR 
P-

DBSR 

LR 
NP-

DBSR 

PR  
P-

DBSR 

PR 
NP-

DBSR 

SVM 
P-

DBSR 

SVM  
NP-

DBSR 

MLP 
P-

DBSR 

MLP 
NP-

DBSR 

1 0.5  98.30 95.72 98.07 93.82 100.2 96.56 61.32 64.04 

2 0.3 92.53 95.11 91.86 95.49 86.98 96.87 114.6 103.6 

3 0.4 92.06 83.91 97.35 85.34 103.6 94.82 120.4 106.6 

4 0.7 94.95 99.93 97.28 99.55 97.19 96.89 84.51 102.3 

5 0.8 98.72 101.1 98.12 98.89 98.52 99.37 105.3 98.56 

6 0.6 99.32 104.7 100.1 103.4 100.9 107.1 99.00 126.9 

7 0.6 98.77 98.51 97.77 99.65 95.71 99.86 181.3 105.8 

8 0.5 95.77 97.38 95.72 96.37 99.14 100.2 60.59 91.52 

9 0.7 95.22 97.80 98.44 97.07 94.31 99.93 100.6 86.12 

10 0.5 100.9 99.27 102.9 99.69 96.90 95.73 78.31 83.74 

11 0.7 91.66 97.82 94.37 100.6 95.05 103.3 95.54 95.68 

12 0.5 96.81 94.57 96.78 94.53 98.53 95.22 84.92 107.1 

13 0.5 93.40 93.98 91.75 90.96 90.75 125.8 158.8 139.6 

14 0.5 98.70 104.2 98.97 102.4 97.23 102.8 81.08 109.6 

6 Conclusion 

Samples in financial time series datasets can be from different distributions and this 
creates challenges and opportunities for forecasting.  We have developed data 
filtering algorithms that assess the importance of samples from a time series and 
retain those with most similarity to the recent past. Our experimental results show that 
the distribution of the data is indeed an important factor to consider, as we achieved 
reductions in forecasting error for time series with both few and many changes in the 
distribution. We believe our proposed DBSR algorithm is a simple and promising way 
to employ information about the distribution in the learning and prediction process.   

In the future, we plan to investigate alternative methods to the Wilcoxon test for 
detecting distribution change and also investigate methods for stronger coupling of 
the distribution detection and prediction stages. 
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Abstract. In most real-world information processing problems, data is
not a free resource; its acquisition is rather time-consuming and/or ex-
pensive. We investigate how these two factors can be included in super-
vised classification tasks by deriving classification as a sequential decision
process and making it accessible to Reinforcement Learning. Our method
performs a sequential feature selection that learns which features are
most informative at each timestep, choosing the next feature depending
on the already selected features and the internal belief of the classifier.
Experiments on a handwritten digits classification task show significant
reduction in required data for correct classification, while a medical di-
abetes prediction task illustrates variable feature cost minimization as a
further property of our algorithm.

Keywords: reinforcement learning, feature selection, classification.

1 Introduction

In recent times, an enormous increase in data has been observed, without a cor-
responding growth of the information contained within them. In other words,
the redundancy of data continuously increases. An example of such effects can
be found in medical imaging. Diagnostic methods can be improved by increasing
the amount of MRI, CT, EMG, and other imaging data yet the amount of un-
derlying information does not increase. Even worse, the redundancy of such data
seems to negatively impact the performance of associated classification methods.
Indeed, common engineering practices employ data-driven methods (including
dimensionality reduction, nonlinear PCA, etc.) to reduce data redundancy.

On the other hand, obtaining qualitatively good data gets increasingly ex-
pensive. Again, medical data serves as a good example: not only do the costs of
the above-mentioned medical imaging techniques explode—MRT scans are per-
formed at the end user price of several thousands of US dollars per hour—but
also diagnostics tests are getting increasingly intricate and therefore costly, to
the point that a selection of the right diagnostic methods while maintaining the
level of diagnostic certainty is of high value.

Also, from a computer scientist’s perspective, the amount of processable data
grows faster than processor speed. According to various studies1, recent years
1 E.g., Gartner’s survey at http://www.gartner.com/it/page.jsp?id=1460213 .

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 132–141, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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showed an annual 40–60% increase of commercial storage needs and a 40+-fold
increase is expected in the next decade. Though this may, just like the integration
density of processors, follow Moore’s law, the increase of computer speed is well
below that.

In short, an improved approach feature selection (FS) is needed, which not
only optimally spans the input space, but optimizes with respect to data con-
sumption. All of these arguments clearly demonstrate the advantage of carefully
selecting relevant portions of data. Going beyond traditional FS methods, in this
paper we lay out and demonstrate an approach of selecting features in sequence,
making the decision which feature to select next dependent on previously selected
features and the current internal state of the supervised method that it interacts
with. In particular, our sequential feature selection (SFS) will embed Reinforce-
ment Learning (RL) into classification tasks, with the objective to reduce data
consumption and associated costs of features during classification. The question
we address in this paper is: “Where do I have to look next, in order to keep data
consumption and expenses low while maintaining high classification results?”

Feature selection with RL has been addressed previously [5], yet the novelty
of our approach lies in its sequential decision process. Our work is based on
and inspired by existing research, combining aspects of online FS [17,11] and
attentional control policy learning [1,14]. A similar concept, Online Streaming
FS [17] has features streaming in one at a time, where the control mechanism
can accept or reject the feature. While we adopt the idea of sequential feature
selection, our scenario differs in that it allows access to all features with the
subgoal of minimizing data consumption. A similar approach to ours is outlined
in [10], where RL is used to create an ordered list of image segments based on
their importance for a face recognition task. However, their decision process is
not dependent on the internal state of the classifier, which brings their method
closer to conventional FS.

Our framework is mapped out in Section 2. After introducing the general
idea, we formally define sequential classifiers and rephrase the problem as a
Partially Observable Markov Decision Process (POMDP). In addition, a novel
action selection mechanism without replacement is introduced. Section 3 then
demonstrates our approach, both on problems with redundant (handwritten digit
classification) and costly (diabetes classification) data and discusses the results.

2 Framework

2.1 General Idea

In machine learning, solving a classification problem means to map an input x
to one of a finite set of class labels C. Classification algorithms are trained on
labelled training samples I = {(x1, c1), . . . , (xn, cn)}, while the quality of such a
learned algorithm is determined by the generalization error on a separate test set.
We regard features as disjunct portions (scalars or vectors) of the input pattern
x, with feature labels fi ∈ F and feature values fi(x) for feature fi. One key
ingredient for good classification results is feature selection (also called feature
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subset selection): filtering out irrelevant, noisy, misleading or redundant features.
FS is therefore a combinatorial optimization problem that tries to identify those
features which will minimize the generalization error. In particular, FS tries to
reduce the amount of useless or redundant data to process.

We want to take this concept even further and focus on minimizing data
consumption, as outlined in the introduction. For this purpose, however, FS is
not ideal. Firstly, the FS process on its own commonly assumes free access to
the full dataset, which defeats the purpose of minimizing data access in most
real-world scenarios. But more significantly, FS determines for any input the
same subset of features that should be used for a subsequent classification. We
argue that this limitation is not only unnecessary, but in fact disadvantageous
in terms of minimizing data consumption.

We believe that by turning classification into a sequential decision process,
we can further significantly reduce the amount of data to process, as FS and
classification then become a closely intertwined process: deciding which feature
to select next depends on the previously-selected features and the behaviour of
the classifier on them. This will be achieved by using a fully trained classifier
as an environment for an RL agent, that learns which feature to access next,
receiving reward on successful classification of the partially uncovered input
pattern.

2.2 Sequential Classification

A first step towards our goal is to re-formulate classification as a Partially Ob-
servable Markov Decision Process2 (POMDP), making the problem sequential
and thus accessible to Reinforcement Learning algorithms. We additionally re-
quire the following notation: ordered sequences are denoted by (·), unordered
sets are denoted by {·}, appending an element e to a sequence s is written as
s ◦ e. Related to power sets, we define a power sequence powerseq(M) of a set
M to be the set of all permutations of all elements of the power set of M , in-
cluding the empty sequence (). As an example, for M = {1, 2}, the resulting
powerseq(M) = {(), (1), (2), (1,2), (2,1)}. During an episode, the feature history
ht ∈ powerseq(F ) is the sequence of all previously selected features in an episode
up to and including the current feature at time t. Costs associated with access-
ing a feature f are represented as negative scalars r−f ∈ R, r−f < 0. We further
introduce a non-negative global reward r+ ∈ R, r+ ≥ 0 for correctly classifying
an input.

Classifiers in general are denoted with the symbol K. We define a sequential
classifier K̃ to be a functional mapping from the power sequence of feature values
to a set of classes, i.e., K̃ : powerseq

(
{f(x)}f∈F

)
→ C. An additional require-

ment is to process the sequence one input a time in an online fashion, rather
than classifying the whole sequence at once, and to output a class label after
2 A partially observable MDP is a MDP with limited access to its states, i.e., the agent

does not receive the full state information but only an incomplete observation based
on the current state.
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each input. Therefore, K̃ requires some sort of memory. Recurrent Neural Net-
works (RNN) [7] are known to have implicit memory that can store information
about inputs seen in the past. If the classifier does not possess such a memory,
it can be provided explicitly: at timestep t, instead of presenting only the t-th
feature value ft(x) to the classifier, the whole sequence (f1(x), . . . , ft(x)) up to
time t is presented instead.

As it turns out, the above approach of providing explicit memory is not limited
to sequential classifiers. Any classifier, that can handle missing values [13] can be
converted to a sequential classifier. For a given input x and a set F1 of selected
features, F1 ⊆ F , the values of the features not chosen, i.e., F\F1, are defined
as missing. Each episode starts with a vector of only missing values (φ, φ, . . .),
where φ can be the mean over all values in the dataset, or simply consist of
all zeros. At each timestep, the current feature gradually uncovers the original
pattern x more. As an example, assuming scalar features f1, f4 and f6 were
selected from an input pattern x ∈ R6, the input to the classifier K would then
be: (f1(x), φ, φ, f4(x), φ, f6(x)). This method allows us to use existing, pretrained
non-sequential classifiers as well, that will remain unchanged and only act as an
environment in which the SFS agent learns.

As we deal with a partially observable MDP, we need to extract an observa-
tion from the classifier, that summarizes the past into a stationary belief. Most
classifiers base their class decision on some internal belief state. A Feed For-
ward Network (FFN) for example often uses a softmax output representation,
returning a probability pi in [0,1] for each of the classes with

∑|C|
i=1 pi = 1. And

if this is not the case (e.g., for purely discriminative functions like a Support
Vector Machine), a straightforward belief representation of the current class is
a k-dimensional vector with a 1-of-k coding.

To finally map the original problem of classification under the objective to
minimize data consumption to a POMDP, we define each of the elements of
the 6-tuple (S, A, O,P , Ω,R), which describes a POMDP, as follows: the state
s ∈ S at timestep t comprises the current input x, the classifier K̃, and the
previous feature history ht−1, so that st = (x, K̃, ht−1). This triple suffices to
fully describe the decision process at any point in time. Actions at ∈ A are
chosen from the set of features F\ht−1, i.e., previously chosen features are not
available. Section 2.3 describes, how this can be implemented practically. The
observation is represented by the classifier’s internal belief of the class after seeing
the values of all features in ht−1, written as ot = b(x, K̃, ht−1) = b(st). In the
experiments section, we will demonstrate examples with FFN, RNN and Naive
Bayes classifiers. Each of these architectures allows us to use the aforementioned
softmax belief over the classes as belief state for the POMDP. The probabilities
pi for each class serve as an observation to the agent: ot = b(x, K̃, ht−1) =
(p1, p2, . . . , p|C|).

Assuming a fixed x and a deterministic, pretrained classifier K̃, the state and
observation transition probabilities P and Ω collapse and can be described by
a deterministic transition function T , resulting in next state st+1 = Tx(st, at) =
(x, K̃, ht−1◦at) and next observation ot+1 = b(st+1). Lastly, the reward function
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Ra
ss′ returns the reward rt at timestep t for transitioning from state st to st+1

with action at. Given c as the correct class label, it is defined as:

rt =

{
r+ + r−at

if K̃
(
(hτ (x))0<τ≤t

)
= c

r−at
else

(1)

2.3 Action Selection without Replacement

In this specific task we must ensure that an action (a feature) is only chosen at
most once per episode, i.e., the set of available actions at each given decision step
is dependent on the history ht of all previously selected actions in an episode.
Note that this does not violate the Markov assumption of the underlying MDP,
because no information about available actions flows back into the state and
therefore the decision does not depend on the feature history.

Value-based RL offers an elegant solution to this problem. By manually chang-
ing all action-values Q(o, at) to −∞ after choosing action at, we can guarantee
that all actions not previously chosen in the current episode will have a larger
value and be preferred over at. A compatible exploration strategy for this action
selection without replacement is Boltzmann exploration. Here, the probability
of choosing an action is proportional to its value under the given observation:

p(at|ot) =
eQ(ot,at)/τ∑
a eQ(ot,a)/τ

, (2)

where τ is a temperature parameter that is slowly reduced during learning for
greedier selection towards the end. Thus, when selecting action at+1, all actions
in ht have a probability of e−∞ = 0 of being chosen again. At the end of an
episode, the original Q-values are restored.

2.4 Solving the POMDP

Having defined the original task of classification with minimal data consumption
as a POMDP and solved the problem of action selection without replacement,
we can revert to existing solutions for this class of problems. Since the transition
function is unknown to the agent, it needs to learn from experience, and a second
complication is the continuous observation space. For regular MDPs, a method
well-suited to tackle both of these issues is Fitted Q-Iteration (FQI) [3]. The
sequential classifier K̃ then takes care of the PO part of the POMDP, yielding
a static belief over the sequential input stream.

FQI uses a batch-trained function approximator (FA) as action-value function.
Various types of non-linear function approximators have been successfully used
with FQI, e.g., Neural Networks [12], Gaussian Processes [2], and others [9]. In
this paper, we will use Locally Weighted Projection Regression (LWPR) [15] as
the value function approximator of choice, as it is a fast robust online method
that can handle large amounts of data.
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Algorithm 1. Sequential Feature Selection (SFS)

Require: labelled inputs I , agent A, sequential classifier K̃
1: repeat
2: choose (x,c) ∈ I randomly
3: h0 ← (φ)

4: o1 ← b(x, K̃, h0)
5: for t = 1 to |F | do
6: at ← A(ot)
7: ht ← ht−1 ◦ at

8: ot+1 ← b(x, K̃, ht)

9: if K̃
(
(hτ (x))0<τ≤t

)
= c then

10: rt ← (r+ + r−at
)

11: break
12: else
13: rt ← r−at

14: end if
15: end for
16: train A with (o1, a1, r1, . . . , rt, ot+1)
17: until convergence

The details of the algorithm are presented in Listing 1. The history is always
initialized with the missing value φ (line 3). This gives the system the chance to
pick the first feature before seeing any real data. The SFS agent is trained after
every episode (line 16), which ends either with correct classification (line 9–11)
or when the whole input pattern was uncovered (line 15), i.e., all features were
accessed.

3 Experiments and Discussion

We evaluate the proposed method on two different datasets: the MNIST hand-
written digits classification task, and a medical dataset for diabetes prediction.
Each experiment was repeated 25 times, the plots below show single runs (gray)
and the mean value over all runs (black).

3.1 Handwritten MNIST Digit Classification

In this experiment we looked at the well-known MNIST handwritten digit clas-
sification task [8], consisting of 60,000 training and 10,000 validation examples.
Each pattern is an image of 28×28 pixels of gray values in [0,1], the task is to map
each image to one of the digits 0–9. We split every image into 16 non-overlapping
7×7 patches, each patch representing a feature.

We present results for an FFN as a non-sequential classifier and an RNN with
Long Short Term Memory (LSTM) cells [6] as a sequential classifier with implicit
memory. The FFN was chosen because it is a well-understood simple method,
widely used for classification. The RNN was chosen to investigate, how naturally
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Fig. 1. Results of MNIST with FFN (left two plots) and RNN (right two plots). For
each classifier, mean episode length and mean return over training episodes are shown.

sequential classifiers work with SFS. Throughout this experiment, rewards were
set to r+ = 1.0 and r−k = −0.1 ∀k.

The FFN has one hidden layer with sigmoid activation, the architecture is
784-300-10. The output layer uses softmax activation with a 1-of-n coding. Pre-
training of the classifier was executed online with a learning rate α = 0.1 on
the full training dataset. After 30 epochs of presenting all 60,000 digits to the
network, the error rate on the test dataset is 1.18%, slightly better than reported
in [8]. However, this result is secondary, as the network acts merely as an envi-
ronment for the SFS agent. During SFS training, each episode uses a random
sample from the test dataset. Figure 1 (left two plots) shows the development of
episode lengths and returns during training of the SFS agent. The average num-
ber of features required to correctly classify dropped from initially 7.65 (random
order) to 3.06 (trained SFS). The rate of incorrectly classified images was 0.77%.

The architecture of the RNN classifier is 49-50-10 with LSTM cells in the
hidden layer. The output activation function is softmax with a 1-of-n coding.
The RNN was pretrained with Backpropagation Through Time (BPTT) (see,
e.g., [16]), with a learning rate of α = 0.01 and a random order of features.
The results are illustrated in Figure 1 (right two plots). The average number of
required features decreases from 4.91 features (random order) to 1.99 (trained
SFS). The rate of incorrectly classified images was 1.71%.

3.2 Diabetes Dataset with Naive Bayes Classification

For the second experiment, we chose a more practical example from the medical
field, the Pima Indians Diabetes data set [4]. We also decided on a Naive Bayes
classification, to demonstrate the flexibility of the proposed method in terms of
classifiers. The data set consists of 768 samples with 8 features (real-valued and
integer) and two target classes (diabetes, no diabetes). Pretraining with a Naive
Bayes classifier resulted in 73% correct prediction. There are two interesting as-
pects in this dataset. Firstly, it contains missing values, which should be handled
well as we already use missing values to turn classification into a sequential pro-
cess. Secondly, the features represent very different attributes of the (all female)
patients. Some are simple questions (e.g., age, number of times pregnant), others
are more complex medical tests (e.g., plasma glucose concentration after 2h in
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Table 1. Assigned feature costs for diabetes dataset

Feature # pregnant
2h glucose

concentration
blood

pressure
skin fold
thickness

2h serum
insulin

BMI
diabetes

pedigree fct.
age

Cost -1 -120 -5 -5 -120 -5 -60 -1
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Fig. 2. Results of the PIMA diabetes dataset with Naive Bayes classification. Left two
figures: episode lengths and mean returns for uniform feature costs. Right two figures:
episode lengths and mean returns for feature costs according to Table 1.

an oral glucose tolerance test). While the MNIST experiment used uniform costs
r−k for all features fk, this experiment demonstrates another property of SFS: the
feature costs can be weighted, representing cheaper and more expensive features.
To investigate the difference between uniform and variable feature costs, two sets
of experiments were conducted: The first uses uniform costs r−k = −0.1 ∀k, with
a final number of required features of 3.7 on average. The second variant uses
variable, estimated costs3 shown in Table 1. Number of features increased from
4.99 to 5.66 on average, while the average return increased from -218 to -141.
Figure 2 shows the results of both variants graphically.

3.3 Discussion

The MNIST experiment with FFN classifier demonstrates a significant reduc-
tion of data consumption in two ways. Firstly, by making the decision process
sequential, which enables the classifier to make decisions before all features have
been looked at. This step alone reduces the average number of required features
from all 16 features down to 7.65 (a reduction to 48%), and indicates that there
is in fact a lot of redundancy in the MNIST images. Secondly, consumption is
reduced further by learning the dependency of current belief and next feature,
instead of accessing them in random order. After training the SFS agent, data
consumption decreases to 3.06 on average, 19% of the full data.

3 These costs represent a rough estimate of the time in minutes it takes to acquire
the feature on a real patient. The estimates are based on oral communication with
a local GP.
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It is important to note that the stated error rates (1.18% for static and 0.77%
for sequential classification) cannot be compared directly, because of the very
different nature of the sequential approach. Sequential classification replaces the
conventional error rates as performance measure based on the binary success of
each sample (classified / not classified) with a scalar value (how many features
until classified). In order to compare both classification methods, we would have
to additionally learn when to stop the decision process, without using the class
label. This could be achieved with a confidence threshold (e.g., if max(belief)
reaches a certain value) or by explicitly learning when to stop with either su-
pervised or RL methods. In this paper, we focussed on the RL feature selection
process with existing classifiers rather than the performance of sequential clas-
sifiers. This issue will be addressed in a future publication.

Another aspect we investigated was the use of RNNs as naturally sequential
classifiers. Where static classifiers still need to look at a full input (at least in
terms of dimension, even though most of the pattern is filled with missing values),
RNNs can make use of their intrinsic memory and achieve similar results with
significantly fewer nodes in input and hidden layer and therefore even less data
processing. They also converge with lower variance and reduce data consumption
to a mere 12% on the MNIST task.

Finally, the Pima diabetes data set illustrates the use of variable feature costs,
a variant that is naturally supported in our framework. The left two plots in
Figure 2 show the development of episode length (i.e., number of selected features
until correct classification) and mean return of the uniform cost experiment. As
expected, episode lengths decrease with increasing returns, as the only objective
for the agent is: select those features first, that lead to correct classification.
However, if the reward scheme is changed (right two plots in Figure 2), we
witness a growth of episode lengths in most of the 25 trials and on average.
Still, all trials increase their returns (rightmost plot), which indicates that the
agent does indeed learn and improve its performance. Comparing the final return
average of -141 and the worst final return of -160 to the individual costs of Table
1, it becomes clear that in all runs, only one of the three most expensive features
(number 2, 5 and 7) was selected. This behavior was caused by the different
objective: minimize the overall costs associated with the features. In other words,
it is okay to select many features, as long as they are cheap.

4 Conclusion

We have derived classification as a POMDP and thus made it accessible to RL
methods. The application we focussed on was minimization of data consumption,
by training an RL agent to pick features first that lead to quick classification. We
presented results for different classifiers (both static and sequential) on vision
and medical tasks. Our approach reduces the number of necessary features to
access to a fraction of the full input, down to 12% with RNN classifiers. We also
demonstrated that SFS is able to deal with weighted feature costs, a property
that exists in plenty of real-world applications. A new action selection method
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was introduced that draws actions without replacement. It should prove useful
in other ordering tasks as well, such as scheduling problems. Lastly, we would
like to point out that our approach is not limited to classification but easily
extends to regression or other supervised tasks.
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Abstract. We propose a collaborative filtering data processing method based on
reflective vector-space retraining, referred to as Progressive Reflective Indexing
(PRI). We evaluate the method’s ability to provide recommendations of items
from a long tail. In order to reflect ‘real-world’ demands, in particular those re-
garding non-triviality of recommendations, our evaluation is novelty-oriented.
We compare PRI with a few widely-referenced collaborative filtering methods
based on SVD and with Reflective Random Indexing (RRI) - a reflective data pro-
cessing method established in the area of Information Retrieval. To demonstrate
the superiority of PRI over other methods in long tail recommendation scenarios,
we use the probabilistically interpretable AUROC measure. To show the relation
between the structural properties of the user-item matrix and the optimal number
of reflections we model the analyzed data sets as bipartite graphs.

Keywords: information retrieval, machine learning, e-commerce applications,
collaborative filtering, long tail, RRI, SVD.

1 Introduction

Coping with heavily-tailed behavioral data is regarded as one of the main challenges
of the research on collaborative filtering, and of the research on recommender systems
in general [4], [8]. Heavily-tailed data distributions are known to be typical of popular
Internet applications [2], [4]. Despite that, recommendation systems that are proposed
as a means for long-tail recommendation, are based on Singular Value Decomposition
(SVD) - the method that has been used for collaborative filtering for more than 10 years
by many authors not mentioning the long-tail phenomenon [1], [10], [13]. Moreover,
even researchers focusing on long-tail recommendation systems very rarely use spe-
cialized methods for analyzing heavily-tailed data distributions [10], [11].

On the other hand, in the last few years, we observe an increasing interest of the IR
community in reflective matrix data processing. At least in some application scenarios,
the most widely known reflective indexing method, RRI, is more useful than ‘classical’
methods based on SVD and dimensionality reduction [7]. Moreover, applications of
reflective indexing have been shown as a very effective means for collaborative filtering
[5], [6].

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 142–151, 2011.
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1.1 Novelty as an Important Value of Long-Tail Recommendations

The behavioral data collected by on-line retailers indicate that the majority of successful
recommendations are based on the recommendations of items from the long tail [2], [8].
Trivial (popularity-based) recommendations are not of assistance for users who expect
some novelty from recommendations [8], [10].

In this paper, we define a recommendation system as aimed at providing non-trivial
recommendations of items from the long tail of the dataset. We believe that this kind of
definition is most suitable to model the recommendation task in real-world e-commerce
application scenarios [2], [4].

1.2 Methodological Assumptions

In the present paper, apart from the long-tail phenomenon, we also take into account
the need to provide multiple contextual recommendations. Inspired by recommendation
services for online retailers, we assume that the practical value of contextual recommen-
dations strongly depends on the system’s ability to identify as many attractive items as
possible, rather than just top-n items [10]. To emulate a contextual recommendation
scenario, while still being able to use a widely-referenced (non-contextual) data set, we
follow the ‘recommendation as classification’ approach [3]. In doing so, we assume that
the purpose of a recommender system is to identify, for each (equally important) user,
all the items rated above the user’s average rate.

The assumptions stated above have some important implications. Firstly, the original
data set is pre-processed in order to make it more ‘objective’ and novelty-oriented, i.e.,
for each user/item rating a user average rating and an item average rating is subtracted.
As a result, we are able to treat all users as equally important, and target the long tail
scenario and the ‘non-obviousness’ of the recommendation [10]. As a consequence,
we evaluate the system’s ability to provide recommendations independently from the
items’ ‘global’ popularity. Secondly, we use recommendation quality measures that are
classification-oriented, i.e., enable us to evaluate the systems’ ability to distinguish be-
tween attractive and non-attractive items, rather than to predict absolute rating values
[8], [10].

We use Area Underneath an ROC curve - referred to as AUROC (also known as
Swets’ A measure) [10] – because it is a probabilistically interpretable classification
quality measure. In other words, AUROC indicates the probability that the recommen-
dation system will choose a relevant item from a set of two items, one randomly chosen
from a set of relevant items and the other randomly chosen from a set of irrelevant
items [10]. Another important property of AUROC is its robustness to the test set spar-
sity: unknown ratings do not influence the measurement result. Although the results
presented in many papers on recommendation systems are expressed using the F1 mea-
sure, we choose to use the AUROC measure. This decision is motivated by the fact that
an F1 measurement requires the use of the @n parameter, which makes the analysis
of the results unclear, especially when the datasets have various sparsity and various
heavy-tailness. Moreover, F1 (applied by the authors of [13]) does not allow to distin-
guish between the case of a negative rating and the case of no rating, which makes it
impractical for using together with datasets evaluated in this paper.
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In addition to the recommendation quality evaluation, we use the bipartite graph
model to perform a structural analysis of data sets, in which nodes represent users and
items, and edges encode the existence of interactions between them [9]. In particular,
we investigate selected structural properties of the data, such as the distribution of node
degrees and the distribution of lengths of the shortest paths between nodes.

1.3 Contribution of the Paper

To our knowledge, the solution presented in this paper is the first successful application
of a reflective matrix data processing to long-tail collaborative filtering. The advantages
of the method are demonstrated in scenarios of different density. We show that as a
result of the unique features of PRI (including its ‘sensitivity’ to local dependencies
in a dataset, and the applicability of information-theoretic optimization) our method
outperforms a few widely-referenced methods, including those based on SVD and di-
mensionality reduction.

We present context vectors retraining as a process enabling the ‘discovery’ of indi-
rect correspondences between objects. We focus on features of the reflective indexing,
which, in contrast to SVD and RRI, provide a recommendation system with ‘structure-
sensitivity’.

2 Algebraic Model for PRI

We introduce system S representing user-item dependencies as a ‘classical’ user-item
matrix. System S models the relations between objects from the set of users K and the
set of items L. Let us assume that |K| = m and |L| = n. Let us define the matrix Ai,j =
[ai,j ]m×n containing the user ratings on items. Let R1 ≤ ai,j ≤ R2, where R1 and R2

are the minimum and the maximum rating value available in the system, respectively.
Moreover, we define matrix X = [xi,j ](m+n)×(m+n) - the matrix of context vectors for
objects described in S.

2.1 Modeling User-Item Dependencies as a Probability Space

We identify two features characterizing the model of S as particularly important. Firstly,
each ‘object’ is modeled in the system in a way that ensures its initial independence.
We treat all users and all items as equally important by subtracting average user ratings
and average item ratings from the original data set.

Secondly, the probability space (Ω, F, P ) provides a functional interpretation for
states of system S. The space represents conditional dependencies between each user
and each item under the condition that the matrix contains the whole information about
the user-item system. The sample space Ω = {Ei,j} of the probability space is a set
of events such as Ei,j is an event of the dependency occurring between user i (i ∈ K)
and item j (j ∈ L) (of probability representing the amount of information stored in
the system). F is defined as a set of all possible subsets of Ω. Finally, the probability
measure P : F→ [0, 1] is defined according to a distribution which can be presented as
the following matrix Bi,j = [bi,j ]m×n, where bi,j = P [Ei,j ] for i = 1..m, j = 1..n.
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The values of matrix B are obtained by taking the squares of values from A and nor-
malizing them in order to ensure that

∑m
i=1

∑n
j=1 bi,j = 1.

We follow a probabilistic interpretation of matrix A as a representation of the sys-
tem state, and of matrix X as a representation of the context vectors. In particular, for
matrix X , we normalize context vectors after each reflection step in order to model a
conditional probability space associated with the object corresponding to a given con-
text vector for which squares of coordinates describe the probability distribution. Each
time we interpret a squared matrix entry value as some probability, we do so because
we treat each matrix entry as representing an individual event that is independent of any
other event, and because we follow the probabilistic interpretation of a vector space that
has its roots in quantum mechanics [14]. According to this interpretation, the probabil-
ity that a system is in a given state is equal to the squared length of the projection of the
system state vector onto the given state vector.

2.2 Reflective Data Processing

Let O = K ∪ L denote the set of objects described in a system S. The goal of our
method is to determine the correspondences between objects from O, based on the
external information about relations between them.

In order to model the ‘retraining’ procedure, we construct a sequence of matrices
Xi (where i ≥ 0) containing context vectors for objects from O, defined in the r-
dimensional vector space (where r = m + n). We assume that the first m rows of
each matrix Xi describe users from set K , whereas the rows indexed from m + 1 to r
describe items from set L. For each matrix Xi, let us denote the top m rows by m× r
matrix X i, and the bottom n rows by n× r matrix Xi.

Since at the first step we assume that all the objects from set O are independent, we
model the initial matrix X0 as a diagonal matrix Ir. In the case when dimensionality
reduction is needed for computational efficiency, matrix X0 may be constructed using
the random projection approach, as it is in the case of RI (Random Indexing) and RRI
algorithms [7].

Matrices Xi (for i ≥ 1) are obtained according to the PRI reflective retraining pro-
cedure. In contrast to RI/RRI methods, the PRI method uses the gain value gi at each
reflection step. In particular, for i ≥ 1, the matrices of context vectors are defined as
follows:

Xi = Xi−1 (1)

Xi = (1− gi)X i−1 + giA
T Xi−1

for i ≥ 1, 3, 5, . . . , and

Xi = (1− gi)X i−1 + giAX i−1 (2)

Xi = Xi−1

for i = 2, 4, 6, . . . .
As the first step of each reflection, rows of matrix Xi are normalized in order to

ensure the equal importance of each context vector in the reflection process and their



146 A. Szwabe, M. Ciesielczyk, and P. Misiorek

probabilistic interpretation: the squares of context vectors’ entries constitute the proba-
bility distribution for the conditional probability space corresponding to a given object.
Moreover, before each reflection step, we normalize the rows of matrices AXi−1 and
AT X i−1 in order to ensure the probabilistic interpretation of the retraining step.

3 The PRI Algorithm

The PRI algorithm is presented as the reflect procedure described in Algorithm 1 and
is executed using the command reflect(A, X0, m, n, k), where k is the maximum length
of the shortest path between nodes in the bipartite graph representing input matrix A.
This number determines the number of reflection steps used in the PRI algorithm: PRI
continues the procedure of reflecting data processing as long as there are some indirect
connections in a dataset, which have not been explored.

Algorithm 1. reflect(A, X, m, n, k)

norm2(XT ), norm2(X), norm2(AT X), k⇐ k − 1,
for g ∈< 0, 1 > do

X(g) = X
X(g) = AT X × g + X × (1− g)
norm2(X(g))

end for
gain = argmaxg∈<0,1>{findEntropy(X(g), m + n)}
X ⇐ X(gain)
if k = 0 then return
end if
norm2(XT ), norm2(X), norm2(AX), k⇐ k − 1,
for g ∈< 0, 1 > do

X(g) = X
X(g) = AX × g + X × (1− g)
norm2(X(g))

end for
gain = argmaxg∈<0,1>{findEntropy(X(g), m + n)}
X ⇐ X(gain)
if k = 0 then return
end if
reflect(A,X, m, n, k)

In order to find the optimal values of gi, the algorithm uses the information-theoretic
criterion based on the calculation of the average entropy of context vectors. The find-
Entropy(X,r) procedure is defined in Algorithm 2. The detailed analysis of the criterion
is beyond the scope of this paper. The normalization of rows of matrix X = [xi,j ]
(the norm2 function in the reflect procedure) is conducted according to the formula
x′

i,j = xi,j/(
∑r

j=1xi,j
2)0.5.
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Algorithm 2. findEntropy(X, r)
USV ⇐ SV D(X)
vi = i-th column of V

D⇐∑r
i=1

[
vi(vi)

T (si.i)
2/

∑r
j=1(sj,j)

2
]

D⇐ XD
di = i-th row of D
return r−1∑r

i=1entropy(di)

The entropy of a given vector V = [vi] of length r is calculated according to the
formula:

−
∑r

i=1
pi log2(pi), (3)

where pi = vi
2/

∑r
j=1vj

2 for i = 1, . . . , r.
Similarly as for other collaborative filtering methods, PRI is based on the estimation

of the missing entries of the input matrix. At the last step of the PRI algorithm, matrix
A is reconstructed (using Equation 4). Finally, the ordered list of recommendations, for
the purposes of the AUROC measure, is calculated based on the reconstructed matrix.

newA = XXT (4)

4 Evaluation

We have compared the accuracy of the PRI method to the accuracy of other meth-
ods presented in the relevant literature, such as the SVD-based kNN recommendation
method [13] (in this paper referred to as ‘SVD-kNN’), the popularity-based recommen-
dation performed according to the number of ratings (referred to as ‘Popularity’) [8],
the RRI technique [7], the PureSVD algorithm [8] and the RSVD-RRI method [5]. For
each of these methods we have set all necessary parameters (e.g., k-cut of SVD) opti-
mally in order to provide the best possible results. In contrast, the PRI algorithm does
not require to set any parameter.

In order to perform the comparison, we have developed our implementations of
the methods mentioned above and compared our results against the reported ones. As
shown in [5], we were able to achieve results that are very close to the original ones.
We have used the same implementations in the experiments reported in this paper.

As explained in Subsection 1.2, we have pre-processed the dataset by subtracting
from each user/item rating the average of a user average rating and an item average
rating. Only ratings that are positive after the pre-processing step have been regarded as
hits for the recommendation system.

4.1 Data Sets

Due to a lack of freely available e-commerce data sets [12] and to make our results
comparable with those presented in relevant papers, we have evaluated all the meth-
ods using the MovieLens ML100k set, one of the most widely referenced CF datasets
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Table 1. Number of ratings in the train sets ML(x, lt)

lt = 1 lt = 0.945 lt = 9 lt = 0.8 lt = 0.7

x = 0.8 80000 57282 45838 28215 17486
x = 0.2 20000 14320 11459 7053 4271

[5], [13]. The majority of the ML100k ratings are condensed in a small set of the
most popular items (called the short head). However, the real-world datasets [2] are
much more heavily-tailed. As observed in [8], recommending the most popular items
is usually not beneficial for the users. Therefore, when preparing data sets for our ex-
periments, we have followed a similar approach as the one presented in [8]: we have
removed a specified number of the most popular items from the dataset, according to
parameter lt, which determines the percentage of items remaining in the dataset af-
ter removing items from the short head. The data set obtained using a given value of
parameter lt is denoted as ML(lt). Unlike the authors of [8], we have removed the
ratings from the whole dataset instead of just removing ratings from the test set. This
way we have simulated more realistically the sparsity of a ‘real-world’ dataset (usually
much sparser than the MovieLens dataset). Moreover, we have randomly partitioned
each data set into two pairs of a train set and a test set (one pair for each value of
the training ratio x) as proposed in [13]. A train set constructed for a given x and a
given lt is denoted as ML(x, lt). In our experiments we have used x ∈ {0.2, 0.8} and
lt ∈ {0.7, 0.8, 0.9, 0.945, 1}. In particular, we have examined lt = 0.945 since this case
was also evaluated in [8]. Table 1 shows the number of ratings left from 100000 ratings
of ML100k when preparing various ML(x, lt) train sets.

Following the dataset representation as a bipartite graph, we have analyzed the distri-
bution of the shortest path lengths between objects forming user-user, item-item as well

��

���

���

� � � � 	

�������

��

���

���

� � � � 	

�����	�


�����
��

�����������

�������
��

��

���

���

� � � � 	

�����
���

��

���

���

� � � � 	

�����
�

��

���

���

� � � � 	

�������

Fig. 1. The histogram of the shortest path lengths in the bipartite graphs representing various data
sets ML(lt)
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Table 2. The maximum shortest path length in ML(x, lt)

lt = 1 lt = 0.945 lt = 9 lt = 0.8 lt = 0.7

x = 0.8 5 5 5 7 7
x = 0.2 7 7 7 9 11

as user-item pairs. We have observed that the structural properties closely correspond to
the optimal configuration of recommendation algorithms based on reflective data pro-
cessing. Figure 1 shows that in the case of the sparse long-tail data set - ML(0.7) -
cases of longer shortest paths are more frequent. As shown in the next subsection, the
PRI algorithm applied to such a dataset estimates the bigger number of reflections as
more optimal. Table 2 presents the values of the maximum lengths of the shortest paths
between nodes of a bipartite graph representing various ML(x, lt) train sets, i.e. the
values of k determining the number of reflection steps used in PRI.
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Fig. 2. The AUROC results
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4.2 Recommendation Quality Evaluation

Figure 2 shows the comparison of the PRI algorithm with alternative approaches (Pop-
ularity, RRI, RSVD-RRI, pureSVD, SVD-kNN) performed using the AUROC measure
and datasets of various sparsity. The results demonstrate the superiority of PRI over
other methods. It can be observed that the advantage of PRI is especially visible in
the case of both heavily-tailed and sparse datasets. As one may expect, the more long-
tailed a dataset is, the worse the recommendation results are. On the other hand, the
very low effective data set density (i.e., being the results of both setting lt and x) en-
ables the popularity-based method to achieve a comparatively high accuracy. It may be
observed that in the case of a sparser train set and a denser test set (i.e, for x = 0.2), the
popularity-based algorithm provides comparatively good results, whereas in the oppo-
site case (i.e, for x = 0.8), it operates poorly. One may realize that the popularity-based
algorithm, instead of modeling users’ preference profiles, simply reflects the ratio be-
tween positive ratings (hits) and negative ratings (misses) for the most popular items
in a given dataset. Since we use a random procedure to divide the data set into a train
set and a test set, the values of AUROC for the popularity-based algorithm are almost
identical for both the cases of x = 0.2 and x = 0.8, what additionally confirms the
reliability of the AUROC measure.

5 Conclusions

The PRI method generalizes RRI by enabling to scale the extent to which each context
vector training step is performed as we have shown, such a scaling may be effectively
driven by an information-theoretic measure representing the ‘informational richness’
of a set of context vectors. On the other hand, another (graph-centric) criterion may be
used to effectively optimize the number of training cycles. Although, in contrast to RI
or RRI, the proposed algorithm assumes the use of orthogonal (i.e., high-dimensional)
index vectors, Random Projection may be (optionally) applied to context vectors in
cases when dimensionality reduction is necessary, e.g., for scalability issues [7].

The experiments presented in this paper show that in the case of recommending items
from the long tail, the accuracy of PRI is significantly higher than the accuracy of the
most widely referenced collaborative filtering methods based on SVD. Moreover, our
observations indicate that - as long as the density of a train set allows for reasonably
accurate collaborative filtering - the more heavily-tailed a dataset is, the more visible
the quality advantage of PRI (over the methods proposed by other authors) is.

Based on our novel method of modeling a collaborative data set as a bipartite graph,
we are able to demonstrate that the main reason for the advantage of reflective data
processing over dimensionality reduction is its ability to explore multi-hop item-item
and user-user correspondences.

The results show a dependence between the optimal number of PRI reflections and
structural properties of the dataset. The maximum length of the shortest path between
users and items roughly indicates the ability of PRI to outperform SVD-based recom-
mendation methods. It may be observed that the highest AUROC-measured classifica-
tion probability closely corresponds to the case in which the reflective data processing
is continued until all indirect connections (seen as the shortest paths) between all pairs
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of nodes (of the bipartite graph representing the train set) are ‘discovered’ and any
over-training of context vectors is avoided.
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Abstract. The ranking and clustering of publication databases are of-
ten used to discover useful information about research areas. NetClus
is an iterative algorithm for clustering heterogenous star-schema infor-
mation network that incorporates the ranking information of individual
data types. The algorithm has been evaluated using the DBLP database.
In this paper, we apply NetClus on PubMed, a free database of articles
on life sciences and biomedical topics to discover key aspects of cancer
research. The absence of unique identifiers for authors in PubMed intro-
duces additional challenges. To address this, we introduce an improved
author disambiguation technique using affiliation string normalisation
based on vector space model together with co-author networks. Our tech-
nique for disambiguating authors, which offers a higher accuracy than
existing techniques, significantly improves NetClus clustering results.

Keywords: AuthorDisambiguation,Clustering,NetClus,Heterogeneous
Information Network.

1 Introduction

Governments, businesses, pharmaceutical companies and individual researchers
frequently search publication databases to find the leading experts and their re-
search groups [3]. PubMed is a free database accessing primarily the MEDLINE
database of references and abstracts on life sciences and biomedical topics. Clus-
tering query results of such databases will uncover invaluable information that
would otherwise not available. For example, publications about ongoing research
on cancer can be retrieved, and cluster analysis can be applied to answer ques-
tions such as new research findings, causes of cancer, common types of cancer
and their treatment, as well as who the leading researchers and institutions are.
However, PubMed’s data collection is driven by crawling. In other words, au-
thors and institutions are not assigned with unique identifiers as in the case of
curated databases such as DBLP. Moreover, the increase of biomedical research
citations in PubMed in the recent years makes the task of manually converting
the literature into structured data extremely difficult [3].
� Corresponding author.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 152–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Ranking and Clustering PubMed Data 153

Publication data is best represented as a heterogeneous information network,
which is a data model representing relations among multiple types of objects.
RankClus [5] and its improvement NetClus [6] are among the more popular
algorithms that integrate ranking and clustering for bi-typed and multi-typed
heterogenous information networks, respectively. Both algorithms recognise the
important fact that the ranking and the clustering mutually enhance each other.
Ranking objects without clustering will lead to incomplete results, e.g., ranking
artificial intelligence and database conferences together may not make much
sense. Similarly, clustering a vast number of data objects in one huge cluster
without differentiation is not informative either. However, to apply NetClus on
PubMed, the ambiguity in author and institution names has to be resolved.

In this paper, we propose a technique to disambiguate authors by normalising
affiliation string using a vector space model and then combining with co-author
networks to further improve the system performance. The problem of affiliation
string normalisation, especially on the PubMed dataset, has not been adequately
addressed. Author disambiguation relying only on the affiliation strings suffers
from the problems of variation in affiliation information, non-standard repre-
sentation of affiliations, multiple affiliations for the same author and so on. We
apply NetClus on PubMed publication records after disambiguation using our
technique to extract useful information to understand the research trend, the
leading journals, and organisations in the field of cancer research. To achieve
this, we (1) developed a software module to collect PubMed records; (2) de-
signed and developed the technique for author disambiguation; (3) reviewed
existing clustering algorithms to identify the most suitable for this task; and (4)
adapted the NetClus algorithm to work with PubMed data.

The paper is organised as follows. Section 2 examines the field of author disam-
biguation to identify the special focus of our disambiguation techniques. Section
3 outlines our disambiguation technique. In section 4, our algorithm is evaluated
and clustering results are presented. A comparison of NetClus clustering results
with and without author disambiguation is also presented. The paper concludes
in Section 5 with an outlook to future work.

2 Related Work

2.1 The Challenges of Author Name Disambiguation on PubMed

The author name “Wei Zheng” is very common in PubMed articles. More than
1, 700 publications were retrieved when “Zheng W” [Author] was searched on
10th of May, 2011. According to the PubMed search interface, all these arti-
cles were published by a single author but in actual fact, all these articles are
published by authors with same name. This ambiguity problem leads to poor
clustering results and incorrect co-author networks. Unlike DBLP, there is no
unique ID that can identify an author or an institution. More sophiscated in-
terfaces for PubMed such as GoPubMed1 is able to offer multi-faceted search
1 http://www.gopubmed.org/
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experience such retrieving the affiliations and basic statistics about an individual
author. These interfaces, however, are far from accurate and reliable. Just like
PubMed, GoPubMed suffers the same problem of author name ambiguity, which
messes up all the otherwise useful statistics.

Affiliation is probably the simplest starting point for author disambiguation.
However, no standard format is enforced when affiliations are attached to an
article in PubMed. Therefore the huge variation in affiliation strings makes it
difficult to classify authors. “Baylor College of Medicine”, in the example below,
is taking on a variety of names. s1 has author name in it. s2 and s3 have email
address but s3 is missing the department. s4 contains three different depart-
ments.

s1: Texas Children’s Cancer Center, Michael E DeBakey Department of

Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.

s2: Texas Children’s Cancer Center/Baylor College of Medicine,

Houston, Texas 77030, USA. tmhorton@txccc.org

s3: Baylor College of Medicine, Houston, Texas 77030-2399, USA.

dmetry@bcm.tmc.edu

s4: Texas Children’s Cancer Center, Department of Pediatrics, Dan L.

Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.

To complicate matters, one author may have multiple affiliations at the same
time, or at different times when they move between institutions, as illustrated
by the author “John M Maris” below:

s1: Texas Tech University Health Sciences Center, Lubbock,

Texas. min.kang@ttuhsc.edu.

s2: St. Jude Children’s Research Hospital, Memphis, Tennessee.

2.2 Related Work on Disambiguation of PubMed Authors

Many techniques have been developed for disambiguating author names from
PubMed articles. Torvik et al. [7], for instance, used a combination of features
such as title words, journals, medical headings to calculate a probability to de-
termine whether two articles have the same authors. This technique is based
mainly on the assumption that authors publishing papers in similar research
areas are more likely to be the same. However, the granularity and subjectivity
of associating a publication with a research area may break this assumption.

Yu et al. [9] used the connections between organisations to articles and authors
to disambiguate authors using affiliation strings. They disambiguate authors
by extracting organisations and related entities from affiliation strings. There
are, however, several problems with this technique. First, they assumed that an
affiliation string follows this format: (address component, address component,
country, email). This is never always true as shown in the example below:

s1: Integrated microRNA and mRNA expression profiling in a rat colon

carcinogenesis model: Effect of a chemo-protective diet.[21406606]

[Affiliation : Texas AM University]

s2: An algorithm to detect a center of pupil for extraction of point

of gaze. [Dept. of Biomed. Eng., Inje Univ., Kimhae, South Korea.]



Ranking and Clustering PubMed Data 155

Second, dictionaries are required to differentiate geographical information from
the names of organisations in the address component. Third, it requires that
the organisation names contain only English words. The fact is, however, almost
10% of the affiliations contain words from the authors’ native languages [3].

Jonnalagadda et al. [3] have taken these drawbacks into consideration and
developed a technique called NEMO. They assumed that the information avail-
able in affiliation string is sufficient enough to disambiguate authors. In reality,
many publications in PubMed use the affiliations of the first authors only. The
affiliation strings therefore cannot always be used to disambiguate all authors.

3 A Multi-evidence Author Disambiguation System

There are two parts in our proposed technique as shown in Figure 1, namely,
the extraction of different components from affiliation strings, and the 3-phase
multi-evidence disambiguation process.

Three Phase Multi evidence Disambiguation

Affiliation String Sub components Extraction

Regular 
Expressions

email

url

Organisation 
Phrases

Extraction
rest

Organisation
Phrases Similarity

(TF IDF)

Google 
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rest

Co Author
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Matching
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Matching
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Fig. 1. Conceptual Overview of the Name Disambiguation System

In the first part, the affiliation strings of an ambiguous name (i.e. a name
that can potentially refer to multiple individuals) are broken down into different
components, namely, organisation names, organisation addresses, and email or
homepage addresses, using a combination of regular expressions and other tools.
The email address and URLs are first extracted using the following expressions:

/[\textbackslash.\_a-zA-Z0-9\-]+@[\textbackslash.\_a-z A-Z0-9-]+/i

((https?|ftp|gopher|telnet|file|notes|ms-help):((//)|(\textbackslash

\textbackslash\textbackslash\textbackslash))+[\textbackslash w

\textbackslash d:\#@\%/;\$()\~\_?\textbackslash+-=\textbackslash

\textbackslash\textbackslash.\&]*)
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The remaining strings are then fed into a module which extracts the names of
organisations using the following resources and tools:

1. Abbreviations and acronyms are disambiguated using the service provided
by websites such as Abbreviations.com

2. Typographical mistakes are corrected using edit-distance [2] as in [8].
3. A table of organisation names as in [3].

The detected email addresses and URLs as well as organisations names are then
removed from the affiliation strings. Finally, using Google’s Geocoder2, the ad-
dress components, namely, countries, states, cities and street names, are ex-
tracted from the words that remain in the affiliation strings.

In the second part, the extracted components are used to determine if an
author with multiple affiliation strings actually refer to one or multiple individ-
uals. Initially, if the email addresses or URLs from two affiliation strings match,
the two corresponding authors are considered to be the same. Otherwise, the
technique proceeds further to the next two phases.

3.1 Disambiguation Using Organisation Names and Addresses

In this second phase, the organisation name components of the affiliation strings
are compared using a vector space model [1]. Every term in the organisation
name is represented as a dimension, and TF-IDF [4] is used to compute the
weights of the individual terms. In our technique, the threshold value is set
to 0.7. In other words, to be considered as identical organisations, the cosine
similarity needs to be greater than 0.7. In the following example, the one author
name has four different affiliation strings:

s1: Department of Molecular and Cellular Biology and Dan L. Duncan

Cancer Center, Baylor College of Medicine

s2: Lester and Sue Smith Breast Center, Baylor College of Medicine

s3: Paris Breast Center, L’Institut Du Sein

s4: Clinical Research Division, Fred Hutchinson Cancer Research Center

All stop words are removed to improve the results. The term frequency, document
frequency, inverse document frequency and term weights are then calculated. The
word “baylor”, for instance, appears only once in the first organisation name.
Therefore the term weight is assigned only to the first string. The word “cen-
ter” appears in all the strings therefore its weight is reduced to zero using IDF.
Similarly, the term weight for each and every term is calculated by multiplying
the number of strings containing the term with the inverse document frequency.
Next the dot products of all possible pairings of strings are calculated. If the
cosine value is 1, then the strings within a pair are identical. In this example,
the cosine values between s1, and s2, s3 and s4 are 0.6345, 0 and 0.1502, respec-
tively. In other words, the second organisation name s2 is the most similar to
s1. However, in this example, the cosine value is still less than 0.7. The chances

2 http://code.google.com/apis/maps/documentation/geocoding/
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of the authors of both strings being the same are very high. This problem is re-
solved by considering the address components in the affiliation strings. If three
out of the four components (i.e. country, state, city, street name) match, the two
organisation names and hence, the authors are considered to be the same. If this
step fails, we proceed to the next step involving co-author networks.

3.2 Disambiguation Using Co-author Network

In this phase, the technique deals with a single author that has completely
different email addresses, URLs, organisation names and organisation addresses.
The author “John M Maris” mentioned at the end of Section 2.1 is an example.
In cases like this, the technique will proceed to examining the co-author network
to identify whether the multiple “John M Maris” are actually referring to the
same or different individuals given these affiliation strings.

s1: Min H Kang, C Patrick Reynolds, Peter J Houghton, Denise Alexander,

Christopher L Morton, EAnders Kolb, Richard Gorlick, Stephen T Keir,

Hernan Carol, Richard Lock, John M Maris, Amy Wozniak, Malcolm A Smith

s2: Christopher L Morton, John M Maris, Stephen T Keir, Richard Gorlick,

E Anders Kolb, Catherine A Billups, Jianrong Wu, Malcolm A Smith,

Peter J Houghton

Using the co-author path from Microsoft Academic Search, the technique is able
to determine that both “John M Maris” refer to the same author in the two
publications above as “John M Maris”, “Christopher L Morton”, “Malcom A
Smith” and “Peter J Houghton” have co-authored paper previously.

4 Evaluation of the Disambiguation Technique

For this evaluation, we queried PubMed using the word “cancer”. 12, 707 results
were retrieved between the year 2011 and 2010. From a total of 12, 700 articles,
our system has identified 80, 042 paper-author combinations, and 71, 810 unique
authors. Table 1(a) lists the top 12 ambiguous names and the actual number
of authors they represent. Out of the unique authors, 6, 152 authors had more
than two publications. Therefore, 65, 658 authors have published only one paper
in this dataset. From the 6, 152 authors with multiple publications, 5, 203 were
identified using co-author network. The chance of these authors being different
is therefore highly unlikely. Therefore, we only need to verify the correctness of
the remaining 949 authors. These 949 authors’ article titles and abstract were
extracted. The entire code of this work can be downloaded from this link
http://thesis.modusoperandi.com.au/dana.zip.

4.1 Accuracy of the Proposed Disambiguation Technique

It is labour-intensive and costly to obtain the ground truth of a dataset of such
magnitude. For this experiment, we adopt the approach of finding similarities
between the publications through the available abstracts. Along the line of Boy-
ack et al. [1], we employ a combination of TF-IDF and PMRA (PubMed Related
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Articles) to compute the similarity between PubMed abstracts of authors with
the same names. All the stop words were firstly removed. If the similarity ap-
proaches 1, then these articles were considered to be from the same author.

The top author “Kim Overvad”’s publications can be taken as an example
to illustrate how we evaluate the accuracy of the disambiguation algorithm. He
has published 12 papers in the dataset we used. All the articles had a different
affiliation but according to our algorithm the author is the same. To verify its
correctness, the abstracts of all 12 articles demonstrating high level of similarity
using TF-IDF and PMRA, confirming that the articles are from the same author.

Table 1(b) shows that the author disambiguation technique proposed in this
paper demonstrates higher accuracy rate across the two similarity measures as
ground truth, with the highest being 97.89% (929 out of 949)and the lowest
being 94.9% (909 out of 949). Since PMRA has a higher coherence value [1], the
string similarity measure of PMRA is considered as the accuracy of the system.

Table 1. Results and performance of our disambiguation system

Name No. Name No. Name No. Name No.

Wei Wang 19 Ying Zhang 14 Li Wang 14 Wei Zhang 14
Ying Wang 13 Sang Lee 13 Ying Liu 13 Wei Li 13
Yan Li 13 Yan Wang 13 Wei Chen 12 Xiao Li 12

Method No. Accuracy

PMRA 929 97.89%
TF-IDF 909 94.94%

(a) Top 12 Ambiguious Names (b) Accuracy

4.2 Evaluation of NetClus Results

In this evaluation, we look at the performance of NetClus on the dataset dis-
ambiguated using our technique. In Figure 2, the diamond shaped data points
represent the objects in the “Gastric Cancer” cluster and the square shaped
data points represent the objects in the “Lung Cancer” cluster. If the clusters
are well separated, then the clustering results are considered as accurate. Partial
dataset has been represented here in the scatter plots for improved readability.

In Figure 2(a), sixteen publications were represented in this scatter plot. The
PMIDs related to lung cancer are placed on the extreme left of the graph and
the PMIDs related to the gastric cancer are placed on the extreme right of the
graph. Both the clusters are well separated indicating the clear demarcation of
data objects based on the type of cancer. In Figure 2(b), the terms are well
separated based on the type of cancer. All these terms are symptoms of cancer.
Symptoms of lung cancer are placed on the top left part of the chart and the
symptoms of gastric cancer are placed on the bottom right of the chart. Based
on the component coefficients, the objects have been placed on the chart. For
example, the term “wheezing” is a common lung cancer symptom, therefore it
is placed in the lung cancer cluster while “constipation” is placed in the gastric
cancer cluster. In Figure 2(c), treatment and sub-types of cancer are clustered.
Lobectomy refers to the surgical excision of a lobe. This may refer to a lobe of
the lung. Therefore, its position in the lung cancer cluster is correct.
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(a) PMID’s scatter plot based on two component coefficients

(b) Symptoms’ scatter plot based on two component coefficients

(c) Treatments’ scatter plot based on two component coefficients

(d) authors’ scatter plot based on two component coefficients

Fig. 2. Scatter Plot for articles, symptoms, treatments and authors
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Similarly, since endoscopic submucosal dissection (ESD) is a mucosa resection,
it is placed in gastric cancer cluster. Similarly, after author disambiguation, the
authors were clustered based on the type of cancer they are researching on. The
red square shaped objects represent the authors who have published more papers
in lung cancer area, while the green diamond shaped objects for authors who
have published more papers in gastric cancer area.

(a) Authors’ scatter plot without disambiguation

(b) Authors’ scatter plot with disambiguation

Fig. 3. A comparison of clustering results with/without disambiguation

Figure 3(a) and (b) compares the clustering results of authors with and with-
out disambiguation. In Figure 3(a), few authors are scattered throughout the
chart. Because the author names were ambiguous, they are not properly placed
in a cluster. In Figure 3(b), authors were disambiguated using our system. Since
the ambiguity was resolved, the clusters are well separated.

5 Conclusion and Future Work

To cluster datasets represented as heterogeneous information networks such as
PubMed, the ambiguity amongst the objects must first be resolved. The disam-
biguation technique proposed in this paper was used to mitigate the ambiguity of
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authors in the dataset. We have demonstrated that algorithms based on named
entity recognition of affiliation string are not sufficient enough to disambiguate
authors. In the proposed technique, a combination of vector space model based
similarity measure, geographical information and co-author network was used to
identify whether the authors with the same name are different or not.

The results of disambiguation were evaluated by comparing the PubMed ab-
stracts of articles of disambiguated authors using text similarity algorithms such
as PMRA and TF-IDF. The proposed technique showed a higher accuracy rate
in both the methods. We also evaluated the NetClus algorithm with and without
the disambiguation of authors. When the authors were not disambiguated, there
were outliers and noise in the results. After disambiguation of authors, the clus-
ters were clear and distinct. This disambiguation system and NetClus algorithm
to identify interesting patterns that can be useful in bio-medical research. In
future, we are planning to build a interface where users can use this multi-level
normalisation system for author disambiguation of PubMed articles.
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Abstract. Chronic Disease Management (CDM) is an important area
of health care where Health Knowledge Management can provide sub-
stantial benefits. A web-based chronic disease management service, called
cdmNet, is accumulating detailed data on CDM as it is being rolled out
across Australia. This paper presents the application of unsupervised
neural networks to cdmNet data to: (1) identify interesting patterns in
diabetes data; and (2) assist diabetes related policy-making at different
levels. The work is distinct from existing research in: (1) the data; (2)
the objectives; and (3) the techniques used. The data represents the di-
abetes population across the entire primary care sector. The objectives
include diabetes related decision and policy making at different levels.
The pattern recognition techniques combine a traditional approach to
data mining,involving the Self-Organizing Map (SOM), with an exten-
sion to include the Growing Self-Organizing Map (GSOM).

1 Introduction

Health care Knowledge Management (HKM) [17] uses data analysis and mining
techniques to provide high quality, well-informed and cost-effective patient-care
decisions to health care stakeholders. Because of the increasing number of pa-
tients with chronic disease [8], such as diabetes, and the associated medical care
costs [2], Chronic Disease Management (CDM) is emerging as one of the great-
est challenges to health care systems worldwide. Applied to CDM, HKM has the
potential to provide substantial benefits to stakeholders and patients.

The main components of CDM are described in the Chronic Care Model
(CCM) developed by Wagner’s group [19]. An Australian initiative, the chronic
disease management network (cdmNet) [10] focuses on implementing the key
components of the CCM. Since 2008, cdmNet has been gradually adopted by
General Practitioners (GPs) to create and maintain care plans for patients with
chronic disease. As cdmNet is beginning to be rolled out nationally, it is accu-
mulating detailed data about CDM processes across the full breadth of primary
care.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 162–171, 2011.
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The tacit knowledge concealed within the cdmNet data has the potential to
improve: (1) the understanding of chronic conditions; (2) development of treat-
ments and guidelines for CDM; and (3) development of policies for managing
and preventing chronic disease. A business intelligence module, called cdmNet-
Business Intelligence (cdmNet-BI), is proposed to fulfil these objectives. cdmNet-
BI uses business intelligence functionalities such as reporting, online analytical
processing, analytics and data mining to systematically model, share and trans-
late cdmNet data.

This paper describes the application of unsupervised neural networks, clus-
tering in particular, within the cdmNet-BI module. Diabetes is chosen for the
analysis as it: (1) is one of the most common chronic conditions; (2) is asso-
ciated with a large number of complications (such as blindness, kidney failure
and premature cardiovascular death); and (3) early detection and the proper
management can make a significant difference to patient outcomes. Even though
there is existing research on mining chronic disease related data [11,12,16], the
uniqueness of our work is threefold: (1) the data; (2) the objectives; and (3)
the combination of techniques used. Existing research is based on data collected
from a specific health care organisation for a fixed time period. cdmNet data:
(1) corresponds to national wide diabetes population; (2) covers the full breadth
of the primary care environment; and (3) includes a comprehensive history over
all time of key patient measurements such as body weight, blood pressure, and
HbA1c (a measure used to diagnose diabetes). The objectives include: (1) iden-
tification of interesting patterns related to diabetes patients; and (2) assisting
policy making and preventive care approaches to the management of diabetes at
different levels. Two types of self-organizing neural networks: (1) Self-Organizing
Map (SOM) [14]; and (2) Growing Self-Organizing Map (GSOM) [7] are used as
the pattern recognition techniques. SOM is well-established and there are com-
prehensive tools available for the visualisation of the generated clusters. GSOM
extends the capabilities of SOM through: (1) a flexible structure that self organ-
ises to accurately represent the structure of data; and (2) an inbuilt hierarchical
clustering capability to start with a broader (generalised) view of data and drill
down into specific details. Hierarchical clustering facilitates decision and policy
making at different levels depending on the requirements. To our knowledge,
hierarchical approaches have not been used to investigate and enhance decision-
making in chronic disease.

The paper is organised as follows: Section 2 provides background on use of
data mining techniques to diabetes data. Introductions to CDM, and the cdmNet
system are carried out in Section 3. Section 4 presents the cdmNet-BI module.
Data mining results are discussed in Section 5. Concluding remarks and future
work are discussed in Section 6.

2 Background: Mining Diabetic Patient Data

A number of studies have used data mining techniques, particularly classifica-
tion and clustering, to analyse diabetes data. A data mining tool [11] has been
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developed in Singapore for medical doctors, integrating classification with asso-
ciation rule mining (CBA) based on eight years of data. Huang and others [12]
have applied feature selection via supervised model construction (FSSMC) [13]
to determine individuals in the population with poor diabetes control. Patients’
age, diagnosis duration, insulin treatment requirements, random blood glucose
measurement and diet treatment were identified as the most influencing factors.

Use of Classification and Regression Trees on 10 predictors (age, sex, emer-
gency department visits, office visits, comorbidity index, dyslipidemia, hyperten-
sion, cardiovascular disease, retinopathy, end-stage renal disease) has identified
younger age as the determinant factor for bad glucose control [9]. The predic-
tion model for diabetes constructed by Su and others [18] highlighted that the
volume of trunk, left thigh circumference, right thigh circumference, waist cir-
cumference, volume of right leg, and age as being associated with the condition
of diabetes. Porter and others [16] have applied clustering techniques to identify
different diabetes sub groups. Their research findings are: (1) the best results
can be obtained by clustering methods that use Euclidean distance as the clus-
ter separation criteria; and (2) family history, body weight, and age are good
indicators for identifying potential diabetic patients.

While the aforementioned existing analysis were based on patient data col-
lected for a fixed time period, the data used in this paper is based on patients
with diabetes across the whole primary care sector. Compared with Porters’
finding above [16], both techniques are based on Euclidean distance. In addi-
tion, GSOM provides a hierarchical view of data, facilitating decision and policy
making at different levels.

3 Application

3.1 Chronic Disease Management (CDM)

Chronic disease is the cause for 60% of all deaths worldwide and, by the year 2020,
chronic diseasewill account for almost 75%all deaths [1]. Seven million Australians
and 133 million Americans [8] have a chronic medical condition. In Australia,
chronic disease accounts over 60% of health care costs ($60 billion per annum),
and significantly impacts workforce productivity ($8 billion per annum) [2].

Diabetes is one of the most common chronic conditions worldwide. In Aus-
tralia 700,000 people were diagnosed with diabetes in 2004-2005 [4] and the
estimate for 2015 is 4.6 million, including both diagnosed and non-diagnosed
patients [5]. In the united states, 7.8% of the population is diagnosed in 2007 [3].
Diabetes is associated with a large number of complications, such as blindness,
kidney failure, leg amputations, and premature cardiovascular death [9].

Early detection and the proper management of diabetes can make a significant
difference, for example, preventing up to 90% of blindness, and 50% of dialysis
and amputations [9]. Therefore, much emphasis is on best practices, optimiza-
tion of care and other management methods to improve outcomes. For example,
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in Australia, the government has introduced incentives to general practitioners
(GPs) to undertake a more structured, planned and systematic approach to
chronic disease management.

3.2 Chronic Disease Management Network (cdmNet)

The Chronic Care Model (CCM) developed by Wagner’s group [19] emphasises
collaboration among care providers and the patient in creating and maintaining
a care plan for patients with chronic disease. cdmNet is focused on implement-
ing the key processes of the CCM by creating best practice, personalised care
plans, distributing care plans to the patients’ care team and to the patients, con-
tinuously monitoring the care plan, facilitating collaborations, and supporting
patient self-management.

cdmNet has been trialled in a number of regions in Victoria and Western
Australia. Data corresponding to pre and post adoption of cdmNet indicate
from 88% to 205% and from 80% to 201% increase in care plan generation and
sharing respectively [10]. cdmNet is currently being implemented Australia wide.

4 Chronic Disease Management Network - Business
Intelligence (cdmNet-BI) Module

The cdmNet-BI module aims to convert cdmNet transactional data to knowl-
edge. It consists of three sub-modules: (1) pre-processing, (2) dashboard, and
(3) data mining. The pre-processing sub-module converts transactional data to
a format that can be used in the dashboard and the data mining sub-modules.
The dashboard sub-module provides portals for the GPs presenting their use of
cdmNet for care planning.

The data mining sub-module is the focus of this paper. It aims to identify
interesting patterns in data and assist chronic care related policy making and
preventive care approaches at different levels. Currently, the sub-module uses
undirected knowledge discovery techniques, specifically clustering, as the data
mining technique and applies them on diabetes data. The clustering techniques
used, SOM and GSOM are briefly described in Sections 4.1 and 4.2.

4.1 The Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) consists of a layer of input vectors and one
dimensional (a row) or two dimensional (a lattice) output nodes [14]. All input
and output nodes are connected through weight vectors. For a given input, cer-
tain regions of the array will fire strengthening the corresponding weights. If two
input data items cause the same output neuron to fire, the similarity measure
indicates that these two input data items belong to the same cluster. The con-
cept of a neighbourhood is used in updating weights. That is, when updating the
weights, the weights of the neurons in the neighbourhood of the winning neuron
are also updated (strengthened). Once the clusters are formed, SOM provides
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a two-dimensional visualisation of the resulting clusters. Viscovery SOMine [6],
which is a widely used commercial tool for the SOM algorithm, is used as one
of the cluster visualisation tools within the data mining sub-module.

4.2 The Growing Self-Organizing Map (GSOM)

The Growing Self-Organizing Map (GSOM) [7] is a self-generating unsupervised
neural network algorithm, which is an extended version of the SOM. It has a
minimum number of starting nodes (usually four) and generates new nodes only
when it is required using a heuristic to identify such a need, that is, GSOM
generates new nodes as the data is input to the network. New nodes are created
if and only if the nodes already present in the network are insufficient to represent
the input data set.

The control of the spread of the map is achieved using a concept called Spread
Factor (SF). A lower SF results in a smaller size map with the most significant
clusters. A larger map with a higher number of nodes can be obtained with a
higher SF. The larger map contains finer clusters or sub clusters. That is, SF
provides a hierarchical clustering capabilities to the GSOM by linking GSOMs
generated using high to low SFs. The data mining sub-module utilises different
values of SF to obtain cluster hierarchies to visualise data at different levels.

5 Patterns in Diabetes Management

This section describes the use of clustering techniques to: (1) identify diabetes
related interesting patterns; and (2) assist diabetes related policy making and
preventive care approaches at different levels. The analysis is divided into two
parts as:

(1) analysis of features common to any individual; and
(2) analysis of common features with diabetes specific medical features.

As diabetes is a condition that exists within the general population in a coun-
try, the former analysis helps to understand any common features that may
contribute towards diabetes. The latter analysis aims at identifying any correla-
tions among common features and diabetes specific features. We considered the
following common and medical features:

1. common features: (a) demographics (gender, age, marital status); and (b)
lifestyle (drinking status, smoking status).
2. medical features: (a) metabolic measure (HbA1c); and (b) clinical measure
(BMI).

HbA1c or haemoglobin A1C is a metabolic measure used to diagnose diabetes. A
normal non-diabetic has a HbA1c of 3.5-5.5%. Achieving HbA1c < 7% is consid-
ered as a diabetes management goal. Body Mass Index (BMI) indicates whether
patients have a healthy weight to their height and is observed regularly for di-
abetes patients. Achieving BMI < 25 is considered as a diabetes management
goal.



Self-Organizing Maps for Translating Health Care Knowledge 167

5.1 Analysis of Features Common to Any Individual

The GSOM tool with varying spread factor, SF , was used to obtain the hier-
archies in data. The GSOM clusters corresponding to SF = 0.1 and SF = 0.4
are shown in Figures 1 and 2. Clusters in Figure 1 provide a generalised view
of data. Figure 2 represents specific clusters by hierarchically expanding the
clusters formed in Figure 1.

To illustrate the usefulness of hierarchical clustering in decision making, we
use two clusters from Figure 1 (denoted by A1 and A2) and their corresponding
clusters from Figure 2 (denoted by X1, X12, X2, and X14). The prominent fea-
tures and the percentage of patients in each cluster are as follows. Cluster A1
consists of ex-smoking males indicating that within the diabetes population there
is a specific group of patients who are males and ex-smokers. Cluster X1 repre-
sents divorced men, age between 60 and 70 whose drinking status is not known.
Cluster X12 represents married men age between 70 and 80 who are drinkers.
Clusters X1 and X12 indicate within the ex-smoking male group (Cluster A1),
there are two sub groups which have different marital status, drinking status and
they belong to different age groups. In terms of policy making, stakeholders can
determine either general policies based on the most prominent feature values,
ex-smoking and males; or specific policies based on marital status, drinking sta-
tuses and age. X12 consists of 85% of the patients from A1 leaving only a 15% to
X1. Therefore, a general policy or campaign focused on ex-smoking males may
be more cost effective than developing two specific policies, one for ex-smoking
married males within the age of 70 and 80 who consume alcohol, and another
policy for ex-smoking divorced males within the age of 60 and 70. On the other
hand, X14 consists of 65% of the patients from A2 leaving 35% to X2. For this,
a specific policy based on gender, marital status, drinking status and age may
be more cost effective compared to a generalised solution.

5.2 Analysis of Common Features with Diabetes Specific Medical
Features

Common features and diabetes specific medical features were clustered individ-
ually (Method 1) and as a combination (Method 2) as described below.
Method 1: A three step analysis:

Step 1: Cluster common features;
Step 2: Cluster medical features; and
Step 3: Identify correlations among Steps 1 and 2 clusters.

When SF = 0.1, Step 1 resulted in 11 clusters (say B0-B10) and Step 2 resulted
in 4 clusters (say L0-L3). L0-L3 indicate different HbA1c and BMI combinations
as:

Cluster L0: HbA1c = target, BMI = obese;
Cluster L1: HbA1c = very high, BMI = overweight;
Cluster L2: HbA1c = very high, BMI = obese; and
Cluster L3: HbA1c = target, BMI = overweight.
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Fig. 1. The GSOM map corresponding to
SF = 0.1

Fig. 2. The GSOM map corresponding to
SF = 0.4

The patient identifier based cross analysis is carried out in Step 3 to determine
the cluster a given patient is belonging to in Steps 1 and 2. Following correlations
among features were identified:

(a) smoking and HbA1c; and
(b) alcohol consumption and BMI.

Smoking and HbA1c: To highlight this correlation, Step 3 output correspond-
ing to smokers and non-smokers is analysed in Table 1. A row in Table 1 rep-
resents the percentage of patients, from a common feature cluster, that map to
each medical feature cluster. As highlighted it indicates:

(a) Smokers (C1 and C2) have very high HbA1c (L1 and L2); and
(b) Non-smokers (C3 to C8) have target HbA1c (L0 and L3).

Alcohol consumption and BMI: To highlight this correlation, Step 3 output
that corresponds to drinkers and non-drinkers is analysed in Table 2. A row in
Table 2 represents the percentage of patients, from a common feature cluster,
that map to each medical feature cluster. The bold faced text in the table indicate
drinkers (C1, C4, C8 and C9) map to obese (L0).

Method 2: Common and medical features were clustered together. The resulting
clusters indicate:

(1) Non-smoking and non-drinking lead to better controlled diabetes as a
distinct cluster is formed with “non-smoking” , “non-drinking” patients whose
HbA1c is maintained within the target;

(2) An unfavourable marital status can lead to poor controlled diabetes as
two distinct clusters are formed, one with “divorced” patients with “too high”
HbA1c and the other with “separated” patients with “too high” HbA1c;

(3) Alcohol consumption and “divorced” marital status can be the determi-
nants of obesity: Clusters with patients having either “separated” or “unknown”
marital status whose drinking status is unknown had BMI “obese” category; and
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Table 1. Effect of smoking on HbA1c

Common Demographics and lifestyle L0(%) L1(%) L2(%) L3(%)
feature values
clusters

C1 female, divorced, drinker, smoker, age be-
tween 50 and 60

47.6 0 47.6 4.8

C2 male and female, marital status known and
defacto, drinking status unknown, smoker,
age between 50 and 60

24.1 41.4 3.4 31

C3 male and female, widowed, non-drinker,
no-smoker, age between 70 and 80

22.7 2.7 1.3 73.3

C4 female, widowed, drinker, non-smoker,
age between 70 and 80

48.4 3.2 3.2 45.2

C5 female, marital status known and married,
drinking status unknown, non-smoker,
age between 60 and 70

35.5 23.7 21 19.7

C6 female, widowed, drinking status unknown,
non-smoker, age between 70 and 80

57.1 28.6 0 14.3

C7 male, marital status unknown and married,
drinking status unknown, non-smoker,
age between 60 and 70

38.5 30.8 7.7 23.1

C8 male, divorced, drinker, non-smoker, age
between 60 and 70

55.6 24.1 1.9 18.5

(4) The majority of diabetes patients (70.1%) belong to HbA1c “high” and
BMI “obese” category.

5.3 Patterns Recognised from Diabetes Data: Outcomes

In relation to diabetes care policy development, the hierarchical clusters provided
a basis to determine: (1) the approach (that is, general or specific policies); and
(2) the features (parameters) of a policy. In addition following correlations were
identified:

(1) Smoking increases HbA1c;
(2) Alcohol consumption increases BMI;
(3) Unfavourable marital statuses can lead to poor controlled diabetes;
(4) Alcohol consumption and “divorced” marital status can be the determi-

nants of obesity; and
(5) Diabetes management is poor among married males, around 60 years of

age who are heavy drinkers and ex-smokers.

There are existing studies that were carried out to determine the effect of smok-
ing on HbA1c [15]. Item 1 above reinforces the high correlation between smok-
ing and poor control in diabetes. One of the expected outcomes of unsupervised
learning approach is to identify hypothesis for further testing. Items 2-5 can be
considered as hypothesis to be tested.
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Table 2. Effect of alcohol consumption on BMI

Common Demographics and lifestyle L0(%) L1(%) L2(%) L3(%)
feature values
clusters

C1 female, divorced, drinker, smoker, age be-
tween 50 and 60

47.6 0 47.6 4.8

C4 female, widowed, drinker, non-smoker, age
between 70 and 80

48.4 3.2 3.2 45.2

C8 male, married and marital status unknown,
drinker, ex-smoker, age between 70 and 80

60 7.7 3.1 29.2

C9 male, divorced, drinker, non-smoker, age
between 60 and 70

55.6 24.1 1.9 18.5

C3 male and female, widowed, non-drinker,
no-smoker, age between 70 and 80

22.7 2.7 1.3 73.3

6 Conclusions and Future Work

cdmNet is developed based on a well-established organisational framework for
CDM. Therefore, cdmNet data provides an evidence base for informed health pol-
icy for patients with chronic disease. This paper investigated the application of
self-organizing maps for translating cdmNet diabetes patients’ data into knowl-
edge. The paper is distinct from existing research in: (1) data; (2) objective; and
(3) approach. Data correspond to the current diabetes population, up to date
and comprehensive. Objectives include identification of interesting patterns and
decision and policy making at different levels. The clustering techniques, SOM
and GSOM provide techniques to achieve the objectives by providing the advan-
tage of a matured technique and representing data at different abstract levels.

The findings described in the paper: (1) provided insights into the identifica-
tion of general and specific features in developing diabetes patient care policies;
(2) established hypothesis for further testing; and (3) reinforce existing research
findings. Our future work aims to enhance the data mining sub-module to utilise
all data collected from all the functionalities available in cdmNet. As the effec-
tiveness of existing treatments and guidelines for CDM is concealed within this
data, the findings will indicate the effective treatments and guidelines and pro-
vide a basis for the development of CDM guidelines.
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on Classification of Uncertain Objects

Lei Xu and Edward Hung

Department of Computing, The Hong Kong Polytechnic University
{cslxu,csehung}@comp.polyu.edu.hk

Abstract. We study the problem of classification on uncertain objects
whose locations are uncertain and described by probability density func-
tions (pdf). We propose a novel supervised UK-means algorithm for
classifying uncertain objects to overcome the computation bottleneck
of existing algorithms. Additionally, we consider to select features that
can capture the relevant properties of uncertain data. We experimen-
tally demonstrate that our proposed approaches are more efficient than
existing algorithms and can attain comparatively accurate results on
non-overlapping data sets.

Keywords: classification, feature selection, uncertain data.

1 Introduction

Classification is a classical problem in machine learning and data mining [4].
Numerous classification algorithms have been proposed and used in real appli-
cations, such as multiple instance learning [19], ensemble learning [18], transfer
learning [7], etc. However, few algorithms can handle uncertain information. Our
task is to construct a model that is able to predict the label of uncertain object
correctly.

UK-means is proposed for clustering uncertain objects. However, the clas-
sification task is predicting the labels of unlabeled objects based on given la-
beled objects. In general, the difference between classification and clustering is
that classification obtains initial K class representatives from labeled training
objects. In this paper, we focus on non-overlapping data sets. Thus, assume
C(oi) = cj represents that oi is assigned to class cj , the goal of classifica-
tion is to find the K cluster representatives such that the objective function∑n

i=1 EED(oi, pC(oi)) =
∑n

i=1(
∫

fi(x)ED(x, pC(oi))dx) is minimized where ED
is the Euclidean distance function, n is the number of testing objects, and pC(oi)

is the location of cluster representative of class cj . Additionally, we select features
out of the feature set to capture the relevant properties of uncertain data. Follow-
ing previous work in [15,17], we propose Averaging Approach and Distribution-
based Approach to extend supervised UK-means algorithm to handle uncertain
objects. Our contributions of this work include 1) we build a classifier based
on UK-means to handle uncertain data, 2) we experimentally show that the
supervised UK-means algorithm can classify uncertain objects more efficiently

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 172–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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than existing algorithms, and 3) considering the relevant properties of uncertain
data, we combine feature selection with supervised UK-means to attain a higher
accuracy compared with other approaches.

In the rest of this paper, we first give some related work briefly in Section 2.
Section 3 introduces UK-means and formally describes the problem definition.
Two approaches (Averaging and Distribution-based) are described in details in
Section 4. Section 5 shows experimental evaluation on the performance of the
algorithms. Finally we conclude our work in Section 6.

2 Related Work

In this paper, we focus on the value uncertainty. A large number of classifica-
tion algorithms have been proposed in the literature, such as multiple instance
learning [12], support vector machine [10]. However, few researches focus on the
problem of uncertain data classification. In [6], support vector machine is used
to classify uncertain data. In the method, the uncertain object is assumed as a
simple bounded geometric model. Support vector machine creates margins by
using uncertain objects which lie on the boundary. In [16,17], an uncertain object
is associated with a probability density function (pdf) and a finite region. The
decision tree classifier is extended to handle uncertain data by using averaging
or distribution-based approach. Similarly, Naive Bayes is extended to classify
uncertain data in [15]. uRule is proposed in [14] to classify uncertain informa-
tion. The key idea in uRule is that the algorithm computes which proportion of
the instances is covered by a rule based on the uncertain attribute interval and
probabilistic function. Though some algorithms have been extended to classify
uncertain information, the problem of building classifiers on uncertain data is
still a challenge. The algorithms take quite a long time to process uncertain data
because of intensive computation bottleneck.

There are also researches on clustering on uncertain objects. UK-means is a
generalization of the traditional K-means algorithm to handle uncertain objects
whose locations are represented by pdfs. Another related area of research is
fuzzy clustering. In fuzzy clustering, a cluster is represented by a fuzzy subset
of objects. Each object has a degree of belongingness for each cluster. The fuzzy
C-means algorithm is one of the most widely used fuzzy clustering methods [5].

3 Problem Definition

3.1 UK-Means

Assume there are n uncertain objects, and each object oi is associated with
a probability density function (pdf), fi(x), which is the probability density of
object oi at the possible location x. The goal of clustering is to group n these
objects into K clusters so that the sum of expected Euclidean distances (EED)
[8] between the uncertain objects and their cluster centers is minimized. Thus,
suppose C(oi) = cj represents that object oi is assigned to cluster cj , and pC(oi)
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is the cluster’s representative point, we want to find the K cluster representatives
such that the objective function (Equation (1)) is minimized where ED is the
distance function based on a metric d (i.e. Euclidean distance).

n∑
i=1

EED(oi, pC(oi)) =
n∑

i=1

(
∫

fi(x)ED(x, pC(oi))dx). (1)

Expected Distance Calculation. As Figure 1 shows, the uncertain domain is

jcp
io

Fig. 1. Expected distance calculation from oi to pcj in [13,11,8]

divided into a number of grid cells. Each grid cell represents a possible location of
the uncertain object oi. The expected Euclidean distance (EED) from object oi

(represented by a pdf fi) to the cluster representative pcj is the weighted average
of the distances between the samples in oi and pcj (the mean vector of pcj), i.e.
EED(oi, pcj ) =

∑T
t=1 Fi(si,t)ED(si,t, pcj), where T is the number of samples

in oi, si,t is the location (vector) of the t -th sample of oi, pcj is the location
(vector) of the cluster representative of cluster cj , Fi(si,t) =

∫
x∈cellt

fi(x)dx (Fi

is a discrete probability distribution function over T grid cells, cellt is the grid
cell that sample si,t represents, x is the possible location of sample si,t in cellt),
and the metric ED is Euclidean distance used in [13,11,8].

In traditional UK-means, n uncertain objects is assigned into K clusters by
calculating expected distance between objects and cluster representatives and
assign object oi to the nearest cluster ck with minimum expected distance be-
tween oi and cluster representative. In UK-means, the mean vector oi (expected
value) of oi is the weighted mean of all T samples (or possible locations) and is
calculated as oi =

∑T
t=1 si,t × Fi(si,t). The mean vector pcj of cluster represen-

tative pcj is obtained by pcj = 1
|cj |

∑|cj|
i=1 oi, where |cj | is the number of objects

assigned to cluster cj .

3.2 Supervised UK-Means

In supervised model, there are a set of N training objects o1, o2, ..., oN , and m
numerical (real-valued) feature attributes A1, ..., Am. The domain of attribute
Au(1 ≤ u ≤ m) is dom(Au). Each oi is associated with a probability density
function (pdf fi(x)) and a class label cj (cj ∈ L, where L is the set of all class
labels), where x is a possible location of oi, and UD(oi) is uncertain domain of
oi. Each tuple x is associated with a feature vector x = (x̃1, x̃2, ..., x̃m), where
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Algorithm 1. Supervised UK-means Algorithm
1: for i=0; i < N ; i++ do
2: compute oi of training object by oi =

∑T
t=1 si,t × Fi(si,t);

3: end for
4: for j=0; j < K; j++ do

5: calculate all class representatives’ mean vectors pcj by pcj = 1
|cj |

∑|cj |
i=1 oi;

6: end for
7: for i=0; i < n; i++ do
8: compute oi of testing object by oi =

∑T
t=1 si,t × Fi(si,t);

9: end for
10: repeat
11: for i=0; i < n; i++ do
12: for j=0; j < K; j++ do
13: compute expected distance by EED(oi, pcj ) =

∫
UD(oi)

fi(x)ED(oi, pcj ) dx;

14: end for
15: assign object oi to the nearest class ck;
16: end for
17: update all cluster representatives by pcj = 1

|cj |
∑|cj |

i=1 oi;

18: until all cluster representatives converge

x̃u ∈ dom(Au)(1 ≤ u ≤ m). The goal of supervised UK-means is to find K
class representatives which can predict a testing object otest to class ck with the
minimum expected Euclidean distance. In supervised UK-means, the initial class
representative is obtained from the mean vectors of training objects associated
with class labels. Then, we predict the labels of testing objects with the mini-
mum expected Euclidean distance between objects and class centers. To obtain
more accurate classification results, we repeat the testing process and update
the class representatives until the algorithm converges. Algorithm 1 shows the
generalized supervised UK-means, where N is the number of training objects, n
is the number of testing objects, and K is the number of class labels.

Weighted Expected Euclidean Distance. (||.||w) is calculated instead of
expected Euclidean distance. The weighted distance between si,t and pcj is cal-

culated as ||si,t − pcj ||w =
√∑m

u=1 w2
u × (si,t,u − pcj,u)2, where si,t,u is the u-th

dimension of t -th sample of object oi, and wu is the weight factor w on the u-th
dimension. Furthermore, ||.||w is calculated as ||oi−pcj ||w =

∑T
t=1 Fi(si,t)||si,t−

pcj ||w, which is the weighted average of weighted Euclidean distance between
sample si,t of object oi and class center pcj .

4 Algorithms

In [15,17], Averaging Approach and Distribution-based Approach are proposed
to modify decision tree algorithm to handle uncertain data. Similarly, we also
use these approaches to handle uncertain objects in supervised UK-means. In
addition, we select features to capture relevant properties of uncertain data.



176 L. Xu and E. Hung

4.1 Averaging Approach

A straightforward method to deal with uncertain object is to replace each pdf
with its expected value [15,17]. Then the object is converted into exact value ob-
ject, which reduces the problem back to that for certain data. Originally, object
oi is represented by T grid cells with pdf as Figure 1. In Averaging approach,
the expected distance between oi and class representative pcj is the exact dis-
tance between oi and pcj . The calculations of oi and pcj have been illustrated in
traditional UK-means. In Averaging approach, line 13 of Algorithm 1 is changed
to EED(oi, pcj) = ED(oi, pcj ) (where ED is Euclidean Distance).

4.2 Distribution-Based Approach

The difference between Averaging approach and Distribution-based approach is
the calculation of expected distance between oi and pcj . In this algorithm, line
13 of Algorithm 1 is EED(oi, pcj ) =

∑T
t=1 Fi(si,t)ED(si,t, pcj ), which is the

same as that in UK-means. Algorithm 1 includes two parts: training process and
testing process. In training process, the algorithm calculates the mean vectors
of objects and the mean vectors of class representatives. The time complexity of
training process is O(NT ),where N is the number of training objects, and T is
the number of samples per object. In testing process, testing objects are predicted
by calculating minimum expected Euclidean distance. The time complexity of
Distribution-based approach in testing process is O(nTT1K), where n is the
number of testing objects, T1 is the number of iterations, and K is the number of
class labels. If N ≥ nT1K, the computational complexity of Distribution-based
approach is O(NT ). Otherwise, the computational complexity is O(nTT1K).
In Averaging approach, the time complexity is O(NT ), because NT is usually
larger than nT1K. The time of training process of Averaging approach is the
same as that of Distribution-based approach, but the time of testing process of
Distribution-based approach is T times slower than that of Averaging approach.
Feature Selection. In previous work, all features are considered to be equally
important. To build a classifier with high accuracy, it is necessary to select fea-
tures from feature set to capture the relevant properties of uncertain data. [9] se-
lects features which maximize the margins between objects from different classes.
Distance Based Evaluation Function. Existing algorithms on feature selec-
tion focus on exact value data, and we can see Averaging approach converting
objects into deterministic point objects, so the existing algorithms can be readily
used. Here we just extend the feature selection on Distribution-based approach.
First we formulate the distance function of the selected set of features.
Definition 1. Let Q be a set of uncertain objects and oq ∈ Q. Let w be a weight
vector over the feature set A, then the distance function of oq is

θw(A)
oq

= (
K∑

j=1,j 
=C(oq)

||oq − pcj ||w)− ||oq − pC(oq)||w. (2)

where ||.||w is weighted distance and has been described in details in Section 3.2.



Classification on Uncertain Objects 177

Algorithm 2. Distance Based Feature Selection Algorithm (DBFS)
1: initialize weight vector w = (1,1,...,1);
2: pick randomly Q ⊆ N when N is training set;
3: for q = 1...|Q| do
4: pick an object oq from Q;
5: for u = 0; u < m; u + + do

6: u = 1
2

∑
oq∈Q((

∑K
j=1,j �=C((oq))

||oq−pcj
||2

||oq−pcj
||w )− ||oq−pC(oq)||2

||oq−pC(oq)||w )wu;

7: wu = wu +u;
8: end for
9: end for

10: w = w2

w2
max

;

Definition 1 defines w(A) to indicate the weight values on the feature set A.
θ

w(A)
oq can also be written as θw

oq
. To make θλw

oq
= |λ|θw

oq
for any scalar λ, w is

normalized in the way that max w2
u = 1(1 ≤ u ≤ m) (where wu is the u-th value

of w(A), m is the number of attributes) to guarantee that ||.||2w ≤ ||.||2, where
||.|| is Euclidean distance when w = (1, ..., 1).

Definition 2. Given a training set N (Q ⊆ N) and a weight vector w, the
distance-based evaluation function is e(w) =

∑
oi∈N θw

oi
.

Definition 2 gives the evaluation function of feature selection. In the function,
we aim to make all the objects in the training set N nearest to the class that
they are labeled and farthest to other classes. The task of feature selection is to
find w(A) that can maximize the evaluation function e(w).

Distance Based Feature Selection Algorithm (DBFS). DBFS tries to find
the feature weight w(A) to maximize the distance evaluation function e(w). We
use gradient ascent to maximize e(w), since the evaluation function e(w) can be
seen smooth almost everywhere (there is e(w) = e(w + Δ)(ifΔ → 0), but we
will not demonstrate it because of space limitation) [9]. The gradient of e(w) is
shown as follows (Formula (3)) when it is evaluated on a sample oq:

�e(w)u =
∂e(w)
∂wu

=
∑

oq∈Q

∂θw
oq

∂wu
=

1
2

∑
oq∈Q

((
K∑

j=1,j 
=C(oq)

||oq − pcj ||2
||oq − pcj ||w

)− ||oq − pC(oq)||2
||oq − pC(oq)||w )wu.

(3)

In DBFS (algorithm 2), we use gradient over e(w) to obtain �e(w)u (we write
as �u for simplicity). We use a subset Q randomly picked from training set N
to evaluate e(w). In each iteration we use one object to calculate one term of
the vector � and add it to the weight vector w. We have illustrated that the
evaluation of � is invariant (i.e. �u = �e(λwu)∀λ ≥ 0, see Proof 1). Therefore,
since wu increases by adding �u during each iteration, the relative effect of
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the term �u decreases (divided by increasing w) and the algorithm typically
converges. The computational complexity of DBFS is O(m|Q|TK) where m is
the number of features, |Q| is the number of iterations (usually 20 epochs), T
is the number of samples of object oq and K is the number of class labels.
In Algorithm 1, we use DBFS in the training process to evaluate the weight
values on feature set A. Then, testing objects are predicted by weighted expected
Euclidean distance. Thus, Distribution-based approach (DBA) which uses DBFS
to select features is weighted Distribution-based approach (Weighted DBA).

Proof 1. In Formula (4), because ||.||λw = λ||.||w which has been described in
Section 3.2, Formula (4) is equal to Formula (3).

�(λwu) =
∂e(λw)
∂wu

=
∑

oq∈Q

∂θλw
oq

∂wu

=
1
2

∑
oq∈Q

((
K∑

j=1,j 
=C(oq)

||oq − pcj ||2
||oq − pcj ||λw

)− ||oq − pC(oq)||2
||oq − pC(oq)||λw

)λwu.

(4)

5 Experimental Results

All codes were written in Java and were run on a Windows machine with an
Intel 2.66GHz Pentium(R) Dual-Core processor and 4GB of main memory.

5.1 Data Sets

We run experiments on 3 UCI [3] non-overlapping data sets to study the perfor-
mance of our algorithms and compare with the work in [17]. To compare with
the work in [17], we did not show results on more other data sets. The param-
eters of the chosen data sets used for the experiments are summarized in Table
1. The attributes of all the 3 data sets are numerical obtained from measure-
ments. Classifiers are built on the numerical attributes and their “class label”
attributes. The 3 data sets contain “point values” without uncertainty. Thus, we
generate the uncertain information following [17]. The point-value data become
uncertain when we apply appropriate error models for them. For each object oi

on the u-th dimension (i.e. the attribute Au), the point value vi,u reported in
a data set is used as the mean of a pdf fi,u, defined over an interval [ai,u, bi,u].
The range of values for Au (over the whole data set) is noted and the width of
[ai,u, bi,u] is set to un× |Au|, where |Au| denotes the width of the range for Au

and un is a parameter to control the uncertainty of data set. We use two meth-
ods to generate pdf fi,u. One is uniform distribution, which implies the pdf to
be fi,u = (bi,u− ai,u)−1. The other is Gaussian distribution, which the standard
deviation is set to be 1

4 × (bi,u − ai,u) (the same as that in [17]). In the above
two cases, we use T samples to generate pdf over the interval. The point value
is transformed into uncertain samples on Gaussian or uniform distribution by
using the controlled parameter un and T samples. To compare with the work
in [17], T is set to be 100 and un is from 1% to 20%.
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Table 1. Selected Data Sets from the UCI Machine Learning Repository

Data Set Training Tuples No. of Attributes No. of Classes Test Tuples

Iris 150 4 3 10-fold
Ionosphere 351 32 2 10-fold
BreastCancer 569 30 2 10-fold

5.2 Performance Evaluation

Execution Time. Table 2 shows the execution time of Averaging (AVG) ap-
proach, Distribution-based approach (DBA), weighted DBA, and uncertain de-
cision tree (UDT-ES) in [17] on 3 data sets. AVG can be seen as supervised
UK-means for point value data while DBA and weighted DBA are supervised
UK-means to handle uncertain objects. In Table 2, weighted DBA is at least 10
times faster than UDT-ES. DBA is at least 30 times faster than UDT-ES while
AVG is 400 times faster than UDT-ES. DBA and weighted DBA are slower than
AVG because of the expected distance calculation between uncertain objects
and class centers. Weighted DBA has to calculate the weight values over feature
set sample by sample which is a bit time consuming. However, the time used to
evaluate weights is much shorter than that used in information gain in UDT-ES.
The distribution of samples (uniform or Gaussian distribution) does not affect
the execution time of DBA and weighted DBA. Thus, here we just presents the
execution time of DBA and weighted DBA on Gaussian distribution. Figure 2(a)
and (b) show the effects of increasing T samples on DBA and weighted DBA,
respectively. Both our algorithms are 10 times faster than UDT-ES at least, and
the time of our algorithms does not increase as fast as that of UDT-ES [17].

Table 2. Execution Time (Milliseconds)

Data Set AVG DBA Weighted DBA UDT-ES

Iris 10.8 42.5 76.7 5444.4
Ionosphere 18.8 261.1 881.2 9500
BreastCancer 28 370.3 912.4 11944.4

Accuracy. We use 10-fold cross validation on the three non-overlapping data
sets to measure the accuracy. Figure 2(c) shows the accuracy with changing un-
certainty un under different values of weighted DBA. To compare the effect of
un, we put the accuracy of AVG which is exact point value algorithm at un = 0.
In AVG, the point value on each dimension of an instance is the original data
from the data sets. The accuracy is improved if uncertainty is taken into ac-
count. Table 3 shows the accuracy of our algorithms compared with UDT-ES
in [17]. Table 3 chooses the accuracy of DBA (Gaussian pdf and uniform pdf) and
weighted DBA (Gaussian pdf) from Figure 2(c) by the best results on un. From
Table 3, we can see that DBA improves the accuracy from 0.3% to 2% while
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Fig. 2. (a) Effects of increasing T samples on Distribution Based Approach (b) Effects
of increasing T samples on Weighted Distribution Based Approach (c) Weighted DBA
Accuracy with controlled parameter un (Gaussian pdf)

Table 3. Accuracy

Data Set AVG DBA (Gaus-
sian pdf)

DBA (Uni-
form pdf)

Weighted
DBA

UDT-
ES

Iris 92.67% 94% 94.67% 96.67% 96.13%
Ionosphere 72.6% 72.9% 72.86% 84.6% 91.69%
BreastCancer 87.86% 89.3% 88.04% 90.4% 95.93%

weighted DBA improves the accuracy from 2.5% to 12% compared with AVG.
Our algorithms can attain comparatively accuracy compared with UDT-ES [17]
by saving nearly 90%-95% time on non-overlapping data sets. We just illustrate
the weights of field on Iris because of space limitation. The third feature is more
important than other features on Iris with the weight value being 1.0 while other
feature weight values are nearly 0. The dimensionality can be reduced since the
weight values of some fields are nearly zero. Above all, weighted DBA is more
accurate than DBA and AVG.

6 Conclusion

In this paper, we study the problem of classification on uncertain objects whose
locations are presented by probability density functions (pdf). We have shown
that supervised UK-means which overcomes the computation bottleneck is more
efficient than existing algorithms with comparatively accurate classifying results
by feature selection on non-overlapping data sets. Moreover, the accuracy is
improved if uncertainty is taken into account.
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Abstract. We present results on closure spaces induced by isotone fuzzy Galois
connections. Such spaces play a fundamental role in the analysis of relational
data such as formal concept analysis or relational factor analysis. We provide a
characterization of such closure spaces and study their morphisms. The results
contribute to foundations of a matrix calculus over relational data.

1 Introduction

Closure structures are among the fundamental mathematical structures that naturally
appear in many areas of pure and applied mathematics. In particular, closure structures
are the fundamental structures behind formal concept analysis and other data analysis
methods that are based on attribute sharing (rather than attribute distance). The results
in this paper are motivated by the recent results on decompositions of matrices over
residuated lattices and factor analysis of relational data described by such matrices, see
e.g. [3–5]. These results reveal a fundamental role of closure and interior structures
for the decompositions and motivate us to further investigate the calculus of matrices
over residuated lattices. Such matrices include Boolean matrices as a particular case
but have much richer structure. An important concept, studied in this paper, is that of
a closure space of isotone and antitone Galois connections induced by such matrices.
Such spaces are in fact the spaces of optimal factors for matrix decompositions [3, 4].
In the setting of Boolean matrices, there exists a natural bijective mapping between the
spaces of isotone and antitone Galois connections. Moreover, these spaces exhaust all
closure spaces. This is no longer true in the setting of matrices over residuated lattices.
While it is known from the previous results that the closure spaces of antitone fuzzy
Galois connections exhaust all fuzzy closure spaces, we show in this paper that the
closure spaces of isotone fuzzy Galois connections are particular fuzzy closure spaces.
We provide a characterization of such spaces. Moreover, we study morphisms of such
spaces and show a correspondence between such morphisms and matrices (matrices
induce morphisms and vice versa). The results contribute to the foundations of analysis
of qualitative data, namely to the development of a matrix calculus for such data.

2 Preliminaries: Matrices, Decompositions, Concept Lattices

Matrices. We deal with matrices whose degrees are elements of residuated lattices.
Note that instead of matrices, we could consider fuzzy relations (with degrees in com-
plete residuated lattices) between possibly infinite sets. The results would then be more
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general (matrices correspond to relations between finite sets). Recall that a (complete)
residuated lattice [1, 10, 16] is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

(i) 〈L,∧,∨, 0, 1〉 is a (complete) lattice, i.e. a partially ordered set in which arbitrary
infima and suprema exist (the lattice order is denoted by ≤; 0 and 1 denote the
least and greatest element, respectively);

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commu-
tative, associative, and a⊗ 1 = a for each a ∈ L;

(iii) ⊗ and→ satisfy adjointness, i.e. a⊗ b ≤ c iff a ≤ b→ c.

Throughout the paper, L denotes an arbitrary (complete) residuated lattice. Common
examples of complete residuated lattices include those defined on the real unit interval,
i.e. L = [0, 1], or on a finite chain in a unit interval, e.g. L = {0, 1

n , . . . , n−1
n , 1}. For

instance, for L = [0, 1], we can use any left-continuous t-norm for⊗, such as minimum,
product, or Łukasewicz, and the corresponding residuum → [1, 10, 16]. Residuated
lattices are commonly used in fuzzy logic [1, 9, 10]. Elements a ∈ L are called grades
(degrees of truth). Operations ⊗ (multiplication) and→ (residuum) play the role of a
(truth function of) conjunction and implication, respectively.

We deal with compositions I = A ∗ B which involve an n ×m matrix I , an n × k
matrix A, and a k×m matrix B. We assume that Iij , Ail, Blj ∈ L. That is, all the matrix
entries are elements of a given residuated lattice L. Therefore, examples of matrices I
which are subject to the decomposition are

⎛
⎝

1.0 1.0 0.0 0.0 0.6 0.4
1.0 0.9 0.0 0.0 1.0 0.8
1.0 1.0 0.0 1.0 0.0 0.0
1.0 0.5 0.0 0.7 1.0 0.4

⎞
⎠ or

⎛
⎝ 0 0 1 1 1

0 0 1 1 0
0 0 0 0 1
0 1 1 1 0

⎞
⎠.

The second matrix makes it apparent that binary matrices are a particular case for L =
{0, 1}.

For convenience and since there is no danger of misunderstanding, we take the ad-
vantage of identifying n ×m matrices over residuated lattices (the set of all such ma-
trices is denoted by Ln×m) with binary fuzzy relations between X and Y (the set of all
such relations is denoted by LX×Y ). Also, we identify vectors with n components over
residuated lattices (the set of all such vectors is denoted by Ln) with fuzzy sets in X
(the set of all such fuzzy sets is denoted by LX ). As usual, we identify vectors with n
components with 1× n matrices.

Composition Operators. We use three matrix composition operators, ◦, �, and �. In
the decompositions I = A ∗ B, Iij is interpreted as the degree to which the object
i has the attribute j; Ail as the degree to which the factor l applies to the object i;
Blj as the degree to which the attribute j is a manifestation (one of possibly several
manifestations) of the factor l. The composition operators are defined by

(A ◦B)ij =
∨k

l=1 Ail ⊗Blj , (1)

(A�B)ij =
∧k

l=1 Ail → Blj , (2)

(A�B)ij =
∧k

l=1 Blj → Ail. (3)
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Note that these operators were extensively studied by Bandler and Kohout, see e.g. [12]
to which we refer for an overview of knowledge processing applications. The operators
have natural verbal descriptions. For instance, (A� B)ij is the truth degree of “for every
factor l, if l applies to object i then attribute j is a manifestation of l”. One may easily
see that � can be defined in terms of � and vice versa. Note also that for L = {0, 1},
A ◦B coincides with the well-known Boolean product of matrices [11].

Concept Lattices Associated to I . For a positive integer n, we denote

n̂ = {1, . . . , n}.

In addition, we put

X = {1, . . . , n}, Y = {1, . . . , m}.

Recall that LU denotes the set of all L-sets in U , i.e. all mappings from U to L. Consider
the following pairs of operators between LX and LY induced by matrix I ∈ Ln×m:

C↑(j) =
∧n

i=1(C(i)→ Iij), D↓(i) =
∧m

j=1(D(j)→ Iij), (4)

C∩(j) =
∨n

i=1(C(i)⊗ Iij), D∪(i) =
∧m

j=1(Iij → D(j)), (5)

C∧(j) =
∧n

i=1(Iij → C(i)), D∨(i) =
∨m

j=1(D(j) ⊗ Iij), (6)

for C ∈ LX , D ∈ LY , j ∈ {1, . . . , m}, and i ∈ {1, . . . , n}. Furthermore, denote the
corresponding sets of fixpoints by B(X↑, Y ↓, I), B(X∩, Y ∪, I), and B(X∧, Y ∨, I),
i.e.

B(X↑, Y ↓, I) = {〈C, D〉 |C↑ = D, D↓ = C},
B(X∩, Y ∪, I) = {〈C, D〉 |C∩ = D, D∪ = C},
B(X∧, Y ∨, I) = {〈C, D〉 |C∧ = D, D∨ = C}.

The sets of fixpoints are complete lattices, called concept lattices associated to I , and
their elements are called formal concepts. These structures are the fundamental struc-
tures of formal concept analysis [6]. For a formal concept 〈C, D〉, C and D are called
the extent and the intent and they represent the collection of objects and attributes to
which the formal concept applies. The sets of all extents and intents of the respec-
tive concept lattices are denoted by Ext(X↑, Y ↓, I), Int(X↑, Y ↓, I), Ext(X∩, Y ∪, I),
Int(X∩, Y ∪, I), Ext(X∧, Y ∨, I), and Int(X∧, Y ∨, I). It may be shown that

Ext(X↑, Y ↓, I) = {C ∈ LX |C = C↑↓},
Int(X↑, Y ↓, I) = {D ∈ LY |D = D↓↑},

and the same for the other cases.
The above-defined operators and their sets of fixpoints have extensively been stud-

ied, see e.g. [2, 7, 14]. Clearly, 〈C, D〉 ∈ B(X∩, Y ∪, I) iff 〈D, C〉 ∈ B(Y ∧, X∨, IT),
where IT denotes the transpose of I; so one could consider only one pair, 〈∩, ∪〉 or
〈∧, ∨〉, and obtain the properties of the other pair by a simple translation. Note that
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if L = {0, 1}, B(X↑, Y ↓, I) coincides with the ordinary concept lattice of the for-
mal context consisting of X , Y , and the binary relation (represented by) I; and that
B(X↑, Y ↓, I) is isomorphic to B(X∩, Y ∪, I) with 〈A, B〉 �→ 〈A, B〉 being an isomor-
phism (U denotes the complement of U ). Therefore, as is well known, for L = {0, 1},
each of the three operators is definable by any of the remaining two. The mutual defin-
ability fails for general L because it is based on the law of double negation which does
not hold for general residuated lattices. A simple framework that enables us to con-
sider all the three operators as particular types of a more general operator is provided in
[4], cf. also [7] for another possibility. For simplicity, we do not work with the general
approach and use the three operators because they are well known.

3 Closure Spaces Induced by 〈∧, ∨〉
The following results are well known [1]. 〈↑, ↓〉 forms an (antitone) L-Galois con-
nection [1], ↑↓ and ↓↑ are L-closure operators in X and Y , and Ext(X↑, Y ↓, I) and
Int(X↑, Y ↓, I) are L-closure systems in X and Y , respectively. Moreover, any L-
closure system in X is in the form of Ext(X↑, Y ↓, I) (same for Y ).

Recall V ⊆ LU is called an L-closure system (in the context of fuzzy sets; or c-
subspace, in the context of matrices) if

– V is closed under left →-multiplications, i.e. a → C ∈ V for each a ∈ L and
C ∈ V (here, a→ C is defined by (a→ C)(i) = a→ C(i) for i = 1, . . . , n);

– V is closed under
∧

-intersections, i.e. for Cj ∈ V (j ∈ J) we have
∧

j∈J Cj ∈ V
(here,

∧
j∈J Cj is defined by (

∧
j∈J Cj)(i) =

∧
j∈J Cj(i)).

For 〈∧, ∨〉, it is known that 〈∧, ∨〉 forms an isotone L-Galois connection [7], ∧∨ and ∨∧

are L-interior and L-closure operators in X and Y , and Ext(X∧, Y ∨, I) and
Int(X∧, Y ∨, I) are L-interior and L-closure systems in X and Y , respectively. The sit-
uation might seem completely dual to that of 〈↑, ↓〉 (which is the case when L = {0, 1},
see above). However, as the next example shows, it is not. Namely, there exist L-closure
systems that are not of the form Int(X∧, Y ∨, I).

Example 1. Let L be the standard Gödel algebra, U = {u}, S = {{0.5/u}, {1/u}}.
Therefore, L = [0, 1] and a → b = 1 if a ≤ b and a → b = b of a > b. Clearly, S is
closed under intersections and→-shifts, hence it is an L-closure system. However, S is
not of the form S = Int(X∧, Y ∨, I). (This claim is justified at the end of this section.)

Therefore, L-closure systems that are of the form Int(X∧, Y ∨, I) are just particular
L-closure systmes. Below, we provide their characterization. For a system S ⊆ LU , put

[S]∧ = {
∧
T | T ⊆ S},

[S]→ = {a→ A | a ∈ L, A ∈ S},
[S]→ = {A→ a | a ∈ L, A ∈ S}.

Note that A→ a is defined by (A→ a)(u) = A(u)→ a and call A→ a the right→-
multiple of A by a. Therefore, [S]∧ is the system of all intersections of fuzzy sets from
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S, [S]→ is the system of all left →-multiplications of fuzzy sets from S, and [S]→ is
the system of all right→-multiplications of fuzzy sets from S. It is known that for any
S ⊆ LU , [[S]→]∧ is the least, w.r.t. inclusion, L-closure system containing S. [[S]→]∧
is called the L-closure system generated by S, or the c-span of S.

Note that in fuzzy logic, b → 0 is called the negation of the truth degree b. Corre-
spondingly, the fuzzy set A → 0 is called the complement of A. Clearly, in the above
terms, A→ 0 is the right multiple of A by 0. From this point of view, the right multiples
A → a generalize the concept of a complement of a fuzzy set. A → a could naturally
be called the a-complement of A.

In the classical case (L = {0, 1}), every A is a complement of some B; namely, of
B = A → 0. This is no longer true for the general setting of residuated lattices (not
even for a = 0). We only have:

Lemma 1. A is an a-complement of some fuzzy set if and only if A = (A→ a)→ a.

Proof. Easy, follows from ((b→ a)→ a)→ a = b→ a. �

This lemma is, in a sense, the key observation in characterizing the L-closure systems
Int(X∧, Y ∨, I). We are going to show that Int(X∧, Y ∨, I) are just the L-closure sys-
tems that are generated by a-complements of some collection T of fuzzy sets. Such
systems are conveniently characterized by the following theorem.

Theorem 1. For any T ⊆ LU , [[T ]→]∧ is an L-closure system. It is the least, w.r.t. in-
clusion, L-closure system containing all a-complements (i.e., right→-multiplications)
of fuzzy sets from T .

Proof. Sketch: Clearly, [[T ]→]∧ contains all a-complements of fuzzy sets from T . Es-
sential to the proof is to check that [[T ]→]∧ is closed under left→-multiplications (this
follows from a→ (b→ c) = b→ (a→ c)). The rest is by standard arguments. �

The following theorem provides our characterization.

Theorem 2. For any S ⊆ LU , S = Int(X∧, Y ∨, I) for some I if and only if S =
[[T ]→]∧ for some T ⊆ LU , i.e. S is an L-closure system generated by a system of all
a-complements of fuzzy sets from T .

Proof. Sketch: “⇒” is done by checking the conditions and using standard properties
of residuated lattice.

“⇐”: Let X = T , Y = U , I(A, u) = A(u) for A ∈ S, u ∈ U . One can show that
S = Int(X∧, Y ∨, I). �

Definition 1. We call the systems S satisfying the condition of Theorem 2 c-closure
spaces (“c” for “complement”).

Example 1 (continued). Suppose, by contradiction, that S = Int(X∧, Y ∨, I). Then
U = X and by Theorem 2, S is a system generated by a system of all a-complements of
fuzzy sets from some T . According to Theorem 1, [[T ]→]∧ = {{0.5/u}, {1/u}}. Then,
{0.5/u} needs to be an intersection of other fuzzy sets from [T ]→ or {0.5/u} ∈ [T ]→.
Clearly, {0.5/u} ∈ [T ]→ must be the case. Therefore, {0.5/u} = {a/u} → b for some b.
Clearly, a > b = 0.5 must be the case. But then, we also have {a/u} → 0.4 = {0.4/u} ∈
[T ]→, a contradiction to [T ]→ ⊆ [[T ]→]∧ = {{0.5/u}, {1/u}}.
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4 Morphisms of c-Closure Spaces

In this section we define morphisms of c-closure spaces, i.e. the particular L-closure
spaces characterized in Section 3, and show that they are induced by matrices over
residuated lattices via the �-product.

Definition 2. A mapping h : V → W from a c-closure space V ⊆ Lp into a c-closure
space W ⊆ Lq is called a complement-preserving c-morphism if

– h is an c-morphism, i.e. h(a→ C) = a→ h(C) and h(
∧

k∈K Ck) =
∧

k∈K h(Ck)
for any a ∈ L, C, Ck ∈ Lp;

– if C is an a-complement then h(C) is an a-complement.

A complement-preserving c-morphism h : V → W from a c-subspace V ⊆ Lp into
a c-subspace W ⊆ Lq is called an extendable if there is a complement-preserving
c-morphism h′ : Lp → Lq such that h′(C) = h(C) for each C ∈ V .

A complement-preserving c-morphism h is called a complement-preserving c-iso-
morphism if h is bijective and both h and h−1 are extendable complement-preserving
c-morphisms.

In what follows we assume only extendable complement-preserving c-morphisms.
First, every matrix induces a morphism:

Lemma 2. For every matrix A ∈ Lp×q, the mapping hA : Lp → Lq defined by

hA(C) = C �A (= C∧A)

is a complement-preserving c-morphism.

Proof. Sketch: Being a c-morphism follows easily from the properties of residuated
lattices. Let C = D → a, then

[(D → a) �A](j) =
∧
i

Aij → (D(i)→ a) =
∧
i

((Aij ⊗D(i))→ a) =

=
∨
i

(Aij ⊗D(i))→ a = (D ◦A)(j)→ a

Whence, if C is an a-complement then C �A is a-complement. �

Second, every morphism is induced by some matrix.

Lemma 3. If h : V → Lq is a complement-preserving c-morphism of a c-closure space
V , then there exists a matrix Ah ∈ Lp×q such that h(C) = C �A for every C ∈ V .

Proof. Let A ∈ Lp×q be defined by

Aij =
∧

C∈V ((h(C))(j)→ C(i)).

That is, Ai =
∧

C∈V (h(C)→ C(i)), i.e. the row Ai contains a vector of degrees that
can be interpreted as the intersection of images of those vectors C from V for which
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the corresponding fuzzy set contains i (in Boolean case: for which the ith component
is 1).

We now check h(C) = C � A for every C ∈ Lp. First,

(C � A)(j) =
∧p

i=1[Aij → C(i)] =
=

∧p
i=1[(

∧
C′∈V (h(C′))(j)→ C′(i)))→ C(i)] ≥ (h(C))(j).

We omit the second part ((C �A)(j) ≤ (h(C))(j)), which is technically more involved,
due limited space. �

As a corollary, we get the following characterization of morphisms:

Theorem 3. h : V → Lq is a complement-preserving c-morphism of a c-closure space
V if and only if there exists a matrix Ah ∈ Lp×q such that h(C) = C � A for every
C ∈ Lp.

Proof. Directly from Lemma 2 and Lemma 3. �

5 Isomorphic c-Closure Spaces

The aim of this section is to provide a criterion of isomorphism of c-closure spaces.

Lemma 4. Let I, J ∈ Lp×q. We have B∧I = B∧J for each B ∈ Lp iff I = J .

Proof. “⇒”: Suppose B∧I = B∧J . Assume Iij �= Jij for some i, j. Without loss of
generality, we may assume Iij � Jij . Let

B(l) =

{
Jij if i = l,

1 otherwise .

Then B∧I (j) =
∧

l Ilj → B(l) = Iij → Jij �= 1, and B∧J (j) =
∧

l Jlj → B(l) =
Jij → Jij = 1, which is a contradiction.

“⇐”: Obvious. �

We need to recall the following notions. V ⊆ Ln is called an i-subspace if

– V is closed under ⊗-multiplication, i.e. for every a ∈ L and C ∈ V , a ⊗ C ∈ V
(here, a⊗ C is defined by (a⊗ C)(i) = a⊗ C(i) for i = 1, . . . , n); and

– V is closed under
∨

-union, i.e. for Cj ∈ V (j ∈ J) we have
∨

j∈J Cj ∈ V (here,∨
j∈J Cj is defined by (

∨
j∈J Cj)(i) =

∨
j∈J Cj(i)).

A mapping h : V → W from an i-subspace V ⊆ Lp into an i-subspace W ⊆ Lq is
called an i-morphism if it is a ⊗- and

∨
-morphism, that is, h(a⊗ C) = a⊗ h(C) and

h(
∨

k∈K Ck) =
∨

k∈K h(Ck) for any a ∈ L, C, Ck ∈ Lp. An i-morphism V → W is
called

– an extendable i-morphism if h can be extended to an i-morphism of Lp → Lq .
– an i-isomorphism if h is bijective and both h and h−1 are extendable i-morphisms.
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Theorem 4. Let I ∈ Ln×m and J ∈ Lp×r be matrices. Then there exist a complement-
preserving c-isomorphism

h : Int(n̂∧, m̂∨, I)→ Int(p̂∧, r̂∨, J)

if and only if there exists a matrix K ∈ Lp×m such that Int(n̂∧, m̂∨, I) = Int(p̂∧,
m̂∨, K) and Ext(p̂∧, r̂∨, J) = Ext(p̂∧, m̂∨, K).

Proof. “⇒”: Let h : Int(p̂∧, r̂∨, J) → Int(n̂∧, m̂∨, I) be a complement-preserving c-
isomorphism. According to Lemma 3, there exist matrices X ∈ Lr×m and Y ∈ Lm×r

such that
h(C) = C � X and h−1(D) = D �Y

for every C ∈ Int(p̂∧, r̂∨, J) and D ∈ Int(n̂∧, m̂∨, I).
Thus we have C = h(h−1(C)) = (C �X) � Y . Now, since (C �X) � Y = C �(X ◦

Y ) and since B∧J ∈ Int(p̂∧, r̂∨, J) for every B ∈ Lp̂,

B∧J = B∧J∧(X◦Y ) = B∧J◦X◦Y

for every B ∈ Lp̂. J = J ◦ X ◦ Y now follows from Lemma 4. From that we
have Ext(p̂∧, r̂∨, J) = Ext(p̂∧, m̂∨, K). Furthermore, if D ∈ Int(n̂∧, m̂∨, I), then
D �Y = hD ∈ Int(n̂∧, m̂∨, I). Since D = (D � Y ) � X , we get D = (C � J) �X =
C �(J ◦ X) showing D ∈ Int(p̂∧, r̂∨, J ◦ X). We established Int(n̂∧, m̂∨, I) ⊆
Int(p̂∧, r̂∨, J ◦X). If D ∈ Int(p̂∧, r̂∨, J ◦ X) then D = C �(J ◦X) = (C �J) �X
for some C ∈ Lp. Since C �J ∈ Int(p̂∧, r̂∨, J), we get

D = (C � J) �X = h(C ◦ J) ∈ Int(p̂∧, r̂∨, I),

proving Int(p̂∧, r̂∨, J ◦X) ⊆ Int(n̂∧, m̂∨, I). Summing up, we proved Int(p̂∧, r̂∨, J ◦
X) = Int(n̂∧, m̂∨, I). Now, J ◦X yields the required matrix K .

“⇐”: Since Ext(p̂∧, r̂∨, J) = Ext(p̂∧, m̂∨, K), there exists a matrix S ∈ Lm×r for
which K ◦ S = J and a matrix T ∈ Lm×r for which J ◦ T = K , respectively. Con-
sider now mappings f : Int(p̂∧, m̂∨, K) → Int(p̂∧, r̂∨, J) and g : Int(p̂∧, r̂∨, J) →
Int(p̂∧, m̂∨, K) defined for D ∈ Int(p̂∧, m̂∨, K) and F ∈ Int(p̂∧, r̂∨, J) by

f(D) = D �S and g(F ) = F �T.

Notice that every D ∈ Int(p̂∧, m̂∨, K) is in the form D = C � K for some C ∈ Lp

and that every F ∈ Int(p̂∧, r̂∨, J) is in the form F = E � J for some E ∈ Lp. The
mappings f and g are defined correctly. Indeed,

f(D) = D � S = (C � K) �S = C �(K ◦ S) = C �J

for some C, and because C ◦ J ∈ Int(p̂∧, r̂∨, J), we have f(D) ∈ Int(p̂∧, r̂∨, J). In a
similar way one obtains g(F ) ∈ Int(p̂∧, m̂∨, K).

Next, observe that for D, which is the form D = C �K for some C,

g(f(D)) = ((C �K) �S) ◦ T = (C �(K ◦ S)) � T =
= (C �J) � T = C �(J ◦ T ) = C �K = D
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and, similarly, f(g(F )) = F , proving that f and g are mutually inverse bijections.
Finally, due to Lemma 2, f (and g) is a complement-preserving c-morphism. This shows
that Int(p̂∧, m̂∨, K) ∼= Int(p̂∧, r̂∨, J), and hence Int(n̂∧, m̂∨, I) ∼= Int(p̂∧, r̂∨, J). �

Note that switching h for its inverse h−1 in Theorem 4 brings a matrix K ′ ∈ Lp×m

such that Ext(n̂∧, m̂∨, I) = Ext(p̂∧, m̂∨, K ′) and Int(p̂∧, r̂∨, J) = Int(p̂∧, m̂∨, K ′).
The matrix K and K ′ does not need to be equal. As an counterexample consider L
being a chain 0 < a < b < 1 with ⊗ defined as follows

x⊗ y =

{
x ∧ y if x = 1 or y = 1,

0 otherwise,

for each x, y ∈ L. One can easily see that x ⊗ ∨
j yj =

∨
j(x ⊗ yj) and thus an ad-

joint operation→ exists such that 〈L,∧,∨,⊗,→, 0, 1〉 is a complete residuated lattice.
Namely,→ is given as follows:

x→ y =

⎧⎪⎨
⎪⎩

1 if x ≤ y,

y if x = 1,

b otherwise,

for each x, y ∈ L. Now, matrices I =
(
a
)
, J =

(
b
) ∈ L1×1 have the same set of

intents, namely {[b], [1]}. It is easy to check, that the identity on L1 is complement-
preserving c-isomorphism. We get that K = I and K ′ = J ; on the other hand, there
is no such matrix which could stand for both K and K ′. This is contrary to analogous
theorem for extendable i-morphisms.

The following theorem shows that i-isomorphism between extents of two concept
lattices defines concept-preserving c-isomorphism between intents of the concept lat-
tices.

Theorem 5. If hExt : Ext(X∧
1 , Y ∨

1 , I1) → Ext(X∧
2 , Y ∨

2 , I2) is i-isomorphism then
corresponding mapping hInt : Int(X∧

1 , Y ∨
1 , I1) → Int(X∧

2 , Y ∨
2 , I2) is complement-

preserving c-isomorphism.

We omit the proof of Theorem 5 because of lack of space.
An analogy of Theorem 5 which would read that complement-preserving c-isomor-

phism between intents defines an i-isomorphisms between extents does not hold. The
example following Theorem 4 can be used as the counterexample.

6 Conclusions

We investigated the closure spaces induced by isotone Galois connections, i.e. mappings
induced by a matrix describing a graded relationship between objects and attributes.
Such mappings naturally appear in analysis of relational data. We showed that unlike
the bivalent case, these spaces are just particular closure spaces, we called c-closure
spaces. We provided a characterization of such closure spaces: they are exactly the clo-
sure spaces generated by a-complements of fuzzy sets. Furthermore, we defined the
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notion of a morphism between such closure spaces and showed that these morphisms
are just the mappings generated by matrices over residuated lattices by triangular prod-
uct projections. In addition, we provided a criterion of isomorphism of two c-closure
spaces in terms of row and column spaces of matrices over residuated lattices. The
results show that behind the methods of relational data analysis, there is a reasonable
calculus of matrices over residuated lattices. The role of this calculus is analogous to the
role of ordinary matrix calculus for the analysis of real-valued data using the methods
based on linear algebra.

Acknowledgment. Supported by Grant No. 202/10/0262 of the Czech Science
Foundation.
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Ensemble Learning and Pruning

in Multi-Objective Genetic Programming
for Classification with Unbalanced Data
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Abstract. Machine learning algorithms can suffer a performance bias
when data sets are unbalanced. This paper develops a multi-objective ge-
netic programming approach to evolving accurate and diverse ensembles
of non-dominated solutions where members vote on class membership.
We explore why the ensembles can also be vulnerable to the learning
bias using a range of unbalanced data sets. Based on the notion that
smaller ensembles can be better than larger ensembles, we develop a new
evolutionary-based pruning method to find groups of highly-cooperative
individuals that can improve accuracy on the important minority class.

1 Introduction

Classification with unbalanced data is an important problem in machine learning
(ML) [1][2][3][4]. Data sets are unbalanced when the learning examples from one
class are rare (the minority class), while the larger class makes up the rest (the
majority class). Genetic Programming (GP) is an evolutionary ML technique
based on the principles of Darwinian evolution and natural selection [5], which
has been successful in building reliable and accurate classifiers to solve a range
of classification problems [3][6][7]. However, GP, like other ML techniques, can
evolve “biased” classifiers when data is unbalanced, i.e., classifiers with strong
majority class accuracy but poor minority class accuracy. As the minority class
usually represents the main class in many real-world problems, building classifiers
with good accuracy on both classes is an important area of research [1][2][4][6].

The learning bias can occur because typical training criteria can be influenced
by the larger majority class [1]. Addressing this issue either involves sampling
the data set to artificially re-balance the class distributions during the learning
process [2][4], or adapting the training criteria for class-specific cost adjustment,
e.g., using a weighted average of the minority and majority class accuracies in
the cost function [6]. This paper focuses on cost adjustment techniques within
the learning algorithm. However, as the minority and majority class accuracies
are usually in conflict, selecting suitable costs for the two classes a priori can
be problem-specific and require a lengthy trial and error process. Evolutionary
multi-objective optimisation (EMO) is a useful alternative where a Pareto fron-
tier of the best trade-off solutions can be found in a single optimisation run [8][9].

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 192–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Another advantage to EMO is that the combined knowledge of evolved solutions
along the Pareto frontier can then be utilised cooperatively in an ensemble of
classifiers to further improve generalisation ability [9][10]. An ensemble can be
more accurate than any of its individual members if the members are accurate
and diverse, i.e., make different errors in different inputs [10].

This paper develops a multi-objective GP (MOGP) approach using both the
accuracy and diversity of solutions along the two classes as the learning ob-
jectives. This MOGP approach uses Pairwise Failure Crediting (PFC) [10] for
diversity to negatively correlate the predictions of the frontier solutions. Our first
research goal evaluates the effectiveness of the ensemble when the full Pareto-
front of evolved classifiers works together to predict unseen instances for five
real-world (binary) class imbalance tasks. We show that the learned ensembles
can be vulnerable to the learning bias due to the influence of biased Pareto-
front classifiers. To address this, our second research objective develops a new
ensemble-pruning method using a second evolutionary search to find small sub-
sets of highly-cooperative individuals. This approach is shown to improve ensem-
ble performances on the important minority class. We also compare our MOGP
results to another popular ensemble learning approach, namely, Naive Bayes
with bagging and balanced bootstrap sampling.

2 Related Work: Ensemble Learning for Class Imbalance

Ensemble learning for class imbalance is typically used in conjunction with sam-
pling to either create balanced bootstrap samples in bagging approaches [2][3]
or re-balance the training data in EMO-based approaches using diversity mea-
sures in fitness [4]. However, sampling can incur a computational overhead, par-
ticularly in large data sets with high levels of imbalance, and some sampling
techniques (such as under-samping) can potentially exclude useful training ex-
amples from the learning process. We use the multi-objective component for cost
adjustment and the original unbalanced training data “as is” during learning.

Recent EMO-based approaches to evolving ensembles use Negative Correla-
tion Learning (NCL) for ensemble diversity [4][7]. In [4], NCL is only applied
to minority class instances (majority class instances are ignored) to evolve di-
verse neural network ensembles; while in [7], NCL serves as the secondary fitness
measure in an MOGP approach where the Pareto front is determined using only
the accuracy of the GP classifiers. This paper is different as a population-based
diversity measure is used in fitness (PFC) which allows for equal selection prefer-
ence between accurate and diverse solutions, potentially creating better diversity
in the population. The PFC measure is also applied to both the minority and
majority class separately where each contributes equally in fitness to ensure the
ensemble members are equally diverse on both classes. Although we use PFC
for ensemble diversity, sampling (such as over or under-sampling) may also be
incorporated into the learning approach for ensemble diversity (such as [3]).

In [2] and [11], different ensemble pruning techniques are explored. In [2], a
genetic algorithm evolves a set of weights to specify the contribution of individ-
uals in the ensemble, using a separate validation set to learn these weights (in
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addition to the training set to generate the ensemble). In [11], an expectation
propagation algorithm using Bayesian inference models is used to concurrently
learn the optimal set of weights while also training the ensemble members. Al-
though both of these are effective, a limitation of weight-based ensemble pruning
is that suitable weights must be configured for all ensemble members. In contrast,
this paper develops a GP-based pruning method that quickly explores different
combinations of small subsets of individual only, using the original training set.

3 Multi-Objective GP (MOGP) for Evolving Ensembles

This paper develops a multi-objective GP approach to simultaneously evolving
a Pareto frontier of GP classifiers along the objectives (minority and majority
class accuracy) in a single optimisation run. An advantage of evolving a front of
the best trade-off solutions is that the combined knowledge of these classifiers
on the objectives can then be shared and used co-operatively in an ensemble. In
an ensemble of classifiers, each member votes on the class label to assign to a
given data instance, where the class label with the most votes determines the
final ensemble prediction. Ensembles can have good generalisation ability and
perform better than all of its individual members provided that the individuals
are both accurate and diverse, i.e., generate different errors on different inputs
[9][10]. However, if the individual members are not sufficiently accurate and
diverse then the ensemble risks misclassifying all the same inputs together. For
this reason, an explicit diversity measure in fitness is used to improve diversity
between solutions so that if one individual generates an error for a given input,
the other members do not also make the same error.

3.1 GP Framework for Classification

A tree-based structure is used to represent the genetic program solutions [5].
We use feature terminals (example features) and constant terminals (randomly
generated floating point numbers), and a function set comprising of the four
standard arithmetic operators, +,−, %, and ×, and the conditional operator if.
The +,− and × operators have their usual meanings (addition, subtraction and
multiplication) while % is protected division (usual division except that a divide
by zero returns zero). The conditional if function takes three arguments and
returns either the second argument if the first is negative, or the third argument
otherwise. Each GP solution represents a mathematical expression that outputs
a (floating-point) number for a given input (data example to be classified). This
number is mapped to the class labels using zero as the threshold, i.e., minority
class if the classifier output is zero or positive, or majority class otherwise.

3.2 MOGP Fitness

The objective performances of an evolved solution reflects both the accuracy
and diversity of the solution on each of the two classes, minority and majority
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class. This is expressed by Eq. (1) for solution Si on class c, where Errc,i is
the total number of incorrect predictions in class c (by solution i) and Nc is the
number of training examples in class c. An incorrect prediction occurs when the
predicted and actual class labels differ for a given input. Weighting coefficient
W specifies the trade-off between accuracy and diversity, where W = 0.5 is
used to treat these two measures as equally important in the evolution. This
gives equal selection preference to accurate and diverse solutions. The diversity
estimate for solution i is represented by PFCc,i for all examples in class c,
calculated using Pairwise Failure Crediting (PFC) [10]. PFC represents a penalty
function in fitness to reduce the overlap of common errors between solutions in
the population. In the PFC measure, T is population size and the indicator
function I(·) returns 1 if the class labels returned from two solutions, i and j,
are the same for the given input instance p, or 0 otherwise. In Eq. (1), both
the objective performance Si and PFC measure return values between 0 and 1;
for PFC, the higher the value the better the diversity, and likewise for Si where
higher objective performances imply better accuracy and diversity.

(Si)c = W
(

1−Errc,i

Nc

)
+ (1−W )PFCc,i

PFCc,i = 1
T−1

∑T
j=1,j 
=i

∑Nc
p=1 I(i,j,p)

Errc,i+Errc,j

(1)

Ranking the Objectives. Pareto dominance in fitness ranks the solutions in
the population according to objective performances. This ranking is important
as it affects the way selection is performed if the different objectives are to be
treated separately in the evolution. Pareto dominance between two solutions,
expressed by Eq. (2), states that a solution will dominate another solution if it
is at least as good as the other solution on all the objectives and better on at
least one. Solutions are non-dominated if they are not dominated by any other
solution in the population.

Si � Sj ←→ ∀c[(Si)c ≥ (Sj)c] ∧ ∃k[(Si)k > (Sj)k] (2)

Our MOGP approach uses the popular and effective Pareto dominance-based
EMO algorithm SPEA2 [8]. This algorithm is shown to evolve an accurate fronts
of classifiers along the minority and majority class trade-off surface in these
class imbalance tasks [7]. In SPEA2, each solution in the population is first
assigned a strength value D based on the number of other solutions it dominates
in the population. The final SPEA2 fitness value, Eq. (3) for solution Si, is the
sum of the strength values of all Si’s dominators, i.e., all other solutions in the
population that dominate Si. The lower the fitness value returned by Eq. 3,
the better the solution on the objectives where non-dominated solutions in the
population have the best fitness value of 0 (these solutions have no dominators).

fitness(Si) =
∑

j∈Pop,Si�Sj
D(Sj)

D(Si) = |{j|j ∈ Pop ∧ Si � Sj}| (3)
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Table 1. Unbalanced classification tasks used in the experiments

Name Classes Examples Imb. Features
(Minority/Majority) Total Minority Ratio No. Type

Ion Good/bad (ionosphere radar signal) 351 126 (35.8%) 1:3 34 Real
Spt Abnormal/normal (tomography scan) 267 55 (20.6%) 1:4 22 Binary
Yst1 mit/non-target (protein sequence) 1482 244 (16.5%) 1:6 8 Real
Yst2 me3/non-target (protein sequence) 1482 163 (10.9%) 1:9 8 Real
Bal Balanced/unbalanced (balance scale) 625 49 (7.8%) 1:12 4 Integer

3.3 MOGP Search

In SPEA2, the parent and offspring populations are merged together at every
generation [8]. This combined parent-child population is sorted by fitness val-
ues where the fittest individuals are copied into a new population, called the
archive population. The archive serves as the parent population in the next gen-
eration, and preserves elitism in the population over generations. The offspring
population at every generation is generated using the traditional crossover and
mutation genetic operators using binary tournament selection. At the end of the
evolutionary cycle, the set of non-dominated solutions in the population repre-
sents the evolved Pareto-approximated front of classifiers. A majority vote of
the class labels returned from the evolved set of non-dominated solutions (for a
given input instance) determines the final ensemble output.

4 MOGP Ensemble Performance

In this section we outline the evolutionary parameters and unbalanced data sets
used in the experiments, and evaluate the MOGP ensemble performances.

4.1 Evolutionary Parameters and Unbalanced Data Sets

The population size was 500, crossover and mutation rates were 60% and 40%,
respectively, and the maximum program depth was 8 to restrict very large pro-
grams in the population. The evolution ran for 50 generations. Five benchmark
binary classification problems taken from the UCI Repository of Machine Learn-
ing Databases [12], summarised in Table 1, are used in the experiments. These
reflect classification tasks with varying levels of complexity and class imbalance.
Half of the examples in each class are randomly chosen for the training and
the test sets, to ensure that both sets preserve the same class imbalance ratio.
While it is possible that the class distributions in the training set and test set
are different, we only consider tasks with similar distributions in both sets.

4.2 MOGP Ensemble Results

Table 2 shows the average minority and majority class accuracies (± standard
deviation) of the evolved ensembles, and the average ensembles sizes, on the test
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Table 2. Average MOGP ensemble performances and sizes over 50 runs, and Naive
Bayes (NB) ensemble using bagging (with balanced bootstrap sampling)

MOGP Full-Front Ensemble MOGP Pruned Ensemble NB (Bagging)
Size Minority Majority Size Minority Majority Size Minority Majority

Ion 28.1 84.9 ± 5.1 92.4 ± 6.4 22.3 81.7 ± 5.8 95.8 ± 3.8 25 88.9 62.5
Spt 27.3 44.6 ± 5.4 90.8 ± 2.3 12.1 62.1 ± 8.0 80.5 ± 4.8 25 70.4 77.4
Yst1 39.7 64.6 ± 4.8 82.5 ± 4.3 16.5 71.0 ± 4.4 75.5 ± 5.4 25 73.8 78.7
Yst2 27.9 81.2 ± 4.9 95.5 ± 1.5 20.6 89.2 ± 3.2 92.3 ± 1.8 25 87.7 92.6
Bal 20.8 51.7 ± 18.2 95.4 ± 3.5 10.1 83.6 ± 9.4 79.5 ± 10.3 25 29.2 50.7
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Fig. 1. MOGP ensemble performances using full Pareto front over generations

sets over 50 runs. Also included are the ensemble results for (a single run of)
Naive Bayes (NB) using bagging with 25 balanced bootstrap samples [13]. The
“full-front” ensemble results use all evolved non-dominated solutions (from a
MOGP run) in the voting process; these results show that majority class accu-
racy is always higher than minority class accuracy in all tasks. The corresponding
minority class accuracies are still reasonably good in some tasks (Ion and Yst2),
while in the others (Spt and Bal) these are poor. This shows that the evolved
fronts can contain more solutions biased toward the majority class than the op-
posite case (solutions with good minority accuracy or middle-region solutions),
as these solutions influence the ensemble vote in most tasks.

Analysis of the ensemble performances during the evolution reveals that this
may be due to genetic drift in the population, toward non-dominated solu-
tions biased toward the majority class objective. As the evolution advances over
generations, more solutions with strong majority class accuracies achieve non-
dominated status than solutions with good minority accuracies or middle-region
solutions. This effect can be seen in Figure 1 to varying degrees. These figures
show the average minority and majority class performance of the ensemble for
50 generations (over 50 runs on the test sets for three tasks). Figure 1 clearly
shows that more solutions with stronger majority class accuracy (than solutions
with stronger minority accuracy) are included in the ensemble over generations,
as the ensemble accuracy simply reflects which class receives the most votes from
the different members. In the remaining tasks (omitted for space constraints),
Bal shows similar behaviour to Ion (Figure 1.a) and Yst1 to Spt (Figure 1.c).



198 U. Bhowan, M. Johnston, and M. Zhang

Pruning the Ensemble. To address the biased ensemble behaviour, a simple
accuracy-based selection strategy is used to prune the MOGP ensembles to re-
duce the influence of biased non-dominated solutions on the ensemble vote. This
strategy only selects non-dominated solutions with at least 50% accuracy on
both objectives for the ensembles. The pruned ensemble performances and sizes,
reported in Table 2, show that more balanced class performances are achieved,
with noticeably better minority class accuracies, compared to the full-front re-
sults in all tasks (except Ion). The trade-off in majority class accuracy is rela-
tively small in some tasks (Yst1 and Yst2) compared to others (Spt and Bal).
These results show that the full ensembles are vulnerable to the learning bias in
the unbalanced tasks, while the pruned ensembles can be better for the impor-
tant minority class. The pruned MOGP ensembles also compare well to NB with
bagging, outperforming NB in the two most unbalanced tasks (Yst2 and Bal).

5 Ensemble Pruning

As the pruned ensembles show more balanced class performances and better
minority class accuracies, in this section we investigate the effects of further
pruning to create smaller ensembles. We develop two pruning methods to in-
vestigate whether smaller ensembles can be better for the unbalanced tasks.
Although these pruning methods are developed in the context of the MOGP
approach, they are not restricted to MOGP ensembles and can also be used in
conjunction with any underlying ensemble learning algorithm.

5.1 Fitness-Based Pruning

In this pruning method, the non-dominated solutions are sorted according to
their raw fitness values on the training objectives (from Eq. 1) and only the best
(fittest) N are selected for the ensemble. Configuring N controls the pruned
ensemble’s size. As there are two objectives (minority and majority class accu-
racy), the average of these objective values is used as the final fitness value, to
include only highly accurate and diverse solutions in the ensemble.

5.2 GP for Evolving Composite Voting Trees

As the fitness-based pruning strategy uses a linear ordering of the fittest N so-
lutions for ensemble selection, this method does not guarantee that the overlap
of common errors between the fittest N solutions are minimal with respect to
each other only. A more robust ensemble-selection method explores different
combinations of solution-subsets which are highly-diverse with respect to each
other only. Let X = {p1, p2, ..., pm} be a set of m non-dominated individuals.
The function div(Y ) calculates the diversity (i.e. overlap of common errors) be-
tween individuals in subset Y ⊆ X . In order to find the solution-subset with
the best diversity we must compare the div(Y ) values for all possible subsets of
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Fig. 2. (a) Evolved MOGP Pareto front (small circles are classifiers) and (b) evolved
CVT solution (depth 3) which uses a subset of MOGP classifiers

X , i.e., {p1, p2}, {p1, p3},{p1, p2, p3} etc. Exploring all possible combinations of
subsets of X is a computationally expensive and time-consuming combinatorial
problem, particularly for large ensembles and data sets, as each div(Y ) estimate
uses at least one pass through the full training set. To address this, we develop
a GP-based search to efficiently explore this space of possible combinations, to
quickly find diverse subsets of non-dominated solutions for the ensemble which
are maximally diverse with respect to each other. The GP approach for ensemble
pruning takes as input the evolved set of non-dominated classifiers returned
from the MOGP search (called the base classifiers) as shown in Figure 2(a),
and evolves a composite voting tree (CVT) representing a small subset of base
classifiers that are highly-diverse and accurate when combined together in the
ensemble voting process, as shown in Figure 2(b).

Representation. Tree-based GP is used to represent a CVT solution as shown
in Figure 2(b). Each terminal node Pn represents a link to the nth base classifier
in the input set (non-dominated MOGP classifiers), similar to feature terminals
in MOGP. The root node of a CVT solution outputs a class label, determined by
a majority vote of the predictions of each base classifier (terminal node) in the
tree; this is the only component in a CVT tree which computes a value. Recall
that the prediction of a MOGP base classifier will be minority class if the base
classifier’s output is non-negative or majority class otherwise. The new function
v serves no purpose other than to join terminal nodes to the root node or other
v nodes, where v can take any number of arguments between 1 and 3; this allows
different CVT solutions to contain varying numbers of base classifiers.

Fitness Function. The output of a CVT solution (when evaluated on a given
input instance) corresponds to the pruned ensemble output (class label) whose
members are represented in the CVT solution. The fitness function calculates
the average classification accuracy of the minority and majority class when each
CVT solution is evaluated on the training set, aimed to evolve CVTs with good
classification accuracy on both classes.

Evolutionary Search. The search process is akin to canonical (single-objective)
GP where the fittest CVT solution in the population is returned from the evolu-
tion. Crossover, mutation and elitism rates are 60%, 35% and 5%, respectively,
and the tournament selection size is 7. The evolution is limited to 50 generations
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Table 3. Average MOGP ensemble performances and sizes for two pruning methods
(◦ symbol shows the dominating pruning method for similar-sized ensembles)

Fitness-based Pruning CVT-based Pruning
Size Minority Majority Size Minority Majority

Ion 3 70.5 ± 8.4 91.3 ± 8.9 3.0 77.7 ± 6.1 91.9 ± 4.6 ◦
9 75.7 ± 7.2 94.8 ± 4.4 8.9 80.4 ± 5.5 94.3 ± 4.6 ◦

Spt 3 68.1 ± 8.6 70.8 ± 5.4 3.0 72.7 ± 9.6 64.7 ± 10.6
9 64.2 ± 7.9 77.3 ± 4.7 7.5 58.4 ± 7.8 82.1 ± 4.1

Yst1 3 79.8 ± 15.2 53.8 ± 21.1 3.0 79.1 ± 15.4 59.2 ± 16.2 ◦
9 76.3 ± 13.7 61.4 ± 17.0 9.0 77.8 ± 6.1 66.7 ± 6.4 ◦

Yst2 3 95.3 ± 3.9 74.9 ± 6.5 3.0 95.3 ± 2.2 83.2 ± 4.4 ◦
9 93.0 ± 2.5 81.3 ± 4.6 9.0 93.5 ± 3.0 86.3 ± 3.9 ◦

Bal 3 78.3 ± 14.4 76.6 ± 13.1 3.0 84.5 ± 10.3 76.3 ± 13.4 ◦
9 76.0 ± 14.4 81.6 ± 11.4 7.9 78.8 ± 10.6 85.5 ± 7.9 ◦

unless a CVT solution with 100% accuracy on both classes on the training set
is evolved, at which point the evolution is stopped. A population size of 1000
is used. To focus the evolution toward discovery of small but highly-effective
CVT solutions, two maximum tree depths are compared, 2 and 3, to restrict
the number of base classifiers in each solution. When tree depth is limited to 2,
an evolved CVT solution represents a pruned ensemble of at most 3 members;
similarly, a tree depth of 3 represents a pruned ensemble of at most 9 members.

5.3 Performance of Ensembles Using Puning Methods

For a fair comparison between these two ensemble-selection methods, we compare
ensemble performances when a similar number of base classifiers is returned by
the different selection methods, i.e., pruned ensembles limited to (at most) 3
and 9 members (odd-numbered ensemble sizes are preferred as no draws can
occur in the voting process). This allows for a comparison of which selection
method finds more effective (more accurate) subsets of base classifiers in the
pruned ensemble, as well as an investigation of ensemble behaviour when fewer
base classifiers are used in the ensemble voting (compared to the initial ensemble
results from Table 2). To generate pruned ensembles limited to (at most) 3 and 9
members, the CVT-based pruning method uses a maximum CVT tree-depth of
2 and 3, respectively. Table 3 reports the performances and sizes of the pruned
ensembles using the two pruning methods, i.e., fitness-based and CVT-based
pruning, on the test sets over 50 independent runs; these correspond to the
initial 50 MOGP experiments to generate the full ensembles (from Table 2).

Table 3 shows that the CVT-pruned ensembles outperform (i.e. dominate)
the fitness-pruned ensembles for both the smallest (at most 3 members) and
intermediate-sized (at most 9 members) ensembles in nearly all tasks (except
Spt). This suggests that the quality of the base classifiers found using the CVT
method is better than the fitness-based selection method, as these base classifiers
improve the predictive ability of the pruned ensembles due to better cooperation
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between individuals. The evolutionary search to discover good CVTs is reason-
ably fast, taking between 0.2 and 5 seconds on the tasks (2–3% of the training
time to evolve a MOGP front).

Comparing the pruned ensembles in Table 3 to the ensemble results from Table
2 shows that in nearly all tasks (except Ion for the MOGP ensemble and Yst2 for
NB), the smaller the ensemble, the better the minority class accuracies but the
poorer the majority class accuracies. The smallest MOGP ensemble is dominated
by the larger ensembles in only one task, Ion, also the least unbalanced task.
This suggests that in these unbalanced tasks, the pruned ensembles are better
than the larger ensembles but only for the minority class. The poorer majority
class accuracies may be due to over-fitting from the secondary training phase.
However, further investigation is required for future work.

6 Conclusions

The main goal of this paper develops a MOGP approach to classification with
unbalanced data to evolve an accurate and diverse ensemble of non-dominated
solutions along the minority and majority class trade-off frontier. We also com-
pare ensemble behaviour using the full non-dominated set of solutions to smaller
pruned ensembles, and develop a new pruning method to find small subsets of
highly-cooperative individuals. Our goals were achieved by examining the clas-
sification performance of the full and pruned MOGP-evolved ensembles on five
unbalanced (binary) tasks.

We show that the full MOGP ensembles is vulnerable to the learning bias
due to the influence of more Pareto front solutions with stronger majority class
accuracies (than solutions with good minority class accuracies). As the ensembles
sizes are reduced, the pruned MOGP ensembles show better accuracies on the
important minority class but not the majority class in the unbalanced tasks. The
new GP-based ensemble pruning method finds highly-cooperative individuals
for the pruned MOGP ensembles, as these have better accuracy on both classes
compared to a fitness-based selection method for pruning on these tasks.

For future work we will investigate these methods on more unbalanced data
sets and compare our results to canonical (single-objective) GP with different
fitness functions for classification with unbalanced data. We also will investigate
how the two new pruning techniques treat diversity in the pruned ensembles.
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Abstract. Compiling Bayesian networks (BNs) is one of the most effective ways
to exact inference because a logical approach enables the exploitation of local
structures in BNs (i.e., determinism and context-specific independence). In this
paper, a new parameter learning method based on compiling BNs is proposed.
Firstly, a target BN with multiple evidence sets are compiled into a single shared
binary decision diagram (SBDD) which shares common sub-graphs in multiple
BDDs. Secondly, all conditional expectations which are required for executing
the EM algorithm are simultaneously computed on the SBDD while their com-
mon local probabilities and expectations are shared. Due to these two types of
sharing, the computation efficiency of the proposed method is higher than that of
an EM algorithm which naively uses an existing BN compiler for exact inference.

1 Introduction

Bayesian networks (BNs) are directed acyclic graphs which represent a joint distribu-
tion over random variables and have established and used for representing uncertain
knowledge across a number of fields. Recently, compiling BNs has been attracting
much attention as one of the most effective approaches to exact inference. BNs can
be characterized by multi-linear functions (MLFs) [5] and logic-based BN compilation
approaches can factorize them exploiting their local structures [3] (i.e., determinism
and context-specific independence [1]). Also, compiling BNs and exploiting their local
structures are effective for parameter learning [3,2]. For example, the EM algorithm
[6] which is a popular parameter learning algorithm from incomplete data requires the
computation of a large number of conditional probabilities conditioned on evidence sets
(observations). Compiling a target BN into a structure which is convenient for exact
inference speeds up the computation. Exploiting local structures reduces the number
of parameters that have to be learned. However, existing BN compilation approaches
to inference still have redundancy from the viewpoint of parameter learning because
they compute multiple conditional probabilities separately despite the fact that there
are common local probabilities. In addition, they do not consider multiple evidence sets
when they compile a target BN even if those are given beforehand in learning unlike in
inference. As one way of utilizing the information of given evidence sets, an approach
which compiles a target BN with a single evidence set is proposed [2]. However, since
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it is not designed for dealing simultaneously with multiple evidence sets, it is unable to
share local probabilities even if they have common ones.

To fully utilize evidence sets given as observations, we propose a new parameter
learning method based on BN compilation. The proposed method compiles a target BN
with given evidence sets into a single shared binary decision diagram (SBDD) [8] and
then executes the EM algorithm in a manner of dynamic programming on the SBDD.
The advantages of our method are twofold. Firstly, it compresses multiple evidence
sets into an SBDD while their common sub-graphs are shared, i.e., it never builds up
the same sub-graph twice. Secondly, it simultaneously computes all conditional expec-
tations (which are required for executing the EM algorithm) on the SBDD while their
common local probabilities and expectations are shared, i.e., it never computes the same
quantities over and over again. These advantages become especially apparent when the
EM algorithm itself is repeated multiple times with different initial parameters, because
the SBDD is constructed only once in the beginning of the whole learning process,
i.e., it is never reconstructed even if parameters are changed.

In this paper, we compared our proposed method with an EM algorithm which
naively uses the state-of-the-art BN compiler ACE [3]. We applied them to two types
of randomly generated BNs, one without local structures and the other one with those.
The result shows that the computational speed of our method is superior to the naive
method in both types of BNs. It supports our claim that sharing common sub-graph and
local probabilities is an effective approach to the parameter learning problem for BNs.

The rest of the paper is organized as follows: In Section 2, we briefly review BNs
and formalize the parameter learning problem for them. Section 3 describes a new pa-
rameter learning method based on BN compilation. Experimental results are presented
in Section 4. Finally, we describe conclusion and related work in Section 5.

2 Preliminary

In this section, we briefly review Bayesian networks (BNs) and formalize the parameter
learning problem for them.

2.1 Bayesian Networks

A Bayesian network (BN) defines a joint distribution over a set of random variables
X≡{X1, . . . , XN} where Xi has a discrete finite domain. A BN consists of a directed
acyclic graph (DAG) G representing conditional independence and a set of conditional
probability distributions (CPDs). Each node in G is labeled by a random variable Xi and
has a CPD P (Xi | Πi) where Πi is its parent variables. Let xi and πi be a value of Xi

and a value vector of Πi, respectively. Then, a joint probability P (x1, . . . , xN ) can be
computed as a product of P (xi | πi) (1≤ i≤N ) as P (x1, . . . , xN ) ≡∏N

i=1 P (xi | πi),
where P (x1, . . . , xN ) and P (xi | πi) are shorthands for P (X1 =x1, . . . , XN =xN )
and P (Xi =xi | Πi =πi), respectively.

For example, Figure 1 shows a BN representing a joint distribution over X ≡{X1,
X2, X3} where Xi ∈ X is a binary random variable. In the example, CPDs are ex-
pressed as conditional probability tables (CPTs) whose elements are called parameters.
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Fig. 1. A BN for X1, X2 and X3
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According to [5], a BN can be characterized by a multi-linear function (MLF) which
consists of two types of variables, parameters θ and indicators λ≡{λik}ik, where λik

represents that Xi takes its k-th value xk
i . For example, the MLF for the BN in Figure 1

is defined as follows:

MLF ≡ λ11λ21λ31θ111θ211θ311 + λ11λ21λ32θ111θ211θ312

+ λ11λ22λ31θ111θ212θ321 + λ11λ22λ32θ111θ212θ322

+ λ12λ21λ31θ111θ211θ331 + λ12λ21λ32θ111θ211θ332

+ λ12λ22λ31θ111θ212θ341 + λ12λ22λ32θ111θ212θ342.

Using the above MLF, the probability of an evidence set e is computed by setting indi-
cators which contradict e to 0 and the others to 1. For example, the probability of e1 is
computed by setting λ11, λ21 and λ31 to 1 and the others to 0.

Our task in this paper is to learn parameters θ of a target BN from evidence sets
(observations) when its DAG structure G is given.

2.2 Parameter Learning Problem for BNs

We here formally define the parameter learning problem for BNs. We assume that a
DAG structure G of a target BN and a date set E are given. E is a vector {et}Tt=1 where
et is the t-th evidence set observed from the target BN independently. The problem is to
find a maximum likelihood estimate θ∗≡ argmaxθ L (θ|E), where L (θ|E) is the log
likelihood defined as L (θ|E) ≡ log P (E; θ) =

∑T
t=1 log P (et; θ). If each evidence

set in E is a complete instantiation of X , E is called complete data, otherwise called
incomplete data. In the case of complete data, θ∗ is readily computed as follows:

θ∗ ≡ {θ∗ijk}ijk, θ∗ijk ≡ Nijk/
∑

k′ Nijk′ ,
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where Nijk is the number of evidence sets in E which satisfy a proposition Aijk ≡
“Xi =xk

i , Πi =πj
i ”.

On the other hand, it is not so easy to find θ∗ from incomplete data because the
exact Nijk is not computable. Instead of Nijk , the EM algorithm [6], which is a way to
find θ∗ from incomplete data, uses the expectation of Nijk . It first randomly initializes
parameters θ(0). Then, it updates parameters by the following E- and M-step.

E-step: Computes conditional expectations E
(m)
ijk for all θijk defined as:

E
(m)
ijk ≡ E[Nijk]P(X|E;θ(m)) =

∑
et∈E

P
(
xk

i , πj
i | et; θ(m)

)
. (1)

M-step: Updates θ(m) to θ(m+1) by

θ
(m+1)
ijk ≡ E

(m)
ijk /

∑
k′ E

(m)
ijk′ . (2)

The EM algorithm iterates the above two steps until parameters converge and then out-
puts converged θ(m) as an estimate of θ∗. It is ensured that the parameters estimated
by the EM algorithm give a local maximum. To find the global maximum, the EM al-
gorithm itself is usually repeated several times changing the initial parameters θ(0).
According to the definition of the E-step, as many as |θ|×|E| conditional probabili-
ties would be computed in every E-step. As a matter of course, these probabilities are
computable by existing BN compilation approaches to exact inference, e.g., ACE [3].
However, computing them separately incurs redundancy because they have common lo-
cal probabilities. For example, P (xk

i , πj
i |et; θ(m)) and P (xk′

i′ , πj′
i′ |et; θ(m)) have those

as they are conditioned by the same evidence set et. Also, P (xk
i , πj

i |et; θ(m)) and
P (xk

i , πj
i |et′ ; θ(m)) have those since they correspond to the same probabilistic event

“Xi = xi, Π
j
i = πj

i ”. To avoid such computational redundancy, we propose a new
parameter learning method based on BN compilation. The method directly computes
conditional expectations E

(m)
ijk for all parameters θijk while their common local proba-

bilities and expectations are shared. Specially, two types of sharing are possible. One is
over evidence sets E and the other is over parameters θ. The detail of our method will
be described in the following section.

3 Proposed Method

In this section, we propose an efficient EM algorithm for BNs based on BN compilation.
Firstly, it encodes a data set E into boolean formulas and compiles them into a single
shared binary decision diagram (SBDD). Then, it learns parameters θ in a manner of
dynamic programming on the SBDD. The following is the detail of each step.

3.1 Encoding and Compiling

An evidence set et∈E observed from a target BN can be described as a boolean formula
in propositional variables Xik≡“Xi =xk

i ”. Let Ft, a boolean formula corresponding to



Compiling BNs for Parameter Learning Based on SBDDs 207

et, be defined as Ft ≡
∧

xk
i ∈et

Xik, where Xik is also described as a boolean formula

in Xijk≡“Xi =xk
i | Πi =πj

i ” recursively as follows:

Xik ≡
∨
πj

i

⎛
⎜⎝Xijk ∧

∧
xk′

i′ ∈πj
i

Xi′k′

⎞
⎟⎠ .

For example, let’s assume that an evidence set e1 ≡ (x1
1, x

1
2, x

1
3) is observed from the

BN in Figure 1. Then, its boolean formula F1 is defined as F1≡X11∧X21∧X31 where
X11, X21 and X31 are given as follows:

X11 =X111, X21 = X211,

X31 =(X311 ∧X11 ∧X21) ∨ (X321 ∧X11 ∧X22)
∨ (X331 ∧X12 ∧X21) ∨ (X341 ∧X12 ∧X22) .

By substituting the above formulas into the formula of F1, we finally obtain F1 =X111∧
X211 ∧X311. We consider a propositional variable Xijk as a random boolean variable
which takes true with probability θijk (i.e., P (Xijk; θ)≡ θijk). Here, we assume that
Xijk and Xi′j′k′ (i �= i′) are independent, and also that Xijk and Xijk′ (k �= k′) are
exclusive. Due to these assumptions, the probability of F1 is computed as follows:

P (F1; θ) ≡ P (X111 ∧X211 ∧X311; θ)
= P (X111; θ)P (X211; θ)P (X311; θ)
= θ111θ211θ311

= P (e1; θ) .

As the above example shows, the probability of an evidence set et can be computed as
the one of Ft. Thus, a joint distribution of a target BN can be expressed as a distribution
over random boolean variables {Xijk}ijk which has the same parameters θ. The distri-
bution is called a logic-based probabilistic model whose parameters θ can be learned
by the BO-EM algorithm [7] explained in 3.2.

There are two advantages of using the above encoding for parameter learning. The
first one is that logical expressions can exploit local structures, i.e., determinism and
context-specific independence (CSI), as shown in [3]. These local structures are ex-
pressed in our encoding as follows:

Determinism: If θijk =1 (0), then set Xijk to true (false).

CSI: If θijk =θij′k, then use Xijk instead of Xij′k.

For example, let’s assume we know in advance that θ341 = 0, θ342 = 1 (determinism)
and θ31k =θ32k (CSI) in the CPT for X3 in Figure 1. Then, the boolean formula of X31

is revised as X31 = (X311 ∧X11) ∨ (X331 ∧X12 ∧X21). This example shows that
our encoding exploits local structures and consequently the length of formulas and the
number of parameters are reduced.

The second advantage is that we can introduce state-of-the-art compression tech-
niques for boolean formulas. In this paper, we introduce a shared binary decision di-
agram (SBDD) [8] to compress boolean formulas for et ∈E. An SBDD is a directed



208 M. Ishihata, T. Sato, and S.-i. Minato

acyclic graph which compactly represents multiple boolean functions. For example,
Figure 2 shows an SBDD representing boolean formulas for the following five evidence
sets with the same local structures as mentioned above.

e1 ≡
(
x1

1, x
1
2, x

1
3

)
, e2 ≡

(
x1

3

)
, e3 ≡

(
x2

3

)
, e4 ≡

(
x1

1, x
1
3

)
, e5 ≡

(
x1

2, x
1
3

)
.

An SBDD consists of two types of nodes, variable nodes and terminal nodes. A variable
node is labeled by a boolean variable Xijk and has exactly two outgoing edges, 1-
edges (solid edges) and 0-edges (dashed edges). The 1-edge (resp. 0-edge) of Xijk

indicates that Xijk takes true (resp. false). A terminal node is labeled by 1 or 0 and has
no outgoing edge. An SBDD representing T boolean functions {Ft}Tt=1 has T input
edges labeled by a boolean function Ft. A path from an input edge Ft to the 1-terminal
(resp. 0-terminal) indicates a (partial) instantiation of {Xijk}ijk which makes Ft true
(resp. false). For example, the SBDD shown in Figure 2 has a path from F1 to the 1-
terminal (F1→X111→X211→X311→ 1), and the path means that F1 takes true if
X111, X211 and X311 take true. SBDDs sometimes have special edges called negative
edges (dotted edges) corresponding to negation. For example, the SBDD has a path
from F3 to the 1-terminal (F3 · · ·ˆ X111 ��� X211 → X311 → 1) which includes a
negative edge. The path indicates that F3 takes false even if it points the 1-terminal.
Due to negative edges, evidence sets which complement each other (e.g., F2 and F3)
are completely shared in SBDDs.

As Figure 2 shows, multiple evidence sets F1, . . . , F5 are compiled into an SBDD
while their common sub-graphs are shared. Using an SBDD reduces not only memory
but also time for parameter learning because our proposed method computes condi-
tional expectations in a manner of dynamic programming on the SBDD. Consequently,
sharing common sub-graphs in the SBDD implies sharing common local probabilities
and expectations in the E-step.

Various encoding methods have been proposed for factorizing MLFs into arith-
metic circuits (ACs) [4], and they employ two types of boolean variables, indicators
λ ≡ {λik}ik and parameters θ ≡ {θijk}ijk. On the other hand, our encoding method
employs two types of random boolean variables, {Xik}ik and {Xijk}ijk , where Xik

corresponds to an indicator λik and also Xijk corresponds to a parameter θijk . How-
ever, the SBDD shown in Figure 2 consists only of {Xijk}ijk (i.e., parameters). This
is because, in parameter learning setting, observations are given before the SBDD is
constructed. That is, the SBDD has already taken in the information of observations.
Consequently, once the SBDD is constructed, is is never revised through the whole
learning process. This is the key difference between our encoding and existing ones.

3.2 Learning

After encoding a data set E in boolean formulas and compiling them into an SBDD,
we learn its parameters θ by the BO-EM algorithm [7], which is an EM algorithm for
logic-based probabilistic models (LBPMs). A LBPM is defined as a joint distribution
over a set of random boolean variables. A probabilistic event on a LBPM is described
as a boolean formula in them. As shown in 3.1, observations from a target BN can be
described as boolean formulas in {Xijk}ijk , where Xijk is a random boolean variable
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F1 F2 F3

F4

F5

X111

X111

X111X111

X211X211

X311 X311

0. Compile E into an SBDD ΔE .

1. Randomly initialize θ
(0)
ijk for each i, j, k.

2. Compute backward probabilities B
(m)
nx for each

node n∈ΔE from bottom-up (x∈{0, 1}).
3. Compute forward expectations F

(m)
nx for each

node n∈ΔE from top-down (x∈{0, 1}).
4. Compute conditional expectations E

(m)
ijk for

each parameter θijk using B
(m)
nx and F

(m)
nx .

5. Update θ
(m)
ijk to θ

(m+1)
ijk by Eq. (2).

6. Repeat 2.-5. until parameters converge.

Fig. 2. An SBDD for F1, . . . , F5 and the overview of the BO-EM algorithm

with a probability θijk . Consequently, the parameter learning problem for BNs can be
formalized as the one for LBPMs. As a result, we can use the BO-EM algorithm to
learn parameters of BNs. The brief overview of the BO-EM algorithm is in Fig. 2. After
initializing parameters, the BO-EM algorithm computes backward probabilities and
forward expectations, which are similar to backward and forward probabilities of the
Baum-Welch algorithm (i.e., the EM algorithm specialized for hidden Markov models
(HMMs)). Then, the BO-EM computes conditional expectations E

(m)
ijk in linear time in

the SBDD size. In particular, its time and space complexity for HMMs are the same as
those of the Baum-Welch algorithm [7]. Consequently, our proposed method is a kind
of a generalization of the Baum-Welch algorithm to BNs in general. The important
point here is that our method exploits implicit common local patterns in the calculation
of conditional expectations and shares them through an SBDD even if a target BN has
no explicitly repeated patterns. In general, the EM algorithm itself is repeated several
times with different initial parameters θ(0) to avoid local maximums. However, in our
method, the SBDD is constructed only once in the beginning of the whole learning
process. Therefore, the benefit of using our method gets bigger as the EM algorithm is
repeated over and over again.

4 Experiments

In this section, we experimentally compare our proposed method with an naive EM al-
gorithm for BNs, which computes conditional expectations E

(m)
ijk as the sum of condi-

tional probabilities P (xk
i , πj

i | et; θ(m)). For computing these conditional probabilities,
we use ACE1 which is the state-of-the-art BN compiler package. ACE compiles a BN
into an AC and computes probabilities of queries in linear time in the AC size. The key
difference between ACE and our method is that ACE computes one probability at a time
by tracing the AC whereas our method simultaneously computes all conditional ex-
pectations E

(m)
ijk by tracing an SBDD representing evidence sets. For instance, suppose

1 Available for download at http://reasoning.cs.ucla.edu/ace.
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there is a BN which has 50 parameters and our task is to learn them from 100 evidence
sets by the EM algorithm. The EM algorithm requires the computation of as many as
50 conditional expectations in every E-step. In the task, the naive method would com-
pile a target BN with each evidence set. As a result, 100 ACs are constructed and 50
conditional probabilities are separately computed on each AC. Eventually, 5,000 con-
ditional probabilities are independently computed and summed up to get conditional
expectations in every E-step. The reason why the naive method compiles a BN with
an evidence set is that exploiting evidence sets in ACs accelerates inference time [2].
Contrastingly, our method compiles 100 evidence sets into a single SBDD and directly
computes 50 conditional expectations on the SBDD while common sub-graphs and lo-
cal probabilities (or expectations) are shared.

For evaluating our method, we applied the naive method and our method to the pa-
rameter learning problem of randomly generated BNs, and compared their size (edge
count), compile time and learning time. Here, the learning time is the time to execute
one E-step (i.e., the time to compute all conditional expectations). Firstly, we randomly
generated 100 BNs for binary random variables {Xn}Nn=1 with N ∈{10, 20, 30, 40, 50}.
Then, we learned their parameters from a date set E with |E| ∈ {10, 50, 100}. In this
experiment, we generated two types of BNs, one without local structures and the other
one with those. The results of applying the methods to the two types BNs are shown in
Table 1 and Table 2. Each table shows averages of the edge count, the compile time and
the learning time of the naive method and our method.

The experiments serve to demonstrate three points. The first point is that our method
makes a significant improvement in learning time in all cases. This improvement is es-
pecially significant when the E-step is repeated numerous times. For example, suppose
we iterate the E-step and the M-step 100 times in an EM execution and repeat it 100
times changing initial parameters in the bottom case in Table 1. Eventually, the E-step is
repeated 10,000 times in total. This setting seems natural considering that the estimated
parameters by the EM algorithm give a local maximum. To execute 10,000 E-steps, the
naive method would take more than a whole day whereas our method takes only about
40 minutes. The experiments also show that the compile time is improved too. However,
in the parameter learning setting, it matters less because the compilation is done only
once at the beginning of learning and it takes much less time than the whole learning
process.

The second point regards the effect of sharing evidence sets. In the result of the
naive method, all of the edge count, the compile time and the learning time increase
almost ten times when the number of evidence sets increases ten times. However, those
of our method increase less than ten times. The result supports our claim that sharing
sub-graphs between evidence sets improves on the parameter learning for BNs. The
improvement is particularly remarkable on BNs with less parameters because SBDDs
become less complex with less parameters and common sub-graphs often appear in
such simple structures.

The final point shown in the results concerns the effect of local structures in learning.
Local structures assumed in the experiments are the following context-specific indepen-
dence (CSI) for each Xi:

Xi ⊥⊥ Xj | Xk =x1
k (∀Xj , Xk ∈ Πn, j > k).
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Generally, a CPT size for Xi is 2|Πi|+1, however, the above CSI decreases it to 2(|Πn|+
1), and that is surely confirmed in Table 2. As a result, the learning time is improved
in the result of the both method. Especially in the case of N =50, improvement of our
method is significant. This is because, as described in the second point, the effect of
sharing evidence becomes prominent with less parameters. Consequently, our method
deeply exploits local structures and the effect is much more significant than that of BN
compilation approaches for exact inference.

Table 1. Comparison random BNs without local structures

Target BN property Edge count Compile Time [s] learning Time [s]
Nodes Edges Parameters Evidence sets ACs SBDD ACs SBDD ACE Proposed

10 1.11e+03 4.59e+02 3.85e+00 4.61e−03 3.69e−01 9.69e−05
10 12.5 68.0 50 5.50e+03 1.82e+03 1.92e+01 6.16e−03 1.85e+00 3.09e−04

100 1.10e+04 3.34e+03 3.85e+01 8.35e−03 3.71e+00 5.43e−04
10 2.59e+03 3.33e+03 4.04e+00 1.48e−02 4.37e−01 4.89e−04

20 27.8 167.2 50 1.33e+04 1.42e+04 2.02e+01 2.70e−02 2.21e+00 1.72e−03
100 2.66e+04 2.79e+04 4.05e+01 4.29e−02 4.42e+00 3.03e−03
10 4.32e+03 1.72e+04 4.32e+00 9.22e−02 6.58e−01 1.92e−03

30 42.2 265.3 50 2.16e+04 7.33e+04 2.18e+01 2.12e−01 3.29e+00 7.82e−03
100 4.30e+04 1.43e+05 4.36e+01 3.53e−01 6.59e+00 1.53e−02
10 6.21e+03 8.76e+04 4.45e+00 8.38e−01 7.84e−01 9.45e−03

40 57.5 378.3 50 3.09e+04 3.74e+05 2.22e+01 1.67e+00 3.93e+00 4.03e−02
100 6.18e+04 7.10e+05 4.46e+01 2.52e+00 7.88e+00 7.65e−02
10 7.90e+03 2.24e+05 4.81e+00 1.40e+00 9.28e−01 2.44e−02

50 71.9 488.7 50 4.00e+04 1.02e+06 2.37e+01 4.28e+00 4.69e+00 1.09e−01
100 8.06e+04 2.04e+06 4.75e+01 7.84e+00 9.39e+00 2.25e−01

Table 2. Comparison for random BNs with local structures

Target BN property Edge count Compile Time [s] learning Time [s]
Nodes Edges Parameters Evidence sets ACs SBDD ACs SBDD ACE Proposed

10 4.22e+02 6.24e+01 3.86e+00 3.12e−03 2.77e−01 3.48e−05
10 12.6 19.4 50 2.12e+03 1.99e+02 1.94e+01 3.80e−03 1.39e+00 6.18e−05

100 4.27e+03 3.10e+02 3.87e+01 5.00e−03 2.78e+00 8.73e−05
10 8.93e+02 1.85e+02 4.03e+00 4.03e−03 3.26e−01 5.15e−05

20 27.2 40.1 50 4.45e+03 7.63e+02 2.02e+01 5.66e−03 1.63e+00 1.42e−04
100 8.89e+03 1.41e+03 4.03e+01 7.94e−03 3.25e+00 2.49e−04
10 1.37e+03 3.60e+02 4.19e+00 5.16e−03 4.68e−01 7.44e−05

30 42.8 63.2 50 6.87e+03 1.59e+03 2.10e+01 7.88e−03 2.38e+00 2.59e−04
100 1.37e+04 3.09e+03 4.19e+01 1.18e−02 4.75e+00 4.65e−04
10 1.85e+03 5.74e+02 4.36e+00 6.20e−03 5.52e−01 1.05e−04

40 57.6 84.2 50 9.17e+03 2.63e+03 2.21e+01 1.07e−02 2.73e+00 4.01e−04
100 1.84e+04 5.14e+03 4.42e+01 1.66e−02 5.44e+00 7.19e−04
10 2.32e+03 9.74e+02 4.67e+00 7.87e−03 6.32e−01 1.59e−04

50 72.8 103.6 50 1.17e+04 4.44e+03 2.35e+01 1.46e−02 3.17e+00 6.31e−04
100 2.31e+04 8.72e+03 4.65e+01 2.34e−02 6.23e+00 1.08e−03

5 Conclusion and Related Work

In this paper, we considered the parameter learning problem for BNs and pointed out
that the EM algorithm based on existing BN compilation approaches for inference has
redundancy. Then, we proposed a new parameter learning method based on BN compi-
lation. Our method is a kind of a propositionalized generalization of the Baum-Welch
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algorithm to any BNs, i.e., it detects implicit common local patterns in the calcula-
tion of conditional expectations and shares them through an SBDD even if a target BN
has no explicitly repeated patterns. Finally, we experimentally showed that it makes a
significant improvement in parameter learning for randomly generated BNs.

An approach to exploit a given evidence set in exact inference has been proposed
by [2]. The key difference between their method and our method is that the former
compiles a target BN with a single evidence set into an AC, whereas the latter does
with multiple evidence sets into an SBDD. It follows that our method enables to share
common sub-graphs and probabilities (or expectations) between evidence sets, and also
that it is effective for the parameter learning problem because a massive number of
observations are usually given in the problem.

The idea of sharing sub-graphs in compilation approaches has been proposed by [9].
Their method employes the same encoding as [5] and factorizes an MLF of a target BN
using a shared ZDD (SZDD) which is similar to SBDDs. The point is that the method
firstly compiles partial MLFs, which correspond to nodes in the BN, into an SZDD.
Then, it constructs an ZDD representing the whole MLF depending on given query.
Consequently, it is unable to share common local probabilities between evidence sets.
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Abstract. Research into learning from imbalanced data has increasingly 
captured the attention of both academia and industry, especially when the class 
distribution is highly skewed. This paper compares the Area Under the Receiver 
Operating Characteristic Curve (AUC) performance of bagging in the context of 
learning from different imbalanced levels of class distribution. Despite the 
popularity of bagging in many real-world applications, some questions have not 
been clearly answered in the existing research, e.g., which bagging predictors 
may achieve the best performance for applications, and whether bagging is 
superior to single learners when the levels of class distribution change. We 
perform a comprehensive evaluation of the AUC performance of bagging 
predictors with 12 base learners at different imbalanced levels of class 
distribution by using a sampling technique on 14 imbalanced data-sets. Our 
experimental results indicate that Decision Table (DTable) and RepTree are the 
learning algorithms with the best bagging AUC performance. Most AUC 
performances of bagging predictors are statistically superior to single learners, 
except for Support Vector Machines (SVM) and Decision Stump (DStump). 

Keywords: imbalanced class distribution, AUC performance, bagging.  

1 Introduction 

Research into learning from imbalanced data has increasingly captured the attention 
of both academia and industry, especially when the applications involve a highly 
skewed class distribution: for instance, in fraud detection [1], text classification [2] 
and medical diagnostics [3-5]. In these extremely imbalanced situations, the minority 
class is more important than the majority class; however, most traditional learning 
algorithms generate high accuracy on the majority class and perform poorly on the 
minority class [2, 6-8]; the evaluation metrics, such as the overall accuracy or error 
rate, are ineffective for evaluating the performance of classifiers in extremely 
imbalanced data [8-12]. We have therefore adopted AUC of the Receiver Operating 
Characteristic (ROC) curve as an evaluation metric to investigate the effect of 
different imbalanced levels of class distribution on bagging performance over 
multiple imbalanced data-sets. This investigation utilizes a sampling technique to alter 
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the class distribution at different imbalanced levels. The statistical analyses [13] 
performed instills confidence in the validity of the conclusions of this research.     

Bagging (bootstrap aggregating), one of the most popular and effective ensemble 
learning methods, was introduced to reduce the variance of an unstable base learner 
by Breiman in 1996 [14]. Many theories have been proposed regarding the 
effectiveness of bagging for classifications based on bias and variance decomposition 
[15]. Theoretical investigations into why bagging works have been described by 
previous researchers [14, 16, 17]. Existing studies demonstrate the effectiveness of 
the bagging predictor; however, a comprehensive study of the bagging predictors’ 
AUC performance with respect to different imbalanced levels of class distribution has 
not been undertaken. Bagging has been widely applied in many real world 
applications, but some practical questions have not been clearly answered; e.g., which 
bagging predictors are the best learning algorithms on their average performance, 
when the imbalanced levels of class distribution change, and in such situations, 
whether bagging is superior to single learners. Answering these questions presents the 
following research challenges: (1) how to evaluate bagging performance at different 
imbalanced levels of class distribution, and (2) how to conduct a fair and rigorous 
study to evaluate multiple algorithms over multiple data-sets.  

Our main contribution is twofold: we (1) conduct statistical comparisons to 
investigate when bagging significantly improves the predictive performance of the 
single learner with respect to different levels of class distribution, and (2) provide 
ranks of the AUC performance of all bagging predictors. As a result, our research 
provides a full comparison of the AUC performance of bagging predictors with 
underlying 12 base learners and with different levels of class distribution. The 
experimental results provide a useful guide for data mining practitioners to choose 
proper learners when using bagging predictors for imbalanced applications. 

The paper is organized as follows. Section 2 presents the detail of the designed 
framework. Section 3 presents evaluation metrics and Section 4 provides the 
experimental setting. Section 5 presents the experimental results analysis to compare 
the performance of bagging with each of the single learners and to rank all bagging 
predictors with respect to different imbalanced levels of class distribution. Section 6 
concludes the paper. 

2 Designed Framework 

The designed framework is presented in Fig. 1, and the evaluation is divided into 
tasks as follows: (1) utilize the sampling technique to alter each original imbalanced 
data-set into nine new data-sets with different imbalanced levels of class distribution; 
(2) perform 10-trial 10-fold cross-validation evaluation on the altered nine data-sets to 
obtain nine pair of (FPR, TPR) for each learner to form a ROC; (3) compare bagging 
with each of the single learners: the comparisons of the AUC performances are used 
to determine whether bagging is superior to each of the single learners at different 
imbalanced levels of class distribution over multiple imbalanced data-sets; and (4) use 
both average ranks of AUC performance and average AUC performance of bagging 
predictors to compare all the bagging predictors to determine which predictors have 
the best performance.  
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Fig. 1. Designed Framework 

3 Evaluation Metrics 

Mis-classification error rate is a popular choice for evaluating the performance of a 
classifier; however, it might not be a good metric for measuring the predictive 
performance of imbalanced data-sets. As in real world applications, the minority class 
is more important than the majority class; normally a high prediction accuracy is 
required in a minority class and therefore, a simple estimated error rate has limitations 
in evaluating the performance of a classifier on a minority class [18].  

Table 1 presents the confusion matrix for a binary classification problem. Table 2 
presents the formulas of True Positive Rate (TPR) and False Positive Rate (FPR).  

The ROC is a well known performance metric for evaluating and comparing 
algorithms. We utilize the calculated AUC of ROC curves as an evaluation metric to 
compare bagging and single learners over multiple imbalanced data-sets.  

A ROC graph [12] is a two-dimensional plot where the x-axis denotes the FPR of a 
classifier and the y-axis denotes the TPR of a classifier. In the ROC plot, the upper 
left point (0,1) is the most desired point, known as “ROC Heaven”, presenting 100% 
true positive and zero false positives, while the point (1,0) is the least desired point, 
called “ROC Hell”.  

AUC [19, 20] is not biased against the minority class and it has an important statistical 
property [21], so it is commonly used as an evaluation criterion to assess the average 
performance of classifiers on data with imbalanced class distribution [18, 20-22].  

Table 1. Confusion matrix for a binary classification problem 

 Predicted Positives Predicted Negatives 

Positive Instances (P) True Positive (TP) False Negatives (FN) 

Negative Instances (N) False Positive (FP) True Negatives (TN) 

Table 2. True Positive Rate and False Positive Rate 
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4 Experimental Setting 

We implement bagging prediction model in Java, and use WEKA implementations of 
the 12 algorithms with default parameter settings in this empirical study [23]. We 
investigate the AUC performance of bagging predictors with respect to nine difference 
imbalanced levels of class distribution on 14 imbalanced binary-class data-sets which 
are collected from the UCI Machine Learning Repository [24].   

Firstly, we utilize the sampling technique to alter each original imbalanced data-set 
into nine new data-sets with nine different imbalanced levels of class distribution, i.e., 
we regard the original minority class (sample size P) as the positive class: 

P = 10% M 1 = 20% M 2= … = 90% M9 

Secondly, we randomly select samples from the majority class without a replacement 
as a negative class (sample sizes as 90% M 1, 80% M 2 … 10% M 9) 

Thirdly, the nine new data-sets, D1, D 2 … D 9 (sample size M 1, M 2… M 9, 

respectively): 

-  M 1 = 10% positive class + 90% negative class 
- M 2 =20% positive class + 80% negative class 
- … 
- M 9 = 90% positive class + 10% negative class.   

Finally, we perform a 10-trial 10-fold cross-validation evaluation on the altered nine 
data-sets for each learning algorithm to obtain nine pairs of (FPR, TPR) for the single 
learner and nine pairs of (FPR, TPR) for bagging to form ROC curves.  

Overall, for each learning algorithm on each original data-set, we build 18 models 
to form two ROC curves, one for the single learner and one for the bagging predictor. 
We investigate the AUC performance of bagging predictors with 12 algorithms at nine 
levels of sample distributions on 14 data-sets. As a result, we have built 3024 models 
in total to evaluate the AUC performance of bagging predictors.  

In order to reduce uncertainty and obtain reliable experimental results, all the 
evaluations are assessed under the same test conditions by using the same randomly 
selected bootstrap samples (with replacements) in each fold of the 10-trial 10-fold 
cross-validation on each data-set. 

4.1 Selection of Base Learners 

The 12 most common learning algorithms have been selected for this study from the 
Weka implementation. They are as follows: (1) C4.5 decision tree learner (J48) 
proposed by Quinlan, which is based on gain ratio to select the splitting attribute; (2) 
Naïve Bayes (NB) learner based on Bayes theorem, a simple, yet effective learner for 
large data-sets; (3) Support Vector Machines (SVM), a complex model for the 
classification, which uses mapping to transform the original training data into a higher 
dimension and the decision boundary is determined by finding the optimal separating 
hyper-planes, and SMO is selected from the Weka implementation for this study; (4) 
K-Nearest Neighbors (KNN), an IBK lazy learner in the Weka implementation is used 
for this study with the default setting; (5) Multi-layer Perceptron (MLP), a neural 
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network learner; (6) PART, (7) Decision Table (DTable), and (8) OneR are rule 
learners; (9) Decision Stump (DStump), (10) Random Tree (RTree), (11) REPTree, 
and (12) Naïve-Bayes-Trees (NBTree) are tree family learners. 

4.2 Data-Sets 

A summary of the characteristics of the 14 imbalanced data-sets is displayed in Table 
3. The data-sets were employed using different criteria, such as the number of 
instances from 57 up to 3772, the number of attributes from 7 up to 61, and the 
frequency of each class from almost balanced to extremely imbalanced. 

Table 3. Imbalanced Data-Sets  

Data-sets Information Data Class Data 

Index Name Attribute Instances Frequency Classes 

1 breastc 10 286 201, 85 2 

2 bupa 7 345 145, 200 2 

3 crx 16 690 307,383 2 

4 Crx-g 21 1000 700,300 2 

5 diabetes 9 768 500, 268 2 

6 ionosphere 35 351 126,225 2 

7 Kr-vs-kp 37 3196 1669,1527 2 

8 laour 17 57 20,37 2 

9 stalogheart 14 270 120, 150 2 

10 sick 30 3772 3541, 231 2 

11 sonar 61 208 97,111 2 

12 Tic-tac-toe 10 958 626,332 2 

13 wbreastc 10 699 458, 241 2 

14 WDBC 31 569 212,357 2 

5 Experimental Results Analysis  

The experimental results analysis includes the following three sub-sections: A. 
statistical test, B. compare bagging with each of single learners, and C. compare 
bagging predictors with one other.  

5.1 Statistical Test 

In order to conduct a rigorous and fair analysis, non-parametric tests were performed 
for the statistical comparison of learners: the Wilcoxon signed-rank test for 
comparison of two learners, and the Friedman test with the corresponding post-hoc 
Nemenyi test for comparison of multiple learners [13]. 

The Wilcoxon Signed-Rank Test. This is a non-parametric statistical hypothesis test 
which is considered to be an alternative to the paired t-test. The main difference from  
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a t-test is that this test does not require assumptions about the populations of a normal 
distribution. This test is the most accurate non-parametric test for paired data to 
determine whether there is a difference between paired samples. The Wilcoxon 
signed-rank test is considered to be safe from a statistical point of view and is more 
powerful than the t-test when test conditions cannot meet the assumption 
requirements of a parametric test [13]. We therefore performed this test to determine 
whether there really is an improvement of performance between the two learners, 
bagging and single learner. 

Friedman Test and Post-hoc Nemenyi Test. Both tests are non-parametric for 
comparing multiple algorithms over multiple datasets. Firstly, all the algorithms are 
ranked on each data-set, giving the best performing algorithm the rank of 1, the 
second best rank 2, and so on. If there are ties, average values are assigned.  

Secondly, the average rank of the algorithm,   is obtained, 

where   is the rank of the j-th of d algorithms on the i-th of N data-sets.  

Finally, the Friedman test compares the average ranks of algorithms and checks 
whether there is a significant difference between the mean ranks. The Friedman 
statistic is calculated as:         

 
where N is the number of data-sets, d is the number of compared algorithms, and   

is the average rank of algorithms. This statistic is  distributed with k-1 degrees of 

freedom.  
The Null Hypothesis of this test states that the performances of all algorithms are 

equivalent. If the Null Hypothesis is rejected, it does not determine which particular 
algorithms differ from one another. A post-hoc Nemenyi test is needed for additional 
exploration of the differences between mean ranks to provide specific information on 
which mean ranks are significantly different to each other to identify them. The 
critical difference is calculated as:  

  

The critical values qα are based on the Studentized range statistic divided by  [13]. 
If the mean ranks are different by at least the critical difference, the performance of 
two learners is significantly different. 

5.2 Comparison between Bagging and Single Learners 

The Wilcoxon Signed Rank Test is used to determine whether there really is an 
improvement of AUC performance between two learners, i.e., bagging SVM and 
single learner SVM. The Null Hypothesis shows that the median of differences 
between Bagging and each single learner equals 0.  
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Rule: Reject the Null Hypothesis if the p-value Test Statistic W is less than  
at the 95% confidence level of significance. 

Table 4 presents the summarized results of the Wilcoxon signed-rank test for the 
difference AUC performance between bagging and single learners. If a calculated p-
value is greater than α value, 0.05, then the P-values are highlighted and we accept the 
Null Hypothesis, for example SVM, and DStump. For all other cases, we reject the 
Null Hypothesis. In addition, we observe that the majority of bagging predictors’ 
AUC values are larger than single learners’ AUC values. The experimental results 
therefore demonstrate that the average performances of bagging are better than most 
single learners, except for SVM and DStump learners. 

Table 4. The comparison of the AUC performance of bagging and single learners. The 
significance level is .05.  

Wilcoxon Signed Rank Test to compare the AUC performance of Bagging and Single Learners 

Learners J48  RepTree RandTree NB SVM DStump 

p-values .004 .035 .004 .001 .096 .074 

Learners OneR DTable PART KNN NBTree MLP 

p-values .001 .001 .004 .008 .026 .004 

5.3 Comparison between Bagging Predictors  

The Friedman test is used for comparison of multiple learners over multiple data-sets. 
we first of all rank the bagging predictors on each data-set according to their AUC 
metric from 1 to 12, respectively, e.g., the best performance of the bagging predictor 
with the largest value of the AUC is signed as ranking 1, with the second largest value 
is signed as ranking 2, and so on; if there are ties, the averaged value of their ranking 
orders is signed as their ranking. We then perform the Friedman test to compare the 
AUC ranking of 12 bagging predictors and to obtain mean ranks in Table 5. Table 5 
reports the average AUC ranks of the bagging predictors in the third and the last rows. 
 As the Null Hypothesis is rejected, the Friedman test indicates there is at least a 
difference between the mean ranks of bagging predictors. Therefore, the 
corresponding post-hoc Nemenyi test for additional exploration of the differences 
between mean ranks provides specific information on which mean ranks are 
significantly different from one another.  

Table 5. Mean rank of Friedman Test for AUC performance of Bagging Predictors 

Mean Rank of Friedman Test for AUC Performance of Bagging Predictors 

Predictors DTable RepTree OneR RandTree J48 PART 

Mean Ranks 3.00 4.14 4.71 5.36 5.43 6.36 

Predictors NBTree DStump SVM KNN MLP NB 

MeanRanks 6.50 7.07 7.64 9.00 9.21 9.57 
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Fig. 2. Average ranks of AUC performance for 12 bagging predictors, where the x-axis denotes 
the ranking order of the bagging predictors, while the y-axis denotes the average rank of the 
bagging predictors’ AUC performance. The error bars present the “critical difference” of the 
Nemenyi test.     

Fig. 2 presents an empirical comparison of the AUC performances of 12 bagging 
predictors, where the x-axis denotes the ranking order of the bagging predictors, and 
the y-axis denotes the average rank of the bagging predictors’ AUC values. The error 
bars indicate the “critical difference” of the Nemenyi test. The AUC performance of 
two bagging predictors is significantly different if the corresponding error bars do not 
overlap. Overall, the group of Bagging DTable and RepTree has the best average 
ranks of AUC performance, while the group of bagging NB, MLP and KNN has the 
worst average ranks of AUC performance. In addition, there are statistically 
significant differences between the two groups’ average ranks of AUC performance. 
The authors [25] introduced a new method using two dimensional robustness and 
stability decomposition to categorize base learners into different categories. 
According to their results, DTable and RepTree are categorized as unstable base 
learners, while NB, MLP and KNN are categorized as stable learners. We therefore 
demonstrate that the unstable base learners, DTable and RepTree contribute to the 
best bagging predictors’ AUC performance, while the stable base learners, NB, MLP 
and KNN lead to the worst bagging predictors’ AUC performance when the 
imbalanced levels of class distribution changed at nine different levels on each data-
set, over all 14 data-sets.  

Table 6. Average AUC performance of Bagging Predictors on 14 imbalanced data-sets 

Average AUC Performance of Bagging Predictors 

Predictors DTable RepTree OneR RandTree J48 PART 

Mean  .668 .598 .585 .561 .552 .530 

Variance .048 .097 .037 .065 .082 .071 

Predictors NBTree DStump SVM KNN MLP NB 

Mean .519 .511 .510 .453 .435 .420 

Variance .064 .057 .084 .042 .073 .055 

 
Table 6 presents the average AUC performance of bagging predictors on 14 data-

sets. Mean (at the third and fifth rows) indicates the average value of the AUC 
performance of bagging predictors on 14 imbalanced data-sets in Fig. 3. Variance (at 
the fourth and last rows) indicates the corresponding value of error bars in Fig. 3.   
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Fig. 3.  The average AUC performance of bagging predictors over 14 data-sets, where the x-
axis indicates the name of the bagging predictors, where the y-axis indicates the average value 
of AUC and the error bar indicates the variance value 

Fig. 3 presents the summary of the observed average AUC performance of bagging 
predictors over 14 imbalanced data-sets in table 6. In this plot, the vertical axis 
indicates the average value of the AUC performance of bagging predictors, while the 
horizontal axis indicates the sorted average AUC performance of bagging predictors 
in descending order over the total benchmark of imbalanced data-sets, while the error 
bar indicates the variance of the observed average AUC performance. We note that 
Fig. 2 and Fig. 3 present a similar ranking order of bagging predictors, with the 
exception of NBTree.  

6 Conclusion 

We empirically investigated the AUC performances of 12 bagging predictors with 
respect to different levels of class distribution on 14 imbalanced data-sets. The under-
sampling technique was utilized to alter the class distribution at different imbalanced 
levels. This research provided a full comparison of the AUC performances of bagging 
predictors with underlying 12 base learners at different levels of class distribution. 
The experimental results indicated that the AUC performances of bagging are 
statistically superior to single learners, except for SVM and DStump. Moreover, 
comparing the AUC performances of bagging, the group of the unstable learners, 
DeciTable and RepTree are the learning algorithms with the best bagging average 
performances, while the group of the stable learners, NB, MLP and KNN lead to the 
worst bagging predictors. In addition, there are significant differences between the 
two groups.  
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Abstract. Variable selection or feature ranking is a problem of funda-
mental importance in modern scientific research where data sets com-
prising hundreds of thousands of potential predictor features and only a
few hundred samples are not uncommon. This paper introduces a novel
Bayesian algorithm for feature ranking (BFR) which does not require
any user specified parameters. The BFR algorithm is very general and
can be applied to both parametric regression and classification problems.
An empirical comparison of BFR against random forests and marginal
covariate screening demonstrates promising performance in both real and
artificial experiments.

1 Introduction

Variable selection or feature ranking is a problem of fundamental importance in
modern scientific research where data sets comprising hundreds of thousands of
potential features and only a few hundred samples are not uncommon. In this
setting, popular methods for importance ranking of features include the non-
negative garotte [1], the least angle shrinkage and selection operator (LASSO) [2]
and variants [3–5] as well as algorithms based on independence screening [6, 7].
The availability of computationally efficient learning algorithms for LASSO-type
methods [8, 9] has made this approach particularly common in the literature. In
addition, the LASSO and its variants fit all the covariates simultaneously, tak-
ing into account the correlation between the covariates, in contrast to marginal
methods that examine each covariate in isolation.

An important issue with the application of LASSO-type methods for variable
selection is how to specify the regularization or shrinkage parameter which deter-
mines the actual ranking of variables [10]. This is a highly challenging problem
where a model selection method such as cross validation (CV) can lead to incon-
sistent results [11]. The problem may be circumvented by framing the LASSO in
a Bayesian setting [12, 13] where the regularization parameter is automatically
determined by posterior sampling. However, Bayesian LASSO-type algorithms
cannot fully exclude any particular variable and thus do not provide an auto-
matic importance ranking for the candidate features.
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This paper presents a novel Bayesian algorithm, henceforth referred to as
BFR, for variable selection in any parametric model where samples from the
posterior distribution of the parameters are available. The new algorithm (see
Section 2) computes an importance ranking of all observed features as well as
credible intervals for these feature rankings. The credible intervals can then be
used to remove features from further analysis that contribute little to explaining
the data. The algorithm is very general, requires no user specified parameters and
is applicable to both parametric regression and classification problems. The BFR
algorithm is compared against random forests [14] and independence screening
by generalized correlation [7] in Section 3. Empirical tests using artificially gen-
erated data as well as real data demonstrate excellent performance of the BFR
algorithm.

2 Bayesian Feature Ranking (BFR) Algorithm

Given a data set comprising n samples

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, (1)

where xi ∈ Rp and yi ∈ R, the task is to select which of the p covariates, if any,
are relevant to explaining the target y = (y1, . . . , yn)′. The target variable is
assumed to be either real (regression task) or m-ary (classification task, m ≥ 2),
and to belong to the generalized linear family of statistical models with coeffi-
cients θ ∈ Θ. Arrange the covariates into an (n × p) matrix X = (x′

1, . . . ,x
′
n)′.

Without any loss of generality, we assume that the covariates are standardised
to have zero mean and unit length, that is,

n∑
i=1

Xij = 0,

n∑
i=1

X2
ij = 1. (2)

Furthermore, we assume that there exists B > 0 samples {θ1, θ2, . . . , θB} from
the posterior distribution p(θ|X,y) of the coefficients given the data.

The BFR algorithm proceeds by ranking the p covariates based on the ab-
solute magnitude of the parameters in each posterior sample. That is, given a
posterior sample θi, the parameters are ranked in descending order of |θij | for
j = 1, 2, . . . , p. This process requires that the covariates are standardised as in
(2) so that the absolute magnitude of some parameter θij is an indication of
the amount of variance explained by the corresponding column of the design
matrix (Xkj , k = 1, . . . , n). The motivation for this comes from the fact that in
a linear regression model, the amount of variance explained by covariate j with
associated parameter θj is

θ2
j

(
n∑

k=1

X2
kj

)
.

Due to the fact that we have standardised the covariates to have unit length, the
amount of variance explained reduces simply to θ2

j . This implies that ranking
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covariates in decreasing order of absolute magnitude of their associated coeffi-
cients is equivalent to ranking them in descending order of variance explained.
The ranking process is repeated in turn for each of the posterior samples, result-
ing in B possible rankings of the p covariates. The final ranking of the covariates
is determined from the complete set of rankings based on the empirical 75th
percentile of each of the B possible rankings. Furthermore, the set of rankings
can also be used to compute Bayesian credible intervals for the inclusion of each
covariate. The BFR procedure is formally described in Algorithm 1.

Algorithm 1. BFR algorithm for feature ranking
Input: standardised feature matrix X ∈ Rn×p, standardised target vector y ∈ Rn

Output: feature ranking r̃ = (r̃1, r̃2, . . . , r̃p) (1 ≤ ri ≤ p), credible intervals
1: Obtain B samples {θ1, θ2, . . . , θB} from the posterior distribution, θ|X, y

θi ∼ θ|X, y (3)

2: b ← �B/10� {number of burnin samples}
3: t ← 5 {tempering step}
4: Initialise ranking matrix R = (r1, r2, . . . , rp) = 0p×B , ri ∈ Rp

5: for i = b to B step t do
6: Sort θi = (θi1, θi2, . . . , θip)

′ by absolute magnitude |θij | in descending order
1. Denote the sorted parameter vector

θ∗
i = (θ∗

i1, θ
∗
i2, . . . , θ

∗
ip)

′

7: Compute ranking ri = (ri1, ri2, . . . , rip)
′ from θ∗

i for all p features
1. The rank of feature j is rij , where 1 ≤ rij ≤ p
2. Absolute value of |θ∗

ij | determines rank of feature j
3. If rij′ = 1 then |θ∗

ij′ | ≥ |θ∗
ij |, ∀j �= j′

8: end for
9: For each feature, compute the 25th and 75th rank percentiles using rank matrix R

10: Compute the final feature ranking, r̃, using R
1. Sort the 75th percentiles for each feature in ascending order
2. Final rank of feature j is r̃j , where 1 ≤ r̃j ≤ p
3. If r̃j′ = 1 then 75th percentile for feature j is smaller than all j �= j′

11: Compute 95% CI for features from 2.5th and 97.5th percentiles of R

The algorithm begins by choosing which of the posterior samples will be used
for ranking of the p covariates. The first ten percent of the initial posterior
samples are discarded as burnin and then every t = 5th sample is used for the
ranking method (Lines 1–3). The covariates are ranked based on the absolute
magnitude of the parameters for each accepted sample, resulting in a set of possi-
ble rankings for the p covariates (Lines 5–8). The final ranking of the covariates,
based on the 75-th percentile, and the 95% credible interval are computed in
Line 10 and Line 11, respectively. The algorithm does not specify the type of
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sampler that should be used to generate the B posterior samples since, in theory,
any reasonable sampling approach should result in a sensible covariate ranking
procedure. This is furthed discussed in Section 3.

3 Discussion and Results

The BFR algorithm is now empirically compared against two popular feature
selection methods: (i) random forests (RF) with default parameters [14], and
(ii) independence screening by generalized correlation (HM) [7]. As this is a
preliminary investigation of BFR, the empirical comparison will concentrate on
the problem of covariate selection in the linear regression model. A Bayesian ridge
regression sampler was chosen for the implementation of the BFR algorithm as it
is: (i) similar to the commonly used method of least squares, and (ii) applicable
when the number of covariates is greater than the sample size. The hierarchy
depicting the Bayesian ridge regression [13] is

y|X, β, σ2 ∼ Nn(Xβ, σ2In),
β ∼ Np(0p, σ

2/λ2Ip),
σ2 ∼ σ−2dσ2,

λ ∼ Gamma(1, 0.01),

where β ∈ Θ ⊂ Rp are the regression parameters, σ2 is a normally distributed
noise variable and λ is the ridge regularization parameter.

The three ranking methods will be compared on simulated data, where the
true covariate set is known in advance, as well as two real data sets. The complete
simulation code was written on the MATLAB numerical computing platform and
is available for download from www.emakalic.org/blog.

3.1 Simulated Data

The BFR, RF and HM ranking methods are now compared on three linear
regression functions borrowed from the simulation setup in [6]. For each of the
three functions, we generated 100 data sets, with each data set comprising n = 50
samples and p = 100 covariates. All the generated data sets were standardised
such that each covariate had a mean of zero and unit length. Noise was added
to the target variables such that the signal-to-noise ratio (SNR) was in the set
{1, 8}. The functions used for testing are detailed below.

(Function I). The generating regression coefficients were

β∗ = (1.24,−1.34,−1.35,−1.80,−1.58,−1.60,0′
p−6)

′,

where 0k is a k-dimensional zero vector. All predictors xi

(i = 1, 2, . . . , p) were generated from the standard Gaussian
distribution, xi ∼ Nn(0, 1).
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(Function II). The generating regression coefficients were

β∗ = (4, 4, 4,−6
√

2,0′
p−4)

′.

The predictors were marginally distributed as per a standard
Gaussian distribution, xi ∼ Nn(0, 1); the correlation between
predictors was corr(Xi, X4)= 1/

√
2 for all i �= 4; corr(Xi, Xj) =

1/2 if i and j were distinct elements in {1, 2, . . . , p}\{4}.
(Function III). The generating regression coefficients were

β∗ = (4, 4, 4,−6
√

2, 4/3,0′
p−5)

′.

The predictors were marginally distributed as per a standard
Gaussian distribution, xi ∼ Nn(0, 1); the correlation between
predictors was corr(Xi, X5) = 0 for all i �= 5, corr(Xi, X4) =
1/
√

2 for all i /∈ {4, 5} and corr(Xi, X4) = 1/2 if both i and j
were distinct elements in {1, 2, . . . , p}\{4, 5}.

Function I consists of independently generated covariates, while functions II and
III contain varying levels of correlation. Feature selection is therefore expected
to be somewhat more difficult for Functions II and III in contrast to function
I. The ranking methods were compared on the TopX metric: the rank below
which all the true features are included. For example, for Function I, a TopX of
15 indicates that the true six features are included among the first 15 selected
covariates; the minimum possible TopX values for the three examples are six, four
and five respectively. Box-and-whisker plots of the TopX metric for each method
on the three test functions are depicted in Figure 1.

For all the tests functions, the BFR algorithm exhibited the smallest value
of the median TopX metric of all the ranking methods considered. This was
especially evident when the signal-to-noise ratio was larger, indicating that BFR
is able to adapt well to varying levels of noise. Unsurprisingly, all three ranking
methods performed better on function I, especially when SNR=8, in contrast to
functions II and III. The HM algorithm performed better than random forests
and slightly worse than the BFR method on all three test functions considered.
As the amount of noise was decreased (SNR � 8), the performance of the three
methods became indistinguishable.

3.2 Real Data

The performance of the three methods was also examined on two real data sets:
(i) the diabetes data set (n = 442, p = 10) downloaded from Trevor Hastie’s
homepage and analysed in [8], and (ii) the communities and crime data set
(n = 319, p = 123) obtained from the UCI machine learning repository. Each
data set was standardised similarly to the simulation data in Section 3.1. As the
second data set contained a number of missing attributes, rows where one or more
variables had missing entries were removed before analysis. The HM, RF and
BH ranking of the p = 10 features for the diabetes data set is shown in Table 1.
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Fig. 1. Comparison of feature ranking methods on three test functions using the TopX

metric
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Table 1. HM, RF and BFR ranking of the ten features in the diabetes data set

Method Feature rank

age sex bmi map tc ldl hdl tch ltg glu

HM 3 9 4 7 8 10 5 1 6 2
RF 9 3 4 8 7 10 5 2 6 1
BFR 3 9 2 4 7 8 5 6 10 1

The top seven covariates selected by HM and RF were identical though with
a slightly different ordering. All three ranking methods selected the bmi and ltg
variables as the two most important features in terms of explanatory power.
The BFR ranking is mostly similar to both HM and RF with one significant
exception; BFR ranked the sex covariate much higher than the other ranking
algorithms. Similarly, the BFR procedure ranked glu much lower in contrast to
both HM and RF.

The performance of HM, RF and BFR was also examined on the communities
and crime data set. Here, a five-fold cross validation procedure was used to
estimate the generalisation error for each of the three methods over 100 test
iterations. The mean squared prediction error for the BFR algorithm is shown
in Figure 2. We notice that the generalisation error decreases sharply as the first
few features are added to the model. The generalisation error begins to increase
after approximately 30 features are included and smoothly rises until all p = 123
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Fig. 2. Bayesian feature ranking for the communities and crime data set; standard
errors represented by the shaded area
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features are in the model. Importantly, the generalisation error does not drop
after the first 30 features were included which indicates that BFR has included
all the important features in the first 30 covariates. For this data set, both HM
and RF algorithms were virtually indistinguishable from BFR and hence omitted
from the plot for reasons of clarity.

4 Conclusion

This paper has presented a new Bayesian algorithm for feature ranking based on
sampling from the posterior distribution of the parameters given the data. The
new algorithm was applied to the linear regression model using both simulated
and real data sets. BFR resulted in reasonable feature ranking in all empirical
simulations, often outperforming random forests and feature ranking by gener-
alised correlation. The excellent performance of BFR suggests that the idea is
worthy of further exploration. Future work includes empirical examination of
the sensitivity of BFR to the choice of Bayesian hierarchy, as well as application
of BFR to feature ranking in classification problems.
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Abstract. We present and investigate ensembles of semi-random model
trees as a novel regression method. Such ensembles combine the scala-
bility of tree-based methods with predictive performance rivalling the
state of the art in numeric prediction. An empirical investigation shows
that Semi-Random Model Trees produce predictive performance which
is competitive with state-of-the-art methods like Gaussian Processes Re-
gression or Additive Groves of Regression Trees. The training and opti-
mization of Random Model Trees scales better than Gaussian Processes
Regression to larger datasets, and enjoys a constant advantage over Ad-
ditive Groves of the order of one to two orders of magnitude.

Keywords: regression, ensembles, supervised learning, randomization.

1 Introduction

Simple linear regression can work very well for arbitrary regression problems,
especially when sample sizes are small and when good attributes are provided.
Its performance usually breaks down when the relationship between the input
and output contains significant non-linearity, and also in linear cases when there
is strong collinearity present between pairs of inputs. Non-linear regression al-
gorithms try to overcome these issues of simple linear regression. Still, on small
data samples the main effect to be predicted is usually well modeled by a single
global linear regression model, even if that effect or relationship in itself is not
completely linear. Only when more data becomes available can non-linearity be
extracted in a reliable and robust way. Samples sizes of 500 or even several thou-
sand samples might be necessary. Non-linear methods include neural networks,
support vector regression, gaussian process regression (GP) [9], and Additive
Groves (AG) [11], among others. In this paper we introduce a new tree-based
algorithm called Random Model Trees (RMT). We will compare RMTs with lin-
ear regression, GPs and AGs. We do not include results for additive regression
over regression stumps (often also called “boosted stumps”), for space reasons,
as they were not competitive. We also do not include support vector regression
or neural networks in this comparison, as we have found GPs using Radial Basis
function kernels to perform as well, and their parameter optimization is simpler
involving only two tuning parameters. We also only include AGs and no other
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tree-based methods like e.g. boosting, Random Forests [3], or Random Decision
Trees [4], as AGs have been shown to perform at least as good as these tree-
based alternatives. We show that RMTs are competitive in terms of predictive
performance to both GPs and AGs, but that they can be an order of magnitude
faster than AGs. Furthermore, being tree-based, RMTs scale with O(NlogN),
where N is the number of training examples. Therefore they can be applied to
much larger problems than GPs.

In the following we will describe the new algorithm in Section 2, in Section 3
we will discuss the algorithms used for comparison, and will focus on parameter
optimization. Parameter optimization is important, as the optimal values vary
strongly depending on the specific datasets, and therefore no good default values
exist. Section 4 will present results for more than 20 datasets. The final section
summarizes and present directions for future research.

2 Random Model Trees

Random Model Trees are essentially the combination of two existing algorithms
in Machine Learning: single model trees [8] are combined with Random Forest
[3] ideas. Model trees are decision trees where every single leaf holds a linear
model which is optimised for the local subspace described by this leaf. This
works well in practise, as piece-wise linear regression can approximate arbitrary
functions as long as the single pieces are small enough. For differentiable func-
tions piece-wise linear regression can also be viewed as a crude one-step Taylor
series expansion of such a function. Decision trees split the data into a number of
small axis-parallel hypercubes, each of which will have its own local linear model.
Issues with learning model trees include high training times searching for opti-
mal splits and optimizing local linear models, potentially strong discontinuities
in prediction at the borders between hypercubes, and erroneously overshooting
extrapolation in sparse areas inside the hypercubes. Smoothing [14] inside a sin-
gle tree and bagging of multiple trees [2] are standard ways to address some of
these shortcomings.

Trees are also unstable, meaning that small changes in the training data can
lead to the construction of trees that differ greatly in structure. While this may
be problematic for a single tree, it is possible to take advantage of this effect
in an ensemble. Random Forests [3] have shown to improve the performance
of single decision trees considerably: tree diversity is generated by two ways of
randomization. First the training data is sampled with replacement for each
single tree like in Bagging. Secondly, when growing a tree, instead of always
computing the best possible split for each node only a random subset of all
attributes is considered at every node, and the best split for that subset is
computed. Such trees have been used both for classification and for regression,
but in the regression setting so far only trees with constant leaf prediction were
used, i.e. regression trees were generated, but not model trees. Random model
tree ensembles (RMT) for the first time combine model trees and random forests.

The success and efficiency of Random Model Trees critically depends on some
specific engineering features. Determining the best split point for an attribute is
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buildEnsemble(data, numTrees, k)

1 for i = 1 to numTrees
2 do randomly split data into two:
3 train + validate
4 buildTree(train, validate, k)

buildTree(train, validate, k)

1 min← minTargetValue(train)
2 max← maxTargetValue(train)
3 localSSE ← linReg(train, validate)
4 �

5 if |train| > 10 & |validate| > 10
6 do split← randomSplit(train, k)
7 �

8 smT ← smaller(train, split)
9 smV ← smaller(validate, split)

10 smaller← buildTree(smT, smV, k)
11 �

12 laT ← larger(train, split)
13 laV ← larger(validate, split)
14 larger← buildTree(laT, laV, k)
15 �

16 subSSE ← sse(smaller, larger, validate)
17 �

18 if localSSE < subSSE
19 do smaller← null
20 larger← null
21 else
22 localModel← null

linReg(train, validate)

1 for ridge in 10−8, 10−4, 0.01, 0.1, 1, 10
2 do modelr ← ridgeRegress(train, ridge)
3 sser ← sse(modelr, validate)
4 if bestModel == model10
5 do build models for ridge = 100, 1000, ...
6 and so on while improving
7 localModel← bestModel
8 return minimum-sse-on-validation-data

randomSplit(train, k)

1 for i = 1 to k
2 do splitAttr← random choice(allAttrs)
3 stump← stump(approx median(splitAttr))
4 compute sse(stump, train)
5 return minimum-sse stump

Fig. 1. Random model tree ensemble generator, defaults are numTrees = 50 and
k = 0.5 ∗ data.numAttributes
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expensive: the data must be sorted according to this attribute, and then a linear
scan can determine the best split for minimizing the weighted sum squared error
(or a similar numeric loss function). Furthermore best splits are usually not
balanced thus leading to potentially very skewed trees, i.e. trees where leaves
can have vastly different numbers of examples. This in turn causes issues for the
local model generation: to prevent against overfitting some form of regularization
is needed. We use ridge regression [6], which like all such regularization methods
depends on a user parameter, in this case the ridge value. The problem with large
differences in leafsizes is that such regularization parameters strongly depend on
the number of training examples. Thus no single good value exists that would
work well for such skewed trees. Therefore they would need separate independent
optimization at every single leaf, which is expensive.

Random model trees use an alternative approach: trees are approximately
balanced by only splitting on the (estimated) median of some attribute. An
approximate procedure for median computation was recently described in [12].
This procedure performs only two linear scans over the data to approximate the
median. Random model trees employ this procedure for split selection and thus
induce reasonably balanced trees, which guarantees that the tree generation com-
plexity remains O(NlogN) instead of approaching O(N2) for extremely skewed
trees. Furthermore the approximate median computation itself is extremely fast,
as it does not need to sort, and it also does not have to move around data in
memory like QuickSelect or similar linear methods.

Regularization is tackled in a different way: for every tree generation iteration
the full data is split randomly into two halves: a train set and a validation set.
Similar to reduced error pruning [7] the validation set is used to prune back the
final model tree. The validation set is also used to determine a good ridge value
for the ridge regression procedure when computing local linear models.

Additionally, to prevent against extreme cases of extrapolation, each leaf (or
hypercube) records the local minimum and maximum value for the target. Pre-
dictions from the local model are then compared to these thresholds and capped,
if necessary. This simple procedure has proven very effective, as single extreme
values can have a large influence on measures like root mean squared error, even
after averaging multiple predictions from an ensemble of model trees.

Finally, as the trees are semi-random and therefore definitely not optimal in
isolation, averaging an appropriate number of such trees is essential for good
predictive performance. At least 30 trees should always be computed, and com-
puting more (and sometimes a lot more) trees does further improve performance.
Of course, due to the random nature of the process, adding more trees to an en-
semble will never significantly degrade performance, but as for most ensemble
methods any improvements diminish eventually.

The full ensemble generation procedure is depicted in Figure 1. As noted
there, the procedure has only two user-settable parameters: the number of trees
to generate, and the number of attributes to consider at each split decision. The
default values of numTrees = 50 and k = 0.5 ∗ data.numAttributes seem to
form a good compromise between speed and accuracy, and have been used in all
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experiments reported here. Regarding possible values of k we have noted that the
extreme value of k = 1 usually generates more skewed trees, which take longer
to build and also usually perform slightly worse. Values around the default k
usually generate a good set of diverse and well-performing trees. This might be
surprising, as in classification Random Forests usually use smaller numbers. As
the random model trees do not search for the best possible splitting threshold,
but instead use an approximate median split to ensure reasonably balanced trees,
they can afford to test a larger number of attributes, without sacrificing diversity
nor exhibiting overfitting behaviour.

3 Experiments

Random model trees are compared to linear regression, gaussian process regres-
sion, and additive groves. This comparison comprises datasets provided by Luis
Torgo [13] and the UCI repository. Only datasets with at least 950 examples are
included.

The different algorithms deal differently with either categorical or missing
values, therefore all data was preprocessed by replacing categorical values with
multiple binary indicator attributes; missing values were imputed using the re-
spective attribute’s mean value. This preprocessing should ensure that different
algorithm-internal procedures do not impact the comparison.

All of the five algorithms have one or more tuning parameters which need
careful optimization for good performance. Additive groves need an explicit val-
idation set for tuning parameters, and the other three algorithms can be paired
with some optimization procedure based on a validation set. Therefore the ex-
periments reported here are 10 runs of three-fold cross-validation, where half of
each training set was used as the “build” set and the other half was used as the
“validation“ set for internal parameter optimization. The results reported in the
next section are averages of accuracies and total runtimes including time needed
for internal parameter optimization. We view this as a fair procedure that re-
flects well the process that is necessary when deploying algorithms in real-world
applications where tuning usually is essential for success. More details are listed
below for every algorithm.

3.1 Linear Regression

We use the Weka [5] implementation of Linear (Ridge) Regression, perform no
internal attribute selection, but vary the ridge parameter from 10−8 to 1010 in
exponential steps of 10, selecting the value with the lowest squared error sum
(SSE) on the validation set. Note that the complexity of linear regression is
O(N ∗K2), provided K < N , where N is the number of examples, and K the
number of attributes.

3.2 Gaussian Process Regression

For Gaussian Process Regression we have replaced the generic Weka implemen-
tation by a specialized version which firstly hard-codes a Radial Basis function
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kernel, and secondly uses a conjugate gradient descent solver [10]. These changes
result in substantial speedups, usually between one and two orders of magnitude
when compared to the standard Weka version. The implementation comprises
two tuning parameters: the bandwidth of the kernel, and again a ridge value
for the regression. Optimization employs a hill-climbing procedure over a grid
of possible pairs of values: starting from some initial point all neighboring grid
points are explored until a plateau is reached in terms of SSE on the validation
set. The factor defining the grid for both the bandwidth and the ridge parameter
is 2.0, i.e. doubles for going up, and halves for going down are used. Note that
the complexity of the conjugate gradient descent solver is only O(K ∗N2), i.e.
quadratic in the number of examples and linear in the number of attributes,
as it is limited to at most 100 iterations. Usually 100 iterations are enough for
full convergence, or at least for getting very close to full convergence. The real
problem that GP faces is its memory consumption: as the kernel matrix needs
to be precomputed, it takes O(N2) memory. Thus GPs become infeasible for the
largest dataset employed, and also need on the order of about 28 gigabytes of
memory for the second largest dataset.

3.3 Additive Groves

We use the C++ implementation as supplied by the authors. That implemen-
tation supplies both a “fast” and a “slow” training mode, as well as a Python
script for iterative training improvements. As the results in the next section show,
this implementation is substantially slower than the other three Weka-based al-
gorithms. Therefore only the “fast” training mode was used. Better prediction
would be achieved with more training, but is not feasible here. Even “fast” mode
could not finish on the largest dataset. [11] do not discuss the theoretical com-
putational complexity of additive groves, but one would expect O(K ∗N ∗ logN)
behavior from a tree-based algorithm. The results further down seem to confirm
this hypothesis, but also show a high constant factor when comparing to the
new algorithm, random model trees.

3.4 Random Model Trees

A Weka-based Java implementation is used here. The number of randomly cho-
sen attributes to evaluate is set to 50%. Ensemble size is fixed to 50 trees for
parameter optimization search. The two parameters that would need optimizing
in a standard model tree are tree-depth and the ridge value for the local linear
regression models in the leaves of the tree. Due to the splitting of the full data
into a train and a validation subset for every single tree these parameters are
optimized in a dynamic fashion described above in Section 2. These optimiza-
tions happen internally and fully automatic without needing any user specified
parameter values.

The complexity of building random model trees is O(N ∗ logN + N ∗ K2).
The first term accounts for tree construction, which is independent of the number
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of attributes, as only a constant number of attributes will be considered for
each split. The second term accounts for training of the local linear models and
indicates a potential weakness of random model trees: large number of attributes
can slow down training considerably. In the results reported below this was not
an issue as all data had less than 100 attributes. This important issue will also
be discussed further in the last section under future directions for research.

4 Results

In this section we compare all four algorithms both with respect to predictive
performance as well as to efficiency, measured as build time. Results for the
largest dataset are incomplete, showcasing the high resource needs and lack of
scalability of some of the algorithms included in this comparison.

RMAE for Torgo/UCI data
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Fig. 2. RMAE for Torgo/UCI datasets, sorted by the linear regression result

4.1 Relative Mean Absolute Error

Relative mean absolute error (RMAE) is used here as a measure of accuracy,
as it is a meaningful way of comparing across different datasets. In addition, a
value of 100% indicates performance equal to simply always predicting the global
mean, whereas a value of 0% indicates perfect prediction.

Figure 2 shows RMAE for all four algorithms over the Torgo/UCI datasets.
The datasets have been sorted by the RMAE value of linear regression from low
to high to facilitate comparison. All three non-linear algorithms usually improve
over linear regression or are at least as good. This is absolutely true for Gaussian
Processes regression, and also for Random Model Trees, which generally seem
to perform very similar to GPs.

Additive Groves present a more varied picture, including both occasional large
improvements over all other methods, e.g. on the “puma32H” data, as well as
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Training time in seconds for Torgo/UCI data
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Fig. 3. Training time in seconds for Torgo/UCI datasets, sorted by the number of
instances in each dataset; note the use of a logarithmic y-scale

occasional catastrophic failure, namely on the “colorhistogram”, and the “lay-
out” data. We suppose that using more complete search (using the “slow” setting
or the iterative method) for AG on these latter datasets might improve perfor-
mance to the level of GP or RMT.

The one dataset missing from Figure 2 is the largest set “census”. Both GPs
and AGs cannot process this data within reasonable amounts of resources. Ta-
ble 1 displays the results on this dataset for linear regression, and for random
model trees. RMT provides some improvement over linear regression, and does so
within about 5.5 hours. Regarding AG, given a partial training run it is estimated
that AG in “fast mode” would need about 25 days to complete. Note however,
that AG also supports some parallelism, which was not used here. Similarly,
search and ensemble construction of random model trees could be parallelized
as well, so parallelism is really an orthogonal issue, which can safely be ignored
in this comparison. GPs, or at least our implementation, cannot be employed
for this dataset, as it would need about five terabytes of main memory to store
the kernel matrix for the 800000 examples training set.

Figure 3 plots logarithmic build time in seconds for all algorithms over the
Torgo/UCI datasets being sorted by number of instances, as this is the main
complexity factor for most of the algorithms. Linear regression is the fastest
for two reasons: all these datasets have 67 or fewer attributes, so the domi-
nating factor is still the number of instances, and its influence is only linear;
furthermore optimization concerns only one tuning parameter, looking at only
19 different values. Both tree-based methods RMT and AG show the expected
O(NlogN) behavior, but RMTs are consistently one to two order of magnitude
faster. The variations visible are explainable by two factors: different numbers
of attributes, but more importantly different number of steps in the hill-climbing
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Table 1. Partial results for the UCI Census dataset, 2458285 examples in total, there-
fore about 800000 in the training fold

Method RMAE Time (secs)

LR 15.96 1205
RMT 9.78 19811
GP ? ? (would need 5 Tb RAM)
AG ? ? (estimated 2000000)

search, which at times terminates very quickly, and at other times explores a lot
more parameter combinations. GPs start very fast for the smallest datasets, but
their quadratic complexity is very apparent for larger datasets. For the “elnino”
dataset a GP is already four orders of magnitude slower than linear regression.

5 Conclusions

We have introduced a new general regression method that combines model trees
with random forests and some engineering detail in a novel way. A comparison
to linear regression and to two other state-of-the-art regression algorithms over
a substantial set of datasets of a wide range of properties has shown that the
new algorithm can be competitive to the state of the art regarding predictive
performance, but that it is considerably more efficient on datasets with rela-
tively few attributes, and that it can scale reasonably to datasets of hundreds of
thousands of examples. Still, when utmost predictive performance is needed in
an application, an ensemble of well-tuned GPs, AGs, and RMTs would be the
method of choice, provided enough computing resources are available.

There are a number of promising directions for future research. The most
important one for random model trees is the issue of its complexity in the number
of attributes. Either some form of local feature space reduction at each leaf in
isolation, or some more global form of feature space reduction either per single
tree or for the full ensemble can be explored. Local feature space reduction
will have to be very careful with regard to runtime, but also potential loss of
information. Another interesting direction will be investigating the possibility
of a hybrid of the random model trees and additive groves ideas. And last but
not least investigating efficient gaussian process regression for large datasets is
a very challenging endeavour. Sparsification and gradient descent methods are
potential candidates, but in regression settings they seem to trade off too much of
the GP’s predictive power for speed and memory savings. Again maybe a hybrid
between Gaussian process regression and random model trees might provide a
viable alternative.
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Supervised Subspace Learning with Multi-class

Lagrangian SVM on the Grassmann Manifold
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Institute for Multi-sensor Processing and Content Analysis,
Curtin University, Perth, Western Australia

Abstract. Learning robust subspaces to maximize class discrimination
is challenging, and most current works consider a weak connection be-
tween dimensionality reduction and classifier design. We propose an
alternate framework wherein these two steps are combined in a joint
formulation to exploit the direct connection between dimensionality re-
duction and classification. Specifically, we learn an optimal subspace on
the Grassmann manifold jointly minimizing the classification error of an
SVM classifier. We minimize the regularized empirical risk over both the
hypothesis space of functions that underlies this new generalized multi-
class Lagrangian SVM and the Grassmann manifold such that a linear
projection is to be found. We propose an iterative algorithm to meet
the dual goal of optimizing both the classifier and projection. Extensive
numerical studies on challenging datasets show robust performance of
the proposed scheme over other alternatives in contexts wherein limited
training data is used, verifying the advantage of the joint formulation.

1 Introduction

Linear subspace learning has been an active area of research, especially in face
recognition. Even though the dimensionality of the input data is high, previous
works show that useful information for discriminating between classes can be
found in a much lower dimensional space. Learning a suitable projection to this
space not only removes noise to enhance classification performance but also helps
uncover semantic meaning of discriminative information.

Supervised subspace learning algorithms vary widely in terms of the link be-
tween dimensionality reduction and classification. Most of the supervised sub-
space learning algorithms only consider weak connection between this two stages
of the problem because the dimensionality reduction is not explicitly embedded
in the classification formulation. Many supervised subspace learning algorithms
implicitly assume a nearest neighbor classification and hence dimensionality re-
duction often relies on the Fisher-like criterion. For example, Fisherfaces (LDA)
[1,5] maximizes the discrimination ratio of the between-class and within-class
variances in the reduced subspace. Locality preserving projection (LPP) [8,4] on
the other hand is formulated to preserve the local structure of the face. These can
be generally unified under a graph embedding framework with different choices
of graph configurations [16]. The Fisher criterion can also be replaced with other
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statistical criterion, such as effective information [11]. However, the subsequent
classification still uses nearest neighbor methods and this makes the connection
weak. Some recent works, such as kernel dimensionality reduction (KDR) [6] and
MLASSO [14], make the connection slightly more explicitly but the formulation
is still in the regression framework and a direct classification error is still not used
in dimensionality reduction. The exception is MLSVM [9] that considers a di-
rect embedding of dimensionality reduction in a well-known learning framework
of support vector machines (SVMs). The advantage and drawback of MLSVM
is that it uses a simple linear multi-class SVM for classification, from which
the manifold learning step is easily carried out using results from linear algebra.
However, it also restricts the classification to a small hypothesis space of learning
functions, leading to unsatisfactory performance and high computational cost.

To make the direct connection between dimensionality reduction and clas-
sification, we propose a new algorithm that learns an optimal subspace on the
Grassmann manifold specifically for the SVM, embedding the classification error
explicitly in the formulation. Our joint formulations differs from MLSVM [9] in
two key aspects; first, we remove the restriction to linear SVMs and consider
more general nonlinear SVMs with radial basis function (RBF) and polynomial
kernels. Second, we use the Lagrangian SVM formulation [12] and deliver compu-
tational advantage. This is done through explicit derivation of the dual solution,
removing the need to solve quadratic programming problems as customary in
other SVM formulations. Like MLSVM [9], we consider the all-versus-all setting
and derive the generalization of the basic binary Lagrangian SVM formulation.

The paper is organized as follows. In Section II, we explain the motivation
for the proposed method, derive the new multi-class Lagrangian SVM in the
all-versus-all setting, and show how the subspace can be jointly learned as an
optimization on the Grassmann manifold in this new SVM formulation. Sec-
tion III contains experimental results on challenging datasets, demonstrating
the proposed method achieved lower error rates than recent subspace learning
algorithms. Finally, Section IV concludes.

2 Proposed Method

To fix the notation, denote the original input data as z ∈ RN . We seek a pro-
jection to a lower K-dimensional space x = PT z via a linear projection matrix1

P ∈ RN×K which satisfies PT P = IK . Hereinafter, we assume that K is already
specified and we select K equal to the number of classes minus 1 for compari-
son with many subspace learning algorithms such as LDA. We propose to learn
a functional relationship f between the input data x ∈ X and the real-valued
output data y ∈ Y.

Denote as Remp[f ] the functional form of the empirical risk, then a standard
formulation of the statistical learning theory can be equivalently expressed as

1 P is actually an orthonormal transformation matrix and not a projection matrix in
a strict linear algebra sense. However, we use the term projection for P in this work.
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f̂ = argminf∈F Remp[f ], C(f) ≤ t, where C(f) represents the complexity of
the learning function f .

In practice, a Lagrangian approach is often used to bring it to a more conve-
nient form

ĝ = f̂ ◦ ĥ = arg min
f,h

Remp[f,h] + λRreg[f,h], (1)

where Rreg is the functional form for the regularization. In the SVM setting, it
controls the (inverse) margin in the reproducing kernel Hilbert space (RKHS).
Similar to many SVM settings, we restrict our attention to the RKHS for f .
As h(z) = PT z and because of the restriction of orthonormal transformations
PTP = IK , finding h in its domain is equivalent to finding P. Hereinafter, we
shall refer to P rather than h. To solve (1) we propose the following

The main algorithm

Step 1: Fix P, solve the SVM problem
f = arg minf∈F Remp[f, P] + λRreg[f, P]

Step 2: Fix f , solve
P = arg minP Remp[f, P] + λRreg[f,P]

Step 3: Check for convergence, else go back to Step 1.

The above procedure generates a sequence {f,P} which converges to a local
minimum. At each step, a better solution for the projection and classifier is
found. Note that this does not necessarily imply both the empirical risk and the
regularized risk are reduced. However, their compromised linear combination
via the regularization parameter λ is decreasing implying better generalization
performance. We shall assume that λ is specified via standard cross-validation.

2.1 Multi-class Lagrangian SVM

We proposed to extend the basic Lagrangian SVM [12] to a multivariate version
using the framework proposed in [10]. Denote the multivariate label for the jth
class as a vector yj ∈ Rk of −1/(k−1) except the jth position where it is 1. As-
sume that mis-classification is treated equally between other classes, the weight-
ing for the the ith training sample which belongs to class j is li = l(yi) ∈ Rk,
which is a vector of 1’s except the ith position where it is 0. Accordingly,
the classification function is multivariate f(x) =

[
f1(x) f2(x) . . . fκ(x)

]T ∈∏k
j=1 ({1}+HK) where HKj = HK , ∀j. This implies the RKHS of each fj(x)

are the same, i.e. they share the same kernel. The extra {1} to the standard
RKHS is due to the offset constant in the classification function. To avoid ambi-
guity, a sum-to-zero (simplex) constraint is needed

∑k
j=1 fj(x) = 0. Given these

constraints, the generalized representer theorem in [10] states that the solution
of standard SVM formulation admits the following representation

fj(x) = bj +
n∑

i=1

cjiκ(xi,x), (2)

where κ(•, •) is the kernel associated with the RKHS HK .
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The primal and dual problems. Extending the Lagrangian SVM to the
multivariate case, we propose the following formulation

arg min
fj∈HK+{1}

{
1
2n

Remp(f) +
1
2
λ

k∑
j=1

‖fj‖2HK+{1}

}
, (3)

where Remp(f) =
∑n

i=1 (f(xi)− yi)T diag(li)(f(xi)− yi) and n is the number of
training samples. To simplify the notation, we swap the index of the sum of the
first term from over training examples (i) to over classes (j). Denote the slack
variable as ξj for [fj(x1), . . . , fj(xn)]T − [y1j , . . . , ynj]T . Let L = [l1, . . . , ln] and
denote Dj the diagonal matrix from the jth row of L. Let K = [n × n] be the
kernel matrix and assume that K is positive definite K � 0. Denote as 1 a
vector of all 1’s. Let C = [c1, . . . ck] and denote cj the jth column of C. Let
Y = [y1, . . . ,yn] and denote vT

j the jth row of Y. The primal problem is

arg min
ξj ,cj ,bj

1
2

k∑
j=1

{
ξT

j Djξj + nλ
(
cT

j Kcj + b2
j

)}
(4)

s.t.
k∑

j=1

1bj + Kcj = 0, 1bj + Kcj − vj � ξj j = 1, . . . , k

Before solving this, we have an important remark that the constraints ξj �
0, j = 1, . . . , k which typically appear in standard SVM formulations, are not
required due to the new formulation.

We introduce Lagrangian multipliers αj � 0, αj ∈ Rn, j = 1, . . . , k for the
inequality constraints and δ ∈ Rn for the sum-to-zero constraint.

The dual problem can be written as

argmax
αj ,δ

LP +
k∑

j=1

αT
j (1bj + Kcj − vj − ξj) + δT

⎛
⎝ k∑

j=1

1bj + Kcj

⎞
⎠ ,

s.t.

{
∂LD

∂ξj
= Djξj −αj = 0, ∂LD

∂ej
= nλKcj + K(αj + δ) = 0,

∂LD

∂bj
= nλbj + 1T (αj + δ) = 0, αj � 0

(5)

for j = 1, . . . , k, where LP is the primal objective function in (4). This yields

cj = −(1/nλ)(αj + δ), bj = −(1/nλ)1T (αj + δ). (6)

As Dj is a diagonal matrix of 0’s and 1’s hereinafter we assume that Dj is re-
arranged so that the non-zero diagonal elements a collected to the top left block
of Dj to simplify the notation. Likewise, we also assume that the entries of ξj

and αj are also re-arranged to match with this rearrangement of D in the sense
that they are consistent with the constraints

Djξj −αj = 0, j = 1, . . . , k,

or equivalently in the new rearrangement
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[
Inj 0
0 0

] [
ξ̃j

ξ̄j

]
=

[
α̃j

ᾱj

]
(7)

It follows that ξ̃j = α̃j and ᾱj = 0 whilst ξ̄j can be arbitrary (because the
weighting coefficients are zero so that whatever value it won’t change the cost
function). The dual problem can now be written more explicitly in terms of the
dual variables

arg min
α̃j�0,δ

{ k∑
j=1

1
2
α̃T

j α̃j + vT
j αj +

1
2nλ

(αj + δ)T
(
K + 11T

)
(αj + δ)

}
(8)

with αj = [α̃T
j 0T ]T as previously discussed. Let H = (1/nλ)(K + 11T ),

α = [αT
1 , . . . , αT

k ]T , v = [vT
1 , . . . ,vT

k ]T , then the dual problem is

arg min
α̃j�0,δ

{
1
2
αTQ11α +

k

2
δT Hδ + αT Q12δ + vT α

}
(9)

where Q11 is a block diagonal matrix of Dj + H and Q12 = H ⊗ 1k where ⊗
denotes the Kronecker product.

The dual solution. Consider the dual problem (9). If we fix α then

δ = −(1/k)H−1QT
12α = −(1/k)

k∑
j=1

αj (10)

where we have made use of the fact that there is no constraint on δ and H is
symmetric. On the other hand, if we fix δ and solve for α, (9) becomes

arg min
α̃�0

{
(1/2)αTQ11α + αT (Q12δ + v)

}
. (11)

In what follows, we denote as β̃ = ṽ + Q̃12δ where Q̃12 and ṽ are the reduced
version of Q12 and v respectively that match with α̃j as indicated in (7). To
solve (11), we rely on the following two results (Lemma 1 can be proved similarly
using the approach in [12]).

Lemma 1. For a strictly convex optimization problem,

arg min
α̃�0

(1/2)α̃T Q̃α̃ + β̃T α̃, (12)

the solution satisfies α̃T (Q̃α̃ + β̃) = 0.

Lemma 2 (Orthogonality and Clipping[12]).

{a,b � 0 and aT b = 0} ⇔ {a = (a− γb)+ ∀γ > 0}
where (•)+ denotes the nonnegative operator.
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Now we discuss the solution for (11) using the KKT conditions[2, p.243]. From
Lemmas 1 and 2, and f the fact that Q̃11 is block diagonal, (11) can be decom-
posed into k independent problems

arg min
α̃j�0nj

{
1
2
α̃T

j (Inj + Ȟj)α̃j + α̃T
j (H̃jδ + ṽj)

}
. (13)

So actually the update for block j = 1, . . . , k, becomes

α̃
(i+1)
j = Q̃−1

j

[(
(Q̃jα̃

(i)
j + β̃)− ρjα̃

(i)
j

)
+
− β̃j

]
, (14)

where Q̃j = Inj + Ȟj and β̃j = ṽj + H̃jδ (H̃j is the row-reduced version of
H which matches with α̃j . Similarly, Ȟj is both column-and-row-reduced). The
convergence of this update rule is governed by the following result.

Theorem 1. Provided that 0 < ρj ≤ 2 the update procedure for α̃
(i)
j converges

to the true global solution α̃∗
j as

‖Q̃jα̃
(i+1)
j − Q̃jα̃

∗
j‖2 ≤ ‖Inj − ρjQ̃−1

j ‖2‖Q̃jα̃
(i)
j − Q̃jα̃

∗
j‖2.

In summary, to solve for the dual variables of the optimization problem (9), one
needs to iterate between δ and α using (10) and (14) until the dual objective
function of (9) is converged (note: the step (14) to find αj is also iterative by
itself). When the dual variables are determined, the primal variables can be
easily deduced from (6). These primal variables constitute the SVM function.

2.2 Learning the Projection

We consider two popular kernels used in the SVM literature: the radial basis func-
tion (RBF) kernel: Kim(P) = exp(−μ‖PT zm−PT zi‖22), with the smoothing pa-
rameter μ, and the polynomial kernel with degree d: Kim(P) = (1+zT

mPPT zi)d.
As cj and bj are fixed, the objective function in terms of P is

g(P) = Remp(f ,P) + λ

k∑
j=1

cT
j K(P)cj , (15)

where we have written f as a function of x which implicitly depends on P
as well. As K(P) is invariant to a right orthogonal transformation of P, i.e.
K(P) = K(PR),RTR = I, the minimization of g(P) is thus performed over the
Grassmann manifold GN,K , which is the set of all k-dimensional subspaces:

P̂ = arg min
P∈GN,K

g(P). (16)

To solve this optimization problem on the Grassmann manifold, we propose
to use the manifold optimization framework in [13] for simpler computations.
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The crucial step of this framework requires the gradient of the objective func-
tion G = ∇Pg(P) to be evaluated (see [13] for detail). Here, we explicitly de-
rive the gradients for both cases. Denote the matrix function as F(PT Z) =[
f (PT z1), . . . , f(PT zn)

]
and the residual matrix as Ω(P) = F(PT Z) − Y =

CTK(P) + b1T −Y. Then, it can be easily seen that

g(P) = (1/n)‖Ω(P)" L‖2F + λtr
[
CTKC

]
(17)

where " denotes the element-wise product of two matrices.
Then we obtain the following results for simplified gradients on the Grassmann

manifold:

Lemma 3. For RBF kernel ∇Pg(P) = −2μZ
(
diag

[
Ā1

]− Ā
)
ZT P where A =

(2/n)CΨ " K, and for polynomial kernel: ∇Pg(P) = dZ
(
Ā

)
ZT PZT where

A = (2/n)CΨ "K
d−1

d , and Ā = A + AT .

In the above expressions, K is a matrix function of P, and the notation K
d−1

d

means each entry of K̃ is raised with the power d−1
d (element-wise).

Table 1. Error rates on the YaleB dataset

Train 2 3 4 5 6
PCA 0.84±0.02 0.80±0.01 0.77±0.01 0.74±0.01 0.72±0.01
R-LDA 0.60±0.03 0.48±0.02 0.40±0.02 0.35±0.02 0.30±0.02
R-LPP 0.63±0.02 0.56±0.02 0.51±0.02 0.46±0.02 0.42±0.02
OLPP 0.57±0.03 0.45±0.03 0.39±0.03 0.33±0.03 0.30±0.03
EI 0.56±0.01 0.48±0.03 0.38±0.02 0.34±0.02 0.31±0.02
KDR 0.57±0.02 0.47±0.02 0.36±0.03 0.34±0.01 0.30±0.01
MLSVM 0.79±0.02 0.71±0.02 0.64±0.01 0.54±0.02 0.51±0.04
SVM 0.53±0.03 0.44±0.02 0.40±0.02 0.36±0.02 0.33±0.02
GLSVM 0.53±0.03 0.40±0.02 0.33±0.02 0.28±0.02 0.24±0.02

3 Experiments

First, we illustrate the numerical properties of the proposed method, denoted
as GLSVM, via a toy example with k = 4 classes, each with 4 samples whose
(x, y) coordinates are distributed symmetrically over four quadrants (whilst their
z coordinates are sampled randomly from the normal distribution). Here, we
aim at learning a projection from 3D to 2D. We set μ = 0.1 and λ = 0.25
for this experiment. Fig. 1 shows a typical reduction of the objective func-
tion versus the iteration number and the decision boundary for the 4 classes
as projected onto the (x, y) plane (the actual subspace learned deviates from
the (x, y) plane slightly due to noise). In this toy example, we found that the
main algorithm converged in few iterations and that the decision boundary pro-
jected on the (x, y) plane is as expected. Next, we compare GLSVM with other
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Fig. 1. A toy example (best seen in color)

recent subspace learning methods, including the regularized linear discriminant
analysis (R-LDA), regularized locality preserving projection (R-LPP) [5], orthog-
onal locality preserving projection (OLPP) [4], effective information (EI) [11],
kernel dimensionality reduction (KDR) [6], and the MLSVM of [9]. To demon-
strate the advantage of the joint formulation, we also compare with the approach
where dimensionality reduction and SVM (with RBF kernel) are learned sepa-
rately (denoted as SVM).

Table 2. Error rates on the PIE dataset

Train 2 3 4 5 6
PCA 0.86±0.01 0.83±0.01 0.80±0.01 0.77±0.01 0.74±0.01
R-LDA 0.60±0.02 0.48±0.02 0.40±0.02 0.34±0.01 0.29±0.01
R-LPP 0.71±0.02 0.66±0.02 0.62±0.02 0.58±0.02 0.54±0.02
OLPP 0.66±0.03 0.56±0.02 0.49±0.02 0.45±0.02 0.42±0.02
EI 0.61±0.02 0.49±0.02 0.43±0.02 0.40±0.01 0.35±0.03
KDR 0.60±0.01 0.48±0.03 0.44±0.01 0.38±0.02 0.36±0.01
MLSVM 0.85±0.01 0.80±0.01 0.77±0.01 0.74±0.01 0.71±0.01
SVM 0.53±0.03 0.44±0.02 0.40±0.02 0.36±0.02 0.33±0.02
GLSVM 0.53±0.02 0.40±0.02 0.34±0.02 0.30±0.01 0.28±0.01

The datasets used in this experiment are well-known datasets. The origi-
nal PIE database from Carnegie Mellon University [15] consists of 68 individu-
als with 41,368 images. This experiment uses a near-frontal subset of the PIE
database obtained from [3]. In this subset, there are approximately 170 images
per individual over about five different poses. We also select the YaleB face
database [7] with 38 individuals, each having a total of 64 near-frontal images
[3]. They are known to be difficult datasets in face recognition. With these two
datasets, we generate 20 random splits. In each split, the images are randomly
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selected from each class for training, and the rest is used for testing. Then, we
report the best average and standard deviation of the measured error rate.

In all cases, the pre-processing step involves cropping and resizing the faces
to 32× 32 gray-scale images, then centralizing about the mean, and finally nor-
malizing each vector to unit norm. As we are only interested in small training
sizes, we select 2-6 images for training. The parameters for R-LDA and LPP
are the suggested values from the authors (in particular the choice of weight-
ing matrix and the regularization α = 0.1). To make it comparable to R-LDA,
we set the projection onto a subspace with the dimension being the number of
classes minus one. The reported PCA method is also based on the assumption
of the same dimension. For all Grassmann based methods (EI, KDR, MLSVM,
GLSVM), we use the LDA solution as an initialized dimensionality reduction.
For methods with regularization and hyperparameters, it is possible to select
the parameters via cross-validation for example. Here, we report the best per-
formance as the number of training samples is small. For EI and KDR, we need
to use subsampling (for EI maximum 100 terms for within and between distri-
butions, for KDR: up to 5 neighbors) to evaluate the gradient as suggested by
the authors because of prohibitive complexity with exact formulation.

Tables 1 and 2 show the average classification error rates on the YaleB and
PIE datasets respectively. As can be shown, the proposed method outperforms
other compared methods overall. When there are more training samples the
joint formulation (GLSVM) does in fact improve over the disjoint alternative
(SVM). Among other compared methods, R-LDA becomes more comparable
when there are more training samples. We also found that the EI and KDR
formulation perform similarly as their objective function does not change much
with the LDA initialization. Additionally, the performance of MLSVM is not
satisfactory, especially with PIE dataset, despite the fact that it was initialized
with a reasonable LDA solution. It suggests that linear classifier is perhaps not
suitable for this problem as the nonlinear classifier (SVM) performs much better.

As with other Grassmann manifold learning methods, e.g. EI and KDR, the
manifold learning step takes the most computation. Due to explicit derivation
of the gradient, we found that the manifold learning step of our method is still
faster than that of EI and KDR for the aforementioned subsampling setting. The
proposed method is suitable for the case where the number of training samples
is small. In many practical situations, this assumption may be satisfied.

4 Conclusion

A new framework for robust learning of a discriminative projection has been pro-
posed. The essence of the new approach is a joint formulation of the projection in
a multi-class Lagrangian SVM problem. Intuitively, the algorithm selects the pro-
jection on the Grassmann manifold that yields the largest margin sum (defined
in the corresponding augmented RKHS). By doing so, we have directly linked
the two stages, i.e. dimensionality reduction and classification, which have been
weakly made in most previous works on subspace learning. Thus, the meaning of
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“discriminative” for the projection is closely attached with the chosen classifier.
Empirical results on challenging face datasets demonstrate the advantage of the
new formulation over other alternatives in terms of reducing the classification er-
rors when the number of training samples is small. Future work should address
the current limitations of the approach in terms of computational complexity
and the possibility of a semi-supervised setting where the projection is further
constrained to yield a more robust performance.
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Abstract. Ensemble selection has recently appeared as a popular en-
semble learning method, not only because its implementation is fairly
straightforward, but also due to its excellent predictive performance on
practical problems. The method has been highlighted in winning solu-
tions of many data mining competitions, such as the Netflix competition,
the KDD Cup 2009 and 2010, the UCSD FICO contest 2010, and a num-
ber of data mining competitions on the Kaggle platform. In this paper
we present a novel variant: bagging ensemble selection. Three variations
of the proposed algorithm are compared to the original ensemble se-
lection algorithm and other ensemble algorithms. Experiments with ten
real world problems from diverse domains demonstrate the benefit of the
bagging ensemble selection algorithm.

1 Introduction

The problem of constructing an ensemble of classifiers from a library of base
classifiers has always been of interest to the data mining community. Usually,
compared with individual classifiers, ensemble methods are more accurate and
stable. We here reproduce the mathematical expression used in [8] to illustrate
the idea of ensemble learning: let x be an instance and mi, i = 1...k, a set of
base classifiers that output probability distributions mi(x, cj) for each class label
cj , j = 1...n. The output of the final classifier ensemble y(x) for instance x can
be expressed as:

y(x) = arg max
cj

k∑
i=0

wimi(x, cj), (1)

where wi is the weight of base classifier mi. In this particular form, ensemble
learning strategies can be seen as methods for calculating optimal weights for
each base classifier in terms of a classification goal. Since the mid-90’s, many
ensemble methods have been proposed. For a more detailed review of recent
developments please refer to [2,9].

Before introducing the new methods, we briefly review bagging (bootstrap
aggregating) [3] and the ensemble selection algorithm proposed in [5]. Bagging
is based on the instability of base classifiers, which can be exploited to improve
the predictive performance of such unstable base classifiers. The basic idea is

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 251–260, 2011.
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that, given a training set T of size n and a classifier A, bagging generates m
new training sets with replacement, Ti, each of size n′ ≤ n. Then, bagging applies
A to each Ti to build m models. The final output of bagging is based on simple
voting [2].

Ensemble selection is a method for constructing ensembles from a library of
base classifiers [5]. Firstly, base models are built using many different machine
learning algorithms. Then a construction strategy such as forward stepwise se-
lection, guided by some scoring function, extracts a well performing subset of
all models. The simple forward model selection based procedure proposed in [5]
works as follows: (1) start with an empty ensemble; (2) add to the ensemble the
model in the library that maximizes the ensemble’s performance to the error
metric on a hillclimb set; (3) repeat Step 2 until all models have been examined;
(4) return that subset of models that yields maximum performance on the hill-
climb set. One advantage of ensemble selection is that it can be optimised for
many common performance metrics or a combination of metrics. For variants
of the ensemble selection algorithm, the reader is referred to [4,5]. In the next
section, we will describe the proposed bagging ensemble selection algorithms and
explain the motivation of combining bagging and ensemble selection.

2 Bagging Ensemble Selection

Based on the data sets and comparison results from [5], the simple forward
model selection based ensemble selection algorithm is superior to many other
well-known ensemble learning algorithms, such as stacking with linear regres-
sion at the meta-level, bagging decision trees, and boosting decision stumps.
However, sometimes ensemble selection overfits the hillclimbing set, reducing
the performance of the final ensemble. Figure 1(a) shows the hillclimb and test
set learning curves of running ensemble selection on a data set. The red curve is
the hillclimb set performance and the blue curve is the test set performance. It
demonstrates that as the number of models in the model library increases, the
performance (in terms of AUC) of ensemble selection on the hillclimb set gradu-
ally increases. However, the corresponding performance on the test set does not

(a) KDD 09 customer churn data (b) The waveform-5000 data

Fig. 1. Ensemble selection hillclimb and test set learning curves
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always increase; it may reach a peak (local or global) and then gradually decline.
Also, as indicated in [5], for certain data sets, the root-mean-squared-error met-
ric sometimes can decline very quickly. To overcome this problem, the authors of
[5] proposed three additions to the simple forward selection procedure to reduce
the chance of hillclimb set overfitting. The proposed additions are: (1) selection
with replacement, where each individual classifier can be selected multiple times,
which means some classifiers get larger weights than others; (2) sorted ensemble
initialization, where instead of starting with an empty ensemble, models in the
library are sorted by their performance, and the best N models are put into
the initial ensemble; (3) “bagged” ensemble selection, where K groups (bags) of
models are randomly selected from the model library, and ensemble selection is
done inside each bag; the final ensemble is the union of the subsets selected for
each of the bags. All three procedures also introduce additional parameters to
the simple ensemble selection algorithm.

Furthermore, there is one more issue: how much data should be used for the
hillclimb set? Figure 1(b) shows a typical test set learning curve for running
ensemble selection with hillclimb sets of varying sizes. Assume the training set
is F , and the hillclimb set H is a subset of F . Here, the x-axis shows the ratio
H/F and indicates the percentage of F that is used for the hillclimb set. Based
on the learning curve, we can see that the performance of ensemble selection is
not stable, and is related to how much data is used for H . In the figure, there is
a performance peak at x = 40%, but performance starts to drop from x = 50%.
Different data sets may have different optimal ratios, which usually can be found
only by using cross-validation. Therefore, this parameter indirectly increases the
complexity of ensemble selection. Based on these observations, we propose a
new ensemble learning algorithm called bagging ensemble selection: if we view
the simple forward ensemble selection algorithm as an unstable base classifier,
then we can apply the bagging idea to construct an ensemble of simple ensemble
selection classifiers, which should be more robust than an individual ensemble
selection classifier. In addition, the respective out-of-bag samples can be used as
the hillclimb set. Specifically we will use the following three variations of bagging
ensemble selection.

The BaggingES-Simple algorithm is the straightforward application of bag-
ging to ensemble selection, with ensemble selection being the base classifier inside
bagging. In this algorithm, the amount of data used for the hillclimb set is still a
user-specified parameter (with a default of 30%). Each bootstrap sample is split
into a train and a hillclimbing set according to this parameter.

The BaggingES-OOB algorithm uses the full bootstrap sample for model
generation, and the respective out-of-bag instances as the hillclimb set for selec-
tion. The bootstrap sample is expected to contain about 1− 1/e ≈ 63.2% of the
unique examples of the training set [1,3]. Therefore the hillclimb set (out-of-bag
sample) is expected to have about 1/e ≈ 36.8% unique examples of the train-
ing set for each bagging iteration. An advantage of BaggingES-OOB is that the
user does not need to choose the size of the hillclimb set. Figure 2 shows the
pseudocode for training the BaggingES-OOB ensemble.
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Inputs:
Training set S; Ensemble Selection classifier E; Integer T (number of bootstrap

samples)

Basic procedure:
for i = 1 to T {

Sb = bootstrap sample from S (i.i.d. sample with replacement)
Soob = out of bag sample
train base classifiers (can be a diverse model library) in E on Sb

Ei = do ensemble selection based on base classifiers’ performance on Soob

}

Fig. 2. Pseudocode of the BaggingES-OOB algorithm

The BaggingES-OOB-EX algorithm is an extreme case of BaggingES-OOB,
where in each bagging iteration only the single best classifier (in terms of per-
formance on the hillclimb set) is selected. Therefore, if the number of bagging
iterations is set M, then the final ensemble size will be exactly M as well.

3 Experimental Results

We experiment with ten classification problems. All of them are real world data
sets which can be downloaded from the UCI repository [6], the UCSD FICO
data mining contest website1 and the KDD Cup 2009 website2. These data
sets were selected because they are large enough, and they come from very
different research and industrial areas. Table 1 shows the basic properties of these
data sets. To make experiments possible for large model libraries, selecting from
thousands of base classifiers, all five multiclass data sets were converted to binary
problems by keeping only the two largest classes each. After this conversion to
binary problems, for data sets that are larger than 10,000 instances, a subset
of 10,000 instances is randomly selected for our experiments. Table 1 (in the
rightmost column) shows the basic properties of the final data sets.

Ensemble selection is not restricted by the type of base classifiers used. Theo-
retically, any classifier can be used as a base classifier for ensemble selection. In
this paper, the WEKA [7] implementation of the random tree classifier is used as
the base classifier for all experiments. There are two reasons for focussing solely
on random trees as base classifiers. The first one is simplicity: just by varying a
single parameter, the random seed, we can obtain a large and relatively diverse
model library. The second one is fair comparsion: most other ensemble methods
are limited to uniform base classifiers. To speed up our experiments, parame-
ter K of the random tree, the number of random attributes, is always set to 5,
and the minimum number of instances at each leaf node is set to 50. In [5], the

1 The University of California, San Diego and FICO 2010 data mining contest,
http://mil.ucsd.edu/

2 The KDD Cup 2009, http://www.kddcup-orange.com/
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Table 1. Data sets: basic characteristics

Data set with release year #Insts Atts:Classes Class distribution (#Insts)

Adult 96 48,842 14:2 23% vs 77% (10,000)
Chess 94 28,056 6:18 48% vs 52% (8,747)

Connect-4 95 67,557 42:3 26% vs 74% (10,000)
Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDD09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)
Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)
MAGIC Gamma Telescope 07 19,020 11:2 35% vs 65% (10,000)

MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)
Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)

Original data sets Final binary data sets

authors have shown that ensemble selection can be optimised to many common
evaluation metrics. Bagging ensemble selection inherits this very useful feature;
the goal metric is therefore a user-specified parameter. In this paper, the AUC
(area under the ROC curve) metric is used for all experiments.

The following sections present two sets of results. One shows the results from
comparing the three bagging ensemble selection algorithms to the simple forward
ensemble selection algorithm (ES) and the ES++ algorithm, which is the im-
proved version of ES with the three additions, as described in the introduction.
This is followed by an analysis of the final ensemble sizes for these algorithms.
The other set of results shows a comparison between bagging ensemble selection
and other ensemble learning algorithms.

3.1 Comparison of Bagging Ensemble Selection Algorithms to the
Forward Ensemble Selection Algorithms

In this experiment the following setup is used: the number of bags (bagging
iterations) for BaggingES-Simple, BaggingES-OOB and BaggingES-OOB-EX is
set to 50. For each data set, we run 10 experiments per algorithm, increasing
the size of the model library per bag by 10 for each successive experiment: from
10 to 20, then to 30 and so on until 100 for the tenth experiment. For example,
when the size of the model library is 100, then, in total, 5,000 base classifiers
(random trees) are trained. Accordingly, we run 10 experiments on each data
set for the ES algorithm and the ES++ algorithm (hillclimb ratio is set to
30% for both ES and ES++) that we want to compare. The size of the model
library increases by 500 in each successive experiment, from a base 500 to 1,000,
then 1,500 until it reaches 5,000 in the tenth experiment, which means all five
algorithms in the comparison use the same number of base classifiers in each
individual experiment. Also, for the ES++ algorithm, the number of subgroups
is set to 50.
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Figure 4 shows the test set learning curves of the ES algorithm, the ES++
algorithm, and the three bagging ensemble selection algorithms based on 500
individual experiments (5 algorithms, 10 data sets, 10 different model library
sizes per data set). For each experiment, the algorithms are trained on 66% of
the data set and evaluated on the other 34%. We repeated each experiment five
times and the mean values were used for generating the figures and comparison.
Based on Figure 4, we can see that ES and ES++ outperform bagging ensemble
selection when the size of the model library is greater than 1,000 on the Adult-96
data set. For all other nine data sets, bagging ensemble selection, particularly
BaggingES-OOB (blue curves) and BaggingES-OOB-EX (green curves), clearly
outperform the ES algorithm and the ES++ algorithm. For data sets Chess-94,
KDD-09 and Localization-10, BaggingES-OOB and BaggingES-OOB-EX gave
similar performance.

An interesting pattern is that, for data sets Connect-4-95, Magic-07 and
UCSD-10, the test performance of BaggingES-OOB-EX declines as the size of
the model library increases. This is probably due to the fact that model diver-
sity is more important for these data sets than for others. Thus, as the model
library gets larger and larger, the best base classifier of each of the 50 bags
of BaggingES-OOB-EX might become more similar to each other, thus losing
model diversity.

For 6 out of 10 model library sizes, the BaggingES-Simple algorithm out-
performs all other algorithms on the UCSD-10 data set. The ES++ algorithm
outperforms other algorithms on the UCSD-10 data set when model library sizes
are 500 and 5,000, but had a relatively poor performance when model library size
is 1,000. Again, we can see that, for Covtype-98, KDD-09, MiniBooNe-10 and
UCSD-10, the learning curves of the ES algorithm are not very stable. Figure
3 (left panel) shows the histogram presentation of the performance in terms of
the number of wins for each algorithm over the ten data sets. We can see that
BaggingES-OOB and BaggingES-OOB-EX are the top two winners.

Next, we look at the final ensemble sizes of ES, ES++, BaggingES-OOB,
BaggingES-OOB-EX and BaggingES-Simple. Figure 5 shows the relationship

Fig. 3. Histogram presentation for counting number of wins for each algorithm
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between model library size and the final ensemble size for these algorithms on
the ten data sets. Please note that the final ensemble size of BaggingES-OOB-EX
is always 50 because the number of bagging iterations is set to 50. Except for the
BaggingES-OOB-EX algorithm, we can see that the final ensemble size of the
other four ensemble algorithms increases linearly or sublinearly as the size of the
model library increases (note that the y-axis is logarithmic). The final ensemble
size of BaggingES-OOB, ES, and ES++ grows relatively faster than BaggingES-
Simple’s ensemble size. One possible reason is that in Bagging-OOB-Simple, the
size of the build set (training set excluding the hillclimb set) is relatively small
compared to BaggingES-OOB. Theoretically, for BaggingES-OOB, the hillclimb
set (out-of-bag sample) has 36.8% unique instances of the training set, and the
training set has 63.2% unique instances; however, BaggingES-Simple uses the
bootstrap sample for both training and hillclimbing. For this experiment, the
hillclimb ratio for BaggingES-Simple is set to 30%, thus its hillclimb set has
fewer unique instances than BaggingES-OOB’s hillclimb set. Therefore adding
more base classifiers to BaggingES-Simple’s model library may not necessarily
improve the hillclimb performance since the hillclimb set might be too simple
and the local hillclimb performance maximum could be achieved quickly.

Another interesting pattern is that ES has a much smaller ensemble size than
BaggingES-OOB and BaggingES-Simple have. This could be because the local
performance maximum of ES on the hillclimb set can be achieved more quickly
compared to bagging ensemble selection. Again, adding more base classifiers to
ES’s model library may not necessarily improve the hillclimb performance.

Based on those observations, it seems that one reason for the good perfor-
mance of BaggingES-OOB is that it usually has a larger final ensemble com-
pared to all other algorithms. However, this does not imply that a larger fi-
nal ensemble always yields better predictive performance. Refer to the learning
curves in Figure 4, for data sets Chess-94, KDD-09 and Poker-07: BaggingES-
OOB-EX’s performance is competitive with BaggingES-OOB even though its
final ensemble size is only 50. Therefore, whenever final ensemble size is crucial,
for example, when an application requires fast real-time prediction, then the
BaggingES-OOB-EX algorithm should be considered.

To sum up, we conclude that the advantage of the BaggingES-OOB algorithm
and the BaggingES-OOB-EX algorithm over ES/ES++ is that their ensembles
are evaluated on diverse hillclimb sets generated by the bagging procedure, and
therefore are more robust and stable.

3.2 Comparison of Bagging Ensemble Selection Algorithms to
Other Ensemble Learning Algorithms

In this experiment, we compare BaggingES-OOB (the most successful variant
of the bagging ensemble selection based algorithms) to other popular ensem-
ble learning methods. The following algorithms (WEKA [7] implementations)
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(a) Adult-96 (b) Chess-94 (c) Connect-4-95 (d) Covtype-98

(e) KDD-09 (f) Localization-10 (g) Magic-07

(h) MiniBooNe-10 (i) Poker-07 (j) UCSD-10

Fig. 4. Learning curves of ES, ES++ and the three bagging ensemble selection algo-
rithms. X-axis is the model library size; y-axis is the AUC performance.

(a) Adult-96 (b) Chess-94 (c) Connect-4-95 (d) Covtype-98

(e) KDD-09 (f) Localization-10 (g) Magic-07

(h) MiniBooNe-10 (i) Poker-07 (j) UCSD-10

Fig. 5. Final ensemble sizes of ES, ES++ and the three bagging ES based algorithms.
X-axis is the model library size; y-axis is the final ensemble size in logarithmic scale.
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Table 2. Mean and standard deviation of the AUC performance of BaggingES-OOB
and five other popular ensemble learning methods

Data set BES-OOB Voting Stacking AdaBst.M1 RandomFrst ES++

Adult-96 0.905±0.001 0.902±0.002* 0.892±0.004* 0.783±0.008* 0.902±0.002* 0.906±0.002

Chess-94 0.875±0.004 0.859±0.003* 0.841±0.011* 0.971±0.002◦ 0.862±0.004* 0.866±0.003*

Connt-4-95 0.918±0.006 0.911±0.006* 0.897±0.007* 0.905±0.005* 0.912±0.006* 0.916±0.005

Covtype-98 0.884±0.002 0.882±0.002* 0.875±0.004* 0.878±0.003* 0.882±0.002* 0.881±0.001*

KDD-09 0.678±0.029 0.678±0.027 0.656±0.031* 0.580±0.011* 0.675±0.029 0.669±0.029

Localiz-10 0.966±0.002 0.957±0.002* 0.940±0.006* 0.938±0.004* 0.960±0.002* 0.963±0.003*

Magic-07 0.920±0.004 0.916±0.004* 0.910±0.004* 0.868±0.005* 0.919±0.004* 0.913±0.002*

MiniB-10 0.964±0.002 0.963±0.002* 0.959±0.002* 0.928±0.006* 0.963±0.002* 0.963±0.001*

Poker-07 0.697±0.018 0.660±0.022* 0.620±0.041* 0.740±0.007◦ 0.674±0.018* 0.671±0.020*

UCSD-10 0.649±0.011 0.648±0.008 0.612±0.016* 0.632±0.010* 0.646±0.008 0.646±0.007*

(win/tie/loss) (0/2/8) (0/0/10) (2/0/8) (0/2/8) (0/3/7)

“*” BaggingES-OOB is significantly better, “◦” BaggingES-OOB is significantly worse, level

of significance 0.05

are evaluated: Voting with probability averaging, stacking with linear regression
at the meta-level (Stacking), AdaBoostM1, and RandomForest. ES++ is also
included for comparison. All ensemble algorithms use the random tree as the
base classifier. The total number of base classifiers allowed to be trained for each
ensemble algorithm is equal. For bagging ensemble selection the number of bags
is set to 50, and the number of base classifiers of individual ensemble selection
in each bag is set to 100; thus in total 5,000 base classifiers (random trees) are
trained. For other ensemble algorithms, the number of base classifiers is set to
5,000. The training complexity of random tree is O(nlogn), where n is the size of
the training set. In this experiment, all ensemble algorithms train on the same
number of random trees, therefore the training costs for the model library of
each ensemble algorithm in this comparison are roughly the same.

Table 2 shows the performance of each algorithm on the ten data sets. Stan-
dard deviations and significant test results were calculated from five indepen-
dent runs of 66% (training) versus 34% (testing) split validation. The results
for which a significant difference with BaggingES-OOB was found, are marked
with a “*” or “◦” next to them. An asterisk “*” next to a result indicates that
BaggingES-OOB was significantly better than the respective method (column)
for the respective data set (row). A circle “◦” next to a result indicates that
BaggingES-OOB was significantly worse than the respective method. We can
see that AdaBoost.M1 significantly outperforms BaggingES-OOB on the Chess-
94 and the Poker-07 data sets. On the other eight data sets, BaggingES-OOB
is competitive (7 ties) to or superior (41 significant wins) to all other ensemble
algorithms.
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4 Conclusions

Ensemble selection is a popular ensemble learning method. Over the past several
years, ensemble selection has been empirically examined and has proven to be
a very effective and accurate ensemble learning strategy. One disadvantage of
ensemble selection is that it is unstable and sometimes overfits the hillclimb
set. In this paper, to further improve ensemble selection we proposed using the
bagging strategy, which utilises the unstable property, to reduce the variance of a
single ensemble selection. Our experiments on ten real world problems show that
the bagging ensemble selection, especially BaggingES-OOB, which uses the out-
of-bag sample as the hillclimb set, yields a robust and more accurate classifier
ensemble than the original ensemble selection.

When the underlying problem requires fast prediction, we suggest using
BaggingES-OOB-EX instead, because the user can control the size of the fi-
nal ensemble. In terms of predictive performance, bagging ensemble selection is
also competitive (in many cases, superior) to other state-of-art ensemble learning
algorithms, such as voting, random forest, stacking and boosting. Again, bagging
ensemble selection is not restricted by the type of base classifiers.

We experimented with only one type of base classifier in this paper, but to
get the best out of the algorithm, we suggest using a more diverse model library.
The bagging ensemble selection idea can be easily generalised to regression prob-
lems, since bagging is applicable to both classification and regression. In future
research, we will compare bagging ensemble selection to other ensemble meth-
ods for regression problems. The success of the proposed methods on the diverse
data sets selected for the study strongly suggests the applicability of the bagging
ensemble selection algorithm to a wide range of problems.
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Abstract. It is a widely held view in contemporary computational neu-
roscience that the brain responds to sensory input by producing sparse
distributed representations. In this paper we investigate a brain-inspired
spatial pooling algorithm that produces such sparse distributed repre-
sentations by modelling the formation of proximal dendrites associated
with neocortical minicolumns. In this approach, distributed representa-
tions are formed out of a competitive process of inter-column inhibition
and subsequent learning. Specifically, we evaluate the performance of
a recently proposed binary spatial pooling algorithm on a well-known
benchmark of greyscale natural images. Our main contribution is to aug-
ment the algorithm to handle greyscale images, and to produce better
quality encodings of binary images. We also show that the augmented
algorithm produces superior population and lifetime kurtosis measures
in comparison to a number of other well-known coding schemes.

1 Introduction

Advances in computational neuroscience over the last twenty years have pro-
duced increasingly realistic and viable models of the functioning of the mam-
malian neocortex. These advances provide a compelling evidence-based picture
of the kinds of physical processes and structures that underpin natural intelli-
gence – a picture that suggests various computational realisations. In the current
paper, we investigate a computational model of the neocortex proposed by Jeff
Hawkins, known as hierarchical temporal memory (HTM) [3]. Hawkins first pub-
lished his ideas in 2004, but only recently developed a practical computational
description of its low-level functioning [8]. Our task is to evaluate the spatial
pooling component of this algorithm in terms of its ability to robustly and ef-
ficiently encode Willmore and Tolhurst’s well-known benchmark of greyscale
natural scene images [11].

Research suggests that the neocortex uses a sparse coding strategy to represent
information within a hierarchal structure of layers [9]. A sparse code is one where
a relatively small proportion of code elements are active at any one time. If we
take the cortical column to be the basic unit of neocortical activation [7], this
implies that only a small proportion of columns connected to a given input will be
active when the input is present. In addition, for a code to be representationally
useful, differing inputs must activate different subsets of columns. This can be
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achieved by maximising the statistical independence of the generated codes [4].
The advantage of sparse coding over local coding is that sparse codes have greater
representational capacity while still being able to encode simultaneous inputs
without interference.

The HTM model extends existing work by explicitly handling temporal se-
quences of input within a hierarchical Bayesian framework [2]. This is achieved
by localised collections of cortical minicolumns learning to predict sequences of
feed-forward input arriving either from sensory receptors or from other regions
of the neocortex, and having the entire hierarchy learn and exchange inferences
about temporal sequences (i.e. events) rather than spatial patterns. It is this
temporal predictive function of groups of minicolumns that sets the HTM model
apart from other hierarchical Bayesian approaches (e.g. [1,6]).

However, it is only recently that the computational details of the HTM model
have explicitly incorporated a sparse coding strategy into the spatial pooler com-
ponent of the architecture [8]. To date there has been no published evidence
evaluating the performance of the new spatial pooler, or of the new cortical col-
umn architecture. To address this, we implemented the HTM spatial pooler and
evaluated it on a set of static image benchmarks. In the remainder of the paper
we provide a description of this implementation and explain the principles upon
which it works. We then introduce a number of modifications that were necessary
to make the pooler operate efficiently on our benchmark problems and present
an empirical study comparing the HTM spatial pooler with our modified pooler
and with the various techniques presented in Willmore and Tolhurst’s paper on
characterising the sparseness of neural codes [11]. As part of this empirical study
we investigate a range of measures to capture the important dimensions of the
spatial pooler’s behaviour.

2 Spatial Pooling

Basic Principles: The latest HTM architecture [8] introduces a more sophis-
ticated and biologically plausible neural model than is typically employed in
artificial neural network research. This model is structured as a hierarchy of
regions, where each region consists of a set of columns and each column con-
sists of a set of neurons and their associated dendrites and synapses. According
to HTM theory, these neurons control which columns in a region are currently
active, and which are currently predicting they will be active. The first func-
tion is determined by a procedure known as spatial pooling and the second by a
procedure known as temporal pooling.

The basic task of the spatial pooler is to form a sparse distributed represen-
tation of the input. This is required by the temporal pooler in order to learn
and predict the sequential order of particular input streams. However, to be bi-
ologically plausible as well as practically useful, the spatial pooler must also be
able to efficiently form a relatively stable representation of a continuous stream
of input. These requirements rule out existing solutions, such as independent
components analysis [4], as these lack the flexibility and efficiency to adjust to
online data streams.
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As the internal structure of an HTM column and its associated neurons is
only relevant to the implementation of temporal pooling, we shall not discuss
these details further. To understand spatial pooling, we need only consider a
column as a unified entity with an associated set of proximal dendrites that
synapse directly with the input (see [8]). These synapses are not associated with
weights that multiplicatively determine the strength of the signal. Instead, each
dendrite is associated with a potential synapse and each synapse is associated
with a permanence value. If the permanence value of a synapse passes a certain
threshold then the synapse is connected and the dendrite will transmit the input
to which it is connected, otherwise the synapse remains potential and inactive.

To justify the use of potential synapses, Hawkins argues that the traditional
artificial neural network approach of learning by adjusting the strength or weight
of individual synapses is not biologically realistic. He acknowledges that synapses
have differing strengths, but argues that the synaptic release of neurotransmit-
ters is too stochastic to explain the fine distinctions that are made between
differing inputs. Instead, he points to recent research that shows how synapses
can rapidly form and un-form [10] and argues that this provides a better mech-
anism for synaptic learning.

A second important aspect of the operation of the spatial pooler is the use of
inhibition between columns to produce sparse distributed representations. It is
this feature that produces the self-organising capacity of the system to adjust
itself to the structure of the input data. As with Kohonen’s self-organising maps
[5], the spatial pooler performs learning on the basis of how well the synapses
from a particular column match (or overlap) the input to which the synapses
are connected. However, instead of altering the relative weights of the synapses
of neighbouring columns, a strongly activated column will compete with and
inhibit its less active neighbours [10]. At the end of this process, only the potential
synapses belonging to the winning columns that best represent the current input
will be able to learn. Here learning entails increasing the permanence values
of potential synapses that are connected to active input and decreasing the
permanence values of those connected to inactive input. This implements the
forming and un-forming of synaptic connections discussed above.

Binary Spatial Pooling: The basic functioning of spatial pooling is described
in [8]. Here we only provide a brief outline of the algorithm and explain those
areas which deviate from or extend the original proposal. Firstly, each HTM col-
umn has a set of potential synapses that are randomly connected with probability
P (connect) to each input coordinate. Every potential synapse s is then initialised
with a randomly generated permanence value perm(s) bounded within a small
range of a threshold permThreshold, such that the probability of connection
varies inversely and linearly with the distance of the column from the input coor-
dinate. Potential synapses with a permanence value greater than permThreshold
are now defined as connected.
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Algorithm 1. performLearning(columns)
for each potential synapse s in each active column c do

if s has active input then perm(s) = min(perm(s) + pInc, 1)
else perm(s) = max(perm(s)− pDec, 0)

end for
for each c in columns do

if activity(c) < minActivity(c) then boost(c) = boost(c) + bInc
else boost(c) = 1
if overlapSum(c) < minActivity(c) then

for each potential synapse s in c do perm(s) = min(perm(s)× pMult, 1)
end if

end for

The system then calculates the activity level of each column’s response to each
image. For binary images, this column activity (or overlap) is a simple count
of the number of connected synapses that are receiving active input. However,
each column’s overlap (overlap(c)) must also exceed a minOverlap threshold, in
which case overlap(c) is multiplicatively boosted by a factor boost(c) (determined
by the learning procedure), otherwise it is set to zero. A column c then becomes
active if it is one of the n most active columns within the meanInhibitionArea
of c, where meanInhibitionArea is the mean size of the receptive fields of all
columns and n is set by the parameter desiredActivity.

Algorithm 1 (performLearning) implements the basic learning strategy.
Firstly, the permanence values of all synapses belonging to active columns are ad-
justed by incrementing those connected to active input and decrementing those
connected to inactive input. Then two strategies are used to increase the ac-
tivity of insufficiently active columns. This first involves counting how often a
column c has been active over the last i iterations (activity(c)) and how often it
has exceeded the minOverlap threshold (overlapSum(c)). These values are com-
pared with minActivity(c), calculated by maxActivity×minActivityThreshold,
where maxActivity is the maximum activity of any column falling within the
meanInhibitionArea of c and minActivityThreshold is a user defined param-
eter. If column c’s activity(c) falls below minActivity(c) then boost(c) is incre-
mented by bInc and if overlapSum(c) falls below minActivity(c) then the per-
manence values of all c’s potential synapses are increased by a factor of pMult.
The first strategy ensures all columns maintain a minimum level of activity and
the second ensures they maintain a minimum level of synapse connectivity.

Finally, the system converges when no changes have been made to the per-
manence value of any synapse since the last iteration through the entire set of
images. The end result is a sparse, distributed encoding of each image presented
to the pooler, comprising of the set of columns that are active when an image is
present. The sparse distributed nature of the encoding is produced by the self-
organising interaction of inhibition, which focuses activity on a small subset of
columns (sparsifying), and learning, which ensures all columns become at least
minimally active (distributing).
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3 Modifications

Handling Greyscale Images: The HTM specifications only handle binary
input. Hence we term the original algorithm binary spatial pooling (BSP). Our
first extension was to redefine the notion of overlap so that synapse inputs can
take on integer values. To achieve this, a column’s overlap becomes the sum of
the integer input values at each connected synapse rather than a simple count
of active bits. The main alteration occurs in the updating of the permanence
values of potential synapses of active columns (compare lines 1–4 of Algorithm 1
with lines 1–9 of Algorithm 2). Previously a permanence value was incremented
whenever a potential synapse is associated with an active input. Now we redefine
the notion of an active input to be an input that is greater than the mean
activation level of the current image. In addition, minOverlap is adjusted by
being multiplied by the mean value of all non-zero pixels in the current image.
This preserves the original value of minOverlap for binary images (as the mean
value of non-zero binary pixels is one) while ensuring that (on average) for each
column at least minOverlap synapses are connected to active (above mean)
non-binary inputs.

Accelerating Convergence: The convergence behaviour of the pooler can be
accelerated by switching off the basic learning function in lines 1–4 of Algorithm
1 at the point where the two boosting strategies become inactive. This is achieved
by keeping count of the number of columns that are either boosted or have their
potential synapses incremented during a single iteration through the entire set
of images (or over a sufficiently long period of time). If this count is zero then
all columns will have attained a sufficient level of activation over the entire
data set and there is no further need to adjust the synapse connections. The
advantage of this approach is that the pooler can have its main learning function
suspended and yet still remain responsive to new input, i.e. if new input cannot
be represented by the existing pattern of synapses, some form of boosting will
occur and learning will be resumed. The system is still not considered to have
finally converged until a complete iteration through all images has occurred such
that the permanence values of all synapses remain the same at the end of the
iteration as they were at the start.

Augmented Spatial Pooling: The main contribution of the paper, aside from
evaluating the current HTM spatial pooler, is the development of a more ro-
bust learning strategy. This strategy was suggested by observing that the ex-
isting boosting strategy often fails to sufficiently alter the pattern of connected
synapses: although boosting succeeds in elevating an inactive column into ac-
tivity, because the boost value is then immediately reset to one, the column
does not remain active long enough for any of its currently inactive synapses
to become connected. If no new connections are made in the first iteration of
activity, the column can immediately fall into inactivity and again have to wait
for its boost value to increment to a point where it becomes active. If a large
number of columns are in this position, then an escalating boosting competition
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Algorithm 2. performAugmentedLearning(image, columns)
for each potential synapse s in each active column c do

if input(s) > meanInput(image) and perm(s) >= connectThreshold then
perm(s) = min(perm(s) + pInc, 1)

else if input(s) > meanInput(image) and perm(s) < connectThreshold then
perm(s) = min(perm(s) + pInc, connectThreshold− pInc)

else
perm(s) = max(perm(s)− pDec, 0)

end if
end for
for each c in columns do

if activity(c) < minActivity(c) and (boost(c) = boost(c) + bInc) > bMax then
boost(c) = 1
for each disconnected synapse s in c in ascending distance order from c do

if perm(s) > maxPerm then maxPerm = perm(s) and maxS = s
end for
perm(maxS) = connectThreshold + pInc

end if
end for

can occur where, although each column is slowly gaining new connections, so are
its competitors, meaning none remain active long enough to form stable repre-
sentations. The end result is that the pooler can fail to converge, especially on
complex (high entropy) images.

Algorithm 2 details the augmented learning procedure. Here the updating of
active column synapses is altered so that disconnected synapses only have their
permanence values incremented to a point just below connectThreshold (lines 4–
5). Now, the only place where synapses can become connected is in the boosting
procedure (line 16). As before, if a column’s activity is below the minActivity(c)
threshold its boost value is increased (line 11). However, if boost(c) exceeds a
bMax threshold then the closest synapse to c (maxS) is selected from the set
of disconnected synapses with the greatest permanence value (maxPerm) and
this synapse has its permanence value set so that it is connected. In this way
the connection of synapses is controlled entirely within the boosting procedure
and the earlier ineffective escalating boosting behaviour is remedied.

4 Experimental Evaluation and Discussion

In order to evaluate the HTM spatial pooler we used the 64 greyscale images
from Willmore and Tolhurst’s influential study on measures of sparsity [11], and
similarly generated ten sets of 10, 000 16× 16 image patches selected randomly
from the 64 full images. In the original paper, sparseness was characterised ac-
cording to two statistics: population kurtosis and lifetime kurtosis. Population
sparseness is defined as the average kurtosis of the distribution of the activities
of the complete set of N columns for each image in the set of input images. The
population kurtosis of a single image i is given by:
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populationKurtosisi =

{
1
N

N∑
c=1

[
ac − ā

σa

]4
}
− 3 (1)

where a1 . . . aN are the post-inhibition overlap activities of columns 1 . . .N for
image i, and ā and σa are the mean and standard deviation of these activities.
To allow for comparison between methods, and again following [11], we stan-
dardised the activities to have a mean of zero and a standard deviation of one,
giving an averaged population kurtosis of 1

M

∑M
i=1 populationKurtosisi for an

entire set of M images. This statistic measures the infrequency or sparseness of
collective column activity in response to individual images but fails to measure
how the responses are distributed between columns, i.e. how infrequently indi-
vidual columns become active. To capture this second dimension, we need the
average lifetime kurtosis of the columns, which measures the averaged kurtosis
of each column’s responses to an entire set of input images. Lifetime kurtosis is
defined in the same way as population kurtosis except that a1 . . . aN are now the
activities of column c in response to the entire set of N images and the average
kurtosis is taken over i = 1 . . .M columns.

Comparisons with Greyscale Images: Given these measures we can now
compare the sparseness and distribution of the spatial pooler representations
with the results reported in [11] (see Table 1). Here, following [11], we gener-
ated a spatial pooler column for each image pixel (256 in all), and then set
the pooler parameters as follows: P (connect) = 0.15, connectThreshold = 0.2,
pInc = pDec = 0.02, bInc = 0.005, bMax = 4, minActivityThrehold = 0.01,
desiredActivity = 0.05×meanInhibitionArea, and decay d = 100. In addition,
minOverlap was dynamically set to be the product of the mean pixel intensity
of the current image and the mean number of connected synapses for an individ-
ual column. These values proved fairly robust for the augmented spatial pooler
(ASP) and were subsequently used as ASP defaults.

In contrast, despite extensive parameter tuning, the original binary spatial
pooler (BSP) was unable to converge to a stable representation on any of the
10× 10, 000 greyscale image sets (after allowing 500 cycles through each image
set). This reflects that BSP was not developed to process greyscale images. If we
binarise the input by setting each pixel with an intensity greater than the mean
intensity for a given image to one and all others to zero, then BSP can successfully
converge. However, as the Willmore study was concerned with greyscale coding
schemes, we cannot fairly compare BSP with the other coding schemes, and so
we only report statistics for ASP in Table 1.

Overall, the results show that ASP significantly outperforms all the coding
schemes considered in [11], having a lifetime kurtosis on the raw images 4.6 times
greater than the best alternative (ICA) and 3.9 times greater than Gabor on the
whitened images. The population kurtosis improvements were less pronounced on
the raw images (but still 1.5 times greater than PCA) but even more pronounced
on the whitened images (8.31 times greater than Gabor).
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Table 1. Comparison of augmented spatial pooling (ASP) averaged lifetime and pop-
ulation kurtosis measures with results published in [11] where Gabor = Gabor filters,
ICA = independent components filters, O&F = Olshausen-Field bases, PCA = princi-
pal components filters, Sinu = sinusoids, Walsh = Walsh functions, Gaus = Gaussian
filters, Pixel = single pixel, Raw = unprocessed images, and White = whitened images.

Kurtosis Image Coding Scheme
Measure Process ASP Gabor ICA O&F PCA Sinu Walsh Gaus Pixel

Lifetime Raw 87.10 18.50 18.74 8.24 10.33 10.69 7.37 6.76
White 71.23 18.47 17.21 8.13 10.05 10.91 8.93 11.13

Population Raw 50.54 21.66 6.42 32.64 27.12 27.75 0.21 1.66
White 44.64 5.37 2.17 3.07 4.62 4.01 0.52 2.68

Table 2. Comparison of augmented spatial pooling (ASP) with binary spatial pooling
(BSP) on the complete set of binary scaled natural images taken from [11]
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minOverlap setting auto 4.00 3.00

Converge Time (secs) 8.48 27.88 2.73

Converge Cycles 15.70 56.40 4.70

% Duplicates 10.96 14.94 8.19
% Zero Length 0.00 9.22 4.40

Lifetime Kurtosis 61.94 47.35 26.98

Population Kurtosis 36.95 27.98 20.37

Mean Code Length 15.59 19.02 22.64

ASP was also able to efficiently converge on stable representations, requiring,
on average, 13.62 cycles through each of the ten raw data sets (where each cycle
processes all 10, 000 images in a set) and 10.67 cycles through the whitened
data. This took an average 8.01 seconds per convergence on the raw data and
6.98 seconds on the whitened data (all ASP and BSP experiments were run on
an Apple MacBook Pro 2.93 GHz Intel Core 2 Duo processor with 4 GB of 1067
MHz DDR3 RAM and running Mac OS X version 10.6.7).

Comparisons with Binary Images: As the original spatial pooling algorithm
(BSP) was unable to converge on the greyscale images, we ran a separate ex-
periment using the same set of natural image patches but after performing a
binary conversion. BSP still found these binary images challenging in compari-
son to simpler binary encodings and was unable to converge using ASP’s default
parameter settings. We found that BSP will only converge on these images if
the effect of decrementing the permanence value of a synapse is much stronger
than the effect of an increment, making it easier for a synapse to become dis-
connected than for it to become connected. ASP achieves a similar effect by not
incrementing a permanence value past connectThreshold unless the associated
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column is sufficiently inactive (see Algorithm 2). To similarly influence BSP we
set pInc (= 0.0005) to be five times weaker than pDec (= 0.0025). In addition,
to enable BSP to reliably converge within 500 cycles we reduced P (connect) to
0.1 and limited minOverlap to range between 3.0 to 4.0.

Table 2 compares BSP at these adjusted settings with ASP using the standard
defaults. The results first show the significant effect of altering minOverlap on
the convergence behaviour of BSP, i.e. a reduction of from 4.0 to 3.0 causes a
tenfold speedup in convergence, making BSP 3.0 the fastest of the three algo-
rithms. However, this superior convergence is bought at the cost of longer codes,
as shown by the mean code length and the distribution of code lengths in the
graph. Here a code is the set of columns Ci that become active when an image
patch i is present, and a distribution of code lengths is the set of code lengths
|Ci| for each image patch i = 1 . . . M . All else being equal, shorter codes are
preferred over longer codes because they are more efficient. On this measure,
and on the measures of lifetime and population kurtosis, ASP is clearly better
than either BSP 3.0 or 4.0. This means ASP reliably produces shorter codes that
involve fewer columns and that are more evenly distributed across all columns
(as shown by the sharp peak for ASP on the graph in Table 2).

However, an additional dimension is the degree to which a code can distinguish
between different inputs. Again, all else being equal, a code that produces finer
distinctions is to be preferred. To measure this, we looked at the proportion of
image patches that were encoded using common sets of columns (% duplicates
and % zero length in Table 2). We used two measures because the duplicate
percentage cannot represent the difference between an encoding that captures
1000 images using one set of columns and one that captures 1000 images using
500 sets of columns, where each column set encodes a pair images. In practice, the
majority of duplicates only involved column sets encoding image pairs, except
for zero length encodings. Such encodings occur when an image fails to make
any column active, i.e. the image is ignored or remains unencoded. Clearly,
duplicates involving a high proportion of zero length codes (BSP 3.0 and 4.0)
make poorer distinctions than encodings where all duplicates are made up of
column sets encoding pairs of images (ASP). We can therefore conclude that
ASP produces better encodings, both in terms of efficiency, and in terms of
making finer distinctions. The price is that ASP converges more slowly than
BSP 3.00. However, if speed of convergence is an issue, the ASP parameter
defaults can be altered to produce results equivalent to BSP 3.0, whereas we
could find no BSP settings that could improve upon the BSP 4.0 encodings.

5 Conclusions

Firstly, we have shown that augmented spatial pooling significantly outperforms
the coding schemes presented in Willmore and Tolhurst’s original study, both
in terms of population and lifetime kurtosis. Secondly, we can conclude that
augmented spatial pooling is better than binary spatial pooling for encoding
the natural images in the Willmore and Tolhurst data set. The results hold
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most strongly for the greyscale encodings of the images, where BSP is unable
to converge on any of the data sets. It also holds on the binary encodings,
where ASP produces better quality sparse representations, both in terms of
efficiency (code lengths) and discrimination (duplicates and zero length codes).
More generally, we conjecture that the reason BSP performs poorly on natural
images is because it forms synapses too easily. This behaviour comes out in
relation to natural images because such images have relatively poorly defined
structure (i.e. they have high entropy), meaning synapses will tend to form
uniformly across the entire image. ASP controls this behaviour by more tightly
constraining the situations where new synapses will form.

In future work, we intend to compare ASP and BSP on a wider range of im-
ages to confirm our conjecture concerning the complexity of the encodings. We
also intend to investigate greyscale spatial pooling using two forms of synapse,
one responsive to darker shades and the other responsive to light.

Acknowledgments. We thank David Tolhurst and Ben Willmore for supplying
the images used in their original paper.
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Abstract. Particle swarm optimization cannot guarantee convergence
to the global optimum on multi-modal functions, so multiple swarms can
be useful. One means to coordinate these swarms is to use a separate
search mechanism to identify different regions of the solution space for
each swarm to explore. The expectation is that these independent sub-
swarms can each perform an effective search around the region where
it is initialized. This regional focus means that sub-swarms will have
different goals and features when compared to standard (single) swarms.
A comprehensive study of these differences leads to a new set of general
guidelines for the configuration of sub-swarms in multi-swarm systems.

Keywords: Particle swarm optimization, exploration-exploitation,
multi-swarm system, multi-modal search spaces.

1 Introduction

Particle Swarm Optimization (PSO) is an effective search technique for opti-
mization problems in continuous domains [10]. Inspired by the principles that
influence the flocking of birds and the schooling of fish, the main idea is the
combination of personal experience from the individual and social experience
from the group. In PSO, this experience is represented as an attraction to the
best position found by a given individual (particle) and to the best one found
by a set of individuals. Together with a particle’s momentum, these attraction
forces define the movement of each particle in the swarm.

The movement of particles in a swarm is naturally convergent. The conver-
gence rate can be slower or faster depending on the communication topology (e.g.
ring or star)[1], but eventually the swarm will focus its search efforts around the
best-found solution(s). The convergent nature of this search process is not ideally
suited to multi-modal search spaces where it is important to achieve an effective
balance between exploration and exploitation. Compared to modifications which
seek to improve the balance between exploration and exploitation in PSO (e.g.
[4][7]), an alternative approach is to separate these processes into distinct phases
which focus primarily on either exploration or exploitation. Multi-swarms sys-
tems (e.g. [2][9]) use multiple sub-swarms to search in different regions of the
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solution space, and this two-phase organization supports an exploration around
a diverse number of “best positions”.

A considerable amount of research (e.g. [5]) has been dedicated to study the
optimal way to configure particle swarms, and a large amount of this research is
summarized in the definition for standard PSO [1]. However, it is not expected
that standard (single) swarms and smaller sub-swarms will have the same opti-
mal configuration. For example, sub-swarms that use fewer iterations/function
evaluations (FEs) can require more constriction to ensure convergence [3].

In this paper we investigate how different features of PSO – the number
of particles, constriction factor, initial velocities, initial positions, and function
evaluations – influence the behaviour of sub-swarms in comparison with standard
swarms. As a reference point, all experiments in this paper use a novel method
based on Estimation Distribution Algorithms (EDA) for selecting the initial
positions of the sub-swarms. This initialization simulates the exploratory phase
of a hypothetical multi-swarm system. A study of sub-swarms is then carried out
with the purpose of providing general considerations and good design features
for multi-swarm systems.

This analysis of sub-swarm behaviour begins in Section 2 with some back-
ground on different examples of multi-swarm systems. A brief description of the
benchmark functions and the experimental design is given in Section 3. In Sec-
tion 4, the influence of initial velocities on standard swarms in comparison to
multi-swarm systems is analyzed. Sections 5 and 6 present some considerations
about the constriction factor and the population size, respectively. In Section 7,
results are combined into an overall recommendation for sub-swarm parameters.
The discussion in Section 8 puts previous results in context, and a brief summary
is presented in Section 9.

2 Multi-swarm Systems

The design of multi-swarm systems divides the processes of exploration and ex-
ploitation into two distinct phases. Each individual swarm focuses on exploita-
tion in a specific region, and a separate mechanism which chooses these regions
focuses on exploration. This exploratory mechanism can be considered as the
essential part that differentiates one multi-swarm system from another.

For example, Waves of Swarm Particles (WoSP) [9] bases its diversification
mechanism on the “collision” of particles. When particles get too close, a re-
pulsive force expels the particles into new waves/sub-swarms, and this avoids a
complete convergence. A key feature of the new sub-swarms is that their initial
positions are not randomly selected as in normal swarms. Instead, they main-
tain some information from the previous trajectories of the particles. A similar
relationship exists with initial velocities. In WoSP, the initial search direction
after the ejection is based on the previous velocity of the particle.

The significance of initial positions and velocities is much clearer in locust
swarms [2]. This multi-swarm system bases its diversification mechanism on
a “devour and move on” strategy. Once a sub-swarm has devoured a region
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(intensive search) the swarm is ready to move on to another promising region.
The initial positions of the new sub-swarm are selected using a scouting process
around the best position found by the previous sub-swarm. The initial velocities
are directed away from this previous optimum to further push the subsequent
sub-swarms away from previously devoured parts of the search space.

Although the design of multi-swarm systems tends to focus on the selection
of initial positions and initial velocities for the particles of a new sub-swarm,
additional design considerations are also required. For example, a multi-swarm
system that uses the same overall number of FEs as a standard swarm will
require each sub-swarm to use a highly reduced number of iterations/function
evaluations. With fewer iterations per particle, and considering each sub-swarm
as an exploitation mechanism, it may be necessary to increase the convergence
rate by decreasing the constriction factor. To increase the iterations for each
particle (given a fixed number of total function evaluations), the swarm size can
be reduced. These previously under-studied aspects of sub-swarm design are the
focus of this paper.

3 Experimental Design

The experiments presented in this paper have been performed using set 3 (uni-
modal functions with high conditioning – functions 10-14) and set 4 (multi-modal
functions with adequate global structure – functions 15-19) of the Black-Box Op-
timization Benchmarking (BBOB) functions [8]. To provide some consistency
with other results (e.g. [3][4]) five trials were run on the first five instances of
each benchmark function for a total of 25 trials per function. This previous work
also used a fixed number of function evaluations based on the dimensions D (i.e.
FEs = 5000 ∗D), and they focused on a problem size of D = 20 dimensions.

The following experiments require a set of initial positions which are of high
quality, but that are not completely converged. These initial positions can then
be used to simulate the result of the exploratory phase in a multi-swarm system.
Estimation Distribution Algorithms (EDAs) [11] are a promising candidate for
selecting the initial positions. Among EDAs, the UMDA algorithm was chosen
because it is a simple and methodical way to explore a search space.

The exploratory phase in a multi-swarm system doesn’t use 100% of the avail-
able function evaluations. For each sub-swarm, a small number of FEs are used
for exploration (to find initial positions), and the sub-swarm then tries to find
the best possible solution from there (e.g. a nearby local optimum). The follow-
ing analysis of sub-swarm behaviour uses initial positions selected by an UMDA
algorithm after 20,000 FEs (UMDA 20).

The benchmark PSO for the current experiments is a constricted, ring topol-
ogy version (i.e. standard PSO [1]) developed from the source code published
in El-Abd and Kamel [6]. The published implementation uses a swarm size of
p = 40 particles and a constriction factor χ = 0.792. Together with random
initial velocities and UMDA 20 initial positions (i.e. 20,000 FEs for a standard
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implementation as proposed in [11] with a population of 1,000 individuals and
a selection coefficient of 0.2), these will be the default parameters for the exper-
iments in this paper.

4 Effects of Initial Velocities

The effectiveness of a selection method for initial velocities based on Differential
Evolution (DE) [12] has been reported by Chen and Montgomery in [3]. In
Differential Evolution, a new solution is created by applying a difference vector
to a base solution. This update equation (1) uses three unique solutions x1, x2

and x3 drawn from the population, and a scaling factor F .

x = x1 + F (x2 − x3) (1)

To determine if this technique (DE-velocities) can improve any PSO algorithm
regardless of the number of function evaluations, the following experiment com-
pares the performance of swarms with random initial velocities and swarms with
initial velocities selected with difference vectors (using F = 1.0). The initial po-
sitions are the p best UMDA 20 solutions, and the first results are for a high
number of FEs (100,000, 80,000, 60,000, and 40,000). All other “sub-swarm”
parameters are from the benchmark [10] (e.g. χ = 0.792 and p = 40).

The relative improvement (%-diff) achieved by DE-velocities versus random
ones is reported in Table 1. The last row shows the mean improvement over
all 10 functions for a given amount of FEs. In these results, the DE-velocities
do not show any meaningful improvement compared to the random velocities. A
possible explanation is that over the course of a long run, the swarm will conduct
a thorough exploration of the search space regardless of the initial velocities.

Table 1. Comparison of DE Velocities vs Random Velocities

fn 100,000 FEs 80,000 FEs 60,000 FEs 40,000 FEs

10 2.1% −7.8% 5.6% −7.9%
11 −1.3% −0.2% −9.7% −1.4%
12 0.4% −6.6% −5.3% 2.3%
13 −3.0% −3.1% 2.9% 3.8%
14 1.3% −1.8% 5.4% 17.6%
15 19.5% −5.0% −11.1% 6.0%
16 0.6% −1.4% −4.6% 9.1%
17 2.7% 9.0% 15.7% 8.3%
18 3.8% −13.0% −4.9% −0.4%
19 3.2% 4.8% −3.1% 0.8%

mean 2.9% −2.5% −0.9% 3.8%

In multi-swarm systems, the number of FEs is drastically reduced for each
sub-swarm. To determine how this decrement influences the effects of initial
velocities, the previous experiment is repeated with much fewer function evalua-
tions. In the results shown in Table 2, each column corresponds to swarms with
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10,000, 5,000, 2,000, and 1,000 FEs, i.e. 10, 5, 2, and 1 percent respectively of
the total FEs of a standard swarm.

The relative improvement obtained by DE-velocities versus random velocities
shows that the selection of the initial velocities can be beneficial for swarms which
must converge in a small number of function evaluations. The total improve-
ment presented in the last row demonstrates a clear trend – the importance of
selected initial velocities increases as the number of FEs used by the sub-swarms
decreases. These results replicate the benefit shown in [3] and demonstrate that
initial velocities are an important design consideration in sub-swarms that does
not exist for standard swarms.

Table 2. Comparison of DE Velocities vs Random Velocities

fn 10,000 FEs 5,000 FEs 2,000 FEs 1,000 FEs

10 7.6% 9.0% 32.2% 54.7%
11 −6.5% −1.2% 9.9% −7.1%
12 63.6% 63.8% 92.6% 99.2%
13 29.3% 28.9% 48.9% 79.7%
14 19.0% 35.0% 67.6% 86.8%
15 1.0% 5.5% 16.7% 18.7%
16 4.7% 7.4% −7.3% −2.9%
17 7.2% 15.4% 42.7% 69.9%
18 3.2% 4.3% 34.5% 55.1%
19 −0.9% 4.0% 3.1% 9.0%

mean 12.8% 17.2% 34.1% 46.3%

5 Effects of Smaller Constriction Factors

With fewer iterations per particle, it may be beneficial to increase the conver-
gence rate of the sub-swarms (i.e. decrease the constriction factor χ). In standard
PSO [1] the velocities of each particle are updated by

vd = χ(vd + c1ε1(pbestd − xd) + c2ε2(gbestd − xd)) (2)

In (2), v is the particle’s velocity, x is the position of the particle, and d is
a given dimension. The variables ε1 and ε2 are random values, which together
with the weights c1 and c2 determine the contribution of attractions to the
personal and global bests pbestd and gbestd, respectively. The constriction factor
is represented by χ, the specific value used for the constriction factor in [6] is
χ = 0.792. By changing the value of this parameter, it is possible to modify the
particle’s momentum, and therefore to either promote a more exploratory or a
more exploitative behaviour.

The following experiments examine the effect of reducing the constriction
factor on the performance of sub-swarms. The reported results (see Figure 1)
are the relative improvement (%-diff) achieved with a reduced constriction factor
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versus the value used in the benchmark PSO (i.e. χ = 0.792). The constriction
χ was decreased by multiplying it by an additional reduction factor α (α ≤ 1).
The initial positions were selected using UMDA 20, and all other sub-swarm
parameters are from the benchmark (e.g. random initial velocities and a swarm
size of p = 40).

Figure 1 shows the relationship between the improvement in performance and
the reduction of the constriction factor for sub-swarms with different amounts
of FEs (10,000, 5,000, 2,000 and 1,000). For example, the largest improvement
of 67.4% is achieved for sub-swarms with 1,000 FEs by multiplying the original
constriction factor with α = 0.55 (i.e. χ = 0.401) – see the highlighted tick-mark.
The %-diff values are averages for all of the benchmark functions in BBOB sets
3 and 4 (e.g. the mean value in Tables 1 and 2).

Fig. 1. Relationship between constriction factor and sub-swarm improvement

By analyzing Figure 1, two observations can be made. First, as the number of
FEs decreases the (relative) improvement achieved by reducing the constriction
factor increases. Second, the best value for the constriction factor gets smaller
as the amount of function evaluations is reduced. A smaller constriction factor
decreases the particles’ momentum which gives the swarm a less exploratory (and
more exploitative) behaviour. More exploitation allows sub-swarms to converge,
but constriction values that are too small can cause premature convergence which
can again decrease the performance of the sub-swarm.

6 Effects of Swarm Size

With a fixed quantity of function evaluations, the number of iterations can be
altered by adjusting the swarm size: FEs = popsize ∗ iterations. If the swarm
size is decreased then it is possible to execute more iterations. On the other
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hand, a small population may affect the ability of the swarm to explore different
regions of the solution space. Thus, the number of individuals causes a trade-off
between exploration and exploitation.

In the recent definition for standard PSO [1], Bratton and Kennedy analyzed
the influence that the number of particles can have on PSO performance. They
report that “no swarm size between 20 – 100 particles produced results that
were clearly superior or inferior to any other value for a majority of the tested
problems”. The best value for a swarm size may depend on problem-specific
features like the number of dimensions, constraints, and other characteristics of
the objective function. To provide some consistency with other results (e.g. [6]),
a swarm size of p = 40 particles has been used in the previous experiments.

The purpose of the following set of experiments is to observe the effects of
population size in sub-swarms which use a highly limited number of FEs. The
reported results (see Figure 2) show the relative improvement (mean %-diff over
the 10 functions in BBOB sets 3 and 4) achieved with smaller swarm sizes versus
a swarm with p = 40 particles. The results in Figure 2 correspond to sub-swarms
with different amounts of FEs (10,000, 5,000, 2,000 and 1,000). The initial po-
sitions were selected using UMDA 20, and all other sub-swarm parameters are
from the benchmark (e.g. random initial velocities and a constriction factor of
χ = 0.792).

Fig. 2. Relation between number of particles and sub-swarm improvement

In Figure 2, a considerable improvement in performance can be observed when
the swarm size is decreased to values far below those suggested by Bratton and
Kennedy for a standard swarm [1]. With fewer function evaluations, sub-swarms
benefit from smaller populations which allow more iterations and a subsequent
increase in their ability to adapt to the function’s landscape.



278 A. Bolufé Röhler and S. Chen

7 Recommended Parameters

So far, the different parameters have been analysed separately with the aim of
better understanding the effects that each of them has on sub-swarm behaviour.
In this section, the best found combination of parameters for sub-swarms is
reported. The focus is on swarm parameters given a set of initial positions (i.e.
UMDA 20). Similar to the experiments in Sections 4–6, all of the swarms start
with the same initial positions.

The selection of initial velocities is a binary decision, whether to use random
or non-random velocities, and the results reported in Section 4 support the
use of (non-random) DE-based initial velocities. The selection of the two other
parameters, i.e. constriction factor and sub-swarm size, depends on different
characteristics of the sub-swarm. Extensive tests (partially shown in Sections 4–
6) have led to suggested values of α = 0.8 (χ = 0.634) and a swarm size of p = 15
particles. In Table 3, the total improvement achieved with these parameters is
presented. The results represent the relative improvement (%-diff) achieved with
the recommended parameters for sub-swarms versus standard parameters (i.e.
random initial velocities, a constriction factor of χ = 0.792, and p = 40 particles).

Table 3. Improvement of well parametrized sub-swarms vs. standard parameters

fn 10,000 FEs 5,000 FEs 2,000 FEs 1,000 FEs

10 62.4% 61.3% 66.4% 78.0%
11 23.8% 22.7% 99.9% 99.9%
12 100% 100% 100% 100%
13 88.9% 92.3% 100% 100%
14 92.4% 94.2% 100% 100%
15 36.8% 26.8% 99.9% 100%
16 −0.68% −1.82% 100% 100%
17 55.9% 67.6% 100% 100%
18 47.8% 50.6% 100% 100%
19 0.26% 25.8% 100% 100%

mean 50.7% 53.9% 96.6% 97.8%

The first two columns in Table 4 show the difference between the initial po-
sitions (UMDA 20) and the final results that can be achieved by UMDA in
100,000 FEs (i.e. UMDA 100). This difference represents an initial target for the
performance of a multi-swarm system. Starting from the UMDA 20 positions,
a sub-swarm using the recommended parameters (i.e. column 1 from Table 3)
can achieve results comparable with those from UMDA 100. The UMDA 20 +
PSO 10 system uses a total of 30,000 FEs, and it is already more effective than
UMDA on 6 of the 10 functions. On the remaining 4 functions, a large amount
of the gap between UMDA 20 and UMDA 100 has been covered. Future work
will attempt to use the remaining 70,000 FEs to build a multi-swarm system
that is more effective than either UMDA or PSO alone.
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Table 4. UMDA vs. PSO Sub-swarm

fn UMDA 100 UMDA 20 UMDA 20+PSO 10

10 1.68e + 04 4.24e + 04 8.81e + 03
11 7.80e + 01 9.03e + 01 5.86e + 01
12 7.47e − 01 9.61e + 03 5.70e− 01
13 6.44e + 00 4.84e + 01 2.19e + 00
14 2.63e − 03 9.77e − 02 1.39e− 03
15 3.06e + 00 1.03e + 02 5.39e + 01
16 1.42e + 01 2.02e + 01 1.41e + 01
17 2.38e − 03 3.24e − 01 7.65e − 02
18 1.53e − 01 2.33e + 00 8.08e − 01
19 2.84e + 00 4.26e + 00 3.56e + 00

8 Discussion

Multi-swarm systems do not base their search process on standard swarms, but
on sub-swarms which have a more regional search focus. Two main issues differ-
entiate sub-swarms from standard (single) swarms: the considerable difference
in FEs and their non-random initial positions (previously selected by a separate
search mechanism that guides the multi-swarm system). Both conditions are re-
flected in the tests performed in this paper – the later is recreated through the
initialization of sub-swarms at the best solutions provided by a relatively short
UMDA search.

These differences between standard swarms and sub-swarms imply that differ-
ent design decisions and parameter values are necessary in multi-swarm systems.
In particular, the use of non-random initial velocities leads to large improvements
in sub-swarm performance, but they provide no benefits in standard swarms. The
optimal swarm size also changes in sub-swarms with the reported results showing
that sub-swarms benefit from smaller populations. When the overall number of
function evaluations is greatly reduced, fewer particles lead to more iterations,
and this allows the sub-swarm to better adapt to the function’s landscape.

Sub-swarms usually start in good positions of a specific sub-region, so there is
less need to boost exploration as in standard swarms. Subsequently, sub-swarms
also benefit from a reduced constriction factor that promotes a more exploitative
behaviour. However, it should be noted that the recommended constriction factor
has a direct relation with the initial magnitude of the particle velocities, and thus
the method used to select the initial velocities [3].

9 Summary

Standard PSO recommends a set of parameters and design decisions such as
random initial velocities, a constriction factor of χ = 0.729, and swarms with 20
– 100 particles. These values lead to optimal performance in standard (single)
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swarms. Sub-swarms have been shown to perform better with features like (non-
random) DE-based initial velocities, a constriction factor of χ = 0.634, and
p = 15 particles. Future work will use these new design recommendations in the
development of a multi-swarm system that uses UMDA during the exploratory
phase.
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Abstract. Each particle in a swarm maintains its current position and its 
personal best position. It is useful to think of these personal best positions as a 
population of attractors – updates to current positions are based on attractions to 
these personal best positions. If the population of attractors has high diversity, it 
will encourage a broad exploration of the search space with particles being 
drawn in many different directions. However, the population of attractors can 
converge quickly – attractors can draw other particles towards them, and these 
particles can update their own personal bests to be near the first attractor. This 
convergence of attractors can be reduced by having a particle update the 
attractor it has approached rather than its own attractor/personal best. This 
simple change to the update procedure in particle swarm optimization incurs 
minimal computational cost, and it can lead to large performance improvements 
in multi-modal search spaces. 

Keywords: Particle swarm optimization, crowding, niching, population 
diversity, multi-modal search spaces. 

1 Introduction 

The development of particle swarm optimization (PSO) includes inspirations from 
“bird flocking, fish schooling, and swarming theory in particular” [11]. Each particle 
(e.g. a simulated bird) is attracted to its personal best position and the best position of 
a neighbouring member of the swarm. In original PSO [11], the neighbourhood for all 
particles is the entire swarm (i.e. a star topology) – the global best position attracts all 
of the other particles towards it. This concentration of search around a single attractor 
can work well in unimodal search spaces, but this level of convergence can also lead 
to poor performance in multi-modal search spaces.  

To improve the balance between exploration and exploitation, standard PSO [1] 
recommends a ring topology – each particle communicates with only two neighbours. 
With this reduced communication, a single good position will not immediately attract 
all of the other particles in the swarm. Specifically, several different positions can 
each act as the attractor for a small subset of particles, and the overall swarm can 
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subsequently explore many regions of the search space. This increased exploration 
generally improves PSO performance in multi-modal search spaces [1]. 

The use of a ring topology can lead to local behaviours that are similar to sub-
swarms. For example, if particle 2 is the attractor for particles 1 and 3, and particle 5 
is the attractor for particles 4 and 6, then this six particle swarm could temporarily 
behave like two independent swarms of three particles each. Many multi-swarm 
techniques exist which use sub-swarms (in sequence or in parallel) to explore multiple 
local optima (e.g. [3][10][12]). Compared to standard PSO, these multi-swarm 
techniques tend to have their most consistent performance improvements in multi-
modal search spaces (e.g. as shown for locust swarms in [4]).  

In population search techniques, another way to explore multiple local optima is 
niching (e.g. [2]). The effect of niching is to cause the overall population to divide 
into several sub-populations that each explores the area around a distinct local 
optimum. The intention of niching can be to simultaneously explore multiple local 
optima with the goal of finding many or all of the local optima in a search space.  

A related idea that ultimately allows the population to converge is to reduce 
crowding (e.g. [6][13]). Crowding occurs when two or more population members are 
too close to each other. As crowds gather, population diversity is reduced and the 
explorative capacity of the search technique is similarly reduced. To prevent crowds, 
a new candidate solution should replace a similar solution in the population. This 
replacement strategy ensures that these two solutions will not be able to form a crowd. 

If the personal best positions are viewed as a population of attractors, it can be seen 
that the basic operation of PSO promotes crowding. An attractor draws another 
particle towards it with the explicit purpose of having that other particle search in the 
nearby area. If the attracted particle subsequently finds a new personal best position 
near this local best attractor, it will update its own personal best attractor to be near 
the first attractor – these two attractors have now formed a crowd.  

To reduce crowding, the standard procedure is to compare the new candidate 
solution with several existing members of the population. Among these solutions, the 
minimal loss of diversity occurs if the most similar solution is replaced [6]. 
Transferring this idea to PSO, a new personal best position should be compared with 
the nearest/most similar member in the population of personal best attractors. 
Subsequently, a new update strategy is proposed which allows particles to update the 
personal bests of other particles. 

A modified PSO that implements the above strategy to reduce crowding has been 
developed. Starting with standard PSO [1] (and its ring topology), the procedure to 
update personal best (pbest) positions is changed to first check if the new position is 
close to its local best (lbest) attractor. If the new position is within a threshold 
distance to its lbest attractor, it is compared with and potentially updates this attractor. 
Outside of the threshold distance, normal PSO comparisons and updates occur. The 
effectiveness of this strategy is tested across a broad range of benchmark functions. 

The proposed new strategy to maintain diversity in particle swarm optimization 
draws inspiration from crowding techniques which are reviewed in Section 2. A brief 
introduction to PSO is given in Section 3 before the details of the new update strategy 
are presented in Section 4. Experiments on a broad range of standard benchmark 
problems are performed in Sections 5 and 6. The results of these experiments are 
discussed in Section 7 before the paper is summarized in Section 8. 
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2 Background 

The balance between exploration and exploitation is a recurring theme in many heuristic 
search techniques. For example, selection pressure in genetic algorithms will increase 
the proportion of “fit” schemata in a population [8]. However, the unselected schemata 
can be eliminated from the population which will lead to decreased diversity. In general, 
maintaining diversity will reduce the rate of convergence which will reduce the 
likelihood of stagnation in a poor local optimum, and this ability to continue progress 
can ultimately lead to the discovery of a better final solution. However, slower 
convergence also tends to increase the time required by the search process to produce a 
final result, so the balance between exploration and exploitation is important for both 
the efficient and effective performance of many heuristic search techniques. 

One method to maintain diversity in a population is to reduce crowding. The basic 
technique is to compare each new candidate solution with its most similar individual 
in a subset of the overall population. The fitter of these two solutions survives as a 
member of the population. The size of the subset to find a neighbour for comparison 
can be small [6], which can cause “replacement errors”, or it can be large, which can 
cause significant increases to the required computational effort [13]. 

The basic crowding technique always replaces the most similar individual in the 
examined subset, but there is no guarantee (especially at early stages of the search 
process) that it would not be beneficial to have both of these solutions survive. This 
effect is related to a replacement error – one effect of a replacement error is that an 
unexamined solution is more similar and that its survival allows a crowd to form, and 
another effect of a replacement error is that a relatively diverse and potentially useful 
solution is unnecessarily removed from the population. This second effect can occur 
even if the crowd size is the entire population.  

These two effects highlight the key objectives of crowd control: maintain a diverse set 
of promising solutions and reduce (premature) convergence. Similar goals are useful for 
the population of personal best attractors in particle swarm optimization. Specifically, a 
particle with crowded personal best and local best attractors will be drawn/constrained to 
this small region of the search space. Since this particle is not immediately affected by 
the position of other attractors, they can be (temporarily) ignored. Thus, there are only 
two attractors of concern, and the new strategy becomes similar to crowding with a 
subset of size two: the personal best and the local best for each particle.  

3 Particle Swarm Optimization 

The benchmark and baseline PSO for the current experiments is a constricted LBest 
version (i.e. standard PSO [1]) developed from the published source code for the 
constricted GBest version by El-Abd and Kamel [7]. In a constricted PSO, each 
dimension d of a particle’s velocity v is updated for the next iteration i+1 by 

( ) ( )( )didididididi xlbestcxpbestcvv ,,22,,11,,1 −+−+=+ εεχ  (1) 
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where χ is the constriction factor, c1 and c2 are weights which vary the contributions of 
personal best and local best attractors, ε1 and ε2 are independent uniform random 
numbers in the range of [0,1], x is the position of the particle, pbest is the best position 
found by the current particle, and lbest is the best position found by any particle 
communicating with the current particle (e.g. all particles in the GBest star topology and 
only two neighbours in an LBest ring topology). The key parameters used in [7] are 

792.0=χ , 4944.1** 21 == cc χχ , i.e. 887.121 ≈= cc , and p = 40 particles.  

The following experiments use a fixed number of function evaluations (FE) based 
on the number of dimensions D. The chosen limit of FE = 5000 * D promotes 
consistency with previous results. In particular, results for the original GBest version 
of this benchmark PSO are reported in [5][7], and results for the constricted LBest 
version are available in [4]. 

4 A New Update Strategy for PSO 

In PSO, the update of a particle’s velocity shown in (1) is based on three distinct 
components: a momentum term (m), an attraction to pbest (fp), and an attraction to 
lbest (fl). An example of how these three component vectors might combine to create 
the new velocity vi at iteration i is shown in Fig. 1. Applying this new velocity to the 
previous position leads to a new position xi. 

 

Fig. 1. A particle’s path is influenced by attractions to pbest and lbest positions. In this 
example, the new particle position has been drawn close to its lbest attractor. 

After determining the new position, the fitness is calculated and the personal best 
position is updated if necessary.  

Pseudo code for the standard update procedure used in PSO 

if f(xi) < f(pbesti-1) then 
  pbesti = xi 

Starting from the example in Fig. 1, assume that f(xi) < f(pbesti-1). The standard update 
procedure will then make xi the new position for pbesti, and this will cause the two 

m 

fl fp xi 

lbesti-1 pbesti-1 

vi vi-1 
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attractors to become very close (i.e. form a crowd). During the next iteration after the 
standard update shown in Fig. 2, the closeness of the attractors pbesti and lbesti will 
help to constrain the future search path of this particle to a small area of the search 
space around these two points. Low diversity in the population of attractors leads to 
reduced explorative behaviour in the flight paths of a swarm’s particles.  

 

Fig. 2. If f(xi) < f(pbesti-1) in the example from Fig. 1, then the standard update procedure will 
update pbest to be next to lbest 

A small number of converged particles might not be too damaging, but the 
convergence of attractors can have a cascading effect (even with a ring topology). For 
example, assume that the pbest for particle 1 is the lbest attractor for particle 2. After 
an update like the one shown in Fig. 2, it is possible that the new pbest for particle 2 
can become the lbest attractor for particle 3. This third particle will now be drawn 
towards this area with a high concentration of pbest attractors. If it also finds a new 
pbest in this area, then this cascade of convergence in the population of pbest 
attractors can continue until all particles have been drawn into this area. 

Focusing on this population of pbest attractors, the key concept from crowding is 
that a new solution should replace the most similar member in the existing population. 
Therefore, instead of replacing pbest in Fig. 2, the new position x should replace lbest.  

Pseudo code for the new update strategy 

if ||xi – lbesti-1|| < threshold then 
  if f(xi) < f(lbesti-1) 
    lbesti = xi 
else if f(xi) < f(pbesti-1) then 
  pbesti = xi 

In crowding [6], a “crowding factor” specifies the size of the (randomly selected) subset 
from the overall population which can undergo replacement. The new solution is 
compared to the members of this subset, and it replaces the most similar solution (if the 
new solution is fitter). The new update strategy is similar to crowding with a crowding 
factor or two. However, these two solutions are not selected randomly – they are the 
pbest and the lbest for the current particle. Further, the closer of these two points is not 
automatically replaced. The new update strategy also uses a threshold function to 
control the minimum required diversity. As discussed in Section 2, the most similar 
solution in a population can still represent a useful area for further exploration. 

m 
fl 

lbesti 

pbesti 

vi 
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If the new update strategy is applied to the example in Fig. 1, it will prevent the 
creation of a crowd between xi (which becomes pbesti in Fig. 2) and lbesti. Instead xi 
will replace lbesti-1 (see Fig. 3). With this update of lbest, the new strategy separates 
the two roles of pbest: store the best known position and act as an attractor in the 
search space. The swarm as a whole still remembers the best known position (which 
is stored in lbest), but greater diversity is maintained in the population of pbest 
attractors. The effect of reduced crowding is to maintain diversity in the attractors and 
subsequently to encourage a greater exploration of the overall search space.1 

 

Fig. 3. Compared to the standard update procedure, the new update strategy will update lbest 
instead. This will help maintain diversity in the pbest and lbest attractors. 

5 Results on Multi-modal Functions 

The value of increased diversity is to lessen the risk of premature convergence to a 
poor local optimum. Since local optima do not exist on unimodal functions, the new 
strategy is not expected to provide benefits on these functions. The following 
experiments compare the performance of standard PSO [1] based on the benchmark 
implementation of [7] with a modified version which replaces the “standard update 
procedure” with the “new update strategy”.  

The functions (with their ranges) for the following experiments are Fletcher-Powell 
],[ ππ− , Langerman (with m = 7) ]10,0[ , Rastrigin ]12.5,12.5[− , Schwefel 

]500,500[− , and Shubert ]10,10[− , and all functions are in D = 20 dimensions. The 

details for the benchmark PSO are available in the published source of [7], and the 
key features and parameters are repeated in Section 3. Preliminary experiments with 
this modified PSO determined that a “threshold” parameter was required to properly 
calibrate the new balance between exploration and exploitation.  

The parameter tuning experiments revealed that the threshold should decay over 
time (to allow the swarm to converge), and that the threshold should only be applied 

                                                           
1 If the distances between the new position x and the previous pbest and lbest positions are both 

less than the threshold, these two distances should both be measured to ensure that x replaces 
its nearest attractor. Without the extra distance calculation, approximately 1% of the updates 
under the new strategy can replace a more distant lbest attractor. However, since pbest and 
lbest must already be quite close for this event to occur, it is not expected to have a large 
effect on the overall performance. 

m 
fp 

lbesti 
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to lbest. If the new update strategy is applied to all attractors/pbests in the population, 
the computational effort is much larger and the performance is much worse – a result 
presumably caused by a complete lack of convergence. The threshold used in the 
following experiments starts with an initial value of 10% of the search space diagonal 
(i.e. α = 0.10), and it decays with a cubic function (i.e. γ = 3) – in (2), n is the total 
number of iterations and i is the current iteration. 

( ) [ ]( )γα nindiagonalthreshold /** −=  (2) 

The experiments involve 50 independent runs started with different random seeds. 
The final solution from each technique is collected after 100,000 function evaluations 
(i.e. 5,000 * D). For these 50 runs, the minimum (min), mean, maximum (max), and 
standard deviation (std dev) are presented in Table 1. Except for the maximum and 
the standard deviation on Rastrigin, PSO with the modified update strategy (Mod) 
leads to better results (or same for minimum on Langerman) when compared to 
standard PSO (Std). The p-value for a one-tailed t-tests show that the differences in 
performance have some variability – since the p-values are not all much less than 5%, 
these results represent more of a promising trend than a strongly significant result. 

Table 1. Results for the new update strategy on several benchmark multi-modal functions 

Function PSO min mean max std dev t-test 

Fletcher-
Powell 

Std 1,245 10,460 34,181 8,173 
1.8% 

Mod 997 7,258 18,828 4,387 
Langerman 
m = 7 

Std –0.513 –0.399 –0.100 0.118 
5.2% 

Mod –0.513 –0.440 –0.272 0.086 
Rastrigin Std 7.96 28.77 46.76 8.01 

3.0% 
Mod 7.39 23.75 47.96 8.23 

Schwefel Std 890 1,605 2,360 347 
0.0% 

Mod 594 1,139 1,780 272 
Shubert Std –3.14e+22 –3.77e+21 –6.34e+19 5.16e+21 

5.0% 
Mod –5.75e+22 –7.34e+21 –2.50e+20 1.15e+21 

6 Results on Other Functions 

The modified update strategy is designed explicitly for multi-modal search spaces, but 
it is still useful to observe its effects across a board range of search spaces. The 
following experiments use the Black-Box Optimization Benchmarking (BBOB) 
functions [9]. The BBOB problems are broken into five sets – (1) separable functions, 
(2) functions with low or moderate conditioning, (3) unimodal functions with high 
conditioning, (4) multi-modal functions with adequate global structure, and (5) multi-
modal functions with weak global structure. 

The results for standard PSO on the BBOB functions with dimension D = 20 are 
taken from previous work by the authors [4]. These results (means and standard 
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deviations) are for 25 independent trials of 100,000 function evaluations each (i.e. 5 
trials on each of the first 5 instances of each BBOB function). On these functions, 
standard PSO is able to get within 1e–8 of the optimal solution on every trial of 
BBOB fn 1, 2, and 5. Errors of this size are considered negligible on the BBOB, so 
these functions are considered as fully solved. The following experiments only 
consider the remaining 21 BBOB functions which cannot be solved by standard PSO. 

Several sets of parameters for the modified PSO were tried. Preliminary 
experiments determined that values of 1 and 4 for γ never led to the best-overall 
results. Thus, the results in Table 2 represent the best performance by the modified 
PSO across a total of eight parameter pairs – 0.01, 0.04, 0.10, or 0.33 for α and 2 or 3 
for γ. For the best set of parameters as shown, the mean errors from optimum (mean), 
standard deviations (std dev), percent improvement in the mean for the results of 
modified PSO compared to the results of standard PSO (%-diff), and the p-value for a 
one-tailed t-test are reported. 

Table 2. Results for the new update strategy on Black-Box Optimization Benchmarking 
functions 

Set fn 
Standard PSO Modified PSO Parameters 

%-diff t-test 
mean std dev mean std dev α γ 

1 

1 0.00e+0 0.00e+0       
2 0.00e+0 0.00e+0       
3 2.56e+1 4.99e+0 2.18e+1 6.17e+0 0.10 3 14.9% 1.0% 
4 3.23e+1 8.55e+0 2.80e+1 6.492+0 0.04 3 13.4% 2.5% 
5 0.00e+0 0.00e+0       

2 

6 8.53e–1 8.89e–1 7.77e–1 5.20e–1 0.10 3 8.9% 35.8% 
7 7.04e+0 2.68e+0 5.40e+0 2.27e+0 0.04 2 23.4% 1.2% 
8 1.22e+1 3.67e+0 1.07e+1 5.00e+0 0.01 3 11.8% 12.6% 
9 1.55e+1 2.24e+0 1.51e+1 2.95e+0 0.01 3 3.0% 26.7% 

3 

10 6.85e+3 3.39e+3 8.54e+3 3.36e+3 0.01 3 –24.6% 4.2% 
11 6.54e+1 1.71e+1 5.72e+1 1.50e+1 0.01 3 12.6% 3.8% 
12 1.53e+0 4.23e+0 7.38e–1 9.04e–1 0.01 3 51.7% 18.5% 
13 1.50e+0 1.99e+0 1.09e+0 6.16e–1 0.04 3 27.4% 16.6% 
14 1.34e–3 2.66e–4 2.28e–3 4.84e–4 0.01 3 –70.7% 0.0% 

4 

15 6.05e+1 1.46e+1 4.89e+1 1.37e+1 0.01 3 19.2% 0.3% 
16 5.37e+0 1.53e+0 4.42e+0 1.21e+0 0.01 3 17.6% 1.0% 
17 6.61e–1 2.64e–1 4.30e–1 1.49e–1 0.04 2 34.9% 0.0% 
18 2.87e+0 1.28e+0 2.33e+0 8.00e–1 0.10 3 18.9% 4.0% 
19 3.61e+0 4.32e–1 3.50e+0 5.11e–1 0.01 2 3.1% 20.7% 

5 

20 1.14e+0 1.38e–1 9.07e–1 1.46e–1 0.01 2 20.1% 0.0% 
21 1.41e+0 1.21e+0 5.68e–1 7.70e–1 0.33 2 59.8% 0.3% 
22 1.69e+0 1.51e+0 1.05e+0 6.44e–1 0.33 3 38.1% 2.9% 
23 1.33e+0 2.49e–1 1.26e+0 3.02e–1 0.01 2 5.2% 19.3% 
24 1.13e+2 1.12e+1 1.10e+2 1.54e+1 0.01 2 2.6% 22.5% 
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Although only the best results are shown, it is worth mentioning that the 
unreported results for non-multi-modal functions are highly inconsistent. On many of 
the functions, the modified PSO was able to produce an improvement for only the 
reported parameter set, and none of the eight parameter sets led to an improvement on 
BBOB fn 10 and 14. Conversely, the modified PSO performed much more 
consistently on the multi-modal functions for which it was designed. On these 
functions, the bold values represent statistically significant improvements of more 
than 10%. Further, there is some robustness to these results as each of these functions 
had at least one additional parameter set that also led to an improvement of more than 
10%. From these observations, it is hypothesized that matching the α parameter to the 
spacing of the local optima in the search space will lead to the best performance for 
the proposed strategy, and that the best value for the γ parameter may depend on the 
contour of the fitness landscape around each local optimum.  

7 Discussion 

Standard particle swarm optimization shows broad improvements over original PSO 
across a diverse range of problems [1], but it is still only a starting point for the design 
of a practical application. In accordance with “no free lunch” [14], there is no single 
set of parameters that can be expected to lead to the best possible performance of a 
technique on multiple problems. Therefore, parameter tuning and other modifications 
are a necessary part of achieving the best possible results for any specific application 
of a heuristic search technique. Given the large performance improvements that can 
be achieved with the new strategy, the addition of a new threshold function should not 
be unduly cumbersome. 

The proposed modification to the update strategy in PSO is generally ineffective 
outside of the targeted multi-modal functions. This is not a major concern since multi-
modal functions are the primary application for heuristic search techniques like PSO – 
gradient descent methods tend to be much more effective than heuristic search 
techniques on unimodal functions (e.g. BBOB set 3). The underlying mechanisms of 
the new update strategy attempt to maintain diversity by reducing crowding, and the 
value of this increased diversity is primarily realized in multi-modal search spaces 
where it can help prevent premature convergence to a poor local optimum. 

The new modification is also simple and computationally efficient. To change from 
the “standard update procedure” to the “new update strategy”, only a distance 
calculation between two specific points is required – the position of a particle and the 
position of its lbest attractor. In comparison, other diversification strategies based on 
niching and crowding are either computationally expensive (as distances between a 
new solution and all existing population members must be calculated) or prone to 
“replacement errors” (if only a subset of the population is compared against) [13]. In 
PSO, it is possible to identify the most likely population member that a new candidate 
solution might form a crowd with – its lbest attractor. This insight allows the 
proposed modification to achieve many of the benefits of niching and crowding at a 
fraction of the computational cost.  
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8 Summary 
Particle swarm optimization must find the proper balance between exploration and 
exploitation to maximize its performance. The proposed modification to improve 
exploration by maintaining diversity is simple and computationally efficient. The 
reduction in crowding achieved by the new update strategy leads to significant 
performance improvements in the targeted multi-modal search spaces. The key insight 
in the current research is the ability to identify with which existing population 
member a new solution might form a crowd. Future work will attempt to apply this 
insight to other population search techniques.  
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Abstract. Evolutionary algorithms have been widely used to tackle
multi-objective optimization problems. Incorporating preference infor-
mation into the search of evolutionary algorithms for multi-objective
optimization is of great importance as it allows one to focus on interest-
ing regions in the objective space. Zitzler et al. have shown how to use a
weight distribution function on the objective space to incorporate pref-
erence information into hypervolume-based algorithms. We show that
this weighted information can easily be used in other popular EMO al-
gorithms as well. Our results for NSGA-II and SPEA2 show that this
yields similar results to the hypervolume approach and requires less com-
putational effort.

1 Introduction

Evolutionary algorithms are very powerful problem solvers especially when deal-
ing with multi-objective optimization problems [5, 6]. Many successful methods
have been developed in evolutionary multi-objective optimization (EMO) during
recent years. Popular evolutionary algorithms for multi-objective optimization
are (among many others) NSGA-II [8] and SPEA2 [17], as well as hypervolume-
based approaches such as SMS-EMOA [3] and MO-CMA-ES [11, 12].

Recently, there has been significant interest in strategies for introducing user
preferences into EMO methods. The goal is to give specific regions of the objec-
tive space a higher priority. Consequently, more solutions should be computed
and maintained in the population for highly preferred regions of the objective
space. For NSGA-II a reference point based approach has been proposed by [7].
They give the example that in the problem of maximizing throughput and min-
imizing latency, a decision maker may have a clue that throughput should be
about 99.9%. Several authors [1, 9, 14] also used reference points to guide multi-
objective particle swarm algorithms. Wickramasinghe and Li [15] use preferred
areas. Auger et al. [2] present an approach of sampling the weighted hypervol-
ume to incorporate user-defined preferences into the search for problems with
many objectives. Thiele et al. [13] extended this such that at each iteration, a
decision maker is asked to give preference information in terms of his reference
point. Furthermore, Hu et al. [10] changed the crowding distance assignment in
NSGA-II in order to achieve a non even spread of the points along the Pareto
front.
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Fig. 1. Contour plots of the weight distribution functions

We consider the case where there is a weight function on the objective space.
This preference information can be used by the weighted hypervolume indicator
instead of the standard hypervolume indicator. Zitzler et al. [18] show that this
weight integration is very well suited for incorporating user preferences. Further-
more, they compare their results to the ones obtained by NSGA-II and SPEA2
and show that these two algorithms do not perform well as they do not take into
account the preference information.

In this paper, we present a neat and simple approach to use the preference
information given by weightings on the objective space in classical algorithms
such as NSGA-II and SPEA2. Up to now, this weight information has only been
used by hypervolume-based approaches that have the drawback of needing a
runtime exponential in the number of dimensions [4]. We present very simple
approaches to incorporate the weight information on the objective space into
a wide range of EMO algorithms. We exemplify this by using NSGA-II and
SPEA2 and show that this leads to results similar to the ones of the weighted
hypervolume indicator presented in [18]. Furthermore, our algorithms are as
efficient as the original implementation of NSGA-II and SPEA2 and do not have
to deal with the expensive computations that hypervolume-based algorithms
have to face [4].

The outline is as follows. In Section 2, we introduce some basic concepts
of multi-objective optimization and the weight functions used. Section 3 shows
how to incorporate weight information into NSGA-II and SPEA2. We report our
experimental results in Section 4 and finish with some concluding remarks.

2 Preliminaries

A multi-objective optimization problem is given by a vector-valued objective
function

f = (f1, . . . , fd) : S → �
d

on a search space S. W. l. o. g. we assume that each function fi, 1 � i � d,
should be minimized. We first define a partial order on the objective space. An
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objective vector x = (x1, . . . , xd) ∈ �d weakly dominates an objective vector
y = (y1, . . . , yd) ∈ �d (x $ y) if it is not worse in any objective, i. e., x $ y :⇔
xi � yi for 1 � i � d.

Let f(A) be the set of objective vectors of the search points in A, i. e., f(A) =
{f(a) : a ∈ A}. Then, we denote by Min(f(A),$) the set of minimal objective
vectors in f(A) with respect to the partial order $ on f(A). The goal in multi-
objective optimization is to compute a set X∗ with f(X∗) = Min(f(S),$),
where S is the considered search space. f(X∗) is called the Pareto front of the
given problem.

Often the size of the Pareto front is large, i. e., exponential with respect to the
given input or even infinite in the case of continuous functions. In this case, it
is not possible to compute the whole set of minimal elements of f(S) efficiently
and f(X∗) should be a smaller subset of them.

So far, there has not been any preference between incomparable solutions.
Having to cope with a large Pareto front, we have to decide between incom-
parable solutions. Basically, all successful evolutionary algorithms have certain
diversity mechanisms to deal with this issue. Our goal is to investigate user pref-
erence in evolutionary multi-objective optimization. These user preferences give
additional information for the search process and distinguish between sets of
incomparable solutions.

We assume that we have access to a weight function w : �d �→ � which de-
scribes the preferences of the decision maker. In principle, w can be an arbitrary
function that gives preferences to certain regions of the objective space. We will
use the following weight distribution functions on the objective space which have
been introduced and investigated by [18] in the context of hypervolume-based
algorithms:

• Uniform weight: wuni(x) = 1
• Sum of two exponential functions in the direction of the axes:

wext (x) = (e20·x1 + e20·x2)/(2 · e20)

• Exponential function in the f2-direction:

wasym (x) = e20·x2/e20

• Weighted depending on a reference point ref = (a, b):

wref (x) =

⎧⎪⎨
⎪⎩

c + (2−((2(x1−a))2+(2(x2−b))2))
(0.001+(2(x1−a)−2(x2−b))2)

if |x1 − a| < 0.5 ∧ |x2 − b| < 0.5
c otherwise

Note, that the uniform weight does not imply any preferences on the objective
space. For NSGA-II and SPEA2 this will imply that we are just running the
original versions of these algorithms. The weight distribution for the other three
functions are illustrated in Figure 1 for the objective space [0, 1]2 and we will
show in the following sections how to generalize NSGA-II and SPEA2 such that
they can make use of this preference information.
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Algorithm 1. Crowding assignment for weighted NSGA-II


← |X|;1

foreach xj ∈ X do2

d(xj)← 0;3

for i← 1 to d do4

Sort the solutions in P such that fi(x
1) � fi(x

2) � . . . � fi(x
�) holds;5

d(x1)← d(x�)←∞;6

for j ← 2 to 
− 1 do7

d(xj)← d(xj) + fi(x
j+1)−fi(x

j−1)

fmax
j −fmin

j
;

8

foreach xj ∈ P do9

d(xj)← w(xj) · d(xj);10

3 Algorithms

In this section, we show how to integrate the user preferences given by weight-
ings on the objective space into NSGA-II [8] and SPEA2 [17]. Both algorithms
are based on the Pareto dominance relation and use diversity mechanisms to
decide between incomparable solutions. We transfer the diversity mechanisms
for incomparable solutions to the weighted case and adjust them such that they
can make use of the weight information provided on the objective space.

3.1 Weighted NSGA-II

NSGA-II is a very popular evolutionary multi-objective algorithm. It is based
on dominance ranking which ensures that non-dominated solutions are preferred
over dominated ones. Furthermore, the algorithm has a diversity mechanism
which distinguishes between incomparable solutions by a crowding distance mea-
sure. This measure prefers solutions of less crowded regions in the objective
space.

We will keep the dominance ranking as in the original algorithm. To incor-
porate the user preferences, we will change the crowding distance assignment
according to the weight information on the objective space. Let X be a set of
incomparable solutions then the assignment of a crowding distance, taking into
account the weighting on the objective space, is given in Algorithm 1.

As the original NSGA-II, it iterates over all objectives. For each objective fi,
the solutions are sorted in increasing order and the distance of a solution is
changed according to its neighboring points for that objective. Solutions that
are maximal (or minimal) with respect to one objective obtain an infinite dis-
tance which gives strong preference to the extreme points of the Pareto front.
Our weighted crowding distance assignment differs from the original crowding
distance assignment by the last for-loop. In this loop the crowding distance of
each solution is multiplied by the weight that its objective vector has accord-
ing to the weight distribution on the objective space. Note, that this does not
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change the crowding distance assignment of the extreme points as they have
already obtained an infinite distance. However, it changes the assignment and
the preferences for the other points and gives preferences based on the weighting
of the objective space.

3.2 Weighted SPEA2

SPEA2 is another very popular approach. It sorts individuals of a population
based on a fitness assignment strategy that incorporates both a coarse-grain
evaluation of Pareto dominance that results in an integer raw fitness value and
a fine-grained evaluation of density that allows the algorithm to distinguish
between solutions with the same raw fitness. The sum of the density and raw
fitness values yields the overall fitness of a solution, which is used within both
the mating selection and environmental selection functions of the algorithm. The
density D(i) of a solution i is calculated as follows:

D(i) =
1

σk
i + 2

Where σk
i is the distance within the objective space from the solution i to its

k-th nearest neighbour in the population. Solutions in less crowded regions of the
objective space will be assigned lower density values and will be preferred when
compared to solutions in more crowded regions of the same Pareto front. In this
way, SPEA2 maximises the diversity of solutions within the population. Note
that the density function is constructed such that D(i) � 0.5 and as such, the
density cannot affect Pareto dominance relationships between solutions, which
have a raw fitness value of integer type.

Our weighted density measure incorporates information from a weight distri-
bution function as follows:

D(i) =
1

(wi · σk
i ) + 2

Where wi is the value of the weight distribution function at the point in the
objective space corresponding to solution i. Solutions corresponding to higher
values of wi will have a lower density D(i) and will be favoured by the SPEA2
selection functions. Conversely, solutions corresponding to lower values of wi will
be less favoured by the SPEA2 selection functions. It is important to note that
for any weight distribution function w : �d �→ �+, it still holds that D(i) � 0.5
and so, Pareto compliance is maintained.

For each iteration of the SPEA2 main loop, the environmental selection func-
tion involves copying non-dominated individuals from the archive and popula-
tion at the previous iteration into a new archive. If the nondominated front fits
exactly into the archive then the environmental selection step is completed. If
there are not enough non-dominated individuals to fill the archive, the remaining
places in the archive are filled with dominated individuals according to fitness.
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If there are too many non-dominated solutions to fit into the archive, then a
truncation procedure is invoked to iteratively remove individuals until the non-
dominated solutions fit within the archive. At each iteration of the truncation
procedure, a solution i is chosen for removal that has the minimum distance
to another individual. If there are several individuals with minimum distance
then the second and, if necessary subsequent, smallest distances are considered
to break the tie. Our weighted version of SPEA2 incorporates user preferences
within the truncation procedure by multiplying the calculated distance from a
solution i to its k-th nearest neighbor by wi to yield a weighted distance. The
result of this modification is that solutions that are situated in highly-weighted
regions of the objective space will have a relatively high weighted distance and
so will be less likely to be removed by the truncation procedure.

4 Experimental Results

In this section, we report on our experimental results for the weight integration
into NSGA-II and SPEA2. We use the same setting as [18] for the weighted
hypervolume indicator and examine the classical benchmark functions ZDT1,
ZDT3, and ZDT6 [16] and the weight distribution functions defined in Section 2.

We now examine how the three weight distribution functions defined above
influence the search process of NSGA-II and SPEA2 for the three test problems.
The functions ZDT1, ZDT3, and ZDT6, are optimized by NSGA-II runs with
population size 100 for 25000 generations and SPEA2 runs with population
and archive sizes of 100 for 25000 generations. For both algorithms, a crossover
probability setting of 0.90 is used and mutation probability is set to 0.03. Each
of the test problems was constructed with 30 decision variables.

Figures 2 and 3 show the computed Pareto front approximations for NSGA-II
and SPEA2 after 25000 generations for the three ZDT functions and the three
weight distribution functions wext , wasym and wref . The reference point for wref

is chosen as ref = (0.5, 0.6) for ZDT1 and ZDT6 and as ref = (0.5, 1.2) for ZDT3
which is the same as in [18]. The difference in reference point position is due to
the fact that the ZDT3 function has a larger range of values in the f2-direction.
The computed Pareto front approximation for a uniform weighting scheme wuni

is also shown to allow comparisons to the results of the original NSGA-II and
SPEA2 variants.

Charts of the experiments show that for test functions ZDT1 and ZDT6, the
weighted versions of NSGA-II and SPEA2 were highly successful in directing
solutions towards regions of the objective space in accordance with all three of
the weight distribution functions trialled. For the weighting scheme wext , both
algorithms yielded a set of solutions that were concentrated near the boundary
regions of the Pareto front. Similarly, the use of the weighting scheme wasym

resulted in a set of solutions concentrated near the boundary of the Pareto front
in the f2-direction. When the wref weight distribution function was used, both
algorithms yielded results that were concentrated in a the region of the Pareto
front that was closest to the specified reference point.
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(a) NSGA-II on ZDT1 with weight functions wuni , wext , wasym , wref .
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(b) NSGA-II on ZDT3 with weight functions wuni , wext , wasym , wref .
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(c) NSGA-II on ZDT6 with weight functions wuni , wext , wasym , wref .

Fig. 2. Experimental results for NSGA-II
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(a) SPEA2 on ZDT1 with weight functions wuni , wext , wasym , wref .
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(b) SPEA2 on ZDT3 with weight functions wuni , wext , wasym , wref .
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(c) SPEA2 on ZDT6 with weight functions wuni , wext , wasym , wref .

Fig. 3. Experimental results for SPEA2
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Similar behaviour was observed for the ZDT3 test function when the weighted
NSGA-II and SPEA2 algorithms were executed using weighting schemes wasym

and wref . However, both algorithms produced less definitive results when using
the ZDT3 test function and the wext weighting scheme. In particular, it appears
that for the weighted SPEA2 algorithm, application of the wext weight distri-
bution function led to a poor approximation of the true Pareto front in some
regions.

Despite this, the experimental results clearly demonstrate that the proposed
weighted versions of NSGA-II and SPEA2 can be used successfully to guide
solutions towards areas of the objective space according to an arbitrary weight
distribution function. Importantly, these approaches are implemented in such a
way that they can be used to incorporate user preferences without compromising
Pareto compliance of the algorithms. Furthermore, weights are introduced to
the diversity measures of each algorithm in such a way as to modify, but not
completely destroy its diversity characteristics.

5 Conclusions

The integration of user preference into EMO methods is an important research
topic as it allows the user of an EMO algorithm to focus on interesting regions of
the objective space. Different models for the integration of user preference have
been proposed. Incorporating user preferences by weight information on the ob-
jective space has been shown to work very well for hypervolume algorithms [18].
We have presented a simple and very effective alternative way to use these user
preferences in other state-of-the-art approaches such as NSGA-II and SPEA2.
Our experimental results show that the weight integration into these algorithms
performs very well, produces similar results as the weighted hypervolume indi-
cator, and requires less computational effort than the hypervolume approach.
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Abstract. This paper investigates fitness functions based on the de-
tecting accuracy of each training image. In general, machine learning
algorithms for edge detection only focus on the accuracy based on all
training pixels treated equally, but the accuracy based on every train-
ing image is not investigated. We employ genetic programming to evolve
detectors with fitness functions based on the accuracy of every training
image. Here, average (arithmetic mean) and geometric mean are used
as fitness functions for normal natural images. The experimental results
show fitness functions based on the accuracy of each training image ob-
tain better performance, compared with the Sobel detector, and there
is no obvious difference between the fitness functions with average and
geometric mean.

Keywords: Genetic Programming, Edge Detection, Image Analysis.

1 Introduction

Edge detection is a well developed area of image analysis. Many different tech-
niques for edge detection have been developed based on window filters [1]. Based
on some existing features extracted from a fixed window, such as gradient, differ-
ent methods are used to detect edges [2]. Generally, the accuracy of a method is
over all training examples, not taking into account the accuracy of every training
image. It is possible that the good accuracy over all pixels has good detection
in many images but poor detection for a few images. The accuracy based on ev-
ery training image is worth investigating. It has not so far been addressed what
performance methods based on the accuracy of each training image can obtain
and what difference exists in different measure methods based on the accuracy
of each training image.

Genetic programming (GP) has been employed for object detection and image
analysis since the 1990s [3], but there are only a few reports for edge detection.
Almost all existing methods require prior or domain specific knowledge. Simi-
larly to other machine learning approaches, GP usually evolves image classifiers
or detectors using a reasonable number of actual images as the training set.
The evaluation only takes into account the detecting results for all sampling
pixels. However, GP can create detectors without using a window, extract edge
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information automatically, and directly output the whole detecting result of one
image using a whole image as input [4]. The output based on one whole image
is well-suited for evaluating a detector based on the accuracy of each image,
but what difference measures based on the accuracy of every training image will
make needs to be investigated.

Goals. The overall goal of this paper is to investigate fitness functions based on
the accuracy of each training image. Average (arithmetic mean) and geometric
mean are used as fitness functions. The purpose of using the geometric mean
is to penalise the worse detection from the training images. Based on a normal
natural image experiment, we will analyse the influence from evaluation methods
with average and the geometric mean. Specifically, we would like to investigate
the following research objectives.

• Whether the fitness function with average of the accuracy of every training
image can achieve reasonably good performance.
• Whether the fitness function with the geometric mean of the accuracy of

every training image also can achieve reasonably good performance, and
whether it can compete with average.
• Whether a combination of the geometric mean and average can further im-

prove performance.

The remainder of this paper is organised as follows. Section 2 briefly describes the
background. Section 3 develops fitness functions based on the accuracy of each
training image for edge detection using GP. After presenting the experimental
design in Section 4, Section 5 describes the results with discussions. Section 6
gives conclusions and future work directions.

2 Background

2.1 Edge Detection

Edge detection is one of the most essential tasks in image processing and com-
puter vision. For example, it is very useful for feature detection and extraction.
The purpose of edge detection is to identify points in an image at which the
pixel intensities change sharply or irregularly. Edge detection in untextured im-
ages aims at finding these interesting points based on local discontinuities. Edge
detection in textured images is more complex, where these edge points mark the
boundary of regular changes or irregular changes.

Almost all methods use features extracted based on discontinuities, such as
gradients. Detectors in the traditional methods based on derivatives are, e.g.,
Sobel detectors based on first derivatives, Laplacian detectors based on the zero
crossings in the second derivative and other detectors based on differentiation
[5]. From approximation to the shape of spatial receptive fields, Gaussian filters
along with the Laplacian detectors are very similar to the difference of Gaussians
(DOG) [1]. Canny detectors [6] are derived from the optimal filter leading to a
Finite Impulse Response filter which turns out to be well approximated by the
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derivative of a Gaussian function [1]. A popular strategy is to design a local
window to filter non-edge points with a threshold; the window size is usually
3× 3 for the sake of speed.

From the traditional way to extract edge information, machine learning meth-
ods are employed to search for special detectors for one image dataset. Edge infor-
mation extracted based on a fixed window are used as input variables. However,
features extracted based on a window are sensitive to the size of the window,
e.g., a small size may be affected by noise and a larger size may lead to wrong
edge localisation. Our previous work [4] employed GP as a global method to
evolve edge detectors without using a window, and showed good performance
for finding good detectors. However, differences between fitness functions based
on the accuracy of each training image were not addressed.

2.2 Related Work to Genetic Programming for Edge Detection

There is little existing work on GP for edge detection. Harris and Buxton [7]
designed approximate response detectors in one-dimensional signals by GP, but
it is based on the theoretical analysis of the ideal edge detector and the corre-
sponding properties. Poli [9] suggested to use four macros for searching a pixel’s
neighbours using GP. Ebner [8] used four shift functions and other functions to
approximate the Canny detector. The Sobel detector is approximated by hard-
ware design [10] with the relationship between a pixel and its neighbourhood
as terminals. Bolis et al [11] simulate an artificial ant to search edges in image.
Zhang and Rockett [12] evolved a 13× 13 window filter for comparison with the
Canny edge detector. Wang and Tan [13] used linear GP to find binary image
edges, inspired by morphological operators, erosion and dilation, as terminals
[14] for binary images. A 4 × 4 window is employed to evolve digital transfer
functions (combination of bit operators or gates) for edge detection by GP [15].
Our previous work [4] used GP for edge detection based on ground truth and
without using windows.

3 The New Approach

3.1 Main Idea

To measure the performance of an edge detector over a number of training
examples, the traditional approach is to adopt the classification-based measure of
the number of pixels correctly classified as a proportion of all actual edge pixels.
However, edge detection is different from traditional classification problems; the
test performance should be based on each image, not just the set of all pixels
from all testing images. In general, machine learning algorithms do not contain
any indication for the detecting result of each training image. Therefore it is
worth investigating what result different fitness function based on the accuracy
of every training image will make.
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3.2 Sets of Terminals and Primitive Functions

We use the same terminal set and function set as in our previous work [4]. The
terminal set contains one input image x and random constants rnd in the range
of [−10, 10]. The function set is {+,−, ∗,÷, shiftn,m, abs, sqrt, square}. Here,
function “shiftn,m” is a main operator, meaning that the image will shift n
columns and m rows. If n is negative, it shifts to left, otherwise shifts to right. If
m is negative, it means shifting up, otherwise down. For example, “shift1,0” and
“shift−1,0” mean that the input image will be shifted right and left by 1 column,
respectively. If a shift direction is out of the range, the nearest row (column)
will be used as the result for the row (column) shifting. All these functions
are able to operate on the input image matrix. Here n and m are randomly
generated from 0 to 2, which means, for an input matrix, each element has equal
probability to choose a neighbour in a 5 × 5 window. For the four direction
shifting functions in [8], neighbours of each element have different probability,
e.g., the probability for the top left neighbour for each element is lower than
the left neighbour because this neighbour needs the left shifting function and
the top shifting function. However, neighbours in a small window should have
the same importance for determining the pixel as an edge point or not. The
“{+,−, ∗, abs, square}” have their usual meanings. The square root function
“sqrt” is protected, which produces a result of 0 for negative inputs. Division
“÷” is also protected, producing a result of 1 for a 0 divisor.

A classical filter can be expressed as an individual program based on this
function set. For example, the 2× 2 window Robert filter [5] can be shown as

(sqrt(+(square(−x (shift1,1 x)))(square(−(shift1,0 x)(shift0,1 x))))).

3.3 Fitness Function

We treat the edge detection task as a binary classification task (with the edge
pixels as the main class) in the evolutionary training process. For the output of
a program, we do not use the threshold ratio for marking edge points; rather
we simply use zero as the threshold and all images use the pixel intensities. For
the negative values, we always classify them as non-edge points. The output is
directly evaluated without post-processing, following the suggestion from [16].

Assume we have recall ri (the number of pixels on the edges correctly detected
as a proportion of the total number of pixels on the edges in image i), and
precision pi (the number of pixels on the edges correctly detected as a proportion
of the total number of pixels detected as edges in images i). The F -measure [2]
is employed to evaluate the accuracy of a detector for one image. We use fi

(see (1) below) to indicate the fitness for image i. Higher fi indicates the better
performance for detecting image i. Given the training data contains N images,
the normal way is to use the (arithmetic) average of all images fi, i = 1, 2, . . . , N ,
and the fitness function is shown in (2). Here we minimize 1 − fi rather than
maximize fi. Favg focuses on the overall result for every training image. For
penalising bad performance from some training images, the geometric mean is
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employed to evaluate the performance of all images and the fitness function
Fgm is shown in (3). Taking into account average and the geometric mean, we
combine Favg and Fgm together and design a new fitness function Fcom (see (4))
with a weight 0 ≤ α ≤ 1.

fi =
2ripi

ri + pi
(1)

Favg = 1− 1
N

N∑
i=1

(fi) (2)

Fgm = 1− (
N∏

i=1

fi)
1
N (3)

Fcom = (1− α)Favg + αFgm (4)

4 Experimental Design

The Berkeley Segmentation Dataset (BSD) [2] comes from natural images (of size
481×321 pixels) with ground truth provided. This image dataset is not polluted
by additional noise. For simplicity, we select some images from the BSD training
dataset as our training dataset, and some images from the BSD test dataset as
our test dataset. For the fairness of the judgment of edges, the ground truth
are combined from five to seven persons as grey-level images. Fig. 1 shows the
training images and the ground truth. In order to decrease the computation
time, we sample five different sub-images of size 41 × 41 from each image as
training sub-images, and use one whole sub-image as an input. The size 41 ×
41 is enough for covering the edge features, such as texture gradients [2]. Ten
additional images (Fig. 2) are used as the test dataset.

The parameter values for GP are: population size 500; maximum generations
200; maximum depth (of a program) 10; and probabilities for mutation 0.15,
crossover 0.80 and elitism 0.05. These values are chosen based on common set-
tings and initial experiments. For analysing the weight α, a set of {0.1, 0.2, 0.35,
0.5, 0.65, 0.8, 0.9} is used and a variant αt based on (5):

αt+1 = 0.01 + 0.99αt (5)

where t is the generation and α0 = 0. In the initial stages of evolution, all
individuals may have poor detection for some training images so that the geo-
metric mean does not work well. Therefore the weight α focuses on average at
the beginning and then increases the weight to the geometric mean. The GP
experiment is repeated for 30 independent runs with different random seeds. We
use 30 fixed and different random seeds so that we have same initial popula-
tion when different fitness functions are used. For checking the performance of
the fitness functions, the related results will be compared with the 3 × 3 Sobel
detector. We use 11 threshold levels to find the minimum value 1 − fi for the
Sobel detector and these threshold values for the 11 levels are i

11 ∗maxO, where
i = 0, 1, 2, . . . , 10.
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(a) 207056.jpg (b) 23080.jpg (c) 105019.jpg (d) 105053.jpg (e) 113044.jpg (f) 216053.jpg

(g) (h) (i) (j) (k) (l)

Fig. 1. Training images from BSD dataset and the ground truth

(a) 119082.jpg (b) 106024.jpg (c) 197017.jpg (d) 253055.jpg (e) 227092.jpg

(f) 361010.jpg (g) 42049.jpg (h) 296059.jpg (i) 3096.jpg (j) 299086.jpg

Fig. 2. Test images from BSD dataset

5 Experimental Results and Discussion

Training Performance. Table 1 shows the training results: mean and standard
deviation over 30 replications of the mean, minimum or maximum (respectively)
over all training sub-images i of 1 − fi. The columns feature the best detector
evolved using each of Favg , Fgm and F0.5 (this is Fcom with α = 0.5), respectively.
The lower the value, the better the performance. Here “∗” indicates that there
is a statistically significant difference between the mean of mean, min or max
using fitness function Fgm and using fitness function F0.5 with significance level
0.05 (in a t-test). Comparing Favg with Fgm and F0.5, there is no significant
difference for the means. From Table 1, we can see that mean and min for F0.5

are significantly lower than the values in Fgm. For Favg and Fgm, there is no
significant difference, even though mean and min in Favg are smaller than the
values in F0.5; this is because the standard deviations in Favg are relatively high
compared to the standard deviations of F0.5. Comparing standard deviations, the
values in Favg are also higher than Fgm, which indicates that detectors evolved
with Fgm are more stable than those evolved with Favg on the training images.
For the combination of the geometric mean and average, F0.5 is more stable than
Favg and has better F -measure than Fgm for the training images.

Test Performance. Table 2 shows the test results (mean ± standard deviation)
with Favg , Fgm, F0.5 and the Sobel edge detector. Here “∗” has the same meaning
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Table 1. Comparison of 1 − fi among detectors evolved with fitness functions Favg,
Fgm and F0.5 on training sub-images

Fitness Favg Fgm F0.5

mean 0.5581 ± 0.0382 0.5713 ± 0.0214 0.5591∗ ± 0.0225
min 0.2707 ± 0.0445 0.2897 ± 0.0329 0.2726∗ ± 0.0246
max 0.8020 ± 0.0498 0.7892 ± 0.0342 0.7832 ± 0.0226

Table 2. Results 1− fi for Favg, Fgm and Fcom on ten test images

Image i Favg Fgm F0.5 Sobel

(a) 119082 0.6808 ± 0.0219 0.6868∗ ± 0.0201 0.6777 ± 0.0153 0.7608+

(b) 106024 0.7149 ± 0.0390 0.7137� ± 0.0230 0.7068 ± 0.0264 0.6875−

(c) 197017 0.7045 ± 0.0377 0.7027� ± 0.0215 0.6966 ± 0.0261 0.6930
(d) 253055 0.6033 ± 0.0458 0.6007 ± 0.0274 0.5951 ± 0.0224 0.7359+

(e) 361010 0.6482 ± 0.0359 0.6499 ± 0.0199 0.6409 ± 0.0217 0.7598+

(f) 227092 0.6978 ± 0.0299 0.6946 ± 0.0288 0.6933 ± 0.0172 0.7130+

(g) 42049 0.4609 ± 0.0339 0.4711 ± 0.0245 0.4596 ± 0.0275 0.4964+

(h) 296059 0.6107 ± 0.0590 0.6114� ± 0.0324 0.6009 ± 0.0351 0.5930
(i) 3096 0.4851 ± 0.0548 0.4900� ± 0.0336 0.4782 ± 0.0417 0.4766
(j) 299086 0.6962 ± 0.0301 0.6875 ± 0.0131 0.6857 ± 0.0146 0.8533+

as in Table 1; “�” indicates that the performance of Fgm is significantly higher
(worse) than the performance of the Sobel detector; “+” means the performance
for the Sobel detector is significantly worse than all other fitness functions; and
“−” means the performance for the Sobel detector is significantly better than
them. Overall, the performances on the ten test images show no significant dif-
ferences among Favg, Fgm and F0.5, but they are generally significantly better
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Fig. 3. Comparison among Favg, Fgm and Fcom for the ten test images. The test results
(1− fi) for each subfigure, from left to right, are: Favg, Fcom with α ∈ {0.1, 0.2, 0.35,
0.5, 0.65, 0.8, 0.9}, Fgm and the variant αt.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)
Ground Truth Favg Fgm F0.5 Sobel

Fig. 4. Best results for the ten test images for each method

than the Sobel detector. The only significant difference between Fgm and F0.5 is
that F0.5 is better than Fgm for image (a). For Favg and F0.5, only test image (b)
has significantly worse performance than the Sobel detector, but six of the ten
test images have better performances for all fitness functions compared to Sobel.
For Fgm compared to Sobel, interestingly when it is not significantly better it
is always significantly worse. The standard deviations of the ten test images in
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Fgm and F0.5 are lower than the values in Favg and in seven of the ten images
Fgm has slightly lower standard deviation than F0.5. Therefore, Fgm and F0.5

appear to be more stable than Favg.

Comparison of α Values. For the further analysis, Fig. 3 shows the test results
using boxplots. Comparing medians, lower and upper quartiles, there are no
distinct differences among these results with different fitness functions. But the
details for outliers are different between Favg and Fgm; Fgm only contains them
in four test images and they are closer to the largest observation than Favg (the
minimum distance to the largest observation or the smallest observation). All
ten test images in Favg contain outliers, which means that at least one of the 30
detecting results for each test image in Favg is unusual. Referring to the standard
deviations of the ten test images in Table 2, it is a possible reason that Favg has
larger deviations in the ten test images. From the comparison among different
Fcom, α does not affect the detecting result of each test image.

Examples of Detected Edges and Further Analysis. The best detecting results from
Favg, Fgm and F0.5 are shown in Fig. 4. These results from GP are binary bound-
aries, and the detecting results from the Sobel detector are soft boundaries. These
results from GP are hard to distinguish, except image (e). For image (e), Favg has
the best detecting result, but high recall with low precision. For image (g), Fgm

has a higher false alarm, compared with Favg. Compared with the results from the
Sobel detector, the detectors evolved by GP appear to find more details.

Summary. In summary, Favg , Fgm and Fcom have no obvious differences for the
normal natural images based on mean and they outperform the Sobel detector
based on the ten test images. However, Fgm and Fcom are more stable than Favg ;
it seems that the geometric mean can slightly restrict to choose the results of the
training images during the training progress so that the stability for test images are
better than average. A possible reason is that average only takes into account the
overall result of every training image, and does not know the differentiation from
training images, but geometric mean can indicate the bad detection result from
images (too low fi in one training image will make the product of all fi very low).

6 Conclusions

The goal of this paper was to investigate fitness functions based on the accu-
racy of each training image. The geometric mean and (arithmetic) average were
employed as fitness functions based on the accuracy of each training image. The
fitness functions based on average and geometric mean can be used to evolve
detectors outperforming the Sobel detector. The combination of the geometric
mean and average as fitness functions, improves the accuracy, compared with
the fitness function with the geometric mean, and is more stable than the fitness
function with average.

For future work, we will test this technique on further natural images, espe-
cially image datasets containing a few special images and compare results from
the fitness function based on overall pixels. We will also compare our algorithm
with traditional window-based methods.
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Abstract. Object detection in images is inherently imbalanced and
prone to overfitting on the training set. This work investigates the use of
a validation set and sampling methods in Multi-Objective Genetic Pro-
gramming (MOGP) to improve the effectiveness and robustness of object
detection in images. Results show that sampling methods decrease run-
times substantially and increase robustness of detectors at higher detec-
tion rates, and that a combination of validation together with sampling
improves upon a validation-only approach in effectiveness and efficiency.

1 Introduction

Object detection is the task of correctly locating and classifying objects of in-
terest inside a larger image [9]. Object classification requires differentiating be-
tween different kinds of objects and object localisation consists of identifying
the positions of all objects of interest in a large image. A detector’s ability to
detect objects in an image is primarily measured in terms of detection rate, DR,
the number of correctly located objects as a proportion of the total number of
objects in the image, and the false alarm rate, FAR, the number of falsely re-
ported objects as a proportion of the total number of objects in the image. Here
0 ≤ DR ≤ 1 but 0 ≤ FAR as it is possible for the detector to report more
objects than there are in the image. The aim is to maximise DR and minimise
FAR. There is certainly a trade-off between these two objectives. A classifier
could have 0% FAR by not reporting any objects, hence DR is also 0%. Sim-
ilarly a classifier could correctly detect every object by reporting an object at
each location in the image, in which case FAR would be very large.

Genetic Programming (GP) is a form of evolutionary computation based on
the principles of biological evolution [12]. In tree-based GP [12], the genetic
programs (solutions) are represented as trees, and then evolved using Darwinian
evolutionary principles. Natural selection, recombination and mutation evolve
the population towards a solution for the given problem; this is survival of the
fittest. GP has been used widely for a variety of tasks, including classification
[2,4,6], regression and object detection [10,12,13].
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Object detection is inherently imbalanced, and prone to overfitting on the
training set. Our previous work [6] has shown that more accurate classifiers under
imbalanced datasets can be built by dynamic sampling of the training set dur-
ing training. Also, validation is a common way for guarding against overfitting.
Hence the goal of this paper is to determine whether sampling and validation
can improve the robustness of object detectors and compare the effectiveness
and efficiency of both.

The remainder of this paper is organised as follows. Section 2 describes the
background work relating to this paper. Section 3 describes the new validation
approach and sampling methods used for object detection tasks. Section 4 de-
scribes the experimental design and Section 5 discusses the results. Section 6
concludes the paper.

2 Background

Class Imbalance and Sampling. In object detection there are a large number
of non-object instances and only a few object pixels in each image, an exam-
ple of class imbalance in which there are a large number of instances of one
class and only a small number of instances in the other [2]. Re-sampling can be
used to artificially balance the data set, often through under and over sampling.
Under-sampling uses fewer than the total number of majority class instances
and over-sampling replicates minority class examples. Gathercole and Ross [5]
compare three methods of subset selection, Dynamic Subset Selection (DSS),
Historical Subset Selection (HSS) and Random Subset Selection (RSS), on a
large unbalanced dataset. DSS randomly selects a sample from the training set
of size N biased towards those instances which are often misclassified or have not
been included in the subset for several generations. HSS uses standard GP runs
on the training dataset to determine the ‘difficulty’ of each instance, by counting
the number of times it is mis-classified by the best population member in each
run. The cases with greater ‘difficulty’ are then used as the sample subset for
HSS runs. In RSS each training instance has equal probability of being selected
in the subset, and a new subset is taken at each generation.

Hunt et al. [6] establish that the variation in training performance introduced
by sampling examples from the training set is no worse than the variation be-
tween GP runs already accepted. On binary classification tasks, results show
that the use of sampling methods during the training process improves minority
class classification accuracy and the robustness of classifiers evolved.

SOGP and MOGP for Object Detection. Zhang [12] propose a two-phase train-
ing method and the use of False Alarm Area (FAA) in Single Objective GP
(SOGP). The first phase uses object cutouts from the full training set using
a fitness function which maximises classification accuracy; this is purely ob-
ject classification. In the second phase, initialised with the population from
the first phase, programs are now trained on the full training images, using
a moving window approach. The minimisation fitness function of this stage is
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fitness1 = K1 · (1−DR)+K2 ·FAR +K3 ·FAA+K4 · size, where Ki are con-
stants, FAA is the number of positive classifications less the number of objects
in the image, and size is the size of the program. A clustering approach is used
so false alarms are not reported if the false alarm is within tolerance of a pre-
viously detected object or false alarm. Results showed the two-phase approach
outperformed single-phase GP, with a greater detection rate (higher number of
identified objects) and shorter training time on a coins dataset (described in
Section 4).

Pixel statistics are a domain independent approach to image analysis. Pixel
values are a measure of overall brightness/intensity and contrast, pixel statistics
frequently used are the mean and variance of regions of images. Zhang et al. [13]
investigated the use of three different terminal sets: rectilinear features; circular
features; and pixels. These terminal sets were used with SOGP with the fitness
function fitness2 = K1 · (1 − DR) + K2 · FAR. Three image sets were used:
shapes, coins and retina images. Results suggest that rectilinear features are
more effective for these problems than circular features.

Liddle et al. [10] extend the two-phase training method of [12] into Multiple-
Objective GP (MOGP) based on NSGA-II [3]. The first phase, classification,
used true positive rate and true negative rate as two objectives. The second
phase used DR and FAR as two objectives with FAA used as a tie-breaking
measure. Summary attainment surfaces [8] were used to visualise the MOGP
results. Results on the shapes and coins datasets show that MOGP has significant
promise in evolving a larger set of more diverse classifiers in the same or less
CPU time as SOGP. However there was a high FAR, with the best classifier
having 5000% FAR and 90% DR which is not desirable. There was also a large
presence of classifiers with worst-best performance, i.e., those than have the
worst performance on the first objective, DR, and attain the best performance
on the second objective, FAR. These classifiers are essentially useless, as they
classify all pixels as non-object.

The outcome of any one run of SOGP is a single best genetic program for
object detection. The outcome of a single run of MOGP is a Pareto-front of
non-dominated genetic program solutions. A genetic program is non-dominated
if it weakly dominates all other genetic programs in the current population.
A genetic program, x, weakly dominates another genetic program, y, if for all
i, xi ≤ yi and there exists a j such that xj < yj for i, j in objectives (all
objectives to be minimised) [10]. Bhowan et al. [2] use MOGP for classification of
unbalanced data. They use P -dominance, where a program x weakly dominates
another program y, if x weakly dominates y, as defined above, and x achieves P ,
a minimum performance level, on each objective. P -dominance was used to limit
the number of one sided classifiers in the population. The use of P -dominance was
shown to improve front diversity, and reduce the number of one-sided programs
in all of the datasets used.

Validation. The dataset is split into training, validation and testing sets, which
are distinct. The main idea of the validation set is to determine when to termi-
nate training, by considering when independent performance on the validation
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set begins to get worse [7]. The training set is used to drive the evolutionary pro-
cess, the performance of each program is recorded as observed over this set. The
validation set is used to measure the generalization ability of the current popula-
tion of classifiers. When the classification performance decreases, it is a possible
indicator that the classifiers are overfitting to the training data, so evolution is
stopped.

3 Validation and Sampling Methods

Following Zhang [12] and Liddle et al. [10] we use the same two phase approach.
Phase one still uses true positive and true negative rates as the two objectives,
both to be maximised, and phase two uses DR and FAR as the two objectives
to be maximised and minimised respectively.

Benchmark. The benchmark for each fitness scheme evolves the population for
20 generations in the first phase (classification) and 40 generations in the second
phase (detection). The training set for the first phase is the 480 cutouts and
in phase two the full training set of size 128800 is used to evaluate the current
population of genetic programs at each generation.

Sampling Methods. We leave the first phase of the evolution process as is, the
genetic programs being trained on the same 480 image cutouts for the full 20
generations. In the second phase of evolution we sampled with uniform proba-
bility from the training set, of size 128800, until we had a sample of the desired
size. We used two different sample sizes: 500 and 5000. Each object centre is
included in the sample, and the sample is taken without replacement. This is a
form of under-sampling, as not all of the non-object instances are included in
the sample. A new sample is taken at each generation of evolution and used in
training to evaluate the entire current population of genetic programs at that
generation. Phase one is effectively a static sample from the training set which is
taken before training begins, and phase two is dynamic sampling during training.
Sampling 500, like the benchmark, evolves the population for 20 generations in
the first phase and 40 generations in the second phase. In the second phase a
sample of size 500 of training instances is taken from the training set at each gen-
eration. The current population is evaluated on this subset of training instances.
Sampling 5000 uses the same methods as Sampling 500 but with a sample size
of 5000.

Validation Methods. Validation is performed every two generations. The popu-
lation is first evaluated on the validation set, and the best front found. General-
ization ability is monitored by the use of two measures: hyperarea and distance.
Hyperarea is the area under the best Pareto-front (as a staircase as in Figure 1):

hyperarea =
n−1∑
i=2

(Si,0 − Si−1,0)× Si,1
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where n is the number of classifiers in the Pareto-front and Si,j is the performance
of the ith classifier on the jth objective. Distance is a measure of how much each
classifier’s performance differs on the validation set in comparison to the training
set, i.e., how much further each classifier’s performance, (1−DR, FAR), is from
the best possible performance, 100% DR and 0% FAR, on the validation set, in
comparison to performance on the current training sample.

distance =
N∑

i=1

(√
(Sval

i,0 )2 + (Sval
i,1 )2 −

√
(Str

i,0)2 + (Str
i,1)2

)

where N is the size of the population, Str is the performance on the training
set and Sval is the performance on the validation set. A moving average of three
validations is used, and if the moving average of both hyperarea and distance in-
crease between validations, evolution is terminated, otherwise evolution runs for
the set number of generations. Validation evolves the population for 20 genera-
tions in the first phase and for up to 40 generations in the second phase. In phase
two the full training set is used for evaluating the population. In phase two the
validation set is used to monitor the generalisability of the population of genetic
programs to determine if overfitting is occurring. If validation does not indicate
that overfitting is occurring, then evolution terminates after generation 40, and
then the best front is evaluated on the test set. Validation-Sampling combines
aspects of Sampling 5000 and Validation. The population evolves for 20 gener-
ations in the first phase, with no sampling or validation. The second phase uses
both sampling and validation. A sample of size 5000 is taken at every generation
from the full training set and this is used to evaluate the performance of each
program in the population. Validation again occurs every two generations, and
evolution is terminated under the same conditions as Validation.

4 Experimental Design

Dataset. The coins dataset consists of seven photographs of New Zealand 5
cent coins, either heads up or tails up, against a noisy background. Each of
the photographs in this dataset contains 16 coins with diameter approximately
63 pixels, and size approximately 500 × 500 pixels. The dataset was split so
five photographs were used for training, one for validation, and one for testing.
For the first phase (classification) 480 cutouts were selected from the training
images: 80 objects; 50 partial; and 350 randomly selected. In the second training
phase (detection) a sweeping window moved by three pixels each time. In both
validation and testing, the sweeping window moved by one pixel each time.

Functions and Terminals. The terminal set represents the input into the GP
system: features extracted from the images and random real number nodes in
the range [−10, 10]. For each window cutout of the image, the window cutout
is divided into five regions equal in size. These regions are the four quarters,
and the square of the same size as these quarters centred in the middle of the
window cutout. For each of these five regions, the mean and variance of the pixel
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values were calculated, giving 10 features per window cutout. The use of pixel
statistics, which are domain independent, rather than individual pixel values
increases the generalisability of our classifiers. The function set is {+, −, ×, %,
if}. The arithmetic operators take two arguments. The first three arithmetic
operators, +, −, ×, have their usual meanings. The % is as usual division except
when dividing by zero where the value returned is zero. The if function takes
three arguments, if the first argument is positive then it returns the second, else
the third is returned.

Evolutionary Parameters. A population of 500 programs was used; the initial
population was generated using the ramped half-and-half method. For bench-
mark MOGP the population was evolved for 20 generations in the first phase,
and 40 generations in the second phase. For our modified MOGP the population
was evolved for a maximum of 20 generations in the first phase, and a maximum
of 40 generations in the second phase. Minimum tree depth 2, maximum tree
depth 6, crossover rate 70%, mutation rate 30%, and tournament selection with
tournament size of 2. We used the same 40 randomly generated seeds for both
MOGP and our modified versions of MOGP. A tolerance value of 3 pixels was
used, meaning that detected object centres reported within 3 pixels of an already
reported object centre are not considered a new object centre.

5 Experimental Results

Summary attainment surfaces [8] are used to present the experimental results.
The attainment value of a particular solution is the probability that the MOGP
system will evolve a solution which is better than the current solution, i.e.,
weakly dominates the solution [8]. The number of attainment surfaces is equal
to the number of MOGP runs, for this project this means there are 40 attainment
surfaces. The best attainment surface, therefore, represents the solutions which
have attainment value of zero. These are the solutions that are non-dominated
in comparison to the solutions from all 40 Pareto-fronts. Similarly the median
attainment surface is made up of solutions which have attainment value of 50%
in comparison to the solutions from the 40 Pareto-fronts.

These attainment surfaces give a way of comparing performance and distri-
bution of results over two objectives similar to the way a boxplot represents the
distribution over one objective. In analysing the comparative performance of the
seven methods, five attainment surfaces will be used to summarise the results:
the best, upper quartile, median, lower quartile and worst summary attainment
surfaces, representing attainment of 0%, 25%, 50%, 75% and 100% respectively.
DR is to be maximised and FAR is to be minimised, as ideally a solution will
correctly report all object centres without reporting any non-object centres. The
attainment surfaces which are lower and more to the right are better. Therefore
the region below and to the right of the best summary attainment surface rep-
resents the area which has not been attained in any of the runs, and the region
above and to the left of the worst summary attainment surface represents the
area which has been attained by all of the runs. Further the area below and to
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the right of, for example, the median summary attainment surface, represents
the area which 50% of GP runs attain. Hence when comparing two median sum-
mary attainments surfaces, the better one, is the one which is lower and more
to the right.

Results for Benchmark MOGP. The benchmark test results are shown in Figure
1(a). The average runtime of the benchmark method over 40 replications was
26420 seconds (see Table 1). The results show that over 50%, but less than 75%,
of GP runs have a Pareto-front which has the full range of detection rates. All
GP runs attain a detection rate of at least 0.9375 on the test set.

Results for Sampling. The test results of Sampling 500 and Sampling 5000 are
shown in Figures 1(b) and (c) respectively. Sampling 5000 outperforms Sampling
500. The median attainment surface of Sampling 5000 is better than upper
quartile attainment surface of Sampling 500 for DR ∈ (0, 0.8375). Sampling
5000 attainment surfaces are all lower through lower detection rates (0 to 0.40),
particularly when 0.2 ≤ DR ≤ 0.4 where all summary attainment surfaces
of Sampling 5000 are below the median attainment surface of Sampling 500.
Sampling 5000 attainment surfaces have lower FAR than Benchmark for the
highest DR for the best summary attainment surface. For both Sampling 500 and
Sampling 5000 at least 75% of GP runs have a Pareto-front which attains the full
range of detection rates, this is better than the benchmark. Like the benchmark
test results, all GP runs have a Pareto-front which contains a detection rate of
at least 0.9375.

Results for Validation. The test results of Validation and Validation-Sampling
are shown in Figures 1(e) and (d) respectively. Validation-Sampling uses a sam-
ple size of 5000. For both Validation and Validation-Sampling less than 25% of
Pareto fronts evolved in the 40 runs have the full DR range of 0 to 1. Validation-
Sampling outperforms Validation for the high detection rates. Table 1 shows
that the runtime in seconds of Sampling 5000 is 20 times faster than that of the
benchmark, and Sampling 500 is 60 times faster than the benchmark. Validation-
Sampling has almost ten times longer runtimes than just Sampling. The worst
summary attainment surface for the four new methods are all considerably worse
than the benchmark. Validation and Validation-Sampling reach 100% detection
rate on less than 25% of evolutionary runs. Best and upper quartile summary
attainment surfaces are better in MOGP with Validation-Sampling than MOGP
with Validation, however the median, lower-quartile and worst fronts are bet-
ter in MOGP with only validation. Best and upper quartile summary attain-
ment surfaces of MOGP with Validation-Sampling is better than Validation for
DR < 0.9375, after which Validation is better. The median summary attainment
surface of Validation-Sampling is better than Validation. Comparing the test re-
sults of Validation and Validation-Sampling to the test results of the benchmark,
there is not much improvement offered by the use of the validation set. The worse
results than the benchmark can be attributed partially to the earlier termination
of some program’s evolution. Although the aim in this project is to terminate
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(b) Sampling MOGP (500) Test Results
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(c) Sampling MOGP (5000) Test Results
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(d) Validation−Sampling (5000) MOGP Test Results
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(e) Validation MOGP Test Results
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(f) Comparison of Best Summary Attainment Surfaces
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(g) Comparison of Upper Quartile 
Summary Attainment Surfaces
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(h) Comparison of Median Summary Attainment Surfaces
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Fig. 1. Graphs showing the summary attainment surfaces for the benchmark and each
of the four methods, Figures (a) to (e), and comparisons of best, upper quartile and me-
dian summary attainment surfaces between all methods, Figures (f) to (h), on MOGP
(coins)
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Table 1. Average runtimes in seconds, with standard deviations, of 40 runs of each
MOGP method

MOGP Runtime (s)

Benchmark 26420±4480
Sampling (500) 411 ± 220
Sampling (5000) 1203± 316
Validation 30025±9734
Sampling Validation (5000) 12232±24780

evolution before overfitting occurs, it is difficult to ascertain whether the de-
crease in validation set performance detected is due to having passed a global
minimum (in which case evolution should be stopped) or a local minimum (in
which case evolution should continue). Many programs terminated evolution be-
fore reaching even 15 second phase generations. The high number of programs
that do not terminate before the end of the 40 second phase generations suggests
the number of generations for evolution could be increased, as overfitting does
not appear to be occurring in the majority of the population.

Comparison. The best summary attainment surfaces of each method are shown
in Figure 1(f). The best summary attainment surfaces of all methods except Sam-
pling 500 are very similar for DR < 0.5. Sampling 5000 is equal to or better than
the benchmark for DR > 0.8. Validation-Sampling is better than Validation ex-
cept for at DR = 1.0. The upper quartile summary attainment surfaces of each
method are shown in Figure 1(g). Sampling 5000 is very similar, but not quite as
good as the benchmark and is better for DR = 0.9375. The median summary at-
tainment surfaces of each method are shown in Figure 1(h). The benchmark has
the best median summary attainment surface for DR < 0.9375 (which is the high-
est DR reached), however Sampling 5000 has the lower FAR at DR = 0.9375, and
is very similar to the benchmark front through 0 ≤ DR ≤ 0.5. Validation has a
worse median summary attainment surface than Validation-Sampling.

6 Conclusions

The goal of this paper was to increase the robustness of classifiers evolved in
MOGP for object detection in images. Sampling methods decrease the run time
of the evolutionary runs by a very substantial amount, and increase robustness
at higher detection rates. Further, with the use of sampling the proportion of
GP runs which have a Pareto-front spanning the full range of detection rates
increases. This shows that the use of sampling does improve the robustness of
Pareto-fronts evolved in MOGP. The comparison of the test results of Validation
and Validation-Sampling show that Validation-Sampling has a considerably bet-
ter median than Validation. This shows that in this situation the use of sampling
in combination with validation also improves the robustness of the Pareto-fronts
evolved. However in comparing the test results of Validation and Validation-
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Sampling to those of Sampling 500 and Sampling 5000 it is clear that the use
of the validation set does not provide an increase in robustness.

In future work, NSGAII will be compared with SPEA2 [11], and we will
use more difficult datasets. More work is needed on MOGP with validation
and sampling, e.g., changing the frequency of validation so it is only every 10
generations, and introducing a minimum number of generations that evolution
must go through in the second phase before evolution can terminate. It would
then be interesting to increase the upper limit on number of generations evolved
to be much higher, say 200, and see how results compare. If evolution is allowed
to take up to 200 generations then the time taken will be very long, this is when
the sampling methods will be very useful, as they decrease the time taken hugely,
making validation and longer evolutionary periods feasible.
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Abstract. This paper proposes a new variant of differential evolution
for multimodal optimization termed DE/isolated/1. It generates new in-
dividuals close to an isolated individual in a current population as a
niching scheme. This mechanism will evenly allocate search resources
for each optimum. The proposed method was evaluated along with the
existing methods through computational experiments using eight two-
dimensional multimodal functions as benchmarks. Experimental results
show that the proposed method shows better performance for several
functions which are not effectively solved by existing algorithms.

Keywords: differential evolution, multimodal optimization, niching.

1 Introduction

Differential evolution (DE) [1] is a very powerful population-based algorithm for
function optimization. Despite its very good performance on various problems, it
is very easy to implement since it consists of only four simple operations, initial-
ization, mutation, crossover and selection. This paper deals with extending DE
in order to solve multimodal optimization problems. The goal of a multimodal
optimization process is to find all or most of the multiple optima in a solution
space. Real-world problems, such as classification problems in machine learning
[2] and the inversion of teleseismic waves [3], are considered to be highly multi-
modal problems. They are likely to have several global and/or local optima, and
in many cases it is desirable to accurately find as many as possible [4].

Some DE-variants for solving multimodal optimization problems have been
proposed so far. Thomsen proposed two variants, CrowdingDE and SharingDE
[5]. He showed the CrowdingDE outperformed the SharingDE on fourteen com-
monly used benchmark problems. DE with local selection [6] generates new indi-
viduals close to a current vector in a population. The local selection mechanism
partitions the population into some niches which evolve in isolation. Epitropakis
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et al. proposed DE/nrand/1 and DE/nrand/2 in which a new vector is gener-
ated close to the nearest neighbor of a current vector [4]. Furthermore, DE with
restricted tournament selection [7] and species-based DE [8] have been proposed.

This paper proposes a new DE-variant termed DE/isolated/1. This algorithm
selects an isolated vector in a current population as a base of newly generated
vectors. In this setting, a new candidate vector is generated close to the isolated
vector in the current population. Then the current vector will be replaced by
the generated vector if the generated vector has a better fitness value. Thus we
could expect each candidate solution actively migrates to the isolated area in
each generation, and will evenly allocate search resources for each optimum in
the search space.

The rest of the paper is arranged as follows. Section 2 briefly explains the con-
ventional differential evolution algorithm. Section 3 shows the proposed method
and explains design concepts. Section 4 shows performance evaluation experi-
ments. The performance is compared with existing DE-variants. Finally, Section
5 concludes the paper.

2 Differential Evolution

This section briefly explains the conventional differential evolution algorithm
according to [9]. A pseudocode of the algorithm is described in Fig. 1. The
algorithm sequentially chooses a vector xi,c in a population Xc. The chosen
vector is called target vector, and a new vector is generated according to this by
mutation and crossover operator. Then the target vector will be replaced by the
newly generated one if it has a better fitness value than the target.

We adopt conventional terminology for some vectors used in DE as follows:

– Target vector xi,c: A vector chosen from the current population Xc.
– Donor vector vi: A mutant vector obtained through the differential mutation

operation.
– Base vector: A vector to be perturbed by the differential vector through the

mutation operation.
– Trial vector ui: An offspring formed by recombining the donor with the

target vector.

2.1 Initialization

First, the algorithm generates an initial population of N -dimensional vectors by
uniformly randomizing individuals within the search space constrained by the
specified minimum and maximum bounds. The j-th component of a vector xi,c

in Xc is initialized as

xi,j,c = xj,min + randi,j [0, 1] · (xj,max − xj,min) , (1)

where xj,min is the minimum bound of the j-th element, and xj,max is the max-
imum bound. randi,j [0, 1] is a uniformly distributed random number lying be-
tween 0 and 1, and is instantiated independently for each component of the i-th
vector.
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input:
f(x) - The function to be minimized
F - Scaling factor
Cr - Crossover rate
NP - Population size

procedure:
Xc ← Randomly initialized vectors [x1,c, x2,c, · · · , xNP,c]
while (the stopping condition is not satisfied) {

Xn ← Xc

for (i ← 1 to NP ) {
vi ← Mutation (i, Xc, F )
ui ← Crossover(xi,c, vi,c, Cr)
Selection(i, Xc, ui, Xn, f )

}
Xc ← Xn

}
Output the best vector in Xc

Fig. 1. The pseudocode of DE algorithm

2.2 Mutation

The mutation operator generates a donor vector vi using vectors randomly se-
lected from the current population. In the conventional DE, the following oper-
ator is used:

vi = xri
1,c + F ·

(
xri

2,c − xri
3,c

)
. (2)

The indices ri
1, ri

2 and ri
3 are mutually exclusive integers randomly chosen from

{1, 2, . . . , NP} \ {i}. F is a scaling factor which has to be determined by the user.

2.3 Crossover

The crossover operator generates a trial vector ui by recombining the target
vector xi,c and the donor vector vi. In the conventional DE, two types of op-
erators, exponential and binomial, are used. We use the binomial operator in
this study. In the binomial operator, each element in the trial vector inherits
the donor vector’s value with probability Cr which is specified by the user, and
inherits the target vector’s value with probability 1−Cr. The trial vector ui is
obtained as

uj,i =

{
vj,i randi,j [0, 1] ≤ Cr or j = jrand

xj,i,c otherwise,
(3)

where jrand ∈ [1, 2, . . . , D] is a randomly chosen index which ensures that ui

inherits at least one component from the trial vector vi.

2.4 Selection

The selection operator determines whether the target or the trial vector survives
to the next generation. If the new trial vector yields an equal or lower value of
the objective function, it replaces the corresponding target vector. The target
vector in the next generation xi,n is obtained as

xi,n =

{
ui f(ui) ≤ f(xi,c)
xi,c f(ui) > f(xi,c).

(4)
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3 Proposed Method: DE/isolated/1

In this section, we propose a new DE-variant for multimodal optimization termed
DE/isolated/1. The main feature of the variant is that it selects an isolated
vector in the current population as a base vector of the mutation operator. This
generates a trial vector close to the isolated vector. Thus, the target vector may
migrate to the isolated area by the selection operator.

Fig. 2 describes behavioral feature of typical niching methods and the pro-
posed method in a one-dimensional problem. In typical niching methods, indi-
viduals in a same valley tend to gather together by descending the valley. In the
proposed method, individuals actively migrate to other valleys.

Fig. 3 describes a pseudocode of the proposed method. In the next subsections,
we explain design concepts of the algorithm.

3.1 Isolated Vector-Based Mutation

The mutation operator used in DE/isolated/1 selects an isolated vector in the
current population as a base vector. The operator is described as follows:

vi = xisolated + F ·
(
xri

1
− x′

ri
1

)
, (5)

where isolated is an index of an isolated vector obtained as follows:

isolated = arg max1≤j≤NP

{
min

1≤k≤NP,j 
=k
||xj − xk||

}
. (6)

This means the isolated vector has the maximum distance from its nearest neigh-
bor vector.

The second term of the differential vector x′
ri
1

is chosen randomly from Nd

nearest neighbors of xri
1
. Nd ∈ [1, 2, . . . , NP −1] is a control parameter specified

by the user. The case with Nd = NP − 1 corresponds to that with the original
differential vector in the conventional DE except that the target vector will be

x

f(x)

x

f(x)

(a) Typical niching methods (b) The proposed method

Fig. 2. Behavioral feature of typical niching methods and the proposed method
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input:
f(x) - The function to be minimized
F - Scaling factor
Cr - Crossover rate
NP - Population size
Nd - The number of candidate differential vectors
Nw - Threshold of rejected trials

procedure:
X ← Randomly initialized vectors [x1, x2, · · · , xNP ]
while (the stopping condition is not satisfied) {

for (i ← 1 to NP ) {

vi ←

⎧⎨
⎩

x
ri
1

+ F · (x
ri
2
− x

ri
3
) isolated = i ∧ nw ≥ Nw

xisolated + F · (x
ri
1
− x′

ri
1
) otherwise

ui ← Crossover(xi, vi, Cr)

xi ←
{

ui f(ui) ≤ f(xi)

xi f(ui) > f(xi).

}
}
Output X

Fig. 3. The pseudocode of DE/isolated/1

chosen. The design intention of the second term is to generate trial vectors close
to the isolated vector absolutely. In conventional DE, differential vectors are
chosen randomly from the current population. In this setting differential vectors
which step over mountains will be generated if two chosen vectors are not in a
same valley. Therefore, a trial vector will not be close to the isolated vector if
this setting is used in the proposed method.

3.2 Immediate Update of the Population

The conventional DE updates the current population after generating new vec-
tors for each target vector in the population, i.e. newly generated vectors are
stored in another memory Xn during executing the three steps, then these are
copied to the current population memory Xc (or the reference is changed). If
DE/isolated/1 is used under the update mechanism, the next population tends
to converge to the isolated vector. This causes premature convergence.

To avoid this situation, we adopt another update mechanism, immediate up-
date. In this mechanism, if the selection operator determines to replace the target
vector by the newly generated one, the target in the current population is re-
placed immediately. i.e. we use only one memory X for storing the population,
and all operations manipulate vectors in the memory. Therefore, the information
of the isolated vector will be changed immediately after the update.

3.3 Escape from Local Optima

If we use the isolated vector-based mutation, a bad situation could happen.
When an isolated vector is in a local optimal area and others are in a better
area, all trial vectors will be rejected by the selection operator since all such
vectors are close to the isolated vector and show bad quality than target vectors.
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To overcome this situation, the isolated vector needs to escape the local optima
and move to another area. However, the isolated vector cannot escape since all
trial vectors will be generated close to the isolated vector even if the isolated
vector is chosen as a target vector.

As an escape mechanism, conventional mutation operator is used if the trials
with an isolated vector are rejected for a specified times. The improved mutation
operator is described as follows:

vi =

⎧⎨
⎩

xri
1
+ F ·

(
xri

2
− xri

3

)
isolated = i ∧ nw ≥ Nw

xisolated + F ·
(
xri

1
− x′

ri
1

)
otherwise,

(7)

where nw(≥ 0) is the number of rejected trials during using the current isolated
vector, and is reinitialized to 0 when a current vector is replaced by a newly gen-
erated one. Nw is a threshold specified by the user. To set Nw =∞ corresponds
to using the original mutation operator described in the equation (5).

4 Experiments

To evaluate the performance of the proposed algorithm, we conducted computa-
tional experiments using two-dimensional multimodal functions as benchmarks.
The performance was compared with existing DE-variants, CrowdingDE [5], DE
with local selection (DELS) [6] and DE/nrand/{1,2} [4]. We used the literature
[4] as a reference to design the experiments.

4.1 Benchmark Functions

We used eight benchmark multimodal functions to be minimized, that are the
same ones adopted in the literature [4]. Table 1 shows mathematical formulas
and domains of these functions.

The functions F1 and F2 have a low number of irregularly spaced global optima
and no local optima. The number of global optima are 3 and 4 respectively. The
function F3 has 18 global optima and a high number (742) of local optima. The
function F5 has 62 global optima without local optima and is partially irregular,
with the differences between optima to increase along the value of x. The function
F6 contains 52 evenly spaced global optima and does not have any local optima.
Similarly, the function F7 has the same number of optima, but the distances
between each global optimum decrease towards the origin. Finally, the function
F8 is a modified version of the well-known Rastrigin function, having 4 evenly
spaced global optima and 96 local optima.

4.2 Performance Measure

The following two measures, peak ratio (PR) and success ratio (SR), were used to
evaluate the performance of each algorithm. The peak ratio is defined as follows:

Peak ratio =
the number of global optima found
the number of total global optima

. (8)



DE/isolated/1: A New Mutation Operator for MO with DE 327

Table 1. Benchmark functions

Function Mathematical formula Domain

Branin
F1(x) =

(
x2 − 5.1

4π2 x2
1 + 5

π x1 − 6
)2

+10
(
1 − 1

8π

)
cos (x1) + 10

x1 ∈ [−5, 10]

x2 ∈ [0, 15]

Himmelblau F2(x) =
(
x2
1 + x2 − 11

)2
+

(
x1 + x2

2 − 7
)2

x ∈ [−6, 6]2

Shubert
F3(x) =

∑ 5
i=1 i cos ((i + 1) x1 + i)

·
∑5

i=1 i cos ((i + 1) x2 + i)
x ∈ [−10, 10]2

Six-hump camel back
F4(x) =

(
4 − 2.1x2

1 +
x4
1
3

)
x2
1

+x1x2 +
(
−4 − 4x2

2
)

x2
2

x1 ∈ [−1.9, 1.9]

x2 ∈ [−1.1, 1.1]

Vincent F5(x) = − 1
2

∑2
i=1 sin (10 log (xi)) x ∈ [0.25, 10]2

Deb 1 F6(x) = − 1
2

∑2
i=1 sin6 (5πxi) x ∈ [0, 1]2

Deb 3 F7(x) = − 1
2

∑2
i=1 sin6

(
5π

(
y

3
4
i − 0.05

))
x ∈ [0, 1]2

Modified Rastrigin F8(x) = 20 +
∑2

i=1

(
x2

i + 10 cos (2πxi)
)

x ∈ [−5.12, 5.12]2

An optimum is considered to be found when a vector in the population is within
a specified Euclidean distance ε(accuracy level) from the optimum.

The success ratio is defined as follows:

Success ratio =
the number of trials all global optima was found

the number of trials
. (9)

Finding all global optima in a trial corresponds to that the peak ratio at the last
generation of the trial equals to 1.

According to these definitions, we checked out the average peak ratio at the
last generation and the success ratio for all algorithms.

4.3 Parameter Setup

The experiment was conducted 100 times for each function and for each accuracy
level. Accuracy levels were ε = {10−3, 10−4, . . . , 10−8}. Control parameters of
DE were set as follows. The population size NP and the number of generations
were set to 100 and 1000 respectively. For CrowdingDE, DELS, DE/nrand/1 and
DE/nrand/2, the common setting of F = 0.5 and Cr = 0.9 were used, which
are the same as the literature [4]. The binomial crossover operator was used in
all algorithms.

For the proposed method DE/isolated/1, F = 0.9 and Cr = 0.9 were used.
The reason of setting comparatively a high value of F is that the neighbors-
based choice of differential vectors described in section 3.1 tends to generate
short differential vectors. The number of candidate differential vectors Nd is set
to 2. The threshold of rejected trials Nw = NP − 1 was used. This means the
escaping mechanism is allowed if the current population is not updated during
one generation. We determined these parameters according to the results of
preliminary experiments. These showed good performance on the experiments,
but may not be an optimal one.
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Table 2. Peak ratio and success ratio measures for the multimodal function F1 – F4

(a) Branin (F1)

DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2
ε PR SR PR SR PR SR PR SR PR SR

10−3 0.870 0.62 0.993 0.98 1.000 1.00 1.000 1.00 1.000 1.00

10−4 0.893 0.69 0.157 0.01 1.000 1.00 1.000 1.00 1.000 1.00

10−5 0.900 0.70 0.003 0.00 1.000 1.00 1.000 1.00 1.000 1.00
10−6 0.903 0.71 0.000 0.00 1.000 1.00 1.000 1.00 1.000 1.00

10−7 0.880 0.64 0.000 0.00 1.000 1.00 1.000 1.00 1.000 1.00

10−8 0.837 0.53 0.000 0.00 0.820 0.55 1.000 1.00 1.000 1.00

(b) Himmelblau (F2)

DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2
ε PR SR PR SR PR SR PR SR PR SR

10−3 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00
10−4 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

10−5 1.000 1.00 0.395 0.07 1.000 1.00 1.000 1.00 1.000 1.00
10−6 1.000 1.00 0.003 0.00 1.000 1.00 1.000 1.00 1.000 1.00

10−7 1.000 1.00 0.000 0.00 0.990 0.96 1.000 1.00 0.995 0.98

10−8 1.000 1.00 0.000 0.00 0.173 0.02 1.000 1.00 0.883 0.76

(c) Shubert (F3)
DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2

ε PR SR PR SR PR SR PR SR PR SR

10−3 0.988 0.86 0.164 0.00 0.953 0.41 0.718 0.01 0.998 0.97
10−4 0.977 0.76 0.004 0.00 0.489 0.00 0.727 0.00 0.999 0.99

10−5 0.982 0.80 0.000 0.00 0.014 0.00 0.733 0.01 0.997 0.96

10−6 0.978 0.81 0.000 0.00 0.000 0.00 0.714 0.01 0.921 0.54
10−7 0.981 0.76 0.000 0.00 0.000 0.00 0.712 0.01 0.166 0.00

10−8 0.980 0.80 0.000 0.00 0.000 0.00 0.708 0.00 0.002 0.00

(d) Six-hump came back (F4)

DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2
ε PR SR PR SR PR SR PR SR PR SR

10−3 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

10−4 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00
10−5 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

10−6 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

10−7 1.000 1.00 0.215 0.07 1.000 1.00 1.000 1.00 1.000 1.00
10−8 1.000 1.00 0.000 0.00 1.000 1.00 1.000 1.00 1.000 1.00

4.4 Results

Table 2 and Table 3 show experimental results of all algorithms over all bench-
mark functions. The proposed method showed good performance when the ac-
curacy level ε is set to tight settings. When the level was set to ε ≤ 10−6, the
proposed method showed the best performance on 6 functions (F2 – F7). These
results suggest that the proposed method has better convergence speed than
others.

The proposed method showed higher performance than others especially on
Vincent function and Deb 3 function. These functions are partially irregular;
some optima’s basins are wide-spreading over the search space and others are
very narrow. Existing methods can not easily find the latter optima since almost
all search resources tend to be allocated to the former.

On Branin function, the performance of the proposed method was worse than
some existing methods since necessary vectors are moved by the conventional
mutation operator. We examined by further experiments that it was solved by
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Table 3. Peak ratio and success ratio measures for the multimodal function F5 – F8

(a) F5: Vincent (F5)

DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2
ε PR SR PR SR PR SR PR SR PR SR

10−3 0.945 0.55 0.587 0.00 0.508 0.00 0.359 0.00 0.339 0.00

10−4 0.943 0.44 0.065 0.00 0.431 0.00 0.331 0.00 0.240 0.00

10−5 0.940 0.49 0.001 0.00 0.239 0.00 0.304 0.00 0.062 0.00
10−6 0.930 0.40 0.000 0.00 0.029 0.00 0.268 0.00 0.001 0.00

10−7 0.941 0.46 0.000 0.00 0.001 0.00 0.211 0.00 0.000 0.00

10−8 0.940 0.35 0.000 0.00 0.000 0.00 0.084 0.00 0.000 0.00

(b) F6: Deb 1 (F6)

DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2
ε PR SR PR SR PR SR PR SR PR SR

10−3 1.000 0.99 1.000 1.00 0.980 0.58 0.984 0.63 0.988 0.73
10−4 1.000 0.99 1.000 1.00 0.975 0.52 0.986 0.69 0.981 0.61

10−5 0.998 0.96 1.000 1.00 0.965 0.36 0.984 0.66 0.985 0.69
10−6 1.000 0.99 0.551 0.02 0.949 0.18 0.983 0.64 0.984 0.65

10−7 1.000 1.00 0.008 0.00 0.893 0.06 0.979 0.61 0.984 0.64

10−8 1.000 1.00 0.000 0.00 0.435 0.00 0.972 0.44 0.983 0.67

(c) F7: Deb 3 (F7)
DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2

ε PR SR PR SR PR SR PR SR PR SR

10−3 0.998 0.96 1.000 1.00 0.957 0.29 0.804 0.00 0.840 0.01
10−4 0.999 0.98 0.638 0.00 0.898 0.03 0.749 0.00 0.286 0.00

10−5 0.999 0.97 0.018 0.00 0.384 0.00 0.654 0.00 0.004 0.00

10−6 0.999 0.98 0.000 0.00 0.008 0.00 0.478 0.00 0.000 0.00
10−7 1.000 1.00 0.000 0.00 0.000 0.00 0.110 0.00 0.000 0.00

10−8 1.000 0.99 0.000 0.00 0.000 0.00 0.004 0.00 0.000 0.00

(d) F8: Modified Rastrigin (F8)

DE/isolated/1 CrowdingDE DELS DE/nrand/1 DE/nrand/2
ε PR SR PR SR PR SR PR SR PR SR

10−3 0.988 0.98 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

10−4 0.978 0.96 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00
10−5 0.963 0.93 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

10−6 0.980 0.96 0.963 0.85 1.000 1.00 1.000 1.00 1.000 1.00

10−7 0.975 0.95 0.053 0.00 1.000 1.00 1.000 1.00 1.000 1.00
10−8 0.975 0.95 0.000 0.00 0.940 0.82 1.000 1.00 1.000 1.00

setting the threshold Nw to a high value, but then the method showed poor
performance on Shubert function (which has many local optima). Therefore,
introduction of an adaptive threshold value Nw would further improve the per-
formance of the proposed algorithm.

5 Conclusion

In this paper, we proposed a new DE-variant, DE/isolated/1, for solving multi-
modal optimization problems, and evaluated the performance of the algorithm
along with the existing methods through computational experiments using eight
multimodal benchmark functions. The experimental results showed that the pro-
posed method has better performance than the existing algorithms on the whole.

Future work includes to conduct further experiments using high-dimensional
problems and practical problems, and performance comparison with other exist-
ing DE-variants, DE with restricted tournament selection [7] and species-based
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DE [8]. Through these experiments, we would understand the properties of the
introduced mechanisms and identify the strengths and weaknesses of the pro-
posed algorithm corresponding to the problems to be solved.

Another direction would be to improve the proposed algorithm. A promising
candidate is to develop an adaptation mechanism of the Nw parameter in order to
solve a broad range of problems efficiently. In addition, it would be important to
reduce the amount of calculation. Determination of an isolated vector described
in equation (6) is equivalent to do nearest neighbor search, and has high run-
time complexity. For example, the run-time of the proposed algorithm will be
improved by adopting an efficient search algorithm like kd-tree [10]. Further
speed-up will also be achieved by using an approximate algorithm like locality
sensitive hashing [11] although we should mind the influences of approximation
error.
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Abstract. In this paper, we investigate the effectiveness of several techniques 
commonly recommended for overcoming convergence problems with 
coevolutionary algorithms. In particular, we investigate effects of the Hall of 
Fame, and of several diversity maintenance methods, on a problem designed to 
test the ability of coevolutionary algorithms to deal with an intransitive 
superiority relation between solutions. We measure and analyse the effects of 
these methods on population diversity and on solution quality. 

Keywords: coevolution, diversity maintenance, HOF, fitness sharing. 

1 Introduction 

Evolutionary algorithms are population-based, stochastic search algorithms modelled 
on evolutionary processes in nature. Potential solutions to a problem are assigned a 
fitness that reflects how well they solve the problem, and these values guide the 
search. In a coevolutionary algorithm (CEA), this fitness value depends on 
interactions with other potential solutions. CEAs offer advantages over ordinary 
evolutionary algorithms in certain situations: when there is no objective function to 
measure fitness of a solution; in a large search space when there are two or more 
interacting subspaces and in certain complex problem domains [1-7]. However, CEAs 
can also suffer from pathologies which interfere with convergence. Many techniques 
have been proposed to address these pathologies. One approach is to use an archive of 
high quality solutions - the Hall of Fame is a well-known of example [8]. Another 
idea is to use a diversity maintenance mechanism, such as fitness sharing [9-13]. 

This work is an empirical study, using a recent method for estimating solution set 
quality [9,14], to investigate how diversity maintenance techniques can improve the 
effectiveness of CEAs, both with and without the additional use of an archive. More 
specifically, we empirically test variants of a standard CEA with different mutation 
rates, with and without competitive fitness sharing, and with and without a Hall of 
Fame, on a test problem designed to challenge CEAs. We examine how solution set 
diversity and quality is affected in the variants. 

The aim of fitness sharing and HOF is to improve the quality of solutions found by 
the CEA, yet for many problems, there is no predefined quality metric– rather quality 
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can only be judged based on how evolved solutions interact with other solutions. In 
[9,14], Chong et al. proposed that the appropriate quality measure for CEAs is 
generalization performance, and introduced a set of methods for estimating it. They 
explored the relationship between diversity and quality, using various implicit and 
explicit diversity methods, and concluded that appropriate diversity improves quality.  

In our paper, we have adapted the methods of Chong et al. to a different kind of 
problem. They used a problem with a single population of interacting agents, Iterated 
Prisoner’s Dilemma (IPD), whereas our intransitive number test problem uses two 
competing populations, as is suitable when evolving competing sets of solutions in an 
asymmetric domain. As well as diversity and quality, we also investigate the effect of 
HOF, and its interaction with diversity maintenance. 

The remainder of this paper is structured as follows. In Section 2, we review the 
basics of CEAs and the Hall of Fame and some common diversity maintenance 
methods, as well as describing methods for measuring diversity and quality in CEAs. 
In Section 3, we give a description of the design of our experiments. In the final two 
sections, we describe our results and conclude. 

2 Coevolutionary Algorithms 

Evolutionary algorithms (EAs) are stochastic search methods inspired by biological 
evolution. EAs work with populations of solutions (individuals). Each individual’s 
fitness depends on its performance against a criterion. Individuals with high fitness 
are selected preferentially to produce “offspring” individuals for the next generation. 
Two selected parents produce several offspring by exchanging genes (crossover). 
Then, each offspring alters its gene structure with some probability (mutation) and 
becomes a new individual in the next generation. This process of variation and 
selection is repeated until some stopping condition is met. 

A coevolutionary algorithm (CEA) is an evolutionary algorithm in which the 
fitness of each individual depends on interactions between it and other individuals [1]. 
In CEAs, individuals are organised into sub-populations which coevolve [2,3,15,16]. 
The fitness calculation in CEAs is subjective: each individual interacts with 
individuals from another population. Unlike objective fitness, subjective fitness is 
dependent on the composition of the populations. A typical subjective fitness 
calculates the average score of an individual in interactions with opposing individuals 
in the current populations. 

2.1 Hall of Fame 

The Hall of Fame (HOF) is a technique that allows the population to interact with a 
set of the best individuals from previous generations of the opponent population. The 
best individuals from both populations in every generation are collected and stored in 
an archive, which interacts with the populations during the fitness evaluation. The 
functionality of the HOF is to preserve some old individuals to avoid the cycling and 
forgetting pathologies. When the HOF is used, subjective fitness is modified to be the 
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average score of an individual in interactions with opposing individuals in the current 
populations and also in the Hall of Fame [8]. 

2.2 Diversity  

Too much selective pressure and/or not enough exploration in an evolutionary process 
can cause premature convergence [9]. Maintaining diversity in the population has 
proved to avoid premature convergence [12] in many instances. Chong, et al. [9,14] 
categorize diversity maintenance methods into two types, implicit and explicit: 

Implicit diversity maintenance methods use the selection process. A typical 
implicit method is competitive fitness sharing (FS), where diversity is maintained in 
the population by discouraging individuals with similar characteristics. Fitness values 
are reduced for individuals with common gene structures. The shared fitness of an 
individual f’

i is calculated by dividing simple fitness by the niche count: 

     

 
(1) 

The symbol ci is a niche count, which is calculated on the basis of the individual’s 
gene structure variation (dj) in the population. The following formulas are used to 
calculate gene variation and niche count respectively. 

 
The symbol u is the genome length, x is an individual and yj is an individual from the 
same population, and xm and yj,m are their mth gene values. The symbol τ is a constant. 
The symbol nr is a constant niche radius and n is a population size. 

Explicit diversity maintenance methods achieve diversity through variation. A 
simple method is to increase the mutation rate. 

Two types of diversity are genotypic and phenotypic diversity. Genotypic diversity 
in a population is a measure of the gene structure variation, calculated as the average 
gene variation over the population. Phenotypic diversity is calculated based on the 
entropy [11,12] of the distribution of fitness values. The fitness values present in the 
population are divided among N equal sized buckets, and then equation (2) is applied. 

(2) 

2.3 Quality  

We adopt the approach of Chong et al. to measure quality, i.e. we use a statistical 
estimate of the generalization performance of a solution, but we modify it slightly to 
account for the fact that we are using two populations. Chong et al. begin by defining 
generalization performance as the mean score of a solution in all possible test cases. 
This intuitively appealing idea is usually impractical to calculate. Therefore, they 
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propose a statistical approximation approach, in which a mean score is computed for a 
suitable sample of test cases. In many cases, scores against “high quality” test cases 
might be considered more important. They therefore propose two different methods 
for sampling the space of test cases: unbiased sampling (purely random) and biased 
sampling (favours higher quality). In the present study, due to space limitations, we 
report only on results using biased sampling. To obtain a biased test set, we follow the 
procedure in Chong et al., using a sample size of 200. Once we have generated test 
sets, we can use them to estimate the quality of each solution as its mean score against 
the test set solutions, and we can combine these in various ways to obtain an overall 
quality measure for an evolved population of solutions.  

Estimated Average Quality In an evolutionary algorithm, we are usually most 
interested in the top few evolved solutions. Thus, we first sort the population 
according to internal fitness, and then consider only the top few. Average quality is 
then estimated as 

(3) 

where Ei is the estimated quality of solution i, nTest is the size of the test set, and 
nBest is the number used in the estimate (i.e. we use only the best nBest). 

Estimated Best Quality This is the quality of the best solution amongst the top 
nBest solutions in the population, when they are sorted on internal fitness: 

(4) 

3 Experiments 

In this section, we describe our experimental design. We describe the test problem we 
have chosen to study, the algorithm variants that we test, and the measurements that 
we gather during the testing. 

As our test problem, we chose an intransitive number problem which was 
introduced by Watson and Pollack [17]. It has advantages over the test problem used 
by Chong et al, the IPD. IPD is an important problem and widely studied. It is an 
extremely difficult problem for a CEA, with complex evolutionary dynamics, an 
enormous search space (in fact researchers always restrict their search to solutions 
that can be represented using some restricted representation). The intransitive number 
problem has one specific feature that makes it difficult (intransitive superiority) and a 
simple representation, as well as a known objective quality criterion, making it very 
suitable for testing. 

Watson and Pollack [17] introduced intransitive number test problems to test the 
functionality of CEAs. We pose a version with two populations. Individual solutions 
in both populations consist of pairs of real numbers in (0, 100), which we call x and y. 
The score when solution a from one population meets solution b from the other 
population is given in Equation (5): 
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(5) 

Consider three solutions: A =<10;90>, B =<11;88> and C =<8;89>. Now score (A, B) 
is 0 (B beats A), because 10 and 11 are closer than 90 and 88, so the score is 
determined by which solution has the larger x value. Similarly, C beats B (based on a 
larger y), and yet A beats C. Thus the superiority relation between solutions is 
intransitive. Although this is problematic, generally speaking, the closer the solution 
is to <100;100>, i.e. the larger both x and y values are, the higher quality the solutions 
is. We define the actual quality of solution i as Ai = (x+y)/2, the average of the 
solutions x and y values. We can then define measures for the actual quality of a 
population, in a similar way as for estimated quality. 

3.1 Algorithms Tested 

For this experiment, four algorithms, naïve CEA, CEA with fitness sharing (CEAFS), 
CEA with HOF (CEAHOF) and combination of FS and HOF (CEAFH) were 
considered. For each, the mutation rate was varied from 5% to 25% with 5 intervals.  

In all algorithms tested, single point crossover [20] and polynomial mutation [18] 
were used for the reproduction process. Parents were selected using a stochastic 
universal sampling method [19] and an elite individual is copied to the next 
generation. Initial gene values were randomly generated between 0 and 100. 
Population size (25) and crossover rate (60%) are as recommended by Watson and 
Pollack, and we chose 300 generations based on initial testing that showed algorithms 
has stabilised well before this. Each run of an algorithm was repeated 60 times to 
account for variation. 

4 Results and Analysis 

In this section, we review the results of our experiments by examining quality and 
diversity in the evolved populations produced using each algorithm. First we examine 
the quality. In Fig. 1, a convergence plot for the CEA naïve algorithm is shown. Each 
data point is an average across 60 runs of the algorithm for a specific generation. The 
y-axis is the estimated best quality. By about 100 generations, the algorithm has 
converged, except in the case of 5% mutation, which needs around 200 generations. 
The best mutation rate in terms of estimated quality appears 25%.  The actual best 
quality plot is similar except that the mutation rate has little effect.  

In order to quantify this visual impression, we compute average figures over the 
last 60 generations (as the algorithms appear to have converged by then) and all 60 
runs (i.e. an average of 3600 data values) for each mutation rate. These averages are 
presented in Table 1 (along with diversity data).From the table we can see that, in the  
 

| || || |
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case of the naïve algorithm CEA, higher mutation rates tend to give higher best 
quality (both estimated and actual), and that there is little effect on average quality. 
Convergence plots for average quality are qualitatively similar to those for best 
quality, and are omitted. 

Looking at CEAFS, we see that best quality is not sensitive to mutation rate, and 
that estimated best quality is high when compared with CEA, while actual quality is 
improved compared with CEA. Thus, fitness sharing is effective in increasing the 
performance of the algorithm (higher best quality). Average quality is reduced when 
compared with CEA, and decreases with higher mutation rates. The reduction in 
average quality is due at least in part to the increased diversity of the population, as 
expected. Convergence plots are quite similar to those for CEA, apart from the final 
quality levels being different. 

CEAHOF has improved quality compared to CEA, with estimated best quality very 
similar to CEAFS, and the actual best quality also similar, but more sensitive to mutation 
rate. In fact the best performance over all the algorithms on this measure was CEAHOF 
with 25% mutation. However average quality levels are actually higher than for CEA, 
suggesting that the improved performance is not due to an increase in diversity. 

 

Fig. 1. Convergence plot for CEANaive with different mutation rates, showing average 
estimated best quality over 60 runs 

Finally, the performance of CEAFH is rather erratic, with best quality levels 
similar to the naïve algorithm, along with a lower average quality. We conjecture that 
this is because the mechanism of HOF and diversity maintenance methods interfere 
and conflict with each other, rendering both ineffective.  

As well as solution quality, we also focus on the role of diversity. Following 
Chong et al., we measured both genotypic and phenotypic diversity. Fig. 2 is a 
generational plot showing the progress of genotypic diversity for CEA - diversity 
drops swiftly, with a slight recover in phenotypic diversity, before levelling out. 
Phenotypic diversity is similar. This low diversity might be expected to cause 
problems such as premature convergence. Higher mutation rates reduce the loss of 
diversity. 
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Fig. 2. Generational plot of genotypic diversity with CEANaive. Data values are averaged over 
60 runs. 

Table 1. Population quality and diversity figures for all algorithm variants. Each column shows 
the mean for the last 60 generations, over 60 runs of the algorithm. 

Algorithm Est.Average Est.Best Act.Average Act.Best Geno Pheno 

CEANaive05 0.85 0.93 75.45 75.36 6.72 0.98 

CEANaive10 0.82 0.92 74.95 83.47 10.25 1.12 

CEANaive15 0.84 0.95 74.50 84.16 11.42 1.17 

CEANaive20 0.82 0.96 72.93 83.79 12.50 1.32 

CEANaive25 0.84 0.98 74.67 84.74 14.18 1.25 

CEAFS05 0.69 0.95 71.11 91.74 25.99 1.51 

CEAFS10 0.68 0.96 70.04 91.39 26.11 1.55 

CEAFS15 0.66 0.96 70.00 91.12 26.08 1.64 

CEAFS20 0.63 0.95 68.89 91.61 27.17 1.70 

CEAFS25 0.63 0.96 69.03 91.41 27.19 1.71 

CEAHOF05 0.88 0.95 82.15 88.58 6.32 0.88 

CEAHOF10 0.88 0.95 84.76 90.95 8.58 0.95 

CEAHOF15 0.86 0.95 83.94 91.81 9.62 0.98 

CEAHOF20 0.84 0.96 83.31 91.14 10.79 1.09 

CEAHOF25 0.85 0.96 88.09 95.51 11.20 0.93 

CEAFH05 0.49 0.95 61.98 82.78 23.18 1.16 

CEAFH10 0.50 0.90 65.06 85.95 23.41 1.62 

CEAFH15 0.48 0.88 63.95 83.97 23.72 1.67 

CEAFH20 0.46 0.87 63.82 83.60 23.56 1.71 

CEAFH25 0.45 0.87 65.20 85.77 24.12 1.71 
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The last two columns of Table 1 summarise diversity values for variants of each 
algorithm. It can be seen that higher mutation rates increase diversity, as expected, 
and that this effect is much smaller when fitness sharing is used, as diversity is 
already effectively maintained. Also, the level of diversity is much higher in every 
case when fitness sharing is used than in any case where fitness sharing is not used. 
The effect of HOF is to reduce diversity, again emphasising that the improvement in 
quality when HOF is used is due to a different mechanism. 

Fig. 3. Scatter plot of diversity versus quality for each of the four algorithms, with a mutation 
rate of 5%. For each data point, the x value is the mean value of genotypic diversity over the 
last 60 generations in one run of the particular algorithm, while the y value is the corresponding 
mean of the actual best quality measure. 

Due to space restrictions, we have omitted generational diversity plots for CEAFS, 
CEAHOF and CEAFH, but we can provide a qualitative description of them as 
follows: For CEAFS, the plots show a small but rapid rise in genotypic diversity, after 
which the level remains steady. There is an initial small increase in phenotypic 
diversity then a quick drop and a leveling out at about the initial diversity level. 

The overall shape of the plots for CEAHOF is similar to those for CEA, except that 
the final diversity levels are a little lower. CEAFH is similar to CEAFS, with 
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genotypic diversity levels slightly lower. The fact that the performance of CEAFH is 
so poor, even though diversity is only slightly reduced, again suggests that HOF and 
diversity maintenance are interfering with each other. 

To further scrutinize the relationship between diversity and quality, we present  
Fig. 3, a scatter plot of genotypic diversity versus actual best quality, for all 
algorithms, with a mutation rate of 5%. It is clear that the naïve algorithm and 
CEAHOF provide all the points on the left of the plot, i.e. those with lower diversity, 
and that their quality values are widely spread, i.e. the algorithm is unreliable (though 
it sometimes converges on very high quality). In contrast, the two algorithms with 
fitness sharing contribute all the higher diversity points, and reliable quality, with 
CEAFS being more consistent than CEAFH.  

5 Conclusion 

In this paper, we have described our experiments with different variations on a naïve 
CEA, introducing combinations of fitness sharing, Hall of Fame, and a range of 
mutation rates. We have tested these variations on a test problem designed to be 
difficult for CEAs due to an intransitive superiority relationship between solutions. 
We have measured the effects of these variations on the performance of the algorithm 
in terms of population diversity and solution quality. With regards to diversity, our 
results are in broad agreement with those found by Chong et al. on a different 
problem: Iterated Prisoner’s Dilemma: fitness sharing is an effective way to maintain 
population diversity in a CEA, and a moderate amount of diversity helps to ensure 
that high quality solutions are reliably found. In addition, we found that the Hall of 
Fame method can also improve quality, but not as reliably as fitness sharing, and that 
the diversity maintenance methods that we tested do not combine well with Hall of 
Fame. 

In future, we intend to carry out similar tests on further test problems having 
different characteristics, such as multi-modal problems, to try to improve 
understanding of which methods are most effective for which kinds of problems. We 
would also like to investigate whether there are ways to combine diversity 
maintenance with HOF effectively. 
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Abstract. Object detection is the task of correctly identifying and lo-
cating objects of interest within a larger image. An ideal object detector
would maximise the number of correctly located objects and minimise the
number of false-alarms. Previous work, following the traditional multiple-
objective paradigm of finding Pareto-optimal tradeoffs between these ob-
jectives, suffers from an abundance of useless detectors that either detect
nothing (but with no false-alarms) or mark every pixel as an object (per-
fect detection performance with but a very large number of false-alarms);
these are very often Pareto-optimal and hence inadvertently rewarded.
We propose and compare a number of improvements to eliminate useless
detectors during evolution. The most successful improvements are gen-
erally more inefficient than the benchmark MOGP approach due to the
often vast numbers of additional crossover and mutation operations re-
quired, but as a result the archive populations generally include a much
higher number of Pareto-fronts.

1 Introduction

Object detection is the task of correctly identifying and locating objects of inter-
est within a larger image [4]. A sweeping window slightly larger than the target
objects passes over the full image, classifying each pixel as object or background,
and object centres are reported. There is a need to detect patterns quickly (often
in real time, hence with constraints on program complexity) and reliably (imply-
ing tight constraints on tolerable error rates). Further desirable, but conflicting,
objectives include: detecting all objects of interest, minimizing the number of
false-alarms, and ensuring proposed object positions are close to the centres of
the true target objects.

This paper concentrates on improving Genetic Programming (GP) approaches
to object detection. Zhang [4] proposed a two-phase single-objective GP ap-
proach. In the first phase, object cutouts from the full set of training images are
used to train object classifiers based only on maximising classification accuracy.
In the second phase, object detectors are trained on the full training images using
a linear combination of detection rate, false alarm rate, false alarm area and size
of GP tree as the fitness function. Liddle et al [3] extend the approach of Zhang [4]
to a multiple-objective context using Multiple-Objective Genetic Programming
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(MOGP) based on NSGAII [1]. These objectives are evolved into a set of best-
performing detectors along the objective trade-off surface (Pareto front), which
allows the decision maker to select the most suitable detector after the process
rather than weighting the objectives, or otherwise making a priori assumptions.
Although this MOGP approach has shown considerable promise, comparing very
favourably in terms of execution time and program size, it has several major lim-
itations: (1) using Pareto-based fitness, as in NSGAII [1], MOGP suffers from an
abundance of useless detectors that either detect nothing (with no false-alarms)
or mark every pixel as an object (with perfect detection performance but a very
large number of false-alarms) and these useless detectors are very often Pareto-
optimal and hence inadvertently propagated to the next generation of evolution;
(2) many different detectors report the same (good) performance on the objec-
tives; (3) there is a danger that over-trained detectors perform poorly on the test
set; and (4) some systematic bias in the prediction of object centres is observed
in practice.

The goal of this paper is to compare a number of improvements to MOGP
in order to eliminate useless detectors during evolution. We wish to gain some
understanding of the cost of these improvements in terms of: (1) efficiency; (2)
effectiveness; (3) control over the balance between crossover rate and mutation
rate parameters; and (4) the inclusion of detectors well below the Pareto-front.

The rest of this paper is divided up as follows. Section 2 provides some further
background on single-objective and MOGP approaches to object detection. Sec-
tion 3 details our response to some of the problems that have been encountered.
Section 4 outlines the experimental design and analyses the results. Section 5
concludes the paper.

2 Background

Objectives for Object Detectors. In the two-phase training approach proposed
by Zhang [4] and adopted by Liddle et al [3], the objectives in the first training
phase (object classification only for the first 20 generations) are to maximize the
two objectives of true positive rate and true negative rate. In the second phase
(object detection for the next 40 generations), the detectors are refined on the
complete images, using detection rate (DR) and false alarm rate (FAR), to be
maximised and minimised, respectively:

DR =
number of correctly located objects
total number of objects in the image

FAR =
number of falsely reported objects

total number of objects in the image

Secondary objectives (tie-breakers) used were Crowding Distance (CD) and False
Alarm Area (FAA). Crowding distance is the Manhattan distance between any
two programs in objective space; the idea is to preserve the spread of programs
by rejecting those that are crowded together. False alarm area is the count of all
pixels that are reported as positive classifications before clustering, except for
those that are reported as the correctly detected centre of an object.
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NSGA-II Algorithm. The Nondominated Sorting Genetic Algorithm II (NSGA-
II) [1] is a popular multiple-objective evolutionary algorithm. A program is said
to (weakly) dominate another if it is at least as good as the other program
on all objectives, and better on at least one. For each solution two entities are
calculated, domination count np (the number of solutions that dominate the
solution p), and Sp, the set of solutions that p dominates. All solutions in the
first nondominated front (rank 0) have np = 0. At each iteration of the process,
the nondominated front is stored, and for each member p with np = 0, we visit
each member q ∈ Sp and reduce its domination count by one. If for any member
q the domination count becomes zero, we add it to the list Q and the next
nondominated front (rank i) is established.

The main evolutionary process begins by initially creating a random parent
population P0 of size N which is sorted according to nondomination. Binary
tournament selection, crossover, and mutation operators are applied to create
an offspring population Q0 of size N , and R0 = P0 ∪Q0 of size 2N is sorted by
nondomination. As the programs in the first nondominated front are the best
in Rt, they will be selected for the new parent population before any others.
The algorithm then works through the nondominated fronts, until it reaches one
which cannot fit fully into the population of size N . It is at this point where the
secondary objectives are used to select the best solutions in the front to fill the
population Pt+1 to size N .

Worst-Best Detectors. An under-reporting detector does not detect all the ob-
jects in the image; an extreme case is a detector that reports no objects has
DR = 0 and FAR = 0, and hence is very likely to be Pareto-optimal. An ex-
treme over-reporting detector with DR = 1 and very large FAR is also likely
to be Pareto-optimal. We call these effectively useless detectors “worst-best”
detectors. Liddle et al [3] showed that approximately 94% of the evolved clas-
sifiers were worst-best classifiers, implying that the MOGP process is grossly
inefficient.

Preliminary investigation discovered that within the first 10 generations, the
evolutionary process generally tended to settle to a point where each parent
population was selected from the Pareto-optimal front only. This would, in turn,
create an offspring population from a process that has selected from what is
effectively an unfit set of parents. Once this pattern had been established, it was
uncommon for the algorithm to search deeper into the Pareto ranks again, until
the beginning of the second phase (due to the shift of objectives). After an initial
bump, the process tended to settle on individuals from the Pareto-optimal front
again, to the exclusion of all others. We have measured this effect by introducing
a metric we have called reach (see Section 4). The effect of crowding distance is
that the worst-best programs will be selected only after all other programs in
that front.

The large number of worst-best classifiers produced at the end of the evolu-
tionary process, indicated that the NSGA-II algorithm was retaining the worst-
best classifiers, and leaving little (if any) room in the parent population for
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Table 1. Summary of Improvement Methods

Method (0) (1) (2) (3) (4) (5) (6) (7) (8)

Initial population P0 � � � �
Single node � � � �
Zero objective � � � �
Merged population Rt � � �
Child population Qt � � � �
Population size N 500 500 500 500 100 500 500 100 100
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other programs. The effect, therefore, is to divert computing resources away
from other, more suitable programs by preventing them from being selected.

3 Improvements to the MOGP Approach

We observed the effect of worst-best classifiers on the evolutionary process, and
introduced several improvements to better observe and isolate the processes
that were allowing and propagating the useless detectors, and then to eliminate
them. The eight methods proposed are summarised in Table 1, in addition to
the original MOGP which we call method (0).

Targeting single node programs. A GP program with only one node cannot
perform any calculation and any fitness can only be coincidental. As well as
being unable to perform the task, and therefore unsuitable for selection, the lack
of branches in their structure also makes them unsuitable for the evolutionary
processes. This nature also makes them ideal candidates for worst-best programs.
Analysis of tree size [3] suggested that most programs of tree size 0–10 were
worst-best performers. Three approaches to eliminating single node programs
are proposed:

(1) Modify the creation of the initial population P0 by regenerating any single
node programs in-place as they were created, and not affecting the creation
of such programs during the evolutionary process.

(2) Regenerate single node programs in both P0 and the combined population
Rt, which would allow the creation of single node programs but then sub-
stitute them out of the combined population during the next nondominated
sorting step.

(3) Regenerate single node programs in P0 and intercept the generation of the
child population Qt, regenerating any single node child that was created in-
place. Where a crossover produces an unfit child, both parents are randomly
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selected again and process is repeated until both resulting children are fit.
This is repeated for mutation, although for a single child.

Although the latter two approaches are similar in that they simulated an infi-
nite population from which the first N fit children were selected, the difference
between them is whether the parent selection process is repeated for an unfit
child. In all cases, the method of regenerating a program was to replace it with
an entirely new randomly created GP program that consisted of more than one
node.

Targeting worst objective fitness. As it may be more effective to encourage ex-
ploration around the middle of the Pareto front rather than the edges, we have
explored an approach in which we simply discard any individual that obtains a
result of zero on either objective. In the first phase, both TPR and TNR were
evaluated. A non-zero objective value was required in both objectives to consider
the program fit. In the second phase there is no fixed worst fitness for FAR, so it
was not assessed, i.e., any program with a non-zero detection rate was considered
fit, regardless of the FAR. Simply removing individuals that had a worst objec-
tive fitness could not be implemented due to the implications on the population,
i.e., removing the vast number of worst-best programs quickly reduced the pop-
ulation to a fraction of its required size N . The two approaches we consider are
to target either the combined population Rt, or the child population Qt, both
designed to maintain correct population size.

(5) Addressing Rt, we randomly regenerate the target programs in-place when
they are discovered by the NS process, effectively removing useless programs
from the parent population Pt+1. Unfit children are allowed to be produced
in Qt, but are substituted at the NS phase. A side effect of this approach is
to tip the balance between mutation and crossover in favour of mutation, re-
moving the control of this balance from the setup parameters. Although not
ideal in this respect, we were able to observe the effect on the evolutionary
process in a somewhat less constrained state.

(6) When Qt is addressed, we intercept any unfit children during the creation of
a new child population. Upon creation of an unfit child, the selection process
for parent(s) is repeated, as well as the crossover or mutation operation. This
simulates the creation of a population of infinite size, where unfit programs
are discarded and the parametrised balance between mutation and crossover
is maintained.

Small populations. Once we had found effective approaches, we reduced the size
of the population under the hypothesis that the more effective process would be
capable of producing comparable results using a smaller set of programs, whilst
also offsetting the added overhead of the modifications. Methods (4), (7) and
(8) are identical to methods (3), (6) and (5) except that the population size is
reduced from N = 500 to N = 100.
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Fig. 1. Boxplots of CPU time (seconds) for each method. Here 20–28 are methods
(0)–(8) applied to the shapes dataset and 30–38 are methods (0)–(8) applied to the
coins dataset.

4 Experimental Design and Results

Datasets. We have used the same datasets as Liddle et al [3]. The shapes dataset
consists of equally sized circles and squares against a uniform background in
10 images of size 200 × 200 pixels containing approximately 15 objects of size
25× 25 pixels. The coins dataset consists of photographs of New Zealand 5 cent
coins [5] either heads or tails up against a noisy background in 10 images of
size approximately 500× 500 pixels containing 16 objects of size approximately
63× 63 pixels. The dataset was split half-and-half for training and testing, and
the window cutout size (in phase one) is the same as the object size.

Function and Terminal Sets. The functions {×,%,+,−, if} are used, where
% stands for protected division and the if operator takes three arguments and
returns the second argument if the first argument is positive, otherwise it returns
the third argument. The terminals are features extracted from the images (mean
and standard deviation of five equally-sized square regions, consisting of the four
quarters and a middle “quarter”) and random constants in [−10, 10].

GP System Parameters. We have used the RMIT-GP package with the following
parameters: tree depth minimum 2 and maximum 6; crossover 70%; mutation
30%; tournament size 2; 20 first phase generations and 40 second phase genera-
tions; and population size 500 or 100. We ran all the experiments on the same
39 randomly generated seeds, so all replications with the same N share the same
initial population of trees, thereby reducing bias in the results.

Efficiency Results. Figure 1 shows boxplots of CPU time (seconds) for each
method across 39 replications. Method (6) is very inefficient on the shapes
dataset and (4), (7) and (8) (all with N = 100) are reliably fast on both datasets.
Figure 2 shows counts of additional crossover and mutation operations for the
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(c) Mutation Shapes (d) Mutation Coins
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Fig. 2. Frequency of additional crossover and mutation operations for methods that
operate on the child population Qt, i.e., methods (3),(4),(6),(7)

methods that operate on the child population Qt, i.e., {(3),(4),(6),(7)} only. On
the shapes dataset, (6, orange) has a high number of mutations in phase one and
a high number of crossovers in phase two, which explains the very high CPU
time. On the coins dataset, (6) and (7, grey) have high number of crossovers and
mutations in phase one. Method (7) with N = 100 has proportionately similar
additional operations as (6) but its CPU time is much more stable. Note that
(6) has N = 500 and (7) has N = 100 so these figures are excessively high, i.e.,
alot of additional crossover or mutation operations are required to produce just
one non-useless GP tree.

Effectiveness Results. A point on the pth summary attainment surface (SAS)
[2] is weakly dominated by some solution in each of a proportion p of all 39
replications. For example, the median (p = 0.5) SAS is a curve consisting of all
points which are weakly dominated in half of the replications. A SAS estimates
the probability of an additional replication obtaining better results. Figure 3
shows the p ∈ {0.25, 0.5, 0.75} SAS for both datasets, with legend colours from
Table 1; the best SAS are very similar for all methods. On the shapes dataset, for
the remaining SAS, method (5, magenta) is clearly the most effective, followed
by (6, orange) and (8, yellow), and these are the only ones distinguishably better
than the benchmark (0, black). Of these, (5) has a very high reach (see Figure 4)
but reasonable CPU time; (8) is the N = 100 sized population version of (5); (6)
is very inefficient, with very high CPU time due to extremely large number of
additional crossovers and mutations; and (7, grey), the N = 100 sized population
version of (6), performs about the same as the benchmark but is much quicker.
On the coins dataset, the SAS are much more tightly packed. Method (6) stands
out as clearly the best; its CPU time (see Figure 1) is much better behaved than
for the shapes dataset and notice that it again has a high number of additional
crossovers and mutations. Methods (5) and (1, red) are the next best methods
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Fig. 3. Summary attainment surfaces for shapes and coins datasets

and the only other methods that are better than (0) are (2, green) and (3, blue).
In particular, all the N = 100 methods perform worse than (0) on the coins
dataset; this indicates that a small population is not sufficient for this more
difficult object detection task.

Further Analysis. At each generation, reach measures the number of Pareto
fronts that are represented in the archive population Pt, e.g., reach is two when
the archive consists only of solutions from the best and second-best Pareto fronts
in the combined parent and child populations. Figure 4 shows the reach at each
generation averaged over the 39 replications. There is a clear jump in reach for
all methods at generation 21 at which phase two begins. The peak for shapes is
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(c) Coins — method (0) (d) Coins — method (6)
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Fig. 5. Frequency of sizes of GP programs at each generation, averaged over 39 repli-
cations and averaged over groups of 4 generations

61 whereas the peak for coins is only 5.15. Method (5, magenta) is extreme, but
methods (1)–(4) are very well behaved and have lower reach than method (0)
after the jump at generation 21. For the coins dataset, the methods are more
similar.

Figure 5 estimates the distribution of sizes of GP programs (number of nodes)
across the generations of evolution for the most effective methods in each dataset
to compare against the benchmark. The initial populations in generation 1 are
identical. Each distribution plotted is a sum over 39 replications and over 4
generations, hence 60 generations is presented by 15 distributions with 500 ×
4 × 39 = 78000 trees in each distribution. Initially there are a large number of
small trees. On the shapes dataset, we see that method (5) slowly increases the
median size of programs and concentrates the distribution into a narrower range
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than the benchmark. On the coins dataset, method (6) appears to produce a
very similar distribution of sizes to the benchmark at the end of evolution but
the intermediate steps move more quickly away from small program sizes.

5 Conclusions

Zitzler, Deb and Thiele [6] suggest three measurable goals of multiple-objective
evolutionary algorithms (MOEA): (1) distance of resulting solutions to the Pareto
front should be minimised; (2) extent (spread) of solutions should be maximised;
and (3) a uniform distribution of solutions found is desirable. We conclude that
these goals are not the most effective goals to pursue when evolving object detec-
tors using MOEA. Proximity to the Pareto-optimal front is perhaps less desirable
if the solution does not achieve its real objective (detecting objects), and a clas-
sifier that is ranked on the second or higher front may be a better solution than
a nondominated, under-reporting classifier. Maximising the spread of solutions,
while preserving diversity, may also encourage results that are outside of a de-
sirable area, i.e., worst-best classifiers. Hence, perhaps, classical Pareto-based
fitness is not a good approach to evolving object detectors in particular.

Improving on the benchmark MOGP results is possible in terms of effective-
ness, largely due to establishing deeper reach (as in method (5) for the shapes
dataset), but often comes at the expense of vast numbers of additional crossover
and mutation operators (as in method (6) for the coins dataset) which eats up
CPU time. Smaller population sizes than N = 500 may prove effective in com-
bating increase in CPU time but investigating this thoroughly remains future
work.
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Abstract. A core challenge of Multiobjective Evolutionary Algorithms (MOEAs)
is to attain evenly distributed Pareto optimal solutions along the Pareto front. In
this paper, we propose a novel asymmetric Pareto-adaptive (apa) scheme for the
identification of well distributed Pareto optimal solutions based on the geometri-
cal characteristics of the Pareto front. The apa scheme applies to problem with
symmetric and asymmetric Pareto fronts. Evaluation on multiobjective problems
with Pareto fronts of different forms confirms that apa improves both conver-
gence and diversity of the classical decomposition-based (MOEA/D) and Pareto
dominance-based MOEAs (paε-MyDE).

Keywords: Multiobjective Optimization, Hypervolume, Pareto-adaptive.

1 Introduction

Multiobjective optimization problems (MOPs) involve several conflicting objectives to
be optimized simultaneously. For Pareto optimal solutions, improvement on one objec-
tive leads to the decrement of at least one other objective. Multiobjective Evolutionary
Algorithms (MOEAs) have been well established as efficient approaches to deal with
various MOPs [1].

MOEAs can be generally categorized into two major classes, namely decomposition-
based (MOEA/D) and Pareto dominance-based MOEAs [2]. MOEA/D decomposes
MOPs into a number of scalar subproblems and optimizes them simultaneously. The
assigned weight vectors of classical MOEA/D, however, may not always suit different
Pareto front (PF). Pareto dominance-based MOEAs use the Pareto dominance defini-
tion with the crowding distance or neighbor density estimator to evaluate individuals.
However, both of them are less effective to deal with MOPs with asymmetric PFs.

In this paper, we propose a novel asymmetric Pareto-adaptive (apa) scheme. Driven
by the hypervolume [3–5] , apa is designed to evenly distribute Pareto optimal solutions
along both asymmetric and symmetric PFs. Experimental results on different shapes of
2-dimensional MOPs showed that MOEA/D and paε-MyDE (one from each category
of MOEAs) using apa, labeled here as apaλ-MOEA/D and apaε-MyDE respectively,
lead to higher hypervolume, better convergence and more evenly distributed solutions.
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c© Springer-Verlag Berlin Heidelberg 2011



352 S. Jiang, J. Zhang, and Y.S. Ong

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Asymmetric Pareto−adatptive

W

A

C

D

B

Pareto−optimal front

sub−hypervolume of C
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2 apa: Asymmetric Pareto-adaptive

2.1 apa for 2-Dimensional Pareto Front

The new asymmetric Pareto-adaptive (apa) scheme is driven by the hypervolume. When
minimizing bi-objectives for instance, hypervolume is the area enclosed within the dis-
continuous dash line WABCDW (Figure 1). X = {A,B,C,D} denotes the set of non-
dominated solutions and W is the reference point constructed by the worst objective
function values.

Assume points {A,B,D} are fixed and pointC moves along curveBD. The hyper-
volume ofX is then decided by the sub-hypervolume of point C, which is indicated by
the shaded rectangle. In general, we define the normalized asymmetric Pareto optimal
front as fp1

1 +fp2
2 = 1, where p1 �= p2. The points on the curve are B(x1, y1), C(x, y),

D(x2, y2), and the sub-hypervolume of point C is calculated as:

ϑ(x) = (x2 − x)(y1 − y) = xy − y1x− x2y + x2y1 (1)

To maximize sub-hypervolume, the optimal position of pointC is (x̂, ŷ = (1−x̂p1)
1

p2 ),
which can be calculated by the Newton Iterative method defined as:

xk+1 = xk − ϑ′(xk)/ϑ′′(xk) (2)

where ϑ′(x) and ϑ′′(x) are the first and second order of ϑ(x), respectively. The initial
value x0 = (x1 + x2)/2. When stopping criteria xk+1− xk < ξ is satisfied, x̂ = xk+1.
The maximum sub-hypervolume is calculated as ϑ(x̂).

Algorithm 1 presents the details of the apa scheme. The N initial points X =
{(x1, y1), · · · , (xN , yN)} along PF are constructed by equally dividing the f1 axis
(Line 1). In Line 9, the point (xim , yim) is replaced by (x̂im , ŷim), which makes the
maximum increment to the hypervolume. In Lines 10-14, the movement of point im
only impact the neighborhood points. We update the sub-hypervolume and the max-
imum sub-hypervolume of the neighborhood points (im − 1, im, im + 1). When the
hypervolume increment is less than ξ, the algorithm terminates and outputsX .
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Algorithm 1. Asymmetric Pareto-adaptive scheme

Initialize N pointsX along Pareto optimal front1

Sort the N points ascending by the first objective2

for i = 2, · · · , N − 1 do3

Calculate sub-hypervolume ϑ(xi)4

Calculate maximum sub-hypervolume ϑ(x̂i)5

%ϑ(xi) = ϑ(xi)− ϑ(x̂i)6

Find im = max{%ϑ(xi) : i ∈ 2, · · · , N − 1}7

while%ϑ(xim ) > ξ do8

Move the point (xim , yim) to (x̂im , ŷim)9

Set ϑ(xim ) = ϑ(x̂im),%ϑ(xim ) = 010

Update ϑ(xim−1) and ϑ(xim+1)11

Update ϑ(x̂im−1) and ϑ(x̂im+1)12

%ϑ(xim−1) = ϑ(xim−1)− ϑ(x̂im−1)13

%ϑ(xim+1) = ϑ(xim+1)− ϑ(x̂im−1)14

Find im = max{%ϑ(xi) : i ∈ 2, · · · , N − 1}15

OutputX16

2.2 Curve Function for Asymmetric Pareto Front

Upon generating a set of Pareto optimal solutions (points), we estimate a curve function
to represent the PF based on the available points. Define 2D Pareto optimal solutions as
F = {(xi, yi) : i = 1, · · · , |F |} (|F | is the number of points, normalized into [0, 1]).
To estimate the asymmetric PF fp1

1 + fp2
2 = 1, we define the Sum of Square Error as:

SSE(F ) =
∑ |F |

i (xp1
i + yp2

i − 1 + θ)2 (3)

where θ denotes the relaxing parameter. A small SSE(F ) implies that the curve func-
tion approaches the Pareto optimal solutions better. In reality, it is not easy for all solu-
tions to fall exactly on the true PF, thus, it is natural to set the relaxing parameter with
a small value to estimate the curve function.

3 apa for Decomposition and ε-Dominance

The well established two major categories of MOEAs includes the decomposition-based
and Pareto dominance-based MOEAs. In this section, we describe how the apa scheme
enhances the performances of MOEAs.

3.1 apaλ: apa for Decomposition

MOEA based on decomposition (MOEA/D) transforms the PF into a number of scalar
optimization subproblems and optimizes them simultaneously. Three major approaches
of the MOEA/D are weighted sum, Tchebycheff and Boundary intersection (BI) [2].
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Define λ = (λ1, · · · , λm)T as a weight vector for m objectives, and
∑m

i λ
i = 1.

Classical MOEA/D produces N weight vectors in 2-dimensional objective spaces as:
( 0

H ,
H
H ), ( 1

H ,
H−1

H ), · · · , (H
H ,

0
H ), where H = N − 1. The gradients of weight vectors

are represented byλ lines (see Figures 2, 3). These λ lines produceN intersection points
along PF. Such weight vectors are perfectly distributed only when PF is f1 + f2 = 1
(i.e. a linear line), but not suitable for fp1

1 + fp2
2 = 1, p1, p2 �= 1 (i.e. non-linear PF).

Asymmetric Pareto-adaptive weight vectors (apaλ) is formed by applying the apa
scheme to MOEA/D. Since the apa scheme (Algorithm 1) can obtain evenly distributed
intersection points {(xi, yi), i = 1, · · · , N} along different shapes of Pareto optimal
front, the weight vectors along asymmetric Pareto optimal front can be adjusted as:

apaλi = (
xi

xi + yi
,
yi

xi + yi
) (4)
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Fig. 2. 10 Points along 2-dimensional asymmetric Pareto Fronts by λ and apaλ

Figure 2 shows an example of 10 intersection points along 2-dimensional asymmet-
ric PFs generated by λ (MOEA/D) and the apaλ scheme, respectively. When p1=0.5,
p2=1.0, the hypervolume of the intersection points is hv(λ) = 0.607939 in MOEA/D
(Figure 2(a)). From Figure 2(c), apaλ obtains a larger hv(apaλ) = 0.613726, and the
λ lines are scattered to the two endpoints of PF and distributed more evenly. When
p1 = 2.0 and p2 = 1.0, the hypervolume of intersection points is hv(λ) = 0.282367
in MOEA/D (Figure 2(b)). apaλ obtains a larger hv(apaλ) = 0.286820 (Figure 2(d)),
and the λ lines are well assembled and divide the objective space more uniformly.
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Fig. 3. 10 Points along 2-dimensional symmetric Pareto Fronts by λ and apaλ

In addition, further studies on MOEA/D also assert that apaλ obtained higher hy-
pervolume on both symmetric convex and symmetric concave PFs (Figure 3). The apa
scheme is shown to significantly improve the performance of classical MOEA/D.

3.2 apaε-Dominance: apa for ε-Dominance

The ε-dominance is an advanced dominance concept that includes additive and multi-
plicative schemes [6]. It divides the m objective spaces into equal-sized hyper-boxes
and only one solution can survive in a hyper-box. When two solutions exist in the same
hyper-box and non-dominates each other, ε-dominance remains the one which is nearer
to the corner of hyper-box. When minimizing MOPs, the additive scheme f is said to
ε-dominate g, if ∀i ∈ {1, · · · ,m}, fi − ε ≤ gi.

In ε-dominance, the parameter ε is user-specific. Pareto-adaptive ε-dominance (paε-
dominance) is a new ε-dominance, which calculates εj = (ε1, ε2, · · · , εN ) (N is pop-
ulation size) depending on the geometric characteristics of PFs [7]. When minimizing
MOPs, f is said to paε-dominate g in j-th hyper-box, if ∀i ∈ {1, · · · ,m}, fi− εj ≤ gi.
paε-dominance handles asymmetric PFs by approximatingfp1

1 +fp2
2 = 1, p1 �= p2 as

fp
1 + fp

2 = 1. Asymmetric Pareto-adaptive ε-dominance concept (apaε-dominance), on
the other hand, applies the proposed apa scheme to ε-dominance. εji = (ε1i , ε

2
i , · · · , εNi )

in i-th objective is calculated for different shapes of PFs. When minimizing MOPs, f
is said to apaε-dominate g in the j-th hyper-box, if ∀i ∈ {1, · · · ,m}, fi − εji ≤ gi.
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Fig. 4. Ideal Points along 2-dimensional asymmetric Pareto Fronts by paε and apaε
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Fig. 5. Ideal Points along 2-dimensional symmetric Pareto Fronts by paε and apaε
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The apaε-dominance divides the i-th objective space into N non-equal segments
(They can be equal only if f1 + f2 = 1). To begin, the apa scheme (Algorithm 1)
distributes N + 1 solutions {(xi, yi), i = 1, · · · , N + 1} along the PF. Then εji (i =
1, 2; j = 1, · · · , N ) can be calculated as follows:

{
εj1 = xj+1

εj2 = yj+1
(5)

Minimizing bi-objective problems, Figures 4- 5 show paε and apaε-dominance dis-
tribute 10 points along PFs. In some cases, paε-dominance cannot get 10 points. Each
ideal point is carefully drawn under ε-dominance concept. Only one point can survive
in a hyper-box, and the point has the minimum distance to the left bottom corner of
the hyper-box. For asymmetric PF, paε-dominance approximates it as an symmetric PF,
which has the same hypervolume as the original asymmetric PF1. Figures 4(a-b) show
that the region near the origin (0, 0) is a square, which is obviously unsuitable for asym-
metric PFs. In contrast, apaε-dominance arrive at rectangle shape (Figures 4(c-d)).

Focusing on the number of points for different PFs, paε-dominance produces 9 points
on the two asymmetric PFs (Figure 4(a-b)), 8 points on f0.5

1 + f0.5
2 = 1 and 10 points

on f2
1 + f2

2 = 1 (Figure 5(a-b)), while apε-dominance produces 10 points on all PFs.
Comparing the hypervolume on asymmetric PFs, paε-dominance obtains hv(paε) =
0.616577 for f0.5

1 + f2 = 1 and hv(paε) = 0.282704 for f2
1 + f2 = 1 (Figure 4(a-b)).

However, apaε-dominance is able to obtain higher values of hv(apaε) = 0.623634 and
hv(apaε) = 0.288335, respectively (Figure 4(c-d)). In addition, for symmetric PFs,
Figure 5 shows that apaε-dominance also obtains the higher hypervolume than paε-
dominance. The apa scheme is thus shown to successfully enhance the performance of
Pareto dominance-based MOEAs.

4 Experimental Results and Discussion

4.1 Benchmark Problems and Experimental Setting

The experiments are performed on jMetal 3.0 [4], which is a Java-based framework that
is aimed at facilitating the development of metaheuristics for solving MOPs2. Testing
MOPs include 4 with asymmetric PFs: f0.5

1 + f2 = 1 (ZDT1, ZDT4) and f2
1 + f2 =

1 (ZDT2, ZDT6), 4 with symmetric PFs: f0.5
1 + f0.5

2 = 1 (ZDT1.1, ZDT4.13) and
f2
1 + f2

2 = 1 (WFG4, DTLZ2.2D), and 2 discrete PFs as ZDT3 and Kursawe [4].
The classical MOEA/D - MOEA/D with the Tchebycheff approach [2] and paε-

MyDE [7] are included for comparison. Two instances of the apa scheme are considered
here: MOEA/D with asymmetric Pareto-adaptive weight vectors (apaλ-MOEA/D) and
differential evolution with asymmetric Pareto-adaptive ε-dominance (apaε-MyDE).

1 For f0.5
1 + f2 = 1, paε approximates it as f0.723

1 + f0.723
2 = 1; for f2.0

1 + f2 = 1, paε
approximates it as f1.445

1 + f1.445
2 = 1.

2 http://jmetal.sourceforge.net
3 ZDT1.1 and ZDT4.1 are symmetric PF by modifying ZDT1 and ZDT4 respectively. The true

PS is formed by equally dividing circle into 200 sections in term of angle.
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The experimental settings are outlined as follows. The population size is 25 and the
maximum number of fitness function evaluations is 25, 000. Every algorithm runs 100
times independently for each test problem, to obtain statistically significant results. In
MOEA/D, the number of neighborhoods is T = 20. For DE (Differential Evolution)
operator, CR = 0.25 and F = 0.5. For polynomial mutation, η = 20 and pm = 1/n
(n is the number of decisional variables). For apa scheme, termination condition is
ξ = 1e− 10 and relaxing parameter to estimate PF is θ = 0.01.

Five performance metrics are reported: Hypervolume (HV), Inverted Generational
Distance (IGD), Generational Distance (GD), Unary Additive Epsilon Indicator (I1ε+)
and Spread. The higher Hypervolume and lower IGD, GD, I1ε+ and Spread, the better
is the algorithm’s performance. The obtained results are compared using median values
and the superior results of test problems are highlighted by grey background.

Table 1. Median of Hypervolume (HV)

MOEA/D apaλ-MOEA/D paε-MyDE apaε-MyDE
ZDT1 6.4496e − 01 6.4721e − 01 6.4576e − 01 6.4752e − 01
ZDT4 6.4460e − 01 6.4690e − 01 6.4678e − 01 6.4828e − 01
ZDT2 3.1346e − 01 3.1505e − 01 3.1417e − 01 3.1589e − 01
ZDT6 3.8570e − 01 3.8558e − 01 3.8667e − 01 3.8713e − 01

ZDT1.1 8.1150e − 01 8.1937e − 01 8.1781e − 01 8.1880e − 01
ZDT4.1 8.1043e − 01 8.1879e − 01 8.1836e − 01 8.1896e − 01
WFG4 2.0373e − 01 2.0760e − 01 2.0694e − 01 2.0782e − 01

DTLZ2.2D 1.9816e − 01 2.0190e − 01 2.0008e − 01 2.0138e − 01
ZDT3 5.0189e − 01 5.0555e − 01 4.9971e − 01 4.9945e − 01

Kursawe 3.8594e − 01 3.8607e − 01 3.8479e − 01 3.8484e − 01

4.2 Discussions on Statistical Results

Table 1 shows the performance of the MOEAs on hypervolume. For decomposition-
based algorithms, apaλ-MOEA/D reported superior HV values on 9 problems. MOEA/D
fares better only on ZDT6. Both ZDT2 and ZDT6 share the same true PF of f2

1 +f2 = 1.
The PF of ZDT2 exists in f1, f2 ∈ [0.0, 1.0], but that of ZDT6 is in f1 ∈ [0.2809, 1.0]
and f2 ∈ [0.0, 0.9211]. The results indicate that Tchebycheff approach is unsuitable
for dealing with disparately scaled objectives problems. To solve such problems, Zhang
suggest to use the Objective Normalization [2].

On Pareto dominance-based algorithms, apaε-MyDE reported superior HV values
on 9 problems, while paε-MyDE fares better only on ZDT3, which has a discrete PF.
The lower HV of apaε-MyDE on ZDT3 indicates that it is less suitable for discrete PF.

Table 2. Median of Inverted Genetic Distance (IGD)

MOEA/D apaλ-MOEA/D paε-MyDE apaε-MyDE
ZDT1 6.3658e − 04 5.5097e − 04 6.7638e − 04 5.6731e − 04
ZDT4 6.3606e − 04 5.5161e − 04 6.1060e − 04 5.3733e − 04
ZDT2 5.7958e − 04 6.2226e − 04 7.6548e − 04 5.8589e − 04
ZDT6 3.6948e − 04 4.0058e − 04 9.7866e − 04 3.9867e − 04

ZDT1.1 4.7732e − 03 3.0518e − 03 4.5052e − 03 3.2133e − 03
ZDT4.1 4.7694e − 03 3.0493e − 03 4.5169e − 03 3.4396e − 03
WFG4 4.3374e − 04 3.8385e − 04 4.0915e − 04 3.9105e − 04

DTLZ2.2D 1.4219e − 03 1.7491e − 03 1.7322e − 03 1.7056e − 03
ZDT3 2.0143e − 03 1.5427e − 03 2.8749e − 03 2.7623e − 03

Kursawe 6.5540e − 04 6.8078e − 04 9.7884e − 04 8.7020e − 04
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Table 3. Median of Genetic Distance (GD)

MOEA/D apaλ-MOEA/D paε-MyDE apaε-MyDE
ZDT1 1.0730e − 04 1.3747e − 04 9.5069e − 05 1.0304e − 04
ZDT4 1.8162e − 04 1.7120e − 04 1.0070e − 04 9.8641e − 05
ZDT2 9.3999e − 05 1.0670e − 04 9.5799e − 05 9.2231e − 05
ZDT6 9.6881e − 04 8.9086e − 04 1.0054e − 03 1.1717e − 03

ZDT1.1 9.5795e − 03 8.2646e − 03 9.3162e − 03 8.5521e − 03
ZDT4.1 9.4369e − 03 8.2199e − 03 9.1691e − 03 8.6565e − 03
WFG4 1.5613e − 03 1.5306e − 03 8.2842e − 04 7.0187e − 04

DTLZ2.2D 5.1184e − 04 5.3937e − 04 5.6100e − 04 5.4583e − 04
ZDT3 3.9503e − 04 3.5437e − 04 3.1126e − 04 2.7977e − 04

Kursawe 1.9408e − 04 2.3288e − 04 3.1429e − 04 3.3285e − 04

Table 2 shows the performance on Inverted Genetic Distance metric. On decompo-
sition based algorithms, apaλ-MOEA/D reported superior results on 6 problems, while
MOEA/D fares better on ZDT2, ZDT6, DTLZ2.2D and Kursawe, respectively. Except
the discrete PF (kursawe), these problems have concave true PFs as f2

1 +f2 = 1 (ZDT2,
ZDT6) and f2

1 + f2
2 = 1 (DTLZ2.2D). The results indicate that the apa scheme can

lead to reduce IGD performance on concave PFs.
On Pareto dominance-based MOEAs, apaε-MyDE got better IGD on all problems.
Tables 3 and 4 tabulated the performance of the Genetic Distance and epsilon met-

rics, respectively. Among the 10 test problems, apaλ-MOEA/D and apaε-MyDE re-
ported superior results for these two metrics on most of the problems.

Table 4. Median of epsilon (I1
ε+) Metric

MOEA/D apaλ-MOEA/D paε-MyDE apaε-MyDE
ZDT1 3.3184e − 02 2.0204e − 02 3.2003e − 02 2.6870e − 02
ZDT4 3.3184e − 02 2.0865e − 02 3.1665e − 02 2.3536e − 02
ZDT2 2.5697e − 02 1.9412e − 02 3.0058e − 02 2.0158e − 02
ZDT6 1.9300e − 02 2.5540e − 02 4.3798e − 02 1.5601e − 02

ZDT1.1 2.9057e − 02 5.7351e − 03 1.2688e − 02 7.8903e − 03
ZDT4.1 2.9275e − 02 6.0491e − 03 1.1796e − 02 1.3107e − 02
WFG4 7.8637e − 02 5.0718e − 02 7.7030e − 02 7.2197e − 02

DTLZ2.2D 2.8321e − 02 1.6760e − 02 2.8834e − 02 1.7828e − 02
ZDT3 5.8978e − 02 3.6942e − 02 4.0652e − 02 4.5659e − 02

Kursawe 2.8456e − 01 3.4308e − 01 2.4865e − 01 2.4459e − 01

Table 5 presents the performance on Spread metric, which evaluates the distribution
of non-dominated solutions. On decomposition-based algorithms, apaλ-MOEA/D re-
ported better Spread values on 6 problems, while MOEA/D on 4 namely ZDT6, WFG4,
DTLZ2.2D and Kursawe. Similar to the IGD metric, the results indicate that the apa
scheme may not favor Spread metric on concave PFs.

Among Pareto dominance-based algorithms, apaε-MyDE reported smaller Spread
values on all problems. For the asymmetric problems including f0.5

1 + f2 = 1 (ZDT1,
ZDT4) and f2

1 +f2 = 1 (ZDT2, ZDT6), it is worth mentioning that apaε-MyDE arrives
at significantly better spread value than paε-MyDE.

To summarize, experimental results highlight that apaλ-MOEA/D and apaε-MyDE
are able to obtain consistently higher hypervolume, better convergence and more evenly
distributed solutions than classical MOEA/D and paε-MyDE on majority of the bench-
mark problems. The apa scheme is validated by demonstrating empirically performance
improvement of both decomposition-based and Pareto dominance-based MOEAs.
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Table 5. Median of Spread Metric

MOEA/D apaλ-MOEA/D paε-MyDE apaε-MyDE
ZDT1 2.8126e − 01 8.9546e − 02 2.4730e − 01 1.5013e − 01
ZDT4 2.8085e − 01 9.0885e − 02 2.4298e − 01 1.3152e − 01
ZDT2 1.3611e − 01 1.0650e − 01 1.9993e − 01 9.4430e − 02
ZDT6 1.4975e − 01 1.6385e − 01 1.0006e − 01 3.8206e − 02

ZDT1.1 6.8130e − 01 2.9226e − 01 4.2275e − 01 3.3306e − 01
ZDT4.1 6.8115e − 01 2.9534e − 01 4.2975e − 01 3.6701e − 01
WFG4 2.0255e − 01 3.0316e − 01 2.8014e − 01 2.7552e − 01

DTLZ2.2D 1.8513e − 01 2.8223e − 01 3.1004e − 01 2.6857e − 01
ZDT3 7.6543e − 01 7.3368e − 01 5.8611e − 01 5.4899e − 01

Kursawe 6.0004e − 01 6.0182e − 01 4.1732e − 01 3.9657e − 01

5 Conclusion and Future Research

In this paper, we have proposed a novel Asymmetric Pareto-adaptive (apa) scheme,
which automatically adjusts the position of Pareto optimal solutions according to the
geometric characteristics of 2-dimensional Pareto optimal front. The new scheme is
shown to work well on both symmetric and asymmetric PFs and improves the perfor-
mance of general MOEAs such as decomposition-based and Pareto dominance-based
MOEAs. Experimental results further confirm that the apa scheme led to significant
improvements on the performance of MOEA/D and paε-MyDE.

The apa scheme is showed to be efficient and for dealing with 2-dimensional MOPs.
Future research is to extend the scheme to higher dimensional MOPs. Another poten-
tial further research would be to improve the MOP search based on the paradigm of
Memetic Computation [8–11].
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Abstract. We present analysis of performance of an elitist Evolution-
ary algorithm using a recombination operator 1-Bit-Swap on the Royal
Roads test function. We derive complete, approximate and asymptotic
convergence rates. Both complete and approximate models show the ben-
efit of the size of the population and recombination pool when they are
small and leveling out of this effect when limit conditions are applied.
Numerical results confirm our findings.

Keywords: Evolutionary algorithms, computational complexity, prob-
abilistic models.

1 Introduction

Evolutionary Algorithms (EA) are a set of heuristic optimization tools, that
are well-suited to solve problems with poorly-understood landscape (black-box
optimization). Despite rich history in application, theoretical analysis has been
lagging behind. Although in the past few years a large amount of research in
this area has evolved, it is mostly restricted to single-parent algorithms.

We analyze an elitist (hence +) (μ+λ) algorithm that operates on a population
of solutions size μ and recombination pool size λ using a genetic operator called
1-Bit-Swap (1BS) and tournament selection function. Each generation a subset
of best species α is saved (hence elitism).

We find three expressions for the expected runtime of (μ+λ)EA1BS : one exact,
one approximate and the third one asymptotic. Asymptotic expression does not
contain the variables for the size of the population and recombination pool due
to cancellation, which is the leveling out effect: as the size of the population
grows large enough, its effect relaxes. Approximate and asymptotic expressions
are necessary, since the complete one doesn’t seem to exist in the closed form.

An important idea, on which the derivations in this article are based, is the
distribution of elite species in the population, α, which is assumed Uniform. It
does not seem to be the case, that this approach was used in EA literature before.
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1.1 Royal Roads Function

Royal Roads (RR) is a test function introduced in [1] and analyzed in [2], where
a population-based Evolutionary Algorithm (EA) was found to have underper-
formed a simpler heuristic Randomized Local Search (RLS), which contradicted
the theoretical findings in the same article. An interesting feature of RR is a
plateau of fitness (i.e. same fitness for a large subset of genotype).

The notation we use in this article is different from the one in [1, 2]: a string
length n is broken down into K consecutive bins numbered κ1, κ2, . . . , κK and
the size/length of each bin is M (therefore n = KM). Fitness of each bin is equal
to 0 if at least 1 bit is 0 and M if all bits are equal to 1.

Therefore, fitness of the string/parent is 0,M, 2M...n. Additional notation is
presented in Section 3.

1.2 Past Work

Unlike OneMax (Counting Ones), RR has seen less attention in EA literature,
though in [3, 4] a variant of RR was analyzed and the upper bound of O(n6)
was found for a version of RR in [4]. In [2] the bounds on convergence for
RR were found to be O(2K logN), N being the length of the string, K the
length of schemata (length of the bin), up to a linear term tighter than for
RLS (O(2KN logN)), although numerically RLS outperformed EA. Besides, this
result is somewhat vague, since it doesn’t involve population or recombination
pool size in any way.

Most research in EA literature is focused on mutation-based single-species
algorithms solving pseudo-boolean type functions, that includes OneMax and
RR with some very sharp bounds derived for OneMax problem (e.g. 0.982n logn
in [5]). Recently a number of recombination-based algorithms were analyzed
in [6, 7] for some cases where crossover can be provably effective.

Research on population-based algorithms (including EA) is more numerous,
including that on OneMax test function, although (1+1), (μ+1) and (1+λ) set-
ups are still more widespread. In [8] it was proven that the effect of population is
problem-specific, i.e., increase in population size may not improve performance
at all. Very recently, in [9], it was shown that population size O(log n) boosts per-
formance and size Ω( n

log n ) impairs the progress of the algorithm (on TrapZeros
multimodal function) and reduces the probability of global convergence.

2 Analyzed Algorithm:(μ + λ)EA1BS

k-Bit-Swap genetic operator (KBS) was introduced in [10]. It contains some
features of both mutation and uniform crossover and recombines information
between two parents in a random manner. In this article we use 1-Bit-Swap
(1BS), which picks exactly 1 bit from each parent uniformly at random.

Pseudocode for the analyzed algorithm is presented in Table 1 and is very
simple both in outline and implementation.
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Table 1. (μ + λ)EA1BS

1 Initialize population size μ
repeat for t generations:

2 select λ
2

pairs of parents from the population using Tournament selection
repeat λ

2
times:

3a select a bit at random in Parent 1
3b select a bit at random in Parent 2
3c swap values in the selected bits
4 after the recombination, keep α best species in the population,

replace the rest with the best species from the pool

We use Tournament selection detailed below because it is fairly straightfor-
ward both in implementation and analysis.
– Select two species xi, xj uniformly at random
– if f(xi) = f(xj), either xi or xj enters the pool at random
– else the species with better fitness enters the pool.

3 Model Setup and Assumptions

The main quantity we analyze in this article is the first hitting time of the global
solution of the test problem:

τRR
A = min{t ≥ 0 : f(α) = n}

where A is the set of all possible populations that include a global solution. We
want to find EτRR

(μ+λ)EA1BS
, the expectation of this time parameter.

3.1 Improvement Process

We assume that each bin κ starts with an equal number of 0’s and 1’s, which im-
plies that the starting fitness of the population is 0. To measure the progress of the
algorithm we introduce, in addition to the fitness function, the auxiliary function
OneMax (or counting Ones, for further reference see e.g. [11]) that we denote Vκ.
Due to the nature of 1BS bins evolve in a sequence, i.e. two different bins cannot
evolve at the same generation, therefore κ can be viewed as the ‘active bin’.

We also assume that the starting auxiliary function of each bin, minVκ = M
2 .

The successful event G is defined as evolution of at least one more elite species
in the population. To avoid confusion, the number of bits equal to 0 left to swap
in a bin we use l (they are numbered 0 through M

2 −1), and the bins left to fill we
use κ numbered 0 through K − 1. We restrict our attention to elite pairs in the
recombination pool, i.e. pairs in which both parents are currently-elite species.
Following the process described in greater details in Section 2, the probability
to select such a pair into a recombination pool is

Psel(α) =
α2(α+ 2(μ− α))2

μ4
=

(α(2μ− α))2

μ4
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Having selected the pair, the probability that as a results of swapping bits be-
tween them, a better species evolves is

Pswap =
2(M

2 − l)(n
2 + κM

2 + l)
n2

=
(M − 2l)(n+ κM + 2l)

2n2

This probability comes from the fact that we want to select any 0 in bin κ in
one of the parents and 1 anywhere in the other parent. Obviously as the number
of 1’s in both parents keeps growing, this probability grows too. In Section 4.1
we also extensively use the probability of failure:

PF = 1− Pswap

3.2 Population and Elitism Assumptions

This is a very important part of the paper. We assume that each generation
currently-elite species in the population are distributed uniformly:

α ∼ Uniform
( 1
μ

)

This is a static model, i.e. this distribution does not change throughout the run
of the algorithm. We also assume that the rate of elitism (number of species
saved for the next generation) is high enough, that is, high enough to keep all
elite species. We expect this result to yield a type of a lower bound, because this
probability distribution assigns relatively high values to very high sizes of elite
species. Say, in a real run the probability of have μ elite species in the population
is much lower than 1

μ .

4 Derivation of the Expectation of Convergence Time

We present three main results: exact, approximate and asymptotic. The latter
two are necessary, since, the complete one doe s not exist in he closed form.

4.1 Exact Expression

We start with introducing the probability of failure to improve Vκ (see also
Appendix B):

P (G0) =

λ
2∑

j=0

P (G0|Hj)
μ∑

α=1

P (Hj |α)P (α) (1)

where Hj is j’th elite pair in the recombination pool λ, α is the number of elite
species in the population μ.

The probability to fail to improve a bit in a bin given l improvements so far
is
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P (G0l) =
1
μ

λ
2∑

j=0

(2n2 − (M − 2l)(n+ κM + 2l)
2n2

)j
(λ

2

j

)

·
μ∑

α=1

( (α(α + 2μ(μ− α)))2

μ4

)j(
1− (α(α+ 2μ(μ− α)))2

μ4

)λ
2 −j

=
1
μ

λ
2∑

j=0

P j
F

(λ
2

j

) μ∑
α=1

(Psel(α))j(1− Psel(α))
λ
2 −j

=
1
μ

μ∑
α=1

λ
2∑

j=0

(λ
2

j

)
(PFPsel(α))j(1− Psel(α))

λ
2 −j

=
1
μ

μ∑
α=1

(1− Psel(α)Pswap)
λ
2 (2)

The last step is due to the Binomial expansion: (a + b)n =
∑n

k=0

(
n
k

)
akbn−k.

Therefore,

P (Gl) = 1− P (G0l) = 1− 1
μ

μ∑
α=1

(1− Psel(α)Pswap)
λ
2

Expected time until improving the fitness of a bin κ is the sum of improvements
over all values of the auxiliary function:

ETκ =

M
2 −1∑
l=0

1
P (Gl)

(3)

and, finally, summing over all κ from 0 to K − 1 we obtain (since G depends on
both l and κ)

Eτ(μ+λ)EA1BS
=

K−1∑
κ=0

M
2 −1∑
l=0

1

P (Gl,κ)
=

K−1∑
κ=0

M
2 −1∑
l=0

1

1− 1
μ

∑μ
α=1(1− (α(2μ− α))2Pswap)

λ
2

=

K−1∑
κ=0

M
2 −1∑
l=0

1

1− 1
μ

∑μ
α=1(1− (α((2μ−α)))2(M−2l)(n+κM+2l)

2μ4n2 )
λ
2

(4)

This derivation quite clearly shows the benefit of the population size due to 1
μ

term in front of the sum over α and μ4 in the denominator of this sum. Also,
increase in the size of λ leads to reduction the probability of failure.

We test this expression numerically for different values of n, μ, λ (see Appendix
C). Unfortunately, this expression does not seem to exist in closed form, so we
instead go ahead with finding an approximation to it in the next subsection.
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4.2 Approximate and Asymptotic Expressions

P (G0l) =
1
μ

μ∑
α=1

(
1− (α(α + 2(μ− α)))2(M − 2l)(n+ κM + 2l)

2μ4n2

)λ
2

=
1
μ

μ∑
α=1

(
1− (α(2μ− α))2(M − 2l)(n+ κM + 2l)

2μ4n2

)λ
2

≤ 1
μ

μ∑
α=1

e
−λ(α(2μ−α))2(M−2l)(n+κM+2l)

4μ4n2 ≈ 1
μ

∫ μ

1

e
−
(

α(2μ−α)√
γ

)2

dα (5)

The last two steps in the summand were due to limn→∞(1 − k
n ) = e−k and the

monotone nature of the summand. Note that γ = 4μ4n2

λ(M−2l)(n+κM+2l) , and, assum-

ing that μ = λ, the upper bound on γ is 4μ4n2

λ(M−2l)(n+kM+2l) <
4μ4n2

3λn = O(μ3n).
although for monotonically decreasing functions, like the one we have got, by
the integral test the sum is larger than the corresponding integral, for μ << n
the sum is closely approximated by the integral.

Denote I1 =
∫ μ

1 f(α)dα =
∫ μ

1 e
−
(

α(2μ−α)√
γ

)2

dα. Expanding the integrand in
Taylor series around α0 = 1 up to the second term, we get (since f ′(α0) =
− 4(2μ−1)(μ−1)

e
( 2μ−1√

γ
)2

γ

)

f(α) ≈ e−( 2μ−1√
γ )2 − 4(2μ− 1)(μ− 1)(α− 1)

e
( 2μ−1√

γ
)2
γ

(6)

Therefore the integral turns into

I1 =
∫ μ

1

f(α)dα ≈
∫ μ

1

(
e
−( 2μ−1√

γ
)2 − 4(2μ− 1)(μ− 1)(α− 1)

e
( 2μ−1√

γ )2
γ

)
dα

= e−( 2μ−1√
γ )2(μ− 1)

[
1− 2(2μ− 1)(μ− 1)2

γ

]
(7)

The probability of failure is approximately (with the assumptions specified above)

P (G0l) ≈
e
−( 2μ−1√

γ )2(μ− 1)
[
1− 2(2μ−1)(μ−1)2

γ

]
μ

Accordingly, probability of a successful swap is

P (Gl) ≈ 1−
e
−( 2μ−1√

γ )2(μ− 1)
[
1− 2(2μ−1)(μ−1)2

γ

]
μ
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Using the sum of expectations of Geometric random variables with different
parameters (Appendix B), the expected time until filling a bin, i.e. improvement
of the fitness function, is (we keep the γ substitution to simplify the notation)

ETκ =

M
2 −1∑
l=0

γ

γ − γe−( 2μ−1√
γ )2 + 2(2μ− 1)(μ− 1)2e−( 2μ−1√

γ )2
(8)

We do two approximations here, first the Riemannian sums approximation to
obtain [0, 1] bounds on the integral, and then expand the integrand in Taylor
series with 2 terms around midpoint to obtain a good approximation of the
integral. The Riemannian sums approximation is defined by

lim
n→∞

n∑
j=1

f(xj) = n
∫ 1

0

f(nx)dx+ o(n)

and γ is transformed accordingly:

γ =
4μ4n2

(M − 2(M
2 − 1)l)(n+ κM + (M

2 − 1)l)

and

I2 =
∫ 1

0

γdl

γ − γe−( 2μ−1√
γ )2 + 2(2μ− 1)(μ− 1)2e−( 2μ−1√

γ )2
(9)

therefore, the expected first hitting time until the evolution of the bin κ is (Taylor
series expansion of the integrand is in the Appendix A due to its length).

ETκ ≈
(M

2
− 1

)∫ 1

0

γdl

γ − γe−( 2μ−1√
γ )2 + 2(2μ− 1)(μ− 1)2e−( 2μ−1√

γ )2

≈ 4μ4n2(M
2 − 1)

λ(M
2 + 1)(M

2 + n+ κM − 1)
[

2(2μ−1)(μ−1)2

σ1
+ 4μ4n2

λ( M
2 +1)σ2

− 4μ4n2

λ( M
2 +1)σ2σ1

]
(10)

where

σ1 = e
λ(2μ−1)2( M

2 +1)σ2
4μ4n2

σ2 =
M

2
+ n+ κM − 1

It’s easy to notice that σ1 has a very interesting property (given μ = λ):

lim
n→∞

e
λ(2μ−1)2( M

2 +1)( M
2 +n+κM−1)

4μ4n2 = lim
n→∞

e
M(M+n+KM)

μn2 = lim
n→∞

e
M
μn +O

(
M2

μn2

)
= 1

which means, that for sufficiently large values of n and μ the second and the
third terms in the square brackets cancel each other out, and the first term is
just 2(2μ− 1)(μ− 1)2.
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Finally, summing over all κ, the number of bins in the string, we get the
approximation of the convergence time of the (μ + λ) algorithm on RR test
function.

EτRR
(μ+λ)EA1BS

≈ 2μ4n2(M − 2)
λ(M + 2)(2μ− 1)(μ− 1)2

K−1∑
κ=0

1
M
2 + n− 1 + κM

=
2μ4n2(M − 2)

λM(M + 2)(2μ− 1)(μ− 1)2
·

[
ψ0

( M
2 + n− 1 +M +KM

M

)
− ψ0

( M
2 + n− 1
M

)]

≈ 2μ4n2(M − 2)
λM(M + 2)(2μ− 1)(μ− 1)2

log
(
1 +

2KM
M + 2n

)
(11)

where ψ0 is a Digamma function (see e.g. [12, 13]). In the derivation of the
asymptotic expression for this bound, all population-related terms cancel out
(since μ = λ and both numerator and denominator have the highest term μ4),
and the order of convergence is

EτRR
(μ+λ)EA1BS

= O

(
n2 log

(
1 + KM

M+n

)
M

)
(12)

which seems to be a result comparable to those available in literature covering
fitness functions with plateaus of fitness (e.g. [8, 11, 4]). Nevertheless for small
μ we show in Appendix D that the effect of the population is beneficial, but
converges to a constant as μ→∞, thus the effect relaxes with the growth of the
population size.

5 Conclusions and Future Work

We have derived three expressions for convergence of an elitist (μ+λ)EA1BS on
Royal Roads test function: exact, approximate and asymptotic. Both the exact
and approximate expressions for the expected convergence time clearly show the
benefit of increase in the population when the population is relatively small,
asymptotically population effect is O(1), which means that as the size keeps
growing its effect relaxes.

An important assumption for the approximation of EτRR
(μ+λ)EA1BS

was that
μ << n, but we never specified the relation, unlike in [9]. This is something to
look at in the future. Since the effect of the population is known to be problem-
specific, we will be able to get good insights into it for unimodal functions with
plateaus, such as Royal Roads.

Numerical results are consistent with our findings, with the computational re-
sults lower-bounded by theoretical. Since lower ratios of μ

n give sharper bounds,
this may shed more light on the optimal population size for problems with func-
tion plateaus.
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We have performed our analysis assuming Uniform distribution of elite species
in the population, something noone seems to have done in EA literature before.
This is a static approach to convergence (i.e. the distribution assumption does
not change throughout the run of the algorithm). We would like to look at the
dynamics of the elite species and their effect on the probability of success, P (Gl)
and expected convergence time.
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A Taylor Series Approximation of the Integrand

We give the expression for the Equation 10 here due to its length. It’s Taylor
series expansion of the integrand around midpoint of the interval (0.5)

φ(l) ≈ 4μ2n2

λ(M
2

+ 1)σ1σ3

+ s3

(
s3

{ s1
σ2σ4

− s2
μ4n2σ2( M

2 +1)

σ3
− 16(M−2)

σ2σ2
3( M

2 +1)

}
− s3

(16M−32)σ5
σ4σ2

3
+ ϕ1

(M
2

+ 1)σ2
1σ3

·

+
4(M − 2)σ5

σ1σ2
3σ4

)
(l − 1

2
)

where

σ1 =
2(μ− 1)(μ− 1)2

σ2
+

4μ2n2

λ(M
2 + 1)σ3

− 4μ4n2

λσ2σ3(M
2 + 1)

σ2 = e
λ(2μ−1)( M

2 +1)σ3
4μ4n2 , σ3 =

M

2
+n+kM−1, σ4 =

(M
2

+1
)2

, σ5 = n+kM −2

s1 = 16(M − 2), s2 = 4λ(2μ− 1)2((M − 2)(
M

2
+ 1)− σ3(M − 2)), s3 =

μ4n2

λ

ϕ1 =
2(2μ− 1)3(μ− 1)2(2M + 2n+ 2kM − nM − kM2 − 4)

s3σ2

B Probability Theory

To derive expressions in Section 4.1, we extensively used properties of indepen-
dent Geometric RVs that are not identically distributed, which is also known
as Coupon collector’s problem (see e.g. [13]): if Xi ∼ Geom(pi) it expectation
is E[Xi] = 1

pi
. Therefore, if Y =

∑n
i=1Xi, EY =

∑n
i=1 E[Xi] = 1

p1
+ 1

p2
+. . .+ 1

pn

For Equation 1 we use the Law of total probability twice: first, conditioning
on Hj , then on α:

P (A) =
m∑

i=1

P (A|Bi)P (Bi) =
m∑

i=1

P (A|Bi)
n∑

j=1

P (Bi|Cj)P (Cj)

C Numerical Results to Verify Equation 4

Column τ̃(μ+λ)EA1BS
was obtained by running the algorithm with different pa-

rameters 20 times, each run was 2000 generation each. The earliest achievement
of the global minimum for each run was saved and then averaged over.

The results are very consistent in terms of exposing the effect of the popu-
lation growth and are sharper for smaller ratios of μ

n . Like we expected in the
Assumptions section, theoretical bounds obtained are optimistic due to higher
probabilities of observing high numbers of elite species.
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Table 2. Theoretical and computational bounds for (μ + λ)EARR
1BS

n K M μ λ EτRR
(μ+λ)EA1BS

τ̃(μ+λ)EA1BS

32 4 8

4 4 145 315.3077
10 10 72.4 268.2195
20 20 44.2 192.2917
30 30 34.5 173.5625

64 8 8

4 4 570.625 612.46
10 10 279.88 497.93
20 20 153.46 454.4681
30 30 112.297 372.04

128 16 8

4 4 2264.36 1365
10 10 1048 1239
20 20 570.44 1091.5
30 30 401.99 949.4

D Effect of the Population

We rewrite Equation 11 in order to factor out terms involving μ, taking for
simplicity μ = λ.

Eτ(μ+λ)EA1BS
= ϕ(n, M, K)

μ4

λμ(2μ− 1)(μ− 1)2
= ϕ(n, M, K)

μ3

2μ3 − 5μ2 + 4μ− 1

For small values of μ this expression lies between 0.5 and 1 and quickly converges
to 0.5, so Eτ(μ+λ)EA1BS

= O(ϕ(n,M,K)) because asymptotically

μ3

2μ3 − 5μ2 + 4μ− 1
= O(1)

This explains the benefit of the growth of the population when it is small and
its leveling out for larger values
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Abstract. Most real-world problems involve objectives, constraints and
parameters which constantly change with time. Treating such problems
as static problems requires knowledge of the prior time but the computa-
tional cost is still high. In this paper, a simplex model based evolutionary
algorithm is proposed for dynamic multi-objective optimization, which
uses a modified simplex model to predict the optimal solutions (in vari-
able space) of the next time step. Thereafter, a modified evolutionary
algorithm which borrows ideas from particle swarm optimization is ap-
plied to solve multi-objective problems when the time step is fixed. This
method is tested and compared on a set of benchmarks. The results show
that the method can effectively track varying Pareto fronts over time.

Keywords: Simplex Model, PSO, Multi-objective Optimization.

1 Introduction

Dynamic multi-objective optimization problems (DMOPs) usually involve ob-
jective functions, constraints and parameters which change with time. These
problems often arise from real-world problems solving, particularly in optimal
control problems or problems requiring on-line optimization. The nature of a
time-changing based dynamic optimization problem is concerned with tracking
the moving optima. Two basic concepts of this kind of problem are the frequency
and severity of a change [2]. If the severity of a change is large, the problem will
become less relevant to the next time step and it requires a re-start of the algo-
rithm. Frequency is a constant throughout a fixed time step, but it varies with
different problems.

The performance of EAs in such dynamic optimization problems has been
studied mostly in the past decade, and many enhancement techniques have been
proposed. A large part of the existing algorithms can be classified into two cate-
gories. The first category handles two basic functions of an algorithm: diversity
for exploring the search space for the locations of the next optimal solutions and
convergence to the current global optima. These two functions usually compete
with each other, and a balance is needed between them. The multi-population
scheme [8] is an example for the diversity control. Other approaches, such as

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 372–381, 2011.
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elitism based immigrants method [9] are for the convergence. The Second cat-
egory of approaches is concerned with exploiting the past information which
might be useful for the problem solving. A typical example is the memory-based
approach [5], which employs an extra memory to store useful information to
guide further search.

Recently, Deb et al. proposed two versions DNSGAII-A and DNSGAII-B [2]
to deal with DMOPs. In the former, some randomly generated individuals are
inserted into the population of the next time step when a change happens, while
in the latter version, a small portion of population is replaced with mutated
solutions. The main limitations of the two versions are: how close or how far of
the next optimal solutions to the current optimal solutions is not considered,
and the two algorithms become less effective if some complex constraints are
added to the dynamic problems.

To address the above issues, the goal of the paper is to develop a simplex model
based evolutionary algorithm for dynamic multi-objective problems (DMOPs).
We expect the proposed algorithm to track varying Pareto fronts effectively and
the optimal solutions obtained at each time step to be widely distributed along
the true Pareto front.

2 Background

2.1 Problem Definition

Without loss of generality, a dynamic constrained multi-objective optimization
problem can be described as Eq.1:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

min f(x, t) = {f1(x, t), f2(x, t), ..., fm(x, t)}
s. t. gj(x, t) ≤ 0, j = 1, · · · , p

hj(x, t) = 0, j = 1, ..., s
x ∈ [L,U ]

(1)

where t ∈ [a, b] is time variable, x = (x1, x2, ...xn) is the decision vector,
gj(x, t)(j = 1, 2, ..., p) are inequality constraints. All equality h(x, t) can be
converted into inequality constraints. All of these constraints depend on time
variable t. [L,U ] = {x = (x1, x2, ...xn)|li ≤ xi ≤ ui, i = 1, 2, ..., n} is the search
space. Constraint violation at time t is defined as:
Φ(x, t) =

∑p
j=1 max(0, gj(x, t)). A vector μ = (μ1, μ2, ...μn) is said to domi-

nate a vector ν = (ν1, ν2, ...νn) (denoted as μ ≺ ν) if: ∀i ∈ {1, 2, ...m}, fi(μ, t) ≤
fi(ν, t)

∧∃j ∈ {1, 2, ...m}, fj(μ, t) < fj(ν, t). A solution x is called a Pareto op-
timal solution for problem (1) at a fixed time t if Φ(x, t) = 0 and ∼ ∃x̃ ∈ [L,U ]
such that Φ(x̃, t) = 0 and x̃ ≺ x.

2.2 Performance Criteria

To compare different approaches in a dynamic environment, it is not sufficient
to only compare the best solutions found so far, because the optimal solutions
change with time. A reasonable alternative is to use a set of offline performance
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criteria, which average over the best solutions’ performance at each time step. We
use modified C-metric, FS-metric, and S-metric to evaluate the performance of
different approaches in convergence, diversity and distribution. All these criteria
are well-known and designed by Zitzler and Thiele [3]. If two algorithms A and
B are executed, two series of Pareto optimal solution sets are acquired, {At}Tt=1

and {Bt}Tt=1, where T is the total numer of the time steps.
C-metric: C(A,B) = 1

T

∑T
t=1

|{y∈Bt:∃x∈At,s.t.x≺y}|
|Bt| , which is used to measure

the average convergence rate. The equation shows that the quality of the Pareto
optimal solution sets by algorithm B has better convergence than those by A if
C(A,B) < C(B,A).

FS-metric: FS = 1
T

∑T
t=1

√∑m
i=1 max

(x0, x1)∈At×At
{(fi(x0)− fi(x1))2}, which

is used to measure the average coverage range of the Pareto fronts.The larger
the value of FS, the better diversity of solutions on the Pareto front will be.

S-metric: S = 1
T

∑T
t=1[

1
nP F

∑nP F

i=1 (d
′
i − d′)2]1/2, d′ = 1

nP F

∑nPF

i=1 d
′
i, which is

used to measure the average distribution of the Pareto optimal solutions. nPF

is the number of the solutions in the found Pareto front at time step t, d′i is
the distance (in the objective space) between the member yi and its nearest
member in the found Pareto front at a fixed time step t . The smaller the value
of S-metric, the more uniformity the Pareto front will be.

2.3 Previous Work

During the last decade, a number of different EAs were suggested to solve dy-
namic optimization problems. This section reviews the approaches for DMOPs.

The challenge for DMOPs is to track a set of Pareto optimal solutions rather
than one solution only, and we expect the solutions to achieve a better perfor-
mance in convergence, diversity and distribution. In [4], an artificial immune
system is proposed to solve DMOPs. In [7], a direction based algorithm is used
to solve DMOPs, which is a direct extension of static MOPs. In this algorithm,
each objective function is minimized using a hybrid evolutionary-deterministic
strategy, a change detecting strategy is added to the direction based algorithm,
and the Pareto optimal solutions from previous time are directly used as the
initial population of the next time. Although these algorithms can solve the
DMOPs successfully to some extent, there still are some limitations: how far the
current optimal solutions to the next optimal solutions is not considered, and
how to handle constraints in DMOPs is not considered.

3 A New Simplex Model Based Evolutionary Algorithm
for DMOPs

The new strategies proposed in this work consist of using a modified simplex
model to predict the locations of the next optimal solutions and using a PSO-
based algorithm to find the exact optimal solutions of the next time step. Before
we describe the two new strategies, we first outline the overall algorithm.
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Fig. 1. Relationship between current optimal solution xt−1 and the optimal solution
of the next time, 2D space

At the end of time step t − 1, two optimal solutions xt−1
1 , xt−1

2 which are
located in the boundary of the Pareto front are used as inputs.

Step1. Use a modified simplex model to generate solutions around the input
optimal solutions. All of these solutions constitute the prediction solution sets,
(section 3.1).
Step2. Insert the prediction solution sets to the population of the next time step
and run the PSO-based evolutionary algorithm for a fixed function evaluations
and get the new optimal solutions for the next time step (section 3.2).
Step3. Update the information of the current optima, then go to step1.

Note that each input solution is used to construct a simplex model and get a
prediction solution set for the next time step. Thus, two prediction solution sets
are obtained. The total population at the beginning of time step t is composed of
two parts: prediction solution sets for placing a team of solutions in the neigh-
borhood of the next optimal solutions to achieve a fast convergence, and the
randomly generated solutions to aid the discovery of the optimal solutions in
case the prediction is unsuccessful.

3.1 A Modified Simplex Model for Prediction

The use of the modified simplex model is to make a prediction for the optimal
solutions of the next time step. The main differences between the modified model
and the existing one are: (1) instead of using a simplex model as a crossover op-
erator [11], we use it to approximate the locations of the next optimal solutions;
(2) in [11], some random solutions (or solutions chosen according to a probabil-
ity) are used to form a simplex model, while we use the gradient information of
objective functions to generate new points.

In a general case, there are two relationships between the optimal solution
at t− 1 and the optimal solution of the next time step, as shown in Fig. 1: (1)
the optimal solution of the next time step is within the inner triangle xt−1bc,
which is created by the optimal solution xt−1; (2)the optimal solution of the next
time step is within the inner triangle xt−1′

b
′
c
′
. The modified simplex model is

described in the following algorithm, where one of the optimal solutions, denoted
as xt−1 from the previous time step, is used as the input.

Step1. Generate b and c from the optimal solution xt−1 according to the fol-
lowing rules: for each objective function fi(x, t− 1), i = 1, 2, ...,m, we calculate
the approximate gradient value of fi(x, t − 1) at xt−1 and denote it as:
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∇fi(xt−1, t− 1) = (∇fi1(xt−1, t− 1), ...,∇fin(xt−1, t− 1)),

where ∇fij = fi(x
t−1+δej ,t−1)−fi(x

t−1,t−1)
δ , and ej is unit vector that the jth

variable equals one and the other variables equal zero, j = 1, 2, ..., n. n is the
number of dimensions of vector x. δ is a small positive number.
Step2. Let di = −∇fi(xt−1, t − 1), i = 1, 2, ...,m. We search along di from
solution xt−1 with a small step ξ, then two solutions b, c are generated according
to the following equations: b = xt−1 + ξd1 and c = xt−1 + ξd2.
Step3. Calculate the center of the three solutions, o = xt−1+b+c

3 .
Step4. Generate the points xt−1′

, b
′
, c

′
. For example, b

′
= (b−o)×(1+ε), where

ε > 0 is the expanding rate. xt−1′
and c

′
are created in the same way.

Step5. Output the prediction solution set, which is composed of xt−1′
, b

′
, c

′
and

xt−1, b, c.

It is worth noting that totally 2× (m+1) solutions will be created by the above
strategies, namely the size of each prediction set is 2 × (m + 1). We let two
parameters ξ = ε = 0.5.

3.2 PSO Based Evolutionary Algorithm for DMOPs

The PSO based evolutionary algorithm is aiming at making a balance between
diversity and convergence and we expect it to aid the simplex model to find the
optimal solutions of the next time step. The main difference between our algo-
rithm and the commonly used EAs is that we use a PSO based crossover operator
to generate offsprings, aiming at handling constraints appeared in DMOPs.

PSO Based Crossover Operator. Crossover operator is often used to gener-
ate the offsprings that inherit the best information from parents. The arithmetic
crossover operator, uniform crossover operator and simplex crossover operator
[11] are often used due to their effectiveness in keeping population’s diversity.
However, most crossover operators can only deal with the aspect of how to keep
diversity or how to make the algorithm converge faster, but rarely consider both
aspects. Since developed by Kennedy and Eberhart in 1995 [6], PSO has at-
tracted a high level of interest due to the easy implementation. In essence, the
trajectory of each particle is updated according to its own best position pbest
and the global best position gbest. If we use a good principle to choose pbest
and gbest, a balance between diversity and convergence can be maintained. The
reason is that gbest can be seen as a factor related to convergence and pbest
can be seen as a factor related to diversity. Based on the idea, we modify the
PSO velocity updating equation and use it as a crossover operator. The differ-
ence between the standard PSO velocity equation and the proposed crossover
operator is that we add one item to the standard velocity equation, which is
used to handle constraints. Suppose xc is the solution that is chosen to undergo
crossover, and x

′
c is the offspring, then:

x
′
c = ωxc + c1rand1(pbestc(k)− xc(k)) + c2rand2(gbest(k)− xc(k))

+ (1− k

kmax
)(pbestf − xc(k)) (2)
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where, ω, c1, c2 are the parameters that are the same as the standard PSO, k
is the generation number for a fixed time step, gbest(k) is a solution randomly
selected from the current Pareto optimal solution set at generation k for a fixed
time step, and pbestc(k) is the best solution of xc found so far (up to generation k
at a fixed time step). For comparing two solutions, Pareto constraint dominance
principle [1] is directly used to choose pbest. The last part is the most important,
which makes the algorithm search a larger region so that the diversity is kept.
pbestf is chosen from a predefined infeasible solution set [10], which preserves the
solutions that are infeasible but have better rank values than the current optimal
solutions (see section 2.1 for the concept of infeasible solution and rank value).
kmax is the maximum generation for a fixed time step. The weight parameter
for the last item (1− k

kmax
) is a function of current generation number k. At the

beginning of evolution, the weight value is large so that a large region is explored,
while at the late stage of evolution, the weight value is close to zero, then more
offsprings are located in a small region so that convergence is guaranteed.

PSO Based Evolutionary Algorithm for DMOPs. At time step t, we use
a PSO based EA to evolve the Pareto front, which is outlined as follows.

Step1. Use prediction solution sets from section 3.1 and some randomly gen-
erated solutions to constitute the initial population of time step t. The Pareto
optimal solution set at generation k for this time step is denoted as PFk. Let
k = 1.
Step2. Select individuals for crossover according to crossover probability pc and
use the PSO based crossover operator to generate offsprings.
Step3. Select individuals from the crossover offsprings for mutation according
to mutation probability pm. For each selected individual, sayX = (x1, x2, ..., xn)
randomly change it to another individual X = X +ΔX , where each component
of ΔX is generated by a random number generator using Gaussian distribution.
Step4. Update the Pareto optimal solution set PFk by crossover and mutation.
Step5. Select the next generation population by using the constraint Pareto
dominance principle [1].
Step6. If the maximum generation number kmax is reached, then stop and out-
put PFk as the optimal solutions at time step t; otherwise, go to step2.

4 Experiment Design

To examine the performance of the proposed algorithm, we compare it with
two well known algorithms DNSGAII-A and DNSGAII-B on three benchmarks
DCTP1, DCTP2 and DCTP3 [4]. The parameter settings refer to [4].

4.1 Test Functions

DCTP1 :

⎧⎪⎪⎨
⎪⎪⎩

min f1(x, t) = x1

min f2(x, t) = c(x, t)exp(−f1(x, t)/c(x, t))
s. t. g1(x, t) = f2(x, t)− 0.858 exp(−0.541f1(x, t)) ≥ 0
s. t. g2(x, t) = f2(x, t)− 0.728 exp(−0.295f1(x, t)) ≥ 0
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x = (x1, x2, ..., x5), 0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, 3, 4, 5.

DCTP2 ∼ DCTP3 :

⎧⎪⎪⎨
⎪⎪⎩

min f1(x, t) = x1

min f2(x, t) = c(x, t)(1− f1(x,t)
c(x,t)

)

s. t. g1(x, t) = cos(θ)(f2(x, t)− e)− sin(θ)f1(x, t) ≥
a| sin(bπ(sin(θ)(f2(x, t)− e) + cos(θ)f1(x, t))c)|d

x = (x1, x2, ..., x5), 0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, 3, 4, 5. For DCTP1 ∼
DCTP3, c(x, t) = 1 +

∑5
i=1(xi − sin(0.05πt))2. We set t ∈ [1, 4] and divide it

into four equal time steps, namely, t1 = 1, t2 = 2, t3 = 3 and t4 = 4.
For DCTP1, since the Pareto front at each time step is a part of the constraint

boundary, it becomes more difficult to find a considerable number of optimal
solutions. DCTP2 is an extremely complex problem, as in each time step, the
Pareto front consists of a number of disconnected optimal fronts. DCTP3 is even
more difficult because each of the disconnected feasible regions only contains one
Pareto optimal solution for each time step.

4.2 Parameter Settings

For the proposed algorithm, we record the results of the four time steps for each
function. Each algorithm is run for a maximal 200 generations at each time step.
All of these algorithms are required to execute 30 independent runs for each test
function. For a single run, each algorithm performs once at each of the four
time steps. For the proposed algorithm, the crossover probability is 0.9, and the
mutation probability is 0.2 (same as DNSGAII); inertia weight ω = 0.4, c1 and
c2 are two random numbers in the range [0, 1]. These parameter values are the
same as the standard MOPSO [6].

5 Simulation Results

5.1 Overall Results

Table 1 summarizes the statistic results of the Pareto optimal solutions obtained
by the three algorithms. For brevity, our algorithm is denoted as PEA, DNSB and
DNSA denote the algorithms DNSGAII-B and DNSGAII-A respectively and NA
denotes the value is unavailable. AC(A,B) is the mean of the 30 coverage rates
C(A,B). FS denotes the average coverage range of the Pareto fronts obtained by
an algorithm at different time steps. S is used to measure the average distribution
of the Pareto optimal solutions gained at different time steps (see section 2.2).

For DCTP1, all of those three algorithms almost have the same convergence
performance as the AC values have a little distinction among them. For example,
AC(DNSGAII-B,PEA)=27 while AC(PEA,DNSGAII-B)=25, which means that
27 Pareto optimal solutions in PEA are dominated by DNSGAII-B while 25
optimal solutions in DNSGAII-B are dominated by PEA. By comparing FS-
metric, we can find that the FS-metric value found by our algorithm is bigger
than those of DNSGAII-B and DNSGAII-A. For example, the mean value of FS
for the proposed algorithm is 1.1766, while that corresponding value is 1.1333 for
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Table 1. Comparisons of the statistic results of the Pareto optimal solution sets

Prob. AC(A,B) % FS S

PEA DNSB DNSA Best Worst Mean Std Best Worst Mean Std
DCTP1

PEA 0 25 21 1.2645 1.0804 1.1766 0.0658 0.0053 0.0240 0.0097 0.0080
DNSB 27 0 NA 1.1681 1.0892 1.1333 0.0283 0.00534 0.0084 0.0064 0.0012
DNSA 29 NA 0 1.1962 1.0745 1.1344 0.0625 0.0054 0.0068 0.0062 0.0006

DCTP2
PEA 0 31 29 1.4653 1.3428 1.4073 0.0483 0.0079 0.0464 0.0168 0.0166
DNSB 20 0 NA 1.4164 1.2372 1.3287 0.0682 0.0061 0.1534 0.0358 0.0657
DNSA 19 NA 0 1.3722 1.3451 1.3610 0.0114 0.0051 0.0170 0.0091 0.0056

DCTP3
PEA 0 52 72 1.3318 1.0591 1.2236 0.1011 0.0727 0.1288 0.0868 0.0240
DNSB 39 0 NA 1.3119 0.8261 1.0034 0.1967 0.0607 0.0963 0.0806 0.0140
DNSA 17 NA 0 1.0150 0.9123 0.9788 0.0534 0.0423 0.0830 0.0571 0.0183

DNSGAII-B and 1.1344 for DNSGAII-A. This suggests that the new algorithm
can find good solutions that are more widely spread along the Pareto front than
the other two methods. Regarding S-metric, the mean value of the proposed
algorithm is bigger than the corresponding value for DNSGAII-B and DNSGAII-
A. The results suggest that the uniformity of the proposed algorithm is not as
good as those by DNSGAII-B and DNSGAII-A.

DCTP2 is a more difficult example than DCTP1, as the Pareto fronts are
disconnected at different time steps. The proposed PEA has a better convergence
to the true Pareto front compared with DNSGAII-B and DNSGAII-A as only a
small number of optimal solutions obtained by PEA are dominated by DNSGAII-
B and DNSGAII-A, respectively. In addition, PEA has a better performance
than DNSGAII-B and DNSGAII-A in terms of the widespread of the Pareto
optimal solutions due to the big mean value of FS-metric. Furthermore, the
optimal solutions obtained by PEA are more uniformly distributed than those
by DNSGAII-B due to the small mean S-metric value.

DCTP3 is the most difficult example because each of its disconnected Pareto
front only contains one solution. In this case, our algorithm has the best perfor-
mance in the aspect of convergence, diversity and distribution. For example, the
proposed algorithm has the biggest FS-metric value, suggesting that the opti-
mal solutions are widespread along the Pareto front. Overall, the results suggest
that our algorithm can find a widespread Pareto front regardless of the shape
of the Pareto fronts and the obtained Pareto front has a better convergence to
the true Pareto front, particularly for difficult cases. In addition, we find that
the proposed algorithm is significantly better than the compared ones in terms
of FS-metric based on a standard T-test.

5.2 Evolved Pareto Fronts

Fig.2 shows some example Pareto fronts evolved by the different algorithms for
the three test functions at a fixed time step. It can be seen that the proposed
PEA can almost converge to the true Pareto front and evolve a diverse Pareto
front at the fixed time step for all test functions.
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Fig. 2. Evolved Pareto fronts for (1)DCTP1: at t = 2 (first row left), (2)DCTP2: at
t = 3 (first row right), (3)DCTP3: at t = 1 (second row left), (4)DCTP3: Pareto fronts
at all time steps obtained by PEA (second row right). [in colour, see PDF]

For DCTP1, the proposed PEA can find solutions distributed in the region
f1 ∈ [0, 0.8] and f2 ∈ [0.60, 1.6], while both DNSGAII-B and DNSGAII-A can
only find a small region f1 ∈ [0, 0.6] and f2 ∈ [0.65, 1.2]. It is worth noting that
the convergence of DNSGAII-B and DNSGAII-A is better than PEA at t = 2,
however the average convergence rate AC of PEA is almost the same as the
compared ones (see Table.1).

For DCTP2, PEA can find the optimal solutions in the larger range f1 ∈ [0, 1]
and f2 ∈ [0.4, 1.8]. However, DNSGAII-A and DNSGAII-B can not find the solu-
tions in f1 ∈ [0.8, 1]. In addition, from Table 1, we can see that the convergence
of PEA is much better than DNSGAII-A and DNSGAII-B. Hence, the optimal
solutions found by PEA are highly competitive in terms of convergence and
diversity at t = 3.

For DCTP3 (the most difficult example, only a few solutions can be found),
the proposed PEA can find 10 optimal solutions, while DNSGAII-B can only
find 7 solutions and the solutions found by DNSGAII-A are worse than those
of PEA in the aspect of convergence (second row of Fig.2, left). We can also
see that for DCTP3, the proposed PEA can track the varying Pareto fronts and
the optimal solutions are widely spread along the Pareto front at each time step
(second row of Fig.2, right).

Overall, Fig.2 shows that the proposed PEA can evolve a diverse optimal
solution set at the fixed time steps and those solutions have better convergence
than DNSGAII-A and DNSGAII-B.

6 Conclusions and Future Work

The goal of this paper was to investigate a simplex model based evolutionary
algorithm for DMOPs. The goal was successfully achieved by developing a mod-
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ified simplex model to approximate the optimal solutions of the next time step
and a PSO based crossover operator to handle constraints in a dynamic envi-
ronment. The results show that the proposed PEA has better performance than
DNSGAII-A and DNSGAII-B in terms of the average coverage rate, average
coverage range and the average distribution.

In the future work, we will prove the convergence of the proposed algorithm
and perform more experiments to analyze the two new developments.
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Abstract. Color quantization (CQ) is one of the most important techniques in 
image compression and processing. Most of quantization methods are based on 
clustering algorithms. Data clustering is an unsupervised classification 
technique and belongs to NP-hard problems. One of the methods for solving 
NP-hard problems is applying swarm intelligence algorithms. Artificial fish 
swarm algorithm (AFSA) fits in the swarm intelligence algorithms. In this 
paper, a modified AFSA is proposed for performing CQ. In the proposed 
algorithm, to improve the AFSA’s efficiency and remove its weaknesses, some 
modifications are done on behaviors, parameters and the algorithm procedure. 
The proposed algorithm along with other multiple known algorithms has been 
used on four well known images for doing CQ. Experimental results 
comparison shows that the proposed algorithm has acceptable efficiency.  

Keywords: Color quantization, compression, artificial fish swarm algorithm, 
data clustering. 

1 Introduction 

One of the available challenges in image processing is high color variety in pixels. 
Therefore, usually a decreasing technique of color variety is used as a preprocessing 
for different works in graphic and image processing applications. By decreasing the 
number of colors, it can decrease image file size to conserve storage space, reduce 
time for transmission, and reduce computation. Color Quantization (CQ) is one of the 
most famous techniques of decreasing the numbers of colors which is applied in 
image compression [1], graphic [2] and image processing [3,4].  

CQ process is done in two steps [5]. In the first step, a codebook is constructed. In 
this step, it has to be determined how many colors have to be decreased at first. In 
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fact, the number of considered colors is the number of codewords in the codebook. 
Each codeword represents a color and its index in the codebook that each of these 
codewords is representative of multiple colors on the original image. After 
constructing the codebook by means of a CQ method, the image is encoded by that 
and every pixel just would possess index number of its representative color in the 
codebook. On the second step, each image is decoded by its corresponding codebook. 
From the view of compression, CQ is taken into account as a lossy compression 
method in which some information are lost. Indeed, after performing CQ on an image, 
most of pixels cannot have their primary colors anymore [5].  

Natural images often have many colors and determining a proper codebook is a 
challenging problem for decreasing the colors. Generally, CQ techniques could be 
categorized into two classes: first category consists of those methods independent 
from image, which specify a comprehensive codebook regardless of any specific 
image. In these methods, first, a fixed codebook is produced by using a training set, 
and then all images are encoded and decoded by means of this codebook. Second 
category contains dependent techniques to image, in which for every image a 
codebook is built. Usually, in these methods, every codebook is built based on color 
distribution in a specific image. Thereafter, to use it for decoding the image, the 
codebook with encoded image is transferred. Dependent image techniques are slower 
than independent image techniques, but obtained results from the former have higher 
quality than the latter [6]. 

In CQ, the main goal is to obtain an appropriate codebook.  If the codebook is not 
proper, the resulted image from CQ has much disharmony with the original image and 
distortion increases between the original image and decoded one. One of the applied 
approaches for producing codebook based on the color distribution is using clustering 
algorithms like k-means [6] and FCM [7]. Clustering is an unsupervised classification 
technique in which datasets that are usually data vectors in multi dimensional space. 
Data vectors are divided into some clusters based on a similarity criterion. After 
performing a clustering algorithm, each of data vectors of dataset is assigned to one of 
clusters. Clustering process is done with respect to a specific similarity criterion such 
that assigned data to a cluster are more similar than other data in other clusters. The 
way of using clustering algorithms in CQ is such that, first, colors histogram is 
produced for the original image and after that, clustering according to the color 
distribution among pixels is done. The number of cluster centers in clustering 
algorithms is determined equal to the number of decreased colors in the codebook. In 
clustering process, cluster centers contain smaller set of colors. Other colors with 
respect to difference between their color numbers and the numbers of cluster center 
colors become a member of one of the clusters. That is, each of colors becomes a 
member of a cluster that its center color is more similar than other cluster centers. 
One of the applied methods for clustering is use of the swarm intelligence algorithms 
such as particle swarm optimization [8], and artificial fish swarm algorithm [9].  

Artificial fish swarm algorithm (AFSA) was presented by Li Xiao Lei in 2002 [10]. 
This algorithm is a technique based on swarm behaviors that was inspired from social 
behaviors of fish swarm in nature. AFSA works based on population, random search, 
and behaviorism. This algorithm has been used in optimization applications, such as 
clustering [11, 12], machine learning [13, 14], PID control [15], data mining [16], 
image segmentation [17]. 
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In this paper, a modified AFSA is proposed as a color quantizer. In the modified 
AFSA, we try to remove weaknesses of standard AFSA to increase the algorithm 
efficiency. Then, this algorithm is configured to perform CQ. In order to comparison, 
the proposed algorithm along with three other clustering algorithms is used for 
performing CQ on 4 well-known images. Comparing qualitative efficiency of the 
algorithms confirms the competence of the proposed algorithm. The remainder of the 
paper is organized as follows: in section 2, standard AFSA will be described and in 
section 3, the proposed algorithm will be presented. Section 4 studies the experiments 
and analyzes the results. Final section concludes the paper and outlines possibilities of 
the future works.  

2 Artificial Fish Swarm Algorithm 

In the underwater world, fish can find areas that have more foods rather than their 
current area, which is done with individual or swarm search by fishes. According to 
this characteristic, artificial fish (AF) model is represented by prey, free_move, 
swarm and follow behaviors. AFs search the problem space by those behaviors. The 
environment, which AF lives in, substantially is solution space and other AF’s 
domain. Food consistence degree in water area is AFSA objective function. Finally, 
AFs reach to a point, which its food consistence degree is maxima (global optimum).  

In AFSA, AF perceives external concepts with sense of sight. Current position of AF 
is shown by vector X=(x1, x2, …, xn). The visual is equal to length of sight field of AF in 
each dimension and Xv is a position in visual where the AF wants to go. Then if Xv has 
better food consistence than current position of AF, it goes one step toward Xv which 
causes change in AF position from X to Xnext, but if the current position of AF is better 
than Xv, it continues searching in its visual area. Food consistence in position X is fitness 
value of this position and is shown with f(X). The step is equal to maximum length of 
the movement. The distance between two AFs which are in Xi and Xj positions is shown 
by sDi ij=|| Xi-Xj|| (Euclidean distance). AF model consists of two parts of variables and 
functions. Variables include X (current AF position), step (maximum length step), visual 
(length of sight field), try-number (the maximum test interactions and tries) and crowd 
factor δ (0<δ<1). Also functions consist of prey behavior, free move behavior, swarm 
behavior and follow behavior. In each step of optimization process, AF looks for 
locations with better fitness values in problem search space by performing these four 
behaviors based on algorithm procedure [10, 14, 15]. 

3 Proposed Algorithm 

In this section, a modified artificial fish swarm algorithm called MAFSA is presented. 
Then, MAFSA is configured as a color quantizer. Generally, modifications which are 
imposed on standard AFSA structure include: removing two parameters step and 
crowd_factor, adding contraction coefficient parameter to the algorithm, removing 
blackboard, changing visual parameter value during algorithm execution, changing in 
follow and prey behaviors, removing swarm behavior and changing in the procedure 
of algorithm execution. In the following, modified AFSA algorithm is described. 
First, modified AFSA behaviors are explained: 
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3.1 Prey Behavior 

This behavior is an individual behavior that each AF performs independently and 
performs a local search around itself. Every AF by performing this behavior attempts 
try-number times to move to a new position with better fitness. Here, it is supposed 
that AF i is in position X  and wants to perform prey behavior. In prey behavior, 
following steps are done: 
1) AF i considers a goal position XT in its visual by means of Eq. (1), then 

evaluates its fitness. d shows dimension number and Rand generates a random 
number by uniform distribution in [-1, 1]. 

)1,1(,, −×+= ddidT RandVisualXX  (1) 

2) If fitness value of position XT is better than fitness value of the current position 
of AF i, position of AF i is updated by Eq. (2).  

( ) ( ) ( )( ) ( )1,01 RandtXXtXtX iTii ×−+=+


 (2) 

Steps 1 and 2 are repeated try-number times. By executing above steps, an AF can 
update its position at most try-number times. 

AF moves as a random percentage of the distance between its current position and 
goal position at each movement. Also, it is possible that none of its attempts for 
finding better positions is efficacious. If AF i couldn't move toward better positions 
by performing two mentioned steps (try_number times), it moves with a random step 
in its visual by means of Eq. (3):  

( ) ( ) ( )1,11 ,, −×+=+ ddidi RandVisualtXtX  (3) 

In MAFSA, by executing Eq. (3) on AF, it is attempted to preserve swarm diversity, 
but it wouldn't be used for the best AF of swarm because this behavior may result in 
worse position for an AF. Therefore, the best AF of swarm wouldn't lose its position 
even when it doesn't find better position in its neighborhood and just displaces when it 
could find better position in its visual. Thereafter, in this condition, the best found 
position during previous iterations by swarm is the best AF's position since at each 
iteration, the best AF of swarm changes its position when it moves toward a better 
position. Consequently, MAFSA doesn't require to blackboard anymore.   

3.2 Follow Behavior 

As it was mentioned in subsection 3-1, the best AF of swarm locates in the best found 
position so far by swarm. In follow behavior, each of AF moves one step toward the 
best AF of swarm by Eq. (4): 
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Where X  is position vector of AF i which performs follow behavior and XB  is the 
position vector of the best AF of swarm. Hence, AF i moves as a random percentage 
of visual in each dimension toward the best AF of swarm. Indeed, after that an AF 
finds more food, other members follow it to reach more food, too. Performing follow 
behavior of the best AF of swarm causes increase in convergence rate of swarm and 
helps to keep integrity of AF of a swarm. This behavior is a group behavior and 
interactions between members of swarm are done globally among them. Thus, this 
behavior can also perform the duty of swarm move (keeping swarm integrity) in 
standard AFSA since it can keep AF in a swarm and prevent from swarm splitting in 
problem space. As a result, swarm behavior is eliminated in MAFSA. To execute 
follow behavior in standard AFSA, at each iteration of algorithm execution, it has to 
calculate Euclidean distance between all AF with each other (for detecting neighbors 
of each AF), which is of heavy computational load. But follow behavior in MAFSA 
has lower computational load while it is very effective in increasing the convergence 
rate of the algorithm.  

3.3 Modified AFSA Procedure 

In MAFSA, each of prey and follow behaviors are done for each of AF at every 
iteration. In MAFSA, first all AF perform prey behavior and their position are 
updated based on prey behavior execution procedure. Then, follow behavior is 
performed and all members except the best AF of swarm move to a new position in 
direction of moving toward the best found position by swarm. At the end of each of 
iteration of MAFSA algorithm, visual value is updated for AF to make a balance 
between global search and local search abilities [13, 14]. To reach this goal, visual has 
to be large at first, such that AF converge to their goals fast and perform global search 
well. Simultaneously with swarm convergence toward goal, visual decreases 
gradually until AF with small visual could get better results by doing an acceptable 
local search around goal.  

For this purpose, visual is multiplied by a positive number less than one at each of 
iterations, which this number can be determined with different approaches [14]. In 
this paper, to decrease visual, a random number generator with uniform distribution is 
applied in the considered interval that is given in Eq. (5): 

( ) ( ) ( )( )( )LowHighLow LLRandLtVisualtVisual −×+×=+1  (5) 

In Eq. (5), at each of iterations, visual is obtained randomly with respect to this 
parameter in previous iteration. Llow and Lhigh are lower bound and upper bound of 
change percentage of visual to previous iteration respectively and Rand is random 
number generator with uniform distribution in interval [0, 1]. Therefore, visual is a 
random percentage of its value in previous iteration between Llow and Lhigh. For this 
reason, Lhigh should be considered a number less than one.  Pseudo code of MAFSA is 
represented in figure 1. 
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MAFSA: 
for each Artificial Fish i • [1 .. N] [1 .. N] 
    initialize xi  
endfor 
repeat: 
    for each Artificial Fish i • [1 .. N] [1 .. N] 
       flag[i]=0; 
       for counter=1 to try_number 

          Obtain 
TX


 with Eq.  1 and Calculate f(
TX


) 

          if  f(
TX


) •  f(  f(
iX

) then  

             apply Eq.  2 
             flag[i]=1; 
          endif 
        endfor 
        if flag[i]==0 then 
           apply Eq.  3 
        endif 
    endfor  
   for each Artificial Fish i • [1 .. N] [1 .. N] 
       apply Eq.  4 
   endfor 
   Update Visual according Eq.  5 
until stopping criterion is met 

Fig. 1. MAFSA pseudo code 

3.4 MAFSA Configuration for CQ 

In this section, MAFSA configuration is discussed as a color quantizer. Application of 
images is usually for observing by an individual. The eye is very good at 
interpolation, that is, the eye can tolerate some distortion. The eye has more acuity for 
luminance (gray scale) than chrominance (color). This is why we will concentrate on 
compressing gray scale (8 bits per pixel) image. 

As mentioned before, the goal of this paper is to solve CQ problem as a clustering 
problem. First, a dataset has to be determined that clustering has to be done on it. In this 
problem, dataset consists of all pixels’ values. In gray scale images, every pixel has an 8 
bit color characteristic, so data are one dimensional. Then, it has to be specified a fitness 
function for clustering which MAFSA should optimize. In this paper, to find optimal 
values of cluster centers which their number has been predetermined, one of the most 
known clustering criteria called sum of intra cluster distances is used [18]. Eq. (6) is a 
function which calculates sum of intra cluster distances that according to it, the best 
clustering is the one when this function’s value is minimum.  
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This function is used as a fitness function for MAFSA algorithm and is considered as a 
minimizing problem. In Eq. (6), the Euclidean distance between each data vector in a 
cluster and the centroid of that cluster is calculated and summed up. Here, we have K 
clusters Ci (1 ≤ i ≤ K) that each of N data vectors Xj (1 ≤ j ≤ N) are clustered on the basis 
of distance from each of these cluster centers Zi (1 ≤ i ≤ K). Data vectors belong to a 
cluster that their Euclidean distance from its cluster center is less than their Euclidean 
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distance from other cluster centers. Therefore, MAFSA goal is to determine cluster 
centers which minimize Eq. (6), and consequently optimal cluster centers are 
determined. In fact, according to clustering conditions of CQ, Eq. (6) shows the sum of 
differences between original image's pixel color numbers and decoded image's. 
Codebook is determined by using final result of clustering. Indeed, the codebook 
contains cluster centers and their indices. Each cluster center is a one dimensional vector 
that consists of gray scale color values. Hence, after completing the codebook, every 
pixel of the original image is transformed into cluster center index in the codebook that 
it belongs to (encoding). To represent the image again, each pixel takes its 
corresponding cluster center color values with respect to its encoded value (decoding). 

Since data and cluster centers are one dimensional and there are K clusters (the 
number of codewords in the codebook), so every AF has to represent K cluster 
centers. As a result, each AF is K dimensional or has K components in its vector. As a 
matter of fact, each of components includes one of colors which are supposed to be 
considered as the replacement of some more similar colors to it.  

In MAFSA, first, AFs are initialized randomly in the problem space. Therefore, 
every AF consists of K initial random cluster centers which displace these cluster 
centers in the problem space by means of MAFSA behaviors and their goal is to 
determine cluster centers in a way that Eq. (6) to be minimizes as a fitness function. 
At last, the codebook would be the same as obtained cluster centers from MAFSA. 

4 Experiments 

Experiments are done on 4 well-known images which are mostly used for measuring 
the efficiency of CQ algorithms. These images are Barbara, Boat, Lenna and Pepper 
that their size is 512*512 pixels. Figure 2 shows applied images in this paper. 

 

Fig. 2. Applied images in this paper 

The most important measurement criteria for CQ algorithms efficiency include 
mean squared error (MSE) and peak signal to noise ratio (PSNR) [5,6]. MSE is usually 
used for assessing distortion between the original image and resulted image from CQ. 
Let the original image x have n pixels. MSE is computed by Eq. (7): 

( ) =
−= n

i ii xx
n

MSE
1

2ˆ
1

 (7) 

Where, x̂  is the obtained image after performing CQ. MSE represents the average 
distortion and lesser value of it shows better efficiency of CQ algorithm. PSNR is a 
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standard way for evaluating fidelity between the original image and the obtained 
image from CQ. PSNR is calculated by Eq. (8): 









=

MSE

m
PSNR

2

10log10  (8) 

Where, m is the largest amount which a pixel can take that is 255 in gray scale 
images. PSNR is measured in decibels (dB) and the larger value of it shows better 
efficiency of CQ method. The proposed algorithm along with standard AFSA, PSO 
and k-means is used for performing CQ on 4 mentioned images. PSO parameters are 
adjusted with respect to [18] and Forgy initializing method is used for k-means [6]. 
Population size is considered 5 times the number of problem space dimensions for 
standard AFSA and MAFSA [18, 9]. That is, population size is 5 times the number of 
codebooks' colors. Based on multiple experiments which have been done, visual, try-
number, Lhigh and Llow are 10, 10, 1 and 0.95, respectively. Standard AFSA's 
parameters are adjusted according to [9]. Experiments are repeated 50 times and 
average of obtained PSNR and MSE from 4 algorithms on 4 images are represented in 
table 1. In this table, each image has been compressed with rates 8:3, 8:4 and 8:5 
which their colors have been decreased to 8, 16 and 32, respectively. The best result is 
shown by bold face for each case. As it is observed, MAFSA has achieved better 
results in all cases. MAFSA has achieved better results than standard AFSA because 
of not having the weaknesses of standard AFSA specially imbalance between global 
search and local search [14]. In fact, AF perform global and local search well in 
MAFSA and generate a codebook by decreasing the sum of intra cluster distances 
which decreases distortion in decoded image. Therefore, obtained images from the 
proposed algorithm would have more fidelity with the original image. 

According to results of table 1, generally, standard AFSA has less efficiency than 
PSO. But MAFSA has achieved better efficiency than PSO by improving different 
parts of standard AFSA. Figure 3 shows Lenna and Peppers images whose colors 
have been decreased to 8 colors and have been compacted by rate 8:3.  

On the whole, experimental results show that compressed images by means of 
generated codebook by the proposed algorithm are of higher quality than other 
algorithms. 

 

Fig. 3. Two decoded images with 8 colors 
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Table 1. MSE and PSNR comparison of the quantization methods 

Image 
Compression 

Ratio 
Criteria 

Std-
AFSA 

K-means PSO MAFSA 

Lenna 

8:3 
MSE 29.81 28.16 26.04 22.48 
PSNR 33.38 33.69 33.97 34.61 

8:4 
MSE 8.93 8.29 8.69 6.27 
PSNR 38.62 39.03 38.76 40.16 

8:5 
MSE 3.71 2.78 3.34 1.71 
PSNR 42.43 43.70 42.93 45.80 

Barbara 

8:3 
MSE 25.48 24.94 25.81 22.78 
PSNR 34.07 34.19 34.02 34.55 

8:4 
MSE 9.99 8.37 9.87 6.48 
PSNR 38.14 38.95 38.20 40.01 

8:5 
MSE 3.83 3.50 3.01 1.61 
PSNR 42.29 42.97 43.39 46.05 

Boat 

8:3 
MSE 26.79 23.99 24.91 23.39 
PSNR 33.85 34.32 34.22 34.44 

8:4 
MSE 10.14 9.11 10.61 6.78 
PSNR 38.15 38.64 37.93 39.82 

8:5 
MSE 4.18 2.62 3.90 2.06 
PSNR 42.17 44.05 42.28 44.97 

Pepper 

8:3 
MSE 29.58 30.04 32.55 28.90 
PSNR 33.42 33.38 33.01 33.52 

8:4 
MSE 10.43 9.84 10.93 7.10 
PSNR 37.95 38.22 37.77 39.61 

8:5 
MSE 4.56 2.83 3.11 1.86 
PSNR 41.57 43.66 43.21 45.43 

5 Conclusion 

In this paper, a modified artificial fish swarm algorithm was proposed. In the proposed 
algorithm, it has been attempted to remove standard AFSA’s weaknesses and algorithm 
to be able to reach acceptable and good results. The proposed algorithm is utilized in CQ 
application and its efficiency is compared qualitatively with efficiency of standard 
AFSA, PSO and k-means. In this study, images are compressed only with respect to the 
number of their colors. Experimental results show that obtained images from the 
proposed algorithm are of higher quality than obtained results from other tested 
algorithms. However, the proposed algorithm has more complexity than other tested 
algorithms. Reducing complexity is issue that merits further research. 
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Abstract. Multiagent learning is a challenging problem in the area of
multiagent systems because of the non-stationary environment caused
by the interdependencies between agents. Learning for coordination be-
comes more difficult when agents do not know the structure of the envi-
ronment and have only local observability. In this paper, an approach is
proposed to enable autonomous agents to learn where and how to coordi-
nate their behaviours in an environment where the interactions between
agents are sparse. Our approach firstly adopts a statistical method to
detect those states where coordination is most necessary. A Q-learning
based coordination mechanism is then applied to coordinate agents’ be-
haviours based on their local observability of the environment. We test
our approach in grid world domains to show its good performance.

Keywords: Multiagent Reinforcement Learning, Coordination.

1 Introduction

Multiagent learning is one of the most important issues in the research area
of multiagent systems (MASs), finding increasing applications in a variety of
domains such as robotics, distributed control, resource management and eco-
nomics, etc.. A significant part of the research on multiagent learning focuses on
reinforcement learning techniques. In multiagent reinforcement learning, agents
can carry out the learning processes concurrently or simultaneously such that the
reward each agent received can be impacted by other agents’ actions. These in-
terdependencies between agents make the learning environment non-stationary.
Agents need to communicate and/or coordinate with each other in this non-
stationary learning environment to improve their performance.

In many MASs, the interactions between agents are sparse, which means the
agents are loosely coupled and do not need to coordinate with each other fre-
quently. For example, two robots are navigating in a building. Most of the time
they can move around independently according to their own decisions. Only
when both robots come around the doorway should they coordinate their be-
haviours in case of colliding with each other. In such type of MASs, coordination
is required among agents only when it is necessary. Agents should learn from
experiences to determine in which situations coordination is most beneficial and
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how to coordinate their behaviours after these situations are determined. How-
ever, due to agents’ local observability, learning where and how to coordinate
agents’ behaviours in loosely coupled MASs is a very challenging problem.

Some approaches have been developed to deal with the coordinated learn-
ing problem with sparse interactions in recent years, using techniques such as
coordination graphs [4][6], statistical learning [1][4] and learning automata [2],
etc. However, these approaches are based on some assumptions, which are to
(1) predefine the specific states where coordination is necessary [6], (2) require
learners to have prior knowledge about their optimal policies [1], and (3) assume
agents to have full observability of joint-states and/or joint-actions [4][6]. These
assumptions heavily limit these approaches in real world applications.

In this paper, a new approach is proposed to enable agents to learn where
and how to coordinate their behaviours by using local information during sparse
interactions. Our approach starts with a statistical learning process to detect the
possible states where coordination is required. After that, a Q-learning based re-
inforcement learning approach is used to coordinate the agents’ behaviours based
on their local observability of the environment. Our approach does not require
the agents to have any prior knowledge or full observability of the environment,
thus solving more realistic problems than most of the state-of-the-art works do.

The problem description and definitions, as well as the proposed approach are
illustrated in Section 2. Section 3 presents the experimental results and analysis
to show the performance of our approach. Section 4 compares our work with
some related works. Finally, Section 5 concludes this paper and lays out some
directions for future research.

2 Learning to Coordinate

2.1 Problem Description and Definitions

Consider two very simple problems in which two robots are navigating in an
environment, each trying to reach its own goal as illustrated in Fig. 1, where
R1, R2 represent two robots and G1 and G2 are their goals (In Fig. 1 (a),
G1 and G2 are in the same grid denoted by G). In these multiagent domains,
each robot can be modeled as an independent learner and the optimal policy of
each robot can be learnt by using a single-agent learning approach. However if
both robots choose its own optimal policy in order to achieve their individual

Fig. 1. Two domains where agents need to coordinate in the shadowy states [3]
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goals and do not coordinate with each other when they come to the conflicting
states (shadowy areas in Fig. 1(a) and Fig. 1 (b)), they may bounce into each
other and get stuck there. In many applications, this kind of conflicts may affect
agents (robots) to achieve their goals or even are not allowed to happen in some
domains such as agent-based disaster management, emergency rescue systems.
How to coordinate agent’s behaviours to decrease the probability of conflicts
during learning in this kind of loosely coupled MASs is a challenging issue.

As can be seen from Fig. 1, there are two types of states in this kind of loosely-
coupled MASs, which are coordinated states and uncoordinated states. Let S be
the state space of the domain. The coordinated states and uncoordinated states
are formally defined by the following two definitions.

Definition 1. Coordinated States are the states where agents need to coordinate
with each other, which are defined as a set Sc = {sci |sci ∈ S(1 ≤ i ≤ m)}.
Definition 2. Uncoordinated States are the states where agents can act inde-
pendently, which are defined as a set S c̄ = {sc̄j |sc̄j ∈ S(1 ≤ j ≤ n)}.
An approach is proposed in this paper to solve the coordinated learning problem
represented by the domains in Fig. 1. The main idea of our approach is to
(1) dynamically identify the coordinated states during agent learning; and (2)
develop a coordinated learning approach to adapt agent’s behaviours after the
coordinated states are determined. Each part of this approach is introduced in
detail by Subsection 2.2 and Subsection 2.3, respectively.

2.2 Learning the Coordinated States

In a reinforcement learning setting, the only feedback from the environment is
the reward. When agents have received severely penalized reward in a state,
they are notified by the environment that coordination should be considered in
this conflicting state. However, at the beginning of learning, agents are exploring
the environment, which to some extent makes the learning a stochastic process.
As such, a conflicting state is not sufficient to reveal the true structure of the
environment. However, from a statistical point of view, more frequent conflicts
in a state indicate that this state is more likely to be one of the coordinated
states. Further more, if agents conflict in a certain state, it means that agents
are also likely to conflict in the neighboring states.

Based on the considerations stated ahead, we choose kernel density estimation
(KDE) approach to detect the coordinated states. The basis of KDE can be rep-
resented by the kernel function F satisfying

∫
F (x)dx = 1. A simple illustration

of KDE is given in Fig. 2, where x-axis stands for the one-dimensional variable
space, y-axis stands for the density, the dashed lines represent the kernels and
the solid line is the overall estimation. The overall estimation gives a belief of
how the corresponding observation (denoted as a cross in Fig. 2) is likely to be
the real point (the dot in Fig. 2) of the estimated variable.

In our problem, however, the variable space is two-dimensional because the
state space is a plane. The observation in this variable space means that agents
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Fig. 2. An illustration of KDE
Fig. 3. An example of determining
the coordinated states

conflict with each other in a state. An observation with the highest density
signifies that the corresponding state is a location where coordination is most
required. Let s represent a state with the central point of Ps(xs, ys) and let
FP (x, y) be the kernel function centralized at point P . The overall estimation
for state s is calculated by summing up all the overlapping kernels given by∑

P FP (xs, ys). After the statistics collecting period, agents can determine the
coordinated states Sc according to Algorithm 1.

Algorithm 1. Determining Sc

Input: Ps∗ , R;
Output: Sc;
for each agent k do1

S̃c
k ← ∅;2

for each state s ∈ S do3

if |Ps−Ps∗ | ≤ R/2 then4

S̃c
k ← S̃c

k ∪ {s};5

end6

end7

S̃c
k ← eliminate(S̃c

k);8

end9

Sc ← ⋃N
k=1 S̃c

k;10

Algorithm 2. Elimination Mechanism

sort(S̃c
k) according to the density;1

Sc
k
′ ← ∅;2

for each state sc
k ∈ S̃c

k do3

for each neighboring state ŝc
k ∈ S̃c

k4

of sc
k and ŝc

k /∈ Sc
k
′ do

if n
ŝc

k
→sc

k
< n

sc
k
→ŝc

k
then5

S̃c
k ← S̃c

k \ {ŝc
k};6

end7

end8

Sc
k
′ ← Sc

k
′ ∪ {sc

k};9

end10

return S̃c
k;11

In Algorithm 1, Ps∗ is the central point with the highest density and R is the
scanning distance of the agent. S̃c

k represents the coordinated states of agent k
and can be computed by involving the states that are located in the scanning
distance of the agent (Lines 3-7). Fig. 3 gives an illustration of determining the
coordinated states with a scanning distance twice longer than the side length of
each grid. However, not all the states in S̃c

k are causes of the conflict in central
state s∗. As shown in Fig. 3, an agent transits from s1, s4 to s∗, causing the
conflict in s∗, and transits from s∗ to s2, s3. It is obvious that s2 and s3 are
not the causes of the conflict in s∗ such that they should be eliminated from Sc

k.
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An elimination mechanism (given in detail by Algorithm 2) is applied to elim-
inate this kind of states (Line 8). Finally, the overall coordinated states Sc are
the union of the coordinated states S̃c

k of all the agents (Line 10).
Algorithm 2 illustrates the process of the elimination mechanism. The states

in S̃c
k are sorted in a descending order according to the density derived from

KDE process(Line 1). For each sorted state sck, the agent determines whether its
neighboring state (e.g. ŝck) is the cause for the conflict in state sck. This can be
done by collecting statistics of transitions between states sck and ŝck (Lines 3-10).
If the agent transits from central state sck to state ŝck more often than the reserve
(Line 5, where ns→s′ represents the times of transitions from s to s′), state ŝck
is not the cause of conflict in sck and should be eliminated from S̃c

k (Line 6).

2.3 Learning for Coordination

After determining coordinated states Sc and uncoordinated states S c̄, agents
should learn how to coordinate their behaviours by taking other agents into
account. At the beginning of learning, each agent maintains a single-state-action
Q-value table denoted by Qk(sk, ak) for all states, where sk is the state of agent
k and ak is its action. After the KDE detects the coordinated states, a joint-
state-action Q-value table for the coordinated states is created by combining all
the state-action information from the single learning process. Suppose there are
total N agents in the environment. Let Sc

k and Ak be the coordinated state space
and the action space of agent k. The joint-state space of all agents in coordinated
states can be given by JS = ×N

k=1S
c
k, and the joint-action space of all agents

is JA = ×N
k=1Ak. This joint Q-value Qc(js, ja) can be initialized by adding the

single Q-values Qk(sk, ak) of each agent, which can be given by Equation 1.

Qc(js, ja) =
N∑

k=1

Qk(sk, ak) sk ∈ Sc, js ∈ JS, ja ∈ JA (1)

After adding the joint Q-value Qc(js, ja), agents can coordinate their behaviours
according to this Q-value when in the coordinated states. The basic idea of our
coordinated learning approach is to let agents act optimistically when facing
uncertainties caused by their local observability. In more detail, when there are
agents out of the coordinated states, the agents that are in the coordinated states
cannot receive the joint-state-action information of all the agents to determine
their joint actions from the joint Q-value Qc(js, ja). In this case, agents can
act optimistically by giving a best estimation of those agents that cannot be
observed, which means it will act according to the highest Q-value only based
on the available state-action information.

Let sk be the current state of the agent at step t and s′k be the state in the
next step t + 1. JAm and JSm denotes the joint action space and joint state
space of m agents in the coordinated states. jam ∈ JAm and jsm ∈ JSm are
their joint action and joint state, respectively. There are mainly two scenarios
according to the current state and the transition situations of agent k.
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(1) sk ∈ S c̄. In this scenario, agent k is in an uncoordinated state. It looks up its
own single Q-value table Qk(sk, ak) and takes an action ak that has the highest
Q-value to jump into a new state. If the new state s′k is still in the uncoordinated
states, a normal single Q-learning can be applied to update the Q-value. This
updating is given by Equation 2, where Rk(sk, ak) is the immediate reward,
α ∈ (0, 1] is the learning rate and γ ∈ [0, 1) is the discount factor.

Qk(sk, ak)← Qk(sk, ak) + α[Rk(sk, ak) + γ max
a′

k

Qk(s′k, a′
k)−Qk(sk, ak)] (2)

However, if the new state s′k is in the coordinated states, the agent needs to back
up its Q-value by adding the expected reward from the coordinated state s′k.
Note that in the coordinated states, agents only maintain a joint Q-value table
Qc(js, ja) which represents the overall expected reward when all the agents are
in the coordinates states with a joint state js and joint action ja. However agent
k only has a local observability of the coordinated states and cannot observe
the agents that are out of the coordinated states, thus the joint state js cannot
be determined to choose a joint action ja that maximizes the Q-value. Suppose
there are m agents in the coordinated states and n agents in the uncoordinated
states at step t + 1. Agent k observes the joint state jsm of the m agents and
chooses the highest Qc(js, ja) based on this information by giving an optimistic
estimation of the unobserved n agents. The value of Qc(js, ja) represents the
overall expected reward and can be averaged by the total number of all agents
N . The Q-value updating rule is formally given by Equation 3.

Qk(sk, ak)← Qk(sk, ak) + α[Rk(sk, ak) + γ
1

N
max
ja′ Qc(js

′, ja′)−Qk(sk, ak)] (3)

where ja′ is selected as follows,

∀jsn ∈ JSn,∀jan ∈ JAn,∃js′ ∈ JS, ∃ja′ ∈ JA⇒ max
ja′ Qc(js

′, ja′). (4)

(2) sk ∈ Sc. In this scenario, agent k is in the coordinated state at step t. It
observes the whole coordinated states to gain the state-action information of
other agents that are in the coordinated states at current time. Assume there
are now m(m ≤ N) agents existing in the coordinated states with the joint state
jsm ∈ JSm and other n agents in the uncoordinated states. The m agents will
look up the joint Q-value table Qc and choose jam according to Equation 5.

∀jsn ∈ JSn,∀jan ∈ JAn,∃js ∈ JS,∃jam ∈ JAm ⇒ max
jam

Qc(js, ja). (5)

After taking the joint action jam, each agent jumps to a new state. Suppose
among the m agents, there are p (p ≤ m) agents still in the coordinated states
and other q = (m−p) agents moving out to uncoordinated states. The m agents
should back up the future rewards from Qc according to the joint-state of the p
agents and from Qk according to the state of each agent that jumps out of the
coordinated states. The joint Q-value can be updated by Equation 6.
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Qc(js, ja)← Qc(js, ja) + α[
N

m
(Rm + γ(

p

N
max
ja′ Qc(js

′, ja′)

+

q∑
k=1

max
a′

k

Qk(s′k, a′
k)))−Qc(js, ja)], ∀jsn ∈ JSn,∀jan ∈ JAn. (6)

where Rm =
∑m

k=1 Rk(sk, ak) is the sum of the reward of the m agents. In
Equation 6, (1) maxja′ Qc(js′, ja′) is the expected reward of all the N agents
based on the information of the p agents. This value multiplied by p

N represents
the expected reward of the p agents; (2) maxa′

k
Qk(s′k, a

′
k) is the expected reward

of each agent that moves out of the coordinated states. Summing up these value
represents all the expected reward of q agents; (3)Rm+γ( p

N maxja′ Qc(js′, ja′)+∑q
k=1 maxa′

k
Qk(s′k, a

′
k)) is the expected reward of the m agents. This value

multiplied by N
m represents the expected reward of all the N agents; (4) ∀jsn ∈

JSn, ∀jan ∈ JAn means that this Q-value updating is applied for all the possible
joint-state-action of the n agents. In this way, the joint Qc value can be updated
by using the available information among the m agents and giving an optimistic
estimation of the unobserved n agents.

3 Experiment

In this section, experiments are carried out to demonstrate the performance of
our approach, denoted as CL (Coordinated Learning). To give a benchmark, we
compare our approach to other two approaches. The first one is to let each agent
learn its policy independently, which is denoted as IL (Independent Learning).
The second is called JL (Joint Learning), which is a centralized learning approach
that agents have a full observability of the environment and receive the joint-
state-action information of all the agents to control the learning process.

3.1 Experimental Setting

We test our approach in the domains given in Fig. 1, where each robot has 4
actions, “Move East”, “Move South”, “Move West” and “Move North”. Each
action moves the robot to the corresponding direction deterministically. When
robots collide into the wall, they will rebound back. If they collide into each other,
both are transferred back to the original states. The exploration policy is the
fixed ε− greedy policy with ε = 0.1. The learning rate α = 0.05, discount factor
γ = 0.95 and rewards are given as follows: +20 for reaching the goal state, -1 for
colliding into the wall, -10 for colliding into the other robot. To use our approach,
we choose a two-dimensional normal distribution function N(μ1, μ2, σ

2
1 , σ

2
2 , ρ) as

the kernel function just because of the simplicity of implementation. We set the
side length of each grid be 1, the kernel function be N(0, 0, 1, 1, 0) and R = 2. We
run the robots for 10, 000 episodes with the first 1000 episodes to determine the
coordinated states and the last 2000 episodes averaged to compute the overall
performance. All results are averaged over 10 runs.
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(a) TTG domain (b) HG domain

Fig. 4. Average reward of the three approaches

(a) TTG domain (b) HG domain

Fig. 5. Collision percentage of the three approaches

3.2 Results and Analysis

The learning processes in terms of the average rewards gained by both robots are
given in Fig. 4. As can be seen in the figure, the JL approach converges to the
optimal value because it can receive joint state-action information about both
robots. The performance of CL is almost the same with IL during the first 1000
episodes but quickly outpaces IL after the coordination mechanism is added. As
for the results of collision percentage given in Fig. 5, JL can learn a collision-free
path in both domains while IL has a high probability of collision because both
robots are learning independently and do not take the other robot into account.
Although our approach cannot acquire a totally collision-free path due to local
observability of the robots, it decreases the probability of collision dramatically
compared with the uncoordinated IL.

Table. 1 gives the overall performance of these three approaches. To give a
comparison, the state and action space are also laid out to show the computa-
tional complexity. In TTG domain, there are 3 coordinated states among the
whole 25 states. The state space each agent keeps in CL thus can be calculated
as 22 + 32/2 = 26.5 and the action space is 4 × 22/25 + 42 × 3/25 = 5.44. As
can be seen in the results, CL reduces the computational complexity a lot com-
pared with JL. This reduction is more desirable in larger scale domains where
the computational complexity is too high to be implemented. Another important
aspect showing the performance of these three approaches is the step number for
both robots to reach their own goals. The results show that robots in IL always
find the shortest paths to their goals. This in turn causes the high probability
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Table 1. Performance of difference learning approaches in the grid world domains

Domain Approach State Action Reward Collision(%) Step

TTG

IL 25 4 6.925 0.420 12.544
CL 26.5 5.44 16.582 0.104 16.794
JL 252 42 18.210 0.002 22.653

HG

IL 21 4 0.2176 0.649 12.446
CL 22.5 5.71 11.193 0.338 17.793
JL 212 42 17.246 0.041 23.384

of collision because they do not coordinate with each other when both come to
the coordinated states. In JL, a central controller receives the joint-state-action
information of both robots. As a result, a safe detour strategy will be adopted
by the robots to reduce the probability of collision, which accordingly increases
the steps to the goals. However, our CL approach combines the merits of both IL
and JL, allowing robots to find the shortest path to the goals while only making
a small detour around the coordinated states. This is why the step number to
goals in CL is higher than that in IL but much lower than that in JL.

In conclusion, the experimental results show that our approach CL outper-
forms the uncoordinated approach IL by considering coordinations when neces-
sary. On the other hand, by removing the assumption of centralized controller,
CL reduces the state-action space considerably and enables robots to learn a
shorter path to the goal than centralized approach JL.

4 Related Work

Much attention has been paid to the problems of learning from sparse inter-
actions for coordination in recent multiagent research. In [5], Kok and Vlassis
proposed an approach called sparse tabular Q-learning to learn joint action val-
ues on those states where coordination is beneficial. However, these coordination
states are specified beforehand and assumed to be prior knowledge to the agents.
Their approach was extended to enable the agents to coordinate their actions
when there exist more complicated dependencies between agents [6]. In later
work [4], Kok et al. used statistical information about the obtained rewards
to learn these dependencies. All these approaches are based on the agents’ full
observability of the joint-state space and confined to fully cooperative MASs.

In [3], Spann and Melo introduced a model for solving the learning problem in
loosely coupled MASs called interaction-driven Markov Games (IDMG). They
specified in advance the states where agents should coordinate with each other.
Then a fully cooperative Markov Game is defined in these coordinated states
such that agents can compute the game structure and Nash equilibria to choose
their actions correspondingly. Our work differs from [3] in that our approach
uses statistics to learn the coordinated states other than predefines them.
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In [1], an algorithm called CQ-learning was proposed to enable agents to adapt
the state representation in order to coordinate with other agents. This approach
however depends on the assumption that agents have already learnt optimal
single policies such that every agent has a model of its expected rewards. In our
work, the coordinated states are detected by collecting statistics while agents are
learning. This merit renders our approach more feasible in applications where
agents have no prior knowledge about the structure of the environment.

5 Conclusion and Future Work

In this paper, we proposed a coordinated learning approach that enables agents
to learn where and how to coordinate their behaviours with sparse interactions.
Our approach does not require agents to have full observability of the whole envi-
ronment, thus modeling more realistic problems than the centralized approach.
The experimental results show that our approach improves the performance
considerably than the uncoordinated learning approach. For future work, it is
possible to improve our learning process to be totally dynamic and online. It
is also necessary to test our approach in larger scale grid world domains and
extend the approach to continuous environments.
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Abstract. Traders that operate in markets with multiple competing
marketplaces can use learning to choose in which marketplace they will
trade, and how much they will shout in that marketplace. If traders are
able to share information with each other about their shout price and
market choice over a social network, they can trend towards the market
equilibrium more quickly, leading to higher profits for individual traders,
and a more efficient market overall. However, if some traders share false
information, profit and market efficiency can suffer as a result of traders
acting on incorrect information. We present the Trading Agent Trust
Model (TATM) that individual traders employ to detect deceptive traders
and mitigate their influence on the individual’s actions. Using the JCAT
double-auction simulator, we assess TATM by performing an experimen-
tal evaluation of traders sharing information about their actions over a
social network in the presence of deceptive traders. Results indicate that
TATM is effective at mitigating traders sharing false information, and
can increase the profit of TATM traders relative to non-TATM traders.

1 Introduction

Niu et al. [8] demonstrate that competition between marketplaces is reflected
directly by the migration of traders between those marketplaces. Traders migrate
based on estimates of expected profits, derived from the trader’s past experience
with that specialist.

Individual traders can improve their strategies based on shared information.
Intra-marginal traders — those sellers (buyers) whose shout price is below (above)
the market clearing price, and are therefore successfully matched – could com-
municate to fellow intra-marginal traders about marketplaces that are highly ef-
ficient, which would lead to an increase in the number of intra-marginal traders
in that marketplace, thus increasing profits for both trader and marketplace. Fur-
thermore, intra-marginal traders can communicate to extra-marginal traders —
those sellers (buyers) whose shout price is above (below) the marking clearing
price, and are therefore not matched — which provides the extra-marginal traders
with some bounds on the market clearing price in a given marketplace.
� Corresponding author.
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However, traders can share false information. For example, deceitful sellers can
communicate that a successfully matched trade had a higher price than is true,
encouraging extra-marginal buyers and sellers to increase their price to obtain a
match. In addition, deceitful sellers can falsely claim a high price was obtained
in another marketplace, thus encouraging other intra-marginal sellers in its mar-
ketplace to migrate away, leaving less competition. Such false information has the
potential to disrupt a market by increasing the profit of deceitful traders at the
expense of other traders and market specialists themselves.

In this paper, we present the Trading Agent Trust Model (TATM) that indi-
vidual traders employ to detect deceptive traders and mitigate their influence on
the individual’s actions. TATM is a simple trust mechanism based in part on the
FIRE model [4]. Traders employing TATM receive information from their neigh-
bours on a social network that outlines their shout information from the previous
trading day, such as price and marketplace choice. TATM traders will mimic their
neighbours on some trading days, and use their own success to judge whether their
neighbour is truthful or deceitful.

Using the JCAT double-auction simulator [8], experimental evaluate TATM
traders sharing information about their actions over a social network in the pres-
ence of deceptive traders. Results indicate that TATM is effective at mitigating
traders sharing false information. The profit of deceitful traders is reduced in the
presence of TATM traders, but in most cases, still remains higher than truthful
traders, and the profit of TATM traders is increased compared to näıve traders
that employ no trust model.

2 Related Work: Trust and Reputation Mechanisms

Enhancing decision making in trading markets by mimicing successful peers has
the potential to improve both individual agent performance and market efficiency.
However, notions of trust and reputation must be considered if reliable estimates
of peer ability are to be constructed. In this section, we review key trust and rep-
utation models from the multi-agent systems literature.

McKnight and Chervany [6] identify four primary categories of trust: compe-
tence, integrity, benevolence, and predictability, which can be used to facilitate
effective interactions and cooperationbetween agents.Typically, trustmodels con-
sider a variety of information sources that are combined to determine a measure
of trust according to the specific preferences of the agent. Closely related to trust
is an agent’s reputation, which can be thought of as an assessment based on the
history of interactions with, or observations of, other agents [4,11].

Recently, Castelfranchi and Falcone [1] have provided an elaborate analysis of
the role of trust in agent-based systems, with a focus on autonomous cognitive
agents, but including cultural, institutional, technical, and normative dimensions.
This endeavour to provide the foundations of a general theory of trust has at-
tracted some critique, for example [2].

In an earlier trust model, Marsh [5] considered a local trust dimension derived
directly from agent interactions. The trust value was a probability value based on
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independent criteria with additional ad-hoc factors associated with risk and im-
portance. Mui et al. [7] proposed a model that extended this idea by incorporat-
ing a multi-part reputation metric derived from components embedded in a social
network. In this model, individual reputation could be derived from direct obser-
vation of other agents, or from inferences based on information gathered from a
social network. In subsequent work, Smith and Desjardins [9] incorporated aspects
of competence and integrity into a formal framework for decision making based on
trust and reputation. Two key phases were used in their framework: (i) assessing
the capability of an agent to fulfil its stated commitments; and (ii) applying this
knowledge to make effective decisions when interacting with other agents.

The FIRE model [4] integrates four different information sources to produce
a comprehensive assessment of an agent’s likely performance. FIRE uses a single
composite trust-reputation value derived from: interaction trust, role-based trust,
witness reputation and certified reputation. Both direct interactions and social net-
work interactions (witness and certified) are used in trust calculations.

A notable trust model from the recommender systems domain is proposed by
Walter et al. [11]. In their model, agents use their social network to gather informa-
tion and use trust relationships to filter the collected information. Recommenda-
tions from neighbours may be received directly or indirectly via the larger pool of
connected agents in the network. The trust values provide a ranking of the recom-
mendations received. A probabilistic selection mechanism is then used for decision
making.

3 The Trading Agent Trust Model

TATM employs a trust and reputation mechanism that aims to detect deceptive
traders on a social network used for sharing trade information. Fundamentally,
TATM is a reinforcement learning-based model, consisting of three components:
1. a return updating policy for estimating the trustworthiness of its neighbours,

based on the interactions it has had with these neighbours;
2. an action choosing policy for deciding which neighbour on the social network

is to be imitated in the next round; and
3. a decision-making strategy for mimicking the marketplace selection and last

shout placed by a neighbour.

3.1 Returning Updating Policy

The return updating policy employed in TATM is based on a component of the
FIRE model [4], presented in Section 2. Interaction trust is built from the direct
experience of an agent. Specifically, each agent rates its partner’s performance af-
ter every transaction and stores its ratings. When an agent requires the trust value
of another agent, it calculates this based on the past ratings using a rate weight-
ing function that favours more recent interactions. The rating recency function is
given by the formula:

w(ri) = e
−Δt(ri)

λ (1)
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in which ri the rating of a particular interaction,Δt(ri) is the time that has elapsed
since that interaction, and λ is a parameter used to modify the decay of a rating
(a lower value of λ means that older ratings are weighted lower).

The return updating policy must be customised for a particular domain. In
JCAT, traders are given an upper bound on the number of commodities they can
trade each day. On a given day, each trader attempts to trade as many of these as
possible at its shout price in a specified marketplace. The shout price, marketplace,
and number of trades made is shared on the social network after each trading day,
as well how many successful trades were made.

In TATM, a trader mimics a neighbour’s shout (see Section 3.2 for a discussion
of neighbour selection) by using the same shout price and marketplace (all traders
have the same maximum number of trades). After playing this strategy, the trader
updates its feedback for that neighbour using a parameter ε:
1. ri = −ε if the trade resulted in a smaller numbers of trades than specified by

the neighbour. We refer to this as a deceptive case.
2. ri = ε if the trade resulted in more than or equal to the number of trades specific

by the neighbour. We refer to this as a non-deceptive case.
However, in a double auction, traders can take advantage of their private informa-
tion to preemptively determine deceit. For example, if a seller receives information
that a neighbour had sold its allocation at price q in marketm, and the seller itself
placed shouts at price p where p < q, also in market m, that were not matched,
then it is highly likely that the neighbour is attempting to deceive; otherwise it
is likely that the seller would also have received successful matches. As a result,
TATM uses the following preemptive rules:
1. ri = −2ε if a seller (buyer) indicates a successful shout 〈q,m〉, and the trader’s

own shout 〈p,m〉, where p < q (p > q), was not matched.
2. ri = −ε if a seller (buyer) and the trader’s own shout 〈p, n〉, where p < q

(p > q), was not successfully matched. The traders are in different markets
(m and n), so we are less sure that the neighbour is deceptive.

In each of these cases, the neighbours trade is not mimicked, and the trader reverts
to its underlying strategy. This feedback policy is simple and does not detect the
degree to which a neighbouring trader is deceptive by, for example, measuring the
difference in the number of trades.

3.2 Action-Choosing and Decision-Making Policies

To choose which neighbour to mimic, a trader calculates a score for each neighbour
as a function of its trust value for that neighbour and the neighbour’s claim of its
performance on the previous trading day. We consider only the previous day for
simplicity. The trust of each neighbour, a, which we will call the neighbour’s Q-
value, is given by the average of all interactions (Equation 1):

Q(a) =
∑n

i=1 wa(ri)
n

(2)

in which n is the number of interactions between the trader and its neighbour.
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Each trader should explore its neighbours to obtain recent feedback, but should
also exploit the knowledge it has built up over time. This exploit-vs-explore dilemma
is addressed using a softmax action selection method that uses a Boltzmann dis-
tribution [10]. Using this strategy, an agent explores its environment first and then
gradually moves its stance towards exploitation when it learns more about the en-
vironment. Thus, the trading agent chooses an action a with the probability of:

P (a) =
eQ(a)/τ∑n
b=1 e

Q(b)/τ
, (3)

in which Q(a) is the value of an action based on feedback from previous applica-
tions of that action (in our case, interactions with a neighbour), and τ is a positive
number that dictates how much of an influence the past data has on the decision.
A high τ value specifies a low influence, while a low value causes them to be close
to their Q(a) values. A parameter, α ∈ (0..1], specifies a rate of decay such that
after each action, the value of τ becomes τ0 ·α, in which τ0 is the value of τ in the
previous round.

The selection of a neighbour is governed by the following formula:

A =
{

max{a | profit(a)× P (a)} (where the trader is a seller)
min{a | profit(a)× P (a)} (where the trader is a buyer) (4)

in which profit(a) is trader a’s profit from the previous day (see Equation 7).
Therefore, the score for each neighbour is the multiple of its shout price from

the previous day and its trust value relative to other neighbours. A seller (buyer)
chooses the neighbour with the highest (lowest) score. If and only the neighbour’s
shout price is greater than the traders, the trader will mimic the neighbour.

4 Experimental Setup

We use JCAT 0.171 to run CAT simulations to examine the effectiveness of the
TATM model. We measure that average daily profit for each type of trader, as
well as the global allocative efficiency, which is a measure of social welfare.

4.1 Traders

We implemented four different types of trading agents: 1) a näıve truthful trader
(no trust model); 2) a näıve deceptive trader; 3) a TATM truthful trader; and 4)
a TATM deceptive trader.

Deceptive traders. Deceptive traders deceive their neighbours by modifying
their shout information before sharing it with their neighbours. There are two
pieces of information that are modified: shout price, and the number of matches
achieved. A parameter, δ > 0, specifies the amount by which this information is
modified. Given a shout of p in which the trader received n matches, a deceptive
trader will share the false information:
1 http://jcat.sourceforge.net/.

http://jcat.sourceforge.net/
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〈p× (1 + δ), n× (1 + δ)〉 (where the trader is a seller)
〈p× (1 − δ), n× (1 + δ)〉 (where the trader is a buyer) (5)

That is, a seller will attempt to raise the general price level of the market, while
a buyer will attempt to lower it, thus pushing intra-marginal traders of the same
type to be extra-marginal, and inducing traders of the opposite type into the intra-
marginal range.

Näıve traders. Näıve traders employ a system in which they simply choose the
neighbour with the best offering. That is, they have no learning mechanism to
determine the trustworthiness of neighbours, and they simply choose a neighbour
to mimic using the following:

A =
{

max{a | profit(a)} (where the trader is a seller)
min{a | profit(a)} (where the trader is a buyer) (6)

Underlying strategies. In our experiments, when a trader chooses not to mimic
a neighbour, it employs its own underlying strategies,which are the zero-intelligence
constrained strategy for shout prices, which chooses a random value between the
minimum and maximum range, provided that this does not result in a loss for the
trader, and random market selection.

4.2 Experiment Variables and Parameters

The independent variables of the experiment are the type of trader. We run two
sets of experiments: one in which all traders are näıve (the non-TATM markets),
and one in which all traders employ TATM (the TATM markets). To help gen-
eralise the results, we vary other parameters in the experiment. For both sets of
experiments, we modify the following two parameters:
1. Number of deceptive traders (ξ) — We vary the ratio of deceptive traders

to non-deceptive in the market from 0.1–0.9, in intervals of 0.1.
2. Deceit level of deceptive traders (δ) – We vary the degree to which decep-

tive traders exaggerate their success from 0.1–1.0, in intervals of 0.1.
We run all pairwise combinations of these parameters, resulting in 90 different con-
figurations in each experiment. Each configuration is run 30 times and each game
lasts 400 days. The results to be presented in the next section are averaged over
the total 12,000 days. Traders are each allowed to trade three units of goods each
day and their private values are drawn from the uniform distribution between 50
and 100. Other parameters are held constant. Each marketplace runs a continuous
double auction [3]. We run five marketplaces in each experimental run, in which
each marketplace charges at a different level on the profit of traders: 0%, 20%, 40%,
60%, and 80% respectively. Traders operate on a 14 × 14 toroidal grid social net-
work, evenly divided between sellers and buyers, and with neighbours randomly
assigned; that is, on aggregate, sellers are connected to an even number of buyers
and sellers.
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Measures. In these experiments, we record two measures. First, we measure the
mean trader type profit, which is the mean daily profit over all simulations of each
type of trader (random, TATM, and deceptive). The daily profit for a trader i is:

profit(a) =
{

(n× |va − pa|)− fa (where pa > 0)
−fa (where pa = 0) (7)

in which vi is the private valuation of trader i, pi is the price of the trade made by
trader i, n is the number of successful trades, and fi are the fees paid by trader i.
In the case that a trader does not make a successful trade that day, they lose the
fees charged by the marketplace.

The mean daily profit of a trader type on a single day is:

P =
∑n

i=m pri
N

(8)

in which tradersm..n are the traders of a particular type.
Second, we measure the global allocative efficiency, which measures how close

the entire market is to trading at the equilibrium price, where the equilibrium price
is defined as the price at which demand equals supply when all traders offer to buy
or sell at their private value, assuming that all traders in the market can trade with
each other. The global allocative efficiency is calculated using:

E =

∑
j

∑
i |vj

i − pj
i |∑

j

∑
i |vj

i − p0|
(9)

in which p0 is the equilibrium price of the market, vj
i is the private value of trader

i in marketplace j, and pj
i is the price paid by trader i in marketplace j.

5 Results

Figure 1 plots the mean of daily trader profit (Equation 8) for all 90 configurations
of the experiment over the 30 iterations for the non-TATM market. These plots are
included to illustrate the effect of the experiment parameters. The plots for global
efficiency and for the TATM-market look similar: a clear downward trend as the
deceit level increases, so these plots are omitted for brevity.

From these figures,we can see a clear downward trend in profit as the deceit level
of the deceptive traders increases. Surprisingly, the number of deceptive traders
has little impact on either trader profit or efficiency. This minimal impact can be
explained by the fact that the number of deceptive sellers is in balance with the
number of deceptive buyers, and on aggregate, each trader is connected to an equal
number of buyers and sellers. As a result, when a seller (buyer) deceives another
trader by increasing (decreasing) their previous shout by the specified deceit level,
the receiving traders’ new shout is likely to be matched by a trader of the opposite
type. The trend downwards as deceit level increases is expected. The probability
of getting a match reduces, first, as the range of shouts starts to increase, and
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second, as traders’ shout values move around the range instead of moving towards
the market equilibrium.

A more important result is the effect of the trust model. Figure 2 shows the dif-
ference in mean profit (expressed as a percentage) between deceptive and truthful
in the non-TATM market (Figure 2a) and in the TATM market (Figure 2b). The
horizontal plane shows 0%, making it easier to see the distinction between a neg-
ative and positive change.

From Figure 2a, we can see that deceptive traders perform better than näıve
truthful traders, except in the cases in which the deceit level is 0.9. This sharp
spike is likely due to the fact that profit obtained by the deceptive traders them-
selves becomes so poor that they will mimic näıve truthful traders. Figure 2b in-
dicates that the impact of deceit can be mitigated using TATM. Truthful TATM
traders outperform their deceptive counterparts for deceit levels 0.7−0.9, and the
difference between the two for other parameters is significantly lower, bottoming
at just above 2% compared with almost 6% for the näıve traders.

Figure 3 shows the inter-market comparison of deceptive traders and truth-
ful traders. It is important to note the different ranges on the Z axes between
Figures 3a and 3b. Figure 3a shows the percentage change in mean trader profit
for truthful agents between the non-TATM markets and the TATM markets re-
spectively. This figure demonstrates that employing the TATM model results in a
higher trader profit for all of the parameters, and that the higher the level of deceit,
the larger the change. This upward trend is because as deceptive agents increase
their deceit level, deceit becomes easier to identify.

Figure 3b plots the same data for the deceptive traders, showing some interest-
ing results. First, even in the presence of the TATM model, deceit can be beneficial.
However, this only holds if there are few other deceptive traders in the market. We
attribute this increase in profit to the fact that the deceptive traders themselves
are employing the TATM model, so are less likely to mimic other deceptive traders.
As the level of deceptive traders increases, being deceptive becomes less profitable.

(a) Truthful (b) Deceptive

Fig. 1. Mean trader profit per type (truthful or deceptive) for the non-TATM market
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(a) Truthful vs. Deceptive (no trust model). (b) Truthful vs. Deceptive (TATM).

Fig. 2. Plots of the difference in mean profit between deceptive and truthful agents in
the two experiments respectively (intra-market comparison), expressed as a percentage.
This is calculated as (PB−PA)/PA, where PA and PB are mean trader profit Equation 8),
for A vs. B. Note the different limits on the Z axis. The gray plane is 0%.

(a) Truthful(no trust model) vs. Truthful
(TATM).

(b) Deceptive(no trust model) vs. Decep-
tive(TATM).

Fig. 3. Plots of the percentage change of mean profit between deceptive traders in each
experiment, and truthful traders in each experiment (inter-market comparison)

6 Discussion and Conclusions

Our results demonstrate that employing TATM is always preferably to a base-line
“no trust” model, as the mean daily profit achieved by traders is higher than their
näıve counterparts for all experiment configurations.

The TATM model reduces the effects of deceptive traders, but these effects can-
not be completely eliminated. The TATM model also helps to mitigate the differ-
ences between truthful and deceptive traders. While deceptive traders increased
their profit in some experimental runs of the TATM market, this is attributed
to themselves employing the TATM model. However, the difference between the
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truthful and deceptive traders is smaller in the TATM markets. Market efficiency
also improves in the TATM model, except when there are a high number of decep-
tive traders with a high deceit level. In these particular cases, the deceptive traders
perform worse themselves.

Overall, the conclusions support our hypothesis that a simple trust model such
as TATM can mitigate the problems of deception in markets.

In future work, we plan to investigate indirect information sharing within a so-
cial network and extending the TATM model to handle this. We also plan to in-
vestigate how TATM can be improved to further mitigate the effects of deceptive
traders.
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Abstract. Multi-robot task allocation research has focused on sequen-
tial single-item auctions and various extensions as quick methods for
allocating tasks to robots with small overall team costs. In this paper we
outline the benefits of grouping tasks with positive synergies together
and auctioning clusters of tasks rather than individual tasks. We show
that with task-clustering the winner determination costs remain the same
as sequential single-item auctions and that auctioning task-clusters can
result in overall smaller team costs.

1 Introduction

Consider a team of autonomous mobile robots operating in an office-like environ-
ment. These robots may be required to deliver documents between departments,
clean up spillages, or act as tour guides to visitors. In many situations there will
be a set of tasks to be completed and we wish for the robots to distribute these
tasks amongst themselves in a manner that satisfies a global team objective.
Recently, multi-robot cooperative auctions have become a popular approach for
solving task-allocation problems [3].

We can achieve an optimal allocation of a set of tasks to robots using a single-
round combinatorial auction. However, in most situations where there are many
tasks, combinatorial auctions fail to perform efficiently due to high communica-
tion and winner determination costs [1]. As an alternative, much of the research
focus has been on the use of sequential single-item auctions (SSI auctions) for
task allocation over multi-round auctions [6]. Although SSI auctions produce a
team cost that is at least as large as combinatorial auctions, they have much
lower communication and winner determination costs which results in a much
quicker allocation of tasks. To lower the team cost in SSI auctions researchers
have looked at improvements and extensions to the bidding phases of SSI auc-
tions through the use of techniques like rollouts, regret clearing and bundle-bids
(the interested reader is referred to [5,7]).

SSI auctions with bundles are an interesting hybrid of standard SSI auctions
and combinatorial auctions in which each robot can bid on dynamic combina-
tions of up to k tasks and, during the winner determination phase, a robot can

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 412–421, 2011.
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be allocated between 0− k tasks. In general, this approach results in lower team
costs as each bundle bid takes into account more synergies between tasks, how-
ever, because of the additional calculations involved in the bidding and winner
determination phases it performs a lot slower than standard SSI auctions.

In this paper we extend the idea of bidding on a collection of tasks and allow
robots to bid on fixed clusters of tasks where a robot will either win all items in
the cluster or none. We show empirically that this method results in lower team
costs than standard SSI auctions and performs much faster than SSI auctions
with bundle bids. More specifically, we demonstrate that SSC auctions result in
lower MiniMax distances than SSI auctions when the number of robots is greater
than 2. Moreover, for the MiniSum team objective, SSC auctions perform well
when the capacity constraint is small.

2 Multi-robot Task-Allocation

We formalise the definition of the task-allocation problem in the same manner
as Koenig et al. [7]. Given a set of robots R = {r1, . . . , rm} and a set of tasks
T = {t1, . . . , tn}, any tuple 〈Tr1 , . . . , Trm〉 of pairwise disjoint bundles Tri ⊆ T
and Tri �= Trj for i �= j, for all i = 1, . . . ,m, is a partial solution of the task-
allocation problem. This means that robot ri performs the tasks Tri, and no
task is assigned to more than one robot. To determine a complete solution to
the task-allocation problem we need to find a partial solution 〈Tr1 . . . Trm〉 with
∪ri∈RTri = T , that is, where every task is assigned to exactly one robot.

The standard testbed of the task-allocation problem is multi-robot routing.
The tasks represent locations to visit. Robots know their locations and can
calculate the costs between locations. We assume costs are symmetric, λ(i, j) =
λ(j, i) and are the same for all robots. The robot cost λri(Tri) is the minimum
cost for an individual robot ri to visit all locations Tri assigned to it. There
can be synergies between tasks, such that, λri(Tr′) + λri(Tr′′) may not equal
λri(Tr′ ∪ Tr′′). A positive synergy is when λri(Tr′ ∪ Tr′′) < λri(Tr′) + λri(Tr′′).
Robots can also have capacity constraints where they can have at most a fixed
number of tasks. We wish to find a solution to the task-allocation problem that
achieves a team objective. In this paper we study two common team objectives:

MiniMax. maxri∈Rλri(Tri), that is to minimise the maximum distance each
individual robot travels.

MiniSum.
∑

ri∈R λri(Tri), that is to minimise the sum of the paths of all robots
in visiting all their assigned locations.

These two team objective result in different allocations of tasks due to how each
robot calculates their bids incorporating synergies between tasks. Lagoudakis et
al. [8] explores these differences in more detail.

3 Sequential Auctions with Clusters

Auction-based methods for task allocation have become increasingly popular
in the recent literature. An auction is composed of three separate phases: the
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initial phase in which an auctioneer sends a request to all robots indicating the
tasks up for auction; a bidding phase in which each robot evaluates the tasks
up for auction and responds with a bid for those in which it is interested; and,
a winner determination phase in which the auctioneer determines the winner
for each task. Common auction types include combinatorial auctions, parallel
auctions and sequential auctions. In combinatorial auctions each robot bids on
all subsets of the tasks on offer. This yields optimal results but the computation
tends to be intractable and is certainly not feasible for any but the smallest
scenarios. In parallel auctions the robots develop a bid for each task and the
auctioneer then allocates the tasks all at once. The computational complexity is
minimal but solutions are likely to be sub-optimal. Sequential auctions represent
a compromise between these two extremes. They progress over several rounds in
which a subset of tasks is auctioned in each round. In the case of SSI auctions,
one item (i.e., task) is auctioned in each round.

We now develop an extension to SSI auctions in which individual tasks are
organised into clusters taking into account positive synergies between tasks.
Robots bid on these clusters to solve the task-allocation problem. We call this
sequential single-cluster auctions (SSC auctions). An SSC auction consists of
three phases: clustering phase, bidding phase, and winner determination phase.
Initially, all tasks are unassigned. Before the auction, a clustering algorithm is
used to allocate all individual tasks into a cluster with the goal of maximising
the positive synergy between tasks in each cluster (clustering phase). Each task
can be assigned to one, and only one cluster. Clusters can be of varying sizes.
During each round, all robots bid on all unassigned task clusters (bidding phase),
the auctioneer then determines the winner and assigns the winning cluster to
the winning robot (winner determination phase). The winning robot must then
complete all tasks in that cluster.

Clustering Phase: Expanding upon our definition of the task-allocation prob-
lem given in Section 2 we introduce the set of clusters C = {c1, . . . , co}. We now
need to allocate all tasks to one and only one cluster. This is achieved by taking
any tuple 〈Tc1 , . . . , Tco〉 of pairwise disjoint bundles Tcj ⊆ T for all j = 1, . . . , o
that satisfies ∪cj∈CTcj = T . For multi-robot routing the synergy between tasks
is represented by the distance between them. Tasks with a large distance sep-
arating them have a low synergy, whereas, tasks with a small distance have a
high positive synergy. In this paper, we use the standard k-means algorithm [4]
for clustering tasks during the empirical experimentation. However, our proposal
does not depend upon k-means and other clustering methods that satisfy these
properties may produce better results.

Once we have organised all tasks into clusters we must ensure that all clus-
ters are allocated to one and only one robot. We do this by taking any tuple
〈Cr1 , . . . , Crm〉 of pairwise disjoint bundles Cri ⊆ C for all i = 1, . . . ,m that
satisfy ∪ri∈RCri = C. As a result of this we have now allocated all tasks into
clusters, and assigned all clusters to robots and therefore it holds that we still
have a valid solution to the task-allocation problem of all tasks being allocated
such that each task is allocated to one and only one robot.
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Now we consider a single round of a SSC auction. We assume that robot
ri ∈ R has already been assigned the set of task clusters Cri ⊆ C in previous
rounds for all ri ∈ R. Therefore U = C\ ∪ri∈R Cri is the set of unassigned task
clusters. Let a bid b be a triple of a robot br, a task cluster bc and a bid cost bλ,
such that, b = 〈br, bc, bλ〉.
Bidding Phase: The set of submitted bids B = {b1, . . . , bm} satisfies: 1) for all
b ∈ B, it holds that br ∈ R and bc ∈ U ; and 2) for all ri ∈ R and c′ ∈ U there exists
exactly one bid b ∈ B with br = ri and bc = c′. That is each robot submits one bid
on each task cluster. For the MiniMax team objective, bλ = λbr (Cbr ∪{bc}). That
is the robot bids the costs to do all tasks assigned to it plus the tasks in the cluster
it is bidding on. For the MiniSum team objective, bλ = λbr (Cbr ∪{bc})−λbr(Cbr ).
That is the robot bids the increase in its costs for doing all of its currently allocated
tasks plus the tasks in the cluster it is bidding on.

Winner Determination Phase: Once all bids have been received, the auc-
tioneer evaluates a potentially winning bid b′ ∈ B according to the value b′λ.
The winning bid for both the MiniMax and MiniSum team objective is the bid
b′ with the smallest b′λ. The auctioneer then assigns all tasks in the cluster b′c to
the robot b′r.

4 Properties

We now describe the unique behavioural properties of SSC auctions. These prop-
erties allow SSC auctions to operate in an efficent manner and generally result
in a small team cost.

1. The number of rounds in a SSC auction is no more than the number of
rounds in a SSI auction.

Proof: We define an SSI auction as the tuple Assi = 〈R, T 〉 where R repre-
sents the set of available robots and T the set of tasks. The number of rounds
in Assi is equal to the number of tasks, Nssi = |T |, as only one task is al-
located per round. We define an SSC auction is the tuple Assc = 〈R, T,C〉.
The number of rounds in Assc is equal to the number of clusters, Nssc = |C|,
as one cluster is allocated per round. Each cluster can have one or more
tasks, therefore, |C| ≤ |T |, and as a result of this Nssc ≤ Nssi.

2. Winner determination time in a SSC auction is equal to winner determina-
tion time in a SSI auction.

Proof: In an SSI auction each bid bs consists of a robot br, a task bt, and
a cost bλ. In an SSC auction the structure of a bid remains the same, with
the exception that bt is replaced by bc (as defined in Section 3). For winner
determination, we have a set of bids B and the value of each bλ is compared
in the same manner in both auction frameworks and |B| does not change.
Therefore the winner determination time does not change.

N.B. SSC winner determination time is much faster than SSI with bun-
dles. This is because in SSI with bundles each bid must include bλ for each
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combination of the k tasks that is being bid on. To determine the winner in
SSI with bundles each bλ for each combination needs to be compared to all
other bids and combinations to determine the winner.

3. When clusters employ positive synergies between tasks the resultant team
cost in a SSC auction is less than in a SSI auction.

Take for example, the same task-allocation problem as Exploration Task
4 in Koenig et al. [6] (Figure 1). In this problem an SSI auction fails to
consider enough synergies between tasks and results in a less than optimal
solution. For the MiniSum team objective the overall distance sum is 20
and the resultant paths for each robot to traverse are r1 → t2 → t1 and
r2 → t4 → t3. For an SSC auction we define our clusters c1 = {t1, t3} and
c2 = {t2, t4}. Auctioning with the MiniSum team objective results in an
allocation of c1 to r2 and c2 to r1 with the resultant paths r1 → t2 → t4 and
r2 → t3 → t1. The overall distance sum is 15. However, it should be noted
that if a cluster fails to employ synergies correctly SSC auctions may result
in team costs that are worse than SSI auctions.

t1 t2

t3 t4

r1

r2

Fig. 1. Exploration Task 4 (Koenig et al.
[6])

Fig. 2. Simulation of an office-like environ-
ment (cf. Koenig et al. [6])

5 Experiment Setup

To test SSC auctions we simulate an office-like environment (Figure 2) as in
Koenig et al. [6]. For each experiment, doors between different rooms and the
hallway are either opened or closed. We tested on 25 different randomly gener-
ated configurations of opened and closed doors with each robot in each configu-
ration starting in a different random location which is standard in the literature
and therefore provides a common setting for comparison. Robots can only travel
between rooms through open doors and cannot open or close doors. In each



Sequential Single-Cluster Auctions for Robot Task Allocation 417

experiment robots are set a fixed task-capacity constraint of the ratio of the
number of tasks to the number of robots. Robots stop being allocated addi-
tional tasks once these capacities are met. For each configuration we test with
|R| ∈ {2, 4, 6, 8, 10} and |T | ∈ {6, 7, . . . , 60}.

We use standard k-means clustering to quickly create clusters of geographi-
cally close tasks to be auctioned. It is important to note that k-means clustering
does not take into account walls and closed doors. This means that it is possible
for tasks to be clustered together that may have a large navigational distance be-
tween them (low synergy). However, this approach best represents a real world
situation where it would be extremely complex to always create an optimal
grouping of tasks. For our experiments we test two different total numbers of
task-clusters. Our first experiment uses a cluster count of half the number of
tasks, and the second uses a cluster count of two-thirds the number of tasks.

For each auction round robots bid on the cluster that will result in the lowest
increase to the team objective. To determine their bid cost each robot needs
to solve a version of the travelling salesperson problem (TSP) where it needs
to travel to all tasks allocated to it but does not return to its initial location.
Solving the TSP is an NP-Hard problem so we need to approximate the true
cost. We do this by using the cheapest-insertion heuristic to add new tasks into
our path and then use the two-opt heuristic [2] to improve our solution.

To compare the effectiveness of SSC auctions we also run parallel, SSI, and
SSI with bundles auctions on the same 25 configurations. For SSI with bundles
we test k = 2 and k = 3 with a non-cautious auctioneer, that is, all k tasks are
allocated in each round. Furthermore, we test hard and soft capacity constraints
for SSI with bundles. Hard capacity constraints ensure that all robots are al-
located exactly their capacity of tasks. Soft capacity constraints allow robots
to go slightly over their capacity, provided they are under their capacity before
the round winner determination and allocation. This comparison of capacity
constraints is necessary because SSC auctions may result in allocations where
robots are slightly over their capacities because of the requirement that all tasks
in a cluster are allocated to the same robot.

6 Results

We begin our analysis with the MiniMax Team Objective with the mean experi-
mental results shown in Table 1. We observe that in all Robot/Task combinations
tested that SSC auctions result in a lower mean MiniMax result than SSI auc-
tions. Overall there is an average MiniMax distance reduction of 20% where the
number of clusters |C| = 1

2 |T | and a reduction of 25% where the number of clus-
ters |C| = 2

3 |T |. However, |C| = 2
3 |T | does not result in lower mean MiniMax

distances than |C| = 1
2 |T | in all Robot/Task combinations. We also note that

SSI auctions with bundles also result in lower mean MiniMax distances than
both standard SSI auctions and SSC auctions. Interestingly SSI auctions with
bundles where k = 3 do not always result in lower results than SSI auctions with
bundles where k = 2 for all Robot/Task combinations. This result, however,
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Table 1. Mean MiniMax Experimental Results

Standard SSC SSI bundles k = 2 SSI bundles k = 3
Capacity Robots Tasks Parallel SSI |C| = 1

2 |T | |C| = 2
3 |T | Hard-Cap Soft-Cap Hard-Cap Soft-Cap

3 2 6 1039 1130 1085 944 823 811 607 613
3 4 12 1094 1138 880 946 828 808 762 755
3 6 18 1060 1156 899 833 743 704 730 675
3 8 24 1199 1112 853 760 668 680 763 706
3 10 30 1092 1159 802 733 656 651 670 636
4 2 8 1318 1284 1242 1108 965 950 1060 1194
4 4 16 1430 1239 1034 1042 880 851 1038 969
4 6 24 1301 1352 1030 868 779 781 762 679
4 8 32 1310 1299 857 856 747 767 789 999
4 10 40 1438 1249 889 758 704 687 821 855
5 2 10 1464 1364 1260 1257 1132 1101 1326 1248
5 4 20 1545 1297 1138 1142 928 905 1001 1119
5 6 30 1485 1289 1087 1003 850 835 915 853
5 8 40 1506 1341 989 952 819 797 974 891
5 10 50 1574 1347 933 872 773 732 850 1051
6 2 12 1699 1690 1421 1459 1231 1197 1092 1117
6 4 24 1711 1457 1274 1142 1039 1010 972 923
6 6 36 1782 1409 1129 1051 840 884 1076 1061
6 8 48 1713 1463 1132 1012 907 812 894 964
6 10 60 1736 1492 957 909 836 813 928 856

Overall Mean: 1425 1313 1045 983 857 839 901 908

is consistent with Koenig’s prior results for SSI auctions with bundles where a
non-cautious auctioneer has been used [7]. Despite, SSI with bundles producing
lower results than SSC the computational overhead is significantly higher and
the consequences of this are discussed further below.

To confirm the validity of our results we perform two-sample independent one-
tailed t tests comparing the SSC auction results to the SSI auction results for each
Robot/Task combination. We define our null hypothesis as H0 : μAssc ≥ μAssi

and our alternative hypothesis as Ha : μAssc < μAssi, that is, we wish to prove
that the mean result for SSC auctions are lower than SSI auctions. We declare
any result a significant difference if the result of the t test P is less than 0.05,
that is, the probability of the decrease between the mean results of SSC auctions
compared to SSI auctions being a result of random variation is less than 5%.

The significance tests show that in all but three Robot/Task combinations
we have a statistically significant reduction in the MiniMax distance, that is,
we accept the alternative hypothesis. The non-significant results occur, in both
|C| sizes, when there are only 2 robots with total tasks {6, 8, 10}. However, in
these scenarios we can expect that clustering will not perform well due to the
low numbers of robots and tasks.

Finally we perform two-sample independent two-tailed t tests for the difference
between the cluster sizes for all Robots/Tasks combinations (H0 : μA|C|= 1

2 |T |
= μA|C|= 2

3 |T |, Ha : μA|C|= 1
2 |T | �= μA|C|= 2

3 |T |). Only two combinations, 〈|R| =
6, |T | = 24〉 and 〈|R| = 10, |T | = 40〉, result in a significant difference between the
two cluster sizes, in which |C| = 2

3 |T | produces the smallest distances. Overall
we can conclude that SSC auctions result in lower MiniMax distances than SSI
auctions when the number of robots is greater than 2.
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Table 2. Mean MiniSum Experimental Results

Standard SSC SSI bundles k = 2 SSI bundles k = 3

Capacity Robots Tasks Parallel SSI |C| = 1
2 |T | |C| = 2

3 |T | Hard-Cap Soft-Cap Hard-Cap Soft-Cap

3 2 6 1653 1819 1589 1615 1661 1617 1398 1398
3 4 12 2757 2867 2331 2411 2243 2378 1997 1984
3 6 18 3580 3542 2864 2982 2643 2628 2284 2285
3 8 24 4723 4395 3366 3596 3191 3281 2489 2462
3 10 30 5057 4928 3764 3869 3394 3408 2751 2663
4 2 8 2085 1941 1889 1971 1857 1796 1850 1844
4 4 16 3564 3180 2783 2892 2641 2637 2514 2497
4 6 24 4417 4033 3448 3718 3268 3301 2612 2652
4 8 32 5428 4780 3749 4144 3607 3703 3125 3391
4 10 40 6370 5391 4371 4605 3998 4181 3183 3442
5 2 10 2378 2149 2202 2198 2154 2127 2444 2145
5 4 20 4026 3029 3170 3372 2981 3038 3019 2933
5 6 30 5129 4086 4044 4078 3677 3825 3025 2842
5 8 40 6334 4741 4549 4637 4221 4320 3529 3403
5 10 50 7087 5353 4745 5078 4526 4848 3850 3947
6 2 12 2834 2628 2397 2417 2482 2464 2402 2478
6 4 24 4435 3537 3512 3498 3360 3407 3014 2859
6 6 36 5941 4475 4302 4139 4207 4081 3377 3593
6 8 48 7234 5268 5028 5022 4753 4961 3791 3824
6 10 60 8059 5805 5523 5731 5289 5093 4007 4170

Overall Mean: 4654 3897 3481 3599 3308 3355 2833 2841

The mean results of the MiniSum Team Objective is shown in Table 2. Overall
there is a mean MiniSum distance reduction of 12% where the number of clusters
|C| = 1

2 |T | and a reduction of 8% where the number of clusters |C| = 2
3 |T | when

compared to SSI auctions. However, in contrast to the MiniMax results, there is
not a mean distance reduction in every Robot/Task combination. In particular,
the combination 〈|R| = 4, |T | = 20〉 shows a substantial increase in the MiniSum
distances in both cluster sizes. The results for our experiments using SSI with
bundles show that they result in lower distances than SSI and SSC auctions.
We observe that in experiments with bundle size k = 3 the mean distance is
consistently lower than experiments with bundle size k = 2. This is in line with,
and validates, Koenig’s previous work on SSI with bundles.

We perform two-sample independent one-tailed t tests comparing the SSC
auction results to the SSI auction results for those Robot/Task combinations
where the SSC result is less than the SSI result (H0 : μAssc ≥ μAssi, Ha :
μAssc < μAssi), that is, we test for a statistically significant decrease in the
mean results of SSC compared to SSI. When the SSC result is greater than the
SSI result we perform two-tailed t tests for a difference between the two samples
(H0 : μAssc �= μAssi, Ha : μAssc = μAssi), that is, we test for no statistically
significant difference between the mean results.

The results of these tests give an interesting partition of the data. In ex-
periments where the robot capacity is 3 or 4 we confirm a significant result in
the reduction of the mean MiniSum distances for all combinations except those
where |R| = 2. However, in all cases where the robot capacity is 5 or 6 we get
no significant difference between the SSI and SSC auctions, except, in the previ-
ously mentioned combination 〈|R| = 4, |T | = 20〉 with |C| = 2

3 |T | which, in the
two-tailed t tests, confirmed a significant increase in distance.
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The MiniSum results are not in line with our predictions. The raw data ap-
pears to show SSC auctions mostly performing better than SSI auctions. How-
ever, our statistical testing does not confirm this. We can conclude that when
the capacity constraint is small SSC auctions perform well. However, more ex-
periments are needed to examine situations where robots are allocated many
tasks. For instance using a different clustering algorithm, such as potential fields
or graph partitioning, may produce a significant reduction in the distance.

Table 3. Mean Total Task-Allocation Determination Time (seconds)

Standard SSC SSI bundles k = 2 SSI bundles k = 3
Capacity Robots Tasks Parallel SSI |C| = 1

2 |T | |C| = 2
3 |T | Hard-Cap Soft-Cap Hard-Cap Soft-Cap

3 2 6 1.9 2.4 2.6 2.5 3.3 2.4 2.9 2.9
3 4 12 4.0 7.8 8.2 8.1 14.4 14.9 14.9 15.2
3 6 18 7.3 16.3 16.4 16.1 46.9 47.2 47.4 47.5
3 8 24 12.7 29.6 32.1 29.5 117.8 119.0 121.3 120.8
3 10 30 20.0 47.2 49.3 46.4 245.3 244.8 244.9 242.3
4 2 8 2.3 3.4 3.5 3.4 4.1 4.0 4.4 4.4
4 4 16 5.1 11.7 11.7 11.5 23.4 23.9 24.9 24.9
4 6 24 9.4 25.4 26.2 24.8 80.2 80.3 82.9 81.0
4 8 32 16.1 45.2 46.8 45.8 201.0 200.4 207.5 207.7
4 10 40 29.8 72.9 73.4 72.5 415.0 422.8 419.9 431.4
5 2 10 2.7 4.4 4.6 4.6 5.5 5.5 5.5 5.4
5 4 20 6.1 16.1 16.2 16.3 34.2 34.2 35.3 35.6
5 6 30 11.4 35.9 36.5 35.6 120.8 123.1 124.7 125.4
5 8 40 19.9 65.3 66.1 65.5 312.5 326.3 320.5 315.2
5 10 50 31.4 104.3 105.0 102.4 649.5 649.4 659.9 661.9
6 2 12 3.2 5.7 6.9 5.7 7.1 7.1 7.2 8.1
6 4 24 7.2 21.4 22.1 25.5 48.3 48.4 50.5 50.6
6 6 36 14.1 47.1 50.5 49.0 171.7 170.5 180.4 178.7
6 8 48 24.3 87.1 87.8 87.0 445.7 432.6 445.4 458.4
6 10 60 37.9 138.4 146.4 140.0 908.4 890.0 929.5 1082.3

Overall Mean: 8.9 26.3 27.1 26.4 128.5 128.2 131.0 136.7

Table 3 shows the mean time to run auctions and allocate all tasks for each
Robot/Task combination. For all auctions except SSC we begin timing when
the robots are informed of the tasks to bid on and stop timing when all tasks
have been allocated. For the SSC auctions we begin timing when the clustering
algorithm begins and stop when all tasks have been allocated.

Parallel auctions are always the quickest auction to finish, however, they pro-
duce the most sub-optimal distance results. Standard SSI are on average around
three times slower than Parallel auctions. SSC auctions run in a comparable
time to SSI auctions. This is an important point because SSC auctions need
to generate the task clusters before auctions can begin which can take consid-
erable time. However, once the auctioning phases begin they are quicker than
SSI auctions because they have fewer auction rounds. This result validates our
properties from Section 4 and analysing both the mean distance results and the
timing results empirically demonstrates that SSC auctions can result in a lower
team objective distance in a similar time to SSI auctions.

Finally, SSI auctions with bundles perform around five times slower than SSI
and SSC auctions and 13 times slower than Parallel auctions. Although SSI auc-
tions with bundles produce the lowest team objective distances the performance
trade-off cost is very high.
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7 Conclusions and Further Work

In this paper we have shown the benefits of SSC auctions as an alternative to
SSI auctions for the allocation of tasks to robots. We developed the theoretical
foundations of SSC auctions and outlined their unique behavioural properties.
Using the standard multi-robot routing test-bed we demonstrated empirically
that SSC auctions can produce smaller team objective results than SSI auctions.
We also compared these results to another extension of SSI auctions which in-
volves grouping tasks, SSI auctions with bundles, and showed that SSC auctions
perform much quicker.

This paper provides scope for further investigation of SSC auctions. For in-
stance, a comparison of the effectiveness of different clustering algorithms could
provide an insight into the trade-off between run-time speed and the optimality
of the final allocation. Applying SSC auctions to dynamic task allocation and
reallocation in a manner similar to [9] can also be considered. Finally, clustering
non-homogeneous tasks could be advantageous in the quick allocation of complex
task sets.
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Abstract. Biologists are interested in studying the relation between the
genetic diversity of a population and its fitness. We adopt the notion of
entropy as a measure of genetic diversity and correlate it with fitness
of an evolutionary ecosystem simulation. EcoSim is a predator-prey in-
dividual based simulation which models co-evolving sexual individuals
evolving in a dynamic environment. The correlation values between en-
tropy and fitness of all the species that ever existed during the whole
simulation are presented. We show how entropy strongly correlates with
fitness and investigate the factors behind this result using machine learn-
ing techniques. We build a classifier based on different species’ features
and successfully predict the resulting correlation value between entropy
and fitness. The best features affecting the quality of classification are
also being investigated.

Keywords: artificial life modeling, individual-based modeling, genetic
diversity, entropy, fitness.

1 Introduction

Genetic diversity serves as a way for populations to adapt to changing environ-
ments. With more variation, it is more likely that some individuals in a popula-
tion will possess variations of alleles that are suited for the environment. Those
individuals are more likely to survive to produce offspring bearing that allele.
The population will continue for more generations because of the success of these
individuals. In summary, genetic diversity strengthens a population by increasing
the likelihood that at least some of the individuals will be able to survive major
disturbances, and by making the group less susceptible to inherited disorders.
Many biological studies showed that decreased population genetic diversity can
be associated with declines in population fitness [10] [7] [16]. However, popula-
tions also learn from their environment by selecting the individuals with highest
fitness. This driving force is opposite to the previous one and leads to unsta-
ble equilibrium value for genetic diversity. Because overall population diversity
affects both short-term individual fitness and long-term population adaptive ca-
pacity, there is a need to develop an empirical quantitative understanding of the
relationship between population genetic diversity and population viability.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 422–431, 2011.
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Like in many disciplines, simulation modeling played a great role in study-
ing evolutionary processes. In this paper we investigate the relation between
species fitness and species genetic diversity using EcoSim; an Individual based
predator-prey ecosystem simulation. We use the Shannon entropy, as a measure
of genetic diversity and study its correlation with species fitness. We present the
different correlation values obtained between entropy and fitness and investigate
the factors behind these values. The rest of the paper is organized as follows: A
brief description of our model used is presented in Section 2. Section 3 depicts
the details of the entropy as a genetic diversity measure. The correlation results
between entropy and fitness are presented in Section 4. Furthermore, building a
classifier for inference, and feature selection is illustrated in Section 5, followed
by a summed up conclusion in Section6.

2 The Model

In order to investigate several open theoretic ecological questions we have de-
signed the individual-based evolving predator-prey ecosystem simulation plat-
form EcoSim introduced by Gras et al. [4] [5] [3]. Our objective is to study how
individuals and local events can affect high level mechanisms such as community
formation, speciation or evolution. In this paper, we have used EcoSim, to com-
pute and study the relation between genetic diversity and fitness. EcoSim uses
Fuzzy Cognitive Map as a behavior model [6] which allows a combination of com-
pactness with a very low computational requirement while having the capacity
to represent complex high level notions. The complex adaptive agents (or indi-
viduals) of this simulation are either prey or predators which act in a dynamic
environment of 1000 x 1000 cells. Each cell may contain several individuals and
some amount of food from which individuals gain energy. Preys consume grass
which is dynamically distributed, whereas predators predate on prey individu-
als. An individual consumes some energy each time it performs an action such
as evasion, search for food, eating and breeding. Each individual performs one
action during a time step based on its perception of the environment.

Fuzzy Cognitive Map (FCM) [6] is used to model the individual’s behavior
and to compute the next action to be performed. The FCM is coded in the indi-
vidual’s genome through which evolution acts. Each agent possesses its unique
proper FCM, and the system can still manage several hundreds of thousands
of such agents simultaneously into the world with reasonable computational re-
quirements. A typical run lasts several tens of thousands of time steps, during
which, several hundreds of millions of agents will be born and several thousands
of species [1] will be generated, allowing evolutionary process to take place and
new behaviors to emerge to react to a constantly changing environment. A FCM
is a graph which contains a set of nodes, each node being a concept, and a set of
edges, each edge representing the influence of one concept on another. In each
FCM, three kinds of concepts are defined: sensitive (such as distance to foe or
food, amount of energy, etc), internal (fear, hunger, curiosity, satisfaction, etc)
and motor (evasion, socialization, exploration, breeding, etc.). The FCM serves
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as a genome for each individual. The genome length is fixed to 390 sites, where
each site corresponds to an edge between two concepts of the FCM. In a breed-
ing event, the FCM of the two parents is combined and is transmitted to their
unique offspring after the possible addition of some mutations.

3 Entropy as a Measure of Genetic Diversity

Depending on the specific problem or representation being used, ranging from
biological domain to genetic programming, numerous diversity measures and
methods exist. The use of information theoretic measures such as Shannon en-
tropy [13] or mutual information was controversial in many of the areas of biology
that aim to understand how organisms have evolved to deal with information,
including behavioral biology, evolutionary ecology and genetics. Sherwin [14]
showed that Shannon entropy proves its ability in measuring diversity in eco-
logical community and genetics. He also highlighted the advantages of using
entropy based genetic diversity measures, along with surveying these diversity
measures. A close relationship between; biological concepts of Darwinian fitness
and information-theoretic measures such as Shannon entropy or mutual informa-
tion, was found. Furthermore, it was shown that in evolving biological systems,
the fitness value of information is bounded above by the Shannon entropy [2].
Shannon Information theory defines uncertainty (entropy) as the number of bits
needed to fully specify a situation, given a set of probabilities. These probabili-
ties can be estimated by simply counting the abundance of each genotype (site)
in the population. Therefore, these probabilities are only meaningful when calcu-
lated with respect to population of individuals. The entropy content of the whole
sequence (genome) is approximated by summing the per-site entropy and then
summing over all sites in the sequence. This is only an approximation because
it ignores interactions between sites (epistasis).

The lower the entropy, the less diverse are the genomes of a population and
vice versa. There is a limit in the desired values of entropy. When it approaches
its maximum, it indicates a completely non-uniform population close to random-
ness. On the other hand very low entropy (close to 0) means too much similarity
between individual genomes which need to diverge more in order to learn and
survive in their dynamic environment. When the entropy values are within an in-
termediate range, it could be considered as a desirable diversity indication. So a
good balance between learning from the environment (low genetic diversity) and
increasing the diversity (high genetic diversity) should be met in order to ensure
the well being of species. Initially all prey and predator individuals are given
the same value for their genome respectively. Step after step as more individuals
are created, changes in their genomes occur. In each time step we compute the
entropy for all existing species. We also calculate the fitness for every species
as the average fitness of its individuals. We define fitness of an individual as
the age of death of the individual plus the age of death of its entire offspring
population. Accordingly, the fitness value mirrors the individual’s capability to
survive longer and produce high number of strong adaptive offspring.
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4 Measuring Correlation between Entropy and Fitness

EcoSim gives us the chance to study the relation between species genetic diversity
and species fitness, not only in certain environmental conditions and at specific
time like done in biological studies [7] [16] [8], but also through evolution. In
EcoSim the environment changes from one place to another and from a time
step to another. Individuals that evolve in different parts of the world have
different information stored in their genome about the environment they evolve
in. Furthermore, as we model a predator-prey system, we have co-evolution. This
means that the strategies (behaviors) of each kind are continuously changing
trying to adapt to the other kind. Thus there are many factors affecting the
genetic diversity and fitness and controlling values of correlation between them.
At every time step we calculate entropy and fitness for all existing species. In
order to investigate their possible correlations, we first begin by calculating the
Spearman’s cross correlation [15], for all prey species, between their genetic
diversity and their fitness. The Spearman measure ranks two sets of variables and
tests for a linear relationship between the variables’ ranks. A perfect Spearman
correlation of +1 or -1 occurs when each of the variables is a perfect monotone
function of the other.

In our evolutionary ecosystem the effect of the diversity measure on fitness
is not immediate. There must be a time shift between the variation in genetic
diversity and its effect on fitness. Also because we did not determine which
attribute is the cause of the other we calculate the correlation in both shift
directions. We compute the Spearman correlation coefficient, between these two
time series for every possible shift between -s and +s time steps. Basically we
correlate the entropy at time t with fitness at time t + s where s ranges from -s
to +s.

Although there are many factors that might affect fitness beside genetic di-
versity, we managed to find strong correlation between entropy and fitness for
all prey species. We present the cross-correlation charts for some prey species in
Fig.1. The x-axis in these charts represents the different shifts for the time series.
The y-axis represents the cross-correlation value at the corresponding shift. From
the figure we see that not only different species have different cross-correlation
values, but also the same species correlate differently based on the time shift.
Note that the dynamic environment, co-evolution and changing parameters with
time, all affect species behavior. Thus, correlation values for the same species
might vary with time and through the course of evolution, a fact that is feasible
to study in our model but not in biological experiments. This fact encouraged
us to add a time frame to the two series and measure correlation within the spe-
cific time frame. Consequently, we split these time series into sliding windows
of 200 time steps centered at every time step. Within each window we calculate
all possible correlations with different shifts +-s. Then we choose the highest
correlation value (whether positive or negative) and assign it to the species at
that time step.

We present the results of 5 different runs of the simulation each one con-
taining 16,000 time steps and generating around 110,000 instances in average.
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Fig. 1. Different prey species correlation values between entropy and fitness. x-axis
represents the different time shifts. Y-axis represents the correlation values.

We assign three different classes to the correlation values. Correlation with values
between -0.5 and 0.5 are class WEEK CORR which shows the situation where
there is either no or weak correlation. Correlation values above 0.5 are high
positive (HIGHP) and correlation values below -0.5 are high negative (HIGHN)
respectively. We calculate these correlation classes for all instances (which are
each species at every time step) in every run and present the percentage of each
class with a window of 200 and maximum shift of 25 in both directions. In av-
erage of 5 runs there is 26.8%, 38.4%, 34.6% for classes HIGHP, HIGHN and
WEEK CORR respectively.

We investigate variations in window and shift values to better tune our model.
Having a window of 200 and a maximum shift of 20 in both directions gave in av-
erage of 5 runs 17%, 29.6% and 53.4% for HIGHP, HIGHN and WEEK CORR
correlation classes respectively. Increasing the window and maximum shift to
400 and 50 was also tested. The average percentages were 23.7%, 27.5% and
48.8% for HIGHP, HIGHN and WEEK CORR classes respectively. Increasing
the shift values increase the percentage of high correlation instances, as more
time is needed to detect an increase in fitness after an increase in genetic diver-
sity. Also note that increasing the window does not necessary increase the high
correlation values as some fluctuations in the entropy or fitness time series could
exist. The values of shift that leads to the highest correlation values were also
examined. We found that 37.7% of instances in 5 runs obtained highest corre-
lations from a positive shift between 10 and 25. In addition, 38.7% of instances
in average of 5 runs found highest correlation in negative shift between -10 and
-25. It shows that for more than 76% of the cases it need between 10 to 25 time
steps to see the effect of genetic diversity on the fitness or vice-versa. These values
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correspond roughly to 1 to 3 ’biological generations’ which seems a reasonable
time to observe the effect of genetic variations in a population.

From the above discussion we observe high values for both negative and pos-
itive correlations. These results support the claim of the great influence the ge-
netic diversity has on the well being of species. High positive correlation values
mean that an increase in the genetic diversity, results in an increase in species
fitness. There are many ways to interpret these results. A newly forming species
with a small population would gradually tend to increase its genetic diversity and
subsequently positively correlates with the fitness. It is worth mentioning that
individuals in EcoSim adapts to their constantly changing environment. This
adaptation could be mirrored in the increase of similarity of the species FCM
(and thus a decrease in entropy), as new interesting behavior for the current
environment has been discovered and then diffuse in the population. Negative
correlations imply the fact that a species decreases diversity in order to reach sta-
bility by learning from its environment. Our motivation to validate these results
and further investigate the reason behind these correlation values encouraged
us to build a classifier. The interest of building this classifier is first to see if
some specific species properties can predict the current evolutionary behavior of
a species (that is if it is learning from the environment or increasing its diver-
sity to be able to react to a future change in the environment). It can also help
to understand what are the factors and conditions that affect the evolutionary
behavior. Therefore, we try to infer the correlation value knowing some features
about the species. If we are able to correctly classify unknown instances based
on a trained classifier, it would validate our correlation results.

5 Building Classifier for Inference

In order to validate our high correlation values found between entropy and fitness
we make use of machine learning classifiers. We built a classifier to infer the class
correlation using decision trees. We use the C4.5 algorithm [9] with pruning,
implemented in the WEKA [17]. The C4.5 is a powerful tool which also provides
decision rules that can help in the interpretation of the classifier. In order to build
a classifier we had to choose the features that would best describe the species
and has direct effect on the species fitness. We choose features from both internal
and physical concepts. These features are: the number of individuals in species,
the average age of individuals in species, the average speed of the individuals and
their average energy level. The average number of reproduction events, average
number of reproduction failing events, average activation level of reproduction
and the spatial dispersal are also included. In addition we also include the average
activation level of fear, hunger, satisfaction, nuisance, curiosity (which encourage
individuals to move). Finally, we include the entropy and fitness for each species.
In total we have 16 features including the class variable which is the correlation
with values HIGHN, HIGHP and WEEK CORR. Our next step was to try to
select the best features from these 16 features in order to both simplify the model
and discover the most important features.
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5.1 Feature Selection

To increase the quality of the classifier we use feature selection in order to ex-
tract the most important features from the above list. This step will provide
more semantics about which features most influence the value of correlation.
We use a wrapper feature selection method [18] [11] based on an estimation
of distribution algorithm (EDA) called CMSS-EDA [12]. This feature selection
method is particularly efficient for problems with high level of interdependency
between features. We search for the subset of variables which maximizes AUC
(Area Under ROC Curve) obtained by a Bayesian network classifier.

The best chosen features are population size, entropy, fitness, spatial dispersal,
age and reproduction fail. We ran the feature selection algorithm on all the 5
runs and they all found the same best features. This fact shows the stability
of the simulation which is important to be able to discover meaningful generic
rules. Clearly, entropy and fitness are chosen among the best features as they
are the two features being correlated and subsequently have a direct effect on
the correlation class variable. But also fitness and entropy values determines the
sign of correlation being either positive or negative. But this is not a bias in
our analysis as what is measured here is how a specific value of either entropy
or fitness, at a given time step, affects the future (or is affected by the past)
correlation between fitness and entropy. Studying the effect the population size,
which was among the selected features, has on fitness is a major study in biology.
Some studies showed that population size and genetic variation are strongly
positively correlated with fitness [8]. Also, loss in fitness and genetic diversity
was accompanied by a drop in population size in [10]. Furthermore, positive
correlation between genetic diversity fitness, and population size was shown in
[16]. Another selected feature was spatial dispersal. It was also discovered that
spatial dispersal is a very important factor maintaining genetic diversity and
subsequently fitness [16]. The last two selected features are the average age and
the average reproduction fail. From the fitness definition we used,clearly these
two features have a direct effect on the fitness value as the higher the average age
of species population the higher its fitness. Also, the decrease in the reproduction
failure is accompanied by the increase in the fitness. The similarity between
the best features discovered by our system and the most significant biological
features affecting the genetic diversity and fitness is noticeable. Furthermore, the
significance of the best features chosen highlights the validity of our calculations
and the founding of the strong correlation between genetic diversity and fitness
in our system.

5.2 Classification Results

We build a classifier using the C4.5 algorithm implemented in WEKA environ-
ment. We use the window of 400 and fix the shift to 25 time steps for calculating
the correlations. The reason behind that is to have all instances on the same scale
and thus comparable. Also, increasing the window for more than 400, subject the
fitness and entropy series to fluctuations. Furthermore, decreasing the window
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Table 1. Percentage of high positive, high negative, week correlation and high corre-
lation prey instances for five different runs

Run Percentage Percentage Percentage Percentage
HIGHP HIGHN WEEK CORR HIGH CORR

Run 1 13% 15.5% 71.5% 28.5%

Run 2 13.3% 17.6% 69.1% 30.9%

Run 3 11.3% 15.9% 72.8% 27.2%

Run 4 9.8% 11.4% 78.8% 21.2%

Run 5 11.8% 14.9% 73.3% 26.7%

Average 11.8% 14.9% 73.3% 26.7%

Table 2. Accuracy percentages for training and testing with the C4.5 classifier for 5
runs of the simulation

Run Train Test Accuracy Average Test Accuracy STD test accuracy Number
Accuracy on same run on other 4 runs on other runs of rules

Run 1 79.3% 80.3% 60.1% 4.9 294

Run 2 74.7% 75.3% 66.8% 0.8 307

Run 3 77.2% 78.1% 63.2% 3.2 280

Run 4 80.2% 80.2% 69.1% 2.6 181

Run 5 78% 78% 66.9% 3.8 263

Average 77.9% 78.4% 65.2% 3.1 265

tend to influence the correlation results to higher correlations. We choose 25 as a
shift value based on the analysis of which shift leads to the highest correlations.
Table 1 presents the percentages for HIGHP, HIGHN, WEEK CORR and the
sum of HIGHP and HIGHN called HIGH CORR, for the 5 runs. The 6 fea-
tures used for the model are the ones selected from the feature selection process.
We split the instances for each 5 runs into 80% for training the classifier using
10-fold cross validation and 20% for testing with C4.5 pruning model. Table 2
presents training and testing accuracy on data set from the same run. We also
tested training the classifier on data set from one run and testing on another
data set from the other runs to infer generality of the model. The confusion
matrix showed high true positive results for training and testing on the same
run. The results from testing on another run showed only reasonably high true
positive values when accuracies is above 65%. This is due to the fact that each
run has variations in terms of attributes values and ranges and also to possible
overfitting. However, the model was able to discover some rules that can make
good prediction on unclassified instances. The good classification accuracy on
the test set of the same run shows the validity of our calculations of entropy as
genetic diversity and its high correlation with fitness. It also shows that there ex-
ist specific conditions of the species that lead to a positive or negative correlation
between fitness and genetic diversity.
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6 Conclusion

In this paper we introduced the use of Shannon entropy as a measure of genetic
diversity of an individual based evolutionary ecosystem simulation. We found
very high correlation both negative and positive between entropy and fitness.
In order to validate our correlation results and further understand the reasons
behind these results we built a classifier to predict the correlation class variable
based on training and testing sets. We found high accuracy for classification
which proves the interest of our genetic diversity measure and its correlation
with fitness. In addition, we used feature selection to find the best features af-
fecting the correlation values. We showed how these extracted features are similar
to the factors affecting genetic diversity and fitness in community ecology. The
similarity between results of five different runs of the simulation proves the sta-
bility of the simulation and the generality of our findings. This study allows us
to show that the relation between genetic diversity and fitness changes based on
time and other features such as reproduction rate, population size and spatial
dispersal. In the future we will work on our classification problem to try to re-
duce the overfitting effect. We will also investigate more about the values of the
features and which values lead to negative or positive correlation which would
have a great impact on community ecology domain.
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Is Revision a Special Kind of Update?
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Abstract. It is widely acknowledged that belief revision and belief up-
date are two very different types of processes – one is appropriate to
model belief change in a static environment, the other in a dynamic en-
vironment. Technically speaking, the former is constructed with the aid
of a global preference ordering over possible worlds as the selection mech-
anism, and the latter with the aid of a family of such local orderings. It
has been argued that update can be defined via revision. In this paper I
argue that indeed revision can be defined via update in a restricted sense
if a distance function is used as the selection mechanism.

1 Introduction

How a rational agent ought to change its beliefs has been a focal point for AI
researchers for the better part of last two and half decades. The story goes that
artificial agents such as robots must be provided with the ability to update their
beliefs as they receive and process new information, perceptual or otherwise.
There are two major threads of research that have been carried out under this
umbrella concept of belief change. One is called belief revision, the central op-
eration in the AGM framework named after its founding fathers [1]. The other
is called belief update that was put forward by Katsuno and Mendelzon as an
alternative to belief revision [7]. The received wisdom has it that belief revision
is appropriate for processing new information in a static world, where the new
information either supplements the current information, or rectifies existing er-
ror in the current knowledge. On the other hand, belief update is appropriate
for processing new information in a dynamic world, where the new information
indicates that the world has changed and the current knowledge is dated. The
purpose of this paper is to explore if this nice storyline is actually as good as
it appears to be. I will show that if we use a distance measure as the underly-
ing mechanism for driving both revision as update, as has been advocated by
Lehmann, Magidor and Schlechta [8], then revision by some information of one
belief body reduces to update by the same information of a different body of
beliefs. It is, as it were, one person’s revision is another person’s update.

In what follows, I will try to tell the story of this somewhat interesting result
in a rather informal manner. As usual, I will assume a propositional language
� The author was a visitor at the School of CSE, University of New South Wales,

Australia during the period this paper was written.
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generated from a finite set of atomic sentences. Given the finitary nature of the
language, the body of beliefs of an agent can be represented as a single sentence;
I typically denote it by k, and variously call it a belief base, belief set or a body
of beliefs ignoring the standard distinction drawn between these names. I denote
beliefs by lower case Roman letters, and sets of beliefs by upper case Roman
letters. By a world, interpretation (or even model) I mean a function that tells
for each sentence whether it is true or false. Worlds are denoted by lower case
Greek letters, sets of worlds by upper case Greek letters, and the set of all worlds
by Ω. Given a set of sentences X , by [X ] I denote the set of all models of X ;
and I drop curly brackets if X is a singleton (thus [{x}] is simplified to [x]). As
standard, I use ∗ and ' for revision and update operations, thus k ∗ x and k ' x
are sentences, respectively representing the result of revising and updating k by
x. I will use ( to denote a preference relation (plausibility preorder) over worlds;
its strict part is denoted by �, and the equivalence part by ≈.

2 Need for Selection Mechanisms

It is not always obvious how a piece of new information can be accommodated
into one’s body of beliefs, or a piece of old information can be removed from
it, if the process in question is to be deemed rational. Consider for instance a
situation where an agent believes:

1. a : the moon is made of cheese,
2. b : cheese is green

and everything else that logically follows from them, such as,

3. a ∧ b : the moon is made of green cheese1.

Now, suppose the agent in question reliably learned that

4. a→ ¬b : the moon is made of cheese only if it (cheese) is not green.

Arguably a rational agent must maintain consistency among its beliefs, and hence
cannot accommodate this new piece of knowledge while believing both a and b
and their logical consequences. Accordingly it must purge some offending beliefs
before accommodating a→ ¬b. Theoretically, there are different choices available
to the agent. For instance, it might want to discard all its current beliefs, to the
extent it is possible,2 before accommodating the new piece of information. In this
example, then, the agent would only be believing a → ¬b (and whatever else
follows from it). However, this is hardly a rational course of action, considering
that it entails massive loss of information. How the agent should proceed in this
case would depend on one’s favoured conception of rationality.
1 The green in the proverb, the moon is made of green cheese, indeed denotes the

quality of being young or fresh, not the colour green.
2 The agent cannot discard beliefs that are willy nilly true, namely logical truths such

as a→ a.
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A very simple approach towards getting a handle on rationality in this context
is to assume that the agent must minimally contract its body of beliefs such that
the result is consistent with a → ¬b (that is, a ∧ b is no longer a consequence
of its beliefs), and then accommodate the new piece of information a → ¬b. It
is well known in the literature that this proposal, dubbed maxichoice revision
(respectively contraction) in general is not acceptable [1, 4]. In particular, there
are too many ways of carrying out such minimal change to one’s body of knowl-
edge,3 and the information removed from one’s body of knowledge is so little that
after incorporating the new piece of information, the agent would behave like an
omniscient agent, with an opinion on the truth of every proposition expressible
in its object language.

One way out of this choice problem – of choosing exactly one from the nu-
merous maxichoice options available – and consequently avoid its undesirable
consequences, is to consider all the available options as equally good, and be-
lieve only what is commonly supported by all of them. This is called the full meet
revision (respectively contraction) [1, 4]. It turns out that this leads to massive
loss of information in that after a nontrivial revision by some sentence x, the
agent would lose all its old knowledge and end up believing only x and whatever
else logically follows from it.

Clearly then the rational option is to choose some middle path between these
to extremes. The agent needs access to some mechanism which would guide it to
choose the best among all the maxichoice options available, and the agent can
then believe in only those propositions commonly supported by them. Hence
what is required is an appropriate selection mechanism. There are different such
selection mechanisms suggested and studied in the literature, starting from a
selection function over remainder sets [1], through a preference ordering over
interpretations (modulo the object language) [6], to epistemic entrenchment, a
relational measure over sentences indicating which belief is how hard to discard
[5]. In the next two sections, I briefly describe two different types of selection
mechanism, both semantic in character. The first type, called the global selection
mechanism, is used to deal with belief change in static environment, and as the
name suggests, a single such mechanism is adequate for this purpose. The second
type, called the local selection mechanism, is appropriate to model belief change
in a dynamic environment – and typically a family of such mechanisms would
be required, one for each possible state of the environment in which change is
being effected.

3 Global Selection Mechanisms and Belief Revision

Let us briefly look at a very popular selection mechanism designed to handle
belief change in static environments. It was proposed by Adam Grove, and best
known as a system of spheres [6]. The idea is, we envisage the interpretations (or
3 In the nontrivial case, when a sentence x is being removed from one’s body of

knowledge, there are as many ways of carrying out such minimal mutilation as there
are models of the sentence ¬x.



Is Revision a Special Kind of Update? 435

worlds) forming a number of spheres, the bigger ones enclosing the smaller ones.
The innermost sphere in this conception, the very core of this system of spheres,
consists of the set of worlds that the agent considers most plausible, namely
exactly the set of worlds that model its current knowledge. The system of sphere
in question is said to be centred on this core set of worlds. The next sphere
consists of this core, together with the set of next most plausible worlds, and so
on. . . . The largest sphere consists of all the possible worlds. Hence the system
of spheres is really a visualisation of the plausibility ordering in question. This
ordering helps in tie breaking among the worlds, and indirectly select among
competing maxichoice options. Let us assume that the current knowledge of
the agent is represented by a sentence k. Then, according to this conception,
the agent’s belief state is represented by a single selection mechanism, a global
system of sphere, as follows:

– The global system of spheres, a total pre-order ([k], also called a plausibility
ranking, over Ω is centred on the set of worlds [k].4

– The result of revising k by a piece of new information represented by a
sentence x is determined by the set of most plausible worlds where x holds:

[k ∗ x] = {ω ∈ [x] | ω ([k] ω
′ for all ω′ |= x}

Let us consider an example originally due to Katsuno and Mendelzon [7], now
considered a classic.

Example 1. All that our agent believes is that exactly one of the two
items, a book and a magazine, is on the desk, the other being on the
floor. In other words, the agent’s knowledge k can be represented by the
sentence b↔ ¬m where b (respectively m) denotes the book (magazine)
is on the desk. A satellite image just retrieved by the agent shows that
the magazine is on the desk (that is, m). What should the agent do?

Assuming that b and m are the only two atoms in the language, let
us denote the four worlds (with obvious understanding) as bm, bm, bm
and bm. Let the plausibility preorder ([k] be as follows:

([k]: bm ≈ bm � bm ≈ bm

There is only one ([k]-minimal world among the two models of the new
information m, namely bm. Hence [k ∗m] = {bm} whereby k ∗m can
be represented by the sentence ¬b∧m. In other words, the agent should
believe that the book is on the floor and the magazine on the desk.

This example accords well with our intuition. Note, however, that this example
is a rather trivial case of revision, since the new evidence m is consistent with
the current knowledge b ↔ ¬m, and the outcome in this case can be directly
computed without recourse to a selection mechanism, as (b↔ ¬m)∧m. But this
simple example contrasts well with the corresponding situation in a dynamic
environment, as discussed in the next section.
4 A total preorder is a binary relation that is reflective, transitive and total. On occa-

sion we will drop the subscript [k] when no confusion is imminent.
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4 Local Selection Mechanisms and Belief Update

The belief revision process discussed in the last section is not always appropriate.
Arguably, it works only when the new piece of information received informs the
agent only of what she did not previously know, that is, it adds to the agent’s
body of knowledge, or alternatively corrects some erroneous beliefs of the agent.
In Example 1 that we discussed in the last section, the agent had no particular
opinion as to whether the magazine was on the desk or on the floor; it was a piece
of information that supplemented the agent’s (rather incomplete) knowledge.
The presumption here is that the domain in question is not undergoing change
with respect to the new piece of information. As noted by Gärdenfors, it is
akin to Bayesian conditionalisation [4]. What is undergoing change here is the
knowledge of the agent, not the world that the knowledge is about. Hence a
global selection mechanism was adequate for the purpose at hand.

However, on occasion, the new information received may inform the agent of
change that the world has undergone. In such a case, a global selection mech-
anism is inadequate – a mechanism needs to be attached with each world in
order that the agent can calculate the state this world would be in after under-
going the change in question. All such resultant worlds will jointly determine
the updated knowledge of the agent. This view was propounded by Katsuno
and Mendelzon [7], and is known to be the non-probabilistic counterpart of the
account of imaging propounded by David Lewis in order to develop a theory of
conditionals [9]. The basic idea is as follows:

– A number of local systems of spheres over Ω, one centred on each world
ω ∈ Ω is assumed. A system of spheres centred on a world ω is represented
by a total pre-order (ω. One may take ω′ �ω ω

′′ to mean that from the
vantage point of ω, the world ω′ is considered to be more plausible than ω′′.

– The result of the update of k by x is determined by a big union, namely, that
of the sets of most plausible (from the perspective of each world ω ∈ [k])
worlds in which x is true:

[k ' x] =
⋃

ω∈[k]

{ω′ ∈ [x] | ω′ (ω ω
′′ for all ω′′ |= x}

.

Let us continue with the example by Katsuno and Mendelzon [7] that we started
in the previous section:

Example 2. Our agent believes that exactly one of the two items, a book
and a magazine, is on the desk, the other being on the floor. It commands
its housekeeping robot to ensure that the magazine is on the desk (m),
and soon afterwards the robot intimates its owner that the mission has
been successful. What is the agent’s new knowledge base?

As before, let us assume that b and m are the only two atoms in
the language, and the corresponding four worlds are bm, bm, bm and
bm. We will also refer to these worlds by the corresponding truth vectors,
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11, 10, 01 and 00. Accordingly, there are four local plausibility preorders,
respectively denoted: (11, (10, (01 and (00. Let them be:

1. (11: bm � bm ≈ bm � bm
2. (10: bm � bm ≈ bm � bm
3. (01: bm � bm ≈ bm � bm
4. (00: bm � bm ≈ bm � bm

Now, there are only two models of the agent’s initial knowledge, namely
bm and bm. Accordingly we accumulate the(10-minimal and(01-minimal
worlds of [m] in order to obtain [k 'm]. Thus we get

[k 'm] = {bm} ∪ {bm} = {bm, bm}

whereby all the agent knows after the update, denoted k ' m, can be
represented by m. The agent now knows that the magazine is on the
desk, but has no opinion as to the location of the book.

Again, this accords well with our intuition. The robot would ensure that the
magazine is on the desk. But it will not interfere with the location of the book.
Since the agent allowed both the possibilities of the book being on the floor as
well as on the desk, it would not know the location of the book post event; as
far as the agent is concerned, it could be at either of the locations.

5 Distance Function as a Selection Mechanism

In the last two sections we have observed that belief change in static domain can
be modelled via a global selection mechanism, and that in a dynamic domain
can be modelled via a family of local selection mechanisms. It is worth noting
that the second approach – via a family of selection mechanisms – is much richer
than the first. This is easily seen in the context of iterated belief change. In case
of belief revision, after one’s knowledge (set or base) changes from k to k ∗ x
with the help of the preorder ([k], assuming that k and k ∗ x are different, the
old mechanism is no longer useful, and must be replaced by a new mechanism
([k∗x] centred on the set of worlds [k ∗ x]. In case of update, however, no such
modification in the selection mechanism(s) is necessary since we still have a
selection mechanism centred on every world ω ∈ [k ∗ x]. A natural question is
whether a mechanism can be devised that can help with belief change both in
that static and dynamic domains, and would be rich enough so that it would
not need modification after each case of belief change. Schlechta, Magidor and
Lehmann [8] have observed that a distance function will precisely fit the bill.5

Definition 1. A pseudodistance function d : Ω×Ω → Z satisfies the following
four conditions: for all worlds ω, ω′, ω′′ ∈ Ω,

5 Schlechta, et. al. define a pseudo-distance measure via a total preorder. We will
slightly deviate from their account. For further works on distance functions, see [2,3].
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1. d(ω, ω′) ≥ 0 (non-negativity)
2. d(ω, ω) = 0 (Identity)
3. d(ω, ω′) = d(ω′, ω) (Symmetry)
4. d(ω, ω′) + d(ω′, ω′′) ≥ d(ω, ω′′) (Triangular Inequality)

One may wonder where the pseudo distance between different models is obtained
from. The pseudo distance may be taken to be analogous to the notion of revealed
preference in social choice theory – we assume it to be a theoretical construct,
revealed by the belief-change behaviour of an agent.

For operational purpose, we can assume the distance function to be anything
that satisfies the above constraints. For instance, we can take the distance be-
tween any two models to be their Hamming distance, that is the number of atoms
that are satisfied by one but not the other. Continuing our earlier example:

Example 3. We have two atoms, namely b and m in our language. The
corresponding four worlds are 11 : bm, 10 : bm, 01 : bm and 00 : bm.
The Hamming distance dH between different pairs of these worlds is as
follows:6

1. d(11, 11) = d(01, 01) = d(10, 10) = d(00, 00) = 0
2. d(11, 10) = d(10, 11) = d(11, 01) = d(01, 11) = 1
3. d(10, 00) = d(00, 10) = d(01, 00) = d(00, 01) = 1
4. d(11, 00) = d(00, 11) = d(10, 01) = d(01, 10) = 2

Now that we have the distance between every pair of worlds, how would it be
useful in belief revision or update? Belief update is performed relatively easily.
Given a distance function d and a world ω, we define a total preorder(d

ω centered
on ω in the obvious manner:

Definition 2. ω′ (d
ω ω

′′ if and only if d(ω, ω′) ≤ d(ω, ω′′), for any two worlds
ω′ and ω′′ in Ω.

Thus the distance function easily lends to define the family of local selection
mechanisms required for belief update. To continue our running example,

Example 4. We know that d is symmetric. Now,

1. Since d(11, 10) = d(11, 01) = 1, and d(11, 00) = 2, we get
(11: bm � bm ≈ bm � bm.

2. Since d(10, 00) = d(10, 11) = 1 and d(10, 01) = 2 we get
(10: bm � bm ≈ bm � bm.

3. Since d(01, 11) = d(01, 00) = 1 and d(01, 10) = 2 we get
(01: bm � bm ≈ bm � bm.

4. Since d(00, 01) = d(00, 10) = 1 and d(00, 11) = 2 we get
(00: bm � bm ≈ bm � bm.

Thus we get exactly the family of total preorders as in Example 2, and
the belief update can be carried our exactly as in that example.

6 We drop the superscript H when it is clear from the context that we are talking of
Hamming distance, not any arbitrary distance.
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Now let us see how a distance function can be effectively used to carry out
belief revision. For this purpose, we generalise the distance function d in order
to obtain a distance, say d′ between any set of worlds Δ and any world ω. It is
standard to define it as the minimal distance between any world in Δ and ω.

Definition 3. For every world ω and set of worlds Δ:

1. d′(Δ,ω) = min{d(ω′, ω) | ω′ ∈ Δ}
2. d′(ω,Δ) = min{d(ω, ω′) | ω′ ∈ Δ}

It is easily observed that the symmetry of the distance between worlds is trans-
ferred to the symmetry of the distance between a world and a set of worlds:

Observation 1. d′(Δ,ω) = d′(ω,Δ) for any world ω and any set of worlds Δ.

Furthermore, the following result shows that the function d′ can be effectively
used to do belief update as well:

Observation 2. Given a world ω and a set of worlds Δ, the set of worlds in Δ
that are minimally away from ω, namely, {ω′ ∈ Δ | d(ω, ω′) ≤ d(ω, ω′′) for all
ω′′ ∈ Δ} is exactly the set of worlds {ω′ ∈ Δ | d(ω, ω′) = d′(ω,Δ)}.
We are now in a position to carry out belief revision.

Example 5. We recall that the total knowledge k of the agent is repre-
sented by the sentence b ↔ ¬m. We need to construct a global system
of sphere centred on the set of worlds [k] = {10, 01}. Now,

1. d′({10, 01}, 10) = d′({10, 01}, 01) = 0, and
2. d′({10, 01}, 00) = d′({10, 01}, 11) = 1

whereby ({10,01}: bm ≈ bm � bm ≈ bm, reducing it to Example 1.

Since d′ gives the distance between a world and a set of worlds, we can define a
distance function d′′ that returns the distance between two sets of worlds:

Definition 4. For any two sets of worlds Δ and Δ′:

d′′(Δ,Δ′) = min{d′(ω,Δ′) | ω ∈ Δ}
Again, the symmetry of the distance functions d and d′ is carried over to the
symmetry of the distance between two set of worlds:

Observation 3. d′′(Δ,Δ′) = d′′(Δ′, Δ) for any sets of worlds Δ and Δ′.

Indeed, the function d′′ can be effectively used to do belief revision:

Observation 4. Given two sets of worlds Δ and Δ′, the set of worlds in Δ′ that
are minimally away from Δ, namely, {ω′ ∈ Δ′ | d′(Δ,ω′) ≤ d′(Δ,ω′′) for all ω′′ ∈
Δ′} is exactly the set of worlds {ω′ ∈ Δ′ | d′(Δ,ω′) = d′′(Δ,Δ′)}.
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6 Belief Revision as a Special Type of Belief Update

We have so far seen how a given distance function can be used to do both belief
revision and belief update. Now, a world can be considered as a complete theory
(a maximally consistent set of sentences). Hence, each local system of sphere
(centred on a world) can be viewed as a mechanism to revise complete theories.
In this sense, belief update can be defined via a family of belief revisions. Now
we consider the converse issue.

Suppose we want to revise a body of beliefs k by some received information x.
We need to identify the set [k ∗ x] of worlds in [x] which are at minimal distance
from [k]. In other words, we are interested in identifying exactly those worlds in
[x] which are precisely d′′([k], [x]) distance away from [k].

Let us assume that ω′ ∈ [x] is such that d′([k], ω′) = d′′([k], [x]). It follows
then that there is at least one world ω ∈ [k] such that d(ω, ω′) = d′′(([k], [x]). In
fact, it can be shown that all the worlds in [x] that are closest to this world ω are
exactly d′′(([k], [x]) distance away from it, and will be members of the set [k ∗x]
if the revision operation ∗ is based on the distance function d. More formally:

Lemma 1. Consider a belief base k and new information x. Let d be a distance
function between the worlds, and d′ and d′′ be defined from d as appropriate. Let
the revision operation ∗ be based on these distance functions.

1. If ω ∈ [k] and ω′ ∈ [x] are such that d(ω, ω′) = d′′([k], [x]), then ω′ ∈ [k ∗ x].
2. Let ω′ be a world in [k ∗ x]. Then there exists a world ω ∈ [k] such that
d(ω, ω′) = d′′([k], [x]).

What Lemma 1 says is very simple: the k-worlds that are minimally away from
[x] are closest to those x-worlds that are minimally away from [k]. Let us denote
by k′ a sentence such that [k′] exactly consists of the worlds in [k] that are
minimally away from [x], that is: [k′] = {ω ∈ [k] | d′(ω, [x]) = d′′([k], [x])}. Then,
with the help of Lemma 1 it can be easily established that k′ ' x = k ∗ x.
Theorem 1. Let sentences k, x and k′ be such that [k′] consists of exactly those
members of [k] that are at minimal distance from [x]. Then k′ ' x = k ∗ x.
Thus there is a restricted sense in which revision is reducible to belief update –
given a finitary language and a distance function, we can construct a sentence k′

such that update of k′ by x is exactly the revision of k by x. It is interesting to
observe that since [k′] consists of those members of [k] that are minimally away
from [x], we can replace k′ by x ∗ k. Hence our final result:

Theorem 2. Given two sentences k and x, and the relevant revision and update
functions determined by an appropriate distance function, (x ∗ k) ' x = k ∗ x.
I conclude this section with the last scene of our running example:

Example 6. We recall that the current knowledge k is b ↔ ¬m, and x,
the new information received, is m.
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1. First we compute [m ∗ (b ↔ ¬m)]. Note that [m] = {11, 01} and
[b ↔ ¬m] = {10, 01}. Noting that d′′({11, 01}, {10, 01}) = 0, we
get: [m ∗ (b↔ ¬m)] = {01} = {bm}.

2. Now we compute [(m ∗ (b ↔ ¬m)) 'm]. As we saw in Example 4,
the local selection mechanism centred on the world {bm} is given by:
(01: bm � bm ≈ bm � bm. Accordingly the set of (01-minimal
worlds in m are exactly {bm}.

Thus we see that (x∗k)'x = k ∗x ≡ (¬b∧m). The book is on the floor,
and the magazine is on the desk, as desired.

7 Concluding Remarks

We started with the intention of exploring if revision can be defined via update.
We have seen that if both revision and update are driven by the same distance
function, then revision can be seen as update in a rather restricted sense: revision
of x by y can be seen as the update by y of the result of revising y by x.

Received wisdom suggests that revision is appropriate for belief change in
static domains, and update in dynamic domains. Now that revision of x by y
is seen to be equivalent to the update of some other sentence x′ (namely y ∗ x)
by the same received information y, that nice storyline that cleanly demarcates
revision from update appears not to be such a good story after all. It will be
interesting to see how best we can iron out this unforeseen wrinkle.

Since revision can be viewed as a form of update, it has further possible
ramifications. Preliminary investigation shows that it can help develop a new
theory of probabilistic belief revision/contraction (as opposed to update/erasure)
based on imaging. This is a topic beyond the scope of the current paper.
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Abstract. Negotiating agents play a key role in e-markets and become more pop-
ular. However, in much existing work, the e-markets are assumed to be closed and
static, which is unrealistic. To address the issue, this paper developed negotiat-
ing agents that can adapt their negotiation strategies, outcome expectations, offer
evaluations, and counter-offers generations in dynamic, open e-markets. Also,
the proposed agents can generate multiple counter-offers according to different
preferences so as to further improve their negotiation outcomes. Finally, the ex-
perimental results show the improvements on agents’ profits by employing our
negotiation model.

1 Introduction

In recent years, electronic marketplace (e-market) has changed the traditional ways of
doing business and intelligent agents make the business processes in e-market more ef-
ficient. In an e-market, people can easily publish information, retrieve items of interest,
and negotiate with opponents concurrently. In such a frequently changing environment,
agents’ expectations on negotiation outcomes may not be achieved successfully with-
out considering the impacts from changes of e-markets. For example, when a market
changes from a buyer’s market to a seller’s market, if buyers fail to be aware of such a
change and insist on their original expectations, the negotiation could fail due to buyers’
original expectations being hard to be satisfied in a seller’s market. To the contrary, if
sellers fail to be aware of such a change and insist on their original expectations, the
sellers may loss the chance to maximize their benefits. Therefore, in order to be success-
ful in such highly dynamic e-market, negotiation agents should adapt their negotiation
strategies accordingly.

Many multi-issue negotiation models have been proposed. For example, the model in
[5] can achieve optimal negotiation outcomes, but it works only in the environment with
fixed number of agents. The model in [8] is also an one for multi-attribute negotiations
between two agents. However, impacts on agents’ strategies from outside options are
still not taken into account. In model of [7], a multilateral multi-issue negotiation pro-
tocol is proposed, in a cooperative scenario, by employing a mediator agent. However,
when the number of negotiation participators fluctuates, the mediator can hardly make
an unbiased and accurate response to all agents. The work in [4] studied multi-issue
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negotiation models in incomplete information settings and illustrated equilibrium so-
lutions for different negotiation agendas and procedures. However, their model is only
applicable in static negotiation environments. To remove the limitation, this paper will
propose a parallel, multi-issue negotiation model for open, dynamic e-markets.

The rest of this paper is organized as follows. Section 2 introduces a new model to
represent the e-markets and the negotiation issues. Section 3 proposes an offer evalu-
ation approach. Section 4 discusses our counter-offer generation approach. Section 5
carries out experimental analysis of our model in different e-markets. Section 6 com-
pares our work with related work. Finally, Section 7 concludes this paper.

2 E-Market and Negotiation Issue

2.1 E-Market Change and Agent’s Response

Circumstance plays a crucial role in negotiations [11]. Especially in a dynamic e-
market, the market change will impact agents’ behaviours during negotiations.

Let α (α = 1 for seller, and α = −1 for buyer) denote an agent’s role, s denote the
number of sellers in an e-market, and b denote the number of buyers. Then the market’s
situation by considering the relationship between supply and demand can be defined as:

Φ(s, b, α) =
b− s

b + s
× α (1)

Clearly, the value of Φ is in (−1, 1). Intuitively, if 0 < Φ < 1, the e-market is a
beneficial market (i.e., agents in role α have advantages in such a market); if −1 <
Φ < 0, the e-market is an inferior market (i.e., agents in role α have disadvantages); if
Φ = 0, the e-market is an equitable market (i.e., b = s and agents play fairly).

However, Formula (1) only reflects the objective status of an e-market, but does not
take agents’ subjectiveness into account. In real world markets, different people behave
differently in the same market situation. Therefore, we need a mapping from objective
market situations to subjective responses of agents. Let β denote an agent’s attitude the
market changes. In general, it can be seen that the agent has three typical attitudes when
the e-market’s situation changes, i.e., calm (β > 1), excited (1 > β > 0), and normal
(β = 1). Formally, by considering attitudes, agents’ responses to the e-market changes
are defined as:

Ψ(s, b, α, β) =

{
(Φ(s, b, α))β, if Φ(s, b, α) ≥ 0

−(−Φ(s, b, α))β , otherwise
(2)

In fact, the formula reflects well the agent’s subjective responses to e-market changes:
(1) 1 > Ψ > 0 indicates a positive response; (2) Ψ = 0 indicates a normal response;
and (3)−1 < Ψ < 0 indicates a negative response.

2.2 Issue’s Significance and Relationship

In multi-issue negotiation, the significance of each issue and the relationship between
issues play important roles for the offer evaluation, the counter-offer generation, and the
negotiation outcome [6]. Usually, the significance of issues are represented by weights,
and there are no logical relationships between issues [4]. To put into consideration the
logic relationships among the issues, here we propose alternative approach.
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Definition 1. An agent’s significance on a negotiation issue m is represented by tag
κm ∈ {N,L, I, V, E}, which means not-important (N ), little-important (L), important
(I), very-important (V ), and extremely-important (E), respectively.Γ : {N,L, I, V, E}
→ {1, 2, 3, 4, 5} maps a significance tag into its corresponding order. Atomic Prefer-
ence (AP) is a collection of all issues’ significance tags i.e., AP = (κ1, . . . , κM ), and
Complete Preferences (CP) contains all APs the agent has, i.e.,CP = (AP1, . . . , APJ ).

Definition 2. The relationship between two issues or two APs is represented by a
unique relationship tag ξ ∈ {∩,∪}. Tag ∩ indicates a union relationship of two con-
nected parts (i.e., an agent’s expectation on two parts connected by ∩must be satisfied).
Tag ∪ indicates an alternative relationship of two connected parts (i.e., an agent’s ex-
pectation on only one part connected by ∪ must be satisfied).

3 Offer Evaluation

In this paper, we employ the package deal negotiation procedure [3], but do not use
multi-attribute theory [1] to evaluate offer package because (1) quantitative represen-
tation of issues’ significance does not always accord with human’s ways of thinking
[9]; and (2) The multi-attribute utility approach cannot model the logical relation-
ship between negotiation issues. However, a human often assigns different logic re-
lationships between their concerned issues. In this section, we propose a novel ap-
proach to perform the evaluation process in multi-issue negotiation by using signifi-
cance tags and relationship tags. Let Oi,t = (oi,t,1, . . . , oi,t,M ) denote an offer pack-
age from opponent i at round t, where oi,t,m denotes opponent i’s proposal on is-
sue m. Let Oini = (oini,1, . . . , oini,M ) denote an agent’s initial offer package, and
γ = (γ1, . . . , γM ) (γm ∈ {−1, 1}) indicate the agent’s preference on each negotiat-
ing issue. That is, if the agent prefers a higher value than oini,m, γm = 1, otherwise
γm = −1. Firstly, when the agent receives opponent i’s proposal oi,t,m, the proposal is
evaluated as follows:

Λ(oi,t,m, oini,m, γm) = th

(
oi,t,m − oini,m

oini,m
× γm

)
+ 1 (3)

where th(x) = ex−e−x

ex+e−x is the Hyperbolic Tangent function.1 Formula (3) (Λ ∈ (0, 2))
can model well how an agent’s initial offer is satisfied by an opponent’s proposal. For
example, suppose an agent prefers a lower value than the initial value, then γm equals
−1. When oi,t,m = oini,m, Λ = 1 and the buyer’s expectation is fully satisfied. When
oi,t,m > oini,m, 0 ≤ Λ < 1 and the buyer’s expectation is partially achieved. And when
oi,t,m < oini,m, 1 < Λ < 2 and the buyer’s expectation is overachieved. However,
formula (3) only evaluates the proposal oi,t,m based on an agent’s initial offer without
considering the market situations. To remove the limitation, we update the formula as
follows:

Θ(oi,t,m, oini,m,γm,s,b,α,β)=
Λ(oi,t,m,oini,m,γm)

Ψ(s, b, α, β) + 1
(4)

1 That is, th(0)=0, limx→∞ th(x)=1, and limx→−∞ th(x)=−1.
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Θ (∈ [0, 1]) can well evaluates the opponent’s proposal oi,t,m according to both the
agent’s and the market’s situations. In an equitable market, the proposal is evaluated
unbiasedly (i.e., when Ψ = 0, Θ = Λ). In a beneficial market, the proposal is under-
valued (i.e., when 0 < Ψ < 1, Θ < Λ). In an inferior market, the proposal is over-
valued (i.e., when −1 < Ψ < 0, Θ > Λ).

Let Θ(Oi,t) = (Θ(oi,t,1), . . . , Θ(oi,t,M )) indicate the evaluation results on oppo-
nent i’s all proposals. Then, these results need to be combined in order to get an overall
evaluation result on opponent i’s proposals. The traditional combination approach is the
weighted sum approach. However, we propose a non-linear combination approach by
using the significance tags, and agents’ multiple preferences are also considered. We
firstly calculate the relative importance between issues according to their significance
orders as below:

dm = Γ (κm)/

M∑
m=1

Γ (κm) (5)

Then the combined evaluation result by considering all negotiation issues based on the
agent preference AP is:

T AP
prod(Θ(Oi,t)) =

M∏
m=1

Θ(oi,t,m)dm (6)

If an agent has more than one preferences, since the agent might have different signif-
icance orders on issues in different preferences, when it evaluates a proposal package,
it should consider all preferences, and select one as the final result. Different selection
criterion can be employed by agents to indicate their attitudes, i.e., a pessimistic agent
will select the minimal one; a optimistic agent will select the maximal one; while other
agents will select between these two extreme values. In this paper, we choose the max-
imal one as the final result. That is because a satisfaction on any one of the agent’s
preferences can lead to an agreement, and thus select the maximal one accelerate the
process to the agreement. The selection result in this paper is:

T CP
prod(Θ(Oi,t)) = max

APj∈CP
{T APj

prod(Θ(Oi,t))} (7)

4 Counter-Offer Generation

In this section, we present a novel counter-offer generation approach by considering
issues’ significance and e-market situations. Let Om,t = (o1,t,m, . . . , oI,t,m) denote
all offers from all available opponents on issue m at round t. In Figure 1, the x-axis
indicates opponents’ proposals on issue m, and the y-axis represents the occurrence
density of these proposals. The solid curve indicates the distribution of Om,t, and the
dotted line is the estimated distribution of Om,t+1 in the next round. The distribution of
Om,t may be different from case to case. However, without losing any generality, we
make the assumption that the shape of the distribution curve of set Om,t+1 is similar to
that of Om,t, but the range of span is changed. Suppose a buyer agent negotiates a car’s
price, then the market displayed in Figure 1 is a beneficial market for the buyer agent. In
a beneficial market, opponents’ proposals are estimated to become smaller in average
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Fig. 1. Counter-offer generation in a beneficial market for multiple issues

in the next round (i.e., Õm,t+1 < Õm,t). The distance between the buyer’s current offer
com,t and the expected best offer ōm,t+1 in the next round is the bargain area. Then the
buyer’s new counter-offer com,t+1 is generated within this area according to the buyer’s
negotiation strategies, the remaining rounds, the distribution of Om,t, and the issue’s
significance.

Firstly, we estimate the expected best offer ōm,t+1 in the next round. Such an estima-
tion is based on an assumption that all agents are self-interested and rational and thus
they are trying to balance their profits and negotiation success. In a beneficial market,
they will look for more profits; while in an inferior market, they will sacrifice profits in
order to increase the negotiation success. Formally, ōm,t+1 can be calculated as:

ōm,t+1 = ōm,t + γm · Ψ(s, c, α, β) · 3
√
D(Ot) (8)

D(Om,t) =
I∑

i=1

(oi,t,m − E(Om,t))2 · pi,m (9)

where D(Om,t) indicates the variance of Om,t, E(Om,t) indicates the mathematical
expectation of Om,t, and pi,m indicates the distribution probability of oi,t,m. We set
the maximal possible change of the expected best offer to 3

√
D(Ot) because 99% of

observed value locates in interval [−3
√
D(Ot), 3

√
D(Ot)] in mathematics. Usually,

when the distribution of Om,t is a normal distribution, E(Om,t) = 1
I

∑I
i=1oi,t,m and

pi,m = 1/I .
Secondly, we modify the bargain area. As shown in Figure 1, the bargain area is orig-

inally between com,t and ōm,t+1. However, when agents assign different significance
tags on issues, their expectations on negotiation outcomes are different. Intuitively, an
agent should concede less at more significant issues, but more at less significant issues.
In order to represent such a reality, the starting point of the bargain area needs to be
updated as follows:

com∗,t = com,t + (ōm,t+1 − com,t)(Γ (E)− Γ (κm))/(Γ (E)− Γ (N)) (10)

For example, if issue m’s significance tag is E, then the updated stating point equals
to the original starting point (i.e., com∗,t = com,t), and the agent does not shrink its
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bargain area. If issue m’s significance tag is N , the updated stating point equals to the
expected best offer (i.e., com∗,t = ōm,t+1), and the agent minimizes its bargain area.
For issues with other significance tags, the changes of the bargain area are between
these two extreme cases. Then the counter-offer com,t+1 is generated as follows:

com,t+1 =

{
oini,m, if t = 0

com∗,t + (ōm,t+1 − com,t)(
t
τ
)λ, if t ≤ τ

}
(11)

Where τ is the agent’s deadline and λ is the negotiation strategy [6]. Finally, by applying
formula (11) on all issues, a counter-offer package is generated as follows.

Υ (AP, t) = (co1,t+1, . . . , coM,t+1) (12)

According to Formula (10), the starting point of bargain area for issues with different
significance tag will be updated differently. If an agent has several preferences and as-
signs different significance on an issue in different preferences, different counter-offers
should be generated. In our proposed counter-offer generation approach, the number of
counter-offers generated by the agent in each negotiation round equals the number of
the agent’s preferences. An agent generates parallel counter-offers by considering all
preferences as follows:

Υ (CP, t) = (Υ (AP1, t), . . . , Υ (APJ , t))T (13)

By comparison with the traditional single counter-offer approach, the proposed ap-
proach will increase the negotiation efficiency and overall profit. Because parallel counter-
offers will result an agreement quicker and decrease the lose of overall profit by con-
sidering time constraints.

5 Experiment

5.1 Experimental Settings

We set the total of agents to 100 (50 buyers and 50 sellers) and two negotiating issues
(the price and warranty of a car). For the buyer agents, their initial prices, reservation
prices, initial warranty, and reservation warranty are randomly selected between $1500
and $4500, $5000 and $15000, 5 years and 10 years, and 1.5 years and 4.5 years, re-
spectively. For the seller agents, their initial prices, reservation prices, initial warranty,
and reservation warranty are randomly selected between $5000 and $15000, $1500 and
$4500, 1.5 years and 4.5 years, and 5 years and 10 years. For all negotiating agents, the
parameters of their negotiation strategy are randomly selected in interval [0, 2], their
negotiation deadlines are randomly selected in interval [15, 25]. For the classic nego-
tiating agents [3], their weighting on the two issues are randomly selected in interval
[0, 1]; and for our negotiation agents, their significance tags on the issues are randomly
selected in {N,L, I, V, E}.
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(a) BAU (b) SAU (c) AAU

(d) ANR (e) ANT (f) AAN

Fig. 2. Negotiation results with the classic model

5.2 Experimental Results

To show the performance of our negotiation model, two experiments are carried out. In
the first experiment, both buyer and seller agents employ the classic negotiation model
[3] (that cannot handle the dynamics of e-markets). Both the buyer and the seller agents’
number are started from 1, and gradually increased to 50. We analyze the experimental
results, in terms of the buyers’ average utility (BAU), the sellers’ average utility (SAU),
all negotiating agents’ average utility (AAU), average negotiation rounds (ANR), aver-
age negotiation time (ANT, in millisecond), and average agreement number (AAN). In
Figure 2, the experimental results by using the classic negotiation model are displayed,
we can see that except for AAN, the other five results almost has no changes when the
number of negotiating agents changes. Both BAUs and SAUs are around 0.5 for differ-
ent market situations, and AAUs are round 1.0. All negotiations are finished in-between
5 and 8 rounds, and spend around 10ms. That is because the classic negotiation model
does not consider the impacts from the e-market changes, and thus the agents cannot
adapt their behaviours when the market changes.

In the second experiment, all buyer agents employ our negotiation model, and all
seller agents employ the classic negotiation model. To simplify the experiment, we set
the buyer agents’ attitudes on market changes to normal (i.e., β = 1). The experimental
results are shown in Figure 3. It can be seen that BAUs (see Figure 3(a)) show different
values in different market situations. When it is an equitable market, BAUs are similar
as the values gained in the first experiment. However, when the market becomes more
beneficial to the buyers, BAUs increase gradually. The maximum BAU is around 1.5,
and appears when there are 50 sellers but only 1 buyer in the market. On the other
hand, when the market becomes inferior to the buyers, BAUs decreases gradually. In the
extreme case, when the market contains only 1 seller but 50 buyers, BAU is minimized
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and almost equals to 0. The reason for such differences is because the buyer agents
adapt their negotiation behaviours when the market situation changes, and try to enlarge
profits in beneficial markets, and to guarantee success in inferior markets.

Even though the seller agents cannot adapt their negotiation behaviours initiatively,
SAUs (see Figure 3(b)) are also varied in different market situations with the changes
of the buyer agents’ behaviours. In general, SAU is increased from 0 to 1 when the
market changes from an extreme buyer’s market to an extreme seller’s market. In a
buyer’s market, since the buyer agents know their advantages, they would not make
big concessions, and so the seller agents have to. By contrast, in order to beat other
competitors, the buyer agents have to make great concessions in a seller’s market, so
the seller agents’ profits are increased. However, since the seller agents employ the
classic negotiation model and cannot be aware of their advantages in a seller’s market,
they cannot further enlarge their profits subjectively as the buyer agents do in a buyer’s
market, but immediately accept offers when their initial expectations are satisfied. That
is why the maximum BAU is 1.5, but the maximum SAU is only 1.

AAUs (see Figure 3(c)) are increased around 0.2 on average by comparison with the
outcomes of classic negotiation model (see Figure 2(c)). Such an increment implies
that our negotiation model can improve the outcome of the whole market in different
market situations. In a buyer’s market, the buyer agents would like to spend more time
on bargaining to maximize their profits, and so ANRs (see Figure 3(d)) are increased in
the second experiment. However, when the buyer agents try to prevent profits loss and
to guarantee successes in a seller’s market, they would like to reach agreements as quick
as possible, and so ANRs are decreased. Nevertheless, no matter in a buyer’s market or
in a seller’s market, because the buyer agents need extra time to analyze the market
situation and accordingly select their following actions in each negotiation round, our

(a) BAU (b) SAU (c) AAU

(d) ANR (e) ANT (f) AAN

Fig. 3. Negotiation results with our model



450 F. Ren et al.

negotiation model could spend more time than the classic one. It can be seen that in
the most complex market (50 buyer agents and 50 seller agents), our model spends only
0.5 second more than the classic model in finishing all negotiations. However, compared
with the benefits bringed to the whole market, such a little delay is acceptable.

According to the experimental settings, since the bargain areas exist between all
buyer and seller agents, the classic negotiation model can reach agreements between all
buyer and seller agents. However, by employing our negotiation model, the buyer agents
will adapt their offer evaluation results in different market situations. Especially, in a
buyer’s market, the seller agents’ offers are usually under-valued by the buyer agents,
so the buyer agents’ requirements are not easy to be satisfied. That is the reason for the
slightly decrement on AAN in a buyer’s market (see Figure 3(e)).

6 Related Work

Dasgupta and Hashimoto proposed an approach to address the problem of dynamic
pricing in a competitive online economy where a product is differentiated by buyers
and sellers on multi-issue [2]. Agents may have incomplete knowledge of the negoti-
ation parameters. A seller employs a collaborative filtering algorithm to determine a
temporary consumer’s purchase preferences and a dynamic pricing algorithm to deter-
mine a competitive price for the product. However, their approach pays attention only
to sellers, and our negotiation model considers both negotiation sides.

Nguyen and Jennings proposed a concurrent bilateral negotiation model to handle
multi-lateral negotiations [10]. When an agent negotiates with more than one oppo-
nents, this model treats the negotiation between the agent and each opponent as an 1-to-
1 negotiating thread, and a coordinator is employed to control all negotiating threads.
The coordinator will select a suitable negotiation strategy from predefined strategies for
each thread. However, their model did not consider the impacts from negotiation en-
vironment changes (i.e., the change of sellers and buyers). In contrast, our negotiation
model captures the dynamic changes of a negotiation environment.

Ren proposed a Market-Driven Agents (MDAs) model to model relationship be-
tween agents’ negotiation strategies and the negotiation environment [11]. In the MDAs
model, agents are guided by four concession factors, and these factors determine how
much concession agents can give during the negotiation based on the environment.
However, the MDAs model does not take into account the situation when the nego-
tiation environment becomes open and dynamic, and our model address well how a
dynamic changing e-market be handled in negotiation.

By comparison with the above related work, our negotiation model has features. It
models negotiations in e-markets by considering (i) both e-markets’ and agents’ sit-
uations, (ii) both current and future possible situations of e-markets, and (iii) multi-
attribute and multi-preference. However, we also recognize that the performance of our
model still can be improved in aspects of time cost and negotiation success rate.

7 Conclusion and Future Work

This paper proposed a parallel, multi-issue negotiation model for dynamic e-markets.
This model describes an e-market as beneficial, inferior or normal according to the
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supply and demand. Agents evaluate offers or generate counter-offers based on the e-
market situation and themselves attitudes. The experimental results showed clearly that
our negotiation model capture the e-market changes well and adapt agents’ negotiation
behaviours dynamically and accordingly. Our future work will improve the e-market
model by considering the number of goods in supply and demand relationship and op-
ponent agents’ reputations in proposal evaluations.
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Abstract. In this paper we are discussing which factors affect the scala-
bility of the parallel Monte Carlo Tree Search algorithm. We have run the
algorithm on CPUs and GPUs in Reversi game and SameGame puzzle
on the TSUBAME supercomputer. We are showing that the most likely
cause of the scaling bottleneck is the problem size. Therefore we are
showing that the MCTS is a weak-scaling algorithm. We are not focus-
ing on the relative scaling when compared to a single-threaded MCTS,
but rather on the absolute scaling of the parallel MCTS algorithm.

Keywords: Monte Carlo, Scalability, Reversi, SameGame.

1 Introduction

Monte Carlo Tree Search (MCTS)[1][2][3] is a method for making optimal deci-
sions in artificial intelligence (AI) problems, typically move planning in combina-
torial games. It combines the generality of random simulation with the precision
of tree search. In this paper we are focusing on the parallel MCTS usage and its
scaling limitations. First we will very briefly explain how the MCTS algorithm
works.

1.1 MCTS Algorithm Overview

A simulation is defined as a series of random moves which are performed until the
end of a game is reached (until neither of the players can move). The result of this
simulation can be successful, when there was a win in the end or unsuccessful
otherwise. So, let every node i in the tree store the number of simulations ti
(visits) and the number of successful simulations Si. First the algorithm starts
only with the root node. The general MCTS algorithm comprises 4 steps (Figure
1) which are repeated until a particular condition is met (i.e. no possible move
or time limit is reached).

1.2 MCTS Iteration Steps

Selection - a node from the game tree is chosen based on the specified criteria.
The value of each node is calculated and the best one is selected. In this paper,

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 452–461, 2011.
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Parallel Monte Carlo Tree Search Scalability Discussion 453

Selection Expension Simulation Backpropagation

The selection function is applied
recursively

One (or more) leaf
nodes are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until

the end of the tree

One (or more) leaf nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

           Repeated X times

Fig. 1. A single MCTS algorithm iteration’s steps (from [1])

the formula used to calculate the node value is the Upper Confidence bound
applied to Trees (UCT)[2].

UCBi =
Si

ti
+ C ∗

√
logTi

ti

Where:
Ti - total number of simulations for the parent of node i
C - a parameter to be adjusted (low - exploitation, high - exploration).

Supposed that some simulations have been performed for a node, first the av-
erage node value is taken and then the second term which includes the total
number of simulations for that node and its parent. The first one provides the
best possible node in the analyzed tree (exploitation), while the second one is
responsible for the tree exploration. That means that a node which has been
rarely visited is more likely to be chosen, because the value of the second terms
is greater. The C parameter adjusts the exploitation/exploration ratio.

Expansion - one or more successors of the selected node are added to the tree
depending on the strategy.

High exploitation (greedy) High exploration

Quickly gets to a local optimum Greater chance of the global optimum

Fig. 2. Explotation and Exploration illustrated)
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Simulation - for the added node(s) perform simulation(s) and update the
node(s) values (successes, total).

Backpropagation - update the parents’ values up to the root nodes.

2 Parallelization of Monte-Carlo Tree Search

2.1 Some of the Existing Parallel Approaches

In 2007 Cazenave and Jouandeau[4] propose 2 methods of parallelization of
MCTS and later in 2008 Chaslot et al.[3] propose another one an analyze 3
approaches(Figure 3):

Fig. 3. Parallel MCTS as in [3])

1. Leaf Parallelization. It is one of the easiest ways to parallelize MCTS.
Only one thread traverses the tree and adds one of more nodes to the tree
when a leaf node is reached (Selection and Expansion phases). Next, starting
from the leaf node, independent simulated games are played for each available
thread (Simulation phase). When all games are finished, the result of all
these simulated games is propagated backwards through the tree by one
single thread (Backpropagation phase).

2. Root Parallelization. Cazenave[4] proposed a second parallelization called
single-run parallelization. It is also referred to as root parallelization[3]. It con-
sists of building multiple MCTS trees in parallel, with one thread per tree. The
threads do not share information with each other. When the available time is
spent, all the root children of the separate MCTS trees are merged with their
corresponding clones. For each group of clones, the scores of all games played
are added. The best move is selected based on this grand total. This paralleliza-
tion method only requires a minimal amount of communication between the
threads.It is more efficient than simple leaf parallelization[3], because building
more trees diminishes the effect ofbeing stuck ina local extremumand increases
the chances of finding the true global maximum.
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The goal of this paper is to determine which parameters affect the scalability of
the algorithm when running on multiple CPUs/GPUs using root parallelization.

3 Methodology

3.1 MPI Usage

In order to run the simulations on more machines the application has been
modified in the way that communication through MPI is possible. This allows
to take advantage of systems such as the TSUBAME supercomputer or smaller
heterogenous clusters. The implemented scheme (Figures 4) defines one master
process (with id 0) which controls the game and I/O operations, whereas other
processes are active only during the MCTS phases. The master process broadcast
the input data (current state/node) to the other processes. Then each process
performs an independent Monte Carlo search and stores the result. After this
phase the master process collects the data (through the reduce MPI operation
which sums the results.

Root process
id = 0 n-1 processes

N processes init

simulate

broadcast data

collect data (reduce)
Output
data

Input
data

simulate simulate

Other machine
i.e. core i7, Fedora

Other machine
i.e. Phenom, Ubuntu

Network

Send the current state 
 of the game to all processes

Think

Choose the best move and send it to the opponent

Receive the opponent’s move

Accumulate results

All simulations are independent

Process number 0 controls the game

Fig. 4. MPI Processing scheme

3.2 Reversi

In general there are some basic features of graphs presenting the results which
need to be explained, it is important to understand how to read them as they
may seem to be complicated.

1. Number of simulation per second in regard to the number of CPU
threads, GPU threads or other factors - (i.e. Figure 5). By this I mean the
average number of random playouts performed (MCTS algorithm - step 3)
during the game.

2. Score (or average score) in regard to the number of CPU threads or GPU
threads. Score means the point difference between player A and player B
who play against each other. The higher score, the better. If score is greater
than 0, it means a winning situation, 0 means a draw, otherwise a loss.
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3. A game step is a particular game stage starting from the initial Reversi
position until the moment when no move is possible. There can be up to
60 game steps in Reversi. As the game progresses, the average complexity
of the search tree changes, the way the algorithm behaves changes as well.
Instead of showing the score or the speed of the algorithm in regard to the
number of cores, I also show the performance considering the game stage.

4. Win ratio - Another type of measuring the strength of an algorithm. It
means the proportion of the games won to the total number of games played.
The higher, the better.

3.3 Samegame

A modified version of the MCTS algorithm is used[7] to be able to solve
SameGame puzzle in order to get as many points as possible. The first reason to
do this was to test if MCTS algorithm can be easily applied to other domains.
And the second one to check the scalability limitations, since it is easier to adjust
fewer parameters in SameGame rather than having a 2-player game and to see
if there are any similarities in 2 problems. Before applying MCTS to SameGame
it was not sure if the problem itself may cause limitations in scalability.

4 Results and Analysis

4.1 CPU MPI Implementation

Figure 5 shows the average number of simulations per second in total depending
on the number of cpu cores. The very little overhead is observed during the
MPI communication. The number of simulations per second increases almost
linearly and for 1024 threads the speedup is around 1020-fold (around 8 million
simulations/sec).

Figure 4.1B shows the average score and win ratio of MCTS parallel algorithm
playing against sequential MCTS agent depending on the number of cpu cores.
From this graph it can be seen that obviously when 1 root-parallel MCTS thread
plays against the sequential MCTS, they are equal (the winning percentage of
around 48% for each of them - the missing 4% are the draws). In this graph I
present the absolute score (not the score difference between players, so it is not
so tightly associated with the winning ratio, but still the more, the stronger the
algorithm). When the number of cores doubles, the parallel algorithm wins in
more than 60% of the cases, and when the number of threads equals 16, it reaches
90%, to get to the level of around 98% for 64 threads. Here, a high increase in the
algorithm’s strength is observed when the thread number is increased up to 16,
later the strength increase is not as significant, which can lead to a conclusion
that the root parallel MCTS algorithm can have some limitations regarding the
strength scalability given the constant increase in the speed shown in Figure 5A.
Actually this has been studied ([4][3][6]) and some conclusions have been formed
that such a limit exists and that the root-parallel algorithm performs well only
up to several cores.
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Fig. 5. (A) Average number of simulations per second in total depending on the number
of cpu cores (multi-node), (B) - Average score and win ratio of MCTS parallel algorithm
playing against sequential MCTS agent depending on the number of cpu cores

The first and main conclusion of the results obtained is that the root par-
allelization method is very scalable in terms of multi-CPU communication and
number of simulations performed in given time increases significantly. Another
one is that there is a point when raising the number of trees in the root parallel
MCTS does not give a significant strength improvement.

4.2 Multi GPU Implementation

Multi-GPU implementation follows the same pattern as the multi-CPU scheme.
Each TSUBAME node has 3 GPUs and using more than 3 GPUs requires MPI
utilization. In Figure 6 it can be seen that just like with the multiple CPUs,
there is no inter-node communication bottleneck and the raw simulation speed

1 2 4 8 16 32 64 128 256

10
6

10
7

10
8

10
9

GPUs

Si
m

ul
at

io
ns

 p
er

 s
ec

on
d

 

 

Fig. 6. Number of simulations per second depending on the GPU number, 56x112
threads per GPU
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Fig. 7. 16 CPU cores vs different GPU configurations at particular game stages

increases linearly reaching approximately 2 ∗ 108 simulations/second when 256
GPUs (128 nodes, 2 GPUs per node) are used. Another graph (Figure 7 shows
that just like in the case of multiple CPUs, even when the simulation speed
increases linearly for multiple devices, the strength of the algorithm does not.

4.3 Scalability Analysis

The next illustrations (Figure 9) shows results of changing the MCTS environ-
ment to analyze the scalability affecting parameters. First in figures 9ABC we see
how changing the sigma(C - exploitation/exploration ratio) affects it and Figure
9 presents how changing the problem size impacts the strength increase of the
parallel approach. There are 2 things to be observed which are important. First,
the sigma parameter affects the scalability in the way, that when the exploita-
tion of a single tree is promoted, the overall strength of the algorithm improves
better with the thread increase. In my opinion, this is due to the deeper tree
search for each of the separate trees. When the exploration ratio is higher, then

Trees

Trees

1 2 3 4 5 SUM

1 2 3 4 5 SUM

High exploitation

High exploration

Fig. 8. Explanation of performance change caused by sigma constant adjustment



Parallel Monte Carlo Tree Search Scalability Discussion 459

the trees basically form similar trees and reducing it propagates more diversified
tree structures among the threads. Then in the next figure we see that as the
problem size decreases, the improvement while parallelizing the algorithm also
diminishes. It means that parallel MCTS algorithm presents weak parallelism,
so it would also mean as long as we increase the problem size, the number of
threads can grow and the results improve.
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Fig. 9. Scalability of the algorithm when the problem size changes, (A) - absolute score,
(B) - relative change in regard to 1 thread score, (C) - relative change when number
of threads is doubled, sigma = 3, Root parallelism, (D) - Differences in scores during
increasing number of threads and changing sigma constant, Root parallelismMax nodes
= 10k

4.4 Random Sampling with Replacement

What is interesting in this case, when large number of threads is simulating
at random is to obtain the probability of having exactly x distinct simulations
after n simulations. Then, assuming that m is the total number of possible
combinations (without order), D(m,n) can be calculated, which is the expected
number of distinct samples.

P (m,n, x) =

(
m
n

)(
n−1
n−x

)
(
m+n−1

n

)

P (m,n, x) is the probability of having exactly x distinct simulations after n
simulations, where m is the total number of possible combinations (according
the theorems of combinatorics, sampling with replacement). Then:

D(m,n) =
n∑

x=1

x ∗ P (m,n, x)

It is hard to calculate D(m,n) for big numbers because of the factorials, but
according to [5] an approximation can be used. Let r = n

m . Then:
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D(m,n) ∼ m(1− e−r) +
r

2
e−r − O(r(1 + r)e−r

n

The first term is the most important. Having this I was able to analyze the
impact of having large number of samples in regard to the state space size and
check how many of those samples would repeat (theoretically). For an instance if:

m = 108, n1 = 104, n2 = 107

In the first case (n1):
D(m,n1)

n1
∼ 99.5% - almost no repeating samples.

Then if I consider (n2):
D(m,n2)

n2
∼ 95.1% - around 4.9% samples are repeated.

This means that the scalability clearly depends on the space state size/number
of samples relation. As the number of samples approaches the number of possible
paths in a tree, the algorithm will lose its parallel properties and even finding the
exact solution is not guaranteed, since we would have to consider infinite number
of samples. It can be concluded that as the tree gets smaller (the solution is
closer) the number of repeated samples increases (the higher the line the more
repeated samples there are). When the tree is shallow enough (depth is lower
than 10) it is very significant. If the state-space is small, the impact of the
parallelism will be diminished (Figure 10). Low problem complexity may be
caused by the problem is simple itself.
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Fig. 10. Explanation of performance change caused by the problem size change

5 Conclusions

Results from Reversi and SameGame show the same problem. Both in case of
CPU and GPU usage an improvement limit exists. The communication is not
the problem as the simulation speed increases linearly. The most likely causes
of this issue is the problem size and therefore repeating samples. We were able
to gain performance improvement in both problems by increasing the thread
number. Therefore at a certain point a scaling problem arose. We showed that
the scaling is affected by:
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1. The problem complexity - MCTS shows weak scaling
2. Random number generation, bounds for the number of unique random se-

quences, repeating samples
3. Exploitation/exploration ratio - the higher exploitation, the better scaling,

more unique trees in root parallelism
4. The implementation itself - i.e. leaf parallelism/root parallelism.
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1 How Questions Guide Choices

We will be concerned with decisions that involve some sort of action. You have
an apple and can exchange it for an orange. If you prefer the orange then you
exchange; if not, you don’t. The concept of preference here is a practical one,
which presupposes that it is within your capability to move from one thing to
another only if it is at least as good. Yet it is also important to be aware of what
your capabilities are, and this is where questions are useful.

Alice is considering moving house. She is unhappy with the fact that her
house is far from the bus stop. She searches the listings for a house that
is better located and sees several that she likes better. She goes to visit
the one of them with Betty, her good friend. When Betty sees the house,
she says ‘what about a garden?’ This is not a question that Alice had
considered before. Her own house doesn’t have one, but she is influenced
by Betty to go back to the listings and check out houses with gardens.
Eventually, she finds a house and moves. It has a nice big garden. But a
few months later, she visits Chandra, a friend of Betty’s who lived in a
concrete house. Alice finds it quite charming. Her new house is timber-
framed, like her old house and every house she has ever lives in. That
night, she goes back to the listings. . .

The story illustrates how the process of practical decision making is guided by
the questions one asks. Alice may well have asked very direct questions, such as
‘does it have a roof?’ and ‘can I afford it?’ but often it is the more open ended
questions such as ‘what about a garden?’ that helped her to enlarge the options
available to her, and it is these questions that we will focus on.

Here is a simple model of Alice’s situation, with the full facts revealed. There
is a twist that we will come to shortly.
� Supported by the National Social Science Foundation of China (09CZX033), the

Foundation for Humanities and Social Sciences by the Ministry of Education of
China (08JC72040002) and the Fundamental Research Funds of Southwest Univer-
sity (SWU0909512).
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Fig. 1. Alice’s Story

where the numbers represent the various houses, with 0 being Alice’s original
house and an arrow from n tom indicated that Alice regardsm as at least as good
as n. The rectangles enclose the houses that are p close to public transport, g
have gardens and c are built of concrete. Initially, before Alice considers moving,
she doesn’t even consider other houses. When she asks about public transport,
the rectangle marked p fades away and she has a range of options: 0, 1, 2 and
3. Of these, she rejects 1, which is worse than her own house. Houses 2 and 3
are both better but incomparable. But when Betty asks about gardens, the g
rectangle also fades and she has another three houses to choose from: 4, 5 and
6. Of these, 5 and 6 are both better than any other house she has looked at.
Eventually, she opts for 6. Later, at Chandra’s house, she considers houses that
are not built from timber and 7 and 8 become available.

We will develop a language and logic for reasoning in this way in the following
sections. For now, consider a further development in the story:

Alice is so impressed with the houses she looks at. Why had she never
thought of houses being made out of anything but wood? Next month,
she has moved into her new plaster house, which looks very modern and
stylish. But after a while she happens to walk past her old house - the
first one. Taken by it’s quaint charm and worn woodwork, she realises
that she prefers it to her new house.

Something has clearly gone wrong with Alice’s decision making but it is an
all-too-familiar situation. In the excitement of the search, something was miss-
ing. An easy answer is that Alice’s preferences are clearly not transitive. She is
therefore irrational, in some sense. But the apparent plausibility of each of her
decisions suggests there is more to be said. We will return to this example in
Section 4 below.

Our second example comes from a the Warring States period in ancient China,
which we have altered a little to suit our purposes.

Racing horses was the most popular entertainment in the ancient state of
Qi. Despite having a fine stable, the minister Tian Ji’s horses habitually
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lost to the King of Qi, who had the fastest horses in the state. The
famous military strategist Sun Bin offered his help. Each day there are
three races: the blue race, the yellow race and the red race for increasingly
fast horses. The horses wear ribbons of the colour of the race they will be
in, so that the handlers can bring them to the starting position. Sun Bin
observed that Tian Ji’s horses only lost by a small amount, and quickly
devised a strategy to make Tian Ji win. The next day, Tian Ji went to
the races as usual, but with one difference. His slowest horse wore a red
ribbon, his fastest horse wore the yellow ribbon and the middle horse
wore a blue ribbon. And that day he beat the King in two out of the
three.

Here the actions involved are races between two horses, which is only a deci-
sion in the metaphorical sense, but as practical decisions go, it is among the
more dramatic. Sun Bin achieves his subterfuge by swapping the horses ribbons
without the other side knowing. The race order is therefore established with the
question that the handlers have to ask at the beginning of each race, namely:
‘what colour?’

The model looks like this (with the first day shown on the left and the second
on the right):

k1 k2 k3

t1 t2 t3

red yellow blue

k1 k2 k3

t1 t2 t3

yellow bluered

red

In this case, the effect of the question ‘what colour?’ is to look for an answer,
and so impose the dashed boundaries on the space of actions. When these are
as shown on the left (represented the first day), each race is decided in favour
of the King. After the switching of ribbons, on the second day, the boundaries
given by the same question are as shown on the right, and two out of the three
races are decided in favour of Tian Ji.

2 A Simple Logic of Rational Choice

We model an agent’s preferences by a binary relation ≤ on which we initial
impose no constraints. u ≤ v means that the agent regards v as at least as good
as u and is capable of deciding to move to v when in state u, other things being
equal. As discussed in the introduction, this is not a theoretical preference but a
practical one. If u ≤ v and v �≤ u we write u < v and say that the agent prefers
v to u. This latter relation is clearly asymmetric (and so irreflexive) but beyond
that there are no constraints. A choice frame, then, is a structure 〈W,≤〉.
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We reason about choice frames using the basic hybrid modal language with a
universal modal operator U

i | p | ¬ | ∧ | 	 | U
where i ∈ Nom, a set of nominals, p ∈ Prop, a set of propositional variables and 	
is the unary modal operators for the ≤ relation. The nominals are included in the
language so that we can reason about particular agent’s preferences concerning
particular states/entities. We abbreviate ♦ = ¬	¬and E = ¬U¬ to get the
corresponding existential modalities. As always, we can express the fact that ϕ
holds at state i by defining @iϕ = U(i→ ϕ).

A choice model M = 〈F, V 〉 consists of a choice frame F together with a
valuation function V : Prop∪Nom→ P(W ), satisfying the usual restriction that
V (i) = {i} for each i ∈ Nom. The semantic conditions of all the operators are
perfectly standard, so we will not reproduce them here. Moreover, the set of
valid formulas has a well-known axiomatisation H together with a single axiom
for the universal modality and the reflexivity of ≤:1

Universal Ei Reflexivity i→ ♦i

How, then, do we reason about rational choice on the basis of the available
choices given by a choice frame? Let us introduce a new operator D with the
following interpretation:

Dϕ holds if after any rational choice that the agent can make, ϕ holds.

To analyse this in our model, we have to say, for each state u whether or not
changing to state v is not merely a possible choice but a rational one. As we are
not making the assumption that ≤ is transitive, standard accounts of rational
decision making cannot be directly applied.2

Instead, we say that a choice is rational if it is at least as good as the the
present state and is stable, in the sense that any move away can be followed by
a move back. So we define:

u is stable iff v ≤ u for every v such that u ≤ v
Reformulating this slightly, note that u is stable just in case there is no v > u.
Any such v would permit an irreversible move away from u. When Alice is
considering moving house, it is sensible for her to make a stable choice, one that
she will not abandon, at least not without changing her preferences. Stability
can now be used to give the semantic condition for rational choice:
1 For details, see [7], p.87.
2 Intransitive preferences have been considered in the foundations of rational choice

theory, most notable by Anand in [1], who argues for an alternative to the standard
account in which intransitive preferences are permitted. His view remains controver-
sial as a normative account but there is little doubt that transitivity of preference is
simply false as a descriptive account of preference. Our present concern is to focus on
the role of questions in guiding choices. As Alice’s story indicates, and we will later
explain, this role is illuminated more clearly when we do not make the idealizing
assumption that the agent has transitive preferences.
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M,u |= Dϕ iff M, v |= ϕ for all stable v ≥ u.
The operator D cannot be defined in the basic language but it can be charac-
terized on frames with a pure formula:

Rational Choice 〈D〉i ↔ ♦(i ∧	♦i)

where 〈D〉 = ¬D¬, the dual of D. Thus, adding this as an axiom to H and
Universal gives us a complete axiomatisation.

In the considerable literature on preference logic, starting in philosophy with
[9] and in AI with [5], preferences are assumed to be transitive, making any
direct comparison with the current approach a little difficult.

Firstly, a common approach to say that ϕ is preferred if it is true is all the
‘best’ states: those that are maximal with respect to the preference order ≤. A
state u is maximal if there is no state v that is strictly better than it; i.e., no v
such that u ≤ v and not v ≤ u. This of course, is exactly our definition of ‘stable’,
which we claim is the natural generalisation of the concept of maximality to the
intransitive setting.

Secondly, a rather odd consequence of our definition of rational choice is that
an agent may strictly prefer v to u and not be (rationally) able to choose v
because there is a w that is strictly better than v, making v unstable. Yet because
of a failure of transitivity, the agent may also be unable to choose w over u. This
kind of quandry is exactly what wish to analyse. But so far we lack the resources
to do so. A crucial element is missing: context change.

3 Ceteris Paribus Preference Logic: The Atomic Case

So far we have assumed that the space W of alternatives from which the agent
must choose is fixed. If she is currently in state u, all of the other states are
available as possible choices. But we are interested in the possibility that asking
questions can open up different possibilities. Suppose, for example, that p is true
in state u. If the agent presupposes (consciously or not) that p is a fact of life that
cannot be altered, then she will not consider those states in which p is false. For
example, suppose you are thinking of changing your job as a waitress. You look
through the situations vacant ads in the local newspaper, perhaps even search
online for openings in the hospitality industry, but you may fail to consider the
possibility of training as a high school teacher. When someone asks you about
this, or you ask yourself, the space of options expands.

This phenomenon is closely related to the common observation that preference
judgements are ceteris paribus, ‘other things being equal’. From Von Wright’s
pioneering work [9], logicians have attempted to incorporate the ceteris paribus
assumption into logical systems. Recent work ([8] and [6]) has provided a general
framework for logics of ceteris paribus reasoning, in which the modal operator
are restricted by an equivalence relation ≈ which holds between states that
are equivalent ‘other things being equal’. The focus of that work is to include
a description of the conditions under which ‘things are equal’ in the language
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itself, as a parameter of the modal operators. Here we take a slightly different
approach.3 We will suppose that by default two states are equivalent ceteris
paribus if and only if the same ‘facts’ hold in the two states. By a fact we mean
a non-modal proposition. A necessary and sufficient condition for this to be the
case is that the two states satisfy the same propositional variables. The effect
asking the question ‘what about p?’ is to allow more states to be equivalent,
specifically, after asking the question, two states are equivalent iff they satisfy
the same propositional variables other than p.

Considering atomic questions will give us enough to be getting on with. So
let us define an atomic ceteris paribus choice model M = 〈F, V, P 〉 to consist
of a choice model 〈F, V 〉 together with a set P of propositional variables, which
we interpret as the atomic facts that are held constant. That is, we define for
u, v ∈W

u ≈ v iff for each p ∈ P , u ∈ V (p) iff v ∈ V (p)

We require P to be cofinite, so that only a finite number of propositional variables
are allowed to vary. Then the semantic conditions for our language must be
restricted to observe the dominion of ≈:4

M,w |= 	ϕ iff M, v |= ϕ for each v ≈ w such that w ≤ v
M,w |= Uϕ iff M, v |= ϕ for each v ≈ w
M,w |= Dϕ iff M, v |= ϕ for each v ≈ w such that v is also ≤ ∩ ≈-stable.

Recall the example of Tian Ji’s horse racing success and the diagram presented
earlier on p.464. Call the frame depicted here, F . The pictures represent two
models M1 = 〈F, V1, P 〉 and M2 = 〈F, V2, P 〉, where the valuations for the
propositional variables ‘red’, ‘yellow’ and ‘blue’ are given by V1 and V2. Another
two variables ‘king’ and ‘tianji’ have values {k1, k2, k3} (the King’s horses) and
{t1, t2, t3} (Tian Ji’s horses).

The formula that expresses that the King always wins isD(king). If this is eval-
uated with the semantics of a choice model, it is valid in both, because the King’s
horse k1 is the fastest in the land. But rules of the race state that only horses of
the same colour can race. We represent this by taking P = {red, yellow, blue}.
The resulting equivalence classes for ≈ are shown with dashed boxes. They are
different in the two models, representing the different ways of matching horses in
the race. The conventions of the race ensure that only horses of the same colour
are compared. Then we can see that M1 |= D(king) but M2 �|= D(king). In fact,
we can see the complete race record in M2:

M2 |= (red→ D(king)) the King wins
M2 |= (yellow→ D(tianji)) Tian wins
M2 |= (blue→ D(tianji)) Tian wins

3 A detailed comparison is given in [10].
4 Note that we also liberalise D from the ≤ relation, relying instead on the ≈ relation

to provide the range of choices from which the agent must make a selection. This
removes the odd consequences of intransitive preferences that we mentioned a the
end of Section 2, at least in the local context. The relation ≈ is transitive and so all
stable states within the current context are reachable.
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And so, finally, Tian Ji wins! Races are not literally decisions, of course, although
the vocabulary of decision making is often applied metaphorically. Likewise, this
ancient tale provides a vivid metaphor for how the outcome of our decisions
can be crucially effected by those contextual factors that we take to be constant
and those that we permit to vary. This is the role that questioning plays in the
rational process, we claim, and it is to this that we turn in the next section. But
first, we have the following quick result about the logic of atomic ceteris paribus
choice:

Theorem 1. The set of formulas valid over the class of atomic ceteris paribus
preference models is axiomatized by basic hybrid logic, H, together with

Universal Equivalence i→ Ei
i→ UEi
EEi→ Ei

Reflexivity i→ ♦i
Inclusion ♦i→ Ei
Preferential Choice 〈D〉i ↔ E(i ∧	♦i)

Call this the logic PC of Preferential Choice.

Proof. Firstly, each of these axioms is valid in any atomic ceteris paribus model,
so the axiomatisation is sound. Secondly, for completeness, say that F = 〈W,≤,
RU , C〉 is a quasi-preference frame iff

1. RU is an equivalence relation,
2. ≤ is reflexive and ≤⊆ RU , and
3. Cuv iff RUuv and v is ≤-maximal.

For a quasi-preference model M = 〈F,≤, RU , C, V 〉, define

M,w |= Uϕ iff M, v |= ϕ for all v ∈W such that RUwv

Then the set of formulas valid in all quasi-preference models is axiomatised
as shown above. This is because (1) is characterised by Universal Equivalence,
(2) is characterised by Inclusion and Reflexivity, and (3) by Preferential Choice.
These are all pure formulas, so completeness is automatic (by [7] again) . So
suppose that ϕ is a consistent formula and let P be the set of propositional
variables that do not occur in ϕ, noting that this set is cofinite. Then the set
{ϕ} ∪ {Up | p ∈ P} is also consistent and so is satisfied at a state w of a
quasi-preference model M = 〈W,≤, RU , C, V 〉. Now let

W ′ =
⋃
{[i] | i occurs in ϕ}

where [i] is the RU -equivalence class of i. For each nominal i occurring in ϕ,
assign a distinct propositional variable pi ∈ P . Pick a state w0 ∈ W and let V ′

be the valuation defined as follows for x ∈ Prop ∪Nom,

V ′(x) =

⎧⎨
⎩
{w0} if x ∈ Nom but x does not occur in ϕ
[i] if x = pi

V (x) ∩W ′ otherwise
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and let M ′ = 〈W ′,≤, RU , C, V
′〉. Since V ′ agrees with V on all variables in ϕ,

this formulas is also satisfied at w in M ′. Now define an atomic ceteris paribus
preference model M ′′ = 〈W,≤, V ′, P 〉. Then the following are equivalent:
RUuv
v ∈ V ′(pi) for some nominal i such that RUui
u ∈ V ′(pi) iff v ∈ V ′(pi) for all i occurring in ϕ
u ∈ V ′(p) iff v ∈ V ′(p) for all p ∈ P
u ≈ v in M ′′

This is the crucial step in an inductive proof that for all formulas ψ and all
u ∈ W , M ′, u |= ψ iff M ′′, u |= ψ. The rest of the argument is routine. Hence ψ,
in particular, is satisfied at w in the atomic ceteris paribus model M ′′, and so
the axiomatisation is complete. ♣
Although this logic uses the semantics of ceteris paribus preferences, it differs
from recent approaches, such as [8], [6] and [4], in not including a description of
the context in the language. Instead, we will focus on the dynamics of changing
the context using questions.

4 Adding Questions as Dynamic Operators

With the semantics of atomic ceteris paribus preference models in place, we can
start to model the effect of asking questions on the ceteris paribus relation.5

The idea is very simple. When we ask the question ‘what about p?’ we move
from the model M = 〈F, V, P 〉 to the model [?p]M = 〈F, V, P \ {p}〉 in which
p has been subtracted from the set of propositional variables that must be held
constant when we search for alternatives. More generally, for a finite set Q of
propositional variables, we define

[?Q]M = 〈F, V, P \Q〉
This operation on models will be expressed by a new operator [?Q] in our lan-
guage, with the obvious semantic condition

M,w |= [?Q]ϕ iff [?Q]M,w |= ϕ
With reference to Figure 1, we model M Alice’s decisions about moving from
house 0 using the frame show F with nominals for each of the houses. t, g, p
are propositional variables. Initially, before Alice considers moving, all of these
are fixed, so we take P = Prop. When Alice is unhappy about living far from
the bus stop, she searches for houses and considers 1, 2, and 3. These options
are available because she has asked the question [?p]. She rejects 1 and we have
5 Although there have been various proposals for developing a dynamic logic of ques-

tions, especially Johan van Benthem and Ştefan Minică’s [2], our focus on decision
making and the effect of questioning on ceteris paribus conditions, is a different
project. In an earlier paper, [3], one of us developed an account of what we now call
‘closed’ questions using a similar framework.
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M, 0 |= [?p]D(2 ∨ 3) She decides to move to house 2, but her friend Betty asks
‘what about a garden?’ [?g]. Then the listings for houses is enlarged and since
M, 2 |= [?p][?g]D6 she moves to house 6. We’ll return to the example when we
can say more about what happens next.

We have interpreted the question ‘what about p?’ as an open question, inviting
not an answer but a further investigation of situations in which p may or may not
be the case. But one can also interpret the question in a closed way, as a request
for an answer. Closure is achieved by finding out whether p is the case and then
sticking to the answer. We can easily add an operation [!p] (more generally [!Q])
to our language that has this effect. Let Lc be the extension of L to include
closed question operators. Given a model M = 〈F, V, P 〉, let

[!Q]M = 〈F, V, P ∪Q〉
and define M,u |= [!Q]ϕ iff [!Q]M,u |= ϕ.6

Closed questions allow us to give a model of decisions that are actually taken.
If we ask about Q and make a decisive choice, the options opened by [?Q] are
typically closed. We represent this by

[?Q]D[!Q]

The closing of the question marks the end of the decision-making process. This
is no clearer than with examples in which the decision involves a clear action,
such as moving house. Alice deciding to move to a house with a garden and then
actually moving is represented as

[?g]D[!g]

After this point, she no longer considers houses without a garden. If Alice kept
the garden question open, she would not have moved the second time (move to
the house 8), which would have not been a stable option. That is

M, 0 |= [?p]〈D〉[?g]〈D〉[!g][?t]〈D〉8 but not M, 0 |= [?p]〈D〉[?g]〈D〉[?t]〈D〉8
Finally, we can model the last part of Alice’s story, when she discovers that she
prefers her old house 0 to the new one 8. That is

M, 0 |= [?p]〈D〉[?g]〈D〉[!g][?t]〈D〉[!p][?g]〈D〉0

5 Closing Remarks

Inspired by a simple example of decision making and how it is guided by asking
questions, we introduced a rational choice operatorD to model the act of making
a decision which applies even to agents with intransitive preferences. This gave
us a logic of rational choice, formulated in a basic hybrid modal language using
the axiom of Rational Choice. We then transformed this into a ceteris paribus
6 Note that if P is cofinite and Q is finite then P ∪Q is also cofinite.
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logic in which choices are allowed to vary over a range of contextually supplied
alternatives. This was axiomatised as the logic PC of Preferential Choice, and
illustrated by giving an analysis of the strategic wisdom of Sun Bin.

The logic PC provided the background for a novel approach of modelling
ceteris paribus context change using dynamic operators. In particular, we sug-
gested that the role of questions in decision making is to alter those factors that
are held ‘equal’ when evaluating ceteris paribus preferences. This allowed us to
give an account of our main example, in which an agent’s intransitive preferences
allow her to make a series of locally rational choices, which eventually lead her
around in a circle. A full logical investigation of these operators is beyond the
scope of this short paper, and we refer the reader to the more technical treat-
ment in [10], which also includes application to Condorcet’s Voting Paradox and
the extension to compound questions.
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Abstract. A new non-monotonic logic called clausal defeasible logic
(CDL) is defined and explained. CDL is the latest in the family of de-
feasible logics, which, it is argued, is important for knowledge represen-
tation and reasoning. CDL increases the expressive power of defeasible
logic by allowing clauses where previous defeasible logics only allowed
literals. This greater expressiveness allows the representation of the Lot-
tery Paradox, for example. CDL is well-defined, consistent, and has other
desirable properties.

Keywords: Defeasible logic, Non-monotonic reasoning, Knowledge rep-
resentation and reasoning, Artificial intelligence.

1 Introduction

Non-monotonic reasoning systems represent and reason with incomplete infor-
mation where the degree of incompleteness is not quantified. A very simple and
natural way to represent such incomplete information is with a defeasible rule
of the form “antecedent ⇒ consequent”; with the meaning that provided there
is no evidence against the consequent, the antecedent is sufficient evidence for
concluding the consequent. Creating such rules is made easier for the knowl-
edge engineer as each rule need only be considered in isolation. The interaction
between the rules is the concern of the logic designer.

Reiter’s normal defaults [23] have this form, with the meaning that if the an-
tecedent is accepted and the consequent is consistent with our knowledge so far
then accept the consequent. Of course the consequent could be consistent with
current knowledge and yet there be evidence against the consequent. This results
in multiple extensions. However multiple extensions are avoided by interpreting
a defeasible rule as “if the antecedent is accepted and all the evidence against
the consequent has been nullified then accept the consequent”. This interpre-
tation forms the foundation of a family of non-monotonic logics all based on
Nute’s original defeasible logic [21]. (Different formal definitions of “accepted”,
“evidence against”, and “nullified” have been used by different defeasible logics.)

Unlike other non-monotonic reasoning systems, these defeasible logics use
Nute’s very simple and natural “defeasible arrow” to represent incomplete infor-
mation. This simplicity and naturalness is important when explaining an imple-
mentation to a client. All defeasible logics have a priority relation on rules and
use classical negation rather than negation-as-failure.
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A key feature of these defeasible logics is that they all have efficient easily im-
plementable deduction algorithms [10,20,22]. Indeed defeasible logics have been
used in an expert system, for learning and planning [22], in a robotic dog which
plays soccer [4,5], in a robotic poker player [6], to improve the accuracy of radio
frequency identification [11], to model the behaviour of autonomous robots [9],
and to facilitate the encoding of software requirements [8] so they can be auto-
matically translated into a programming language [7]. Defeasible logics have been
advocated for various applications including modelling regulations and business
rules [1], agent negotiations [13], the semantic web [2,3,25], modelling agents [16],
modelling intentions [15], modelling dynamic resource allocation [17], modelling
contracts [12], legal reasoning [18], modelling deadlines [14], and modelling di-
alogue games [24]. Moreover, defeasible theories, describing policies of business
activities, can be mined efficiently from appropriate datasets [19].

The unique features and diverse range of practical applications show that
defeasible logics are useful and their language is important for knowledge rep-
resentation and reasoning. Using defeasible logic as the inference engine in an
expert system is obvious. But it is less obvious to use defeasible logic to deal
with the error-prone output of sensors (possibly in a robot), because this can be
done using classical logic. The advantages of using defeasible logic are that the
system can be developed incrementally, there are fewer rules, and the rules are
simpler [4,5,11].

In this article we shall define a new defeasible logic, called clausal defeasible
logic (CDL) and explain how it works. The main purpose of CDL is to increase
the expressive power of defeasible logic by allowing clauses where previous de-
feasible logics only allowed literals.

The rest of the paper has the following organisation. Section 2 gives an
overview of CDL. The formal definitions of CDL are in Section 3. An example is
considered in Section 4. The results in Section 5 show that CDL is well-defined,
consistent, and has other desirable properties. A summary forms Section 6.

2 Overview of Clausal Defeasible Logic (CDL)

CDL reasons with both factual and plausible information. The factual informa-
tion is represented by strict rules of the form A → c where A is a finite set of
literals and c is a clause. If all the literals in A are proved then c can be deduced,
no matter what the evidence against c is.

The plausible information is represented by defeasible rules, warning rules,
and a priority relation, >, on these rules.

Defeasible rules have the form A⇒ c where A is a finite set of clauses and c
is a clause. If all the clauses in A are proved and all the evidence against c has
been nullified then c can be deduced. For example, “Birds usually fly.” can be
represented by {b} ⇒ f .

Warning rules, for example A � ¬l, warn against concluding usually l, but
do not support usually ¬l. For example, “Sick birds might not fly.” can be
represented by {s, b} � ¬f . The idea is that a bird being sick is not sufficient
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evidence to conclude that it usually does not fly; it is only evidence against the
conclusion that it usually flies.

There is an acyclic priority relation between non-strict rules; r2 > r1 means
that r2 is preferred over r1.

CDL has four major proof algorithms, μ, ρ, π, and β, which cater for different
intuitions about what should follow from a reasoning situation. The μ algorithm
is monotonic and uses only strict rules. CDL restricted to μ is essentially classical
propositional logic. The ambiguity blocking algorithm is denoted by β. There
are two ambiguity propagating algorithms denoted by ρ and π, ρ being more
reliable than π.

The task of proving a formula is done by a recursive proof function P . The
input to P is the proof algorithm to be used, the formula to be proved, and the
background. The background is an initially empty storage bin into which is put
all the clauses that are currently being proved as P recursively calls itself. The
purpose of this background is to detect loops. The output of P is one of the
following proof-values +1, 0, or −1. The +1 means that the formula is proved
in a finite number of steps, 0 means that the proof got into a loop which was
detected in a finite number of steps, and −1 means that in a finite number of
steps it has been demonstrated that there is no proof of the formula and that
this demonstration does not get into a loop.

3 Clausal Defeasible Logic (CDL)

Atm is a non-empty countable set of (propositional) atoms, and Lit = Atm ∪
{¬a : a∈Atm} is the set of all literals. If C is a clause or a set of clauses then
Lit(C) denotes the set of literals in C. The set of all tautologies is denoted by
Taut . The set of all clauses which are resolution-derivable from the set C of
clauses is denoted by Res(C).

The complement, ∼l, of a literal l is defined as follows. If a is an atom then
∼a is ¬a, and ∼¬a is a. If L is a set of literals then ∼L = {∼l : l∈L}.
Definition 1. A rule, r, is any triple (A(r), arrow (r), c(r)), such that A(r) is a
finite set of non-empty clauses called the set of antecedents of r, arrow (r)∈{→
,⇒,�}, c(r) is a non-empty clause called the consequent of r, and if arrow(r)
is → then A(r) is a finite set of literals.

Strict rules use the strict arrow, →, and are written A(r) → c(r). De-
feasible rules use the defeasible arrow, ⇒, and are written A(r) ⇒ c(r).
Warning rules use the warning arrow, �, and are written A(r) � c(r).

Definition 2. Let R be any set of rules, Rs be any set of strict rules, C be any
set of clauses, L be any set of literals, c be any clause, and l be any literal.
Rs = {r∈R : r is a strict rule}. R[

∨
L] = {r∈R : c(r) =

∨
L}.

Rd = {r∈R : r is a defeasible rule}. R[c; 1] = {r∈R[c] : |A(r)| ≤ 1}.
Rw = {r∈R : r is a warning rule}. R[C] = {r∈R : c(r)∈C}.
Rdw = Rd∪Rw. Cl(Rs) = {∨(L∪∼A) : A→∨

L ∈ Rs}.
Ru(C) = {∼(L−K)→ ∨

K :
∨
L∈C and {}⊂K⊆L}.
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Cl converts a strict rule to a clause. Conversely, Ru converts a clause with n
literals to 2n − 1 strict rules.

Definition 3. If R is a set of rules then > is a priority relation on R iff > is
an acyclic binary relation on Rdw. R[l; s] = {t∈R[l] : t > s}.

Let C be a set of clauses. We want to remove from C all the clauses which
are empty, or tautologies, or are strict superclauses of other clauses. The result
is called the reduct of C, Red(C). A set of literals such that each clause in C
contributes exactly one literal to the set is called a transversal of C.

To help prove clauses we “move literals from the antecedent to the conse-
quent”. For instance the rule {a, b} ⇒ c generates the rules {a} ⇒ ∨{∼b, c}
and {} ⇒ ∨{∼a,∼b, c}.

Definition 4. Let R be any set of rules. The set, Gen(R), of rules generated
from R is defined by Gen(R) = {(A(r)−C) arrow (r)

∨
(L∪∼T ) : r∈R, C⊆A(r),

c(r) =
∨
L, and T is a transversal of C}.

Definition 5. Let R be a finite set of rules. The ordered pair (R,>) is called a
clausal defeasible theory (cdt) iff DT1, DT2, and DT3 all hold.
DT1) Rs = Ru(Red(Res(Cl (Rs)))).
DT2) Rdw = Gen(Rdw).
DT3) > is a priority relation on Rdw.

Definition 6. Let Θ = (R,>) be a cdt. The set Ax(Θ) of axioms of Θ is
defined by Ax(Θ) = Cl(Rs). Define A*(Rs[l; 1]) = {A(r) : r∈Rs[l; 1]} ∪ {{l}}.

To cater for various intuitions we will introduce the following proof algorithms:
μ, ρ, π, β, π′, and ρ′, which are explained after their formal definition.

Definition 7. Suppose λ∈{ρ, π, β}. Then λ′ is the co-algorithm of λ, where
β′ = β. Moreover we define (λ′)′ = λ.

A clausal defeasible logic consists of a clausal defeasible theory Θ and its
proof function, P . To define P we shall define some auxiliary functions and
the proof algorithms μ, ρ, π, β, π′, ρ′. For non-empty sets max and min have their
usual meaning. But we also define max{} = −1, and min{} = +1. We now define
P , its auxiliary functions, and the proof algorithms.

Definition 8. Suppose λ∈{μ, ρ, π, β, π′, ρ′}, C is a finite set of clauses, and L
is a finite set of literals.
Pλset) P (λ,C,B) = min{P (λ, c, B) : c∈C}.
Pλtaut) If

∨
L is a tautology then P (λ,

∨
L,B) = +1.

Pλmt) P (λ,
∨{}, B) = −1.
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Definition 9. Suppose λ∈{ρ, π, β, π′, ρ′}, L is a non-empty finite set of literals,∨
L is not a tautology, and l is a literal.
Pμcl) If {}⊂K⊆L and

∨
K∈Cl (Rs) then P (μ,

∨
L,B) = +1;

else P (μ,
∨
L,B) = −1.

Pλ0) If
∨
L∈B then P (λ,

∨
L,B) = 0.

Pλpc) If
∨
L /∈B and |L| ≥ 2 then P (λ,

∨
L,B) = max({P (λ, l, B) : l∈L} ∪

{P (λ,A(r), {∨K}∪B) : K⊆L, |K|≥2, and r ∈ Rs[
∨
K; 1] ∪Rd[

∨
K]}).

Pλlit) If l /∈B then P (λ, l, B) = max({P (λ,A(r), {l}∪B) : r∈Rs[l; 1]}∪
{Plaus(λ, l, B)}).

Definition 10. Suppose λ∈{ρ, π, β}, l is a literal, B is a finite set of clauses,
and l /∈B.
Plausρ′) Plaus(ρ′, l, B) = max{P (ρ′, A(r), {l}∪B) : r∈Rd[l]}.
Plausλ) Plaus(λ, l, B) = min({For(λ, l, B)} ∪

{Nulld(λ, l, B, I) : I∈A*(Rs[∼l; 1])}).
Plausπ′) Plaus(π′, l, B) = max{Evid(π′, l, B, r) : r∈Rd[l]}.
Forλ) For(λ, l, B) = max{P (λ,A(r), {l}∪B) : r∈Rd[l]}.
Evidπ′) Evid(π′, l, B, r) = min({P (π′, A(r), {l}∪B)} ∪

{Nulldr(π′, l, B, r, I) : I∈A*(Rs[∼l; 1])}).
Nulldλ) Nulld(λ, l, B, I) = max{Discred(λ, l, B, q) : q∈I}.
Nulldrπ′) Nulldr(π′, l, B, r, I) = max{Discredr(π′, l, B, r, q) : q∈I}.
Discredλ) Discred(λ, l, B, q) = min{Dftd(λ, l, B, s) : s∈Rs[q; 1]∪Rdw[q]}.
Discredrπ′) Discredr(π′, l, B, r, q) = min{Dftd(π′, l, B, s) : s∈R[q; r]}.
Dftdλ) Now suppose λ∈{ρ, π, β, π′}. Then Dftd(λ, l, B, s) =

max({P (λ,A(t), {l}∪B) : t∈Rd[l; s]} ∪ {−P (λ′, A(s), {l}∪B)}).
Definition 11. Suppose Θ is a cdt, P is the proof function of Θ, c is a clause,
and λ ∈ {μ, ρ, π, β, π′, ρ′}. We define Θ(λ+) = {c : P (λ, c, {}) = +1}, and
Θ(λ−) = {c : P (λ, c, {}) = −1}.
We shall now give some insight into the above proof algorithms. Note that min
and max behave like quantifiers. Suppose λ∈{μ, ρ, π, β, π′, ρ′}.

A set of clauses, C, is proved by proving each clause in C. So for P (λ,C,B)
to be +1 each P (λ, c, B) must be +1, where c∈C. Hence Pλset.

Now consider proving a clause. If a clause,
∨
L, is a tautology then we declare

it proved, whether or not it is in the background. Hence Pλtaut. The empty
clause is disproved, whether or not it is in the background. Hence Pλmt. So
suppose

∨
L is not a tautology and L �= {}.

Apart from the cases considered above, a clause
∨
L is proved by proving any

non-empty subclause of
∨
L.

The μ algorithm declares
∨
L to be proved if a non-empty subclause of

∨
L is

an axiom; otherwise it is disproved. Hence Pμcl. So suppose λ∈{ρ, π, β, π′, ρ′}.
If

∨
L is in the background B then we are already in the process of trying

to prove
∨
L. So we are now in a loop. Hence P (λ,

∨
L,B) = 0 and so Pλ0. So

suppose
∨
L is not in B.

To prove a proper clause,
∨
L, we must either prove a literal which occurs in

L, (hence {P (λ, l, B) : l∈L}), or prove a subclause
∨
K of

∨
L which is proper.
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To prove
∨
K we need to prove every clause in the set of antecedents of a strict or

defeasible rule whose consequent is
∨
K, provided that the set of antecedents of

the strict rule contains at most 1 literal. The need for this restriction is shown by
Example 1. We have the strict rule r7: {¬s1,¬s2} → s3, and also by Evaluations
E1 and E2 we can prove both ¬s1 and ¬s2. But the fact that ¬s1 and ¬s2 can
be independently proved is not evidence for s3. Hence Pλpc.

To prove a literal l we must prove every clause in the set of antecedents of a
strict or defeasible rule whose consequent is l. If a strict rule is used then evidence
against l need not be considered, and its set of antecedents must contain at most
1 literal, max{P (λ,A(r), {l}∪B) : r∈Rs[l; 1]}. If a defeasible rule is used then
evidence against l must be considered, Plaus(λ, l, B). Hence Pλlit.

The ρ′ algorithm ignores all evidence against l. Hence Plausρ′.
Now consider the ρ, π, and β algorithms. Suppose λ ∈ {ρ, π, β}. These al-

gorithms must consider evidence for l, For(λ, l, B) and Forλ, and nullify the
evidence against l, {Nulld(λ, l, B, I) : I∈A*(Rs[∼l; 1])}. Hence Plausλ.

The evidence against l consists of any set of literals which is inconsistent with
l. The set of all such sets is A*(Rs[∼l; 1]). The evidence against l is nullified
by, for each I in A*(Rs[∼l; 1]), finding a literal, q, in I such that every rule, s,
whose consequent is q, is defeated. The only restriction is that if s is a strict
rule then its set of antecedents must contain at most 1 literal. Hence Nulldλ and
Discredλ. A rule, s, is defeated by either using the λ′ algorithm to disprove a
clause in its set of antecedents, −P (λ′, A(s), {l}∪B), or by using team defeat.
That is by finding a defeasible rule t whose consequent is l (a member of the
team for l) and which is superior to s, and then proving every clause in the set
of antecedents of t, {P (λ,A(t), {l}∪B) : t∈Rd[l; s]}. Hence Dftdλ.

Finally the π′ proof algorithm is similar to the π algorithm, except that we
choose one defeasible rule r supporting l and only consider rules s which are
superior to r as evidence against l, and hence need defeating.

4 Example

The following example shows how the lottery example can be represented.

Example 1. (The 3-Lottery example)
Consider a fair 3-sided die. Let si denote side i. Then for each i in {1, 2, 3}
it is plausible that the outcome of a roll of this die is not si. So for each i in
{1, 2, 3} we have {} ⇒ ¬si. Moreover for each i in {1, 2, 3} it is plausible that the
outcome of a roll of this die is in {s1, s2, s3} − {si}. So for each i in {1, 2, 3} we
have {} ⇒ ∨

({s1, s2, s3} − {si}). Furthermore the outcome of a roll of this die
is exactly one of s1, s2, or s3. So we have

∨{s1, s2, s3}, ¬∧{s1, s2}, ¬∧{s1, s3},
¬∧{s2, s3}. Converting these facts to clauses gives:

∨{s1, s2, s3}, ∨{¬s1,¬s2},∨{¬s1,¬s3}, ∨{¬s2,¬s3}.
The cdt Θ = (R,>) which captures this situation is defined as follows.
The strict rules are: r1: {} → ∨{s1, s2, s3}, r2: {¬s1} → ∨{s2, s3},

r3: {¬s2} → ∨{s1, s3}, r4: {¬s3} → ∨{s1, s2}, r5: {¬s2,¬s3} → s1,
r6: {¬s1,¬s3} → s2, r7: {¬s1,¬s2} → s3, r8: {} → ∨{¬s1,¬s2},
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r9: {s1} → ¬s2, r10: {s2} → ¬s1, r11: {} → ∨{¬s1,¬s3}, r12: {s1} → ¬s3,
r13: {s3} → ¬s1, r14: {} → ∨{¬s2,¬s3}, r15: {s2} → ¬s3, r16: {s3} → ¬s2.

The defeasible rules are: r17: {} ⇒ ¬s1, r18: {} ⇒ ¬s2, r19: {} ⇒ ¬s3,
r20: {} ⇒ ∨{s1, s2}, r21: {} ⇒ ∨{s1, s3}, r22: {} ⇒ ∨{s2, s3}.

There are no warning rules and the priority relation, >, is empty.
We show that if λ is in {ρ, π, β} then λ is able to prove every clause in

U(3) = {¬s1,¬s2,∨{s1, s2}}. We note A*(Rs[s1; 1]) = {{s1}}.
Evaluation E1

1) P (λ,¬s1, {}) = max{P (λ, {s2}, {¬s1}), P (λ, {s3}, {¬s1}),Plaus(λ,¬s1, {})},
by Pλlit

2) Plaus(λ,¬s1, {}) = min{For(λ,¬s1, {}),Nulld(λ,¬s1, {}, {s1})}, by Plausλ
3) For (λ,¬s1, {}) = P (λ, {}, {¬s1}), by Forλ
4) = min{} = +1, by Pλset.
5) ∴ Plaus(λ,¬s1, {}) = Nulld(λ,¬s1, {}, {s1})}, by lines 4, 3, and 2 of E1.
6) = Discred(λ,¬s1, {}, s1), by Nulldλ
7) = min{} = +1, by Discredλ
8) ∴ P (λ,¬s1, {}) = +1, by lines 7, 6, 5, and 1 of E1.

A similar evaluation, say E2, shows that P (λ,¬s2, {}) = +1. Finally we show
that

∨{s1, s2} is provable by any λ in {ρ, π, β}.
Evaluation E3

1) P (λ,
∨{s1, s2}, {}) = max{P (λ, {s1}, {}), P (λ, {s2}, {}),

P (λ, {¬s3}, {∨{s1, s2}}), P (λ, {}, {∨{s1, s2}})}, by Pλpc
2) P (λ, {}, {∨{s1, s2}}) = min{} = +1, by Pλset
3) ∴ P (λ,

∨{s1, s2}, {}) = +1, by lines 2 and 1 of E3.
EndExample1

5 Results

Our first result shows that the proof function P really is a function. (The proofs
of these and other results are in the full article available from the author.)

Theorem 1. Let Θ = (R,>) be a clausal defeasible theory. Then P is a func-
tion with co-domain {+1, 0,−1}.
The next theorem says that CDL has a linear proof hierarchy, and also the
reverse for disproof. This shows that proofs with different levels of confidence
can be achieved without using numbers.

Theorem 2. Suppose Θ is a clausal defeasible theory.
(1) Θ(μ+) ⊆ Θ(ρ+) ⊆ Θ(π+) ⊆ Θ(β+) ⊆ Θ(π′+) ⊆ Θ(ρ′+).
(2) Θ(ρ′−) ⊆ Θ(π′−) ⊆ Θ(β−) ⊆ Θ(π−) ⊆ Θ(ρ−) ⊆ Θ(μ−).

Our final result is that CDL is consistent; that is, each pair of provable clauses
is satisfiable, which as the lottery example shows is the desired result.

Theorem 3. Suppose Θ = (R,>) is a clausal defeasible theory, Ax (Θ) is con-
sistent, and λ∈{μ, ρ, π, β}. If {c1, c2} ⊆ Θ(λ+) then {c1, c2} is satisfiable.
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6 Summary

In Section 1 we argued that, among non-monotonic logics, the family of defea-
sible logics is important for knowledge representation and reasoning. Defeasible
logics are powerful enough for a diverse range of practical applications, and
yet their language has a unique combination of expressiveness, simplicity, and
naturalness.

The rules of previous defeasible logics were constructed from literals, but the
non-strict rules of CDL are constructed from clauses. This greater expressiveness
allows the representation of the Lottery Paradox. The results listed in Section 5
are some of the more important results required to show that CDL is well-defined
and consistent.
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Abstract. A new expert systems methodology was developed, building on 
existing work on the Ripple Down Rules (RDR) method. RDR methods offer a 
solution to the maintenance problem which has otherwise plagued traditional rule-
based expert systems. However, they are, in their classic form, unable to support 
rules which use existing classifications in their rule conditions. The new method 
outlined in this paper is suited to multiple classification tasks, and maintains all 
the significant advantages of previous RDR offerings, while also allowing the 
creation of rules which use classifications in their conditions. It improves on 
previous offerings in this field by having fewer restrictions regarding where and 
how these rules may be used. The method has undergone initial testing on a 
complex configuration task, which would be practically unsolvable with 
traditional multiple classification RDR methods, and has performed well, reaching 
an accuracy in the 90th percentile after being trained with 1073 rules over the 
course of classifying 1000 cases, taking ~12 expert hours.  

Keywords: ripple, down, rules, multiple, classification, round, configuration, 
knowledge acquisition. 

1 Introduction and Previous Work 

Expert systems development and research underwent a surge of popularity during the 
1970s and 80s, as they were one of the first examples of a successful and practical 
artificial intelligence method [1].  However, the approach later fell out of favor, in a 
large part due to maintenance issues. Knowledge-engineers working on traditional 
rule-based systems found that, although initially these systems allowed easy rule 
creation, as the complexity grew it became more and more difficult to define new 
rules that did not interfere with the existing rules adversely [2, 3]. 

These maintenance concerns lead to the development of tools, and validation 
methods which were intended to help the knowledge engineer validate and verify 
their knowledge base after the addition of new rules. However, these methods did not 
offer complete proof against errors being introduced into the knowledge base, and the 
maintenance concerns remained, albeit reduced in severity [3, 4]. 

After experiencing these issues through work with the GARVAN-ES1 thyroid 
expert system [3], Compton & Jansen made some important observations about the 
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nature of the knowledge which was provided by experts. They identified that experts 
tend to provide knowledge which justifies their classification in the current context, 
rather than expressing the complete knowledge path which leads to their 
classification. That is, they express why their classification is correct, rather than how 
[5]. This observation offered an alternative viewpoint to the conventional wisdom of 
the day, which was that experts intrinsically found it difficult to communicate their 
knowledge [6]. Furthering these observations, Compton & Jansen also became aware 
that experts were very good at describing the differences between similar cases, and 
precisely why the classifications should vary between them [5]. 

In light of these discoveries, they proposed RDR as an alternative approach to 
traditional rule-based expert systems. 

1.1 Ripple Down Rules 

The RDR methodology makes use of a true-false binary tree structure in order to 
ensure that rules are always added in context [5, 7].  

With the RDR approach the problem of maintainability was relatively simple to 
solve. When creating a new rule, the system would store the current case against that 
new rule as a “cornerstone”, which stored the entire context that the rule was created 
under. When creating a rule the system could detect if this new rule caused a conflict 
with the past cornerstone. If so, the expert was required to select a relevant difference 
between the current and cornerstone cases. When performing an inference with this 
approach, the knowledge tree would be traversed until a leaf node was reached, and 
then the last known true node would fire [8, 9].  

The RDR method described above is unsuitable for multiple classification tasks, 
since it would require the use of either multiple knowledge bases or compound 
classifications, which can cause an undesirable explosion in the amount of knowledge 
required [10]. As such, to extend this method to multiple classification tasks, Kang 
altered the underlying knowledge representation structure to that of an n-tree, altered 
the cornerstone case approach such that multiple cornerstone cases might apply to a 
single case, and modified the inference strategy accordingly. Contrasting it with RDR, 
multiple classification RDR (MCRDR) explores every node that is attached to the 
root node, and adds only the deepest satisfied node of any branch to the result set 
[11]. An example of a simple MCRDR knowledge base is shown in Figure 1. 

Rule 0 – ROOT – always true 

1

IF X>4 
ClassA 

2 

IF Y<3 
ClassB 

7

IF Z<9 & 
Y>=3 ClassE 

3

IF Z==3 
ClassC 

4

IF X<=4 & 
Z!=3 ClassD 

5

IF Y<3 
ClassB 

6

IF X==4 & 
Z>=7 ClassA 

Fig. 1. A simple MCRDR knowledge base 
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To facilitate understanding of the MCRDR inference approach, consider the 
knowledge base in Figure 1 being applied to a case [X=4, Y=2, Z=7]. Rule 1 will not 
fire, so that branch will be disregarded. Rule 3 will be similarly skipped. Rule 4 will 
fire, but then so will the exception rule 5, which will supersede it, adding ClassB to 
the result list. Rule 6 will also fire, adding ClassA to the result list. 

RDR methods have proven to be unusually valuable in real world tasks, with one 
very successful commercial system for pathology interpretation [12], a business rules 
system for Tesco [13], and several commercial applications under development, in 
areas including high volume call centre management [14] and medication review [15]. 

1.2 Using Classifications as Conditions 

One of the compromises that were made when developing the RDR methodology was 
that the ability to create rules which used classifications as conditions was lost. This 
ability had previously been integral to success in some domains, and is of particular 
value in complex configuration tasks where the positioning of each module may 
influence the positioning of the other modules. 

During early RDR research this shortcoming was recognized. Mulholland 
developed an RDR based system to solve Ion Chromatography configuration tasks, 
although this solution was highly specialized and somewhat unreliable, since it did 
not cope well with the introduction of cyclic knowledge [16]. After this, Beydoun & 
Hoffmann developed Nested RDR, which was a single classification RDR approach 
which allowed the creation of “intermediate classifications”, as stepping stones 
towards the end classification [17]. This method was targeted at single classification 
problem domains, although it may be extended to multiple classification problems. 
Later, a proposition was made for a more generalized version of RDR, which included 
provision for a Repeat Inference MCRDR (RIMCRDR) approach whereby the 
existing MCRDR method was augmented with the ability to use classifications as 
conditions [18, 19]. However, this approach included restrictions as to when and how 
these types of rules could be used, and about how the knowledge base must be 
inferred and interpreted. This was done as an attempt to eliminate the potential for 
cyclic rules – rules which depend on the existence of a classification, yet upon firing, 
either directly or indirectly cause that classification to be retracted. Particularly, 
RIMCRDR asserts that rules must be evaluated in strict chronological order, and that 
no retractions are allowed. By not allowing retractions you are removing the expert’s 
ability to create exception rules which use classifications as conditions [19]. In 
making these restrictions, it is felt that the RIMCRDR method will alienate some 
experts, who may be frustrated at being denied the ability to define rules which make 
perfect sense, just on the chance that it may result in a cyclical rule definition at some 
point. 

In light of these concerns, it was attempted to develop a new MCRDR based 
method which would preserve all the essential benefits and strategies of the RDR 
method, while augmenting it with the ability to create rules using classifications as 
conditions. It should do this while offering minimal restrictions as to when and where 
the expert may define these rules. 
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2 Method 

The approach that was decided upon, in order to achieve the goals outlined above, 
involved changes to the knowledge representation approach as well as the inference 
strategy. These changes in turn necessitated some revisions to the knowledge 
acquisition process, particularly provisions for the detection of cyclic rule definitions 
and an update to the cornerstone case mechanism. 

2.1 Knowledge Representation 

It was considered desirable to maintain all the essential benefits of the traditional 
MCRDR knowledge structure, but necessary to extend it, so as to facilitate the 
detection of potential cycles. As such, the n-tree structure was altered to become a 
type of directed graph. The underlying n-tree structure was still present, with each 
rule being a node with one or more conditions and a classification; however, nodes 
were given the added ability to store one or more classifications which must be 
satisfied in order for the rule to fire. These classifications could each be defined as 
classifications which must be present, or must not be present in order for the rule to 
fire, and were termed switches. Each switch represented a classification, and 
maintained a counter. Whenever a particular classification was added to the result set 
during the inference strategy, every switch concerning that classification was 
incremented by one. If a particular classification was removed from the result set, the 
corresponding counters were decremented by one. The counter behavior is necessary, 
since the same classification can be reached through potentially multiple paths. 

To facilitate the inference strategy, a store of dependencies which indicated which 
rule nodes are dependent on which classifications, was also necessary. The list of 
dependencies for each classification ensures that it was always known which nodes 
must be revisited and re-inferred whenever a classification was added or removed 
from the result set, and to enable the switch counters to be adjusted efficiently. 

2.2 Inference 

The typical MCRDR inference strategy is quite simple, being similar to that of a 
depth first search where the deepest satisfied node is added to the result set, but where 
the search does not stop until every node at the first level has been traversed. 

The new inference strategy must be substantially more complex since there is now 
the possibility of nodes being revisited and of results being removed. The new 
inference algorithm is shown in a simplified pseudo-code form here. 

infer(Node, Case) { 
 clearResult(Node, Case) 
 If (Node’s rule is satisfied  
 AND all of its children’s rules aren’t) 
  If (All Node’s parent rules are satisfied) 
   Add Node to result list 
   Mark Node as having fired 
   Activate all dependents of Node’s class 
    For each node that changed state  
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    infer(ActivatedNode, Case) 
  
 If (Node has a non-root parent rule) 
  clearResult(Node’s parent) 
 For each Child that isn’t marked as avoid 
  Clear avoid markers 
  infer(Child, Case) 
} 
clearResult(Node, Case) { 
 If (Node is marked as having fired) 
  Remove it from the result set 
  Clear its fired flag 
  Deactivate all dependents of Nodes class 
  For each node that changed state 
   infer(DeactivatedNode, Case) 
  If (Node has a non-root parent rule 
  AND all Node’s parent rules are satisfied 
  AND no siblings are satisfied) 
   Mark Node to avoid 
   infer(Node’s parent, Case) 
} 

2.3 Knowledge Acquisition 

From the expert’s perspective as the user of the system, the knowledge acquisition 
process remains largely unchanged from MCRDR. They are presented with a case, 
and the system’s current belief as to which classifications apply to that case. If the 
expert believes a classification is missing, or that a classification is incorrectly 
provided by the system, they indicate as such and enter the rule creation process. 
During this process the expert may select what the classification should be and which 
valid conditions of the case are relevant to this classification, as normal. The only 
difference here is that the expert is also able to select any of the classifications the 
system is currently aware of as conditions of the case. If the classification is currently 
present on the case, then it can be added to reflect that the classification must be 
present in order for this rule to fire. If it is not currently present, the condition will be 
added to reflect that the classification must not be present in order for this rule to fire. 

Cycles. Where the knowledge acquisition does change is largely behind the scenes. 
Whenever the expert creates a rule, the system must check that their new rule does not 
have the potential to cause a cycle in the knowledge base. An example of a cycle can 
be seen in Figure 2, where each node is represented by 3 boxes, the top left being the 
switches which must be on for the rule to fire, the bottom left being the conditions 
which must be satisfied, and the bottom right being the classification that the rule will 
add to the result set if it fires. It can be seen that in a case where X, Y and Z are all 
satisfied, the inference algorithm would fire on R1 but fail on the exception R2, thus 
adding ClassA. It would then consider the next rule, R3, adding ClassB. As a 
consequence of adding ClassB R2 would be re-evaluated and this time fire, which 
would add ClassC to the result list. However, R2 is an exception to R1, and thus 
supersedes R1, necessitating the removal of ClassA from the result set. Because 
ClassA was removed, R3 which depends on ClassA would have to be re-evaluated, 
which would in turn remove ClassB and so forth, with no termination possible. 
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Perhaps the most common method of detecting cycles in a directed graph structure 
is to perform a topological sort on the graph, as described by Kahn [20]. If a sorted 
topology cannot be found then there is a cycle. This method is efficient when 
considering whole graphs, however it was noted that in the context of this method it is 
only necessary to check the dependencies that are relevant to the new rule. As such, a 
method was used where the dependencies of all the classifications present in the new 
rule were examined in turn to see if they lead to a condition where the classification 
was no longer valid. That is, is there a dependency chain such that the classification 
might ultimately be dependent on itself being false. If a potential cycle was identified, 
the expert was informed that their new rule could cause conflicts, and was asked to 
revise the rule until no further conflicts were found. Considering again the example in 
Figure 2 we can see that due to R3 ClassB depends on ClassA, due to R2 ClassC 
depends on ClassB, and due to the R1/R2 exception ClassA depends on ClassB not 
being present (!ClassB). The chain in this example is ClassB depends on ClassA 
which depends on !ClassB. This paradoxical dependency chain would have been 
detected when the expert attempted to make the last of these three rules, and 
disallowed, thus ensuring the cycle was never created. 

Cornerstone cases. It was also necessary to adjust the cornerstone case strategy. In 
MCRDR a cornerstone case can most robustly be defined as being any case which has 
been previously approved by the expert, but which would be altered by the addition of 
the new rule that the expert is trying to create [11]. From the user’s perspective, the 
cornerstone case process remains essentially unchanged. When they define a rule and 
attempt to add it the system will prompt them with a list of any past cases which 
would be altered by this new rule, and they must either select differences which will 
eliminate the cornerstone cases, or they must accept that the new rule should in fact 
alter the past case. However, behind the scenes, there is a loss of efficiency. MCRDR 
was able to interrogate cornerstone cases very efficiently, as a reference to each 
cornerstone case could be stored against the nodes they relate to. With the new 
method this approach becomes challenging, since it is now necessary to store each 
classification of each case in addition to the attributes. These may change many times 
for each case, thus requiring many different cornerstone cases to be created as their 
contexts shift. When the complexities of attempting to maintain this library of 
cornerstone cases were fully considered, it was deemed simpler to just re-infer all past 
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cases with a temporary version of the knowledge base that included the new rule, and 
flag each one which had the new rule in its result set after inference as being a 
cornerstone case. This will cause efficiency concerns as the number of past cases and 
the size of the knowledge base grows, but many domains are sufficiently small (less 
than thousands of rules/cases) to be managed with this approach. However, since 
performing this experiment, a more computationally efficient approach to finding 
cornerstone cases has been proposed [21]. 

2.4 Task 

The method was initially tested on a small scale pizza preferences domain, a task at 
which MCRDR might otherwise have been used [22]. However, it was felt that a 
configuration task would be appropriate for a more robust test, since this type of task 
would make more use of the added features of the method. Further to this, it was 
desirable to test the method on a domain which would stress the areas of the method 
which were identified as potential weaknesses, particularly it was sought to stress the 
cycle detection and management processes, by designing a domain in which cycles 
were very likely to occur. To this end, a configuration task was designed which would 
require a large number of rules which used classifications as conditions, and would 
have a fundamentally limited number of total classifications. 

A blocks placement task was devised, where each case was represented with a 5x5 
grid which had between 0 and 4 cells randomly unavailable for block placement (25 
boolean attributes per case, each corresponding to a cell in the grid). For a case to be 
correctly solved, the block modules shown in Figure 3 must be placed into 
appropriate places in the grid, with no overlaps. Of the blocks in the grayed area, only 
3 of the 4 were allowed to be placed in the grid. The modules were designed such that 
modules are likely to be placed relative to other modules (i.e. in interlocking 
formations), or unavailable cells, as this would tend to be more efficient. One 
thousand cases were generated randomly and the expert was tasked with training the 
system such that these 1000 cases were correctly classified. Each placement of a 
block was represented by a classification, such as “Block A at location X,Y”. As 
such, each case required exactly 7 unique classifications to be correctly classified. 

 

Fig. 3. The block modules which must be placed in the grid 

3 Results and Discussion 

As the system was trained by the expert, all important actions were recorded. Through 
analysis of these logs, and of the knowledge base, evaluations could be performed. 

Expert must place only 3 of these.
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3.1 Nature of the Knowledge Base 

Perhaps the most indicative figure in determining if the system is working as intended 
is the growth of the knowledge base. The number of rules will typically grow initially 
fast, but gradually plateau as the system reaches higher levels of accuracy and thus 
requires less refinement. This result was seen in this system, with a gradual decline in 
the growth rate of rules, before the experiment was ended with 1073 rules input. 

Of particular interest in this evaluation is the number of classifications used  
as conditions, as this figure gives some indication of how often these types of rules were 
deemed necessary by the expert. The substantial majority of rules in this system used  
at least one classification as a condition (72%), while there were a maximum  
of 4 classifications used as conditions in a single rule. On average there were  
1.20 classifications used as conditions per rule, and 25% of all conditions used were 
classifications. There were 298 rules which had no classifications as conditions, 339 rules 
which had one, 364 rules which had two, 65 which had three, and 8 with four.  

Perhaps the most telling result is the accuracy of the system. This can be calculated 
quite effectively in MCRDR systems by determining the ratio of how many correct 
classifications were provided when the expert first loads a case vs. the number of 
classifications on the case when the expert has finished assessing it [15, 22, 23]. This 
result is seen in Figure 4 where it can be seen that although the accuracy of any 
particular case was quite unpredictable, the overall trend when averaged was 
increasing into the 90th percentile towards the end of the training period. 

 

Fig. 4. The accuracy of the system as each case was seen. Shown with a moving average with a 
period of 100. 

3.2 Time Taken 

It is an important claim of RDR systems that the average time taken to define a rule is 
very low, usually in the order of only a few minutes, and that this time does not 
significantly increase as the knowledge base is populated with more rules. This claim 
is upheld with this system with an average time taken per rule of 35.9 seconds, and 
this average was maintained with high consistency throughout training. This indicates 
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that the expert did not find it challenging to create rules, although this figure may be 
somewhat lower than usual since the expert in this instance was the author of the 
method, and may have had a better understanding than a typical expert.  

3.3 Cycles 

It was considered important that the expert was not restricted from creating the rule 
they wanted to too often. As such, the number of times the expert was told their rule 
was invalid due to a cycle was measured. 

Despite having a very high level of rules which used classifications as conditions, 
and having a fundamentally limited number of possible classifications, the expert was 
refused a rule due to a potential cycle only 76 times in total. Of these instances only 
11 rules were rejected on the second attempt (after the expert was prompted to refine 
it), and only one rule on the third. This suggests that it was quite easy for the expert to 
adjust their rule such that the cycle would be avoided. Furthermore the frequency of 
these events did not appear to significantly increase as the experiment progressed, 
even though one might expect it to as the level of inter-dependency increased. This is 
likely to be due to the fact that the expert was tending not to define cyclic rules, since 
they do not make sense by definition. However, there may again be a certain level of 
bias in this result, as the expert in this experiment was the author of the method. 

4 Conclusions and Further Work 

An initial test of the new method, Multiple Classification Ripple Round Rules 
(MCRRR) has been undertaken on a complex configuration task. Advantages over 
previous attempts at offering a similar functionality have been discussed and the work 
presented shows promising results that indicate the method is suitable for 
configuration style tasks. 

However, the experiment is unfortunately biased, partly because a custom designed 
problem was used – although a genuine attempt was made to design the task such that 
it would challenge the method, rather than suit it – and partly because the author of 
the method also acted as the expert for the purposes of the experiment. This means he 
would be likely to have insights into the nature of the method that another expert 
using such a system might not. To overcome these concerns further experimentation 
is needed with a range of problem domains, a range of unbiased experts, and a range 
of potential methodological approaches. However, similar limitations are common 
within research in this field, as expert time is both valuable and scarce, so it is felt that 
this work is still a significant research contribution. 
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Abstract. Description logics are a well-established family of knowledge
representation formalisms in Artificial Intelligence. Enriching descrip-
tion logics with non-monotonic reasoning capabilities, especially prefer-
ential reasoning as developed by Lehmann and colleagues in the 90’s,
would therefore constitute a natural extension of such KR formalisms.
Nevertheless, there is at present no generally accepted semantics, with
corresponding syntactic characterization, for preferential consequence in
description logics. In this paper we fill this gap by providing a natu-
ral and intuitive semantics for defeasible subsumption in the description
logic ALC. Our semantics replaces the propositional valuations used in
the models of Lehmann et al. with structures we refer to as concept mod-
els. We present representation results for the description logic ALC for
both preferential and rational consequence relations. We argue that our
semantics paves the way for extending preferential and rational conse-
quence, and therefore also rational closure, to a whole class of logics that
have a semantics defined in terms of first-order relational structures.

1 Introduction

The preferential and rational consequence relations first studied by Lehmann
and colleagues [8,10] play a central role in non-monotonic reasoning, not least
because they provide the foundation for the determination of the important
notion of rational closure. Although they can be applied directly to a large
variety of knowledge representation languages, these constructions suffer from
the limitation that they are largely propositional in nature, whereas many logics
of interest for Artificial Intelligence have more structure.

One of the main obstacles in moving beyond the propositional setting has
been the lack of a formal semantics which appropriately generalizes the pref-
erential and ranked models of Lehmann et al. The first tentative exploration
of preferential predicate logics by Lehmann et al. didn’t fly primarily because
propositional logic was sufficiently expressive for the non-monotonic reasoning
community at the time, and first-order logic introduced too much complexity [9].
But this changed with the surge of interest in description logics as knowledge
representation formalism and their many applications in AI.
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Description logics (DLs) [1] are decidable fragments of first-order logic, and
are ideal candidates for the kind of extension to preferential reasoning we have
in mind: the notion of subsumption present in all DLs is a natural candidate
for defeasibility, while at the same time, the restricted expressivity of DLs en-
sures that attempts to introduce preferential reasoning are not hampered by the
complexity of full first-order logic. The aim of this paper is therefore to extend
the work of Lehmann et al. [8,10] beyond propositional logic without moving to
full first-order logic. We restrict our attention to the description logic ALC here,
but the results are broadly applicable to other DLs, as well as other similarly
structured logics such as logics of action and logics of knowledge and belief [3].

The rest of the paper is structured as follows. After some DL preliminaries
(Section 2), we give a brief account of preferential and rational consequence
in the propositional case (Section 3). In Section 4, which is the heart of the
paper, we define the semantics for both preferential and rational subsumption
for ALC and present representation results for both. Importantly, these are with
respect to the corresponding propositional properties. From this we conclude that
our semantics forms the foundation of a semantics for preferential and rational
consequence for a whole class of DLs and related logics. In Section 5 we show
that the notions of propositional preferential entailment and rational closure can
be ‘lifted’ to the case for DLs, specifically ALC. In Section 6 we discuss related
results. We conclude with Section 7 in which we also discuss future work.

2 Description Logics

The language of ALC is built upon a finite set of atomic concept names NC

(together with the distinguished concept ,), and a finite set of role names NR,
using the constructors - (concept conjunction), ¬ (complement), and ∃ (existen-
tial restriction). An atomic concept is denoted by A, possibly with subscripts,
and a role name by r, possibly with subscripts. Complex concepts are denoted
by C,D, . . . and are constructed according to the rule

C ::= A | , | C - C | ¬C | ∃r.C
Concepts built with the constructors . and ∀, and the special concept ⊥ are
defined in terms of the others in the usual way. We let L denote the set of all
ALC concepts.

The semantics of ALC is the standard set theoretic Tarskian semantics. An
interpretation is a structure I = 〈ΔI , ·I〉, where ΔI is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI ofΔI , and mapping role names r to binary relations rI overΔI×ΔI :

AI ⊆ ΔI , rI ⊆ ΔI ×ΔI ,,I = ΔI , ⊥I = ∅
Given an interpretation I = 〈ΔI , ·I〉, ·I is extended to interpret complex con-
cepts in the following way:

(¬C)I = ΔI \ CI , (C -D)I = CI ∩DI ,

(∃r.C)I = {a ∈ ΔI | for some b, (a, b) ∈ rI and b ∈ CI}
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Given C,D ∈ L, C ( D is a subsumption statement, and it is read as “C is
subsumed by D”. C ≡ D is an abbreviation for both C ( D and D ( C. An
(ALC) TBox T is a finite set of subsumption statements.

An interpretation I satisfies C ( D (denoted I � C ( D) if and only if
CI ⊆ DI . I � C ≡ D if and only if CI = DI . C ( D is (classically) entailed
by a TBox T , denoted T |= C ( D, if and only if every interpretation I which
satisfies all elements of T , also satisfies C ( D.

For more details on description logics in general, and the description logic
ALC in particular, the reader is referred to the DL handbook [1].

3 Propositional Preferential and Rational Consequence

In this section we give a brief introduction to propositional preferential and
rational consequence, as initially defined by Kraus et al. [8]. A propositional
defeasible consequence relation |∼ is defined as a binary relation on formulas
α, β, γ, . . . of an underlying (possibly infinitely generated) propositional logic
equipped with a standard propositional entailment relation |=. |∼ is said to be
preferential if it satisfies the following set of properties:

(Ref) α |∼ α (LLE)
α ≡ β, α |∼ γ

β |∼ γ (And)
α |∼ β, α |∼ γ
α |∼ β ∧ γ

(RW)
α |∼ β, β |= γ

α |∼ γ (Or)
α |∼ γ, β |∼ γ
α ∨ β |∼ γ (CM)

α |∼ β, α |∼ γ
α ∧ β |∼ γ

The semantics of (propositional) preferential consequence relations is in terms
of preferential models; these are partially ordered structures with states labeled
by propositional valuations. We shall make this terminology more precise in
Section 4, but it essentially allows for a partial order on states, with states lower
down in the order being more preferred than those higher up. Given a preferential
model P, a pair α |∼ β is in the consequence relation defined by P if and only if
the minimal states (according to the partial order) of all those states labeled by
valuations that are propositional models of α, are also labeled by propositional
models of β. The representation theorem for preferential consequence relations
then states [8]:

Theorem 1 (Kraus et al.). A defeasible consequence relation is a preferential
consequence relation if and only if it is defined by some preferential model.

If, in addition to the preferential properties, |∼ also satisfies the following Ra-
tional Monotony property, it is said to be a rational consequence relation:

(RM)
α |∼ β, α �|∼ ¬γ
α ∧ γ |∼ β

The semantics of rational consequence relations is in terms of ranked preferential
models, i.e., preferential models in which the preference order is modular :
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Definition 1. Given a set S, ≺ ⊆ S× S is modular if and only if ≺ is a partial
order on S, and there is a ranking function rk : S �→ � such that for every
s, s′ ∈ S, s ≺ s′ if and only if rk(s) < rk(s′).

The representation theorem for rational consequence relations then states [10]:

Theorem 2 (Lehmann and Magidor). A defeasible consequence relation is
a rational consequence relation if and only if it is defined by some ranked model.

4 Semantics for DL Preferential Subsumption

Description logics are ideal candidates for extending propositional preferential
consequence since the notion of subsumption in DLs lends itself naturally to
defeasibility [2,7,4]. The basic idea is to reinterpret defeasible consequence of the
form α |∼ β as defeasible subsumption of the form C �∼D, and classical entailment
|= as DL subsumption (. For example, if M ( ¬F is read as “meningitis is not
fatal”, then M �∼ ¬F can be read as “meningitis is usually not fatal”. The above
properties of preferential consequence are then immediately applicable.

Definition 2. A subsumption relation �∼ ⊆ L × L is a preferential subsump-
tion relation if and only if it satisfies the properties (Ref), (LLE), (And), (RW),
(Or), and (CM), with propositional entailment replaced by classical DL subsump-
tion. �∼ is a rational subsumption relation if and only if in addition to being a
preferential subsumption relation, it also satisfies the property (RM).

Since DLs have a standard first-order semantics, the obvious generalization from
a technical perspective is to replace the propositional valuations in preferential
models with first-order interpretations. Intuitively, this also turns out to be a
natural generalization of the propositional setting, with the notion of normal
first-order interpretation characterizing a given concept replacing the propo-
sitional notion of normal worlds satisfying a given proposition. Formally, our
semantics is based on the notion of a concept model, which is analogous to that
of a Kripke model in modal logic [5]:

Definition 3 (Concept Model). A concept model is a tuple M = 〈W,R,V〉
where W is a set of possible worlds, R = 〈R1, . . . ,Rn〉, where each Ri ⊆W×W,
1 ≤ i ≤ |NR|, and V : W �→ 2NC is a valuation function.

Observe that the valuation function V can be viewed as a propositional valuation
with propositional atoms replaced by concept names. From the definition of
satisfaction in a concept model below it is then clear that, within the context of a
concept model, a world occurring in that concept model is a proper generalization
of a propositional valuation.

Definition 4 (Satisfaction). Given M = 〈W,R,V〉 and w ∈W:

• M , w � ,;
• M , w � A iff A ∈ V(w);
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• M , w � C -D iff M , w � C and M , w � D;
• M , w � ¬C iff M , w �� C;
• M , w � ∃ri.C iff there is w′ ∈W s.t. (w,w′) ∈ Ri and M , w′ � C.

Let U denote the set of all pairs (M , w) where M = 〈W,R,V〉 is a concept
model and w ∈ W. Worlds are, loosely speaking, interpreted DL objects. And
while this correspondence holds technically (from the correspondence between
ALC and multimodal logic K [14]), a possible worlds reading of the meaning
of a concept is also more intuitive in the current context, since this leads to a
preference order on rich first-order structures, rather than on interpreted objects.
This is made precise below.

Let S be a set, the elements of which are called states. Let � : S �→ U be a
labeling function mapping every state to a pair (M , w) where M = 〈W,R,V〉
is a concept model such that w ∈ W. Let ≺ be a binary relation on S. Given
C ∈ L, we say that s ∈ S satisfies C (written s |≡ C) if and only if �(s) � C,
i.e., M , w � C. We define Ĉ = {s ∈ S | s |≡ C}. Ĉ is smooth if and only if each
s ∈ Ĉ is either ≺-minimal in Ĉ, or there is s′ ∈ Ĉ such that s′ ≺ s and s′ is
≺-minimal in Ĉ. We say that S satisfies the smoothness condition if and only if
for every C ∈ L, Ĉ is smooth.

We are now ready for our definition of preferential model.

Definition 5 (Preferential Model). A preferential model is a triple P =
〈S, �,≺〉 where S is a set of states satisfying the smoothness condition, � is a
labeling function mapping states to elements of U , and ≺ is a strict partial
order on S, i.e., ≺ is irreflexive and transitive.

These formal constructions closely resemble those of Kraus et al. [8] and of
Lehmann and Magidor [10], the difference being that propositional valuations
are replaced with elements of the set U .

Definition 6 (Preferential Subsumption). Let C,D ∈ L and P = 〈S, �,≺〉
be a preferential model. C is preferentially subsumed by D in P (noted C �∼ PD)
if and only if every ≺-minimal state s ∈ Ĉ is such that s ∈ D̂.

We are now in a position to prove one of the central results of this paper.

Theorem 3. A defeasible subsumption relation is a preferential subsumption
relation if and only if it is defined by some preferential model.

The significance of this is that the representation result is proved with respect
to the same set of properties used to characterize propositional preferential con-
sequence. We therefore argue that preferential models, as we have defined them,
provide the foundation for a semantics for preferential (and rational) subsump-
tion for a whole class of DLs and related logics. We do not claim that this is
the appropriate notion of preferential subsumption for ALC, but rather that it
describes the basic framework within which to investigate such a notion. In order
to obtain a similar result for rational subsumption, we restrict ourselves to those
preferential models in which ≺ is a modular order on states (cf. Definition 1):
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Definition 7 (Ranked Model). A ranked model Pr is a preferential model
〈S, �,≺〉 in which ≺ is modular.

Since ranked models are preferential models, the notion of rational subsumption
is as in Definition 6. We can then state the following result:

Theorem 4. A defeasible subsumption relation is a rational subsumption rela-
tion if and only if it is defined by some ranked model.

5 Rational Closure

One of the primary reasons for defining non-monotonic consequence relations of
the kind we have presented above is to get at a notion of defeasible entailment :
Given a set of subsumption statements of the form C �∼D or C ( D, which other
subsumption statements, defeasible and classical, should one be able to derive
from this? It can be shown that hard subsumption statements C ( D can be en-
coded as defeasible subsumptions of the form C-¬D �∼⊥ [10, Section 2]. For the
remainder of this paper we shall therefore concern ourselves only with finite sets
of defeasible subsumption statements, and refer to these as defeasible TBoxes,
denoted T . We permit ourselves the freedom to include classical subsumption
statements of the form C ( D in a defeasible TBox, with the understanding
that it is an encoding of the defeasible subsumption statement C - ¬D �∼⊥.

Our aim in this section is to show that the results for the propositional case [10]
with respect to the question above can be ‘lifted’ to ALC. We provide here ap-
propriate notions of preferential entailment and rational closure. It must be
emphasized that the results obtained in this section rely heavily on similar re-
sults obtained by Lehmann and Magidor [10] for the propositional case, and
the semantics for preferential and rational subsumption presented in Section 4.
Similar to the results of that section, our claim is not that the versions of pref-
erential and rational closure here are the appropriate ones for ALC. In fact, our
conjecture is that they are not, due to their propositional nature. However, we
claim that they provide the appropriate springboard from which to investigate
more appropriate versions, for ALC, as well as for other DLs and related logics.

The version of rational closure defined here provides us with a strict gener-
alization of classical entailment for ALC TBoxes in which the expressivity of
ALC is enriched with the ability to make defeasible subsumption statements.
For example, consider the defeasible ALC TBox:

T = {BM ( M,VM ( M,M �∼ ¬F,BM �∼ F}, (1)

where BM abbreviates the concept BacterialMeningitis, M stands for Meningi-
tis, VM for viralMeningitis, and F abbreviates FatalDisease. One should be able
to conclude that viral meningitis is usually non-fatal (VM �∼ ¬F). On the other
hand, we should not conclude that fatal versions of meningitis are usually bac-
terial (F -M �∼ BM), nor, for that matter, that fatal versions of meningitis are
usually not bacterial ones (F -M �∼ ¬BM).

Armed with the notion of a preferential model (cf. Section 4) we define pref-
erential entailment for ALC as follows.
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Definition 8. C �∼D is preferentially entailed by a defeasible TBox T if and
only if for every preferential model P in which E �∼ PF for every E �∼ F ∈ T ,
it is also the case that C �∼ PD.

Firstly, we can show that preferential entailment is well-behaved and coincides
with preferential closure under the properties of preferential subsumption (i.e.,
the intersection of all preferential subsumption relations containing a defeasible
TBox). More precisely, if T is a defeasible TBox, the set of defeasible subsump-
tion statements preferentially entailed by T , viewed as a binary relation on L,
is a preferential subsumption relation. Furthermore, a defeasible subsumption
statement is preferentially entailed by T if and only if it is in the preferential
closure of T .

From this it follows that if we use preferential entailment, the meningitis
example can be formalized by letting T be as in Equation 1. However, VM �∼ ¬F is
not preferentially entailed by T above (we cannot conclude that viral meningitis
is usually not fatal) and preferential entailment is thus too weak. Hence we move
to rational subsumption relations.

The first attempt to do so is to use a definition similar to that employed for
preferential entailment: C �∼D is rationally entailed by a defeasible TBox T if
and only if for every ranked model Pr in which E �∼ Pr

F for every E �∼ F ∈ T ,
it is also the case that C �∼ Pr

D. However, this turns out to be exactly equiva-
lent to preferential entailment [10, Section 4.2]. Therefore, if the set of defeasible
subsumption statements obtained as such is viewed as a binary relation on con-
cepts, the result is a preferential subsumption relation and is not, in general, a
rational consequence relation.

The above attempt to define rational entailment is thus not acceptable, as
shown by Lehmann and Magidor. Instead, in order to arrive at an appropriate
notion of (rational) entailment we first define a preference ordering on rational
subsumption relations, with relations further down in the ordering interpreted
as more preferred.

Definition 9. Let �∼ 0 and �∼ 1 be rational subsumption relations. �∼ 0 is prefer-
able to �∼ 1 (written �∼ 0 0 �∼ 1) if and only if

• there is C �∼D ∈ �∼ 1 \ �∼ 0 s.t. for all E s.t. E . C �∼ 0¬C and for all F s.t.
E �∼ 0F , we also have E �∼ 1F ; and

• for every E,F ∈ L, if E �∼ F is in �∼ 0\ �∼ 1, then there is an assertion G �∼H
in �∼ 1 \ �∼ 0 s.t. G . E �∼ 1¬E.

Space considerations prevent us from giving a detailed motivation for 0 here,
but it is essentially the motivation for the same ordering for the propositional
case provided by Lehmann and Magidor [10]. Given a defeasible TBox T , the
idea is now to define rational entailment as the most preferred (with respect
to 0) of all those rational subsumption relations which include T .

Lemma 1. Let T be a finite defeasible TBox and let R be the class of all rational
subsumption relations which include T . There is a unique rational subsumption
relation in R which is preferable to all other elements of R with respect to 0.
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This puts us in a position to define an appropriate form of (rational) entailment
for defeasible TBoxes:

Definition 10. Let T be a defeasible TBox. The rational closure of T is the
(unique) rational subsumption relation which includes T and is preferable (with
respect to 0) to all other rational subsumption relations including T .

It can be shown that VM �∼ ¬F is in the rational closure of T (we can conclude
viral meningitis is usually not fatal), but that neither F - M �∼ BM nor F -
M �∼ ¬BM is.

We conclude this section with a result which can be used to define an algorithm
for computing the rational closure of a defeasible TBox T . For this we first need
to define a ranking of concepts with respect to T which, in turn, is based on a
notion of exceptionality. A concept C is said to be exceptional for a defeasible
TBox T if and only if T preferentially entails , �∼ ¬C. A defeasible subsumption
statement C �∼D is exceptional for T if and only if its antecedent C is exceptional
for T .

It turns out that checking for exceptionality can be reduced to classical sub-
sumption checking.

Lemma 2. Given a defeasible TBox T , let T � be its classical counterpart in
which every defeasible subsumption of the form D �∼E in T is replaced by D ( E.
C is exceptional for T if and only if , ( ¬C is classically entailed by T �.

Let E(T ) denote the subset of T containing statements that are exceptional
for T . We define a non-increasing sequence of subsets of T as follows: E0 = T ,
and for i > 0, Ei = E(Ei−1). Clearly there is a smallest integer k such that for all
j ≥ k, Ej = Ej+1. From this we define the rank of a concept with respect to T :
rT (C) = k − i, where i is the smallest integer such that C is not exceptional
for Ei. If C is exceptional for Ek (and therefore exceptional for all Es), then
rT (C) = 0. Intuitively, the lower the rank of a concept, the more exceptional it
is with respect to the TBox T .

Theorem 5. Let T be a defeasible TBox. The rational closure of T is the set of
defeasible subsumption statements C �∼D such that either rT (C) > rT (C -¬D),
or rT (C) = 0 (in which case rT (C - ¬D) = 0 as well).

From this result one can construct a (näıve) decidable algorithm to check whether
a given defeasible subsumption statement is in the rational closure of a defeasible
TBox T . Also, if checking for exceptionality is assumed to take constant time,
the algorithm is quadratic in the size of T . Given that exceptionality reduces
to subsumption checking in ALC which is ExpTime-complete, it immediately
follows that checking whether a given defeasible subsumption is in the rational
closure of T is an ExpTime-complete problem. This result relates to a result by
Casini and Straccia [4] which we refer to again in the next section.
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6 Related Work

Quantz and Ryan [12,13] were probably the first to consider the lifting of non-
monotonic reasoning formalisms to a DL setting. They propose a general frame-
work for Preferential Default Description Logics (PDDL) based on an ALC-like
language by introducing a version of default subsumption and proposing a se-
mantics for it. Their semantics is based on a simplified version of standard DL
interpretations in which all domains are assumed to be finite and the unique
name assumption holds for object names. In that sense, their framework is much
more restrictive than ours, as we do not make these assumptions here. They fo-
cus on a version of entailment which they refer to as preferential entailment, but
which is to be distinguished from the version of preferential entailment that we
have presented in this paper. In what follows, we shall refer to their version as
Q-preferential entailment.

Q-preferential entailment is concerned with what ought to follow from a set of
classical DL statements, together with a set of default subsumption statements,
and is parameterised by a fixed partial order on (simplified) DL interpretations.
They prove that any Q-preferential entailment satisfies the properties of a pref-
erential consequence relation and, with some restrictions on the partial order,
satisfies Rational Monotony as well. Q-preferential entailment can therefore be
viewed as something in between the notions of preferential consequence and pref-
erential entailment we have defined for DLs. It is also worth noting that although
the Q-preferential entailments satisfy the properties of a preferential consequence
relation, Quantz and Ryan do not prove that Q-preferential entailment provides
a characterisation of preferential consequence.

Britz et al. [2] and Giordano et al. [7] use typicality orderings on objects in
first-order domains to define versions of defeasible subsumption for ALC. Both
approaches propose specific non-monotonic consequence relations, and hence
their semantic constructions are special cases of the more general framework
we have provided here. In contrast, we provide a general semantic framework
which is relevant to all logics with a possible worlds semantics. This is because
our preference semantics is not defined in terms of orders on interpreted DL ob-
jects relative to given concepts, but rather in terms of a single order on relational
structures. Our semantics for defeasible subsumption yields a single order at the
meta level, rather than ad hoc relativized orders at the object level.

Casini and Straccia [4] recently proposed a syntactic operational characteri-
zation of rational closure in the context of description logics, based on classical
entailment tests only, and thus amenable to implementation. Their work is based
on that of Lehmann and Magidor [10], Freund [6] and Poole [11], and represents
an important building block in the extension of preferential consequence to de-
scription logics. However, this work lacks a semantics, and we can only at present
conjecture that the rational closure produced by their algorithm coincides with
the notion of the rational closure of a defeasible TBox presented in this paper.

Finally, Britz et al. [3] present the modal counterpart of our notions of pref-
erential reasoning and rational closure, illustrated by examples from epistemic
reasoning and reasoning about actions.
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7 Conclusion and Future Work

The main contribution of this paper is the provision of a natural and intuitive
formal semantics for preferential and rational subsumption for the description
logic ALC. We claim that our semantics provides the foundation for extending
preferential reasoning in at least three ways. Firstly, as we have seen in Section 5,
it allows for the ‘lifting’ of preferential entailment and rational closure from the
propositional case to the case for ALC. Without the semantics such a lifting
may be possible in principle, but will be very hard to prove formally. Secondly, it
paves the way for defining similar results for other DLs, as well as other similarly
structured logics, such as logics of action and belief [3]. And thirdly, it provides
the tools to tighten up the versions of preferential and rational subsumption for
ALC presented in this paper in order to truly move beyond the propositional.
The latter point is the obvious one to pursue first when it comes to future work.
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Abstract. Approximate propositional logics provide a response to the
intractability of classical inference for the modelling and construction of
resource-bounded agents. They allow the degree of logical soundness (or
completeness) to be balanced against the agent’s resource limitations.

We develop a logical semantics, based on a restriction to Finger’s logics
of limited bivalence [5], and establish the adequacy of a clausal tableau
based proof theory with respect to this semantics. This system is shown
to characterise DPLL with restricted branching, providing a clear path
for the adaptation of DPLL-based satisfiability solvers to approximate
reasoning. Furthermore it provides insights into the traditional notion
of problem hardness, as we show that the parameter set of these logics
correspond to the strong backdoor for an unsatisfiable problem.

1 Introduction

Research into propositional satisfiability (SAT) and approximate propositional
logics represent two distinct but related areas of research. SAT is generally fo-
cused on the development of efficient reasoning techniques and understanding
the characteristics of computationally hard problems. In contrast, accepting that
some problems are inherently intractable (unless P = NP), approximate logics
provide techniques for modelling and constructing resource-bounded agents.

This difference is highlighted in how the two approaches deal with a logical
problem that exceeds the available computational resources of a reasoner. Be-
cause a SAT problem can only be (classically) satisfiable or unsatisfiable, when
a traditional SAT reasoner fails to yield a definite result, for example due to
exceeeding some predetermined time constraint, there is little semantic informa-
tion that can be gleaned from this failure. In contrast, approximate logics are
parameterised such that the failure to determine a classical result can still yield
useful semantic information. For example, it can provide local knowledge-base
consistency when modelling the beliefs of resource-bounded agents [2].

A detailed motivation for approximate logics is beyond the scope of this paper,
and the interested reader is referred to [1] for a more comprehensive discussion.
Rather the intention here is to show that the two research areas should be
viewed as complementary and that there exist close theoretical linkages that
have remained largely unexplored.
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To develop these linkages we consider two families of sound approximate logics:
Cadoli and Schaerf’s S-3 logics [1], and Finger’s logics of limited bivalence [5].
As SAT research is largely focused on clausal reasoning, the developments of
this paper are similarly focused towards providing a detailed examination of
approximate reasoning in the clausal case.

The main contribution of this paper is to show that a sub-class of the logics of
limited bivalence provides a logical characterisation of the well-known DPLL al-
gorithm [3], when branching is restricted to a subset of the propositional variables
(RDPLL). Furthermore, we show that the parameter set of a sound approximate
logic corresponds exactly to the notion of a strong backdoor for an unsatisfiable
problem.

These results are of dual significance. Firstly, they provide a path for translat-
ing SAT research to the approximate reasoning domain. For example, allowing
for the adaptation of SAT solvers as approximate reasoners. Secondly, it provides
insight into the notion of problem hardness. Strong backdoors have previously
been shown to be strongly correlated to problem hardness. Consequently, their
correspondence to approximate logic parameter sets provides for a generalisation
of the notion of problem hardness established in terms of logical semantics and
not just an algorithmic property dependent on particular proof methods.

2 Background

We consider an underlying propositional language L over a set of propositional
variables (atoms) P . We consider the full propositional language, as well as
negation normal form (NNF) and conjunctive normal form (CNF) restrictions.
The positive and negative literals for a variable are referred to as conjugates, with
l denoting the conjugate of l. This notion is extended to arbitrary formulae in the
obvious manner. Furthermore, we use atoms(α) to denote the set of propositional
variables occurring in the formula α.

2.1 S-3 Logics

We consider the S-3 logics [1] primarily as a point of reference. Consequently,
we provide only a brief overview of their construction. An S-3 logic is defined
in terms of a parameter set S of atoms, and mappings from literals to truth
values true and false. The most salient aspect of the semantics is that an atom
and its conjugate are forced to map to opposite truth values only for atoms in
the parameter set, while literals for atoms outside the parameter set can both
map to true at the same time. This is the basis of an S-3-interpretation, which
is then extended to arbitrary NNF formulae, and the concepts of S-3-satisfiable
and S-3-entailment (written |=3

S) are defined in the expected manner.

Example 1. Consider a set of formulae Γ = {¬c∨g ,¬g∨m,¬m∨v} and S = {g}.
Now Γ |=3

S ¬c ∨m, as g ∈ S and hence g and ¬g must map to opposite truth
values. However Γ �|=3

S ¬c ∨ v (although Γ |= ¬c ∨ v), as m and ¬m can be
simultaneously true under an S-3-interpretation where m �∈ S.



From Approximate Clausal Reasoning to Problem Hardness 503

A significant property of these logics is the monotonicity of S-3-entailment
with respect to increasing parameter sets. In particular, when the parameter set
includes all atoms the resulting S-3 logic becomes classical.

Theorem 1 ([1]). For CNF formula Γ and clause γ, and sets of atoms S and
S′ s.t. S ⊆ S′ ⊆ P, if Γ |=3

S γ then Γ |=3
S′ γ (hence Γ |= γ) .

2.2 Logics of Limited Bivalence

The intuition for the logics of limited bivalence (LB(Σ)) comes from restricting
the branching rule (i.e., the principle of bivalence (PB)) of a KE-tableau [11].
Historically, the development of these logics has proceeded in two parts. An
initial presentation provided only a semantics [5], while a later version provided a
(different) semantics and proof theory [4]. We only consider the earlier semantics,
as the latter does not provide the necessary clausal correspondence.

The parameter set for the LB(Σ) logics consists of a set Σ of propositional
formulae. This contrasts with the use of propositional variables for the S-3 logics.
Furthermore, Σ must be closed under formula formation; meaning that if α ∈ Σ
then ¬α ∈ Σ, and if α, β ∈ Σ then α ∨ β, α ∧ β, α→ β ∈ Σ.

The LB(Σ) logics are based on a three-level lattice (L,-,., 0, 1), such that
L is the countable set of elements {0, 1, ε0, ε1, ε2, . . .}, . is the least upper bound,
and - is the greatest lower bound (Figure 1 (a)). The partial ordering relation
( is defined as follows: a ( b iff a.b = b iff a-b = a. ( is then a partial ordering
over elements in L such that 0 ( εi ( 1 for every i < ω and εi �( εj for i �= j.
The values 1 and 0 can be referred to as true and false respectively, while the
εi values are called neutral. Furthermore, a converse operator ∼ is defined over
the lattice such that ∼0 = 1, ∼1 = 0, and ∼εi = εi for all i < ω (Figure 1 (b)).
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Fig. 1. Lattice semantics (a) and converse operation (b)

An unlimited valuation is a function vΣ : P → L that maps atoms to elements
of the lattice. This is extended to arbitrary formulae, vΣ : L → L as follows:

vΣ(¬α) = ∼vΣ(α)
vΣ(α ∧ β) = vΣ(α) - vΣ(β)
vΣ(α ∨ β) = vΣ(α) . vΣ(β)
vΣ(α→ β) = (∼vΣ(α)) . vΣ(β)
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Using the notion of an unlimited valuation, a limited valuation is defined by
adding the restriction that for every formula α:

vΣ(α) = 0 or vΣ(α) = 1, if α ∈ Σ
Example 2. Consider a paramater set Σ such that {a,¬a ∨ b} ∈ Σ but b �∈ Σ.
We can construct a limited valuation vΣ by setting vΣ(a) = 0 and vΣ(b) = ε0.
Applying the rules of an unlimited valuation vΣ(¬a) = 1 and hence vΣ(¬a∨b) =
1. Note that as b is not in the parameter set it can be assigned a neutral value,
but only so long as ¬a ∨ b results in a classical value (0 or 1).

Notions of satisfiability and entailment are defined in terms of limited valuations.
A valuation vΣ satisfies α if and only if vΣ(α) = 1; α is said to be satisfiable. A set
of formulae Γ is satisfied by vΣ if and only if all its formulae are satisfied by vΣ . A
valuation vΣ contradicts α if and only if vΣ(α) = 0. If a formula is neither satisfied
nor contradicted by a valuation then it is neutral with respect to that valuation.
A set of formulae Γ is said to LB(Σ)-entail a formula α (written Γ |=LB

Σ α) if and
only if for all limited valuations vΣ that satisfy Γ , vΣ does not contradict α (i.e.,
if vΣ(Γ ) = 1 then vΣ(α) �= 0). Note: vΣ may be neutral with respect to α.

Theorem 2 ([5]). Given a knowledge base Γ , formula α, and parameter sets
of formulae Σ and Σ′ s.t. Σ ⊆ Σ′ ⊆ L and both Σ and Σ′ are closed under
formula formation, if Γ |=LB

Σ α then Γ |=LB
Σ′ α (hence Γ |= α).

Theorem 2 establishes the classical soundness of LB(Σ) logics, and shows that
the approximation to classical logic becomes more accurate as the parameter set
approaches the full language. This mirrors the case for the S-3 logics.

2.3 DPLL and Restricted Branching

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [3] forms the basis of
most modern complete SAT solvers. It is commonly formalised with a branching
rule (analytic cut), and a deterministic rule for unit propagation:

A ∪ {l}
l

A

(Unit Propagation) l l (Analytic Cut)

In DPLL branching can occur on any variable. In contrast, DPLL with restricted
branching (RDPLL) allows branching only on a restricted set of variables [7,10].
This can be defined by replacing the analytic cut rule with a restricted cut rule:

p ∈ S

p ¬p
(Restricted Cut)

Importantly, logical completeness is guaranteed when the truth values of the
non-branching variables are uniquely determined by the branching variables.

While RDPLL can provide performance improvements through a reduction
in the size of the problem search space, theoretical and practical results have
shown that the proof system for RDPLL cannot polynomially simulate DPLL
[7]. In short, DPLL with restricted branching can in some cases result in an
exponentially larger proof than would be needed for unrestricted branching.
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2.4 Problem Hardness and Strong Backdoors

Problem hardness is concerned with identifying the characteristics of hard and
easy SAT instances. A strong backdoor is a set of variables such that under any
truth value assignment the resulting formula can be solved in polynomial time.
Empirical studies have shown that the size of the minimal strong backdoor is
strongly correlated to problem hardness [13,8].

We adopt the formalisation of a strong backdoor from [15]. For a set of clauses
Γ , let Γ [v/x] denote the set obtained from Γ by setting the value of variable v
to x. Let aS : S ⊆ P → {1, 0} be a partial assignment, and let Γ [aS ] denote the
set of clauses obtained by setting the variables defined in aS for the set Γ . A
sub-solver is used to solve tractable sub-cases, subject to the conditions:

(i) it either rejects the input or determines Γ correctly.
(ii) it runs in polynomial time.
(iii) it determines if Γ is trivially true or trivially false.
(iv) if it determines Γ then it determines Γ [v/x] for any

variable v and Boolean value x.

Definition 1 (strong backdoor). Let A be a sub-solver and Γ be a set of
clauses. Then, a set S ⊆ P is a strong backdoor in Γ for A if for all aS : S →
{1, 0}, A returns a satisfying assignment or concludes unsatisfiability of Γ [aS ].

We highlight two particular sub-solvers. The trivial sub-solver performs no prob-
lem simplification; if Γ contains an empty clause then Γ is unsatisfiable, if Γ is
empty then Γ is satisfiable, otherwise the problem is rejected. In contrast, the
unit propagation sub-solver either determines the satisfiability or unsatisfiability
of Γ through unit propagation, or rejects Γ . This latter sub-solver is the most
widely used for studying backdoors [8,9].

3 Clausal LB(Σ) Reasoning

In this section we consider the LB(Σ) logics in the context of clausal reasoning.
We define a logical sub-class based on an added restriction to the parameter set.
A clausal tableau based proof theory is then defined and shown to be sound and
complete for clausal reasoning with respect to the restricted semantics.

3.1 LB(Σ∗) Semantics

We consider the case where the parameter set Σ is not only closed under formula
formation, but is also downwardly saturated under formula formation. That is,
for every formula in the parameter set, every subformulae of that formula is also
in the parameter set (i.e., if α ∈ Σ then for every subformula α′ of α, α′ ∈ Σ).
Hence, every atom of every formula in the parameter set will itself be a member
of the parameter set. This sub-class is referred to as LB(Σ∗) semantics.

This restricted semantics allows for a reduction theorem that shows that
LB(Σ∗) entailment for an arbitrary parameter set is equivalent to LB(Σ∗) en-
tailment with an empty parameter set provided that a number of tautological
clauses of the form p ∨ ¬p are added to the knowledge base.
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Theorem 3 (reduction). Given a parameter set Σ∗, closed under formula
formation and downwardly saturated, a knowledge base Γ , and a query α, let
ΣT denote the set of disjunctive formulae constructed from the conjugate pairs
of atoms in Σ that are also atoms in either Γ or α; that is ΣT = {p ∨ ¬p | p ∈
Σ∗ and either p ∈ atoms(Γ ) or p ∈ atoms(α)}. For the empty parameter set ∅
then Γ |=LB

Σ∗ α iff ΣT ∪ Γ |=LB
∅ α.

Proof. Follows from observing that every LB(Σ∗)-valuation that maps Γ to 1
is also an LB(∅)-valuation that maps ΣT ∪ Γ to 1 and vice-versa.

Theorem 3 is particularly relevant to clausal reasoning. Given a clausal knowl-
edge base, a query, and an arbitrary Σ∗ parameter set, the reduction theorem
establishes that we only need to consider the propositional atoms in Σ∗ in order
to perform reasoning. And since only clauses are being added to the knowledge
base (i.e., p∨¬p for each p ∈ Σ∗) therefore pure clausal reasoning is maintained.

3.2 Clausal Tableau

As a convention, we use the uppercase Roman characters, A and B, with or
without subscripts, to represent clauses, and lower case letters k and l to rep-
resent literals. As is common practice, we extend the notion of a conjugate to
signed formulae to refer to the opposite sign for some formula (i.e., Tα is the
conjugate of Fα and vice-versa).

T A ∪ {l}
F l

T A
(T∨) F A

F l, ∀l ∈ A
(F∨)

T l

F l
(T−)

F l

T l
(F−)

T {l, l}
T l F l

(Tl∨l)
p ∈ S

T p F p
(LPB(S))

Fig. 2. CKELB(S) clausal tableau rules

Figure 2 provides the signed clausal tableau rules for the system CKELB(S)
(the name representing that it provides Clausal KE-tableau based rules for the
Limited Bivalence semantics with a parameter set S). The system consists of
four linear expansion rules and two branching rules. (LPB(S)) and (Tl∨l) are
the only rules that allow the splitting of a branch. For the (LPB(S)) rule to be
applied for some atom p two conditions must be met: p must be a member of S,
and the subformula property must be satisfied (i.e., p must be a subformula of
a formula further up the branch of the tableau).
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Tableau properties are defined in the usual manner; a branch is closed if it
contains a pair of conjugate literals, and open otherwise. It is saturated if no rule
can be applied to produce a new formula in the branch. A tableau is closed if
all its branches are closed and saturated if all its branches are saturated.

Definition 2. Let S be a set of atoms, and A1, . . . , An and B be clauses. A proof
of consequence A1, . . . , An 1CKELB

S B is a closed CKELB(S) tableau with the
items TA1, . . . , TAn, FB at the head of the tableau.

Soundness and completeness of the CKELB(S)-tableau with respect to clausal
LB(Σ∗) semantics is established in a similar manner to [4]. This is encapsulated
in the following adequacy theorem.

Theorem 4 (adequacy). Let Σ∗ be a parameter set that is closed under for-
mula formation and downwardly saturated, and S be a set of atoms s.t. p ∈ S iff
p ∈ Σ∗. For any set of clauses Γ and clause γ then Γ 1CKELB

S γ iff Γ |=LB
Σ∗ γ.

Proof. The notion of a valuation is extended to signed formulae, from which
soundness of each tableau rule can be observed. Completeness is proven by con-
sidering the contrapositive. Namely, that if there is an open saturated branch of
the tableau, then the set of clauses must be satisfiable.

Complexity of Reasoning. Importantly, when tautological clauses are allowed
entailment checking for LB(Σ) is no better than the classical case. We can see
this by first establishing the following classical equivalence theorem.

Theorem 5 (classical equivalence). Given a knowledge base Γ , let Γ T de-
note the set of conjugate paired tautological clauses of all atoms of formulae in
Γ ; that is Γ T = {p ∨ ¬p | p ∈ atoms(β) where β ∈ Γ}. For any parameter set
Σ, and any formula α then Γ |= α iff Γ T ∪ Γ |=LB

Σ α.

Proof. Follows from observing that every classical valuation that maps Γ to 1 is
a LB(Σ)-valuation that maps Γ T ∪ Γ to 1 and vice-versa.

From Theorem 5 classical entailment can be transformed to determining LB(Σ)
entailment through the addition of a set of tautological clauses. Furthermore,
constructing this set can be trivially undertaken in linear time in the size of
the knowledge base. This establishes the coNP-hardness of LB(Σ) entailment,
showing that it is theoretically no easier than classical entailment.

In the context of clausal LB(Σ∗) reasoning this result can be seen to follow
from the unrestricted branching of the (Tl∨l) rule. Potentially, the tableau may
have to split on every atom, resulting in an exponential number of branches.

However, where a knowledge base is restricted to non-tautological clauses then
it is simple to observe that the (Tl∨l) rule can never be triggered. Consequently,
the only possibility for branching of the tableau is when the (LPB(S)) rule is
applied. In this case, the potential number of branches is exponentially bounded
by the size of the parameter set. This offers the possibility of balancing the
complexity of reasoning against the completeness of the deductive process.
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4 Characterising RDPLL

As shown earlier, RDPLL tableau consists of two rules: unit propagation, and
restricted cut. Both have a clear correspondence to the CKELB(S)-tableau
(Figure 2). The (T∨) rule is simply a signed version of unit propagation, while
(LPB(S)) is restricted cut. Similarly, the (T−) and (F−) rules ensure the exis-
tence of the signed positive and negative versions of a literal and therefore fit
the RDPLL framework. Finally, when used for testing entailment, the classi-
cal relationship between satisfiability and entailment is employed to convert the
negation of the query into a conjunction of negated literals. Consequently, an
unsigned version of (F∨) is implicitly assumed in the practical use of RDPLL.

The only clear difference between the RDPLL and CKELB(S) is the (Tl∨l)
rule. However, this difference is of little practical importance, as most SAT
solvers parse the input to remove tautological clauses. Consequently, for such
cases LB(Σ∗) semantics does indeed provide a logical characterisation of the
soundness of the RDPLL algorithm.

Proof Limitations. RDPLL has primarily been considered, and abandoned,
as an optimisation strategy for SAT solvers. Nevertheless, the results from this
research are still highly relevant. For example, proof complexity results showing
that RDPLL cannot polynomially simulate DPLL [7,10] apply equally to ap-
proximate reasoning. In practice this means that there may be cases where an
approximate reasoner provides a result more slowly than a classical reasoner.

Despite this observation, the goal of approximate reasoning is not to find a
shortest proof but is instead to provide computationally bounded, well-defined
logical behaviour. Determining the degree of any practical loss in performance
from the optimal would be a consideration for future research.

5 Approximate Logics to Problem Hardness

In this section we examine the relationship between clausal approximate logics
and problem hardness. We show that the notion of a strong backdoor of an
unsatisfiable problem corresponds precisely to the parameter set for the LB(Σ∗)
and S-3 families of approximate logics. The relationship between parameter sets
and strong backdoors is established separately for each logical family.

Theorem 6. Given a classically unsatisfiable set of non-tautological clauses Γ
and set S ⊆ P, then Γ is S-3-unsatisfiable iff S is a strong backdoor for Γ using
the trivial sub-solver.

Proof. The proof follows from two observations. Firstly, that Γ is 3-unsatisfiable
(i.e., the S-3-logic where S = ∅) iff the trivial sub-solver determines that Γ is
unsatisfiable. Secondly, for any assignment aS of variables in S then the S-3-
unsatisfiability of Γ [aS ] reduces to determining the 3-unsatisfiability of Γ [aS ].

Theorem 7. Given a parameter set Σ∗ that is closed under formula formation
and downwardly saturated, let S ⊆ P contain all the atoms in Σ∗. A classically
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unsatisfiable set of non-tautological clauses Γ is unsatisfiable under LB(Σ∗) se-
mantics iff S is a strong backdoor for Γ using the unit propagation sub-solver.

Proof. Both proof directions follow from constructing a CKELB(S) tableau
where the (LPB(S)) rule is applied before any other. There will be exactly 2|S|

branches, each corresponding to an assignment aS over all elements of S. The
tableau will be closed iff every Γ [aS ] is determined to be unsatisfiable by the
unit propagation sub-solver.

Theorems 6 and 7 establish an equivalence between the parameter set of an
approximate logic and the strong backdoors for the corresponding sub-solvers.
This is significant for a number of reasons. Firstly, it is particularly important
to the study of approximate logics as it allows existing research into backdoors
and problem hardness to be applied directly to approximate reasoning. For ex-
ample, existing results establishing the intractability of finding minimal strong
backdoors [8,14] means that finding minimal parameter sets is also intractable.
Furthermore, heuristics for finding backdoors can be translated directly into
the approximate logic domain as heuristics for finding parameter sets. As a
consequence, these heuristics can be contrasted against existing parameter set
construction strategies, such as the syntactic relevance, graph, and incremental
tableau based methods proposed in [2], [12], and [6] respectively.

Finally, these results are also of interest for providing a logical characterisation
of the notion of a strong backdoor for unsatisfiable problems. Such a character-
isation provides for a greater degree of generalisation of the concept, allowing
equivalence to be established between backdoors defined in terms of different
proof methods, provided the proof methods share a common semantics.

6 Summary and Future Research

In this paper we examined the properties of sound approximate reasoning. The
LB(Σ∗) logics were considered for clausal reasoning and a clausal tableau based
proof system was established. Importantly, LB(Σ∗) was shown to logically char-
acterise the behaviour of the well-known DPLL algorithm when restrictions are
placed on the allowable branching variables (RDPLL).

In characterising sound approximate clausal reasoning a number of impor-
tant linkages were made to existing SAT research. Firstly, the resource-bounded
nature of RDPLL was established, with a worst-case complexity exponentially
bounded by the size of the parameter set. Secondly, the set of atoms in the pa-
rameter sets of LB(Σ∗) and S-3 were shown to logically characterise the notion
of a strong backdoor of an unsatisfiable problem. This result allows existing SAT
research to be translated to the approximate logic domain. Furthermore, empiri-
cal results establishing the strong correlation between minimal strong backdoors
and problem hardness can now be understood in terms of a strong correlation
between the size of the minimal parameter set and problem hardness.

This research provides a number of avenues for future work. Complete approx-
imate logics should be considered. As the parameter set of a sound approximate
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logic corresponds to a strong backdoor of an unsatisfiable problem, it would be
expected that the parameter set of a complete approximate logic would cor-
respond to a strong backdoor of a satisfiable problem. Together, this would
capture the entire notion of a backdoor within an approximate logic setting.
Finally, this research opens up practical possibilities for the implementation of
resource-bounded agents based on SAT technologies.
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U.S. Government is authorized to reproduce and distribute reprints for Govern-
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Abstract. In this paper, we develop a formal framework for analysing
the flow of information and knowledge through social networks. Specifi-
cally, we propose a multi-agent epistemic logic in which we can represent
and reason about communicative actions based on social networks and
the resulting knowledge and ignorance of agents. We apply this logic to
formally analyse the “Revolt or Stay-at-home” problem known from the
literature, where social networks play an important role in agents’ knowl-
edge acquisition and decision-making. We evaluate our work by proving
some mathematical properties of our new logic, including the fact that
it generalises the existing Logic of Public Announcement.

1 Introduction

The emergence of online social networks such as Facebook and Twitter has en-
abled richer and easier interactions among people globally. Research on social
networks has a long history and is a very interdisciplinary area with important
links to sociology, economics, epidemiology, computer science, and mathematics
(see [8,9,1]). It deals with topics such as exchange of information, spread of dis-
eases, trade of goods and services and diffusion of patterns of social behaviours.

This paper focuses on the modelling of knowledge and ignorance within social
networks, and its crucial role in decision-making. As a motivating example, con-
sider the two alternative social networks depicted in Fig. 1, involving four agents,
Alice, Bob, Cath and Dave. Suppose they are unhappy about their dictatorial
government and consider a revolt. Suppose further that each of them thinks that
“I will revolt on condition that I know for sure that at least two others in my so-
cial network will also revolt; otherwise I will stay at home.” Next, everyone posts
their thought to their social network (assuming no government agent is watching
and the network structure is common knowledge). Under these assumptions, will
these four people actually revolt in these two different social networks? In this
scenario, which is an adapted version of an example introduced in [5], the social
network structures play a key role in spreading people’s intentions and their
knowledge about other people’s knowledge of their intentions. These intentions
can be seen as social interaction protocols, which are specifications for carry-
ing out tasks with specific social goals, such as fair division of desirable goods,
rational decision making in groups, voting, and so on.

In this paper, we develop a formal framework for analysing the flow of infor-
mation and knowledge through social networks. More specifically, we propose a
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Fig. 1. Two networks structures for the “Revolt or Stay-at-home” scenario

multi-agent epistemic logic in which we can represent and reason about com-
municative actions based on social networks and the resulting knowledge and
ignorance of agents.

The remainder of the paper is organised as follows. Section 2 recalls an exist-
ing basic version of Dynamic Epistemic Logic: Public Announcement Logic. Sec-
tion 3 extends this logic with a social network component. The resulting Social
Network Logic is then applied to formally analyse the “Revolt or Stay-at-home”
problem. In Section 4 we evaluate our new logic by proving some theoretical
results. We conclude in Section 5 with a discussion of related work.

2 Preliminaries

Dynamic Epistemic Logic [3,4,6] studies how actions affect knowledge in a multi-
agent setting. Public Announcement Logic (PAL) is an example of such a logic
and is an extension of standard multi-agent epistemic logic. We give a concise
overview of this logic; intuitive explanations of the epistemic part of the seman-
tics can be found in [7].

Definition 1 (The language of Public Announcement Logic). Given are
a set of agents Ag and a set of atoms At. The language of Public Announcement
Logic LPAL is defined as follows:

φ ≡ p | ¬φ | φ ∧ ψ | Kiφ | CGφ | 〈φ〉ψ
where p ∈ At, i ∈ Ag,G ⊆ Ag. For Kiφ, read ‘agent i knows φ.’ For CGφ, read ‘φ
is common knowledge for the group of agents G.’ For 〈φ〉ψ, read ‘after truthful
public announcement of φ, formula ψ holds’.

Definition 2 (Epistemic Model). An epistemic model M is a structure
〈W, {∼i: i ∈ Ag}, V 〉, where Ag is a set of agents, W is a set of possible worlds,
each ∼i⊆W ×W is an equivalence relation (the accessibility relation) for each
agent i ∈ Ag, and V : At �→ 2W is a valuation function that assigns each atomic
proposition a set of worlds (said to be true in those worlds). For model M and
world w ∈W, entailment is defined as follows:

M,w |= p iff w ∈ V (p);
M,w |= ¬φ iff M,w �|= φ;
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
M,w |= Kiφ iff for all w′, if w ∼i w

′ then M,w′ |= φ;
M,w |= CGφ iff for all w′, if w ∼G w

′ then M,w′ |= φ;
M,w |= 〈φ〉ψ iff M,w |= φ and M |φ,w |= ψ.
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Fig. 2. Example Social Networks

where the group accessibility relation ∼G is the transitive and reflexive closure of
the union of all accessibility relations for the individuals in G: ∼G≡ (

⋃
i∈G ∼i)∗;

and the restricted model M |φ = 〈W ′, {∼′
i: i ∈ Ag}, V ′〉 is given by

W ′ = {w′ ∈ W |M,w′ |= φ};
∼′

i = ∼i ∩(W ′ ×W ′);
V (p′) = V (p) ∩W ′

The modal operator 〈φ〉 (‘after publicly announcing φ’) is interpreted as an
epistemic state transformer: the model M |φ is the model M restricted so as
to only contain worlds in which φ is true. Validity and logical consequence are
defined in the standard way. For a proof system, see [6].

3 Social Network Logic

In Public Announcement Logic, all agents have the same source of information,
making the logic suitable for modelling epistemic problems such as the famous
Muddy Children example [7]. However, the language lacks the possibility to ex-
plicitly indicate who made the announcement, or to model the case of informing
a subgroup of agents with prior dependencies. We address these shortcomings by
extending epistemic models with social networks, and the language with more
subtle communication actions.

Definition 3 (Social Network). A social network S is a tuple 〈Ag, F 〉, where
Ag is a set of agents and F ⊆ Ag × Ag \ {(i, i) | i ∈ Ag} a binary relation on
Ag (indicating a specific social relation) among agents.

Of all the various types of social relations such as friendship, kinship, common
interest, or dislike, we are interested in modelling the relations that influence
agents’ knowledge acquisition. In particular, a social relation F defines infor-
mation flow among agents as follows: iF j (or (i, j) ∈ F ) means that agent i
gets information from j. Fig. 2 shows three social networks. The second one is
symmetric and the third one is transitive. In the following, we will sometimes
use the notation FS to indicate the social relation belonging to social network S.

We extend an epistemic model with a social network component as follows.

Definition 4 (Social Epistemic Model). A social epistemic model E is a
structure 〈Ag,S,M〉, where Ag is a set of agents, S is a social network with Ag,
M is a multi-agent epistemic model with agents Ag.
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Fig. 3. Example social epistemic mode. Property p is true in w1 and false in w2.

The common part shared by S and M is Ag. In this paper, we assume that S
is common knowledge among Ag (see Section 5 for a discussion). Fig. 3 shows
a social epistemic model where Ag = {1, 2, 3, 4}, the social network is S1 from
Fig. 2, atomic proposition p is true in world w1 and false in world w2, and only
agent 1 can distinguish w1 from w2 (as indicated by the link between w1, w2

being labelled ‘2,3,4’, that is, these three agents cannot distinguish w1 from w2.)
The social network and knowledge of agents can be changed by their actions.

We want to capture two kinds of actions:

1. Network Actions: Follow an agent, Unfollow an agent.
Such actions change the social network structure. Suppose (i, j) �∈ F . If
agent i acts to follow agent j, then the result will be (i, j) ∈ F . Take, say, S1

from Fig. 2, then executing the three actions ‘1: Follow 2’, ‘2: Follow 3’ and
‘3: Follow 4’ results in S2 in Fig. 2. Action ‘Unfollow’ has the reverse effect.

2. Message Actions: Post a message φ.
Such actions change agents’ knowledge. The effect of agent i posting a mes-
sage φ is that all the agents that follow i will know φ. We assume that agents
post only messages known to them, that is, both φ and Kiφ are true.

Definition 5 (Social Epistemic Language). The language of Social Network
Logic LSNL is defined as follows:

φ ≡ p | f(i,j) | ¬φ | φ ∧ ψ | Kiφ | CGφ | 〈π〉φ
π ≡ i : Fo(j) | i : uFo(j) | i : φ

where p ∈ At; f(i,j) ∈ SAt; i, j ∈ Ag; and G ⊆ Ag.
Unlike the language for Public Announcement Logic, our language has a special
kind of atomic propositions f(i,j), indicating that agent i follows j, and dynamic
modalities π for social network changing and message posting. Action ‘i : Fo(j)’
means that agent i acts to follow agent j; action ‘i : uFo(j)’ means that agent
i acts to unfollow j; and action ‘i : φ’ means that agent i posts message φ.
In terms of the epistemic model, the effect of the last action is to limit all i’s
followers’ access to worlds in which φ is true. To define the precise meaning of
i : φ, we adapt the concept of action models from Dynamic Epistemic Logic [6]
as follows.

Definition 6 (Action Model). Given a social network S, an action model
AS

(k,φ) for agent k posting message φ in S is a structure

〈{a1, a2}, {∼i: i ∈ Ag}, pre〉
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Fig. 4. Example Action Models. S1,S2 and S3 correspond to those in Fig. 2.

where a1, a2 are two atomic actions; pre(a1) = φ and pre(a2) = ¬φ; and
∼i⊆ {a1, a2}2, for which we distinguish two cases: if i = k or iFSk, then
∼i= {(a1, a1), (a2, a2)}; otherwise, ∼i= {(a1, a1), (a1, a2), (a2, a1), (a2, a2)}.

An action model is somewhat similar to an epistemic model: an atomic action
represents a possible action that can be executed by agents, and the accessibility
relation ∼i expresses the uncertainty of agent i about which action has been
executed. But instead of having a valuation function, an action model features
a function pre that assigns a precondition to each atomic action. In order to be
executable in an epistemic state w, an action’s precondition must be satisfied
in that state, which in our case means that if an agent wants to send message
φ, then the agent must know φ. Fig. 4 shows three examples of action models
derived from agent 1 announcing p in S1, S2, and S3, respectively, of Fig. 2. It is
interesting to note that AS1

(1,p) and AS2
(1,p) are identical, while AS3

(1,p) is equivalent
to a public announcement of p, since all other agents follow agent 1.

We can now formally define entailment for LSNL wrt. social epistemic models.

Definition 7 (Semantics). Given a social epistemic model E = 〈Ag,S,M〉
and a social epistemic formula φ ∈ LSNL, the entailment relation |= is defined by
E,w |= p iff w ∈ V (p);
E,w |= f(i,j) iff iFSj;
E,w |= ¬φ iff E,w �|= φ;
E,w |= φ ∧ ψ iff E,w |= φ and E,w |= ψ;
E,w |= Kiφ iff for all w′, if w ∼i w

′ then E,w′ |= φ;
E,w |= CGφ iff for all w′, if w ∼G w

′ then E,w′ |= φ;
E,w |= 〈i : Fo(j)〉φ iff E′, w |= φ where E′ = 〈Ag,S′,M〉 and

F ′
S′ = FS ∪ {(i, j)};

E,w |= 〈i : uFo(j)〉φ iff E′, w |= φ where E′ = 〈Ag,S′,M〉 and
F ′
S′ = FS \ {(i, j)};

E,w |= 〈i : φ〉ψ iff E,w |= Kiφ and E′, (w, a1) |= ψ where
E′ = 〈Ag,S,M〉 ⊗AS

(i,φ).

The update operation ⊗ is given as 〈Ag,S,M〉 ⊗ AS
(i,φ) ≡ 〈Ag,S,M ′〉, where

WM ′ = {(w, a) |M,w |= pre(a), a ∈ {a1, a2}}; (w, a) ∼i (w′, a′) iff w ∼i w
′ and

a ∼i a
′; and (w, a) ∈ VM ′ (p) iff w ∈ VM (p).
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� ��
(w1, a1) (w2, a2)

4

Ag Ag�

�

1

�

�
2

3

4

E1 ⊗ AS1
(1,p) ≡

Fig. 5. Example Update Result

The definition of the update operation ⊗ essentially follows from [3]. The main
difference is that the action models in our approach are constructed based on
social networks. Intuitively ⊗ takes a social epistemic model and an action mode
to produce a new social epistemic model. Agent i cannot distinguish two new
worlds (w, a) and (w′, a′) if i cannot distinguish the world w from w′ nor the
action a from a′.

The other logical connectives ∨,→ can be defined as usual. If E,w |= φ for
all E,w, then φ is valid, written as |= φ. To illustrate the update operation,
Fig. 5 gives the result of updating E1 from Fig. 3 with AS1

(1,p) from Fig. 4. In the
resulting model, the social network remains the same and p becomes common
knowledge for agents 1,2,3, but agent 4 is still ignorant about p. Formally,

E1, w1 |= 〈1 : p〉(C{1,2,3}p ∧ ¬K4p).

Example: Revolt or Stay-at-home. Our new Social Network Logic provides a
framework for formally analysing the motivating example from the introduction.
Let p(A,x) represent the proposition “Agent A(lice) will revolt if at least x of
her friends intend to revolt.” It suffices to consider x ∈ {0, 1, 2, 3, 4}, where
x = 0 means A will definitely revolt and x = 4 means A will definitely stay
at home, given that there are only three other agents in this example. Each
possible collection of the thresholds for every agent constitutes a possible world.
We describe a world by tuples like 0123, which means that agent A’s threshold
is 0, B’s is 1, C’s is 2, and D’s is 3. There are 54 = 625 different possible
worlds in total. Initially, each agent only knows about his or her own threshold.
The accessibility relation for agent A is defined as (ijkl ∼A i

′j′k′l′) iff i = i′, for
agent B as (ijkl ∼B i

′j′k′l′) iff j = j′, and similar for agents C andD. Valuation
V is defined naturally as V (p(A,x)) ≡ {ijkl | i = x} and similar for the other
atomic propositions. Let EL

init denote the initial social epistemic model with the
network on the left-hand side of Fig. 1; ER

init the initial social epistemic model
with the network on the right-hand side. We use Einit to refer to either of them.
Assume that our agents all have threshold 2 (i.e., world 2222) and only know
their own threshold initially. The following (about everyone’s knowledge of agent
A’s threshold) can be formally concluded for both social network structures:

Einit, 2222 |= KAp(A,2) ∧ ¬KBp(A,2) ∧ ¬KCp(A,2) ∧ ¬KDp(A,2).

After A posts her threshold, what agents know about p(A,2) starts to diverge:

EL
init, 2222 |= 〈A : p(A,2)〉(KAp(A,2) ∧KBp(A,2) ∧ ¬KCp(A,2) ∧KDp(A,2)),
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ER
init, 2222 |= 〈A : p(A,2)〉(KAp(A,2) ∧KBp(A,2) ∧KCp(A,2) ∧KDp(A,2)).

After all agents have posted their thresholds, in the epistemic model resulting
from (EL

init, 2222), agent A knows that C considers it possible that p(A,4) is true:

EL
init, 2222 |= 〈A : p(A,2)〉〈B : p(B,2)〉〈C : p(C,2)〉〈D : p(D,2)〉(KA¬KC¬p(A,4)).

Hence, agent C considers it possible that A will stay at home. A similar analysis
applies to B’s ignorance about D’s threshold. So from C’s perspective, agent B
may think it is possible that both A and D will stay at home. Therefore, A will
also choose to stay at home. The key condition for them to revolt, namely, that
they should have common knowledge about their thresholds among a group of
at least three, is not given. Formally, (EL

init, 2222) does not entail

〈A : p(A,2)〉〈B : p(B,2)〉〈C : p(C,2)〉〈D : p(D,2)〉(C{A,B,C}(p(A,2) ∧ p(B,2) ∧ p(C,2))).

The situation is different for (ER
init, 2222), where agentsA,B,C manage to achieve

common knowledge about their thresholds. Formally, (ER
init, 2222) entails

〈A : p(A,2)〉〈B : p(B,2)〉〈C : p(C,2)〉〈D : p(D,2)〉(C{A,B,C}(p(A,2) ∧ p(B,2) ∧ p(C,2))).

Here, agents A,B,C will all revolt while agent D chooses to stay at home.

4 Theoretical Results

Having illustrated how our new logic can be used to formally analyse the flow
of knowledge in a social network, we now present some general results. First, we
will formally prove that the existing PAL can be obtained as a special case of our
SNL by introducing a special agent who knows everything, and a social network
in which every agent follows this special agent.

Proposition 1. Given an epistemic model M = 〈W, {∼i: i ∈ Ag}, V 〉, there is
a corresponding social epistemic model E s.t. for all public announcements of φ,

M,w |= 〈φ〉ψ iff E,w |= 〈Announcer : φ〉ψ
where Announcer is a special agent in E and φ, ψ are formulas in LPAL.

Proof. We construct E = 〈Ag′,S,M ′〉 from M as follows:

– Ag′ = Ag ∪ {Announcer}; special atoms f(i,j) are introduced for i, j ∈ Ag′;
– S = 〈Ag′, F 〉 with (i, Announcer) ∈ F for all i ∈ Ag;
– M ′ is exactly the same as M except that ∼Announcer= {(w,w) | w ∈ W}.

From left to right: AssumeM,w |= 〈φ〉ψ, thenM,w |= φ andM |φ,w |= ψ. Since
∼Announcer is the identity relation, we have E,w |= KAnnouncerφ. Action model
AS

(Announcer,φ) has only identity pairs since all agents in Ag follow Announcer
(the model is similar to AS3

(1,p) in Fig. 4). It is easy to show thatM |φ is isomorphic
to the epistemic part of E ⊗ AS

(Announcer,φ). By structural induction on ψ, we
have E⊗AS

(Announcer,φ), (w, a1) |= ψ. Therefore E,w |= 〈Announcer : φ〉ψ holds
as desired. Since this line of argument is reversible, we immediately have the
other direction. �
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The above result concerns model equivalence, but we can also show equivalence
of formula validity.

Proposition 2. Let a syntactic translation trs from LPAL to LSNL be given as:

trs(p) ≡ p trs(Kiφ) ≡ Kitrs(φ)
trs(φ ∧ ψ) ≡ trs(φ) ∧ trs(ψ) trs(CGφ) ≡ CGtrs(φ)
trs(¬φ) ≡ ¬trs(φ) trs(〈φ〉ψ) ≡ 〈Announcer : trs(φ)〉trs(ψ)

then |=PAL φ iff |=SNL

∧
i∈Ag f(i,Announcer) → trs(φ).

Proof. Assume |=PAL φ. Take an arbitrary social epistemic model E = 〈Ag ∪
{Announcer},S,M〉 and a world w. Assume E,w |=SNL

∧
i∈Ag f(i,Announcer).

S is a social network where every agent follows the Announcer, andM,w |=PAL φ
follows from the assumption. By induction on φ and using similar reasoning as
in Proposition 1, E,w |=SNL trs(φ). Similar for the other direction. �

Our next results are about whether two actions can be executed in a different
order and still result in epistemic situations that satisfy the same formulas, that
is, |= 〈π1〉〈π2〉φ↔ 〈π2〉〈π1〉φ. Clearly, this will depend on the type of actions. For
the network actions alone, if π1, π2 are both of the type of i : Fo(j) or i : uFo(j),
then the above principle indeed holds: It is easy to verify, for instance, that

|= 〈i : Fo(j)〉〈k : Fo(l)〉φ↔ 〈k : Fo(l)〉〈i : Fo(j)〉φ.
But clearly we cannot in general mix different structural actions, that is,

�|= 〈i : Fo(j)〉〈i : uFo(j)〉φ↔ 〈i : uFo(j)〉〈i : Fo(j)〉φ.
More interesting are cases which also involve message actions:

�|= 〈j : φ〉〈i : uFo(j)〉ψ ↔ 〈i : uFo(j)〉〈j : φ〉ψ.
However, for a special class of models where i does not follow j, we do have

|= ¬f(i,j) → (〈j : φ〉〈i : uFo(j)〉ψ ↔ 〈i : uFo(j)〉〈j : φ〉ψ).

The next result says that if two agents know some propositional facts initially,
then no matter in what order they post these facts, the resulting models will
satisfy the same formulas (i.e., no formulas can distinguish them).

Proposition 3. Given propositional formulas φ1, φ2,

|= Kiφ1 ∧Kjφ2 → (〈i : φ1〉〈j : φ2〉ψ ↔ 〈j : φ2〉〈i : φ1〉ψ).

Proof. Given an arbitrary epistemic model E and a world w, assume E,w |=
Kiφ1∧Kjφ2. From left to right: Assume E,w |= 〈i : φ1〉〈j : φ2〉ψ. It follows that
E,w |= Kiφ1 and E ⊗A(i,φ1), (w, a1) |= 〈j : φ2〉ψ; hence, E ⊗ A(i,φ1), (w, a1) |=
Kjφ2 and E ⊗ A(i,φ1) ⊗ A(j,φ2), ((w, a1), a1) |= ψ. There is an isomorphism be-
tween E⊗A(i,φ1)⊗A(j,φ2) and E⊗A(j,φ2)⊗A(i,φ1) by mapping every ((w, a), b)
to ((w, b), a). It is easy to show that E ⊗A(j,φ2) ⊗A(i,φ1), ((w, a1), a1) |= ψ, and
E ⊗ A(j,φ2), (w, a1) |= Kiφ1 (as E,w |= Kiφ1 and φ1, φ2 are propositional). We
then have E,w |= 〈j : φ2〉〈i : φ1〉ψ. The other direction is similar. �
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It is worth noting that this may not hold if we lift the restriction on φ1, φ2 to be
propositional (i.e., without modal operator). Suppose, for example, a situation
E,w where jF i and hFi along with Kip and Kj¬Khp hold. We then have
E,w |= 〈j : ¬Khp〉〈i : p〉,, but not E,w |= 〈i : p〉〈j : ¬Khp〉,.

Finally, we consider the question whether two message actions have the same
effect as one. Again this depends on the social network. While it is not true
in general it does hold under certain conditions. Let us consider one result for
transitive social networks, i.e., where

∧
i,j,h∈Ag(f(i,j) ∧ f(j,h) → f(i,h)).

Proposition 4. Given propositional formula φ and two agents m,n ∈ Ag:

|= f(m,n) ∧
∧

i,j,h∈Ag

(f(i,j) ∧ f(j,h) → f(i,h))→ (〈n : φ〉ψ ↔ 〈n : φ〉〈m : φ〉ψ).

Proof. Given a social epistemic model E = 〈Ag,S,M〉, assume E,w |= f(m,n) ∧∧
i,j,h∈Ag(f(i,j) ∧ f(j,h) → f(i,h)). This ensures that S is transitive and mFn.

From left to right: Suppose E,w |= 〈n : φ〉ψ. So it is the case that E,w |= Knφ
and E ⊗ A(n,φ), (w, a1) |= ψ. From transitivity and mFn, we know that {h |
hFm} ⊆ {h | hFn}, that is, all followers of m are also followers of n. Since
φ is propositional, we can show that E ⊗ A(n,φ) and E ⊗ A(n,φ) ⊗ A(m,φ) are
isomorphic. It follows that E ⊗ A(n,φ) ⊗ A(m,φ), ((w, a1), a1) |= ψ, and hence
E,w |= 〈n : φ〉〈m : φ〉ψ. The other direction follows by reverse reasoning. �

5 Conclusion

We have introduced a logic for reasoning about knowledge and change in so-
cial networks that generalises Public Announcement Logic by an information
flow network. For further research, we intend to find an axiomatic system to
characterise communications in social networks, and to study the computational
complexity of verifying formulas for given social epistemic models.

We conclude with a short discussion of related work. Ruan [12] gives a logic of
private message passing in which a message expression CCGφ denotes a private
message φ being sent to group G (similar to email Carbon Copying). Roelofsen
[11] proposes a more general logic by introducing the notion of communication
channels among groups G1 and G2, and message actions by which group G1

sends a message φ to group G2. Seligman et al. [13] propose a Facebook Logic
that has an explicit social network as part of a possible world and where the
social relations are assumed to be symmetric. All of these frameworks use a
dynamic epistemic semantics based on [3] or [4].

Pacuit and Parikh [10] give a logic of communication graphs by introduc-
ing a commonly known, static, directed graph, which explicitly represents the
communication links between individual agents, and a temporal expression �φ,
which represents that “after some communications, φ becomes true”. They use
a history-based semantics rather than dynamic epistemic semantics of [3,4]. Apt
et al. [2] and Wang et al. [15] also use a history-based semantics, but the commu-
nication structure (named hypergraph) is formed on groups: A message from an
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agent is received by all members of the same group. Both [10] and [2] limit the
message contents to atomic propositions, and message actions are specified only
in the history model, while [15] has a richer language to represent both message
contents and actions. Sietsma and van Eijck in their recent paper [14] propose a
framework for message passing that combines the dynamic epistemic semantics
and history-based approaches.

Using a dynamic epistemic semantics, our work is in line with [12,11,13].
Different from [12,11], our communication channels are explicitly represented
in social networks, and we link individual agents rather than groups. Different
from [13], our social network does not need to be symmetric and is not part of
a possible world; in addition, we have actions that changes network structures.
Our work shares with [10] the assumption that the social network relations are
commonly known by the agents. This assumption might be too strong for real-
life social networks in which the social relationships between agents are quite
complex and highly context-dependent. However, we can generalise our approach
in a similar style as [13] by making a social network as part of a possible world.
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Abstract. Efficient Subwindow Search(ESS) is an effective method for
object detection and localization, which adopts a scheme of branch-and-
bound to find the global optimum of a quality function from all the
possible subimages. Since the number of possible subimage is O(n4) for
an images with n×n resolution, the time complexity of ESS ranges from
O(n2) to O(n4). In other words, ESS is equivalent to the exhaustive
search in the worst case. In this paper, we propose a new method named
Adimissible Region Search(ARS) for detecting and localizing the object
with arbitrary shape in an image. Compared with the sliding window
methods using ESS, ARS has two advantages: firstly, the time complex-
ity is quadratic and stable so that it is more suitable to process large
resolution images; secondly, the admissible region is adaptable to match
the real shape of the target object and thus more suitable to represent
the object. The experimental results on PASCAL VOC 2006 demon-
strate that the proposed method is much faster than the ESS method on
average.

1 Introduction

Object detection is a highly active research topic in computer vision society due
to an increasing number of practical applications. The task is to find objects in
an image automatically and separate them from the background [6][7][9][10][11].
The Sliding window approaches [12][13][14]domonstrate the outstanding effec-
tiveness of finding objects from an image. In these approaches, we first train a
classifier as a quality function based on the extracted features of training images
such as SIFT[1], SURF[5] and so on, next we apply the quality function to all
possible subimages within an image and find out the one with maximum value.
However, the number of possible subimages rises quadratically with the number
of image pixels, so the time cost of the exhaustive search is O(n4) for the images
with n× n resolution. Recently, a iterative brand and bound method for finding
the optimal subwindow is developed, called Efficient Subwindow Search(ESS )[3].
If the object’s quality value is much higher than those of other subimages, ESS
can find the globally optimal bounding box quickly; otherwise, the iteration
number can be large and ESS can be very slow. In [17], two faster subwindow
search methods called I-ESS and A-ESS were proposed and the upper bound of
time complexity was reduced to O(n3). A-ESS is the faster one but it can not
guarantee that the global optimal bounding box can be found.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 521–530, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we propose to detect object by searching for the optimal ad-
missible region, which maximizes the quality value among all possible admissible
regions instead of the bounding box in the image. An admissible region is a con-
nected x-monotone region, which requires that the whole area is connected and
the columns are vertically connected but not require the rows are connected.
Therefore, the admissible region is a natural description of the shape of objects
whose parts are vertically connected but may not be horizontally connected. For
example, in the image of a cow standing on the ground, the legs are vertically
connected but not horizontally connected. Comparing with the bounding box
which are both vertically and horizontally connected, the admissible region is
more natural and less restrictive for description of objects in images. In most
images, the object is usually standing on the ground and the parts of the object
in each column are usually connected. However, the parts of object may not be
connected in each row. Since the bounding box is a special case of admissible re-
gion, we have more possible admissible regions in the image and one may worry
that the searching is too computationally expensive. Fortunately, in the case of
linear quality function, the object detection problem by admissible region search
turns into how to find an admissible region in a matrix with the largest sum of
entries and this problem can be solved in O(n2) time for n× n matrices [16].

The rest of the paper is organized as follows. In section 2, we overview the
method for finding the optimal admissible region in a matrix and analyze its time
complexity. Section 3 addresses the Admissible Region Search (ARS) method for
object detection and localization. The experimental results are shown in Section
4 in comparison with the ESS method and Section 5 concludes the paper with
some discussions.

2 Overview of Admissible Region Search

First of all, we introduce the definition of the admissible region briefly. A two-
dimensional region is called an x-monotone region, if its intersection with any
vertical line is connected. And a region is called an admissible region if it is a
connected x-monotone region. We illustrate the difference between the admissible
region and the x-monotone region in Fig.1. Since each column of the shade areas
in both Fig.1(a) and Fig.1(b), is an interval and thus connected, both the two
shade areas are x-monotone regions. In Fig.1(a), for any two points in the shade,
we can find a connective path to link them, so the shade area in Fig.1(a) is an
admissible region. In Fig.1(b), the shade area is not connected and thus not an
admissible region.

Next, we will overview the admissible search problem on matrices and the
quadratic time algorithm to solve this problem.

2.1 Admissible Region Search on Matrices

Given a matrix, the admissible Region Search problem is to find an admissible
region in the matrix so that the sum of entries are maximized among all possible
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(a) (b)

Fig. 1. Demonstration of admissible region and x-monotone region: (a) an admissible
region (b) an x-monotone region but not an admissible region

admissible regions in the matrix. In [16], an quadratic time algorithm was pro-
posed to solve the admissible region search problem . Now we review the main
ideas of this algorithm.

Let A = {a[i, j]} be anN×M matrix with real values. coverm(i,i′) is defined as
the largest sum of the entries of the mth column a[·,m] amongst all its subarrays
that contains the ith and i′th entries, that is

coverm(i, i′)  max

{
i2∑

k=i1

a[k,m] : 1 ≤ i1 ≤ i2 ≤ N, i ∈ [i1, i2], i′ ∈ [i1, i2]

}
.

(1)
F(i,≤ m) is defined as the largest sum of entries of A amongst all admissible
regions which includes the position [i,m] and is within the firstm columns. More
precisely,

F(i,≤ m)  max

⎧⎨
⎩

∑
[i,j]∈R

a[i, j] : R is admissible, R � [1 : N, 1 : m], [i,m] ∈ R
⎫⎬
⎭ .
(2)

The optimal admissible region must be one of the solutions of the above max-
imization problem for some i and m. Next, We will show that all these maxi-
mization problems can be solved in O(NM) time.

It is shown in [16] and is easy to check that

F(i, 1) = max
1≤j≤N

{cover1(i, j)} (3)

and for m ≥ 1,

F(i,m + 1) = max
1≤j≤N

{max(F(j,m), 0) + coverm+1(i, j)}. (4)

Define matrix B1 as
B1[i, j]  max

1≤j≤N
{cover1(i, j)}, (5)

and define Bm, for m > 1, as

Bm[i, j]  max
1≤j≤N

{max(F(j,m), 0) + coverm+1(i, j)}. (6)
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Then F(i,m + 1) is the maximum of Bm’s ith row. Fortunately, Bm has the
following nice property and its row maxima can be computed in O(N) time.

Lemma 1. [16] Let Bm be defined as in (5) for m = 1 and defined as in (6)
for m > 1. Then both the upper-triangular and lower-triangular parts of B are
totally monotone matrices and all its row maxima can be computed in O(N+M)
time by the well-known SMAWK algorithm [2], provided that each entry of Bm

can be computed in constant time.

Next, we show that how to compute coverm(i, j) in constant time. By introducing
the following two indices,

bottomm(i)  argmax
j
{

j∑
k=i

a[k,m], j ∈ [i, N ]} (7)

topm(i)  arg max
j
{

i∑
k=j

a[k,m], j ∈ [1, i]} (8)

coverm(i, i′) can be computed as below [16]

coverm(i, i′) =

{∑bottomm(i′)
k=topm(i) a[k,m] if i ≤ i′∑buttomm(i)
k=topm(i′) a[k,m] if i′ < i

=
{
â[bottomm(i′),m]− â[topm(i),m] if i ≤ i′
â[bottomm(i),m]− â[topm(i′),m] if i′ < i

(9)

where â[·,m] is the integral of a[·,m], i.e.,

â[i,m] 
i∑

k=1

a[k,m]. (10)

Hence coverm(i, i′) can be computed in constant time if â[k,m], bottomm(i)
and topm(i) are obtained in advance for all i = 1, 2, · · · , N . From (10), we have
â[1,m] = a[1,m] and â[k+ 1,m] = â[k,m] + a[k+ 1,m] for k > 1, and therefore
â[k,m] can be computed in O(N) time for all k = 1, 2, · · · , N . Furthermore, the
indices bottomm(i) and topm(i), for all i = 1, 2, · · · , N , can also be computed in
O(N) time as shown in [16]. In summary, we have.

Lemma 2. The indices topm(i), bottomm(i) and â[i,m] for all i = 1, 2, . . . ,
N,m = 1, 2, · · · ,M can be computed in O(NM) time.

So the algorithm proposed in [16] first compute the indices topm(i), bottomm(i)
and â[i,m] for all i = 1, 2, . . . , N,m = 1, 2, · · · ,M . Then apply SMAWK al-
gorithm [2] to compute F (i,≤ 1) for all i = 1, 2, · · · , N . And then, for any
m > 1, apply SMAWK algorithm to compute recursively F (i,≤ m + 1) for all
i = 1, 2, · · · , N based on F (i,≤ m) for all i = 1, 2, · · · , N . All these steps can be
done in O(NM) time.
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Fig. 2. Object Localization by Admissible Region Search

3 Object Detection by Admissible Region Search

In this paper, we restrict the detected area in which the object is included to
be an admissible regions. One of the motivations of using admissible region
is that it is less restrictive and more natural for representation of objects in
images comparing with rectangle regions and circles. For example, in a picture
of a cow standing on the grass as shown as in Fig.2, the cow’s front legs and
back legs are vertically connected but not horizontally connected, and therefore
admissible regions are more suitable to cover the cow than rectangle regions.
Another motivation of using admissible region for object detection is that an
quadratic time complexity algorithm exists to find the maximum sum of entries
of a matrix amongst all possible admissible regions in the matrix as we discussed
in Section 2. Later, we will show that when the quality function is linear on the
image histograms, the object detection problem can be transformed into an
admissible region search problem on matrices and therefore can be solved by the
efficient algorithm introduced in Section 2.

Consider the quality function:f : X ×Y → IR, where X is the set of all images
and Y is the set of admissible regions. f (x,y) denotes the quality value of the
prediction that an object of the searching class is at the position y in image
x. Under the condition of fixed image x, we can simplify f (x, y) by f (y). Then
the task of predicting the best location of the object is transformed into an
optimization problem as below:

yopt = argmax
y∈Y

f(y) (11)

In computer vision community, one usually use the histograms of the extracted
features to represent images. First, one needs to extract sufficient large number
of features from the training images and cluster them into K bins to make a
dictionary. Then, for any image, we count the number of its features in each bin
and form a vector which is called a histogram. In object detection by admissi-
ble region search, we treat each admissible region of the image as a subimage
and this subimage is also represented by its feature histogram. More precisely,
for a given admissible region y in an image x, we count the number, denoted by
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hy(k), of the features that is extracted in the area y and belongs to kth cluster
bin. The histogram hy = (hy(1), hy(2), . . . , hy(K))T is then used to represent the
subimage located at y and the optimization problem (12) for object detection.
In this case,

yopt = arg max
y∈Y

f(hy) (12)

Let H[i, j, k] denote the number of k -th bin features extracted at pixel(i, j ) 1 ≤
i ≤ N, 1 ≤ j ≤ M. Then hy(k) =

∑
(i,j)∈yH [i, j, k].

Note that hy =
∑K

k=1 ekhy(k) where ek is a K-dimensional vector whose
kth entry is 1 and other entries are zeros. If f(hy) is a linear function of hy,
then

f(hy) = f

(
K∑

k=1

ekhy(k)

)
=

∑
(i,j)∈y

A[i, j] (13)

where matrix A is defined as A[i, j] =
∑K

k=1 f (ekH(i, j, k)). Hence f(hy) is
the sum of the entries of A within the admissible region y and therefore the
optimization problem (13) is transformed to be an admissible search problem on
matrices, i.e.,

yopt = argmax
y∈Y

∑
(i,j)∈y

A[i, j]. (14)

The efficient algorithm for admissible the search problem on matrices can be ap-
plied for object detection if the quality function is linear on the image histograms.
In a typical support vector machine with linear kernel f(hy) = b+

∑
i αi〈hy, hi〉,

where 〈·, ·〉 denotes the scalar product and hi are histograms of training images.
Since removing the constant b does not affect the optimal solution, one can re-
move b and f is then a linear function of hy and the proposed algorithm can be
applied.

The proposed method is of O(n2) time complexity for n× n images. Table 1
shows the time and memory complexity of the proposed method with compar-
isons to ESS and I-ESS methods.

Table 1. Time Complexity and Memory Requirements for n× n Images

Time Complexity Memory Requirement
Method Best Case Worst Case Best Case Worst Case

ARS O(n2) O(n2) O(n2) O(n2)
ESS O(n2) O(n4) O(n2) O(n4)

I-ESS O(n2) O(n3) O(n2) O(n2)
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4 Experimental Results

In this section, we report the performance of the proposed method on two data
sets with comparison to ESS and I-ESS methods. The first data set is a toy data
set that are generated randomly, and the second one is PASCAL VOC 20061

which contains 5304 nature images from 10 categories in different resolutions. For
ESS and I-ESS methods, we used the codes downloaded from the authors’ web-
sites. The experiments are conducted on a standard desktop personal computer
with Windows XP operating system. The CPU is Intel Xeon E5345 2.33GHZ
and the compiler is Visual Studio.NET 2008.
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Fig. 3. The average searching time on different image size n× n and different value of
parameter α: (a) α = 0.001 (b) α = 0.01 (c) α = 0.1 (d) α = 1. n varies from 40 to
600.

4.1 A Toy Data

The experiments in this section aims to test the scale of the time complexity
with varying matrix sizes. We generate 540 random matrices with 18 resolutions
of n×n where n varys from 40 to 600. In each resolution we created 30 matrices
each matrix C being the sum of two matrices A and B. A represents the object
area of the image. The nonzero area in A represents the position of the object and
1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006/
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the entry in this area is randomly selected in [0, 1]. On the other hand, matrix
B represents the background noise and its entries are selected randomly with
zero mean and unit variance under Gaussian distribution. We use a weighting
coefficient α to control the noise level, so the matrix C = A + αB. We selected
four values, 0.001, 0,01, 0.1 and 1, for α. At each value, we test ARS method,
ESS method and I-ESS method and calculate the average search time on 30
matrices for each resolution. The results are shown in Fig.3. The ARS method
scales much better with matrix sizes n than ESS and I-ESS methods.

4.2 PASCAL VOC 2006

In this section, we test the proposed method on PASCAL VOC 2006 standard
data set2 The data set contains 5304 images and in some images there are more
than one object, so there are 9507 objects from 10 categories in all. In the step
of feature extraction, we inherit the representation method of images in [17] and
use the same feature data and weights for each class of objects.

We compare the performance of the ARS method with methods ESS and
I-ESS. There are more than 100 different resolutions in all the 5304 images
but only 2 contains more than a thousand of images. Since the variation of
performances of ESS and I-ESS are quite large on different images, in order to
make the search time distribution reliable, we choose the images of these two
resolutions, 489× 363 and 626× 468, to report the search time distribution and
the scales with matrix dimensions.

The average, minimal and maximal search time of the three methods are
reported in Table 2. The scales of the average and maximal search time with
image dimension are reported in Fig. 4-5. Table 2 shows that ARS is faster than
ESS on average but slower than I-ESS. However, from Fig. 4-5, the scale of ARS
with image dimension is much better than I-ESS and ESS. For higher resolution
images, ARS can be better than I-ESS on average.

In Figures 4-5, we choose the search time for low resolution 489× 363 and its
dimension, approximated as the square root of 489× 363 since it is not square,
as references and compute the ratio between the approximate dimensions of
the two resolutions and the ratio between their search times. In order to check
whether search time scales quadratic or cubic, we also draw the quadratic and
cubic curves. For example, if the time complexity of the method is quadratic,
the point will be close to the quadratic line. From Fig. 4(a), one can see that the
growing rate of ESS’s average search time is higher than cubic line while those
of ARS and I-ESS are close to quadratic line. From Fig. 4(b), one can see that
the growing rate of I-ESS is nearly cubic and that of ESS is more expensive than
cubic while that of ARS is still close to the quadratic line. ARS scales the best
and is most stable for different images with same sizes.

2 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006/..
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Table 2. Search Time Comparison (L represent 489 × 363 resolution, H represent
626× 468 resolution)

CPU Time Cost (millionseconds)
Average Minimum Maximum

Method L H L H L H

ARS 98.27 164.78 91.40 154.73 142.40 217.37
ESS 368.19 867.08 10.17 13.62 8691.10 25440

I-ESS 14.90 25.39 4.03 6.29 62.87 128.75
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Fig. 4. (a) is the Average Time Cost Comparison on Images of Two Resolutions 489×
363 and 626 × 468. (b)is the Maximum Time Cost Comparison on Images of Two
Resolutions 489 × 363 and 626× 468.

5 Conclusion and Discussion

In this paper, we have proposed a new object detection method by using ad-
missible region search. Comparing with the well-known sliding window methods
using ESS or I-ESS, the proposed method’s running time scales better with
matrix sizes and thus faster for high resolution images. Also, admissible region
is closer to the shape of real objects in images and has potential to find the
shape of the object if the extracted features and quality function are accurate
enough.
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Abstract. Recent progress in stereo matching algorithms performance especial-
ly belief propagation algorithm encourages us greatly. However, it is difficult to 
develop a stable, real time and low cost shape measurement system. In this pa-
per, we propose a novel laser-scanning based 3D measurement system to obtain 
depth information in real time. Efficient Belief Propagation algorithm is 
adopted to match the correspondent points of laser stripe between calibration 
image and measurement image. When laser beam is projected onto scene, oc-
clusion problem will occur and influence 3D reconstruction accuracy. Outliers 
are detected by the ratio of the second highest peak over the highest peak. Ex-
perimental results demonstrate the feasibility of proposed approach.  

Keywords: Efficient belief propagation, outlier, 3D reconstruction. 

1 Introduction 

Laser triangulation scanners usually project a stripe (or a single spot) onto the scene, 
and then use a sensor usually a CCD camera to view the scene. There are many kinds 
of active triangulation technologies just differ in forming the laser beam [2].Occlusion 
is one of the biggest challenges in stereo vision. A number of approaches have been 
developed to deal with it. Egnal and Wildes [3] gave empirical comparisons of five 
Binocular Half-Occlusion detecting approaches, BMD (Bimodality), MGJ (Match 
Goodness Jumps), LRC (Left-Right Checking), ORD (Ordering constraint), and OCC 
(Occlusion constraint). Brown and Burschka [4] found the above distinction fails for 
many applications when determining whether occlusion is caused by error or other 
factors (e.g. image noise, lack texture). They classified algorithms for handling occlu-
sion into three categories: methods that detect occlusion [5], methods that reduce 
sensitivity to occlusion [6] and methods that model the occlusion geometry [7]. 
Another method of detecting occlusion regions [8] was proposed to exploit multiple 
cameras. As more images are added, the amount of occlusion will increase since each 
pixel of reference image will be invisible in more than one supporting camera. In laser 
triangulation, it is impossible for the stripe to be imaged because of occlusion. Some 
researchers [9] used another sensor to obtain a second view or project another stripe 
[10] to reduce the influence of occlusion. A narrower triangulation angel was used to 
make the system more robust to occlusion [11].  
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In order to develop a low cost system that can measure depth information of 
human body in indoor environments in real time and stably, we project laser strip 
onto the scene vertically and sweep human body from left to right in temporal 
succession for a dense reconstruction. We adopt the efficient belief propagation 
algorithm [1] to extract center of laser lines in the laser image. The spread of in-
tensity values across the stripe conforms to a Gaussian distribution. Because of 
ambient noise and sensor noise (electrical noise, quantization noise), the camera 
images a laser stripe with a certain amount of unexpected lighting peak superim-
posed to it. When the surface exhibits a low reflection index (e.g. hairs of human), 
occlusion problem occur or the distance between the laser range system and the 
scene exceeds the maximum range of the system, the noises are significant and 
laser stripe discontinue. We assume that there are no highlights or specularities in 
the scene. The peak ratio of intensity value is used to determine whether a point is 
an outlier or not. The peak ratio is the ratio of the second highest peak over the 
highest peak. If laser stripe discontinue at one point, the peak ratio of intensity 
value in row will be very close to one. Otherwise, it will be less than a threshold. 
Experiments show the effective of proposed method. 

We observe that the number of points whose belief vector exhibits unimodal pro-
file starts to fluctuate up and down with increase of iterations. Meanwhile, the depth 
map is over-smoothed and foreground-fattening effect occurs. It is necessary and 
reasonable to stop iteration adaptively by counting the number of points whose belief 
vector conforms to unimodal distribution.  

The remainder of this paper is organized as follows. In section 2, we give a general 
description of our system. Section 3 details the approaches we proposed including 
stripe detection, outlier detection and our adaptively iteration of belief propagation.  
Experiment results are given in section 4 and we summarize the results finally.  

2 System Overview 

The system adopts active triangulation technology to measure depth information of 
the human body. It consists of a positioning device controlling the movement of laser 
strip, a CCD camera, a laser line generator and a computer. A single laser stripe is 
projected onto the scene one time, and then reflected and imaged by a CCD camera. 
To acquire a dense 3D map of the scene, a positioning device is used to control the 
horizontal shift of the laser line. The laser sheet sweep the scene from left to right and 
the next stripe generally appears on the right of the previous one. If it shifts 64 times, 
a full 3D image of the scene is formed. The picture captured by the CCD camera is 
40*384 pixels in one scanning time. After 64 times shift, we acquire 64 frames and 
synthesis them into one laser image with size of 2560*384. The coordinates of points 
in each frame can be represented as ( , , )I x y t . ,x y are the horizontal coordinate and 

vertical coordinate respectively and t is the frame index. All of this above is finished 
by a pre-processing procedure, shown in Fig. 1. 
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Fig. 1. The pre-processing procedure 

3 Proposed Approach 

3.1 Calibration 

In our system, the focal lens of camera and the distance between the laser and the 
image sensor are 550 pixels and 70 pixels respectively. These parameters are calcu-
lated using approach proposed by Tsai [12] at two meters away from camera. We let a 
laser line sweep a smooth wall at two meters place from left to right without other 
object in front of it to extract center of background laser line. Then, we adopt efficient 
belief propagation algorithm to detect laser stripes and save offset of laser line corres-
pond to the first column in each frame as ),( tybk  for subsequent process where y
represents the row and t  is the laser line index. The algorithm that we adopt to calcu-
late offsets of background laser lines just differs in cost function compared to subse-
quent stripe detection. Here, the cost function is defined as follows: 

 )(255),( xIfpC Pp −= , (1) 

and 

 xf p = . (2) 

Where, x  is the horizontal coordinate of each pixel ),,( tyxI  in the same row with 

laser point p . )(xI p  is the intensity value of pixel ),,( tyxI . ),( pfpC  is the 

cost of assigning pf  to horizontal position of laser point p in time-succession 

frames. The efficient belief propagation algorithm will be described later.  

3.2 Stripe Detection 

Most of the researches adopt peak detection to locate the position of laser stripe. This 
method fails when signal to noise is low. To obtain accuracy 3D reconstruction result, 
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we use efficient belief propagation algorithm to detect stripes in raw laser image. 
Global optimization algorithms such as graph cuts and belief propagation perform far 
superior than local methods, but they are too slow for practical use. Fortunately, Pe-
dro and Daniel [1] presented three technologies to substantially reduce the running 
time of loopy belief propagation approach. First, they assume each message update is 
similar to min convolution, and can be computed in linear time. Second, they spit the 
nodes of grid graph into two sets and the messages of two sets are updated in turn. 
Finally, they present a multi-grid technology for performing BP in a coarse-to-fine 
manner. In this paper, we benefit from the first two technologies. The stereo match is 
formulated as an energy minimization problem. The energy function includes a data 
term and a smooth term. The data term is the cost of assigning a label to the node and 
the smooth term measures the discontinuity penalty.  

In our system, the frames in Fig. 1 are 40 pixels width and 384 pixels height. For 

each laser point, ),( pfpC  is the cost of assigning pf  to its horizontal offset cor-

responding to calibration image and it is defined as follows: 
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and 

 40mod)40),(( +−= tybkxf p . (4) 

x  is the horizontal coordinate of each pixel ),,( tyxI  in time-succession frames. 

),( tybk  is the horizontal position of laser point corresponding to p  in calibration 

image. )(xI p  is the intensity value of each pixel ),,( tyxI . 

We assume that laser strip distorts continuously and a discontinuity penalty func-
tion is defined linearly as 

 5|,|*),( =−= kffkffW qpqp . (5) 

The factor k  is determined empirically. Belief propagation is an iterative inference 
algorithm that propagates messages in parallel. Before message passing, each mes-

sage 0
qpm >−  is initialized to zero and we update it in the following way, 
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ppN \)( denotes the neighbors of p  other than p .The form of Equation (6) is 

commonly referred to as a min convolution and can be computed in )(no  time using 

the simple two-pass algorithm detailed described in [1]. 
We propagate the message in checkerboard pattern rather the standard way. 

Checkerboard is a board on which the squares are of alternating dark and light color. 
Thus, you can think the nodes of grid graph are painted with black or white. When 
iteration number t  is odd, we update the messages sent from nodes colored with 
black and keep the old value for the messages sent from nodes colored with white. 
When iteration number t  is even, we update the message sent from nodes colored 
with white and keep the old value for the messages sent from nodes colored with 
black. Thus, we reduce the memory to half as the normal belief propagation and ob-
tain nearly the same performance. After t iterations, a belief vector is computed for 
each laser point in such a way, 
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Finally, the label *
qf  that minimizes ( )q qb f  individually at each node is selected 

and the locations of laser stripe centers are determined. 

3.3 Outlier Detection 

When we project a plane of light into the scene, the intersection of this plane with the 
visible surfaces in the scene forms an illuminated light stripe. In theory, the energy 
pattern of a stripe corresponds to a Gaussian profile. However, ambient noise and 
sensor noise (electrical noise, quantization noise) are inevitable in practical use so that 
the camera images a laser stripe with a certain amount of undesired lighting peak 
superimposed to it. When the object surface exhibits a low reflection index (e.g. hairs 
of human), occlusion occur or the distance between laser range system and the scene 
exceeds the maximum range of the system, the reviewing system cannot observe the 
projected laser light, with no depth data gathered in these regions, these points can be 
represented as outliers. Meanwhile, the noises are very significant and laser stripe 
disconnect. Large areas of outliers within depth image will have adverse affects on 
subsequent processing such as clustering or recognition.  

We assume that there are no highlights or specularities in the scene. The peak ra-
tio of intensity value is chose to determine whether a laser point is an outlier or not. 
The peak ratio is the ratio of the second highest peak over the highest peak. In each 
frame, if laser stripe discontinue, the peak ratio of intensity value in row will be  
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very close to one. Otherwise, it will be less than a fixed threshold T. This algorithm 
is expressed as 
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where 2I  and 1I  are the second highest peak and highest peak of intensity value in 

row. In our system, the threshold T  is determined as 1/2 empirically. 

3.4 Adaptively Iteration of Belief Propagation 

We observed that the number of points whose belief vector conformed to unimodal 
distribution started to fluctuate up and down with increase of the iterations. Mean-
while, the depth map is over-smoothed and fatting effect occurs. The iterations algo-
rithm used in different environment is different. A fixed iteration number is not suita-
ble, so it is necessary and reasonable to stop iteration adaptively by counting the 
numbers of points whose belief vector exhibits unimodal distribution. In our adaptive-
ly stop iteration algorithm, outliers are not considered and one more iteration is done 
at the most with a small number of points are over-smoothed compared to optimal 
iterations. We set a fixed value 10 as the number max iterations for the system. If the 
iteration number exceeds this max value, the algorithm will exit loop. We count the 
number of points whose belief vector exhibits single peak distribution for each itera-
tion. If it meets Equation (11), we stop iteration 

 1.0*)()1()( tPeakNumtPeakNumtPeakNum <−−  (11) 

Where ( )PeakNum t  represents the number of points whose belief vector conforms to 

single peak distribution for current iteration and ( 1)PeakNum t −  is the number of 

points whose belief vector exhibits unimodal distribution in last iteration. In addition,       
t  is the iteration index. 

4 Experiment Results 

We arranged BMD (Bimodality) [3] and disparity crosscheck experiments to evaluate 
our outlier detection algorithm. The test laser raw images are shown in Fig. 2. First, 
the search window size of BMD is 3*3, which produces a little effect to the result and 
the peak similarity threshold in this paper is 0.8. Second, you can think crosscheck as 
a variant of LRC (Left-Right Checking). Here, we simply describe this algorithm. 
Because the same laser raw image is processed by stripe peak detection algorithm and 
efficient belief propagation algorithm, the disparity value may differ only in sign  
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Fig. 3. The result of depth computation 

5 Conclusions 

A real time laser-scanning based shape measurement system is developed. We adopt 
efficient belief propagation algorithm to calculate the offsets of laser line between 
calibration image and measurement image. Experiments show that it performs supe-
rior compared to traditional peak detection algorithm. In addition, the outlier detection 
algorithm proposed in this paper is more effective than BMD and disparity crosscheck 
when there are no highlights or specularities in the scene. We make Efficient Belief 
Propagation algorithm stop iteration adaptively by counting the number of points 
whose belief vector conforms to single peak distribution.  

Although this work corroborates that such systems are feasible, there are also some 
limitations in our system. First, too few point cloud data is obtained in our system. 
Second, a single stripe is projected one time; it severely limits the data acquisition 
speed. Third, if there are some specular surfaces or translucid surfaces in the scene, 
our outlier detection algorithm fails. In future, we will adopt structure light coding 
technology to speed up the data acquisition speed and project more laser lines to ob-
tain more point cloud for higher resolution. Our outlier detection algorithm directly 
used the raw laser image obtained from the pre-processor; we can make a post-
processing of scanned 3D surface data for stable outlier detection. 
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Abstract. Research in this paper is focused to make a change on variety of 
Efficient Sub-window Search algorithms. A restriction is applied on the sub-
window shape from rectangle into square in order to reduce the number of 
possible sub-windows with an expectation to improve the computation speed. 
However, this may come with a consequence of accuracy loss. The experiment 
results on the proposed algorithms were analysed and compared with the 
performance of the original algorithms to determine whether the speed 
improvement is significantly large to make the accuracy loss acceptable. It was 
found that some new algorithms show a good speed improvement while 
maintaining small accuracy loss. Furthermore, there is an algorithm designed 
from a combination of a new algorithm and an original algorithm which gains 
the benefit from both algorithms and produces the best performance among all 
new algorithms. 

            Keywords: Sub-window, Object detection, Branch and Bound Search. 

1 Introduction 

There are many applications which involve sub-window search in order to track the 
locations of particular objects in an image. For instance, images from surveillance 
camera can be used to find face position prior to face recognition process. It is 
expected that the object in the image can be tracked in acceptable time and accuracy. 
Because of this reason, many investigations have been conducted in order to find 
efficient approaches to do sub-window search. The idea of sub-window search is to 
find the location of target object (e.g human) in an image by drawing a bounding box 
(sub-window) around it (Fig. 1). Sub-window search is really useful in a large number 
of images because it is done automatically by computers, so it will save time and 
effort compared to doing it manually by human.  

One simple approach to do object detection is the sliding window approach 
(exhaustive search). The idea is to explore all possibilities of sub-windows in an 
image and choose the one with the highest score. However, the complexity will be 
O(n4) for an image with size n x n in terms of the number of sub-windows. This is not 
applicable since the computation speed is too slow for a large number of images. 
There are other approaches which are more efficient to find the optimal sub-window. 
One of the well-known approaches is called Efficient Sub-window Search (ESS) [4], 
[5] which uses the branch and bound search to explore only sub-windows with high 
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scores. Furthermore, there are some extensions of ESS such as χ2-ESS (Chi-square 
ESS) and A-ESS (Alternating ESS) [1-3]. All of these approaches are using rectangle 
sub-window to show the location of a target object in an image. 

 

 

Fig. 1. Bounding box sample on red car in image 

A rectangle sub-window can be represented with 4 variables: L, R, T, and B which 
refer to left, right, top, and bottom coordinates respectively. As a consequence, the 
complexity of computing the number of possible sub-windows is about O(n4) for an 
image with size n x n. However, if the shape of a sub-window has a restriction (e.g 
square shape), the number of possible sub-windows can be reduced, hence may 
improve the computation speed. For example, square sub-window can be represented 
with only 3 variables: X, Y, and S. X and Y are the top left coordinate of the sub-
window. S is side length of the sub-window. This paper will discuss the potential of 
square-shaped sub-window used in sub-window search. 

 

 

Fig. 2. (a) Rectangle Sub-window (b) Square Sub-window 

There are three proposed algorithms discussed in this paper: square ESS, square χ2-
ESS, and combination of square ESS and A-ESS. All these algorithms are using the 
square sub-window in order to improve the computation speed. However, the 
challenge is to maintain high accuracy of sub-window search. The contributions of 
presented in this paper are as following. 

1) Square sub-window reduces the number of possible sub-windows in images, 
hence might reduce the time needed to find the best sub-window. 2) Square sub-
window can simplify the model of sub-window, so only 3 variables are needed to 
represent it. 3) The worst complexity of sub-window search can be reduced into O(n3) 
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instead of O(n4).  The organization of this paper is as follows. Section 2 contains 
explanations on the existing sub-window search algorithms such as ESS, χ2-ESS, and 
A-ESS in more detail. These algorithms are the foundation of the proposed 
algorithms. Section 3 explains the detail of proposed algorithms based on square-
shaped sub-window. The proposed algorithms are square ESS, square χ2-ESS and 
combination of square ESS and A-ESS. Section 4 provides brief analysis on results of 
the experiments on the proposed algorithms. The measurement will be based on the 
time improvement and accuracy loss. Lastly, section 5 contains the summary of the 
major contributions and conclusions on this research. 

2 Efficient Sub-window Search (ESS) Algorithms 

Prior to sub-window search, some pre-processing need to be done. SIFT (Scale 
Invariant Feature Transform) features [6] are extracted and used in the simulation 
presented in this paper. In order to reduce the number of classes of features, these 
features need to be clustered. Each feature has a cluster ID. Based on the cluster ID 
in a sub-window, a histogram is created. Histogram contains the amount of each 
cluster. The histograms are classified by using SVM (Support Vector Machine). 
The idea of classification is to create a function f(x) to determine which histogram 
belongs to target object [7]. The function f(x) will have the output of positive score 
if the input is the histogram that belongs to the target object. On the other hand, the 
function f(x) will have an output of negative score if the input is the histogram 
which belongs to the non-target object or background. The purpose of sub-window 
search approach such as ESS is to find the sub-window with the highest score in an 
image. 

2.1 ESS 

ESS is designed to find the global optimal sub-window based on a rectangle sub-
window [4], [5]. This algorithm uses a branch and bound approach in order to find the 
globally maximum sub-window. The sub-window range is defined with four 
parameters: L, R, T, and B to represent left, right, top and bottom positions 
respectively. The full set of sub-windows is defined as following set. 

rectangle , , ,   |  ∈ , , ∈ , , ∈ , ,  ∈ , , ,  
 

The idea is to split the sets (L, R, T, B) that has the highest range into half (Fig. 3). As 
a result, there will be two window sets for each split range (the first half and second 
half). Each set will have the upper bound computed and put into a priority queue. The 
set with the highest bound will be put in the head of the priority queue, so it will be 
split further in the next iteration. This process is repeated until there is a set which 
only contains one sub-window, i.e., the highest bound (branch and bound search). The 
complexity of ESS is O(n4), however it is still fast on average since it only explores 
window sets with higher score. 
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Fig. 3. ESS simulation 

2.2 χ2-ESS (Chi-Square ESS) 

This is a non-linear ESS algorithm [2], [4], [5]. Only some special non-linear 
functions can be used with ESS. In this study, we use the χ2 distance, between the 
histogram from sub-window and the histogram of the target object, as the score 
function. The χ2 distance is defined as below: 

target  windowtarget window  

n = amount of different cluster indexes 
 

χ2 distance is used to measure the difference between the histogram from the sub-
window and the target object. The difference is scaled down by the cluster size of 
both sub-window and target object in order to remove the effect of larger histograms. 
The procedure is the same as ESS where it uses the branch and bound search to find 
the optimal sub-window. As a result, the complexity of this algorithm is also O(n4). 

2.3 A-ESS (Alternating ESS) 

A-ESS (Alternating ESS) is an approximation algorithm to find a locally optimal sub-
window [1]. The result might not be globally optimal. However, the computation 
speed is very fast. 

 

Fig. 4. A-ESS simulation 
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A-ESS can start from two possibilities: row interval or column interval. The idea of 
A-ESS is to keep improving the score starting from the initial row interval and then 
finding the best column interval (L’ and R’) given that row interval. The next step is 
to find the best row interval (T’’ and B’’) given column interval L’ and R’. If the 
score improvement is still significantly large after getting row interval T’’ and B’’ 
then the process is repeated (start from T’’ and B’’) until there is no score 
improvement (or very small improvement). The complexity of this algorithm is O(n3). 

3 Proposed Algorithms 

3.1 Square ESS 

This new algorithm has the same basic logic of using a branch and bound method as 
the original rectangle-based Efficient Sub-window Search (ESS). The change is very 
explicit with clear intuition. The change is on the set variables from L, R, T, B (left, 
right, top, bottom) to X, Y, and S (coordinate (X,Y) and side length) that represents 
all possible sub-windows.   

 

Fig. 5. Square ESS simulation 

The idea is to create a window set that contains the range of coordinate X, Y and side 
length S. By having only three variables, there are only three ranges to be split, hence 
reducing the number of iterations in the loop.  Because of the square-shape restriction, a 
window set that cannot fit any square in its range after splitting will not be put in to the 
priority queue. Otherwise, calculate the score of the sub-window on the window set and 
put it into the priority queue. This procedure is repeated for the window set that has the 
highest score until only one sub-window fits in the window set range. So, square ESS is 
guaranteed to find the optimal sub-window for the square-shaped sub-window. (But 
perhaps little bit less accurate than sub-window from ESS) 

3.2 Square χ2-ESS 

The change proposed for this algorithm is similar to the change for square ESS.  It 
does the same procedure with branch and bound search strategy to find the optimal 
sub-window. The computation of the distance is done by calculating the histogram of 
the sub-window and compares it with the target histogram using χ2 distance. This 
algorithm tries to find the optimal sub-window with the shortest distance with target 
histogram. 
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3.3 Combination Square ESS and A-ESS 

This is the algorithm to combine the advantages from both high computation speed 
(expected) from square ESS and accuracy from original A-ESS (and it is also fast) in 
order to achieve best performance. At the end of square ESS algorithm, the position 
of the sub-window (left, right, top, and bottom) is passed into the A-ESS algorithm. 
When A-ESS starts from row interval first, it will use the T (top) and B (bottom) 
position for the row interval initialisation. It is similar when A-ESS starts from 
column interval first. The only difference is it uses L (left) and R (right) parameters as 
the column interval initialisation. 

The main idea of this approach is to apply square ESS algorithm on an image to 
find the approximate location of a target object (because the object might not be 
covered tight enough) with high computation speed. Square sub-window will be 
created as a result. The next step is to improve the accuracy of the square sub-window 
by covering the object tighter by applying A-ESS algorithm on it and produce the 
final sub-window (Fig. 6). 

 

 

Fig. 6. Square ESS + A-ESS simulation 

4 Experiments 

All the image sets used in this experiment are from PASCAL Visual Object Classes 
Challenges 2006 (VOC) [8]. In total, there are 5,304 different images containing 
9,507 objects with 10 different class objects. The class objects include bicycle, bus, 
car, cat, cow, dog, horse, motorbike, person, and sheep. These images will be tested 
on each original and proposed algorithm to measure the computation speed and score 
on the best sub-window. 

4.1 Square ESS 

Table 1. Statistic of ESS and Square ESS 

Time statistic 
 Average Min Max 

ESS 108.1865 ms 1.5700 ms 4489.0 ms 
Square ESS 10.4813 ms 0.6600 ms 102.9560 ms 

Relative Error = 14% 
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From the information in Table 1, it can be seen that computation speed of square ESS 
is about 10 times faster than original ESS (on average) regardless of the existence of 
the target object. However, the relative error is about 14% worse, on average. This is 
as expected since there are some objects that cannot be covered tightly with a square 
(for instance, long and narrow object). Fig. 7 shows some image samples to see the 
result from both original ESS and square ESS. The red box represents the ground 
truth. Yellow box is the optimal sub-window from the square ESS. Blue box is the 
optimal sub-window from the original ESS. The first one is an image of a cat which is 
reasonably large and has the shape of rectangle with ratio between width and height 
around 4:1. The second image contains a motorbike of large size and has the shape 
near to square (ratio about 3:2). 

 

 

Fig. 7. Square ESS sample for (a) cat image (b) motorbike image 

4.2 Square χ2-ESS 

Table 2. Statistic of χ2-ESS and Square χ2-ESS 

Time statistic 
 Average Min Max 

χ2-ESS 7775.1 ms 261.9 ms 107412 ms 
Square χ2-ESS 2231.8 ms 251.325 ms 7992.6 ms 

Relative error = 1.12% 

 
From the information on Table 2, square χ2-ESS has a relative error 1.12% in average 
with the distance from original χ2-ESS which is a good achievement since it does not 
lose too much performance. The computation speed on square χ2-ESS is about 3.5 
times faster in average. The speed improvement is not as high compared to the square 
ESS. This is as expected because both algorithms have to do a data pre-processing 
(integral image) which takes quite long time in order to make it easier to calculate 
Chi-Square distance which is not affected by sub-window shape. In addition, 
calculating Chi-Square distance also takes longer time than calculating sum of scores 
in linear cases. 

Fig. 8 shows some image samples to see the result from both original χ2-ESS and 
square χ2-ESS. The red box represents the ground truth. Yellow box is the optimal 
sub-window from the square χ2-ESS. Blue box is the optimal sub-window from the 
original χ2-ESS. 
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Fig. 8. Square χ2-ESS sample for (a) cat image (b) motorbike image 

4.3 Combination Square ESS and A-ESS 

Table 3. Statistic of ESS, Square ESS, and Square ESS + A-ESS 

 Average Time Relative Error (with ESS) 
ESS 108.1865 ms - 

Square ESS 10.4813 ms 14% 
Square ESS + A-ESS 11.1691 ms 1% 

 
After applying this approach, the score relative error is reduced to 1 % compared to 
score from the original ESS. This is a good achievement since the accuracy is 
improved significantly (better than 14% relative error with only square ESS). 
However, the computation speed is only 9.5 times faster (square ESS alone can 
perform about 10 times faster than the original ESS) since there is a bit overhead 
while applying A-ESS. Overall, this approach is worth to use since the performance 
increases a lot just by sacrificing a bit of the computation speed. 

 

 

Fig. 9. Score comparison between square ESS + original A-ESS with original ESS 
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Fig. 9 shows that when the score is low (less than 0.6), there are many cases where 
the score of square ESS combined with A-ESS is lower than the original ESS. Most 
likely, the objects are too small so the coverage is not tight enough with 
approximation algorithm. On the other hand, when the score is large, the score 
between both approaches are quite similar or perfectly identical. This performance is 
much better than applying sub-window search only with the square ESS. 

Fig. 10 shows some image samples to see the result from both original ESS and 
combination of square ESS and A-ESS. The red box represents the ground truth. 
Yellow box is the optimal sub-window from the combination of square ESS and A-
ESS. Blue box is the optimal sub-window from the original ESS. 

 

 

Fig. 10. Square ESS + A-ESS sample for (a) cat image (b) motorbike image 

Both sub-windows are perfectly identical for these two image samples. Obviously, 
it will not happen for all images. These two samples show the great improvement 
done by combining square ESS and original A-ESS. The good accuracy still can be 
obtained with higher computation speed. 

5 Conclusions 

The main purpose of this research is to improve the sub-window search processing 
speed of the well-known approach called Efficient Sub-window Search (ESS). This is 
achieved by modifying the shape of the sub-window to be a square. By having square 
shape, only 3 variables (X coordinate, Y coordinate, and side length S) are needed to 
represent a single sub-window. Therefore, the iteration will be reduced significantly 
to achieve the optimal sub-window. The worst case complexity can be reduced from 
O(n4) into O(n3). This experiment is used to introduce the potential of fixed-shape 
(square-shaped in this research) sub-window in order to improve the computation 
speed while maintaining good accuracy. 

Some proposed algorithms in this research show a good improvement in terms of 
computation speed. The first one is square ESS which improves the speed up to 10 
times faster. However, the accuracy loss is quite large. The second one is square χ2-
ESS which also has a good accuracy compared to original χ2-ESS, but the speed 
improvement is not as high as square ESS (only 3.5 times faster). Finally, the last 
approach is the combination of square ESS and original A-ESS. The result of this  
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experiment shows that the accuracy of the sub-window is really high (very close to 
original ESS) and the computation speed is faster than original ESS. This approach is 
the best algorithm among all the proposed algorithms. 
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Abstract. Binocular stereo vision technology shows a particular interesting for 
face recognition, in which the accurate stereo matching is the key issue for 
obtaining dense disparity map used for exploiting 3D shape information of 
object. This paper proposed a binocular structured light stereo matching 
approach to deal with the challenge of stereo matching to objects having large 
disparity and low texture, such as facial image. By introducing global system to 
coordinate the binocular camera and projector, a projector cast structured light 
pattern which added texture to the face scene. Binocular epipolar constraint and 
semi-global stereo matching algorithm were applied. The experiments showed 
that the accuracy had improved compared to that of purely binocular vision for 
getting dense facial disparity map. 
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1 Introduction 

Exploiting 3D shape information for face recognition is attracting more attention in 
recent years. However, the face stereo pair has a larger disparity and lowly textured 
skin regions, so it is still not an easy task to obtain facial nuances or oddity in a 3D 
virtual implementation. Though some model-based methods can be used to overcome 
these obstacles [1], it is hard to achieve accurate reconstruction of the true effect 
automatically due to these approaches require fully cooperation between operator and 
identifier. Hence, many research works focus on model-free approaches and vision 
based methods for 3D facial reconstruction due to their general low-cost usage of off 
the shelf hardware.  

In this filed, binocular stereo vision technology shows a particular interesting in 
recent years in exploiting 3D shape information since it is adaptive and flexible. In 
binocular stereo vision technology, the disparity map is commonly used for obtaining 
3D shape information of object, and stereo matching is the basis to compute dense 
disparity map. However, since the inherent uncertainty of stereo matching, it has no 
uniform solution up to now. In our study, we combined the structured light and 
binocular stereo vision to overcome the challenge in stereo matching for obtaining 
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dense facial disparity map. In this paper, the key problem and previous work are 
investigated firstly. Then, the proposed binocular structured light approach and two 
typical real-time matching algorithms are introduced in detail. Finally, performance of 
the method is validated by simulation experiment and concluding remarks are 
presented. 

2 Problem Formulation and Previous Work 

The main process of making disparity map by binocular stereo vision is shown as 
Figure 1. The process of rectification removes lens distortions and turns the camera 
stereo pair in standard form by using the results obtained from calibration. The 
disparity maps can be obtained after the stereo matching was done. 

 

Fig. 1. Main process of binocular stereo vision 

In the whole process of binocular stereo vision technology, stereo matching is 
the key step and attracted lots of research attentions. Various techniques have been 
proposed for estimating depth or disparity from image pairs, in which existing 
stereo matching methods can be roughly divided into two categories [2]. The first 
solves the correspondence problem by using different local matching methods, 
while the others minimize energy functions in a global sense, they are global 
matching methods. 

In order to properly deal with ambiguity in stereo matching, the local (window-
based) methods generally use statistical relationship between color or intensity 
patterns in the local support window. In this category, there are several stereo 
matching algorithms [3-5], such as adaptive window matching, variable window 
methods, multiple-window methods, multi-view stereo non-linear diffusion and 
mutual information based matching.  

The global matching algorithm used global optimization to estimate disparity. By 
establishing and minimizing the global energy function, it obtains the best visual 
difference. In the established energy function, there are smooth items except for data 
items. Data items measure the similarity between pixels, while smoothing items 
ensure the smoothness of disparity between the adjacent pixels. Global optimization 
algorithms such as Belief Propagation algorithm [6, 7] and Graph Cut [8] algorithm 
have attracted much attention. Dynamic programming-based methods [9] are based on 
assumptions of "uniqueness constraint" and "ordering constraint". Generally, global 
matching algorithm can achieve a better matching result than local method, but its 
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time complexity is also obvious. For example, top-performing Graph Cut based global 
algorithm has notably higher time complexity. 

In fact, stereo matching has been one of the core challenges in computer vision 
for decades. One of main problems in stereo matching is the tradeoff between the 
quality and the time to compute depth map. Many stereo methods focus on high 
quality results instead of fast computation times. These high quality methods  
need at least several seconds to compute a single depth map from one stereo pair 
images [10]. However, for most of the real applications, real-time computation is 
essential.  

Considering that, with active structured light, the quality of the disparity map 
will improve significantly while the computation time unchanged essentially. 
Therefore, in our study, we combined the structured light and binocular stereo to 
overcome the challenge in stereo matching for obtaining dense facial disparity 
map. However, we are not the first one who combines binocular and active 
lighting. In Woodward’s review literature [11], three kinds of 3D facial 
reconstruction methods were compared, including binocular stereo, structured 
lighting and photometric stereo. And comparative experiments show that the 
combination of structured lighting with symmetric dynamic programming based 
binocular stereo vision has good prospects due to its reasonable processing time 
and sufficient accuracy. And Yang's work [12] improved the accuracy of data 
acquisition using data redundancy in binocular structured light system, which does 
not require that the optical axes of two camera lenses be coplanar and the 
structured light sheets be perpendicular to that plane. 

3 Binocular Structured Light Approach for Facial Disparity 
Map 

The feature areas of human face such as eyes, mouth, nose and cheek carry most of 
the visual information expressed by humans, they are especially important for 3D face 
reconstruction. In order to obtain facial details, face region should be close enough to 
binocular camera, which will result in two harmful factors to the stereo matching. The 
first one is large disparity, and the second is low texture area. For example, comparing 
the two images in Figure 2, we can see that the face model shows the property of low 
texture (the color is simplex) and large disparity. Obviously, low texture can cause 
serious ambiguity which will increase the difficulty for matching, or even cause 
match disaster. These two factors are not isolated. When the face is enlarged, the 
difficulty for matching in low texture regions, such as cheeks, will seriously affects 
the quality of disparity map generated. Therefore, purely binocular approach cannot 
match facial stereo pair well. And in dark scenes, the purely binocular vision will lose 
its role, while active illumination will perform well. 
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Fig. 2. Face model shows low texture and large disparity 

Figure 3 shows the experiment setup of our binocular structured light stereo vision 
system and the schematic diagram of our proposed approach. In this setup, binocular 
structured light stereo system is specially designed for making accurate dense 
disparity map. The structured light from the LCD projector are illustrated as 
following. Let I(x; y) be an image of a scene without active illumination used (only 
with ambient illumination), and Ic(x; y) be an image of same scene with active 
illumination used (plus the same ambient illumination). Then, the image Ia(x; y) =Ic(x; 
y)-I(x; y) will be the color pattern in visible light spectrum.  

 

Fig. 3. (a) Setup of binocular cameras and projector; (b) Schematic diagram of binocular 
structured light stereo vision system 

In the implementation of the binocular structured light system, a global coordinate 
system is established by using binocular cameras and projector. The projector casts 
structured light pattern onto object, which makes the large smooth area in face be full 
of texture. Binocular epipolar constraint is used to achieve exact match result. Hence, 
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Where, in the right side, the first term is the sum of all pixel matching costs for the 
disparities of D. The second term adds a constant penalty P1 for all pixels q in the 
neighborhood Np of p, for which the disparity changes a little bit. The third term adds 
a larger constant penalty P2, for all larger disparity changes. The function T [] equal to 
one only when its argument is true, otherwise it is zero.  

For 2D images, looking for global minimum of function E(D) has been shown to 
be NP-complete problem, and  energy minimization in one-dimensional path can be 
implemented with DP (dynamic programming) method. This leads to an idea that 
combining the results of multiple 1D path to approximate the 2D situation. Therefore, 
the disparity map can be calculated by a DP method along the direction of 8 or 16 
one-dimensional paths, as following: 
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In the right side of Equation (2), the first item defines the matching cost of pixel p in 
depth d. The second item minimize matching cost of point pr in the current path r 
containing the penalty coefficient. The third item does not change the actual path 
through disparity space. Since the subtracted value is constant for all disparities of a 
pixel p, the optimal path of the minimum does not change. However, the upper limit 
can now be given as L≤Cmax+P2. The cost Lr is summed over paths in all direction r. 
For example, when 16 paths is accepted, the upper limit of of all pixel matching costs 
S(p,d), which is defined by 

  ( , ) ( , )r
r

S p d L p d=                               (3) 

can be easily determined as S≤16 (Cmax+P2). The disparity image Db that corresponds 
to the base image Ib can be obtained similar as that in the local algorithm by selecting 
each pixel p the disparity d that corresponds to the minimum cost, i.e. mindS(p, d). 

It had been manifested that the SGM algorithm can perform better matching effects 
than that of the local methods and is almost as accurate as global methods,   
however, the time cost of SGM is less than global methods [17]. Therefore, in the 
implementation of our approach, we employ the SGM algorithm to acquire a accurate 
disparity map. 

5 Simulated Experimental Results 

In order to validate the binocular structured light stereo matching approach for dense 
facial disparity map, both proposed approach and purely binocular approach were 
implemented in our experiment to compare their matching results. The experimental 
devices consist of a binocular camera (Bumblebee@2, 7.4um square pixels, 12cm 
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Abstract. This paper describes the use of foveated imaging and virtual
saccades to identify visual objects using both colour and edge features.
Vision processing is a resource hungry operation at the best of times.
When the demands require robust, real time performance with a limited
embedded processor, the challenge is significant. Our domain of applica-
tion is the RoboCup Standard Platform League soccer competition using
the Aldebaran Nao robot. We describe algorithms that use a combina-
tion of down-sampled colour images and high resolution edge detection
to identify objects in varying lighting conditions. Optimised to run in real
time on autonomous robots, these techniques can potentially be applied
in other resource limited domains.

1 Introduction

Real time identification of objects in a video feed is a significant research area
in robotics, and forms the major component of many perception systems. For
the rich environments we encounter in everyday life this is still an open research
problem. RoboCup Soccer[1] is an international research and education initia-
tive that constrains the environment to a soccer field with a limited number of
objects, namely a ball, field, goal posts, and other robots. Vision algorithms are
able to exploit these constraints, but face significant challenges.

Small, mobile robots are limited in their processing power. Vision needs to
share this limited resource with other functions such as world modelling and
behaviour generation. Success in soccer also depends on the speed at which
robots can react. A major challenge is for the vision system to deliver real time
object recognition at the full frame rate and still leave resources for the other
functions.

Colour cameras provide a high native pixel resolution in a three dimensional
colour space. It is taxing on resources to process the image in its full resolution.
When objects are relatively far away, and appear small in the visual field, we
would like to take advantage of the higher resolution.

The human eye has a region with maximum acuity in the centre of the macula
known as the fovea. Motivated by this physiology the above dilemma can be

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 560–569, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Foveated imaging. Original Image (left). Virtual fovea with a coarse resolution
of the field around the higher resolution fovea area centred on the ball (right).

addressed by varying the resolution and processing across the image according
to one or more points of fixation. This technique is called foveated imaging.
The fovea provides a high resolution image, but a very narrow field of view.
Peripheral vision is provided by the image outside the foveal regions at lower
resolution. These ideas have been used in computer vision inspiring both software
and hardware solutions [3]. Figure 1 shows an image at full camera resolution
on the left and a foveated image on the right, with the fovea saccaded and fixed
on the ball. The ball has a smooth round edge, in contrast to the jagged edges
of the field line in the peripheral parts of the image.

The RoboCup soccer environments are characterised by objects with distinct
colours. It is not surprising that algorithms to date have largely used colour
to identify objects. Organisers have gradually increased the vision challenge by
progressively removing crutches such as walls, beacons and coloured goal posts.
In particular, the practice of providing special high luminescent and uniform
lighting has been discontinued and robots need to cope with whatever lighting
is provided by the venue. Lighting often changes during games as audience num-
bers fluctuate creating varying overshadowing conditions during the game. One
solution is for vision to rely less on colour and more on shape cues.

The contribution of this paper is a vision system that addresses the above
needs with the following characterstics:

1. A peripheral vision system to locate salient features. A novelty is the detec-
tion of field edges for localisation using a subsampled and colour classified
image alone.

2. Employing foveated imaging techniques to limit resource usage.
3. Relying more on edges and reducing the dependence on colour.
4. Meeting real time requirements running close to the full frame rate.

The application of these methods have broad applicability. We describe them
in the context of the Standard Platform League that uses the small humanoid
Nao robot from Aldebaran Robotics. The rules of the league disallow external
processing or any modification to the machine. The robots’ embedded computer
is limited to an AMD Geode LX 800 processor running at a modest 500MHz.
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The playing area of the soccer field is currently 4 by 6 meters with colour coded
open goals. A team size of three robots was used in 2010 and this will increase
to four in 2011. The ball is a standard orange coloured street hockey ball. Each
robot has two CCD 640× 480 pixel cameras in its head (although only one can
be used at a time).

In the rest of this paper we will describe the down-sampled saliency frames
that are used to identify possible locations of various objects on the field. The
saliency image is used to find field edges to aid in the localisation of the robot. We
next show how the saliency image leads to virtual saccades to multiple points of
fixation representing interest regions corresponding to the ball and goals. Multi-
modal colour and edge data at high resolution is used at these foveal points in
the image, achieving both high accuracy and high efficiency.

This approach was implemented by the UNSW team rUNSWift for the Stan-
dard Platform League in RoboCup World Competition in Singapore in 2010, for
both the technical challenges and the soccer tournament. The University of New
South Wales (UNSW) placed first in the technical challenges and second in the
soccer competition against 23 other international teams.

2 Saliency Scan

In order to achieve our goal of identifying areas of interest in the image as fast
as possible, the first step of the vision pipeline is to subsample the image in
a regular grid pattern. We reduce the image size by a factor of n for each of
the two image dimensions, reducing the number of pixels to be processed by
a factor of n2. We have chosen n = 4 for the 2010 competition to provide a
substantial reduction in image size, but this could be reduced further to n = 8
if required, at the potential cost of increasing the number of false negatives of
small, far away objects. By mapping every 4th pixel in the raw 640× 480 image
we derive a 160× 120 pixel resolution image giving a 16 fold reduction in image
size. Figure 1 (right) shows a down-sampled part-image of the green field, field
line, and ball for n = 8. The immediate area around the ball shows a virtual
fovea region at the original raw resolution, constrasting with the low resolution
in the rest of the image.

Each pixel in the subsampled image is colour classified before it is stored
in the saliency image. Figure 2 (left) shows an example saliency image. This
colour coding is performed offline using a weighted kernel classification algorithm
developed for previous RoboCup competitions [6], where each training sample
increases a weighting for a particular YUV value toward the classified colour.
The neighbouring colours in YUV space to the sample also have their weights
increased, but at a normally decreasing amount the further they are from the
sample. The kernel file is used to generate a constant time lookup table on the
robot at runtime. The colours classified are orange (the ball), green (the field),
white (the field lines and parts of the robots), yellow (the yellow goals), red (the
pink band worn by robots on the red team), blue (the blue goals and the blue
band worn by robots on the blue team) and background (to remove background
objects with a similar colour to the ones used on a RoboCup field).
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Fig. 2. Colour classified saliency image at 160 × 120 resolution ie. n = 4 (left). Goal
and robot regions identified during the region detection process (right).

As the saliency image is generated for every frame at 30 fps, any further
optimisation is desirable. We analysed the compiler generated assembly code to
find optimisation opportunities. The main optimisations are as follows:

– Reducing the amount of memory used
– Reducing the number of memory accesses
– Reducing the number of local variables used (thereby reducing the number

of variables in memory)
– Reducing the number of calculations required for image access by using

pointer arithmetic instead of array indexing.

In the following sections we will describe how the colour classified saliency scan
can be used to rapidly identify objects of interest in the image.

3 Field Edge Detection Using the Saliency Scan

To further reduce the amount of the image that has to be processed for object
identification, and to assist with localisation, the edges of the green field are
detected using the saliency scan image. In 2009 B-Human used a convex hull
algorithm to exclude areas above the field edge[9], which achieves the first goal
of reducing the area of the image to be processed. In 2010 rUNSWift used a
similar method of vertical scanning to detect points on the edge of the field, but
rather than find an arbitrary convex hull, multiple iterations of the RANSAC
algorithm[4] were used to find straight lines. When two field edge lines are de-
tected, the possible positions of the robot are reduced to four hypotheses; one
for each corner of the field.

Initially, the first green pixel in each column of the saliency scan is recorded,
by scanning vertically from the horizon down (the horizon is found by using
kinematics; by using the robot dimensions and joint angles to calculate what
pixels in the image correspond to the horizon [7]) - Figure 3 (top-left). Secondly,
the pixels are fit to a line of the form t1x + t2y + t3 = 0 with the RANSAC
algorithm, to maximise the number of points that fit a line - Figure 3 (top-right).
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Fig. 3. Candidate points for a field edge line (top-left). Line found by performing
RANSAC on candidate points (top-right). Lines found by performing RANSAC twice
on the candidate points (bottom-left). False positive field edge (bottom-right).

Finally, the consensus set of the first line is removed from the candidate points,
and RANSAC is repeated, possibly finding a second line - Figure 3 (bottom-left).
Figure 3 (bottom-right) shows a false positive for one of the field edges caused
by the triangular goal post support. Its effect is rapidly filtered out with goal
post localisation information.

In addition to reducing the amount of the image to be scanned for objects to
the parts of the image below the field edge, these field edge observations were
able to be used to provide useful updates to the robot’s estimated position on
the field.[2]

4 Multi-modal Object Analysis in Foveated Regions

We scan the colour classified pixels underneath the field edge to identify poten-
tial areas, or regions, that could represent important features, such as the ball,
other robots, or field lines. The contents of each of these regions are analysed
to determine what objects they may represent. By only examining small areas
of interest at the full resolution, this method of virtual saccades enabled us to
greatly increase the run time speed of the vision processing system. An example
of this region detection is shown in Figure 2 (right).

An alternative to the use of colour is to use edges to find the outline of ob-
jects. Unfortunately, common edge detection methods to identify all the edges
in the image, such as Canny, are computationally too expensive to run in real
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time on the Nao, before considering the additional challenge of complex shape
identification. A foveated image hybrid solution of these two methods was used
to combine the accuracy and robustness of edge detection with the computa-
tional speed of colour coding to identify both balls and goal posts. The hybrid
solution involved firstly using colours in the lower resolution peripheral vision to
quickly identify salient locations, and then edge detection to perform accurate
and reliable identification at the higher resolution foveated points. While other
robots may have faster processors than available on the Nao, the increasing re-
olution of video cameras and the increasing computational demands in other
areas of robotics extend the potential application of these techniques outside the
RoboCup competition.

4.1 Ball Detection

For ball detection, edge detection is used in the full resolution image only around
the region that has been identified as a probable ball. The objective is to find a
set of points on the edge of the ball. A circle is then fitted to these points to allow
the location of the ball to be accurately determined. Rows and columns of the
full resolution image are scanned outwards from the region until the V channel
of adjacent pixels differs by more than a certain threshold. The best value for this
threshold changes depending on the lighting conditions and camera settings, so
it is set experimentally according to the current conditions. Only the V channel
was used in the ball edge detection as this chromatic dimension of the ball tends
to change quite markedly near the edge of the ball. Edges are often detected
inside the ball when a combination of the Y, U and V channels are used.

In order to further increase the efficiency of this method, the space between
rows and columns scanned for edges was adjusted according to the size of the
region to ensure that balls close to the robot did not take too long to process,
but balls far away from the robot could still be properly identified.

Once points around the edge of a ball have been identified, a circle can be
quickly fitted to these points by randomly selecting three edge points, and find-
ing the intersection of the perpendicular bisectors of the lines joining the three
points. The intersection gives the centre of the ball, and the distance between
the intersection and any of the three points gives the radius of the ball. When
this process is repeated several times and the median of the centre and radius
measurements is taken, any small errors in the edge detection are greatly re-
duced.

Figure 4 shows an example of the edge detection being used to accurately
identify a ball. The image on the left shows the colour classified image. It can
be seen that a substantial part of the ball is unclassified (note that unclassified
colours appear as light blue in the screenshot). The image on the right shows
that the edge detection has enabled the edge of the ball to be precisely located.
This is particuarly important for ball detection as kicks need to be lined up very
precisely for them to work well.
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Fig. 4. A screenshot of the ball detection. The left image shows the colour classified
image, while the right shows the edge points identified and the circle fitted to the edge
points.

4.2 Goal Post Detection

As only the very bottom part of each goal post appears below the field edge, goals
are not identified during region building. Instead, histograms are generated while
the saliency scan is being built, and are used to identify the likely approximate
positions of the goals. Edge detection is then used to find the exact position of
the goal posts, or to remove false positives from the histogram stage.

This is achieved by firstly finding the maximum value in the y-axis histogram
for one of the goal colours - the row that contains the most number of goal
coloured pixels. Only one y coordinate is used because if there are two goal posts
in the image, they will occupy approximately the same y coordinate range, and
the maximum in the histogram will most likely occur at a y coordinate occupied
by both posts. The x-axis histogram is then scanned to find local maximums
above a certain threshold for the goal colour. To avoid several local maximums
being detected in the same goal post, the histogram value of the goal post colour
has to decrease to be at least three times less than the maximum value before
another local maximum can be recorded. The same procedure is used for both
goal colours.

Several horizontal and vertical scan lines are used around each pair of x and
y coordinates identified using the histograms. Each scan starts around the pair
of x and y coordinates, and continues outwards until an edge is detected. For
goal detection, an edge is found when the two pixels differ in the sum of the
differences in the Y, U and V values by more than a certain threshold. All
channels are used as the colour of the background around the goal posts cannot
be controlled, so any significant change in any channel needs to be registered as
an edge. These scan lines result in a rectangle representing the goal post, which
can then be used by the localisation algorithms.

Figure 5 (left) shows a very deteriorated colour classified image of the blue
goal. Despite the poor quality, the foveated higher resolution edge detection
approach is able to clearly identify both goal posts, as shown in Figure 5 (right).
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Fig. 5. Poor colour classified image of goal posts (left). Correctly identified goal post
using edge information (right).

5 Performance in RoboCup

The set of algorithms presented in this paper form the cornerstone of UNSW’s
visual object identification for the 2010 RoboCup competition. In particular, the
foveated vision algorithm was able to successfully handle the difficult conditions
of a final game without noticeable degradation in performance where people
crowded around the field creating significant challenges for vision by affecting
the lighting. In testing before the competition, we found that vision was able to
run at approximately 30 frames per second during game conditions.

As the region builder uses the field edge detection to only scan the image below
the field edge, and field edges are used for localisation, field edge detection is a
vital part of our vision system. We found that when the field edge(s) could be
seen clearly, or with a few small obstructions, the field edge detection worked
consistently and accurately. However, when there was a lot of obstruction, such
as several robots, or a referee, the field lines were often misplaced. At times this
caused a noticeable deterioration in the localisation while lining up to make a
kick for goals.

Using first the foveated image and virtual saccade approach and then accurate
edge detection proved to be very beneficial to the performance of both the goal
detection and the ball detection. In following this method, only a very small
number of pixels in the saliency scan needed to be the correct colour for the
edge detection to give an accurate match. This allowed us to consistently and
accurately detect the balls and goals, even from the opposite side of the field,
despite the large amount of colour variation due to the curved surfaces of the
goals and the ball, and various shadows on the goals.

6 Related Work

A number of alternate methods have been devised to solve the complex task of
object identification in the resource limited environment of RoboCup.
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In order to limit the amount of interference from the background, it is often a
useful first step to identify the edge of the field in the image. Any item above this
edge can therefore be eliminated. The method used by B-Human [9] to find the
edge of the field is to scan down each column in the image to find a green segment
of a minimum length, and fit a convex hull to the start of the green segments.
As RANSAC’s performance deteriorates significantly with noise around the field
edge, this method could likely make the position of the field edge more accurate
when there are a lot of non green objects around the edge. However, fitting lines
to the field edge has the advantage of being easily used to localise the robot on
the field.

Due to the limited processing power available on the Nao, it is not possible
to scan every pixel in the image fast enough to run in real time. An interesting
approach is taken by North[5], where the density of horizontal and vertical scan
lines is changed depending on how close the lines are to the horizon. This uses
the theory that objects close to the camera will be large enough to be seen
using extremely low resolution scan lines, but objects further away, near the
horizon, will appear much smaller, and therefore need a much higher density
of scan lines in order to be detected. The drawback to this approach is that
shape identification and repeated accesses are harder and slower. This approach
is also inappropriate for robots with a higher camera, such as our 58cm Nao. In
an alternate approach by Von Hundelshausen and Rojas[10], regions are grown
from the green field, with the white field lines, robots and balls separating the
green regions. The authors propose that, as the robot moves, the regions can
be incrementally grown and shrunk, resulting in far fewer pixels needing to be
processed and updated each frame. This idea of using previous frames to help
lower the computation time of the current frame, while not explored in our 2010
vision system, is a worthwhile avenue for future research, and in line with the
concept of foveated imaging.

One of the most difficult parts of the object identification for RoboCup is
the distinction between field lines and robots, as many parts of the robots are
white or close to white. This means that some kind of processing, other than
colour, has to be used to separate field lines and robots. The method used by B-
Human[9] to achieve this is to first create a series of small white coloured regions
that could represent either parts of a line or parts of a robot. These regions are
then analysed in terms of their shape, and ones that more likely represent robots
are marked. Finally, areas of the images where there is a cluster of these marked
regions are considered to most likely contain robots, and every region in this
area is thus removed.

Röfer and Jüngel[8] propose a different approach of edges and colour to achieve
fast object recognition. In this method, a grid of horizontal and vertical scan lines
is used to search for pixels where there is a significant drop in the y channel
compared to the previous pixels searched. As the field is generally darker than
the field lines and the robots, this can indicate an edge between an object and
the field.
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7 Conclusion

A vision processing system must be highly efficient, robust, and accurate to en-
able it to perform reliably in the dynamic world of a soccer game. We have pre-
sented a foveated imaging approach using colour CCD cameras that can perform
the vision task in real time. We have also presented several processor optimisa-
tions to help improve code for low powered embedded systems. By utilising the
hybrid methodologies of colour classification and edge detection, we are able to
reliably identify robots, goals, field lines and balls in the RoboCup environment.
Our approach of using virtual saccades to points of fixation of high resolution
foveal areas in the image allowed us to reduce the processing of redundant data,
and achieve processing speeds of approximately 30 frames per second in changing
lighting conditions.
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Abstract. Object classification is an important problem in multimedia informa-
tion retrieval. In order to better objects classification, we often employ a set of
multi-view images to describe an object for classification. However, two issues
remain unsolved: 1) exploiting the spatial relations of local features in the multi-
view images for classification, and 2) accelerating the classification process. To
solve them, Fast Multi-view Graph Kernel (FMGK), is proposed. Given a set of
multi-view images for an object, we segment each view image into several re-
gions. And inter- and intra- view linkage graphs are constructed to describe the
spatial relations of the regions between and within each multi-view image re-
spectively. Then, the inter- and intra- view graphs are integrated into a so-called
multi-view region graph. Finally, the kernel between objects is computed by ac-
cumulating all matchings’ of walk structures between corresponding multi-view
region graphs. And a SVM [11] classifier is trained based on the computed ker-
nels for object classification. The experimental results on di�erent datasets vali-
date the e�ectiveness of our FMGK.

1 Introduction

Object classification is an important issue for many multimedia applications, such as
scene recognition and surveillance. To classify an object, two schemes can be adopted,
we can either describe an object by either a single-view image and classify this image
into an object category or, describe an object by a set of multi-view images and classify
the set of images into an object category. Obviously, the second scheme is more robust
because it contains richer information for an object. That is, in the first scheme, some
discriminative information may be occluded, while in multi-view case, the occluded
information is recovered. However, it is still a challenging task to deal with the multi-
view image based object classification successfully due to two factors: on one hand,
the components in the multi-view images and their spatial relations are complex and
unstable, which makes it diÆcult to extract features discriminative enough for classifi-
cation; on the other hand, the huge number of components and their bilateral relations
bring challenges to computer to be processed eÆciently. Therefore, more discrimina-
tive and eÆcient features are becoming more and more important for multi-view object
classification.

In the evolution of image analysis, many features have been proposed and they can
be categorized into two groups: global features and local features. Global feature, e.g.,
eigenspace [1], represent the entire image by singly vector and are hence tractable for
conventional classifiers, e.g., Support Vector Machine(SVM) [11]. However, global

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 570–579, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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features are sensitive to occlusions and clutters, which results in poor classification
accuracy. In contrast to global features, local features, e.g., Scale Invariant Feature
Transformation (SIFT) [10], are extracted at interest points and are robust to image de-
formations. Di�erent images may produce di�erent number of local features. In order
to be tractable for conventional classifier, these local features are often integrated into
an orderless bag-of-features representation. Unfortunately, as a non-structural represen-
tation, the bag-of-features representation ignores the geometric property of images, i.e.,
the spatial of local features, which prevents it from being discriminative.

In order to enhance multi-view based object classification, several methods have been
proposed. Lazebink et al. [12] developed the Spatial Pyramid Matching(SPM) by parti-
tioning an image into increasingly fine grids and computing histograms of local features
inside each grid cell. However, SPM requires nonlinear classifier, which is high time-
consuming, to achieve good classification accuracy. In , Latent Dirichlet Allocation
(LDA) [13] is used to model the geometric property of the scene images. Specifically,
scene image is represented by a set of codewords, which are independently generated
by corresponding latent topics. However, as empirically demonstrated in [14], LDA af-
fects adversely on scene classification. In [2,3], each image is modeled as a tree and
image matching is formulated into tree matching. Unfortunately, compared to general
graphs, the capability of modeling regions’ relations by trees is limited Felzenszwalb et
al. [4] modeled the relation of di�erent parts of an object as a spring; however, [4] relies
heavily on optimal background subtraction. In [5], Hedau et al. defined a new measure
of pairwise regions based on the overlaps between regions; but just region overlaps are
too simple to capture the complicated spatial relations between regions. Keselaman et
al. [6] defined a graph, called Least Common Abstraction(LCA), to represent the spatial
relations of components of an object; however, LCA cannot be output to conventional
classifier, e.g., SVM [11], directly. By exploring the complementary property of dif-
ferent types of features, Multi-view Spectral Embedding [18] and Multiview Stochas-
tic Neighbor Embedding [19] obtains a physical meaningful embedding of the multi-
modal features. However, [18] and [19] fail to integrate the geometric information of
image from each view.

To solve or at least reduce the aforementioned problems, an eÆcient kernel, called
Fast Multi-view Graph Kernel (FMGK), which exploit the spatial relations of local fea-
tures between and within multi-view images, is proposed. First of all, given a set of
multi-view images for an object, we first segment each view image into a number of
regions in terms of their color intensity distribution. And two types of graphs, the inter-
and the intra- view linkage graph are constructed to model the set of multi-view im-
ages, i.e., the inter-view graph describes the spatial relations of regions from di�erent
view images while the intra-view graph describes the spatial relations of regions within
each view image. Then, we integrate the two types of graphs into a so-called multi-
view region graph. Finally, by constructing a product graph, the kernel between a pair
of objects is computed eÆciently by accumulating all matchings’ of walk structures be-
tween the corresponding multi-view graphs. Based on the obtained kernel, a SVM [11]
classifier is trained for object classification.



572 L. Zhang et al.

The contributions of this paper are as follows: 1). FMGK, a new method to build
the representation of multi-view images, is presented for object classification; 2). inter-
and intra- view linkage graphs to represent the spatial relations of regions between and
within multi-view images; 3). product graph for eÆcient computation of the kernel
between multi-view region graphs.

2 Inter- and Intra- view Linkage Graphs

2.1 Segmenting Each View Image

Image segmentation is essentially a clustering problem. Features are extracted from
each pixel and pixels with similar features are clustered into a region. In our approach,
normalized cut [15] is employed to segment each view image. Specifically, given M the
number of segmented regions, normalized cut clusters pixels in each view image into
a set of regions �r1� r2� � � � � rM� with strongly intra- region connectivity and weak inter-
regions connectivity.

In our approach, over-segment setting is applied by setting a large M (usually M �

100). That is to say, components in an object may span more than one region, but very
few regions span more than one components. This is because: 1). determining the num-
ber of segmented regions is heuristic-based, and 2). in contrast to deficient-segment
setting, more regions are obtained in over-segment setting, so it is rarer for one region
spans several components, fewer discriminative components are neglected. It is notice-
able that, more regions implies higher time consumption in kernel computation, this
again demonstrates the necessity of accelerating the kernel computation.

2.2 Constructing Inter- and Intra- view Linkage Graphs

By segmenting each view image into a set of regions�r1� r2� � � � � rM�, the intra-view
linkage graph Gk (1 � k � K) is constructed to model the spatial relations of regions
within the k-th intra-view image Ik, i.e.,

Gk
� (V� E� H� h) (1)

where V � �v1� v2� � � � � vM� is a finite set of vertices, vi represents region ri; h : V � H
is a function assigning a label to each v � V , i.e., h(v) is the RGB histogram of the
region corresponding to v; E � �(vi� v j)�vi� v j � V � vi 	 v j� is a set of edges, vi 	 v j

means two regions corresponding to vi and v j are spatial adjancent.
To model the spatial relations of regions between di�erent intra-view images, the

inter-view linkage graph G
�

is constructed, i.e.,

G
�

� (V
�

� E
�

� H� h) (2)

where V
�

� �v1� v2� � � � � vKM� is a finite set of vertices, vk�M�i represents the i-th region
from the k-th image; E

�

� �(vi� v j)�vi� v j � V
�

� ��h(vi) 
 h(v j�� � Æ�, where �� � �� is the
Euclidean norm, Æ is a small parameter making the regions corresponding to vi and v j

have similar color intensity distribution.
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3 Multi-view Region Graphs

As seen from (1) and (2), each object corresponds to K � 1 graphs, i.e., K intra-view
linkage graphs and one inter-view linkage graph. Towards an eÆcient representation
for an object, we combine all the K � 1 graphs into a multi-view region graph. Firstly,
all regions from the first intra-view image are saved in a region list. Then the candidate
regions of the next intra-view images are removed from the region list if the candidate
regions are inter-view linked by the regions in the region list. Finally, inter-view linkage
of the remaining regions are save and these regions are added to the region list. If no next
intra-view graph is found, the region list becomes the multi-view region list. Details of
large region graph construction are in Table 1:

Table 1. Multi-view region graph construction(Algorithm 1)

input: K intra-view graphs �G1�G2� � � � �GK �; one intra-view graph G
�

;
output: A multi-view region graph Gmv;
begin:
1.Put the K segmented region �r1

1� r2
1� � � � � rK

1 � from G1 into region list � and retain the
intra-region linkage E1.

2. for i � 2 : K do
for j � 1 : M do

if region ri
j are not linked by any r � �

Save ri
j into �;

end for;
Retain the intra-region linkage Ek in �;

end for;
3. Transfer � into Gmv ;
end

4 Fast Multi View Graph Kernel

Based on the multi-view region graphs obtained in Section 3, we present the eÆcient
kernel computation of our FMGK.

4.1 Direct Walk Kernels

Given a multi-view region graph Gmv, a walk is a finite sequence of neighboring vertices
which allows repetitive vertices. Let us denote Wlen

Gmv
and Wlen

G
�

mv
the set of len-length walks

in Gmv and G
�

mv respectively. A len-length walk contains len�1 vertices. The len- length
walk kernel klen

w (G�G
�

) sums matchings of all len-length walks between Gmv and G
�

mv,
i.e.,

klen
w (Gmv�G

�

mv) �
�

(r1���� �len)�Wlen
Gmv

(r1���� �len)�Wlen

G
�

mv

len�1�

i�1

k(h(ri)� h(si)) (3)
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where k(�� �) is a pre-defined basis kernel between vertices in graph Gmv and graph G
�

mv;�len�1
i�1 k(h(ri)� h(si)) denotes matching of a pair of len length walks between Gmv and

G
�

mv.
(3) cannot be computed directly as it is impossible to obtian Wlen

Gmv
and Wlen

G
�

mv
explicitly.

To compute klen
w (Gmv�G

�

mv), based on [7], a recursive scheme is applied, we call it direct
walk kernel and the computation is as follows:

The len-length kernel with starting point of r in Gmv and s in G
�

mv is defined from (4)
to (7):

klen
w (Gmv�G

�

mv� r� s) � k( fGmv (r)� fG�

mv
(s)) �
�

r
�

��Gmv (r)

s
�

��Gmv (s)

klen�1
w (Gmv�G

�

mv� r
�

� s
�

) (4)

where len � 1; �Gmv (r) is the set of spatial adjacent regions to r in Gmv.
The recursion is initialized with

k0
w(Gmv�Gmv

�

� r� s) � k( fGmv (r)� fG�

mv
(s)) (5)

where k( fGmv (r)� fG�

mv
(s)) is a base kernel defined as follows:

Given a pair of segmented regions r and s, the distance between region r and s is:
d(r� s) � ��h(r) 
 h(s)��. Based on d(r� s), the basis kernel defined as:

k( fGmv (r)� fG�

mv
(s)) � exp(
�  d(r� s)) (6)

where � is a tuning parameter. It is noticeable that, (6) is positive semi-definite and thus
can be used as basis kernel.

The final kernel is an accumulation of all kernel values with one start point in Gmv

and the other start point in G
�

mv:

klen
w (Gmv�G

�

mv) �
�

r�VGmv
s�V

G
�

mv

klen
w (Gmv�G

�

mv� r� s) (7)

Denote average vertex of degree D, based on (4) and (5), the number of basis kernels
need to compute is:

K2M2  (1 � D2
� � � � � Dlen) � K2M2 

Dlen�1 
 1
D 
 1

(8)

As seen from (8), the computational complexity is exponential increasing with the length
of walk, len, making it is computational intractable to obtain an expressive kernel. There-
fore, we develop an scheme in Section 4.2 to accelerate the computation of (7).

4.2 Multi-view Region Product Graph

Given a pair of multi-view region graphs Gmv and G
�

mv, the product graph Gp with
respect to Gmv and G

�

mv is defined as:

Gp � (Vp� Ep) (9)

where Vp � �(vi� v
�

i)�vi � V � v
�

i � V
�

�, Ep � �((vi� v
�

i)� (v j� v
�

j))�(vi� v j) � E � (v
�

i � v
�

j) � E
�

�.
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As shown in (9), Gp is a graph with KM vertex pairs, each representing a pair of
vertices from Gmv and G

�

mv respectively. An edge exists in Gp if an edge exists in both
Gmv and G

�

mv. Therefore, performing a simultaneously random walk on Gmv and G
�

mv
equals to performing a walk on Gp.

Based on (9), len-length walk kernel starts from (r� s) and end in (r
�

� s
�

) is defined as:

klen
w (Gmv�G

�

mv� r� s� r
�

� s
�

) � k( fGmv (r)� fG�

mv
(s)) 
�

klen�1
w (Gmv�G

�

mv� r
lin
� slin

� r
�lin� s

�lin)  k( fGmv (r)� fG�

mv
(s)) (10)

where rlin denote a spatial adjacent region of r . We sum all walks kernels from (r� s)
to (r

�

� s
�

) of len-length. The final kernel value is obtained by summing all kernel values
start and end in Gmv,G

�

mv, i.e.,

klen
w (Gmv�G

�

mv) �
�

r�V
�
s�V

r
�

�V
�

�s
�

�V
�

w  klen
w (Gmv�G

�

mv� r� s� r
�

� s
�

) (11)

where w is a weight on each klen
w (Gmv�G

�

mv� r� s� r
�

� s
�

) as larger regions have more chance
to become a start or end vertex. Eq. 11 can be rewrite as:

klen
w (Gmv�G

�

mv) �
�

r�V
�
s�V

r
�

�V
�

�s
�

�V
�

Vkstart(ind(r)  (MK 
 1) � ind(s))klen
w (G�G

�

� r� s� r
�

� s
�

)

Vkend(ind(r
�

)  (MK 
 1) � ind(s
�

)) (12)

where ind(r) denotes the index of region r, and Vkstartis a MK-length vector, each entity
denotes the probability of choosing the start region pair. More weights will give regions
with larger pixels, i.e.,

Vkstart(i(M 
 1) � j) �
nPixel(r)  nPixel(s)
nPixel(I)  nPixle(I �)

(13)

where nPixel(�) counts the number of pixels. In our approach, we set Vkstart � Vkend �

V for simplicity.
We can rewritten (12) in a matrix form as:

klen
w (Gmv�G

�

mv) � (Vkstart)
�

 �lenWlen  Vkend (14)

where W is a matrix on �MK�MK and each entity of W is defined as:

Win�

�i� � jn� j� � k(lGmv (vi)� lG�

mv
(v

�

i))  k(l(Gmv)(v j)� l(G
�

mv)(v
�

j)) (15)

where Win�

�i� � jn� j� denotes the kernel value between a 1-length walk (vi� v j) on Gmv and
(vi� � v j� ) on G

�

mv and � is a tuning parameter.
Based on the matrix W obtained in (15), the final kernel is obtained by summing all

kernel value of length 1 to length infinity,i.e.,

k(Gmv�G
�

mv) �
�

�

p�1
(Vkstart)

�

 �pW p  Vkend

� (Vkstart)
�

 lim(k � �)
(�W)(I 
 (�W)k�1)

I 
 �W
 Vkend (16)
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where I is an identity matrix; entity in W is between 0 and 1, limp��(W)p�1
� 0,thus

(16) can be rewritten as:

k(Gmv�G
�

mv) � (Vkstart)
�

 �W(I 
 �W)�1  Vkend (17)

In our approach, we develop an algorithm to speed up the calculation of (I 
 �W)�1 

Vkend in (17). As shown in Table 2, we first solve equation:

(I 
 �W)x � Vkend (18)

Let x1 � Vkend, denote xt the value of x in the t-th iteration, we then need to compute
xt�1 � Vkend��Wxt repeatedly until the stopping criterion is met. The stopping criterion
can either based on the variation of xt between two consecutive steps, or more simply,
on a maximal number of iterations. In this paper, we use the first criterion. Iteration
stopped when ��xt�1 
 xt�� � Æ, Æ a pre-defined threshold, in our approach, we set � �

1�max(eig(W)) to ensure converge, max(eig(W)) is the maximal eigenvalue of W.

Table 2. Calculation of (I � �W)�1 � Vkend(Algorithm 2)

input: W and Vkend; output: (I � �W)�1 � Vkend;
begin:
1. Set x � Vkend � �Wx;
2. do

x
�

� Vkend � �Wx; x
�

� x;
while ��xt�1 � xt�� 	 Æ

3. Return (I � �W)�1 � Vkend � x;
end

4.3 Analysis of Computational Complexity

In Algorithm 2, W and x are both MK � MK matrices. As shown in Table 2, in
each iteration, calculation time complexity is �(M2K2), therefore total time complexity
�(T M2K2) is needed to obtain the MK �MK matrix (I 
�W)�1 Vkend, where T is the
number of iterations. Vkstart is a MK-length vector and time complexity of Vkstart  x is
�(MK), thus time complexity to calculate our FMGK is �(T M2K2), in our experiment,
we found that number of iteration T � 20, therefore the computational complexity of
FMGK is reduced to �(M2K2) if the M and K is larger compared to T , which is com-
mon case as view images are over-segmented.

Compared with direct walk kernel whose time complexity �(K2M2Dlen), which is
exponential increasing with walk length,the time complexity of our FMGK is quadrat-
ically increasing with the region number M. Besides, all length walk kernel are calcu-
lated and summed, leading to a more expressive kernel.

5 Experimental Results and Analysis

The experiment is carried out on two datasets, i.e., ETH-80 and VOC2008. The exper-
iment runs on a system equipped with Intel E8500 and 4GB RAM. And the algorithm
of our FMGK is implemented on Matlab platform.
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(b) Pascal VOV2008(a) ETH-80

Fig. 1. Sample images from ETH-80(a) and Pascal VOC2008(b)

5.1 Classifying Multi View Images on ETH-80

In this experiment, we evaluate our FMGK on ETH-80. As shown in Fig. 1(a), ETH-80
image dataset [17] consists of color images of 80 objects from eight di�erent categories:
apples, tomatoes, pears, toy-cows, toy-horses, toy-dogs, toy-cars and cups. Each cate-
gory contains 10 objects with 41views per object, spaced equally over the view hemi-
sphere. The whole dataset contains 3280 128 � 128 images. A set of binary images,
called segmentation mask, is provided for each color image. In each object category,
we use 9 objects as training data and the rest 1 object as testing data. We evaluate ob-
jects describing with di�erent number of view images, K. We set N as 41, 10, 4 and 1
respectively. The corresponding sample number is 80, 320, 800 and 3280. Notice that
when N � 10 and 4, we use 40 view images per object, the last view image are aban-
doned. We use color histograms as features of each region.

Several other previous methods: i.e., global RGB histogram, global SIFT histogram,
two rotation-variant descriptors, i.e., derivatives in x and y direction over three di�erent
scales (DxDy) and gradient magnitude and the Laplacian (Mag-Lap) over three di�er-
ent scales, PCA on raw segmentation masks(PCA mask), PCA on the segmented gray-
value images(PCA gray), and a combination of the six above global features(Cmob6).
We present the average classification over each category of ETH-80 in Table3.

5.2 Discussions the Time Consumption

To evaluate the time consumption of our FLMK on PASCAL VOC 2008 [16]. As shown
in Fig. 1(b), PASCAL VOC 2008 consists of 10057 images from 20 categories, with
4340 images for training and 5717 image for testing. In this experiment, we fix the
number of views, K, to 1. Then we implement the algorithm of FLWK [20], and present
the comparison of time consumption with respect to the length of FLWK in Fig. 2. As
expected, time consumption of FLWK increasing shapely with the value of len, which
is consistent with the theoretical analysis in Section 4.1. Besides, the time consumption
of our FMGK is much smaller than that of FLWK, which demonstrate the eÆciency of
our FMGK.
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Table 3. The average recognition accuracy (%) on ETH-80 dataset

Cate. RGB Hist. SIFT Hist. DxDy Mag-Lap PCA mask PCA gray Cmob6 FMGK
apple 57.56 77.34 85.37 80.24 78.78 88.29 97.10 98.6
pear 66.10 80.23 90.00 85.37 99.51 99.76 90.22 97.8
toma. 98.54 88.66 94.63 97.07 67.80 76.59 91.32 93.2
cow 86.59 70.32 82.68 94.39 75.12 62.44 70.24 77.4
dog 34.63 60.22 62.44 74.39 72.20 66.34 64.44 69.4
horse 32.68 71.02 58.78 70.98 77.80 77.32 63.26 74.3
cup 79.76 90.12 66.10 77.80 96.10 96.1 97.34 98.8
car 62.93 93.14 98.29 77.56 100.0 97.07 96.16 100.0
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Fig. 2. Time consumption with respect to the length of FMGK

6 Conclusions

In this paper, we present FMGK,a new method to build the representation of multi-view
images,for object classification. By constructing inter- and intra- view linkage graphs to
represent the spatial relations of regions between and within each multi-view images,we
integrate the two types of graphs into a multi-view region graph to describe an object.
Towards an eÆcient kernel computation,we propose product graph between multi-view
region graphs. Experimental results on two popular datasets validate the e�ectiveness
of our FMGK.
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Abstract. Image feature selection (FS) is an important task which can affect the 
performance of image classification and recognition. In this paper, we present a 
feature selection algorithm based on ant colony optimization (ACO). For n 
features, most ACO-based feature selection methods use a complete graph with 
O(n2) edges. However, the artificial ants in the proposed algorithm traverse on a 
directed graph with only 2n arcs. The algorithm adopts classifier performance 
and the number of the selected features as heuristic information, and selects the 
optimal feature subset in terms of feature set size and classification 
performance. Experimental results on various images show that our algorithm 
can obtain better classification accuracy with a smaller feature set comparing to 
other algorithms. 

Keywords: ant colony optimization, dimensionality reduction, feature selection, 
image classification. 

1 Introduction 

Reduction of pattern dimensionality via feature extraction is one of the most important 
tasks for pattern recognition and classification. Feature selection has considerable 
importance in areas such as bioinformatics [1], signal processing [2], image processing 
[3], text categorization [4], data mining [5], pattern recognition [6], medical diagnosis 
[7], remote sensor image recognition [8]. The goal of feature selection is to choose a 
subset of available features by eliminating unnecessary features. To extract as much 
information as possible from a given image set while using the smallest number of 
features, we should eliminate the features with little or no predictive information, and 
ignore the redundant features that are strongly correlated. Quality of the results of 
feature selection can affect the performance of image classification and recognition [6].   

Many feature selection algorithms involve heuristic or random search strategies in 
order to reduce the computing time. For a large number of features, heuristic search is 
often used to find the best subset of features. More recently, nature inspired algorithms 
are used for feature selection. Those population-based optimization algorithms for 



 Imag

feature selection such as ge
[1,4], particle swarm optim
stochastic optimization te
referencing the feedback an

Ant colony optimization
M. Dorigo et al. [11].  It h
shop scheduling, network
combinational optimization 

In this paper, we presen
reduce the memory requirem
ants traverse on a directed 
performance and the number
the optimal feature subset i
Experimental results on ima
performance. Comparing wi
classification accuracy with 

2 The ACO Algor

Given a feature set of size n
subset of size s (s< n) w
representing the original f
selecting use a complete gr
the nodes. In the ACO on 
edge connecting another 
information assigned on t
solution of feature selectio
ordering among the compo
complete graph with O(n2) 

To efficiently apply an A
way that the representation
a discrete search space repr
in Figure 1, where the node
nodes indicating the choice 

Denote the n features as 
additional node v0 is place

ge Feature Selection Based on Ant Colony Optimization 

enetic algorithm (GA) [3,9], ant colony optimization (AC
mization (PSO) [10] have been proposed. These methods 

echniques attempting to achieve better solutions 
nd heuristic information.    
n (ACO) is an evolution simulation algorithm proposed
has been successfully used for system fault detecting, j
k load balancing, graph coloring, robotics and ot

problems.  
nt an ACO-based feature selection algorithm, ACOFS
ment and computation time. In this algorithm, the artifi
graph with only 2n arcs.  The algorithm adopts classi

r of the selected features as heuristic information, and sel
in terms of the feature set size and classifier performan
age data sets show that the proposed algorithm has supe
ith other existing algorithms, our algorithm can obtain be
a smaller feature set from images. 

rithm for Image Feature Selection 

n, the feature selection problem is to find a minimal feat
while maintaining a fairly high classification accuracy
features. Most of the ACO based algorithms for feat
raph, on which the ants try to construct a path with par
such complete graph, ant on one node (feature) selects
node (feature) based on the pheromone and heuri
this edge between the two nodes (features). Since 
on is a subset of those selected features, there is no 
onents of the solution. Therefore, it unnecessary to us
edges in the ACO algorithm.   
ACO algorithm for feature selection, we must redefine 

n graph is used. We proposed ant optimization algorithm
resented by a directed graph with only O(n) arcs as sho
es represent features, and the arcs connecting two adjac

of the next feature.    

 

Fig. 1. The directed graph 

f1,f2� …,fn, the ith node vi is used to represent feature fi. 
ed at the beginning of the graph where each ant starts

581 

CO) 
are 
by 

d by 
job-
ther 

, to 
icial 
ifier 
ects 
nce. 
erior 
etter 

ture 
y in 
ture 
rt of 
s an 
istic 
the 
any 
se a 

the 
m on 
own 
cent 

 An 
s its 



582 L. Chen, B. Chen, and Y. Chen 

search. As shown in Figure 1, the ants travel on the directed graph from v0  to v1, and 
then to v2, and so on. The ant terminates its tour and outputs this feature subset as it 
reaches the last node vn . When an ant completes the search from v0 to vn , the arcs on 
its trace form a solution. 

There are two arcs named 0
jC  and 1

jC  linking two adjacent nodes vj-1 and vj. If 

an artificial ant at vj selects arc 0
jC (or 1

jC ), the jth feature is selected (or not 

selected). On each arc j
iC  , virtual pheromone value j

iτ  is assigned as the feedback 

information to direct the ants’ searching on the graph. We initialize pheromone matrix 

 as j
iτ =1 for all i=1,2,…,n and j=0,1.  

The search for the optimal feature subset is the procedure of the ants traversing 
through the graph.  Suppose an ant is currently at node vi-1 and has to choose one 
path connecting vi to pass through. A probabilistic function of transition, denoting the 

probability of an ant at node vi-1  to choose the path  to reach vi is designed by 

combining the heuristic desirability and pheromone density of the arc. The probability 

of an ant at node vi-1  to choose the arc  at time t is: 

 

(i=1,2,…,n;  j=0,1)  

   

 (1) 

Here, is the pheromone on the arc  between nodes vi-1 and vi at time t, 

which reflects the potential tend for ants to follow arc (j=0,1). is the heuristic 

information reflecting the desirability of choosing arc . α and β are two parameters 

that determine the relative importance of the pheromone and the heuristic 
information.  

From (1) we can see that the transition probability used by ACO depends on the 

pheromone intensity and heuristic information .To effectively balance the 

influences of positive feedback information from previous high-quality solutions and 
the desirability of the arc, we should chose proper values of the parameters α and β. 
When α= 0, no positive feedback information is used. Since the previous search 
experience is lost, the search degrades to a stochastic greedy search. When β=0, the 
potential benefit of arcs is neglected, and it becomes a entirely random search.  

The heuristic information is the desirability of choosing the arc  between 

nodes vi-1 and vi, which means the preference of ant to choose the feature fi. There are 

many ways to define a suitable value of .  It could be any evaluation function on 

the discrimination ability of a feature fi, such as rough set dependency measure, or 

entropy-based measure.  We set the value of  using F-score, which is a easy 

measurement to evaluate the discrimination ability of feature fi , defined as follows:  
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Here, m is the number of classes of the image set; n is the number of features;  is 

the number of samples of the feature fi in class k, (k =1,2,…,m, i=1,2,…,n),  is the 

jth training sample for the feature fi of the images in class k, (j=1,2,…, ),   is 

the mean value of the feature fi of all images , 
k
ix  is the mean of the feature fi of the 

images in class k.  
In (2), the numerator indicates the discrimination between the classes of the image 

set, and the denominator specifies the discrimination within each class. A larger  

value implies that the feature fi has a greater discriminative ability.   

For the value of , we simply set , where  ξ∈(0,1) is a constant.   

3 Implementation of the Algorithm 

In an ACO based optimization method, the design of the pheromone update strategy, 
and the measurement of the quality of the solutions are critical. 

3.1 Pheromone Updating 

In each iteration, the algorithm ACOFS updates the pheromone value on each arc 
according to the pheromone and heuristic information on the arc. 

Obviously, if an ant chooses the arc , pheromone on this arc should be assigned 

more increment, and ants should select arc  with higher probability in the next 

iteration. This forms a positive feedback of the pheromone system. In each iteration, 
the pheromone on each arc is updated according to formulas (3),(4) and (5).  

 (3) 

where  

 (4) 

 

k
iN

k
ijx

k
iN ix

1
iη

0
iη 

=

=
n

i
ii n 1

10 ηξη

j
ic

j
ic

( 1) ( ) ( ) ( )j j j j
i i i it t t Q tτ ρ τ τ+ = ⋅ + Δ +


∈

=Δ
j

iSs
j

i

j
i sf

S
t )(

||

1
)(τ



584 L. Chen, B. Chen, and Y. Chen 

and                      

 (5) 

In (4) , j
is is the set of solutions generated at the t-th iteration passing through j

ic . In 

(5), Sbest is the best solution found so far, and Q is a positive constant. To emphasize 
the influence of the best-so-far solution, we add an extra pheromone increment on the 
arcs included in Sbest . 

3.2 The Fitness Function 

Based on the ant’s solution, which is a selected feature subset, the solution quality in 
terms of classification accuracy is evaluated by classifying the training data sets using 
the selected features. The test accuracy measures the number of examples that are 
correctly classified. In addition, the number of features in the set is also considered in 
the quality function. The subset with less features could get higher quality function 
value. The quality function f(s) of a solution s is defined as follows:  

 (6) 

where Ncorr the number of examples that are correctly classified, Nfeat is the number of 
features selected in s, λ is a constant to adjust the importance of the accuracy and the 
number of features selected. The scheme obtaining higher accuracy and with less 
features will get greater quality function value.  

4 Experimental Results  

To test the effectiveness and performance of our proposed feature selection algorithm 
ACOFS, we test it by a series of experiments. All experiments have been run on 
Pentium IV, Windows XP, P1.7G, using VC++ 6. 0, and the results are visualized on 
Matlab 6.0.   

A set of images was tested to demonstrate the classificatory accuracy and 
determine whether the proposed algorithm can correctly select the relevant features. 
The data set contains 80 images in 4 classes. The data set has 19 features including 
first and second order origin moment, first and second order central moment,  twist 
degree, peak values, entropy of the moments, and the statistical of the gray 
differential statistics, such as contrast, angle second-order moment (ASM), mean 
value, entropy etc.  

On the image set, the ACFS algorithm is applied to select the relevant features and 
is compared to GA-based approach GAs [21] and the modified ACO algorithm for 
feature selection presented in [26] which is denoted as mACO.   

For GA-based feature selector GAs, we set the length of chromosomes as  
the number of features. In a chromosome, each gene gi corresponds to the ith feature.  
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If gi=1, this means we select the ith feature. Otherwise, gi=0 , which means the ith 
feature is ignored.  By iterations of producing chromosomes for the new generation, 
crossover and mutation, the algorithm tries to find a chromosome with the smallest 
number of 1’s and higher classifier accuracy. In order to select the individuals for the 
next generation, GA’s roulette wheel selection method was used. We set the 
parameters of GAs as follows: probabilities of crossover and mutation are Pcroos=0.9 
and Pmutation =0.25, the population size is m=50, and the maximum iterations k = 50. 

For ACO-based algorithms ACOFS and mACO, we have applied them with the 
same population size as GA based algorithm GAs. Various parameters leading to a 
better convergence are tested and the best parameters that are obtained by simulations 
are as follows: α=1, β=0.5, evaporation rate ρ =0.951, the initial pheromone intensity 
of each arc is equal to 1, the number of ant in each iteration m = 50 and the maximum 
iterations k = 50. These values are chosen to justify the comparison with GAs. For each 
subset of the features obtained, its quality is measured by classifying the training image 
sets using SVM classifier. The number of the selected features and the quality of the 
classification results are considered for performance evaluation.  

To evaluate the average classification accuracy of the selected feature subsets, 10-
fold and 5-fold cross validation (CV) is used. For the three algorithms, the CV 
accuracy on the training and testing data of the best-so-far solution at each iteration are 
computed and recorded.   
   Table 1 shows the number of features selected in the best solution obtained by the 
three algorithms. From the table we can see that ACOFS selects the smallest number of 
features while maintain the high accuracy of classification.   

Table 1. Number of features selected by the three algorithms 

Algorithm ACOFS    GAs mACO 
5-fold CV    7 8    10 
10-fold CV    9     10    12 

 
We measure the quality of the classification results in two criterions, namely, recall 

and precision of each class. The average recall and the precision of the classification of 
the ith class are defined as follows: 

       

 (7) 

Here, Nc(i) is the number of images in the ith class, NTP(i) is the number of images 
correctly classified into the ith class, NFP(i) is the number of images incorrectly 
classified into the ith class.  

To obtain a more reliable result, 10 runs were conducted by 10-fold and 5-fold 
cross-validation with on each of the ten image sets. Tables 2 to 5 present the average 
recall on the first four training and testing image sets by 5-fold and 10-fols CV tests.  
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Table 2. Recall of the results in 5-fold CV on training sets 

Class ID ACOFS GAs mACO 

1 100% 87.5% 93.75% 
2 100% 100% 100% 
3 100% 87.5% 81.25% 
4 87.5% 81.25% 87.5% 
Average 96.88% 89.06% 90.63% 

Table 3. Recall of the results in 5-fold CV on testing sets 

Class ID ACOFS GAs mACO 

1 75% 75% 75% 
2 100% 100% 100% 
3 100% 100% 100% 
4 100% 75% 75% 
Average 93.75% 87.5%s 87.5% 

Table 4. Recall of the results in 10-fold CV on training sets 

Class ID ACOFS GAs mACO 

1 100% 100% 94.44% 
2 100% 100% 100% 
3 94.44% 94.44% 100% 
4 88.89% 88.89% 83.33% 
Average 95.83% 95.83% 94.44% 

Table 5. Recall of the results in 10-fold CV on testing sets 

Class ID ACOFS GAs mACO 

1 100% 100% 94.44% 
2 100% 100% 100% 
3 100% 50% 100% 
4 100% 100% 100% 
Average 100% 87.5% 98.61% 

 
Comparing the criterion of recall and the number of features selected, we can see 

from the tables that proposed ACOFS algorithm outperforms the mACO, GAs 
algorithms. The number of features selected by the ACOFS algorithm is 7 and 9 in the 
5-fold and 10-fold CV test respectively, while 8 and 10 by the GAs,  10 and 12 by 
mACO. Furthermore, while using less features, the ACOFS algorithm gets higher 
recall than the mACO, GAs algorithms. For instance, in the 10-fold CV test on the 
testing data, the average recall of ACOFS is 100%, while that is 87.5% for GAs and 
98.61% for mACO. This means the recall of the results by ACOFS are always better 
than those of mACO, GAs algorithms.  
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Tables 6 to 9 list the average precision of the training and testing image sets by 5-
fold and 10-fols CV tests.   

Table 6. Precision of the results in 5-fold CV on training sets 

Class ID ACOFS GAs mACO 

1 88.89% 82.35% 78.95% 
2 100% 94.12% 88.89% 
3 100% 82.35% 100% 
4 100% 100% 100% 
Average 97.22% 89.71% 91.96% 

Table 7. Precision of the results in 5-fold CV on testing sets 

Class ID ACOFS GAs mACO 

1 100% 75% 75% 
2 100% 100% 100% 
3 80% 80% 100% 
4 100% 100% 75% 
Average 95% 88.75% 87.5% 

Table 8. Precision of the results in 10-fold CV on training sets 

Class ID ACOFS GAs mACO 

1 85.71% 85.71% 85% 
2 100% 100% 100% 
3 100% 100% 100% 
4 100% 100% 93.75% 
Average 96.43% 96.43% 94.69% 

Table 9. Precision of the results in 10-fold CV on testing sets 

Class ID ACOFS GAs mACO 

1 100% 66.67% 100% 
2 100% 100% 100% 
3 100% 100% 100% 
4 100% 100% 94.74% 
Average 100% 91.66% 98.69% 

 
We can see from the tables that the proposed ACOFS algorithm has better precision 

than the mACO, GAs algorithms. Even using fewer features, the ACOFS algorithm 
still can obtain higher precision than the mACO, GAs algorithms. For instance, in the 
5-fold CV test on the testing sets, the average precision of ACOFS is 95%, while that 
is 88.75% for GAs and 87.5% for mACO. This means the precision of the results by 
ACOFS are always better than those of algorithms mACO and GAs.  
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Comparison of the average recall and precision of the three algorithms on the ten 
data sets are shown in Figures 2 and 3 respectively. We can conclude from the figures 
and tables that the proposed ACOFS algorithm can successfully select subset of 
features which can obtain high classification accuracy. Compared with algorithms GAs 
and mACO in the tests using the same image set, ACOFS can obtain better 
classification accuracy but had a smaller feature set. 

 

 

Fig. 2. Comparison of the average recall of the three algorithms  

 

Fig. 3. Comparison of the average precision of three algorithms 

5 Conclusions 

We proposed an ACO-based feature selecting algorithm ACOFS. The algorithm 
adopts classifier performance and the number of the selected features as heuristic 
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information, and selects the optimal feature subset in terms of smallest feature number 
and the best performance of classifier. The experimental results on image data sets 
show that the algorithm ACOFS can obtain better classification accuracy but had a 
smaller feature set than other similar methods. 
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Abstract. A robust smile recognition system could be widely used for many 
real-world applications. In this paper, we introduce biologically inspired model 
(BIM) into the building of realistic smile classification system for solving 
challenging realistic tasks. To improve the performance of BIM, we develop a 
modified BIM (MBIM), which utilizes a more efficient pooling operation and 
boosting feature selection. Experiments demonstrate the effectiveness of 
themodifications and adjustments of BIM. By testing on the challenging 
realistic database, GENKI, our method is proved to be superior to some other 
state-of-the-art smile classification algorithms. 

Keywords: Facial expression classification, smile recognition, biologically 
inspired model. 

1 Introduction 

Automatic facial expression recognition have been studied world widely in the last 
two decades and has become a very active research area in computer vision and 
pattern recognition. Facial expression classification is a key component for human-
computer interaction and related fields. Smile, an important part of facial expression, 
delivers a variety of emotional information, e.g., joy, happiness, attractiveness and 
kindness, so it plays an important role in human communication. Automatic smile 
classification technology has entered people’s lives and become more and more 
popular with the widespread use of commercial digital products, such as digital 
cameras, digital videos and social robots.  

The last few years have witnessed considerable progress in the field of automatic 
facial expression classification and a large number of classification algorithms have 
been proposed. Common approaches include appearance-based analysis[1,2], local 
feature based classifiers[3,4,5,6], bag-of-features[7], bag-of-keypoints[8] , Gabor 
feature [23], and so on. Littlewort et al. [23] proposed to select a subset of Gabor 
features using an AdaBoost method and thereafter train a support vector machine 
algorithm using the selected features. They reported very high accuracy in recognition 
of facial expressions. Bai et.al proposed a high-performance smile classification 
method using pyramid histogram of orientation gradients features and classifier with 
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Adaboost and SVM[24]. These algorithms perform well on some public standard 
databases, such as Cohn-Kanade AU-Coded Facial Expression Image (CKACFEID) 
Database [20], Japanese Female Facial Expression (JAFFE) Database [21], etc. 
However, the accuracies of most of these algorithms decline when they are used to 
more challenging and realistic problems of classifying spontaneous expressions with 
varieties of illumination, pose variations, geometric transformations, occlusion and 
clutter. One of the weakness is that they ignore high level information, such as 
relations of local orientations. Therefore, there is much room for developing more 
efficient algorithms addressing practical problems in real world.  

As known to all, human and primate’s eyes outperform the best machine vision 
systems by almost any measure. According to models of object classification in visual 
cortex, the brain uses a hierarchical approach in which simple, low-level features with 
high position and scale specificity are pooled and combined into more complex, 
higher-level features with greater location and scale invariance [9,15]. It has always 
been an attractive idea to build a system that emulates object classification in cortex. 
Strictly following the organization of the cortex, a biologically inspired model (BIM) 
for object classification was developed by Serre et al[10]. Experiments on different 
classification tasks such as object recognition [26], scene classification [27] has  
illustrated that BIM and its variants have achieved best state-of-the-art performance. 

In this paper, we introduce BIM into smile recognition for addressing solving 
challenging realistic task. We develop a modified biologically inspired model (MBIM) 
that improves the performance of BIM. It improves the sensitivity and informativeness 
of the pooling operation model by applying a new pooling operation which averages the 
sum of the max response and its neighbors. Furthermore, a boosting feature selection is 
applied in order to retain effective biologically inspired features (BIF) and remove 
uninformative features. The final features, which are called modified biologically 
inspired features (MBIF), are sent to a SVM classifier for final classification. 
Experiments on a challenging database, GENKI [11], which contains pictures from 
thousands of different people taking in many different real-world imaging conditions, 
show that MBIF is more effective and efficient than BIF and some other state-of-the-art 
approaches. We also try some other modifications on BIM and obtain several benefits in 
reducing computational time and storage of features extraction.  

The organization of this paper is as follows. In Section 2, a brief review of BIM is 
given. In Section 3, we present modified biologically inspired features (MBIF) and 
our smile classification system based on MBIF. Experimental results on GENKI 
dataset are given in section 4. Section 5 summarizes this paper. 

2 Biologically Inspired Model 

Biologically inspired model (BIM) was built by Serre et al. [10,18] basing on the 
“HMAX” model of Riesenhuber and Loggia [9]. It follows the standard model of 
object classification in primate cortex [9]. There are four layers of computational 
units: S1, C1, S2, and C2, where S and C are named by analogy with the V1 simple 
and complex cells discovered by Hubel and Wiesel [12,13]. The framework of BIM 
and MBIM is shown in figure 1. 
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S1 Units: The units in S1 layer correspond to simple cells in primate primary visual 
cortex, V1, i.e., the first visual cortical stage [12,13]. The S1 units are obtained by 
applying to the input image a group of Gabor filters, each of which can be described 
as the product of an elliptical Gaussian envelope and a complex plane wave 
[10,16,17,18],  
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where = x cos +y sinX θ θ , = -x sin +y cosY θ θ . 
The filter parameters, i.e. σ (effective width), θ (orientation), λ (wavelength), 

γ (aspect ratio), are adjusted so that the tuning profiles of S1 units match those of V1 
simple cells. There are 16 filters at 4 orientations and different parameters [10]. 

 

Fig. 1. Framework of BIM (do not include dashed parts) and MBIM 

C1 Units: The C1 units correspond to complex cells which show some shift 
invariance and scale invariance [12,13]. C1 units pool over S1 units (of the same 
orientation) using the maximum operation of Riesenhuber and Poggio [9]. As a result, 
it can subsample S1 units to reduce the number of units and create position and scale 
tolerance (shown in Figure 2 [10,18]).  
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S2 Units: The S2 Units pool over C1 Units by performing a Gaussian-like template 
matching between afferent C1 units and each of the stored prototype patches [10,18], 

)exp(
2

iPXY −−= β                                 (2) 

where β  defines the sharpness and iP  is one of the K prototype patches. The 
patches are randomly extracted from the positive training images at the C1 layers 
during the initial feature-learning state. This process is computed in all orientations, 
and it ends by setting each of the patches as prototypes of the S2 units which behave 
as radial basis function (RBF) units [19] during classification. Eq. (2) calculates the 
Euclidean distance between a new input patch and the stored prototype, and it reflects 
the similarity of them. 

C2 Units: Finally, a global maximum over all scales and positions of each S2 units is 
taken to create a set of K shift- and scale-invariant C2 units. The size of the C2 
feature vector depends only on the number (i.e., K) of stored prototypes but not on the 
size of the input image. 

SVM Classifier: The C2 features (also known as BIF) are sent to a linear Support 
Vector Machine (SVM) for training and classification. 

3 Modified BIM for Smile Classification 

In this section we introduce a more effective polling operation and boosting feature 
selection for BIM. For challenging real-world smile classification tasks, we construct 
a classification system based on the proposed modified biologically inspired model 
(MBIM). 

3.1 A More Effective Pooling Operation Method 

As discussed in section 2, the original BIM simply uses the maximum model as the 
pooling model. The response of complex units is the maximum of the responses of all 
simple units over local area. There are two drawbacks in this maximum model: firstly, 
noises always appear in the high frequency band of images, especially in the images 
photographed in the real-world conditions, and simple maximum model may output 
the noises as the max responses of the simple units; secondly, the most strongly 

Fig. 2. Scale- and position-tolerance at C1 level 
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activated units strengthen responses of their neighbors [14], thus simple maximum 
model will lose some informative responses. 

Therefore, in the MBIM,we introduce a more effective pooling operation between 
simple and complex cells. We first find the maximal response and its neighbors, then we 
remove all other weak responses, and finally, the average of all responses remained is 
computed. The pooling function (shown in Figure 3) in MBIM is given by 

,

1
( , )

i i

i i
x y II

C S x y
N ∈

=                                    (3) 

where ( , )i iS x y  is the response of the thi  simple unit, C is the response of complex 

unit, I is the neighborhood of the maximal response point in the local area, N is the 
number of responses in I.  

 
 

It is expected that this new pooling function can not only smooth the noises, but 
also remain more information. 

3.2 Feature Selection by AdaBoost 

In the initial feature-learning stage of BIM, K prototype patches are randomly sampled 
from C1 layer of the training positive images. The total number of the final BIF is very 
large, this results in heavy computational cost and storage in classifier building stage, 
and part of the BIF is uninformative or even harmful to the accuracy of the classifier. 

To solve these problems, we employ feature selection after C2 Units using the 
Adaboost algorithm[25]. In order to ensure fast and accurate classification, the feature 
selection process should exclude a large majority of BIF, and focus on a small set of 
critical features. In our AdaBoost procedure for BIM, the weak learner is restricted to 
only one single feature, so that each stage of the boosting process, which selects a 
new weak classifier, can be viewed as a feature selection process.  

In MBIM, important and useful MBIFs are retained after the boosting feature 
selection and then they are sent to the SVM classifier for training and classification. 

3.3 Other Strategies 

In the empirical studies, we also try some other modifications on BIM to see what can 
improve the performance of BIM, through two strategies: (1) prototype patches are 
only extracted from the mouth or eyes area which is marked artificially; (2) prototype 

MBIM Output 

BIM Output 

Fig. 3. The pooling operation in MBIM 
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patches are clustered using K-means algorithm. The detailed performances of these 
strategies will be discussed in section 4. 

3.4  Classification System Using Boosted MBIF 

With the benefit of MBIF, we set up a system for smile classification, as shown in 
Figure 4. Firstly, we detect the face area in an image through the Haar-like detector of 
Viola and Jones [22]. Secondly we convert the face image to grayscale and normalize 
it to an image with size of 128 × 96 pixels. Then we extract the MBIF of the image 
and fed it to SVM classifier to produce final recognition result. 

 

Fig. 4. Smile classification system using boosted MBIF 

4 Experiments and Results 

To evaluate the performances of the MBIF and our smile classification system, we 
make a series of empirical studies on smile classification on a challenging real-world 
database, GENKI [11]. 

4.1 GENKI Datasets 

So far as we know, most current automatic facial expression classification studies have 
focused on databases that were collected under controlled conditions on a relatively 
small number of subjects. So, in order to validate the effectiveness of our system on 
real-world conditions, we choose GENKI [11] for our experiments. GENKI is collected 
from the Internet by the Machine Perception Laboratory of University of California. The 
GENKI dataset contains over 63,000 pictures, photographed by the subjects themselves, 
from tens of thousands of different people in many different real-world imaging 
conditions. It represents the diversity of illumination conditions, camera models, pose 
variations, personal difference and many other characters that are found in the real 
world. What we use here is GENKI-R2009a (some examples are shown in Figure 5), a 
subset of GENKI. We divide GENKI-R2009a into two parts: a training set which 
contains 2645 positive images (smile faces) and 2490 negative images (non-smile faces) 
for training, and a testing set of 597 positive images and 551 negative images.  

4.2 Performance Comparison of MBIM against BIM  

To test the effectiveness of each modification of MBIM, two set of experiments are 
designed: first, we justify the effectiveness of the new pooling operation by replacing 
the maximum operation with the new pooling operation in BIM, performance curves 
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Preprocessing Extraction 
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SVM Classifier Boosting Feature 
Selection 
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shown in Figure 6 demonstrate that the new pooling operation is valuable to improve 
accuracy and local optimal performance is obtained when K=1,000 (K is the number 
of features/patches); and then, we justify the effectiveness of the boosting feature 
selection by imposing it on BIM (using K=1,000), performance curves shown in 
Figure 7 demonstrate that the feature selection is useful to improve the classification 
accuracy and reduce the computational cost and storage, local optimal performance is 
obtained with 200 selected features, far less than original 1,000 features. 
 

 
Fig. 5. Examples form GENKI-R2009a 

 
Fig. 6. Comparison between BIM and MBIM according to the new pooling operation 

 

Fig. 7. Comparison between BIM and MBIM according to boosting feature selection 
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4.3 Performance of MBIF against BIF, Gabor Feature and PHOG Feature 

We compare the proposed MBIF with the original BIF and two other state-of-the-art 
features for smile classification, namely the Gabor feature [23] and PHOG feature 
[24].  The recognition results are given in table 1. It can be seen that our method 
(MBIF) achieved the highest accuracy. 

Table 1. Performance comparison among Gabor, PHOG, BIM and MBIM 

Feature GABOR PHOG BIF MBIF 
Recognition accuracy (%) 80.31 83.62 91.81 93.55 

4.4 Performance When Extracting Patches from Specified Area 

To compare the effectiveness of the patches extracted from different area, we 
artificially mark the mouth and eyes on the face (shown in Figure 8) and then extract 
K (=1,000) patches from each area respectively.  The performance is shown in  
table 2. It can be seen that patches extracted from mouth area contain more 
information than those from eyes area, but both of them don’t achieve high enough 
performance as patches extracted from all face area. 

 

Fig. 8. Example of artificially marked mouth and eyes area 

Table 2. Recognition accuracies (%) with patches extracted from face, eyes, mouth area 

Area BIM MBIM 
Whole Face 91.81 93.55 

Eyes 85.71 86.06 
Mouth 91.20 91.03 

4.5 Performance of Clustering Patches 

We extract K (=1,000) prototype patches, and then cluster them into k (k<<K) 
clusters though k-means algorithm. Then the k clusters are used as patches to compute 
BIF or MBIF. The performance is shown in Figure 9. It can be seen that the technique 
of clustering patches can reduce computational cost and feature storage and retain the 
representativeness of the prototype patches with little accuracy loss. 

Source 
detected 

Face 
Mouth Area 

Eyes Area 
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Fig. 9. Results of BIM and MBIM using clustered patche 

5 Conclusion 

In this paper, we have shown that a modified biologically inspired model (MBIM) is 
competitive with other state-of-the-art approaches for challenging real-world smile 
classification task. We have presented several modifications to improve the 
effectiveness of biologically inspired model (BIM). A biologically-motivated 
framework for robust real-world smile classification is introduced in the field of smile 
classification. Experimental results on GENKI, a challenging database with a variety 
of real-world smile faces show the effectiveness of the proposed approach. It has been 
shown from experiments that our MBIM is superior to BIM in terms of effectiveness 
with less number of features and computational cost. 
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Abstract. The capability of inferring colours from the texture
(grayscale contents) of an image is useful in many application areas,
when the imaging device/environment is limited. Traditional colour as-
signment involves intensive human effort. Automatic methods have been
proposed to establish relations between image textures and the corre-
sponding colours. Existing research mainly focuses on linear relations.

In this paper, we employ sparse constraints in the model of texture-
colour relationship. The technique is developed on a locally linear model,
which assumes manifold assumption of the distribution of the image
data. Given the texture of an image patch, learning the model trans-
fers colours to the texture patch by combining known colours of similar
texture patches. The sparse constraint checks the contributing factors
in the model and helps improve the stability of the colour transfer. Ex-
periments show that our method gives superior results to those of the
previous work.

1 Introduction

Human vision percepts the world with colours. Colours do not only make im-
ages feel more vivid to us, they also contains important visual clues of the image.
Although an inexpensive camera can now record colour images easily, there are
many circumistances where colours needs to be inferred according to the texture
of an image. For example, old monochrome photos may need to be colourised; pic-
tures shot with severely wrong white balance settings can be rescued by keeping
only the captured textures and transfer colours from another source. Colouri-
sation is essential in areas of specialised imaging, where the sensors captures
signals that are out of visible spectrum of light, eg X-ray, MRI, near infrared
images. Pseudo colours for these images helps human experts interpret the in-
formation. But it is both important and difficult to assign colours consistently
and efficiently.

A technique of transferring colours to images must be adaptive, because is
no one-to-one map between the luminance and the chromatic (hue/saturation)
value for an image pixel. Ie pixels of the same intensity may have different colours
in an image and vice versa. Human can tell the colours given a monochrome
picture, because human brain interprets the contents in an image and guesses
the colours for the image components based on prior knowledge. Unfortunately,
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to implement the guess-in-mind to values that represent colours involves arduous
work and can be inconsistent. For a machine, the tedious work of assigning
colours is a tractable. However, it can be difficult to recognise the context in
the image and to retrieve background knowledge of the colours. To combine the
advantage of both sides, a semi-automatic system [12] employs human to indicate
essential clues for adding colours. However, this can become time-consuming and
impractical when the size of the task grows large.

Recent techniques entail less human effort. Welsh et al [17] has proposed a
scheme as follows. First, a user provides the system a colour image A of the
similar contents to the image B needs colourisation. Second, the system learns
the relations between the colours and the grayscale intensities of pixels in image
A. Finally, grayscale pixels in image B are assigned colours according to the
learned relations.

The scheme has been extended in [8], where they assume non-linear manifold
distribution of the image data, and learn the texture-colour relations from a small
number of relevant image patches. In the framework, after the reference image
A has been selected, for a grayscale image B, they extract overlapping patches
from A and B. The patches are assumed to have non-linear manifold distribution
in their feature space ([1,6]). Then for each from image B, a neighbourhood in
the patches from image A is retrieved. A linear system [10] is built from these
patches neighbours to transfer the colours to the patch from B. However, the
locally linear method in [8] may become instable when there are insufficient
training patches; it can also mix colours from many contributing patches and
cause artifical effects.

In this paper, we develop the semi-automatic scheme framework in [17] and
[8] by adopting sparsity constraints in the colour prediction model. The process-
ing steps of our system resembles that in [8], however, with the key difference
in the core algorithm of predicting patch colours. We impose the linear model
sparse constraint, which help check the model complexity in the case of insuffi-
cient training samples. The sparse model also limits the number of contributing
components from the reference patches. This may prevent fusing colours from
irrelevant sources and improve the results.

The rest of the paper is organised as follows. We will have a brief review of
related techniques. We will refer the reader to more thorough treatment of the
literature due to the space limit. The technical details of our system is introduced
in Section 3. Section 4 demonstrates two examples of using our system to transfer
colours. We conclude the paper in Section 5.

2 Related Works

Automatic systems for assigning colours to images has been developed in the
cartoon industry since long ago. Early systems needs intensive human interac-
tion [12]. Qu et al. proposed an method to alleviate human effort [9]; but the
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system needs an initial estimation of the colours for each components in the
image, which may pose difficulties for users without corresponding expertise.
Moreover, direct user interaction prevents batch processing: assigning colours
to multiple grayscale images efficiently. Welsh et al. [17] have proposed an al-
ternative scheme, which requires only a reference colour image. The algorithm
computes colour for each pixel from the reference image as we have introduced
above. Li and Hao [8] extends the algorithm in [17] by adopting patch-based
computation and by accounting for the manifold distribution of the image data
[1,11]. They use a linear prediction model [10].

Image manifold assumption and manifold learning techniques [7,13,18] have
been exploited for several visual computation tasks Manifold learning techniques.
Eg the patch-based model have been used for super-resolution [2,6].

Linear prediction models are popular data anlysis tools. Recent research of
these models has shown desirable characteristics when sparse constraints are
adopted [15]. The models tend to be more robust; and the results are more inter-
pretable [19]. When constructing linear systems for the manifold neighbourhood,
we impose sparsity constraints [5] to the model.

3 Colourising Images by Sparse Manifold Embedding

The white boxes indicates grayscale patches. The big enclosing gray box indicates the
reference image. The blue boxes behind each grayscale patch represents the colour
information of those patches. After the coefficients w1, . . . , wK have been computed,
they are used to recover the colours of the query patch (shown in orange box).

Fig. 1. Flow Chart of Locally Linear Embedding with Sparsity Constraint
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(a) (b)

(c)

(d)

(e)

(f)

(g)

(a) input; (b) training; (c) – (g) features. (Courtesy of the authors of [8])

Fig. 2. Nearest neighbours

3.1 Problem Formulation

We firstly introduce frequently used symbols and formulate the problem of pre-
dicting colours from texture in mathematical form. We adopt the denotation
convention in [8]. In the following, we will use the latin letter “X/x” for grayscale
texture information and “Y/y” for the colour information; we will use subscript
“t” (target) for the image where colour information needs to be predicted and
subscript “s” (source) for the information from the reference image.

The task is to predict the colours for a monochrome image Xt, given a refer-
ence image represented in Xs and Ys. Xs represents the grayscale intensities of
the reference image; and Ys represents the chromatic values. The model needs to
learn how Xs relates to Ys and utilise the knowledge to estimate the chromatic
information of the input image, Yt , from its grayscale intensities Xt.

An image is a big object consisting many components. Each pixel may only be
related to some neighbouring pixels of the relevant component. For the purpose
of transfering colours, a small part of the reference image (Xs,Ys) is sufficient to
provide appropriate information for a counterpart in Xt. Therefore the images
are represented by overlapped patches as follows. Xt := {xp

t }Nt
p=1, Yt := {yp

t }Nt
p=1,

Xs := {xq
t}Ns

q=1 and Ys := {yq
s}Ns

q=1. Nt and Ns are the number of patches in the
input grayscale image and the reference image respectively.

3.2 Manifold of Patches

Rich research has pointed patches from an image lie in a manifold [4,16,14,2,6].
This is because image patches are not random. They consists of a small subspace
in the feature space where a patch is represented; and the variation of the patches
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are controlled by a few meaningful factors. Some of the factors affects both the
grayscale intensities (texture) and the colours in a patch in a similar manner,
although the texture and the colours of the patches form difference manifolds
embedded in distinct feature spaces.

The relations between the manifolds can be established by first locating re-
lated neighbourhoods on the manifolds and then building a linear system for the
neighbourhoods. The underlying assumption is that the neighbourhoods have
similar linear structures, thus the structure on one manifold can help prediction
on the other manifold. We will introduce the linear system in details in the next
subsection.

3.3 Estimating the Colours with Sparsity Constraints

For an input grayscale patch xq
t ∈ Xt, the procedure of estimating its colours

yq
t are as follows.

1. Find the K nearest neighbours N q of xq
t in Xs.

2. Compute K combination coefficients for each xr
s, r ∈ Nq, such that the

combination approximates xq
t .

3. Synthesize yq
t by combining the corresponding neighbours yr

s, r ∈ Nq with
the coefficients computed in Step 2.

In Step 1, the corresponding neighbourhoods related to the patch xq
t of interest

are found on the two manifolds (the manifold of grayscale patches and the one
of colours). Step 2 represents the vital step to discover the linear structure of
the corresponding neighbourhoods. Formally, the linear system is constructed as
follows. The coefficients wq is solved by minimising an objective function

wq = argmin
w
‖xq

t −
K∑

r=1

wrx
Nq(r)
s ‖22 + λ‖w‖1, (1)

where wr represents the r-th element of w and Nq(r) represnets the r-th neigh-
bour in Xs.

The regularisation term ‖w‖1 encourages sparse solution of w. The optimal
wq in (1) can be readily found by solving a linear system [10] using the LARS
[5] algorithm. In Fig. 1, we draw a flowchart for our framework of colourising
grayscale images.

4 Experiment

4.1 Representing Patches in Feature Vectors

The grayscale patches are represented by feature vectors, which is constructed as
in [2,3]. The feature vector for a patch consists of three components: the average
pixel intensity, the first and the second order intensity gradients at individual
pixels.
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(a) (b)

(c) (d)

(e) (f)

The figure shows learning the relation between the colours and the texture of an image
(a) and inferring the colours of a grayscale input image (b). In both images, there
is a squirrel present against a background of natural scene. The methods of [17] and
[8] generates the image in (c) and (d), respectively. Our sparse manifold embedding
generates the image in (e). Image (f) is the ground truth colour image of (b). This
figure is best viewed on screen with colours.

Fig. 3. Transfer colours to an image of a squirrel

Formally, the feature vector of an image patch is built as follows. An im-
age can be considered as a function I : Z2 → R. The horizontal and vertical
differentiation operators are defined as

∇xI(x, y) = I(x + 1, y)− I(x− 1, y)
∇yI(x, y) = I(x, y + 1)− I(x, y − 1). (2)

The feature vector of a grayscale patch P is then defined as
[
λI|P ∇xI|P ∇yI|P ∇2

xI|P ∇2
yI|P

]T

,

where the first element represent the average pixel intensity in that patch

I|P =

∑
(x,y)∈P I(x, y)
|P| ,
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and λ is the weight of the intensity. The weight should be chosen according
to the patch size, which is to keep the balance between the influence of the
average intensity (representing luminance) and the gradients (representing the
texture details). The weight is necessary, because the entries of the gradients in
the feature vector grows with respect to the size of the patch, but the average
intensity is a scalar irrelevant to the size of a patch.

The colour patches are the hue/saturation values at individual pixels in the
corresponding patches.

Fig. 2 demonstrate the construction of the feature vector for an input grayscale
patch and that for its 3 nearest neighbours in the reference grayscale patches.

Fig. 2 (a) and (b) shows the input and the reference images, respectively. The
blueish box in (a) indicates an input patch, whose colours are to be predicted.
The first column in Fig. 2(c–g) represents the feature of the query patch: the
intensity values, the horizontal graidents, the vertical gradients, the horizontal
second order gradients and the vertical second order gradients, respectively.

Three patches with closest features to the query feature has been shown in
Fig. 2(b) by greenish boxes. Their feature components are shown in the second,
the third and the last column in Fig. 2(c–g).

4.2 Experiment Results

Figure 3 demonstrates the results of transfering colours to an image, where
a subject of middle size (a squirrel) presents against a complex background.
The background consists of both sharp components (the flowers and the woody
stump) and out-of-focus backdrop. The result (c) shows that the non-adaptive

(a) (b) (c)

(d) (e) (f)

The figure shows learning the relation between the colours and the texture of an image
(a) and inferring the colours of a grayscale input image (b). Both images consist of a
portrait of a child against a texture-less background. The methods of [17] and [8] gen-
erates the image in (c) and (d), respectively. Our sparse manifold embedding generates
the image in (e). Image (f) is the ground truth colour image of (b). This figure is best
viewed on screen with colours.

Fig. 4. Transfer colours to an image of a portrait
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method of [17] produces greenish colours for both the subjects and the back-
ground. Both results (d) (of the method of [8]) and (e) (ours) are satisfactory, as
they apply correct colour tunes to the squirrel and the background respectively.
However, result (e) demonstrates sharper contrast in colour tunes between the
subject and the scenery. A possible reason lies in the spare method. For each
patch in the input image, the sparse constraint limits the number of patches in
the training image that can transfer their colours to the input patch. Therefore
the constraint reduces the mix of colours and produce distinctive colours for
different components in the image.

Figure 4 demonstrates the results of transfering colours to an image of a
portrait of a child. As in the last experiment, images (c), (d) and (e) show the
result of [17], [8] and our method, respectively. Image (f) represents the ground
truth colour image. Compared to [8], our method is better in recovering colours
in vital image components (see Figure 5).

(a) (b)

(c) (d)

The figure compares parts of the image of interest in Figure 4. The images shown in
(a) and (c) are produced by the method in [8] and that in (b) and (d) are resulted by
our method. The sparse manifold embedding method correctly recovers the colours in
the eyes and on the skin.

Fig. 5. Comparison of colours recovered by [8] and our method

5 Conclusion

In this paper, we have proposed an automatic method of learning the relations
between colours and texture in an image, and transferring colours to a grayscale
image by exploiting the learned relations. The method is based on the manifold
assumption of the image data, and on the sparsity constraints on linear models.
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Compared to existing research on the problem of colourisation of grayscale
images, the proposed method has several advantages. It involves small amount of
human effort. The model is robust when the reference information is insufficient.
The resultant colours may also be more sharp than the previous locally linear
model due to the sparsity constraint.

Future research may focus on the efficient construction of the manifold, as
well as on more sophisticated techniques of treating the overlapping patches.
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Abstract. This paper investigates the effects of applying different well-
known static and dynamic neighbourhood topologies on the efficiency
and effectiveness of a particle swarm optimisation-based edge detection
algorithm. Our experiments show that the use of different topologies in a
PSO-based edge detection algorithm does not have any significant effect
on the accuracy of the algorithm for noisy images in most cases. That is
in contrast to many reported results in the literature which claim that
the selection of the neighbourhood topology affects the robustness of the
algorithm to premature convergence and its accuracy. However, the fully
connected topology in which all particles are connected to each other and
exchange information performs more efficiently than other topologies in
the PSO-based based edge detector.

Keywords: particle swarm optimisation, edge detection, noisy images,
neighbourhood topology.

1 Introduction

Edges as low level features in an image contain important information that are
utilised in image analysis and computer vision systems. Many algorithms have
been proposed to detect edges for different applications using various different
paradigms such as curve fitting [4], optimization of a criterion [3], statistical test-
ing [9] and soft computing [2] to detect edges. The selection of an edge detection
algorithm for a particular application depends on its performance in variant en-
vironmental conditions (such as illumination and noise) and the requirements of
the system of interest (such as real time ability, continuity of edges, thinness of
edges and scale insensitivity).

PSO as a meta-heuristic method has been used to successfully solve global
optimisation problems and was introduced by Kennedy and Eberhart in 1995
[7]. The main general advantages of PSO in comparison with other heuris-
tic methods such as genetic algorithms, are ease of its implementation, fewer
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operators, a limited memory for each particle and high speed of convergence
[1]. As PSO has a high capability to optimise noisy functions [12], it has been
successfully applied to many problems in noisy environments, such as image seg-
mentation and vision tracking [20].

We previously applied two PSO-based algorithms with different encoding
schemes and fitness functions to noisy binary images containing simple shapes,
such as rectangles, squares, circles, crosses and triangles [16]. Their performances
were acceptable in the binary images but they were inefficient and did not op-
erate well on non-binary images. We revised our PSO-based algorithm through
developing a new encoding scheme and fitness function and examined it on real
images corrupted by two different types of noise (Gaussian and impulsive) [19].
The main idea in this algorithm was to maximise interset distance between the
average pixel intensities of two regions separated by a continuous edge repre-
sented by a particle and minimise intraset distances within both regions. Our
experiments showed that this version could outperform the Canny algorithm as
a Gaussian filter-based algorithm especially in the images with high levels of
noise. However, it produced jagged edges and its overall performance was worse
than robust-rank order (RRO) algorithm as a statistical-based edge detection
algorithm and was slower than the Canny and RRO algorithms. We changed
the fitness function of our PSO-based algorithm through considering a larger
area around each single pixel on a continuous edge than the previous version of
our algorithm and introducing a curvature cost of a continuous edge to reduce
the effect of producing jagged edges [19]. The experiments showed that the new
revised version could detect edges more accurate, more continuous, smoother
than the older version introduced in [17], the Canny and RRO algorithms. But,
the new algorithm was still slower than Canny and RRO. We introduced a dis-
crete constrained PSO-based algorithm with two constraints and used a penal-
ising method to handle these constraints to detect edges [18]. Our experiments
showed that the new algorithm is faster than the algorithm presented in [19]
and there was no significant difference between the localisation accuracy of the
algorithms. In all experiments, we have utilised the fully connected graph as a
neighbourhood structure in our PSO-based edge detection algorithm and never
investigated the influence of the chosen topology on the performance of the
algorithm.

In many cases, researchers use the same social topologies (fully connected
and ring graph) in the PSO algorithm to solve an optimisation problem, but
there is a strong relationship between the selection of the social topology and
the robustness of the algorithm to premature convergence [5]. Therefore it is
needed to investigate which topology is more efficient and more accurate for
the PSO-based edge detection algorithm and how we can improve accuracy
or speed of the algorithm. In this paper, the influence of the chosen topology
on the accuracy and speed of the PSO-based edge detection algorithm will be
investigated.
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2 Background

2.1 Particle Swarm Optimisation

PSO as a branch of swarm intelligence was inspired by the social behavior of
animals and simulated a simplified social model such as flocking of birds and
schooling of fish.

In PSO, there is a population of m particles. The position of ith particle in
an n-dimensional search space at time t is represented as the vector Xi(t) =
(xi1(t), xi2(t), ..., xin(t)). The position of the particle is influenced by its own
experience (particle and memory influence) and that of its neighbours (swarm
influence). Each particle of the population has a velocity represented by V i(t)
that is used to update Xi(t) at each iteration of PSO as in equation (1).

X i(t + 1) = X i(t) + V i(t + 1). (1)

The velocity is updated according to three components: current motion influence,
particle memory influence, and swarm influence:

V i(t + 1) = wV i(t) + C1r1(Xpbesti −X i(t)) + C2r2(X leader −X i(t)) (2)

where r1 and r2 are uniform random variables between 0 and 1; w denotes the
inertia weight that controls the impact of the previous velocity; C1 and C2 are
the self and swarm confidence learning factors respectively; Xpbest represents
the personal best position of each particle so far; and X leader is the position of
the leader which is the particle that is defined by a neighbourhood topology and
guides other particles toward better regions of the search space.

2.2 Neighbourhood Topologies

An important feature of the PSO algorithm is the topology which defines how
particles are connected to each other as an information sharing or exchang-
ing mechanism [14]. A topology defines the social structure among a swarm’s
particles. The topology specifies the leader of each particle based on a typical
neighbourhood graph. There are several typical neighbourhood topologies that
have been proposed in the literature as follows:

– Fully connected graph (FCG): In this case, each particle is fully con-
nected to the other particles (the opposite of the empty topology) [7]. In this
topology, each particle is influenced by the best particle of the entire swarm
(gbest), as well as its own past experience (pbest). In this case, the leader is
global best particle (leader = gbest in equation (2)). This topology is shown
in Figure 1(a).

– Local best graph (LBG): There are k immediate neighbours for each par-
ticle in the graph [7]. It means each particle has a local best particle among k
particles within its neighbourhood. In this topology, each particle is influenced
by a leader in its local neighbourhood plus its own past experience (pbest). In
this case, the leader is called the local best (lbest) particle. This topology is
shown in Figure 1(b). This topology does not need to be symmetrical.
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– Ring topology (RT): This topology is a special representation of the local
best topology in which k = 2 [7]. It means, each particle has just two particles
in its neighbourhood as shown in Figure 1(c).

– Star graph (SG): In this case, one particle is just connected to all other par-
ticles [14] as shown in Figure 1(d). It is called the focal particle. In this topol-
ogy, particles are isolated from each other and they communicate through
the focal particle. This topology is sometime called the wheel topology. In
this topology, leader = focal in equation (2).

– Tree-based graph (TBG): each particle corresponds to one node in a tree
[14]. An example of this topology is shown in Figure 1(e). In this case, the
leader of each particle is its parent in the tree. Whenever each child particle
finds a solution better than the best particle found by its parent, the child
and parent particle are exchanged. In this topology, leader = pbestparent in
equation (2).

– The von Neumann topology (VNT): in this case, each particle has four
neighbourswithin its neighbourhoodandexchanges the informationwith them
[14]. These particles are usually located in its four different directions. An ex-
ample of this topology in 2-dimensional search space is shown in Figure 1(f).

In some papers (e.g., [10], [5]), it has been indicated that if the neighbourhood
size of a particle increases, the performance of the swarm may deteriorate. On
the other hand, if it decreases, the run time of the algorithm may be increased.
In [11], it has been shown that there is a strong relation between the chosen
topology for the PSO algorithm and its robustness to premature convergence
to optimise some benchmark fitness functions. It has been pointed out that
the main cause of premature convergence in the PSO algorithm is the kind of
topology which is chosen for it [5]. In many applications of PSO algorithm, the
fully connected or local best graph is mostly utilised.

2.3 PSO-Based Edge Detection Algorithm

The most important goals of the PSO-based edge detection algorithm is to detect
continuous edges in noisy images. Therefore, to reduce broken edges, we proposed
an encoding scheme for the particles where each particle represents the global
structure of a continuous edge [19]. This edge partitions an area of an image
into two regions, the light and dark regions as can be seen in Figure 2(b), such
that it maximises interset distance between the average pixel intensities of two
regions and minimises intraset distances within both regions.

A continuous edge is encoded into a particle as 〈〈o1, o2〉, 〈m1,m2, . . . ,mmax/2〉
, 〈mmax/2+1, . . . ,mmax〉〉, where max + 1 is the number of pixels on the edge.
The encoding scheme has three parts: the offsets of the closest edge to each pixel
of the image (〈o1, o2〉) and two sets of movement direction sequences from the
pixel (〈m1,m2, . . . ,mmax/2〉 and 〈mmax/2+1, mmax/2+2, . . . ,mmax〉). The values
of two offsets (o1 and o2) are integers ranging from 0 to SqrSize − 1 and mi

ranging from 0 to 7. Here,mi shows the movement direction from a pixel to one of
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Some well-known topologies used in PSO: (a) FCG (b) LBG, (c) RT, (d) ST,
(e) TBG and (f) VNT

the eight possible adjacent pixels in its neighbourhood along the continuous edge
as shown in Figure 2(a). For example, the particle encoding for the continuous
edge in Figure 2(b) can be seen in Figure 2(c).

(a) (b)

3 3 1 1 0 1 1 4 4 5 5 4
(c)

(d)

Fig. 2. The particle encoding scheme [18]: (a) eight movement directions from a pixel
P ; (b) an example of a curve with two regions; (c) the particle representing the curve
with max = 10; (d) eight moving ways from pixel P to its neighbours
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For evaluation of each particle at each generation of the PSO algorithm, at the
first step, the intraset and interset distances of each single pixel on the continuous
edge represented by the particle are calculated by the equations proposed in [18]
according to eight moving ways from the pixel to its neighbours (see Figure
2(d)). Then the possibility score (PScore) and curvature cost factor (CCost) of
the curve fitting on a continuous edge are computed as the proposed equations
in [18]. The score in conjunction with the curvature cost factor as equation (3)
is used for evaluation of each particle [18],

Fitness(C) = PScore(C)− CCost(C) (3)

subject to two constraints:

Cross(C) = 0 and PScore(C) > HP

where C is the curve represented by a particle, Cross(C) shows how many times
the curve C crosses itself and HP is a threshold value which is defined by the
user. The curves, represented by the particles, may sometimes intersect them-
selves, so we set a constraint Cross(C) = 0. On the other hand, PScore(C)
should be larger than HP to avoid false alarms. Therefore, PScore(C) > HP as
another constraint should be satisfied in the PSO algorithm. We proposed a non-
stationary and multi-stage penalising method to handle these two constraints in
[18]. In all experiments that we have arranged so far, the fully connected topology
has been used in the PSO-based algorithm. Therefore, to evaluate the influence
of using different topologies on the accuracy of the algorithm, we change the
velocity equation in [18] as the equation (2) in order to specify the leader’s posi-
tion according to the chosen topology which defines the neighborhood structure
of each particle in the PSO algorithm.

3 Experiment Design

We will compare the performance of PSO with six topologies for edge detection
in noisy environment. We will describe the image set first and then the perfor-
mance measure used in this paper.

To investigate the influence of chosen topology on the efficiency and effective-
ness of the algorithms, we apply the algorithm on a set of benchmark images
including four real images (Saturn, multi-cube, wall and road). The real images
and their ground truth edge maps are available from [6]. The size of each image
is 256 × 256 pixels and their resolution is 8 bits per pixel. These images are
shown in Figure 3. All images are corrupted by two different types of noise. The
noise probability for the impulsive noise ranges from 0.1 to 0.5 with a step size
of 0.1. The peak signal-to-noise ratio (PSNR) value ranges from 0 to 22dB with
a step size of 4dB for the Gaussian noise.

To compare the accuracy of the PSO-based edge detection algorithm with
different described neighbourhood topologies, Pratt’s Figure of Merit (PFOM)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)–(h) four real image from the UCO university and (e)–(h) their manual
ground truth images [6]

is used as a quantitative measure. This measure is commonly utilised to com-
pare the localisation accuracy of edge detection algorithms [13]. This measure is
defined by equation (4),

RPFOM =
1

max(II , IA)

IA∑
i=1

1
1 + βd(i)2

(4)

where II and IA indicate the number of ideal and actual edge points in the
ground truth and the generated edge map images, d(i) is the distance between
the pixel i in the generated edge map and the nearest ideal edge point in the
ideal edge map, and β is a constant scale factor which is typically set to 1

9 . The
ideal value of RPFOM is 1.0 and the minimum could be very small. A larger
value indicates stronger performance.

We use the values w = 0.7298, C1 = 1.4962, C2 = 1.4962 for PSO parameters
in equation (2). The population size was set at 50 and the maximum number of
iterations was 200. These values were chosen based on common settings [8]. In
the PSO-based edge detection algorithm, the minimum length of a continuous
edge,max+1 was set at 21, SqrSize at 4, and HP at 0.5 [18]. For the tree-based
topology, the branching factor was set at 3 [15].

4 Results

Table 1 shows PFOM estimated from the resulting images after applying the
the PSO-based algorithm with different topologies. G6, G10, G14, G18 and G22
represent PSNR from 6dB to 22dB for Gaussian noise and N0.1, N0.2, N0.3,
N0.4 and N0.5 represent noise probability from 0.1 to 0.5 for impulsive noise.
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The columns FCG, LBG, RT, SG, TBG and VNT show the 95% confidence
intervals for the localisation accuracy of the PSO-based algorithm with the fully
connected, local best, ring, star, tree-based and von Neoman topologies after
30 runs for each image in each noise level. The Student two paired t-test was
used to compare the pairwise accuracy means of the topologies. Alternative
hypothesis was inequality of the means. The statistical analysis showed that
the null hypothesis was accepted in most cases, i.e, there is often no significant
difference between their means. This suggests that the topology does not have
any influence on the accuracy of the algorithm.

Table 1. Comparison of accuracy of the PSO-based algorithm with different topologies

Image
Noise 95% Confidence Interval for Accuracy
Level FCG LBG RT SG TBG VNT

Sat G22 0.7728±0.00320.7688±0.00330.7684±0.00370.7649±0.00590.7568±0.00480.7533±0.0032
Sat G18 0.8534±0.00260.8582±0.00220.8595±0.00180.8547±0.00220.8561±0.00400.8584±0.0021
Sat G14 0.7846±0.00280.7867±0.00560.7924±0.00750.7953±0.00750.7918±0.00990.7976±0.0094
Sat G10 0.8832±0.00320.8817±0.00230.8871±0.00730.8899±0.00500.8836±0.00710.8802±0.0068
Sat G6 0.7674±0.00280.7668±0.00330.7630±0.00500.7660±0.00650.7707±0.00710.7670±0.0074

Cube G22 0.6182±0.00320.6178±0.00200.6263±0.00080.6287±0.00130.6270±0.00110.6229±0.0011
Cube G18 0.6466±0.00250.6399±0.00180.6359±0.00110.6384±0.00810.6414±0.00030.6440±0.0019
Cube G14 0.5166±0.00300.5145±0.00180.5152±0.00240.5099±0.00860.5121±0.00420.5089±0.0062
Cube G10 0.6333±0.00270.6316±0.00530.6346±0.00440.6344±0.00530.6368±0.00540.6301±0.0054
Cube G6 0.5892±0.00270.5851±0.00360.5860±0.00150.5819±0.00400.5774±0.00160.5767±0.0014
Wall G22 0.7466±0.00290.7585±0.00510.7602±0.00350.7453±0.00410.7659±0.00340.7649±0.0016
Wall G18 0.7470±0.00300.7504±0.00330.7495±0.00080.7367±0.00080.7372±0.00940.7463±0.0034
Wall G14 0.7913±0.00340.7933±0.00390.7977±0.00540.7922±0.00260.7939±0.00310.7939±0.0021
Wall G10 0.8063±0.00300.8115±0.00000.8034±0.00030.7953±0.00020.7894±0.00060.7957±0.0004
Wall G6 0.7805±0.00280.7820±0.00390.7756±0.00090.7796±0.00190.7772±0.00480.7789±0.0037
Street G22 0.8091±0.00270.8086±0.00340.8046±0.00130.8101±0.00130.8208±0.00320.8158±0.0027
Street G18 0.7440±0.00310.7510±0.00360.7515±0.00140.7442±0.00360.7607±0.00340.7514±0.0083
Street G14 0.7468±0.00290.7480±0.00380.7562±0.00520.7524±0.00750.7532±0.00810.7537±0.0075
Street G10 0.6412±0.00320.6388±0.00290.6318±0.00370.6337±0.00470.6352±0.00260.6347±0.0092
Street G6 0.7502±0.00350.7539±0.00210.7504±0.00350.7448±0.00620.7353±0.00730.7314±0.0085
Sat N0.1 0.4218±0.00270.4209±0.00630.4305±0.00450.4289±0.00730.4215±0.00650.4149±0.0080
Sat N0.2 0.4701±0.00270.4693±0.00270.4677±0.00260.4656±0.00130.4712±0.00260.4746±0.0035
Sat N0.3 0.4836±0.00290.4913±0.00280.4918±0.00300.4866±0.00380.4845±0.00210.4885±0.0055
Sat N0.4 0.1912±0.00310.1886±0.00340.1873±0.00260.1934±0.00280.1932±0.00180.1933±0.0025
Sat N0.5 0.1925±0.00270.1904±0.00130.1897±0.00050.1964±0.00260.1997±0.00120.2002±0.0018

Cube N0.1 0.5698±0.00300.5707±0.00230.5706±0.00160.5699±0.00300.5700±0.00490.5685±0.0064
Cube N0.2 0.5356±0.00290.5417±0.00220.5383±0.00230.5263±0.00940.5289±0.00020.5267±0.0011
Cube N0.3 0.5344±0.00290.5463±0.00250.5515±0.00320.5457±0.00160.5369±0.00820.5427±0.0094
Cube N0.4 0.4066±0.00250.4077±0.00100.4045±0.00220.4024±0.00450.3967±0.00240.3995±0.0027
Cube N0.5 0.2914±0.00310.3035±0.00410.3028±0.00720.2909±0.00810.3061±0.00750.3012±0.0098
Wall N0.1 0.4772±0.00250.4788±0.00400.4736±0.00750.4749±0.00460.4773±0.00090.4834±0.0014
Wall N0.2 0.4887±0.00280.4922±0.00210.5005±0.00640.4881±0.00690.5002±0.00620.4964±0.0062
Wall N0.3 0.5822±0.00300.5841±0.00270.5834±0.00370.5740±0.00400.5735±0.00950.5777±0.0065
Wall N0.4 0.4400±0.00270.4389±0.00300.4322±0.00280.4374±0.00360.4431±0.00170.4433±0.0037
Wall N0.5 0.2564±0.00300.2578±0.00070.2579±0.00330.2568±0.00220.2585±0.00060.2530±0.0017
Street N0.1 0.5421±0.00300.5414±0.00190.5563±0.00200.5548±0.00030.5538±0.00050.5438±0.0010
Street N0.2 0.3814±0.00300.3835±0.00200.3831±0.00260.3900±0.00280.3908±0.00850.3792±0.0039
Street N0.3 0.4565±0.00280.4582±0.00390.4561±0.00230.4595±0.00100.4491±0.00010.4468±0.0046
Street N0.4 0.4133±0.00220.4082±0.00170.4139±0.00270.4067±0.00350.3983±0.00020.3989±0.0001
Street N0.5 0.2755±0.00330.2689±0.00460.2713±0.00460.2731±0.00530.2764±0.00370.2759±0.0035
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Table 2 gives the 95% confidence intervals for the number of fitness function
evaluations of the PSO-based algorithm with the described topologies after 30
runs for each image at each noise level. Statistic analysis showed that the number
of fitness function evaluations of the algorithm with the fully connected graph is
less than that of the PSO-based algorithm with the other topologies. This implies
that the algorithm with the fully connected graph is faster than the algorithm
with the other topologies. However, the accuracy of the algorithm with the fully
connected graph topology does not have any significant difference with those of
the algorithm with the other topologies. This suggests that the fully connected
graph is the best topology for the PSO-based algorithm in terms of efficiency.

Table 2. Comparison of the number of the fitness function evaluations for PSO with
different topologies

ImageNoise Level
Number of Fitness Function Evaluation

FCG LBG RT SG TBG VNT
Sat N0.1 354948±589 356011±571 358978±582 359835±585 358119±634 356935±654
Sat N0.2 385045±1069386010±1056389105±1001389909±1143388017±969 387110±1055
Sat G22 342871±414 343867±426 346829±476 347672±373 345831±412 344754±411
Sat G14 367991±733 368995±746 372131±666 372950±651 371062±834 369955±736

Cube N0.1 345031±361 346036±311 348974±323 350176±448 347902±393 347018±415
Cube N0.2 374948±589 375972±582 379052±475 380050±701 377892±591 376899±639
Cube G22 342654±297 343700±335 346492±353 347747±319 345544±245 344688±335
Cube G14 362553±519 363527±497 366575±432 367584±522 365590±474 364609±508
Wall N0.1 365010±1239365996±1277369095±1236370103±1249368229±1214366920±1232
Wall N0.2 394998±1472395949±1451399121±1473400005±1493397851±1515396965±1476
Wall G22 351359±918 352454±925 355419±817 356295±888 354417±994 353319±919
Wall G14 378192±1319379201±1338382203±1383383247±1327381161±1372380146±1317
Street N0.1 294990±503 295954±477 299021±559 300025±541 297816±473 297039±500
Street N0.2 324903±693 325845±680 328845±741 329780±801 327720±626 326989±753
Street G22 271502±376 272557±382 275574±393 276416±359 274472±402 273500±375
Street G14 310648±710 311589±662 314668±735 315693±728 313716±645 312486±709

5 Conclusions

For the PSO-based edge detection algorithm with two different constraints, it was
demonstrated that the fully connected topology is the superior to the other de-
scribed topologies in terms of efficiency. However the accuracy of the PSO-based
edge detection algorithms was not influenced by the use of different topologies
and there is no significant difference among their accuracies. These results are in
contrast to the comments in the literature that the fully connected neighbour-
hood topology may converge to a local optima since all particles are connected
together and they quickly communicate and share acquired information in the
swarm. The results also showed that if the size of the particle neighbourhood is
increased in the PSO-based edge detection algorithm, the algorithm speeds up
meanwhile the accuracy of the algorithm is not significantly changed.
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Abstract. In order to transform ancient Malay manuscript images to be cleaner 
and more readable, enhancement must be performed as the images have differ-
ent qualities due to uneven background, ink bleed, or ink bleed and expansion 
of spots.  The proposed method for image improvement in this experiment con-
sists of several stages, which are Local Adaptive Equalization, Im-
age Intensity Values, K-Means Clustering, Adaptive Thresholding, and Median 
Filtering.  The proposed method produces an adaptive binarization image. We 
tested the proposed method on eleven ancient Malay manuscript images. The 
proposed method has the smallest average value of  Relative Fore-
ground Area Error compared to the other state of the art methods. At the same 
time, the proposed method have produced  the better results and better reada-
bility compared to the other methods.  

Keywords: Local Adaptive Equalization, Image Intensity Values, K-Means 
Clustering, Automatic Threshold, Median Filtering. 

1 Introduction 

Many researchers have successfully implemented image enhancement techniques for 
cleaning and separating background from the foreground in manuscripts or documents 
with a history of degraded or poor quality.  A combination method is proposed to 
improve degraded images of the documents involving direct information of the de-
tected edge images [1].  In line with that, a general threshold value can also separate 
the background and foreground on a shadow image [2, 3]. On the other hand, separa-
tion between foreground and background on carbon copied medical forms is done 
using the wave trajectory method [4].  Later, multiple threshold levels have been 
introduced to separate the text from the background by [5]. Besides that, an adaptive 
thresholding method based on adaptive window generation is used to separate textual 
content from the background in old Arabic documents [6]. This method begins with 
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text normalization and then separates the background using a 3 × 3 kernel which 
is used in the reading of the text block. They use edge direction matrixes and combi-
nation of projection profile to perform binarization of images. 

Objective of this paper is to propose enhancement steps to overcome extreme major 
ink bleed surrounding textual manuscript images. This paper is divided into five sec-
tions. Section 1 introduces the background of the proposed method, including the re-
searchers who had previously studied the expansion of the image, amendment of 
the threshold value, and adjustment in the binary image of the manuscript.  Section 2 
deals with the current methods which are the basis to this new proposed method.  Sec-
tion 3 explains the proposed method.  Section 4 presents the results and discussion on 
the proposed research, while the last section presents the  conclusions  of  this research. 

2 State of the Art 

Several methods proposed by previous researchers have been used as the basis of this 
experiment, which are:   

- Niblack’s Method [7]: The Niblack’s Method is a simple and efficient method for 
adaptive thresholding.   Niblack’s Method can read the region of the image on a 
field that has less quality level.  The local threshold used on the Niblack’s method is 
set as follows:                                                   (1) 

where  is local threshold,   and   are a local mean and standard deviation which 
calculated over a local    window,  w is the parameter to kernel window size.  
– Nick’s Method [8]: This method is proposed by Khurshid et al. [8].  The Nick’s 
method was developed from the Niblack’s method. It tried to solve low contrast prob-
lem by shifting down the thresholding value.  The thresholding formula is as follow-
ing:                 

 ∑
,                                   (2) 

where k is a control factor in the range of [–0.1, –0.2], Pi = the image pixel grey-scale 
value and NP = the total number of pixels in the image. The author suggested the       
k = –0.1 [7].  Kefali et al. [9] claimed that Nick’s method gave the best performance 
compared to previous methods.  However, problems of low contrast images still re-
mained unsolved.   

- Bataineh’s Method [6]: This method suggests an adaptive threshold for low-
contrast images and thin pen stroke problems.  At first, the method only includes 
adaptive thresholding equation [10], then they extend the method [6] uses adaptive 
window generation and adaptive thresholding value towards repairing the image con-
trast based on global and local image information.  
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                               (3) 

                                         (4) 

 

where, T is the thresholding value, mW is the mean value of the window’s pixels, σW is 
the standard deviation of the window’s pixels, mg is the mean value of all pixels in the 
image and σAdaptive is the adaptive standard deviation of the window.   

Based on this values, the binarization process is defined as follows:  , ,                     ,    , ,                                                      (5) 

where I (x, y) is the binary image and ,  is the input pixel value of the image. 

Alternatively, Bousellaa et al. [11] use iterative segmentation estimation approach 
to enhance Tunisian degraded manuscript images in Y channel.  They perform itera-
tive estimation by using Expectation Maximum (EM).  They have also extended the 
EM by introducing maximum likelihood to approximate the probability that falls into 
either text or background classes.   

Niblack’s method produces images with characters of better shape but the threshold-
ing value is not appropriate because the image is darker. The Nick’s method almost pro-
duces good image, but the shape for images with ink-bleed expands-spots images is not 
so obvious and several results has lots of black regions. Bataineh’s image is almost the 
same as the Nick's method, but Bataineh’s method could further boost the image for 
more obvious characters shape for the low quality image. However, the results is also not 
clear for image that has damage around the characters. 

 All the methods above have been tested on different types of document image 
quality such multi-color image consisting different size fonts, spotted, low and very 
low-quality image, non-uniform illumination including thin pen stroke problems 
based on the DIBCO 2009 and 2011 benchmark image datasets.  However, this  
dataset neglect document image that contains extremely major ink bleed around the 
textual information. This problem is found to be a major issue in preserving ancient 
Jawi-Malay handwritten manuscript in the Malaysian National Library.  Figure 1 
shows some examples of images of old Jawi-Malay Manuscript which have different 
levels of image quality.  

In respond to the vital need from the Jawi manuscript reader community, we ex-
plore methods to overcome the above mentioned problems. 
 
                
 
 
 
 

Fig. 1. Several examples of images of old Jawi-Malay manuscripts that have phases of different 
qualities that were used in this experiment. From the left: uneven background, ink bleed and ink 
bleed-expands spots images. 
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3 The Proposed Method 

The Jawi-Malay manuscript images used in this research focus on the problem of ink 
bleed around the Jawi handwriting although there are some dirt or stain outside the 
Jawi handwriting. To solve these problems, we propose a method of binary adaptation 
to improve and enhance the quality of old Jawi Manuscript images.  The method is 
illustrated in Figure 2 below: 

 

Fig. 2. The proposed flowcharts of adaptive binarization of ancient Malay manuscript images 

Our proposed method are made up of the following steps: Local Adaptive Equali-
zation (LAE) and image intensity values (IIV) process, K-Means Clustering to deter-
mine the automatic threshold, Adaptive Thresholding, and finally Median Filtering.  
Firstly, we improve and enhance the quality of the ancient images of Jawi-Malay 
Manuscripts using the LAE as follows: 

,  =    ,    ,                     (6)                                               (7) 

where ,  is the result of image transformation while ,  is the input image, 
R is the coefficient as defined in Equation (7) with k = 0.8, m  and  σ are the mean and 
are the mean and standard deviation values of  a fixed  window subsequently,  M  is 
the average of the original image, and c is a constant.  In this experiment, we apply 31 31 window size as proposed by Niblack [7].  Next, we perform 
Image Intensity Values (IIV) process as below: 

,   ,                          (8) 

where the value of α = 0.1,  and  are the maximum and minimum values of 
pixels in   , , which are  the resulting images  of the LAE process. Consequently, 
the IIV process helps to  reduce apparent background noise. However, this step is still 
insufficient for smaller noise or shadow noise. 
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In order to decide either a pixel belongs to the foreground or the background, we 
use K-Means Clustering technique as one of the steps. Then, we separate the shadow 
around the characters by proposing an adaptive threshold process to all clustering 
pixels. This proposed method, an extension to [12] and [13], searches for the adaptive 
threshold value based on a bi-level histogram.  In [12], the threshold value searching 
is carried out by determining the balance point of the uncertain threshold value, then 
balancing it with weights closes to the uncertain threshold point until the actual thre-
shold value is found.  

We apply histogram graph by using Gaussian Windows to obtain smoother line 
graph before calculating the two highest peak values.  We summarize the proposed 
automatic thresholding process as Algorithm 1 and the process is illustrated in Figure 3: 

Algorithm 1. Proposed automatic thresholding process. 
BEGIN 

Let f  = Image histogram , P  = First highest peak (background image), P  

= Second highest peak (foreground image), C  = The cluster of i, _  = 

Minimum grey level of I, = Number of pixel of i, and  = The step 

to next grey level; 

DIVIDE grey level to 5 clusters (C );{Each cluster = 50 pixels number} 

DETECT which cluster belongs to P ; 

IF P    C max  

 THEN  r   =  C  ; 
IF  P  r  

 THEN  r   =  C  C
; 

 W  = [P : r ]; 

 Val_t  = minimal grey level value in W ; 

IF W  = [1: r ]; 

 Val_t  = minimum grey level value in W ; 

ELSE 

 W  = [C max: r ];   

 Val_t  = minimum grey level value in W ; 

     ENDIF 

   ENDIF 

ENDIF 

IF _  < 100 

 THEN  = tmp -1; 
   _ ( ) =  ( ) - _ ; 

ELSE 

 thresh = _ ;   

ENDIF 

IF _ ( ) < 100 

 THEN  = tmp -1; 
   _ ( ) =  _ ( ) - _ ; 

ELSE 

 thresh = _ ;   

ENDIF 
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where r dan r  are the range for the first and second cluster subsequently, C  _max and C  _max are the maximum gray level values  of the first and 
second cluster in order,  W2 ,  W3,   W4   are the range limit set for r   and r , p  and p  are the first and second peak values in the histogram bi level correspondingly, 
and f  is the histogram of  the relevant image.  Lastly, Val_t, Val_t1, Val_t2  are 
minimum limit values surrounding to a maximum value of the second peak.   

 
Fig. 3. The graph shows the distribution of the existing 5 groups (clusters) and the table on the 
right is to clarify the limits of pixel gray level to obtain the automatic threshold.  Number 16 is 
an automatic threshold (thresh) value and it was taken from the total number of pixel-based 
gray level value of the second peak. 

Next, we accomplish final step in adaptive threshold process as below:   

,   1,                 ,   0,                                                          (9) 

where ,  is an output image after performing adaptive binarization, ,  is an 
image result after applying K-Means clustering, and thresh is automatic threshold 
value based on bi-level histogram.   

  , ,   2 ,                                  (10) 

where M is an average value of the variable . 

, , ,                                 (11) 

where ,  is an output image of  ,  after applying median filter with a 20 20 20 20 window size, and  is a constant with value of 0.03.  
In order to remove unwanted noise, we reapply median filtering with a  3 3  

kernel size onto  image. 

,  ,   , ,                         (12) 

where ,  is a sum product image of Median filtering process of image, g , . 
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     ,                     ,                                        (13) 

where,  and  are the foreground areas in the reference image and the test data 
image.  The analytical score values for each of the three types of degraded document 
images after binarization by the various methods are shown in Table 1.  

Table 1. The RAE values and their averages for images of different quality levels taken from  
Hang Tuah Malay Manuscript after using the proposed, Niblack’s [7], Bataineh’s [6] and 
Nick’s [8] methods 

Quality  
  Levels 

 
Image 

Proposed 
Method 

Niblack’s 
Method 

[ 7 ] 

Bataineh’s 
Method 

[ 6 ] 

Nick’s 
Method 

[ 8 ] 
 

  RAE 
Value 

RAE 
Value 

RAE 
Value 

RAE  
Value 

Uneven  
Background  
Images 

Im63 0.0769 0.3258 0.1600 0.1311 

Im65 0.0787 0.3377 0.1748 0.1347 

Im67 0.0769 0.2965 0.1497 0.1360 

Im69 0.0782 0.1931 0.1570 0.1428 

Im77 0.0815 0.1356 0.1480 0.1331 

Ink-Bleed 
Images 

Im99 0.0764 0.3429 0.1855 0.1620 

Im101 0.0649 0.3905 0.1712 0.1766 

Im107 0.0678 0.3812 0.1553 0.1421 

Ink-Bleed and 
Expansion 
Spot Images 

 Im61 0.0248 0.4025 0.1294 0.1177 

Im109 0.0467 0.4509 0.1432 0.1122 

Im111 0.0342 0.4117 0.1412 0.1224 

AVERAGE 0.0642 0.3335 0.1559 0.1373 

 

The smaller the value of RAE for an image, the better the quality of the image.  Also, 
this means that the error of the pixels in the foreground area of the images is little.  
From Table 1, the proposed method achieved better RAE results of 0.0643 compared 
to Niblack’s, Nick’s and Bataineh’s methods which achieved 0.3335, 0.1373, and 
0.1559  respectively. Therefore the resulting images produced by our proposed me-
thod are better and more readable for all types of image studied, i.e. uneven back-
ground, ink bleed and ink bleed-expands spots images. 

5 Conclusion 

Most of the Hang Tuah Manuscript image datasets are suffering from extremely bad 
qualities that leads to inconvenience among readers. Therefore, the Pattern Recognition 
Research Group has been continuously put in effort to improve the existing image 
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processing methods in order to dig up invaluable information from our local ancient 
manuscripts. In summary, the proposed method shows a smaller value of average RAE 
for all the three levels of image qualities in comparison to the other state of the art me-
thods which are Niblack’s [7], Nick’s [8] and Bataineh’s [6] methods.   

Acknowledgments. Thanks to the National Library of Malaysia (PNM).  This re-
search project was funded by the research grants UKM-TT-03-FRGS0130 and UKM-
TT-03-FRGS0129.  
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Abstract. Semantic Relatedness Measurement (SRM) is one of the most 
important applications of reasoning by ontologies and different disciplines of 
AI, e.g. Information Retrieval, are firmly tied to it. The accuracy of SRM by 
lexical resources is largely determined by the quality of the knowledge 
modeling by the knowledge base. The limited types of relations modeled by 
ontologies have caused most of the SRM methods to be able to detect and 
measure only a few special types of semantic relationships that is very far from 
the concept of semantic relatedness in human brain. Concepts of lexical 
resources are usually accompanied with a plain text narratively defines the 
concept. The information included in the definition of concepts sound very 
promising for SRM. This paper intends to treat this information as formal 
relations to improve SRM by distance-base methods. In order to do so, concepts 
glosses are mined for the semantic relations that are not modeled by the 
ontology. Then, these relations are employed in combination with classic 
relations of the ontology for semantic relatedness measurement according to the 
shortest path between concepts. Our evaluation demonstrated qualitative and 
quantitative improvement in detection of previously unknown semantic 
relationships and also stronger correlation with human judgment in SRM. 

Keywords: Semantic Relatedness Measurement, Ontology, Definition of 
Concepts, Gloss, and Path. 

1 Introduction 

Semantic Relatedness Measurement (SRM) is one of the most important and 
challenging applications of ontologies. It is widely used in Information Retrieval and 
Knowledge Extraction (e.g. semantic annotation, indexing, query expansion, word 
sense disambiguation, and named entity recognition), Machine Learning, Knowledge 
Management and Engineering, etc. 

Human`s brain may recognize two things semantically related because of wide 
variety of semantic links between them. The most familiar types of semantic 
relationships consist of similarity, inclusion, interaction, bilaterality, or even 
opposition. For example, taxi and car are semantically related because of their 
common applications, car and wheel because wheel is part of car, car and fuel 
because car uses fuel, or even heat and cold because they are opposite. However, due 
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to limitations of ontologies to model a domain knowledge, existing ontology-based 
methods of SRM can not perceive and measure most of such semantic relations.    

Research Challenge. Effective SRM needs a detailed model of the knowledge, 
whereas elaborating the model of domain knowledge is very expensive and 
complicates reasoning mechanisms [1]. Moreover, the knowledge of a domain, 
whatever restricted, is too complicated that a fully elaborated ontology that models all 
aspects of the domain knowledge is extremely elusive. Considering these trade-offs, 
ontology engineers usually prefer to connect the concepts by a small set of general 
relations and derive complicated relations from the general ones. Hence, most 
ontologies suffer from the lack of non-classical semantic relations, like those 
introduced by [2],  because it is not possible to drive all of non-classical relations 
from the general ones. 

SRM methods, like other applications of ontologies, are seriously affected by this 
limitation. This problem has been widely addressed in the past two decades by 
different approaches like using concepts glosses or employing external resources e.g. 
collection of documents. However, the lack of non-classical semantic relations 
introduces biases into any application that relies upon SRM. 

Contribution. An ontology is an explicit, formal specification of a shared 
conceptualization of a domain of interest [3], where formal implies that the ontology 
should be machine-readable [4]. However, using natural language to express concepts 
definitions prevents the machine to use a great deal of information conveyed in this way. 

In this paper, a new method of using the definition of concepts in SRM has been 
proposed. The method relies on the semantic relationships among the concepts 
cooperate to define a concept and the defined concept. This idea is employed in order 
to extract new semantic relations from concepts glosses and increase the connectivity 
of the semantic network. The richer connectivity in the knowledge base, the more 
accurate semantic relatedness measurement is possible. 

Organization. In the next section, the literature review will be presented. In the third 
section, our solution to improve the accuracy of SRM methods, that is based on [1] 
contribution to WordNet will be proposed. The proposed method will be examined in 
the forth section. Section 5 concludes and draws some future work. 

2 Related Work 

The classic categories of semantic relatedness measurement methods using lexical 
resources consist of distance-based, information theoretic-based, and gloss-based 
approaches [5]. 

Distance-based methods, like [6, 7], rely on the notion that the shorter is the length 
of path between two concepts in a semantic network, the stronger the semantic 
relationship between them will be. This idea is seriously affected by common 
inconsistencies of semantic networks [8, 9] and different heuristics, like patterns for 
meaningful paths and weighting paths, have been proposed to alleviate the problem 
[10-13]. 
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Information theoretic-based methods use information contents of concepts to 
measure their semantic relatedness. The information content of a concept is defined as 
–log[p(c)], so that p(c) is the probability by which the concept c is used in a collection 
of documents [14]. In this approach, the semantic similarity is measured by the 
amount of shared information content by the two concepts. They generally use corpus 
statistics in order to calculate the p(c). 

The dependency of information theoretic-based methods motivated [15, 16] to 
calculate the information content of concepts without using external resources.  

Gloss-based methods, the third category, intend to utilize the definition of 
concepts--the unused parts of the information provided by ontologies. Thus, these 
methods are able to reflect some kinds of semantic relationships that are not 
observable through classic relations. Reference [17] introduced this idea for Word 
Sense Disambiguation. It compared definitions of different meanings of a word to its 
neighbor words in a text in order to find the best meaning of an ambiguous word. This 
idea has been expanded by Pedersen et al. 

Reference [18] used the comparison of concepts definitions in order to measure their 
semantic relatedness. Since definitions of concepts are generally short, they 
incorporated the definitions of directly connected concepts to the definition of the 
concept. Moreover, [18] valued longer phrases more than shorter ones when compared. 

Pederson et al. used the definition of concepts in [19] too. In this method, the 
definitions of concepts are used as a corpus to constitute the co-occurrence matrix of 
the concepts. Using this matrix and the relations of the ontology, the second order co-
occurrence matrix will be constituted that describes each concept as a vector in the 
semantic space of the ontology.   

There are also hybrid methods that try to combine different approaches in order to 
overcome one`s disadvantages by the other one`s advantages [10, 14, 20]. 

In spite of different efforts and studies, comprehensive SRM that takes into 
consideration the most possible semantic relationships is still an open problem. 

3 Proposed Method 

The concepts of an ontology are usually accompanied with a narrative plain text 
which informally defines the concept and is called definition or gloss. The definition 
of each concept includes other concepts that implies important semantic relationships 
among the defined concept and the concepts used in the definition. Many times, these 
semantic relations are not formally modeled by the ontology because they do not 
conform to the classic and standard types of the semantic relations defined by the 
ontology. For instance, consider the way “gasoline” is shown in WordNet. (Fig. 1)  

The gloss of “gasoline” in WordNet implies that there are strong semantic 
relationships among “gasoline” from one side and “hydrocarbon”, “hexane”, 
“heptane”, “octane”, “petroleum”, “fuel”, and “internal-combustion engines” from 
the other side. However, the non-classic relationship between “gasoline” and 
“internal-combustion engine” is not modeled because it does not conform to the 
standard semantic relations of WordNet like is-a and is-part-of. 
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Fig. 1. The representation of WordNet for “Gasoline” 

These types of semantic relations could play crucial roles in Information Retrieval 
and Natural Language Processing applications like Word Sense Disambiguation, text 
summarization, and spelling error correction [2, 21]. However, since they are not 
introduced as formal relations, they are not usually taken into account by the SRM 
methods that use the ontology. Therefore, in order to employ the information 
embedded in the definition of concepts, it should be explicitly extracted. 

According to [1], Gloss and Attribute are the two types of direct semantic relations 
between noun concepts embedded in their definitions. Our study focuses on the 
semantic relations exist between noun concepts in order to avoid complicated 
reasoning rules. Since, for example, the degree of semantic relatedness between 
“automobile” from one side and “wheel”, “fuel”, “road”, “SUV”, or “cab” from 
another side is the same, although each pair is connected by different semantic 
relations. Thus, the semantic relations derived from definition of concepts could be 
generalized to definition-based relations. 

3.1 Definition-Based Relations 

Considering ontology O and the definition of each concept in O as a set of concepts of 
O that are cohered with stop words, the semantic relationships among the noun 
concepts used in a definition and the defined concept can be defined as the following: 

Definition1. Concept c1 has Refer-To relationship with concept c2, if c2 is used in the 
definition of c1. (1) 

 
 

Gasoline (gasolene, gas, petrol)

a volatile flammable mixture of hydrocarbons (hexane and heptane and octane etc.) 
derived from petroleum; used mainly as a fuel in internal-combustion engines)

hydrocarbon fuel

leaded gasolinenapalmunleaded gasoline

gasohol

Hypernymy

Holonymy

Meronymy

Definition Synonym
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, ,  (1) 
 
Definition2. Concept c1 has Referred-By relationship with concept c2, if c1 is used in 
the definition of c2.(2) 

 , ,  (2) 
 

For example, according to WordNet (Fig. 1) “gasoline” has Refer-To relationship 
with “internal combustion engine”. Conversely, “internal combustion engine” has 
Referred-By relationship with “gasoline”. These relations could be very helpful in 
applications like Word Sense Disambiguation (WSD). For instance, the semantic 
relationship between “car”(as “automobile”) and “gas”(as “gasoline”) can not be 
effectively measured through general relations of WordNet, but definition-based 
relations easily reveal their semantic relatedness by a 2-long-path (“gasoline” 
“internal-combustion engine” “automobile”).  

Table 1 lists the concepts that are in definition-based relation with “gasoline” 
among which “fuel”, “napalm”, “leaded gasoline”, and “unleaded gasoline” are 
crossed because of the existing classic relationships defined by WordNet between 
“gasoline” and these concepts. 

Table 1. Definition-based semantic relations for “Gasoline” 

Relation Type Related Concept 

Refer-To 
1) Petroleum 2) Hexane 3) Fuel 
4) Octane 5) Hydrocarbon 6) Heptane 
7) Internal-combustion engine 

Referred-By 

1) mileage 10) put put 19) ethyl alcohol 
2) antiknock 11) gas pump 20) vapor lock 
3) miles per gallon 12) napalm 21) gasoline gauge 
4) gasoline_engine 13) gas engine 22) power mower 
5) gasoline_station 14) isobutylene 23) tetraethyl lead 
6) gasohol 15) fuel line 24) carburetor 
7) gas tank 16) octane number 25) hydrocracking 
8) additive 17) unleaded_gasoline 26) gasoline tax 
9) gas line 18) leaded_gasoline  

3.2 Semantic Relatedness Measurement  

Reference [22] is one of the earliest and most simple distance-based method of SRM. 
It defined the semantic distance of two concepts as the length of the shortest path 
between them. Using the same idea, equation (3) linearly distributes the semantic 
relatedness form MaxVal to zero according to the length of the shortest path between 
the two concepts. 
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Where len(c1, c2) is the length of the shortest path between c1 and c2 and MaxLen is 
the maximum length of shortest path between two concepts in the semantic network. 
The shortest path is a mixture of all available relations in the ontology and there is no 
pattern to select or exclude relations. The farther are the two concepts, the less is their 
semantic similarity, and vice versa. 

4 Evaluation 

In this section, the extraction of definition-based relations from WordNet, as the most 
famous lexical ontology, will be described. Then, the effects of these relations on 
semantic relatedness measurement by equation (3) will be examined and discussed.  

4.1 Extraction of the Relations 

As it was stated in the previous section, other concepts than nouns are ignored in this 
study. In order to avoid the difficulties of automatic word sense disambiguation we 
used WordNet Gloss Corpus, which is a manually-tagged disambiguated gloss set of 
WordNet 3.0. Mining the glosses of noun concepts, 476026 links were found, among 
them there were two groups of redundant links. 

The first group existed between two concepts that mutually include the other one in 
their glosses, i.e. when c1 is used in the gloss of c2 and c2 is used in the gloss of c1. 
There were13733 instances of such cases where Referred-By relations were omitted 
in favor of Refer-To relations.  

The other redundant links are the relations previously modeled by classic relations 
of the ontology. These links (106248) were also ignored in favor of classic relations 
of the ontology. 

After redundancy elimination 356047 links remained, that is more than 4 
definition-based relationships for each noun synset in WordNet 3.0. 

4.2 Evaluation Method and Results 

Rubenstein and Goodenough (1965) asked 51 persons to judge about the semantic 
similarity of 65 pairs of words ranging from “highly synonymous” to “semantically 
unrelated”. Miller and Charles (1991) found similar results in a similar study using 30 
pairs of Rubenstein and Goodenough`s and 31 subjects [21]. The results of their 
experiments made a baseline for the evaluation of semantic similarity methods. In the 
absence of appropriate dataset for the evaluation of semantic relatedness measurement 
methods, these experiments have been adopted as an independent preliminary method 
for the evaluation and comparison of SRM methods. 

In order to evaluate the effects of definition-based relations, the semantic 
relatedness of Miller and Charles’ pairs were calculated by equation (3) with two 

, 1 , , max, ∈ ,  (3)
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different circumstances. At the first time, the shortest paths do not include definition-
based relations. This run is called Run I and makes the baseline of the evaluation. At 
the Second time, called Run II, the shortest paths include classic relations of WordNet 
along with the definition-based relations.  

The results of using equation (3) to calculate the semantic relatedness of Miller and 
Charles’ pairs are depicted in Fig. 2. The series marked by ◆ indicates the human 
judgments, the series that marked by ■ indicates the results of the experiment using 
just the standard relations of WordNet, and the series marked by ▲ indicates the 
results of using equation (3) when the semantic network of WordNet is enriched by 
definition-based relations. 

The results of Run I and Run II are compared with the human judgments obtained 
from Miller and Charles experiment. The Pearson correlation coefficient of the human 
judgment and the results of Run I and Run II are respectively 0.872 and 0.905. 

 

 

Fig. 2. The values of semantic relatedness for instances of Miller and Charles (1991), Run I, 
and Run II 

4.3 Discussion 

According to the statistics mentioned in section 4.1, about 25% of the links obtained 
through mining of concepts glosses have been formerly modeled by classic relations 
of WordNet. This fact supports the idea that there are strong semantic relationships 
between a concept and the other concepts which constitute its definition.  

Furthermore, the more smooth descent of the curve of Run II and its higher 
correlation with human judgment, in comparison to Run I, confirm the positive 
contribution of definition-based relations to [22]’s distance-based SRM method.  

The Pearson correlation coefficients of the two runs with the human judgment, 
along with the most prominent methods of semantic similarity/relatedness 
measurement have been listed in Table 2. The correlation of 0.905 for the Run II 
shows that using equation (3) and the shortest path consists of all various relations of 
the ontology perform as well as state-of-the-art distance-based SRM methods. 
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Table 2. The Pearson’s correlation coefficients of some of semantic relatedness or similarity 
measurement methods [23] 

Method M&C Path IC Gloss Resnik 0.774 N Y N Hirst and St–Onge 0.744 Y N N Leacock and Chodorow 0.816 Y N N Lin 0.829 N Y N Jiang and Conrath 0.836 Y Y N Li et al. 0.882 Y Y N Patwardhan and Pedersen 0.910 N N Y KhounSiavash and Barrani-Dastjerdi 0.910 N N Y Yang and Powers 0.921 Y N N Alvarez and Lim 0.913 Y N N Pirró 0.912 N Y N Shortest Path(Run I) 0.872 Y N N Shortest Path(Run II) 0.905 Y N Y 
 

However, comparing the 3 curves in Fig. 2 demonstrates that the values of 
semantic relatedness for the both runs decrease more slowly than the human 
judgments, so that the minimum SRM for Run I and Run II are, respectively, 1 and 2 
that are more than our sense of semantic relatedness for the pairs at the button of the 
list. This inconsistency, which exists in both runs, probably originates from the two 
assumptions, namely linear behavior of equation (3) and using all possible 
combination of relations to find the shortest paths. In that, diversifying the types of 
relations and increasing the length of a path decrease the semantic information 
conveyed by the path.  

Furthermore, the experiments of Rubenstein-Goodenoug and Miller-Charles suffer 
from two important flaws. First, they asked subjects to judge about semantic 
similarity of pairs and not semantic relatedness. It is noticeable by considering the 
scores of instances; for example, “automobile-cushion” in spite of having direct is-
part-of relation is assigned a small score. Moreover, there are non-standard semantic 
relationships between concepts like those relate “bird” to “woodland” or “car” to 
“journey” which were not scored as much as similarity. Additionally, the limited 
number of instances does not contain a lot of important semantic relationships that 
should be considered when SRM methods are being evaluated. 

Second, judging the intended meaning of a polysemous word is possible just by 
considering its application in the context. For this reason, some methods, like [18], in 
spite of having good results in application based evaluation, are not very successful in 
independent evaluation like Rubenstein-Goodenough or Miller- Charles.  

Apart from that, we strongly believe that including the relations embedded in the 
definition of concepts expands the span of semantic relatedness measureable through 
the information provided by ontologies. The considerable improvement in the 
correlation of Run I by adding these relations confirms the value of information these 
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relations provide for the simple distance-based method. Although, the dataset does not 
contain a lot of non-classical semantic relations which are easily detectable by 
definition-based relations. 

5 Conclusion and Future Work 

This study intended to improve semantic relatedness measurement by the information 
embedded in the definition of concepts. To this end, the narrative information of glosses 
was extracted as formal relations in order to enrich the connectivity of the semantic 
network.  These relations enhance the poor ability of semantic network to reflect non-
classical semantic relations and lead to more accurate semantic relatedness measurement.  

In order to evaluate the effects of these relations, they were extracted from a 
manually sense tagged version of WordNet. Adding the definition-based relations to 
the semantic network of WordNet caused 3% improvement in SRM by a simple 
distance-based method in comparison to when it used just classic relations of 
WordNet.    

As the future work, this study will be continued in two areas. The first issue to be 
solved is some small anomalies caused by adding definition-based relations. This can 
be done by pruning irrelevant relations, weighting relations, and changing the way of 
finding the shortest path between concepts. The second is to find a way to compare 
different SRM methods in measuring non-classical semantic relationships.  
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Abstract. We present and evaluate MKBUILD, a tool for creating
domain-specific ontologies. These ontologies, which we call Modular Kno-
wledge Bases (MKBs), contain concepts and associations imported from
existing large-scale knowledge resources, in particular WordNet and Wi-
kipedia. The combination of WordNet’s human-crafted taxonomy and
Wikipedia’s semantic associations between articles produces a highly
connected resource. Our MKBs are used by a conversational agent op-
erating in a small computational environment. We constructed several
domains with our technique, and then conducted an evaluation by asking
human subjects to rate the domain-relevance of the concepts included in
each MKB on a 3-point scale. The proposed methodology achieved pre-
cision values between 71% and 88% and recall between 37% and 95% in
the evaluation, depending on how the middle-score judgements are inter-
preted. The results are encouraging considering the cross-domain nature
of the construction process and the difficulty of representing concepts as
opposed to terms.

1 Introduction

Conventional approaches to building domain ontologies typically rely on col-
lections of domain text (i.e., ontology learning from text) or expert-crafted
structured knowledge resources (e.g., WordNet [6], Cyc [11]). Such centralised
approaches require enormous effort from domain experts and knowledge engi-
neers; hence, these resources are slow to keep up with new knowledge and have
considerably smaller coverage. The realisation of these drawbacks has resulted in
the rise of an ontology construction approach using collaboratively-maintained
resources: e.g., Freebase [3], YAGO [20] and DBPedia [1]. Despite the advantages
of collaboratively maintained resources, issues of trustworthiness and subjective-
ness related to social tagging can translate to poorer quality categorisations. For
this reason, a backbone provided by expert-crafted resources is still desirable.

In this paper we present a methodology for construcing modular knowle-
dge bases (MKBs) using WordNet and Wikipedia. As both resources provide
their own strengths and shortcomings, their amalgamation increases the cover-
age and reliability of the resulting knowledge bases [8]. These MKBs combine the
strengths of both resources as follows. The developer of the MKB first defines a
domain using a Wikipedia article. A set of relevant concepts are extracted based
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on being linked from the article. WordNet is then used to add parent and child
concepts. Our methodology has been implemented as a tool called MKBUILD to
construct MKBs for specific domains with minimal involvement from the devel-
oper. Our work on MKBs is motivated by the need to provide knowledge bases
for a conversational agent designed to operate on a mobile platform with a small
computational footprint. This agent is unable to accommodate large knowledge
resources such as Cyc or DBPedia due to issues related to memory and storage
size, and efficient access and processing. Our approach allows different MKBs to
be loaded onto the platform as required depending on conversational flow.

The tasks of extracting domain-specific terms and of automatically construct-
ing ontologies (typically using language processing techniques over Wikipedia or
text corpora) have been widely studied: e.g., [12,15] for the former and [17,22]
for the latter. To some degree, our approach combines these tasks. First, a set
of “maximally general” concepts are extracted from Wikipedia and WordNet,
which form the roots of the multiple sub-ontologies associated with a target
domain. Second, the sub-ontologies rooted at each of these concepts are con-
structed, including association links between the concepts. These links form the
basis of a generic semantic relatedness technique (not described here). The con-
struction process of the MKBs is outlined in the following section, followed by
the description of a user-based evaluation and a discussion.

2 Building Domain-Specific MKBs

In this section, we briefly describe the proposed methodology for building Mod-
ular Knowledge Bases1. An MKB is an ontology built around a main concept
representative of a domain, and features a set of sub-taxonomies linked by the
associations amongst its nodes (concepts). The target architecture of MKBs is
shown in Figure 1. To build MKBs, we use two knowledge resources, namely,
WordNet [6], a lexical dictionary that contains multiple word senses grouped
by their meaning, and Wikipedia2, an online encyclopaedia that operates like
a collaborative wiki. WordNet features a taxonomy of concepts, but lacks rela-
tionships that are not lexical (e.g., Lion lives in Savannah). On the other
1 We omit some details, such as related work here for reasons of space: full details can

be found in [13].
2 http://en.wikipedia.org/
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hand, Wikipedia does not have a taxonomical organisation; rather, we focus on
the wikilinks featured in every article. A wikilink represents a concept that helps
in the understanding of definitions3. Although wikilinks do not always describe
a positive association, we are interested only in existence of such associations
rather than their nature. The combination of Wikipedia wikilinks (“flexible” in
the sense that humans themselves choose what to link in Wikipedia articles) and
the WordNet hierarchy (“rigid” because property inheritance cannot be changed
by humans) helps us to produce richer MKBs. Wikilinks have been previously
analysed as a reliable set, though not absolute, of associations between articles
[9,16]. For our approach, we use unidirectional wikilinks instead of mutual (from
article a to b and vice versa) since we are interested in using such associations
for conversational topic transitions. Thus, we are prepared to tolerate a more
liberal notion of “relatedness”.

Our process for constructing domain-specific MKBs consists of the following
three stages. An overview of the process is shown in Figure 2:

1. Define the domain, i.e., select the primary domain concept by choosing a
Wikipedia article that unambiguously reflects the main concept of the target
domain;

2. Build the top-layer by extracting concepts to represent the most general
and representative concepts associated with the primary domain concept ;

3. Extend the MKB by adding sub-concepts to each top layer concept and
analysing, for each concept’s articles, the corresponding wikilinks.

The first stage of this process is performed manually, where the module designer
chooses a Wikipedia entry that best matches the domain of the MKB. In this
work, we refer to the selected entry’s identifier (which may be qualified by a
specific “sense” for ambiguous terms) as the primary domain concept.

The next two stages of the process are executed by the MKBUILD tool.
MKBUILD performs all tasks necessary for those stages and produces an MKB
automatically. MKBUILD has been developed in Java and uses the OWL-API
Library4 for handling the ontology. All these stages may be performed separately
using MKBUILD, thus allowing intermediate manual modifications to the MKB
in order to improve the coverage of the module. The rest of this section contains
a brief description of the process. For full details, see [13].

Stage 2. Building the MKB Top Layer

The primary domain concept identified in the first stage is used as the input
to MKBUILD, which performs Stages 2 and 3 automatically. In Stage 2, the
concepts that form the top layer of the MKB are discovered. The tasks that
comprise this stage are briefly described below.

2.1. Page link extraction. MKBUILD retrieves all terms that appear as wik-
ilinks in the article referenced by the primary domain concept. This extraction
3 See http://en.wikipedia.org/wiki/Wikipedia:Manual of Style
4 http://owlapi.sourceforge.net/
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Fig. 2. An overview of the process to build MKBs

process is performed using DBPedia [1] (version 3.5.1), which contains Wikipe-
dia links stored as triplets. MKB also extracts any redirect links that accompany
each term, as these contain the original name of the Wikipedia article (i.e., wik-
ilinks are proposed by authors; redirect links reconcile other concepts to point
to the same article). In contrast to previous work that has considered the cate-
gory structure provided by Wikipedia [7,10,18], we propose the use of wikilinks
as the initial source of concepts directly related to a domain. We do, however,
propose to leverage Wikipedia’s category-based hierarchical folksonomy in fu-
ture improvements, as discussed in the Evaluation section. The wikilink terms
extracted are validated using a named entity recognition (NER) tool5 and a
“Wikipedia-to-WordNet” conversion table provided by DBPedia. At the end of
this task, MKBUILD obtains a set of preliminary concept terms.

2.2. Common noun term detection. The preliminary terms may refer to
either concepts or instances of concepts (e.g., specific people or places) as Wiki-
pedia itself does not distinguish between the two [9]. This task performs a sec-
ond detection and removal of terms that correspond to instances. These terms
are detected using two tools: a Part-of-Speech (POS) tagger implemented in the
Language Technology tool MorphAdorner6, and (ii) WordNet word forms. Terms
are retained for the next step as long as MorphAdorner determines that they
contain at least one common noun and no proper nouns, proper adjectives nor
non-English words. Additionally, WordNet helps with removing terms that start
with a capital letter, as this has proven to be a sufficient heuristic to determine
instances [14]. After this task is performed, a list of terms is obtained.

2.3. Term sense disambiguation. Terms retained in the above step may
be ambiguous, in that they have multiple senses in WordNet. Consequently, to
obtain concepts, a disambiguation process is required. This process finds the con-
cepts that are related to the primary domain concept using semantic similarity
measure of Lesk, adapted to WordNet glosses7[2].

5 The Stanford NER tool, that can be obtained from http://nlp.stanford.edu/ner/
6 http://morphadorner.northwestern.edu/
7 This value is obtained from the Java WordNet:Similarity Library, available in:
http://www.cogs.susx.ac.uk/users/drh21/.
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Fig. 3. Detection of more general classes via WordNet: (a) an accepted generalisation;
and (b) a rejected generalisation. The top oval corresponds to the primary domain
concept, and each number represents the co-occurrence between the pdc and a concept.

2.4. Concept generalisation. The concepts obtained in the previous task may
not represent the level of generality required for the domain (i.e., the domain cov-
ers more general concepts than those identified). Concept generalisation requires
extracting all WordNet hypernyms (super-classes) of the concepts obtained in
step 2.3. This task is executed by the following two steps:
(i) Generalisation using available concepts: In this step, MKBUILD removes a
concept if another concept in the list is its parent, as they will be later added as
sub-concepts of the corresponding top-layer concept at a later stage.
(ii) Generalisation using WordNet hierarchy: MKBUILD detects if two or more
concepts sci, . . . scj can be generalised using a common super-class h. If a super-
class is detected, MKBUILD compares the co-occurrence of the primary domain
concept (pdc) and h against the co-occurrence of pdc and each concept sci, . . . scj
using Wikipedia articles as a corpus. If concept h is more commonly associated
with the pdc than the sum of all sc, then the sub-concepts are replaced by h in
the list of related concepts. An example of this is shown in Figure 3.

Stage 3. Building the Hierarchical Layer

With a top-layer of concepts obtained from Stage 2, two more tasks are per-
formed before an initial version of the MKB is produced. In the first task, MK-
BUILD adds sub-classes from WordNet below each top-layer concept, which
now become the root nodes of sub-ontologies. As in Stage 2, only WordNet
senses that are common nouns are included. Finally, in the second task, MK-
BUILD adds association links between concepts that are not lexically based.
These association links support a notion of semantic relatedness featuring more
general links between concepts. These links are used by our conversational agent
for concept-based topic transitions. MKBUILD inserts an association between
two concepts if a wikilink between the articles corresponding to those concepts
exists in DBPedia (as long as there is not already a lexical link from WordNet).

3 Evaluation

In this section, we describe an evaluation of the Stage 2 of MKBUILD, i.e., identi-
fying the top-layer domain concepts of the sub-ontologies related to the specified
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domain.8 We conducted a user study by asking subjects to judge whether the
top-layer domain concepts extracted by MKBUILD were appropriate to the do-
main. We focus on evaluating precision and recall of the extraction process for
top-layer domain concepts and not the hierarchy below, since concepts in the
hierarchy below a top-layer domain concept are assumed to be related to it.

Setup. We used MKBUILD to construct MKBs for 14 domains, which are
shown in the first column of Table 1. The total number of top-layer domain
concepts (tldc) across all domains is 490 (set T ). We extracted a subset of T ,
namely T ′, with the highest idf in each domain. T ′ was distributed across 6
different survey files. The breakdown of these concepts according to the different
domains is summarised in columns 2 and 3 of Table 1. Each survey contains 3
domains, each domain comprises up to 10 concepts.

We asked 55 anonymous users to score how “related” each tldc is to a proposed
domainD. Surveys were randomly assigned, following an even distribution across
users. Users scored each domain-concept pair with an integer number of either 2,
1 or 0, where 2 indicates that the concept is highly related to D, 1 indicates it is
related, and 0 for unrelated concepts. Users could also separately select Unsure.
Users were also requested to add, for each domain, a set of up to five concepts
that were not in the survey but what they considered to be highly related to the
domain.

We obtained assessment scores from between 8 and 10 participants for each
survey. We calculated the average Pearson correlation between subjects for each
survey, obtaining values ranging from 0.28 (indicating medium low correlation)
to 0.54 (strong correlation)[5]. Although these values indicate some agreement,
these also show the difficulty of finding similarly scored participations.

Results. To determine users’ agreement with the system for each top-layer
domain concept, we calculated an aggregated value in three different ways, each
representing a different assessment of relatedness. First, pa (i.e., precision) was
calculated by adding the number of participants scoring either 1 (i.e., “related”)
or 2 (“highly related”) and subtracting the number of 0’s (“unrelated”) scored
for each tldc. Second, the scores of 1’s were changed to 0.5 to calculate pb. Third,
pc took into consideration only the number of 0’s and 2’s, with the number of 1’s
used only to break any ties (i.e., the numbers of 0’s and 2’s were the same). The
first criterion is standard according to the definition of our experiment, which is
that both scores of 1 and 2 represent a certain degree of relatedness. The latter
two criteria represent a less generous interpretation of the middle score (i.e., 1).
These criteria bias against our system, hence we include them for comparison.

Using the total number of concepts together with the aggregated values ob-
tained as per the three criteria, we calculated the Precision and Recall for all
domains, as defined by [19]. We employ these measures as they reflect the cov-
erage of the concepts with respect to the target domain. Our evaluation of the
36% of all the available 490 top-layer domain concepts resulted in the following

8 Evaluating other stages would be effectively evaluating WordNet and DBpedia.
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precision values, namely, pa = 0.88, pb = 0.80 and pc = 0.71. These values re-
flect a high number of human participants agreeing with the top-layer domain
concepts extracted by MKBUILD, particularly on the standard interpretation of
the middle score.

Next, we estimated recall using the top-layer domain concepts deemed as re-
lated, plus the extra concepts provided by participants. Only 38 out of the 55
participants provided any extra concepts; a total of 366 extra concepts were pro-
vided, ranging from 12 to 46 per domain. Due to the lack of a gold standard, we
artificially created one with these extra concepts and the scores obtained from
the provided top-layer domain concepts. We analysed these extra concepts in two
ways: first, assuming that it was due to a lack of coverage of WordNet or Wiki-
pedia that such concepts were not added to the MKB (method d); and second,
assuming that all the suggested extra concepts should be in the MKB (method
e). These concepts are proposed as our false negatives, while the concepts with a
positive score are the true positives. These criteria affected the results for recall,
which are shown in Table 1 as rm|i, where m is method d or e and i refers to
the method for calculating precision, as described above.

Table 1. Sample domains with their evaluated precision and recall values

Domain(D) T T ′ pa pb pc rd|a rd|b rd|c re|a re|b re|c
Amusement park 26 10 0.9 0.7 0.6 1 1 1 0.6 0.54 0.5

Association football 25 10 0.9 0.8 0.8 1 1 1 0.56 0.53 0.53

Automobile 41 20 0.85 0.4 0.4 0.89 0.8 0.8 0.35 0.2 0.2

Beach 28 10 1 1 1 1 1 1 0.38 0.38 0.38

Computer 73 20 0.95 0.9 0.8 0.86 0.85 0.84 0.39 0.38 0.35

Economy 56 20 0.85 0.85 0.75 1 1 1 0.47 0.47 0.44

Food 88 20 0.9 0.8 0.55 1 1 1 0.49 0.46 0.37

Museum 32 10 1 0.8 0.5 1 1 1 0.56 0.5 0.38

Music 37 10 0.9 0.9 0.9 0.82 0.82 0.82 0.45 0.45 0.45

Public aquarium 11 10 0.5 0.5 0.4 0.83 0.83 0.8 0.25 0.25 0.21

School 25 10 0.8 0.7 0.7 1 1 1 0.32 0.29 0.29

Sport 24 10 0.9 0.8 0.7 1 1 1 0.53 0.5 0.47

Theatre 18 10 0.9 0.9 0.9 1 1 1 0.36 0.36 0.36

Zoo 8 8 1 0.75 0.5 1 1 1 0.42 0.35 0.27

Total 490 178 0.88 0.8 0.71 0.95 0.95 0.94 0.42 0.4 0.37

We do not have a comparable task for direct comparison, but can compare to
performance in domain term extraction; e.g., for this task, [12] reported values of
precision and recall of 0.354 and 0.183 respectively. [15] obtained an F1 quality
score of 0.25 in term extraction using the Web. On the other hand, our lowest
F1 score reported is 0.486 for pc and re|c. Some care has to be taken when in-
terpreting these figures because there are clear differences between our approach
and domain term extraction which makes them not comparable. First, we focus
on extracting concepts, not just terms, so we have to resolve against concepts
(which includes performing word sense disambiguation). Second, term extraction
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is commonly applied in closed environments using well-defined domain corpora,
whereas we extract from a resource as broad as Wikipedia. Hence, in comparison
to this (related) baseline task, we consider our results as encouraging.

Error Analysis. We can analyse the set of concepts suggested by participants
to obtain insights into MKBUILD ’s inability to extract certain concepts. The
suggested concepts can be classified in four ways, namely, (A) they ambiguously
refer to proper instead of common nouns (e.g., Shakespeare) or to other parts of
speech besides noun (e.g., play), (B) they are in an MKB but were not shown
to the user, and (C) they do not appear anywhere in the MKB. From the set of
366 suggested concepts, 8 concepts fall under category (A), 151 under (B), and
207 under (C).

From category (C), we can create three subgroups. Group (C1) contains those
concepts that do not appear in WordNet. Analogously, group (C2) contains
concepts that do not appear in the Wikipedia article of the domain as wikilinks.
Group (C3) contains those suggested concepts appearing in both WordNet and
Wikipedia which did not appear in the resulting MKBs. Concepts in group
(C2) represent the largest limitation of our approach, showing that using only
the primary domain concept article is not enough to find concepts associated
with the domain. Earlier, we mentioned that MKBUILD does not currently use
Wikipedia’s folksonomy. Therefore, a broader, more systematic exploration of
related articles, considering the article categorisation in Wikipedia, should be
performed in future work.

Only 8 suggested concepts fall within group (C3). These suggested concepts
missing from the MKBs are classified into four types. The first type of missing
suggested concept, namely (C3-a) features those concepts with an ambiguous
WordNet taxonomy. For example, the concept Dolphin has two different senses,
where one corresponds to its meat, and the other defines a type of Mammal . If
two concepts have similar names and no other synonyms available, MKBUILD is
unable to create a new concept, thus the concept referring to the second sense
and its children concepts are not included. This issue can be resolved if by
analysing the definitions of concepts according to WordNet. In cases where some
definitions for different senses of a word are complimentary (e.g., Dolphin is an
edible fish AND a mammal) we must merge both senses in our produced MKB.

The second type (C3-b) occurs with the NER tool (Step 2.1), which performs
suboptimally due to the lack of context for terms. Therefore, some concepts
that correspond to common nouns are treated as referring to instances, and are
removed from the process. For example, the term Algorithm is recognised as
an entity expressing a location.

Finally, the third type, (C3-c) occurs due to our heuristic to identify instances
using WordNet. Our approach automatically eliminates a term if it contains a
word form (a synonym) starting with a capitalised letter. This applies to concepts
such as hydrogen , which can be also represented with the letter “H”.

Error type (C3-c) is the most frequent, occurring with four suggested concepts.
Error (C3-b) was detected on three occasions and (C3-a) only once. This means
that in order to improve entity recognition, we have to use longer texts rather
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than only terms. One possibility is to feed the NER tool with a sentence from
the short abstract extracted from Wikipedia containing the analysed term.

4 Conclusions and Future Work

We have described a process for constructing domain-specific ontologies, called
Modular Knowledge Bases, to be used by a conversational agent with a modular
infrastructure. The process has been programmed as MKBUILD, a tool that
allows the automatic extraction of concepts and relations specific to a given
domain using large resources such as WordNet and Wikipedia/DBPedia. The
ontology construction process we described saves developers a significant amount
of effort in constructing an ontology specific to a conversational domain, while
at the same time allowing the developers to easily intervene at any point in time
to correct any egregious errors.

We have conducted an experiment involving human assessors to determine the
precision and recall of a critical stage of the construction process, namely iden-
tifying the top-level concepts for the domain-specific ontologies. We obtained
encouraging results considering the difficulty of cross-domain concept extrac-
tion. This experiment has also allowed us to determine that the exploration of
only the Wikipedia article associated with the primary domain concept of the
MKB is insufficient. Other related Wikipedia articles have to be considered in
order to extract a broader range of domain-specific concepts. We also discussed
limitations in the current extraction process and proposed solutions.

Our main application of the domain ontologies constructed using MKBUILD
is to generate a Topic Network that can be used to link conversational frag-
ments together into more coherent longer-running threads, using ontology-based
semantic similarity measures. We are also conducting an evaluation to measure
ontology-based semantic relatedness involving sets of relations that go beyond
previously considered (e.g., [4,18]), and evaluate its efficacy in topic transitioning
in conversational dialogue. Other future work includes extending the coverage of
the concepts and relations in the MKBs through the use of other large knowledge
bases constructed using information extraction techniques (e.g., [21]).
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Abstract. In this paper we introduce three methods for automatic gen-
erality evaluation of commonsense statements candidates generated for
Open Mind Common Sense (OMCS), which is the basis of ConceptNet,
a commonsense knowledge base. By using sister terms from Japanese
WordNet, our system generates new statements which are automatically
evaluated by using WWW co-occurrences and hit number retrieved by a
Web search engine. These values are used in three generality judgment
methods we propose. Evaluation experiments show that the best of them
was “exact match ratio” which achieved accuracy of 62.6% when evalu-
ating general sentences and “co-occurrences in snippets” method scored
highest with 48.6% when judging unnatural phrases. Compared to the
data without noise elimination, the “exact match ratio” achieved 38.2
points increase in accuracy.

Keywords: Common Sense Knowledge, Open Mind Common Sense,
ConceptNet, WordNet, Automatic Generality Evaluation.

1 Introduction

To understand language, a machine needs knowledge that human beings gather
from experience since the very beginning of their lives. This knowledge is obvious
and general, and we call it common sense knowledge. Many AI researchers have
tried and are still trying to collect it, usually input it by hand – by specialists
(as in CyC[1]) or by amateur contributors (as in OMCS[2]). Also in Japan there
are engineers using general knowledge in their research, however they limit their
methods to, for instance, question answering, and they create their databases
manually, making it much easier to use[4]. But such limitations of usage range
of knowledge is contradictory to common sense which in our opinion has more
universal and inter-conceptual usage. Our approach is directed toward as fully
automatic as possible methods of acquiring wide range of various kinds of knowl-
edge people usually share. As some entries for OMCS show, the volunteers enter-
ing commonsense descriptions of the world like to joke and “generality” of many
entries is doubtful ([2] states that 15% of entries do not make sense). The same
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tendencies are visible in the latest trend - common concepts acquisition through
on-line games1. After a while, players get bored and start to be original rather
than general. However, human contributors are an important part of systems
such as ConceptNet[3] based on Open Mind Common Sense where “UsedFor”
or ”IsA” are examples of edges which denote relationship between concepts. Al-
though ConceptNet has been used by different researchers for a decade since
MIT Media Lab has developed it, most of the projects used the English lan-
guage version (and lately Chinese), while other languages versions (as Japanese)
produced much smaller scientific output. The reason is quite obvious since En-
glish OMCS has currently 1,035,681 registered statements expressing common
sense knowledge and there are only 14,546 for Japanese. If we could increase
the number of general sentences, the usability of this knowledge would also in-
crease. For that reason we decided to tackle this problem. Our first idea was to
use WordNet[5] and WWW search to harvest Japanese concepts to acquire new
commonsense statements. The basic proposal of our ideas was introduced in [6],
however erroneous statements generated from Internet search gave us low accu-
racy not allowing the system to be somehow useful. In this paper, we propose
methods to improve our system by adding automatic generality evaluation of
phrases retrieved from the Web.

2 Related Work

Trials on automatic retrieval, usually based on syntactic patterns, are not new
[7][8][9]. Van Durme et. al have also tried to use the WordNet in their KNEXT[10]
project. Hyponym-hypernym links between noun synsets were investigated to fig-
ure out how reliably hyponyms can be viewed as mutually exclusive. Their find-
ings (summarized on the project site 2) were that the hypernym links were only
two-thirds correspondence to true subtypes, and that the hyponyms are about
70% truly exclusive. They studied many ways to improve the extraction process,
but concluded that the causes were too diverse to enable large improvement by
any automated means. Hanheide et al. prove usefulness of such data presenting
a similar approach for combining OMCS statements with WWW search results
to quantifying commonsense knowledge for intelligent robots[11].

3 Commonsense Knowledge Generation

3.1 Definition

We define Common Sense Knowledge as an experience-based general knowledge
(e.g. “dogs walk”) but also broaden it to more concrete information shared by
users of a given language (“Todai-ji is a temple in Japan”, “Madonna sings”,
“you can work at Sony”. Such broader definition increases capability of non-task
oriented dialog systems which we are also working on.
1 http://nadia.jp
2 http://www.cs.rochester.edu/ schubert/projects/

world-knowledge-mining.html



650 R. Rzepka, K. Muramoto, and K. Araki

3.2 System Overview

The idea is to use existing OMCS sentences and exchange nouns with sister
terms from the WordNet dictionary to generate new similar statements and then
use a Web search to determine how usual the generated knowledge is. Figure 1
provides an overview of our system. By “sister terms” we mean hyponyms under
the same hypernyms. For example, “lions roar” can be transformed into “tigers
roar”. Then, to remove possible noise (untrue or unnatural statements) such a
phrase becomes a query for search engine, which in this study is Yahoo! Japan3.
Usualness (generality) calculation uses thresholds which will be described later
in detail.

Fig. 1. Overview of our system for harvesting concepts by using WordNet sister terms
and evaluating them by WWW search

3.3 Japanese WordNet

WordNet, developed at Princeton University, is a semantic lexicon consisting
of concepts called synsets. Words that are similar are kept within the same
synset. A synset is labeled as “number ID - part of speech” where, for instance,
“n” means a “noun”, and “v” indicates a verb. It is also connected to other
synsets associated by relationships like hyponymy, hyperonymy or meronymy.
In Japanese WordNet there are 57,238 synsets, 93,834 words and 158,058 pairs
of synsets and words.

3.4 Retrieving Sister Terms and Generating Sentences

A sentence from OMCS set for Japanese language becomes an input to our
system. Then its noun is replaced by a sister term from the WordNet, so, for
example, “(one can) throw a ball” produces statements like “(one can) throw a
fastball”, “(one can) throw a Frisbee” or “(one can) throw a [playground] slide”.
As you can see from the last example, statements generated by nouns from
a broad category as “toys” will not always produce a general, commonsense
3 http://search.yahoo.co.jp
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knowledge and such erroneous phrases cannot be added to the knowledge base.
Therefore the noise elimination becomes crucial for newly generated data quality
– in the next section we explain in details what methods we developed.

4 Noise Elimination Methods

To eliminate semantically erroneous generations we propose three shallow web-
mining methods, which we named “co-occurrences in snippets”, “exact match
ratio” and “conjugated keywords hit ratio”.

4.1 Co-occurrences in Snippets (a)

Verbs, nouns and (if they appear) adjectives are extracted from the input sen-
tence, and the original particle4 is used to form a search query “NounParticle”
+ “(V erb|Adjective)”. Web search using such a query outputs set of snippets
(short summary passages output by a search engine) and the system counts how
many times both queried phrases occurred. The condition is to be in the same
sentence and in the same order and this type of results we call “co-occurrences
in snippets”. We define “sentence” here as a phrase between punctuation marks
as dots, commas, exclamation marks, question marks, etc. We set a threshold
for co-occurrences in snippets, and if their number falls below the threshold then
queried sentence is determined as noise. Thresholds are explained later in the
paper.

4.2 Exact Match Ratio (b)

Unlike the “co-occurrences in snippets” method, here noun, particle and verb (or
adjective) create one exact match query (without OR operator): “NounParticle
(V erb|Adjective)”. At the same time following additional queries are created:
“NounParticle” + “V erb|Adjective”, “NounParticle”, and “V erb|Adjective”.
System uses search engine results for all these queries to calculate an “exact
match ratio” with the Formula (1). Again thresholds are set to eliminate erro-
neous output.

Pp =
Np

Nn +Nv −Nc
(1)

– Pp: exact match ratio
– Np number of hits for “NounParticle(V erb|Adjective)”
– Nn: number of hits for “NounParticle”
– Nv: number of hits for “V erb|Adjective”
– Nc: number of hits for “NounParticle” + “V erb|Adjective”

4 Japanese particles are suffixes that immediately follow the modified noun, verb,
adjective, or sentence. For example in booru o nageru (throw a ball, to throw a ball,
throwing a ball, one throws a ball, etc.) o states that the noun it follows is a direct
object of the action described by following verb.
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4.3 Conjugated Keywords Hit Ratio

In this method we decided to add a natural language processing module for
stemming as search engines ignore the fact that verbs conjugate. The main reason
for adding this technique is to increase number of hits, which allows to get a
better accuracy of the investigated data. Phrase “eat a cake” after stemming
can find five or six other forms which may be Japanese equivalents of “eating a
cake”,“ate a cake”, ’“will eat” or “will be eating”5. Calculations are similar (it
is the sum of all stemmed keywords) to the previous method (see Formula (2))
and also here adequate thresholds are set.

Pc =
∑ Np

Nn +Nv −Nc
(2)

Pc: conjugated keywords hit ratio (see Formula 1 for the full description).

Table 1. Results of threshold setting experiment

(a) “co-occurrence in snippets”

Authors’ evaluation Number of Sentences Average Appearance in Snippets

0 points 545 7.3

1point 211 11.6

2points 244 16.4

(b) “exact match ratio”

Authors’ evaluation Number of Sentences Average Ratio of Exact Matching

0 points 723 0.00185

1point 56 0.00390

2points 221 0.00414

(c) “conjugated keywords hits ratio”

Authors’ evaluation Number of Sentences Average Ratio of Conjugated Keywords

0 points 709 0.000106

1point 60 0.000587

2points 231 0.00131

5 Preliminary Experiments for Setting Noise Elimination
Thresholds

As mentioned in previous sections it was necessary to set thresholds to elimi-
nate as much unnatural output as possible. Fifty sentences including nouns were
5 They cover more than tenses but the examples show only this type for the sake of

simplicity.
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randomly selected from OMCS Japanese data and system used sister terms to
harvest candidates. It produced 13,240 sentences and we randomly selected 1,000
of them, and then a manual evaluation was performed by a native speaker of
Japanese. The following criteria were used in the evaluation: “unnatural knowl-
edge = 0 points”, “possible but not general knowledge = 1 point”, “general
knowledge = 2 points”. Table 1 shows results for all three methods described
in Section 4. In case of “co-occurrence in snippets” (a), more than half of the
generated sentences appeared to be unnatural , while about 24% of the acquired
phrases was evaluated as useful general knowledge. “Exact match ratio” and
“conjugated keywords hit ratio” produced 22% and 23% common sense state-
ments respectively. Accordingly to these results we have decided that in case of
(a), threshold for unnatural sentences is less than 7 co-occurrences of queried
phrases in snippets, for non-general is more than 7 and less than 11, and for
general there must be more than 11. Scores for (b) were set to 0.00185, 0.00390,
and 0.00414; while for (c) we set number of hits threshold: 775,849 as the un-
naturalness borderline, 860,909 for “arguable zone” and 1,349,698 as a starting
point for regarding outputs as natural.

Table 2. Automatic vs. manual evaluation (“co-occurrence in snippets”)

System Evaluation Score Evaluators’ Score Average Number of Sentences

2 points

2 points 27.5
1 point 12.5
0 points 10.0

Ratio of Correct Answers 55.0%

1 point

2 points 21.0
1 point 14.0
0 points 15.0

Ratio of Correct Answers 28.0%

0 points

2 points 14.7
1 point 11.0
0 points 24.3

Ratio of Correct Answers 48.6%

6 Evaluation Experiment and Its Results

After setting thresholds described in the previous section, we have performed
experiments in order to see how accurately our system eliminated noisy, non-
general knowledge from harvested data and how confident it can be about correct
output. The rating method was the same as in the preliminary experiment and 50
statements (after noise elimination) for each method were randomly chosen (150
sentences in total). The same sets were also evaluated (in the same 3 grade scale)
by 6 subjects who were two male college students from the science department
plus two male and two female students from the literature department.
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Table 3. Automatic vs. manual evaluation (“ratio of exact matches”)

System Evaluation Score Evaluators’ Score Average Number of Sentences

2 points

2 points 31.3
1 point 10.9
0 points 7.8

Ratio of Correct Answers 62.6%

0 points

2 points 25.5
1 point 13.8
0 points 10.7

Ratio of Correct Answers 21.4%

Table 4. Automatic vs. manual evaluation (“conjugated keywords hit ratio”)

System Evaluation Score Evaluators’ Score Average Number of Sentences

2 points

2 points 31.0
1 point 9.5
0 points 9.5

Ratio of Correct Answers 62.0%

0 points

2 points 28.3
1 point 10.2
0 points 11.5

Ratio of Correct Answers 23.0%

Table 5. Evaluators agreement (“co-occurrence in snippets”)

System Evaluation Score Evaluators’ Score 3 Evaluators 4 & More Evaluators

2 points

2 points 25 25
1 point 5 5
0 points 10 5

Ratio of Correct Answers 62.5% 71.4%

1 point

2 points 22 20
1 point 7 5
0 points 15 13

Ratio of Correct Answers 15.9% 13.2%

0 points

2 points 12 8
1 point 8 2
0 points 25 21

Ratio of Correct Answers 55.6% 67.7%

The experimental results for method (a) are shown in Table 2. In 55.0% of
the cases, system correctly estimated that knowledge is general, in 28.0% of the
cases that it is non-general and in 48.6% that it was unnatural and should be
discarded. As defining what is general and what is not is often difficult even
for human evaluators, we also took into account the agreement between users.



Generality Evaluation of Automatically Generated Knowledge 655

Table 6. Evaluators agreement (“exact match ratio”)

System Evaluation Score Evaluators’ Evaluation 3 Evaluators 4 & More Evaluators

2 points

2 points 36 31
1 point 6 4
0 points 7 6

Ratio of Correct Answers 73.5% 75.6%

0 points

2 points 28 21
1 point 8 6
0 points 7 6

Ratio of Correct Answers 16.3% 18.2%

Table 7. Evaluators agreement (“conjugated keywords hit ratio”)

System Evaluation Score Evaluators’ Evaluation 3 Evaluators 4 & More Evaluators

2 points

2 points 35 33
1 point 4 2
0 points 7 7

Ratio of Correct Answers 76.1% 78.6%

0 points

2 points 29 24
1 point 8 7
0 points 9 7

Ratio of Correct Answers 19.6% 22.6%

Table 5 shows that in cases of less arguable knowledge (0 and 2 points, more
than 4 evaluators agreed), the system’s accuracy increases from 55.0% to 71.4%
(general knowledge) and from 48.6% to 67.7% (unnatural knowledge). Because of
this lack of agreement and the fact that system discovered too few6 sentences that
could be evaluated as not general, we decided to exclude it from the evaluation
process. Tables 3 and 4 show experimental results for methods (b) and (c),
Tables 6 and 7 indicate results where user agreement is considered. In case of
“exact match ratio”, a significant increase of accuracy (62.6% to 75.6%) can
be observed for general knowledge but in discovering unnatural statements this
method appeared worse (decreased from 21.4% to 18.2% when agreed by more
than 4 evaluators). “Conjugated keywords hit ratio” method performed much
better in case of common sense statements (62.0% to 78.6%) but again was
slightly worse in discovering erroneous knowledge (23.0% to 22.6%). As shown
in Table 1(a), without noise elimination, we could retrieve only 24.4% of usable
general knowledge. Method (a) “Co-occurrence in snippets”, after eliminating
erroneous statements, allowed to correctly find 55.0% of such knowledge. In
case of “exact match ratio” (b), 62.6% of the generations were correct and of
“conjugated keywords hit ratio” (c), 62.0% were evaluated as proper automatic
judgment. The highest accuracy was achieved by method (b) - compared to the
results without noise removal there was 38.2 points improvement in accuracy.

6 Too few to be statistically significant.
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There were 7 sentences which were evaluated “0 points” by the system and “2
points” by more than 4 evaluators. Five of these statements were generated
by the morphological analysis tool, which cuts off suffixes that are nouns but
have different meaning when used separately. For example -hen is used as a
“compilation suffix”; when added to novels or poems means “collection of novels”
or “collection of poems”, but by itself it sounds odd. As we decided to use one
noun, not a noun phrase, this type of errors depending on third party tools was
inevitable. Another problem was context dependency – one of the sentences that
showed a significant difference in evaluation was “summer is cold”. Depending
on places and particular days, summers can be cold cold and such statements
are not rare on the WWW.

7 Conclusions and Future Work

In this paper we introduced three methods for automatic generality evaluation of
Japanese sentence candidates generated for Open Mind Common Sense (OMCS),
which is the base for ConceptNet, a freely available commonsense knowledge
base and NLP tool-kit developed by MIT. By using sister terms from Japanese
WordNet, our system was able to generate new statements that possibly rep-
resent common sense knowledge, however only part of newly produced outputs
are obviously general. Therefore we implemented a module using Yahoo! Japan
search engine to retrieve co-occurrences and hit numbers, which became a base
for three methods we proposed. Evaluation experiments showed that the best of
them was “exact match ratio” method which achieved accuracy of 62.6% when
evaluating general sentences. For judging unnatural (impossible) knowledge, “co-
occurrences in snippets” method scored highest with 48.6%.

As we noticed that human contributors get bored soon after starting to type
commonsense statements, we assume it would be much faster and efficient to let
them choose if something indicates general knowledge or not. Using our methods
would definitely decrease burden of the proper entry choice task by showing only
statements which scored 2 points in the 0-1-2 scale of generality to an evaluator.
However, to come closer to accuracy allowing fully automatic generation, there
is still plenty of room for future work. During the development and experiments
we noticed many tendencies that could allow improvements. The more examples
are found, the wider coverage we could get. There is thus a need for extending
queries, for example by alternating particles – Japanese topic indicating par-
ticle wa can be replaced with subject indicating particle ga. We will also add
techniques for so called (in linguistics) “genericity” and use grammatical struc-
tures and words that often suggest generality of a sentence (e.g. adverbs like
“usually”). We also noticed that context dependent errors can be reused with
negations to find new knowledge and every arguable statement could be rewrit-
ten and processed again. Combinations of “usually”, “not” and “but” could
also bring interesting results, therefore we want to increase quality by widen-
ing the web-mining process by taking grammatical information and neighboring
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words (also noun phrases) into consideration. We are also planning to transfer
proposed shallow methods to ConceptNet versions for other languages that suffer
the same lack of OMCS sentences as Japanese.
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Abstract. PENG Light is a controlled natural language designed to
write unambiguous specifications that can be translated automatically
via discourse representation structures into a formal target language. In-
stead of writing axioms in a formal language, an author writes a specifica-
tion and the associated background axioms directly in controlled natural
language. In this paper, we first review the controlled natural language
PENG Light and show how a discourse representation structure is gener-
ated for sentences written in PENG Light. We then discuss two different
solutions of how discourse representation structures can be implemented
for coordinated structures. Finally, we show how an efficient implementa-
tion of coordinated structures combined with a suitable parsing strategy
affects the parsing performance of the controlled natural language.

Keywords: controlled natural language, parsing, coordination, discourse
representation structures.

1 Introduction

PENG Light is a controlled natural language designed for representing knowl-
edge in an unambiguous way [10]. Specifications written in PENG Light can
be translated into a formal target language for automated reasoning. The lan-
guage of PENG Light covers a strict subset of standard English and is defined
by a controlled grammar and a controlled lexicon [12]. The language processor
of PENG Light uses a unification-based phrase structure grammar that is based
on a definite-clause grammar (DCG) notation [8]. In order to avoid redundant
analysis and for practical reasons that we will discuss later, the DCG notation is
automatically transformed into a format that can be processed easier by a chart
(= tabular) parser [1].

In general, the DCG notation can be used to write context-free as well as
context-sensitive grammars and these grammars can be executed directly using
Prolog’s top-down, depth-first, backtrack search. If no left recursion is present in
context-free grammars, then the worst-case parsing performance is exponential
in the size of the input, and if tabulation is used, then the performance is – in
theory – cubic for context-free grammars (but tabulation is expensive in Prolog).

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 658–667, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The situation, however, is more complex in our case, since the parsing per-
formance is less clear for context-sensitive grammars because of the wide range
of expressiveness that is allowed in these formats. The grammar of PENG Light
uses, for example, feature structures in the arguments of the grammar rules
and interleaves syntactic, semantic, and pragmatic information. Furthermore,
the anaphora resolution algorithm of PENG Light is directly embedded into the
grammar and investigates the discourse representation structure during parsing
to find possible antecedents. Another thing that adds to the complexity is that
the chart parser collects look-ahead information during parsing to support the
writing process of the user. In this paper, we show that the way the grammar of
PENG Light is written is critical for the parsing performance. We demonstrate
this by example of coordinated structures in PENG Light and investigate how
discourse representation structures can be constructed efficiently for coordinated
structures. The parsing performance is then evaluated in an empirical way for
an entire specification text.

The rest of this paper is structured as follows: In the next section we review the
controlled natural language PENG Light and provide an example specification
that we then use for our performance analysis. In Section 3, we look at the
language processor of PENG Light and explain how chart parsing works with
a special focus on chart parsing in Prolog. In Section 4, we first show how
simple and complex discourse representation structures are generated in PENG
Light, and then discuss different ways how discourse representation structures
for coordinated structures can be implemented. In Section 5, we use the example
specification introduced in Section 2 and evaluate the performance of the chart
parser taking various settings for the parser as well as the proposed solutions for
coordinated structures into consideration.

2 PENG Light

PENG Light is a controlled natural languages that can be used as a high-level
knowledge representation language [12]. By design, PENG Light eliminates both
ambiguity and complexity of full natural language but adheres to the same rig-
orous principles as formal languages do. At first glance, a specification written
in PENG Light looks seemingly informal and is therefore easy to read and
understand by a human; nevertheless, the specification can be translated unam-
biguously via discourse representation structures into a first-order logic theory.
Below is an example of a specification text written in PENG Light that describes
knowledge in a dynamic domain. This specification can be written as a coherent
piece of text, but we can distinguish four different forms of knowledge (A-D) in
this dynamic domain:

A. Knowledge about Events and their Effects
1. If a person arrives at a location then the person will be at that location.
2. If a person is at a location and a vehicle is waiting at that location and the

person gets on that vehicle then the person will be in that vehicle.
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3. If a person is in a vehicle and the vehicle leaves a location then the person
will no longer be at that location and the vehicle will no longer be waiting
at that location.

B. Terminological Knowledge
4. Every airport is a location.
5. Everybody who is John is a person.
6. Every bus is a vehicle.
7. Every Burwood bus is a bus.

C. Initial Domain State
8. The Burwood bus is waiting at the airport.

D. Sequence of Domain Events
9. John arrives at 10:10 with Qantas Flight QF2 at the airport of Sydney.

10. John gets on the Burwood bus.
11. The bus leaves the airport at 11:00.

The language processor of PENG Light translates this specification incremen-
tally into the input language of the Simplified Event Calculus [5,6,11], and the
author can query the resulting theory in controlled natural language as the events
(9-11) unfold.

As the specification text illustrates, the syntactic structures of PENG Light
sentences can be simple or complex. Simple sentences such as (8-11) have the
following functional structure: subject + verb + [complements] + {adjuncts}.
Complex sentences (1-7) are built from simpler sentences with the help of coor-
dination, subordination, quantification and negation. Questions are derived from
declarative sentences via movement of constituents, usually referred to as filler-
gap dependencies [8]. Only restricted forms of anaphoric references are allowed
in PENG Light: anaphoric references can be establish via definite noun phrases,
proper nouns, and variables. For example, sentence (8) introduces a new object
(Burwood bus) into the discourse and the corresponding noun phrases in (10)
and (11) refer to this object. It is important to note that the author of a specifi-
cation text does not need to remember the restrictions of the controlled natural
language since these restrictions are enforced by a predictive authoring tool [9].
This authoring tool guides the writing process and informs the author with the
help of look-ahead information about the words and phrases that can follow the
current input.

3 The Language Processor

The language processor of PENG Light uses a chart parser and a unification-
based phrase structure grammar to process the input text incrementally. The
chart parser resolves anaphoric references, builds a syntax tree, a discourse rep-
resentation structure, a paraphrase, and extracts look-ahead information from
the chart. The grammar itself is written in DCG notation and consists of about
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200 grammar rules; however, we do not use the DCG directly. Instead we use
term expansion [13], a source-to-source transformation technique, to transform
the DCG notation into a format that is easier to process with the help of a chart
parser. We do this, because we want to avoid redundant analysis and because
we need a way to process the input incrementally on a word-by-word basis so
that we can extract look-ahead information from the chart to guide the writing
process of the author.

The chart parser is an agenda-based active chart parser [1,3,4] that stores
active edges (hypotheses about constituents) and passive edges (complete con-
stituents) in the knowledge base. That means the chart parser uses the Prolog
knowledge base directly as agenda. Every active edge represents a hypothesis
that needs to be further explored. The fundamental rule [1] of chart parsing
combines active edges with passive edges to generate new edges. These new
edges can be either active or passive. We use a top-down rule invocation strat-
egy and regard the agenda as a queue; new edges are added to the queue (by
asserting them to the end of the knowledge base); this implements a breadth-first
search strategy (we will discuss the impact of the search strategy on the parsing
performance in Section 5). The edges of the chart are stored in the following
form in the knowledge base:

12. edge(SNum, Mode, SVNum, EVNum, LHS, Found, ToFind)

Here, the first argument SNum stands for the sentence number, the second ar-
gument Mode for the mode of the sentence, the third argument SVNum for the
number of the start vertex, the fourth argument EVNum for the number of the
end vertex, the fifth argument LHS for the category on the left-hand side of a
grammar rule, the sixth argument Found for the categories that have been found
so far, and finally the seventh argument ToFind for the categories that still have
to be found in order to complete an edge. For efficiency reasons, we index the
sentence number (SNum), the number of the start vertex (SVNum), the number of
the end vertex (EVNum), and the category on the left-hand side of a grammar rule
(LHS). In SWI Prolog [13] up to four arguments of a predicate can be indexed,
compound terms such as the left-hand side category of a grammar rule are in-
dexed on the combination of their name and arity. We will discuss the impact
of argument indexing on the parsing performance in Section 5.

4 Discourse Representation Structures (DRSs)

The grammar of PENG Light uses feature structures to generate a discourse rep-
resentation structure (DRS) during parsing. A DRS consists of a set of discourse
referents U and a set of conditions Con. Conditions can be either basic or complex:
basic conditions store information about discourse referents or relations between
discourse referents, and complex conditions contain embedded DRSs. DRSs are
defined recursively and their nesting predicts which discourse referents are ac-
cessible via anaphoric expressions and which ones are not accessible. In contrast
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to standard discourse representation theory [2], we use a neo-Davidsonian rep-
resentation for events and thematic roles [7] to connect discourse referents that
represent events with other discourse referents that are described in a sentence.

4.1 Building Basic and Complex DRSs

We represent a basic DRS in the grammar of PENG Light as a Prolog term of the
form: drs(U, Con) where both U and Con are lists. This basic DRS is initially
empty and processed with the help of a difference list that collects the discourse
referents and relevant conditions during parsing. The following grammar rule s0
takes the existing DRS D1 as input and generates the DRS D3 as output. The
contribution of the verb phrase v3 to the DRS D3 is collected with the help of
the difference list D2-D3 and this information is combined with the contribution
of the noun phrase n3 (depending on the determiner of the noun phrase):

13. s0([ sem:[E], tree:[s0, T1, T2], drs:D1-D3, para:P1-P4,
gap:G1-G3, snum:N ]) -->

n3( [ syn:[agr:[Pers, Num, case:nom]], sem:[M], tree:T1,
drs:D1-D3, sco:D2-D3, para:P1-P2, gap:G1-G2,
snum:N ]),

v3( [ crd:C, syn:[vform:fin, agr:[Pers, Num, case:nom]],
sem:[E, M], tree:T2, drs:D2-D3, para:P3-P4,
gap:G2-G3, snum:N ]).

Apart from the feature structures for the DRS (drs, sco), the grammar rule
(13) contains feature structures for the processing of syntactic information (crd,
syn, tree, gap), semantic information (sem), pragmatic information (para)
and information for keeping track of the sentence number (snum). Let us illustrate
how a simple DRS looks like. In PENG Light the processing of the sentence (14):

14. A bus leaves the airport at 11:00.

results in the following DRS:

15. drs([A, B, C, D],
[object(A, bus), theta(B, agent, A),
event(B, leaving),
theta(B, theme, C), object(C, airport),
theta(B, time, D), timex(D, ‘11:00’)])

The single conditions that occur in this DRS are retrieved during parsing from
the lexicon. For example, the lexical entry for the word form leaves contains
among other information the three conditions: theta(B, agent, A), event(B,
leaving), and theta(B, theme, C).

The contribution of the determiners to a DRS deserves closer investigation:
determiners are the most important constituents to establish the DRS. Semanti-
cally, determiners have two arguments: a restrictor (res) and a scope (sco). The
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restrictor consists of the information in the noun phrase minus the determiner,
and the scope is the information outside of the noun phrase. In the case of an
indefinite noun phrase (a bus), the lexical entry (16) for the indefinite determiner
(a) specifies – among other things – that the output variable of the restrictor
(D2) is same as the input variable for the scope (D2):

16. drs:D1-D3, res:D1-D2, sco:D2-D3.

This has the consequence that the conditions derived from the verb phrase are
simply added to the current DRS (D2) that contains the previous contextual
information, inclusive the information derived from the noun phrase. The situa-
tion gets a bit more complex if other determiners such as every or no occur in a
sentence. The determiner every triggers a complex DRS (17) where the DRS for
the restrictor (drs(U2, C2)) is combined with the DRS for the scope (drs(U3,
C3)) and the result is embedded into the conditions of the superordinate DRS
(drs(U1, C1)) using the operator => to denote material implication. The lexical
entry of this determiner contains the following information:

17. drs:D1-[drs(U1,[drs(U2, C2) => drs(U3, C3)|C1])|T],
res:[drs([],[])|D1]-D2,
sco:[drs([],[])|D2]-[drs(U3, C3), drs(U2, C2), drs(U1, C1)|T].

The determiner no triggers a similar structure (18) like every. The only difference
is that the DRS built up in the scope is negated ∼drs(U3, C3) and embedded
into a DRS in the consequent of the implication:

18. drs:D1-[drs(U1,[drs(U2, C2) => drs([],[∼drs(U3, C3)])|C1])|T],
res:[drs([],[])|D1]-D2,
sco:[drs([],[])|D2]-[drs(U3, C3), drs(U2, C2), drs(U1, C1)|T].

4.2 Building DRSs for Coordinated Structures

In PENG Light, we can coordinate sentences, relative clauses, verb phrases, ad-
jective phrases, and adverbial phrases by means of and and or. Coordination
is only possible between complete constituents of the same syntactic type and
the standard binding order of logic applies (that means the coordinator and
binds stronger than the coordinator or). Our example specification contains two
complex sentences (2 and 3) where coordination occurs between simple sen-
tences. Apart from these syndetic cases of coordination where a coordinator
marks the coordinated constituents, sentence (9) shows an asyndetic case of co-
ordination where the coordinator is absent. In sentence (9), a number of prepo-
sitional phrases occur in adjunct position of the sentence without an explicit
coordinator between these constituents, but the implementation of asyndetic co-
ordination requires a very similar grammar rule as for syndetic coordination.
In the following, we present two solutions of how coordinated structures can be
implemented in PENG Light and focus on the coordination of simple sentences,
coordination for the other constituents follows similar rules.



664 R. Schwitter

First Solution. The first solution relies on two grammar rules: one for conjunc-
tion and one for disjunction. Recall that a DRS has the form drs(U, Con) and
that this structure is updated during parsing. For example, we can implement
sentence coordination using the following two grammar rules (19 and 20):

19. s1([ crd:yes, tree:[s1, T1, T2, T3], drs:D1-D3, para:P1-P4,
snum:N ]) -->

s1( [ crd:no, tree:T1, drs:D1-D2, para:P1-P2, snum:N ]),
crd([ cat:conj, tree:T2, para:P2-P3 ]),
s1( [ crd:C, tree:T3, drs:D2-D3, para:P3-P4, snum:N ]).

20. s1([ crd:yes, tree:[s1, T1, T2, T3],
drs:D1-[drs(U1, [D3 v D4|Con1])|Top],
para:P1-P4, snum:N ]) -->

s1( [ crd:no, tree:T1,
drs:[drs([], [])|D1]-[D3|D2],
para:P1-P2, snum:N ]),

crd([ cat:disj, tree:T2, para:P2-P3 ]),
s1( [ crd:C, tree:T3,

drs:[drs([], [])|D2]-[D4, drs(U1, Con1)|Top],
para:P3-P4, snum:N ]).

In the case of a conjunction (19), the DRS is passed through the grammar rule
with the help of a difference list, first from D1 to D2 and then from D2 to D3. In
the case of a disjunction (20), each disjunct uses its own DRS, in our case D3
and D4, and these DRSs are finally embedded into the existing DRS drs(U1,
Con1) resulting in: drs(U1, [D3 v D4|Con1]). It is important to note that both
disjuncts start with an empty DRS drs([], []) followed by the superordinate
DRS D1 and D2, respectively. At first glance, this solution looks intuitive, but it
has the disadvantage that it duplicates the grammar rules for coordination on
each level and this increases the processing time dramatically, as we will see in
Section 5.

Second Solution. The second solution uses only one grammar rule for conjunc-
tion and disjunction and delegates the work for coordination to the category crd
for coordination. This makes the grammar less speculative, since we provide the
relevant structure for the DRS only when the coordinator is processed:

21. s1([ crd:yes, tree:[s1, T1, T2, T3], drs:D1-D3, para:P1-P4,
snum:N ]) -->

s1( [ crd:no, tree:T1, drs:D1-D2, para:P1-P2, snum:N ]),
crd([ cat:coord, tree:T2, drs:D2-D3, hld:D1, sco:D4,

para:P2-P3 ]),
s1( [ crd:C, tree:T3, drs:D4, para:P3-P4, snum:N ]).
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Here, the category crd takes the DRS D1 as well as the DRS D2 as input. The
former one contains the information before the first conjunct s1 is processed,
and the latter one contains the information after the first conjunct has been
processed. The individual grammar rules for the category crd then take care of
the further processing as we will see now.

In the case of a conjunction, the grammar rule (22) makes sure that the DRS
in D2 can flow from the first conjunct to the second one and returns the result
in D3:

22. crd([ cat:coord, tree:[conj, [and]], drs:D2-D3, hld: ,
sco:D2-D3, para:P1-[[and]|P1] ]) -->

[and],
{ lexicon([cat:conj, wform:[and]]) }.

In the case of a disjunction, the grammar rule (23) makes sure that the DRSs
for the disjuncts are properly embedded into the existing DRS. Recall that the
DRS D1 contains the information before processing the first disjunct s1 and the
DRS D2 contains the information after processing this disjunct. The difference
between these two DRSs is the DRS drs(U3, Con3) that contains the relevant
information for the first disjunct. The DRS for the second disjunct is then built
up in D4:

23. crd([ cat:coord, tree:[disj, [or]],
drs:D2-[drs(U5, [drs(U3, Con3) v D4|Con5])|Top],
hld:D1,
sco:[drs([],[])|D3]-[D4, drs(U5, Con5)|Top]
para: P1-[[or]|P1] ]) -->

[or],
{ lexicon([ cat:disj, wform:[or],

drs:D2-[drs(U3, Con3)|D3], hld:D1 ]) } .

Note that the actual difference between the DRS D1 and D2 is calculated with
the help of the lexical rule for the coordinator or whenever this coordinator is
processed.

5 Evaluation

We evaluated the performance of the chart parser for the two presented solu-
tions using the example specification introduced in Section 2. We processed this
specification on a 2.4 GHz Intel Core 2 Duo Windows machine with 2 GB RAM
running SWI-Prolog (32 bits, Version 5.11.23). The lexicon that we used for
this evaluation consists of 2,326 entries and is of a realistic size for a controlled
language application, most of these entries represent content words.

In Figure 1, we compare the processing times for each sentence of the example
specification and take the two solutions for processing coordinated structures into
consideration. We used the chart parser with a top-down, breadth-first parsing
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strategy and measured the processing times in milliseconds for the first solution
with argument indexing (s1-a) and without argument indexing (s1-b), as well
as for the second solution with argument indexing (s2-a) and without argument
indexing (s2-b). Recall that the sentences are processed in context; that means
the chart parser takes the DRS of the previous sentences into account while the
current sentence is processed in order to resolve anaphoric references. The most
efficient solution is the second solution with argument indexing (s2-a). This
solution is on average 4.29 times faster than the first solution with argument
indexing (s1-a). Argument indexing gives us a speed-up of about 15% for the
second solution (s2-a) compared to the same solution without argument indexing
(s2-b). In Figure 2, we compare the processing times for the best solution using a
breadth-first parsing strategy (s2-a-bf) and a depth-first strategy (s2-a-df). The
breadth-first strategy gives us an overall speed-up of about 12%, only sentence
4 was processed slightly faster using the depth-first strategy.

Fig. 1. Overall Comparison Fig. 2. Parsing Strategy

Fig. 3. Number of Edges Fig. 4. Sentence 3

Figure 3 shows the number of edges that are generated for each sentence of
the specification and compares the first solution for coordinated structures (s1)
with the second solution (s2). The first solution creates 20.648 edges for the
entire specification and the second solution 7.369 edges, that means the second
solutions reduces the number of edges by a factor of 2.8. Since the specification
text is usually written in an incremental fashion and look-ahead categories are
generated for each word, it is interesting to compare the processing times for
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each word of a sentence. In Figure 4, we compare the processing times for each
word of sentence 3 taking the first solution (s1-a) and the second solution (s2-
a) into consideration, using argument indexing and the top-down, breadth-first
parsing strategy. The interesting result here is that the processing times for both
solutions are in the millisecond range, in the case of the second solution (s2-
a), the processing times are well below 30 milliseconds, that means the author
will not experience any delay while typing a text, since a delay of up to 100
milliseconds is generally not perceivable by a human.

6 Conclusions

In this paper, we showed how discourse representation structures are imple-
mented for coordinated structures in PENG Light. The choice of the implemen-
tation for coordinated structures has a dramatic effect on the overall parsing
performance. Argument indexing and a suitable parsing strategy (in our case
a top-down, breadth first search strategy) can further speed up the processing
of a specification. Furthermore, we showed that our approach is fast enough to
support the incremental processing of a specification text, since there will be no
perceivable delay when an author writes a text in PENG Light.
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Abstract. The Malay language may be written using either Roman or Jawi cha-
racters. Most Malay stemmers cover only Roman (Rumi) affixes. This paper 
proposes a stemmer for Jawi characters using two sets of rules in Jawi: one set 
of rules is used to stem various forms of derived words, and another set is used 
to replace the use of a dictionary by producing the root word for each deriva-
tive. This stemmer has been tested using 1185 derived words consisting of pre-
fix, circumfix, suffix, and infix. The results show that 84.89% of Jawi root 
words have been successfully stemmed.  

Keywords: Jawi, Stemmer, Malay Stemmer. 

1 Introduction  

A stemmer algorithm is used to find the morphological root word, known as the stem, 
of a word containing an affix [1]. A stemmer can be used not only for indexing and 
reducing vocabulary size but also to improve the performance of information retrieval 
[2]. Stemmer is very important in many languages and so does in Malay. The Malay 
language has two different types of scripts. A Jawi script resembles an Arabic charac-
ter with the addition of six new characters that makes it suitable for use in the Malay 
language and a Roman script is distinguished as a Roman alphabet. The Malay lan-
guage is spoken throughout many countries including Indonesia, Malaysia, Singapore 
and Brunei. The Jawi script is used in books, manuscripts, letters between kings and 
others [3].  

Studies on Malay stemmers have been conducted by Asim [4], Fatimah [5], Idris 
[6], Sock [7] and Muhamad [2]. Most studies used morphological rules in their stem-
ming algorithm, although Sock [7] used a combination method of an N-gram and 
stemming. Idris [6] identified the use of an additional dictionary, known as a local 
dictionary, which can reduce stemmer errors. Fatimah [5] and Muhamad [2] also used 
a root word dictionary to ensure that the root word was correct. However, these 
stemmers applied the root word dictionaries and are applicable only to Malay-derived 
words that are written in Roman characters. This paper proposes a stemmer for Jawi 



 A Malay Stemmer for Jawi Characters 669 

characters to stem all possible Malay-derived words into their respective root words 
using two sets of rules without using a dictionary. This paper has been organized into 
six parts. Section 2 introduces an overview of related works. Section 3 reviews studies 
related to Malay affixes. Section 4 describes the Jawi stemmer. Section 5 discusses 
the experiment and the results. Finally, section 6 presents our conclusions.   

2 Related Works 

The first Malay stemmer was developed by Asim [4]. The aim of the stemmer is to 
stem words derived in the Roman script into their root words. Fatimah [5] proposed a 
stemming process called the ‘Rule Application Order’ and improved the rule pre-
viously used in Asim [4]. In the ‘Rule Application Order’, the common dictionary [5] 
was replaced with a root word dictionary. According to Idris [6], the use of a ‘local 
dictionary’ can improve the stemmer’s result. The ‘local dictionary’ mainly holds a 
clear context of the root word and provides higher accuracy for the stemmer. Later, 
Muhamad [2] enhanced the technique used in Fatimah [5] and introduced the ‘Rule 
Frequency Order’ to stem Malay words in Roman script. The accuracy of Muhamad’s 
[2] stemmer is higher as compared to Fatimah’s [5].  

Errors reported on Malay stemmers have been identified as understemming, over-
stemming, spelling exceptions and others [2]. Understemming is an error that occurs 
when the root word produced by the stemmer contains the root word along with other 
characters [8]. For example applying a stemmer to the derived word تمبهكن (tmbhkn) 
should produce the actual root word تمبه (tmbh); in an understemming error, the 
stemmer produces the stem تمبهک (tmbhk). Overstemming is said to occur when a root 
word is overstemmed such as the derived word تمبهكن (tmbhkn) is stemmed to همب  
(mbh) [8]. In the Malay language, when the prefix is removed from the derived word, 
the character following the prefix sometimes needs to be replaced with another cha-
racter. Failing to do so can lead to spelling exception errors, for example, when the 
word ڠلوارڤ  (pngluar) is stemmed to الوار (aluar) instead of آلوار (kluar) [2]. Other er-
rors occur when the derived word does not overstem or understem, such as the word 
  .[2] (beza) بيذا rather than (prbe) ڤربي stemmed to (prbezaan) ڤربيذأن

The use of a Malay stemmer is not limited to information retrieval alone, but it can 
also be used in transliteration especially to transliterate Jawi words into Roman cha-
racters. In the ‘Jawi-Malay Transliteration’ [9], the stemming process is used to elim-
inate the affix from the root word. According to [9], the use of a root word dictionary 
is required to ensure that the root word is correct before the transliteration process can 
be done.  

Most studies use morphological rules and dictionaries in their stemming algo-
rithms. However, the use of a dictionary can lead to some issues such as the dictio-
nary itself must be comprehensive to make sure that the derived word is correctly 
stemmed [10],[11]. Moreover, some maintenance needs to be performed to update 
newly-discovered words and the use of a large-sized dictionary will affect the storage 
space and processing time [11],[12].  
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3 Malay Affixes  

A derived word can be described as a combination of a prefix, a circumfix, a suffix or 
an infix with a root word to form a new word [13]. Differences can be seen between 
affixes in a Roman script and affixes in Jawi regarding characters and spelling me-
thods [14]. The differences are found in the effects of the circumfixes and suffixes. 
This occurs primarily because Jawi uses only three characters ا (alif), و (wau) and ي 
(ya) for six vowel sounds [15]. People may assume that two vowels share one com-
mon symbol, but that is not the case. Table 1 shows that each vowel may be spelled 
differently depending on its position in the word – initial, medial or final. Moreover, 
certain vowels cannot be spelled using any vowel letter. 

Table 1. Different types of spelling using Jawi vowels, based on their positions 

Vowel Initial Medial Final 

[ ǝ ] < ا (alif) > : 
emak = امق (emk) 

< ø >* :  
lemak = لمق (lmk) 

  : < (ya) ى >
egoism = ايڬوءيسمى (egoism) 

[ a ] < ا (alif) > :  
atas = اتس (ats) 

  : < ا >
batas = باتس (bts) 

  : < ا >
sila = سيلا (sila) ;  
< ø >* : 
 tika = کتي  (tik) 
 

[ i ] < ايـ (i) > :  
ikan = ايكن (ikn) 

  : < (ya) ي >
lipas = ليڤس (lps) 

  : < (ya) ي >
roti = روتي (roti) 
 

[ e ] < ايـ (e) > :  
elak = ايلق (elk) 

  : < (ya) ي >
perak = ڤيرق (perk) 

  : < (ya) ي >
sate = ساتي (sate) 
 

[ u ] < او (u) > :  
udang = اودڠ (udng) 
 

  : <  (u) و >
buta = بوتا (buta) 

  : < (u) و >
biru = بيرو (biru) 

[ o ] < او (o) > :  
orang = اورڠ   (orng) 

  : < (o) و >
roda =  رودا (roda) 

  : < (o) و >
polo = ڤولو (polo) 
 

< ø >* = Vowels [ǝ] in the medial position and [a] in the final position are not spelled 
with < ا (alif) > character.  

 
To stem the words binaan and bukaan in the Roman script, we need to delete the 

suffix {+an} to form the root words bina and buka. In the same way, to stem the de-
rived word بينأن (binaan) in Jawi, the suffix نء  (an) need to be deleted to form the root 
word بينا (bena). However, in some situations, to stem a derived word such as بوآأن 
(bukaan), the suffix أن should be deleted to produce the root word بوک. (buk) Some 
words require ا (alif) at the end of the root word, but others do not. Table 2 shows 
some spelling examples in suffixes between the Roman and Jawi scripts. 
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Table 2. Spelling examples in suffixes between the Roman and Jawi scripts 

Jawi Roman Script 
 an+ +أن
 an+ +ن
 an+ +ءن
 an+ +ان
 i+ +أي
يء + +i 

 i+ +ي
 i+ +اي

 
In Malay, when we want to remove a prefix from a derived word, we need to add 

another character to the root word after the prefix is removed. This is known as a 
spelling exception [2]. For example, after removing the prefix +ڨ (pa) from the word 
 to form the (pa) ڨ should be replaced by character (mim) م the character ,(pmilih) ڤميليه
word ڤيليه (pilih). 

4 The Jawi Stemmer 

The development of a deaffixation rule must consider vowel placement, spelling ex-
ceptions and the minimum length of the morphemes in a Jawi word to produce the 
best stemmed word.  When using vowel placement, it is important to note that after 
removing the circumfix and suffix, ا (alif) should be used at the end of the word only 
if it represents the vowel [ a ] and not immediately preceded by the character ڬ (ga) or 
 at the end of the word if the vowel (alif) ا We also need to consider the use of .(kaf) ك
in the preceding syllables is [ a ] and the second syllable begin with either د (dal), ل 
(lam), و (wau), ر (ro) or ڠ (nga). To avoid errors, these two rules should be applied 
every time a circumfix or a suffix is eliminated. In Jawi, spelling exceptions occur 
more often in a prefix and a circumfix. Example of spelling exceptions for the Jawi 
stemmer is shown in Table 3.  

The minimum length of the Jawi stemmer can be defined in two parts. The first 
part is a root word with a minimum length of 2 and the second part is a root word with  
 

Table 3. Example of spelling exceptions for prefixes and suffixes 

Prefix Character added at 
the beginning of the root 
word after removing the 
prefix 

Circumfix Character added at the 
beginning of the root 
word after removing the 
circumfix 

+ مم  (pm) /+ ڤم (pm) ڤ (pa) آن (kn) +مم (mm) ڤ (pa) 
+ من  (pn) /+ڤن (pn) ت (ta),  ج (jim), چ (cha) آن (kn) +من (mn) ت (ta),  ج (jim), چ (cha) 

+ مڠ  (mng) /+ ڤڠ  (png) ک (kaf) / ا (alif) آن (kn) +مڠ (mng)  (alif) ا / (kaf) ک

+ مڽ  (mny) /+ ڤڽ  (pny) س (sin) آن (kn) +مڽ (mny)  (sin) س
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a minimum length of 3. Prefixes, circumfixes and suffixes use a minimum length of 2 
to prevent overstemming from occurring and infixes use a minimum length of 3. This 
is because, in Jawi, the use of two characters sometimes refers to a disyllable; for 
example, the affix براڤ (brap) will stem into the root word اڤ (ap).  

4.1 The Algorithm for the Malay Stemmer for Jawi Characters 

The deaffixation rules for the Malay Stemmer for Jawi Characters’ algorithm have 
been developed based on the book ‘Panduan Mengeja dan Menulis Jawi’ written by 
Hamdan Abdul Rahman [16]. These rules are being adapted with added capabilities 
appropriate for the Jawi stemmer. Instead of using the root word dictionary to check 
that the word is correctly stemmed, the proposed algorithm uses the Spelling Error 
Detector Rules (SEDR) [17] to ensure that the root word produced is spelled correct-
ly. SEDR has been tested using 3018 Jawi words and produced 97.8% of accuracy as 
reported in [17]. The algorithm for the Malay Stemmer for Jawi Characters is de-
scribed as follows: 

BEGIN; 
 
LOAD Deaffixation rule; 
 
 IF Circumfix present in a word; 
 
  THEN apply Circumfix rule; 
 
  WRITE the result into R.Txt; 
 
 END IF 
 
 IF prefix present in a word; 
 
  THEN apply prefix rule 
 
  WRITE the result into R.Txt; 
 
 END IF 
 
 IF suffix present in a word; 
 
  THEN apply suffix rule; 
 
  WRITE the result into R.Txt; 
 
 END IF 
 
 IF infix present in a word; 
 
  THEN apply infix rule; 

Deaffixation  
Rule 
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  WRITE the result into R.Txt; 
 
  ELSE output the word as a stemmed word; 
 
 END IF 
 
OPEN R.txt;  
 
  APPLY Spelling Error Detector Rule; 
 
   IF Spelling == Correct; 
 
    OUTPUT the result as a root word; 
 
   END IF; 
 
CLOSED R.txt; 
 
END 

For example, the word فرکولقن (prgolkn) contains the prefix +فر (pr), the circumfix ن 
(an) + فر  (pr) and the suffix ن (an) +. After the deaffixation rule is applied, the result 
must be checked using the SEDR. This set of rules involves checking the vowel 
placement and spelling method for Jawi [16]. To avoid understemming, the SEDR 
[17] must detect the best root word for the Jawi disyllable and follows it with three or 
four syllables. This is because the amount of disyllabic words is larger compared to 
other words. If the rule detects more than one available results, then it will take the 
circumfix result, followed by the prefix, suffix and infix. After the word فرکولقن 
(prgolkn) has been stemmed by the deaffixation rule, it must be checked using the 
SEDR [17] for disyllables. In this case کولق (golk) will be given as the best root word 
of affix فرکولقن (prgolkn). This is because the result obtained after individually remov-
ing the prefix +فر and the suffix ن+ will give کولقن and فرکولق, which does not match 
the set of rule of SEDR [17] for disyllables. 

5 Experimental and the Results 

All of the data were taken from online newspaper websites [18],[19] and were transli-
terated using the Transliteration Engine for Rumi to Jawi [20]. An experiment was 
performed to determine which deaffixation rules are the best sequences to be used 
with the SEDR [17]. This experiment used 1185 unique derived words and was tested 
using six different tests, labeled as D1, D2, D3, D4, D5 and D6. In this experiment, 
the infix was always in the last sequence because the infix is a smaller part of a de-
rived word. Table 4 shows the accuracy of each test. 

Table 4. The accuracy of each test 

 D1 D2 D3 D4 D5 D6 
Accuracy 78.39% 73.67% 84.89% 80.42% 72.66% 73.76%

Spelling Error 
Detector Rule 
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• D1: Prefix, circumfix, suffix and infix 
• D2: Prefix, suffix, circumfix and infix 
• D3: Circumfix, prefix, suffix and infix 
• D4: Circumfix, suffix, prefix and infix 
• D5: Suffix, prefix, circumfix and infix 
• D6: Suffix, circumfix, prefix and infix 

The results show that the highest accuracy for the Jawi stemmer was D3. Thus, to get 
the best results from the deaffixation rule, the sequence of stemming is to firstly stem 
the circumfix, followed by the prefix and the suffix, and finally the infix and then 
check the results using the SEDR [17].  

Next, two more experiments were conducted. The first was a controlled experiment 
called TEST A. To perform this experiment, the work of Fatimah [5] and Muhamad 
[2] have been used to test the data in Jawi without using a root word dictionary and 
then compare the results with those from the Malay Stemmer for Jawi Characters. 
1185 unique derived words and the same set of deaffixation rules for all sets have 
been used in TEST A. However, neither the root word dictionary nor the SEDR has 
been used here. The results were compared based on the accuracy. 

For the second experiment, the SEDR [17] has been used to replace the use of a 
root word dictionary as were done in Fatimah [5] and Muhamad [2]. This experiment 
was called TEST B. Again, the same set of data and deaffixation rules have been 
used. The results were compared based on the accuracy of each set. Details of the 
errors are shown in Table 5.  

Table 5. Types of errors in Test A and Test B 

Types of Error TEST A TEST B 
Fatimah Muhamad Jawi 

Stemmer 
Fatimah Muhamad Jawi 

Stemmer 
Understemming 537 495 30 147 138 34 

Overstemming 5 3 70 30 29 61 

Spelling Exception 20 16 37 21 31 40 

Others 95 126 69 58 26 44 

 
From Table 5 we see that in TEST A, Fatimah [5] shows the highest error, fol-

lowed by Muhamad [2] and the Jawi stemmer if we use only deaffixation rules to 
stem the derived words. This error can be reduced as reported in TEST B if we use 
the SEDR to replace the use of a dictionary as in Fatimah [5] and Muhamad [2].  
In TEST B, we see that Fatimah [5] and Muhamad [2] produced the most errors for 
understemming and the Jawi stemmer produced the most errors for overstemming. 
Figure 1 presents the accuracies for TEST A and TEST B. 
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Fig. 1. Accuracy of the stemmers 

Based on the graph in Figure 1, TEST A shows the control experiment for the Jawi 
stemmer and its accuracy compared to the studies of Fatimah [5] and Muhamad [2]. It 
is clear that the accuracy of the Jawi Stemmer is the highest. In TEST B, the use of a 
dictionary has been replaced by the SEDR [17] in the studies of Fatimah [5] and Mu-
hamad [2]. The graph shows that the highest accuracy is 84.89% which is that of the 
Jawi stemmer. In conclusion, it is clear that the use of the SEDR [17] increased the 
accuracy of all stemmers and that stemmers achieve accuracies in the range of 
78.39% to 84.89%.  

6 Conclusion  

This study shows that the use of both the deaffixation rules and the SEDR can im-
prove the accuracy of the Jawi stemmer. These two sets of rules can replace the use of 
a root word dictionary in developing the Jawi stemmer. The use of these rules can 
also reduce the time required to update a new root word in the dictionary when a new 
stem is produced after the derived word has been stemmed. However, the limitation of 
the Jawi stemmer is that it does not apply to English or Arabic-derived words because 
the vowels used in English and Arabic-derived words are different compared to pure 
Malay words. Further work needs to be done to ensure that this stemmer can also 
stem these types of words correctly.  
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Abstract. This paper establishes a formal relationship between theories
of computation and certain types of reasoning about action theories ex-
pressed in the situation calculus. In particular it establishes a formal cor-
respondence between Deterministic Finite-State Automata (DFAs) and
the ‘literal-based’ class of basic action theory, and identifies the special
case of DFAs equivalent to ‘context-free’ action theories. These results
formally describe the relative expressivity of different action theories. We
intend to exploit these results to drive more efficient implementations for
planning, legality checking, and modelling in the situation calculus.

Keywords: Reasoning about Action and Change, Situation Calculus,
Theory of Computation.

1 Introduction

The situation calculus is a general-purpose dialect of first-order logic for reason-
ing about the effects of actions in dynamic domains. It allows us to model the
state of a changing world, or determine which sequence of actions will achieve
a goal. However not all sequences will be executable—the effects of one action
may violate the preconditions of another. In this light, the set of executable se-
quences of actions for a given theory corresponds to the more general concept
of a language whose strings are built from an alphabet of actions.

Executability in the situation calculus has been briefly defined and discussed
by Reiter [5]. However there has been no attempt to describe the complexity of
an action theory based on the language of sequences of actions it accepts. This is
surprising since, compared with logic-based action calculi, automata theory pro-
vides a powerful and more thoroughly studied means of classifying the ‘hardness’
of different computational machinery—including those required for recognising
or constructing action theories.

In this paper we identify several existing special cases of action theories in
the situation calculus and prove their equivalence with classes of deterministic
finite automata. This facilitates a greater understanding of the expressivity of
situation calculus theories. We also expect it to lead to more efficient techniques
for representing and manipulating action theories, such as in planning problems
or in new interpreters for the cognitive robotics language Golog [1] whose se-
mantics are based on the situation calculus. By the same token, our translations
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allow AI behaviours encoded via finite state machines—such as XABSL [3] used
for robotics—to be converted to the situation calculus where it may be formally
reasoned about.

2 Background

The situation calculus is a sorted first-order logic for reasoning about actions
in dynamic systems with several distinguished elements. Situation terms are
histories (sequences of actions) composed of the binary do(a, s) function which
returns the situation that results from performing action a in situation s. Thus
do(an, . . . , do(a2, do(a1, S0))) represents the situation after performing the ac-
tions a1, a2, . . . , an in that order, starting from the distinguished initial situation
S0. Arbitrary situations can be constructed this way. Fluents are functions that
represent properties of the world. Their value may be modified by performing
actions, so they have situation terms as their last argument. We require that the
initial situation be fully axiomatised—every fluent must have a known value in
S0. Precondition axioms defining poss(a, s) specify the conditions under which
action a may be performed in situation s. Effect axioms specify the resulting
fluent values after performing an action a in situation s.

A situation-suppressed fluent f represents the partial function f(s) without
its situation term. A situation-independent formula does not expect a situation
term. A formula is uniform in s if it does not mention poss or do, or quantify over
situations, and s is the only situation term that occurs. Essentially it restricts
the use of the situation terms to querying the current value of fluents in only
that situation.

Note that rather than use effect axioms we adopt Reiter’s successor state
axioms (SSAs)—one per fluent—that provide a solution to the frame problem.1

SSAs can be automatically generated from effect axioms. This gives the following
‘template’ for successor state axioms:

f(do(a, s)) = y ≡ γ+(a, y, s) ∨ (f(s) = y ∧ ¬∃z . γ−(a, z, s))

where γ+, γ− are the positive and negative effects respectively—the conditions
that describe when a value becomes true or false. This formula expresses that
fluent f has the value y after performing action a in situation s whenever the
conditions that make the fluent assume that value hold (γ+) or f already has
the value y and nothing occurs to make it false (γ−). Note that we will only
consider functional fluents in this paper, so a positive effect for one value must
coincide with negative effects for all other values in the domain of that fluent.

The above SSA describes the value of fluent f in situation do(a, s) given its
previous value f(s) and the conditions that update its value (γ+) or the absence
of effects that make it false (γ−). This last component provides ‘inertia’—the

1 A discussion of the frame problem is beyond the scope of this paper, suffice to
say that it represents an explosion of axioms required to logically model fluents in
dynamic systems that do not change their value as a result of performing an action.
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logical assertion that fluents are not affected by unrelated actions. For example
the colour of a block does not change as a result of picking it up.

Systems always start in the distinguished initial situation S0. The value of
a fluent f in a later situation s can be determined by regressing2 back to S0

and simulating the update axioms on f for each action in s. We are now in a
position to define a basic action theory which represents a rudimentary type of
action theory.

Definition 1. A finite basic action theory (BAT) is a bounded theory in the
situation calculus B = Σsitcalc ∪ Buna ∪ Bss ∪ Bap ∪ BS0 , where:

1. Σsitcalc are the foundational axioms for the situation calculus that logically
describe what a situation looks like.

2. Buna are unique names assumptions—logical assertions that distinct names
(including fluent, action, and object names) are treated as distinct concepts.

3. Bss is a finite set of successor state axioms of the form above.
4. Bap is a finite set of action precondition axioms of the form poss(a, s) ≡
Πa(s), one for each action. Πa must be uniform in s.

5. BS0 is a finite set of first-order sentences defining the initial situation S0.
6. There are three finite sets of fluent names, actions, and objects. All ground

fluents and actions are constructed from these sets. We shall refer to the sets
of ground terms as F , A, and O, and assume that each has an arbitrary
but fixed ordering.

For an arbitrary machine M , we say its language L(M) is some (possibly infi-
nite) set of accepted words w ∈ L(M). We will consider a BAT of the situation
calculus to be one such machine, as well as more conventional machines like
Deterministic Finite-State Automata (DFAs). Both machines depend on a tran-
sition mechanism. DFAs use a function δ to map states and symbols to new
states. The situation calculus analogue is the function do that maps situations
and actions to new situations.

Definition 2. A DFA D is a 5-tuple:

D = 〈Q,Σ, q0, δ, F 〉

where Q is a finite, non-empty set of states, Σ is the input alphabet. The (total)
transition function δ : Q×Σ → Q maps a state and a symbol to a new state. The
system starts in state q0 and transitions according to δ. The set F ⊆ Q identifies
the final (accepting) states of Q. If the system reaches one of these states it may
accept—the current string of symbols is a word in the language—or continue
running to accept a longer string.

The transition function of an automaton encapsulates the pre- and post- con-
ditions of a transition. These are separated in the situation calculus as action

2 See Reiter [5]. We leave the alternative method—progression—for future work.
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preconditions (poss) and fluent successor state axiom postconditions. It is rel-
evant then to define executable situations as a sequence of actions where one
action’s postconditions are sufficient to guarantee the preconditions of the next:

exec(do(a, s)) ≡ exec(s) ∧ poss(a, s) (exec)

and
B ∪ (exec) |= exec(s)

This is one of Reiter’s definitions of executability. Note that exec(S0) is consid-
ered trivially true, though it is also easily derivable from alternate (equivalent)
definitions [5].

Many automata explicitly define a set of final states. In contrast, the situation
calculus makes no such distinction. To this end, we introduce an artificial finality
condition—a situation s is final iff a distinguished formula, fhalt(s), is true
in that situation. This has applications to planning problems, where the goal
is often specified by a formula goal(s) identifying final states/situations. It is
necessary in this paper for fhalt to be uniform in s. This would restrict goal
formulas to being Markovian.

Finally, we define acceptance as:

Definition 3. A DFA accepts a sequence if the corresponding transitions pro-
duce a final state. A BAT accepts a situation (sequence of actions) if that situ-
ation is executable and satisfies some theory-specific halt (goal) condition.

w ∈ L(DFA) iff δ̂(q0, w) ∈ F
w ∈ E(BAT ) iff BAT |= fhalt(d̂o(w, S0)) ∧ exec(d̂o(w, S0))

where δ̂, d̂o represent repeated applications of the corresponding transition
functions.

Informally, L(D) is the set of words that transition to a final state in DFA D.
E(B) is the set of legal, ‘halting’ situations in BAT B—to distinguish it from
logically derivable sentences L in a typical knowledge base.

3 DFA—Literal-Based BAT Equivalence

In this section we prove the formal equivalence between DFAs and the ‘literal-
based’ class of basic action theories. Petrick and Levesque defined literal-based
BATs while establishing knowledge equivalence [4]. The functional form was left
as an exercise and so we provide the following definition:

Definition 4. A literal-based BAT (LB-BAT) is a finite BAT of the above form,
but with restricted use of the situation term in the positive and negative effects
(γ+, γ−) of the successor state axioms:
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γ+
F (y, a, s), γ−F (y, a, s)

def
=

k∨
i=1

πi(y, a, s)

where each πi is: πi(y, a, s)
def
= ∃zi . a = βi(zi) ∧ ψi(y, zi, a)∧
P1(zi, s) = c1 ∧ . . . ∧ Pl(zi, s) = cl

where P1, . . . , Pl are fluent literals, c1, . . . , cl are constants, the (possibly empty)
vector of variables zi must be an argument to the action term βi. To maintain the
functional property, we also require that all separate πs are mutually inconsistent.

Informally, SSAs may now only use the situation term to mention a finite con-
junction of fluent literals, or to implement inertia.

Fluent values are typically encapsulated in situations, which may grow arbi-
trarily long. However literal-based BATs have finite domains, so we can define
equivalence classes of situations that represent the finite state space of distinct
fluent values. This formulation is suitable for an automaton.

Definition 5. state is a function from executable situations in BAT B to or-
dered tuples of fluent values:

state(s) =
{ 〈 B |= f(s) 〉f∈F if B |= exec(s)

⊥ otherwise

where F is the finite (ordered) set of unique ground fluents in B. Note that
non-executable situations all map to a distinguished failure state ⊥.

Definition 6. The BAT-state construction takes a literal-based basic action the-
ory B and produces a finite state machine D = 〈Q, q0, Σ, δ, FD〉 where:

Q = {state(s) s is an executable situation} ∪ {⊥} (set of states)
q0 = state(S0) (initial state)
Σ = the set of ground action terms (alphabet)

δ(state(s), a) = state(do(a, s)) (transition function Q×Σ → Q)
δ(⊥, a) = ⊥
FD = {state(s) B |= fhalt(s)} (final states ⊆ Q)

Note also that state maps infinitely-many situations (histories) to finitely-many
‘states’; the domain of each fluent dom(f) is finite, and both literal-based precon-
ditions and successor-state axioms are finite and uniform. The set of states Q in
our DFA is an equivalence class of situations with the same fluent-value bindings.

We illustrate this conversion with an example. Our hero, Maxwell, walks down
a corridor full of doors on his way to work. At the end of the corridor is a phone
booth in which he dials a passcode. Such a procedure may be represented as a
literal-based action theory where we keep walking until we non-deterministically
decide that we have reached the phone, at which point we enter and dial. This
would typically be augmented with sensing actions, though we prefer to save a
discussion of this mechanism for Section 5.
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actions: {walk, enter, dial}

fluents: {dialled, in booth}

initially: dialled(S0) = F
in booth(S0) = F

termination: fhalt(s) ≡ dialled(s)

preconditions: poss(walk, s) ≡ ¬in booth(s)
poss(enter, s) ≡ ¬in booth(s)
poss(dial, s) ≡ in booth(s)

SSAs: dialled(do(a, s)) = y ≡ (a = dial ∧ y = T ) ∨ (dialled(s) = y ∧ a �= dial)
in booth(do(a, s)) = y ≡ (a = enter ∧ y = T ) ∨ (in booth(s) = y ∧ a �= enter)

(a) An LB-BAT for ‘corridor world’

q0start booth

⊥

dial

walk

enter

dial

dial

dial

walk, enter

walk, enter

(b) Corresponding DFA

Fig. 1. Corridor World

We can now apply our construction to this action theory. First, our alphabet
is the set of actions Σ = {walk, enter, dial}. Each fluent has a Boolean domain,
so our state-space is:

Q = {〈〉 , 〈in booth〉 , 〈dialled, in booth〉 ,⊥}
For clarity we represent a state as the tuple of true fluents in that state. The
initial situation has both fluents false, that is q0 = 〈〉. Termination is defined as
any states that have dialled true:

FD = {〈dialled, in booth〉}
Finally, the update function maps the following states:

δ(〈〉 , walk) = 〈〉 δ(〈in booth〉 , dial) = 〈dialled, in booth〉
δ(〈〉 , enter) = 〈in booth〉 δ(〈dialled, in booth〉 , dial) = 〈dialled, in booth〉

All other transitions are illegal (violate poss axioms).

Theorem 1. If B is a literal-based BAT and D is the DFA obtained by applying
the BAT-state construction on B, then E(B) = L(D).

We propose a similar construction in the reverse direction:

Definition 7. The fluent construction takes a DFA D and produces a literal-
based BAT B = Σsitcalc ∪ Bss ∪ Bap ∪ Buna ∪ BS0 where:

1. flu : Q→ F maps states to unique fluent names.
2. Σsitcalc ≡ situation calculus foundational axioms.
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3. Bss ≡
⋃

f∈flu

SSAf ; the effect axioms are the set of SSAs for each fluent name

in flu.
4. Bap ≡

⋃
a∈ΣD

poss(a, s); the action preconditions are the set of poss axioms

for each action in the DFA alphabet ΣD.
5. poss(a, s) ≡

∨
q

fluq(s) = T where δ(q, a) �= ⊥; action a is possible in any

state where it won’t transition to the sink.
6. γ+

f (T, α, s) ≡ γ−f (F, α, s) ≡
∨
q

(α = a∧fluq(s) = T ) where f = fluδ(q,a); ac-

tion a makes fluent f true if the current f ′ state (q ⇒ f ′(s)) would transition
to the f state (δ(q, a)⇒ f(do(a, s))).

7. γ−f (F, α, s) ≡ γ+
f (T, α, s) ≡ dual of γ+

f (F, α, s).
8. BS0 ≡ initial situation. The initial state’s fluent is true: fluq0(S0) = T . All

other fluents are false: f(S0) = F . Also, the initial situation is final iff the
initial state is: fhalt(S0) ≡ q0 ∈ FD.

9. fhalt(s) ≡
∨

q∈FD

fluq(s) = T ; the halt condition holds iff any final state’s

fluent does.

And Buna ensures that the actions a ∈ ΣD for distinct transition labels and the
fluents f ∈ flu ∪ {fhalt} for distinct states are all logically unique.

Note that the preconditions are uniform, the successor state axioms are uniform
and literal-based, and fhalt /∈ flu.
Theorem 2. If D is a DFA and B is the literal-based BAT obtained by applying
the fluent construction on D, then L(D) = E(B).

Corollary 1. DFAs and LB-BATs are equivalent:

L(DFA) = E(LB-BAT).

4 Lattice DFA–Context-Free BAT Equivalence

The ‘context free’ successor state axioms are a weak special case of the literal-
based SSAs. This means that the DFA construction in Definition 6 still applies.
The DFA that we get will be severely restricted though—a visual indication
of the restrictiveness of context-free BATS (CF-BATs). We identify this class
as ‘Lattice’ DFAs because of their high geometric symmetry, and prove their
equivalence to CF-BATs.

Definition 8. A context-free BAT (CF-BAT) is a special case of LB-BAT with
additional restrictions on SSAs—the positive and negative effects (γ+, γ−) can
have no situation dependence:

f(do(a, s)) = y ≡ γ+
f (a, y) ∨ (f(s) = y ∧ ¬∃z . γ−f (a, z))
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Definition 9. A Lattice DFA is a DFA whose states can be partitioned in one
or more ways such that all reachable transitions satisfy the following conditions:

1. The transitions in a partition wrt an action (an (action, partition) pair)
must be ‘fixed’ or ‘inertial’:
(a) Fixed — all states transition into the same part.
(b) Inertial — no state can transition between parts.

2. If every partition is Inertial wrt action a, then a can only label self-loops.
3. If every partition is Fixed wrt action a, then a must always transition to the

same state.
4. There cannot be more partitions than states.
5. There cannot be more parts in a partition than the number of actions.
6. No two states can appear in the same part across every partition (indistin-

guishable).

All other transitions must enter the inescapable sink state ⊥. Note that Condi-
tions 2 and 3 motivate multiple partitions for most useful Lattice DFAs.

Each partition is a distinct view of the same set of states and represents how
states are distinguishable under action transitions—both as a dimension of sym-
metry in the DFA, and the domain of a fluent in the corresponding CF-BAT.

The following heuristic is useful for categorising (action, partition) pairs:

1. If action a transitions between two distinct parts of partition p, then p must
be Fixed wrt a;

2. Otherwise, if there are transitions starting within two separate parts of par-
tition p, then p must be Inertial wrt a; and,

3. Otherwise, it can be either, subject to Conditions 2+3.

Definition 10. partf takes a state and returns the index of its part along the
f th partition:

partf : Q→ N

Note that the conjunction of part indices across all partitions uniquely defines
the state, q ≡ ∧

f partf (q).

The Lattice DFA is heavily restricted and impractical as a modelling tool, but
we show that it can represent any context-free BAT. Note first that the BAT-
state construction from Definition 6 is sufficient to convert CF-BATs into DFAs
since CF-BATS are a special case of LB-BAT. The partitions of the DFA in
this case correspond directly to the fluents. If you construct a DFA from a
CF-BAT with n fluents, such that states with the same fluent-value all lie on
an (n − 1)-dimensional hyperplane, then you get an n-dimensional lattice. The
distinct parts of each partition (the hyperplanes) represent the domain of the
corresponding fluent. This geometrical interpretation represents the restrictions
that context-free SSAs place on transitions—we can not compile out the fluents,
so instead the transitions exhibit high dimensional symmetry, and the fluents
remain partially represented in the physical construction of the automata.
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11
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1
0start

3

2

5
4

7
6

9

8

at(package)

loaded

at(truck)

Fig. 2. A 3D Lattice DFA

Table 1. The (action, partition) types

partition

loaded at(package) at(truck)

a
c
ti
o
n

dropdepot fixed fixed either

pickup fixed fixed inertial

dropPerth fixed fixed either

drivedepot inertial inertial fixed

drivePerth inertial inertial fixed

loaded 0 1 2 3 4 5 6 7 8 9 10 11

at(package) 0 3 6 9 1 4 7 10 2 5 8 11

at(truck) 3 4 5 9 10 11 0 1 2 6 7 8

drive

pickup

drop

No Yes

depot in-truck Perth

depot Perth

Fig. 3. The partitions of the DFA

We illustrate with a reduced Depot Problem. The part labels in Figure 3 (eg.
Perth under at(truck)) indicate that the start state (0) has the truck at Perth
and the package unloaded, at the depot. Note that all drive-transitions stay
in their original part in the loaded and at(package) partitions and hence are
inertial—the drive action does not affect these fluents. Conversely, the two drop
actions may be either inertial or fixed on the at(truck) partition as the truck’s
location does not change (inertial), but may equivalently be set by the action
effects (fixed).

Theorem 3. If B is a context-free BAT and D is the DFA obtained by applying
BAT-state construction on B, then D will be a Lattice DFA and L(D) = E(B).

Definition 11. The Lattice-BAT construction takes a Lattice DFA D and pro-
duces a context-free BAT B such that:

1. actions = ΣB

2. fluents = {fi 0 ≤ i < |partitions of D|}
3. poss(a, s) ≡

∨
q∈Q

∧
i

fi(s) = partfi(q) ∧ δ(q, a) �= ⊥

4. fi(do(a, s)) = y ≡ γ+
fi

(a, y) ∨ (fi(s) = y ∧ ¬∃z . γ−fi
(a, z))

where γ+
fi

(a, y) ≡ ∃q . δ(q, a) �= q ∧ δ(q, a) �= ⊥ ∧ partfi(δ(q, a)) = y
γ−fi

(a, y) ≡ dual of γ+
fi

if it exists
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5. DS0 ≡ {fi(S0) = partfi (q0) 0 ≤ i < |partitions of D|}
6. fhalt(s) ≡

∨
q∈FD

∧
fi

fi(S0) = partfi(q).

Note that the γ+ construction only exists if the transition has a change of state —
a Fixed transition. Inertial transitions are handled by the absence of γ+ and γ−

axioms for that action. There can be at most one γ+ and one γ− for an action
because the arguments do not provide greater granularity. This is why each
(action, partition) pair must satisfy either the Fixed or Inertial requirements.

Theorem 4. Every Lattice DFA D can be converted to an equivalent context-
free BAT B such that L(D) = E(B).

Corollary 2. Lattice DFAs and CF-BATs are equivalent:

L(Lattice DFA) = E(CF-BAT).

5 Conclusion

The situation calculus contains other types of actions beside the ‘primitive’ ac-
tions used above. Sensing actions update fluents directly based on a sensed value,
rather than by an effect axiom. Exogenous actions are actions performed exter-
nally, but whose effects must be detected so that the internal model can remain
consistent with the state of the actual world.

These are technically extra-automata features, however, the situation calculus
model is from ‘god’s eye’ or meta view—we assume the logical state mirrors the
world it models. In this light exogenous actions are simply regular actions fired by
a different hand—a distinction that is irrelevant from an automaton perspective.
Similarly, sensing actions can be modeled by non-deterministically selecting a
sensing action that returns the correct result. Introducing Lin’s indeterminate
effects axioms [2] to the situation calculus should facilitate this aspect.

We also intend to investigate the application of these results to planning
problems. We believe that analysing special cases like the Lattice DFA will help
identify tractable domains.
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Abstract. We describe a simulation model based on an avian ecosys-
tem for determining what causes birdsong evolution. It is already known
that songbirds communicate with a “birdsong.” This birdsong is used
in territorial and courtship behaviors. Some previous researches have
suggested that songs related to territorial behaviors should have simple
structures while those related to courtship behaviors should have com-
plex ones. We suspect that birdsongs are constantly evolving to achieve
a suitable balance between the two behaviors while considering the sur-
rounding environment. We consider avian habitat density to be one of
the most important environmental factors influencing birdsong evolution
and therefore created different densities in a simulation model. In this
paper, we propose a birdsong acquisition model by sexual selection that
contains both territorial and courtship behaviors. We conducted simu-
lations with the proposed model and determined that the evolution of
birdsongs differs depending on a bird’s habitat density.

Keywords: Artificial Life, Sexual Selection, Birdsong, Evolutionary
Simulation.

1 Introduction

Songbirds that belong to the passerine order communicate with each other using
their voices. Bird vocalizations include both birdsongs and calls; birdsongs are
acquired after birth and sung by only the male birds while calls are inherent.
Songs are long and complex and are associated with territorial and courtship
behaviours, while the shorter calls tend to functions as simple signals or alarms.
In this paper, we focus on the songs. It is currently thought that the territorial
and courtship behaviours affect sexual selection for the following reasons [4].

– Songbirds’ territorial behaviour
The male birds display territorial behaviour by singing songs. Those that
sing short, simple, and stereotyped songs have an advantage in that they
can be easily recognized by their neighbors. It is assumed that the effect
is one of the results of Dear Enemy Effect that reduces aggressiveness to
neighbors for the energy saving [3].

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 687–696, 2011.
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– Songbirds’ courtship behaviour
The female birds hear the songs of the male birds and use them to search for
and select their mates. They tend to prefer longer and more complex songs,
which is non-adaptive to survival and caused by the handicap principle [1].

The birds sing different songs according to their habitat — like dialects, even
if they are closely related species — and observers expect that the songs evolve
to achieve a more suitable balance of the two behaviors depending on the sur-
rounding environment [6]. However, it is difficult to confirm this expectation
due to the necessity of long-term experimentation.

Using an artificially designed computational model to simulate real life is one
technique for studying systems related to life [2]. The rapid evolution of soft-
ware agents makes it possible to simulate challenging experiments like evolution
observations [8]. There have been previous studies that use the ecological model
for birdsongs [5], and birdsongs can be effectively described with a finite-state
grammar. Sasahara and Ikegami have suggested a model in which the grammar
of the songs sung by male birds and the grammar of the songs preferred by female
birds are expressed as automatons, and they also showed that the courtship be-
haviour requires birdsongs to have complex structure [10]. However, their model
did not deal with the territorial behaviour of birds because they were examining
the Bengalese finch, which is a domesticated species. Ritchie and Kirby sug-
gested a model in which the hearing function of birds is expressed as filters [9].
They showed that the territorial behaviour causes the hearing function of a bird
to prefer a certain type of song. However, their model did not deal with the
courtship behaviour of birds.

In this paper, we describe an evolutionary model of birdsongs that draws
on both the Sasahara and Ikegami’s model and Ritchie and Kirby’s model. We
express the grammar of the songs as automatons and hearing functions of the
birds as filters. The model includes a song pool environment for sharing songs
with bird agents in order to design the territorial and courtship behaviour in
the avian ecosystem. In addition, we focus on habitat density as one of the key
factor of song evolution. We conducted simulations with the proposed model
and determined that the evolution of birdsongs differs depending on the habitat
density.

2 Conventional Model

In this section, we describe the parts of the other two models we adapted to our
own model.

2.1 Sasahara and Ikegami’s Model

Recent analysis of birdsongs has shown that the songs consist of a regular order
of syllables. Therefore, a song sx can be defined as

sx = ch0ch1..chy..chz−1 (chi ∈ {a,b, c,d, e}), (1)
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Table 1. Example of a Filter for Recongnizing Conspecific Songs

a b c d e E

S 0.08 0.15 0.52 0.07 0.08 0.10

a 0.05 0.84 0.00 0.00 0.05 0.06

b 0.05 0.10 0.18 0.45 0.22 0.00

c 0.82 0.09 0.00 0.09 0.00 0.00

d 0.22 0.30 0.00 0.08 0.00 0.40

e 0.12 0.00 0.30 0.30 0.05 0.23

where chi is the syllable (“chunk”) that is expressed by characters from ‘a’ to
‘e,’ and z is the number of chunks composing a song sx.

It is expressed by individual automatons for the grammar of the songs sung
by the agents of male birds and the grammar of the songs preferred by the agents
of female birds. In other words, the male bird agents sing a song in accordance
with the grammar, and the female bird agents prefer the song in accordance
with the grammar. The male agents court the female agents by generating their
songs with an automaton for song expression, and the female agents select their
mates by valuing songs with an automaton for song preference.

As mentioned earlier, Sasahara and Ikegami’s model does not deal with terri-
torial behaviour because the bird they modeled, the Bengalese finch, is a domes-
ticated species. Their model also does not deal with song learning which is an
important factor for the avian ecosystem. It is therefore necessary to add terri-
torial behaviour and song learning structures to their model to design a general
evolution model.

2.2 Ritchie and Kirby’s Model

Songbirds that are not born with the ability to sing learn their songs from songs
they hear in childhood. They memorize songs they select by a unique hearing
function that determines whether the song is conspecific or not. The male birds
generate their template of song expression and the female birds generate their
template of song preference [7]. Ritchie and Kirby suggested that the hearing
function is expressed by filter: conspecific songs are easily memorized through the
hearing function, while another species’ songs are difficult to memorize because
the hearing function blocks them. The filter is a table consisting of the transition
probability from chunk to chunk; an example is shown in Table 1. S indicates
the start of the song and E indicates the end. a, b, c, d, e indicate individual
chunks.

A preference prefer(filteri, sx), which expresses if a song sx is conspecific for
filter filteri, is defined as

prefer(filteri, sx) =

∑n
y=0 fti(ty)

n
, (2)
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where n is the number of chunk transitions in a song sx and fti(ty) is the function
that refers to the probability ty of the yth chunk transition of the song sx in
the filteri. A preference prefer(filteri, sx) depends on the selection of training
songs and the evaluation of territorial behaviour. It is necessary that Ritchie and
Kirby’s model be adapted to include the function of courtship behaviour for a
general evolutionary model.

3 Composition of Computational Model

Our model includes agents as songbirds, song sets as the song repertoire of
a songbird, and a song pool as an environment in which to share songs. The
configuration diagram of our model — agents, song set, and song pool — is
shown in Fig. 1.

A male agent amk and a female agent afl in childhood refer to the song set
Song in the song pool Song pool, and each generate either a song expression
automaton Sk or song preference automaton Pl from their training song set
acquired though their filter. A male agent in adulthood ami stores its song set
Songi, which consists of its songs sung by song expression automaton Si, into the
song pool Song pool, while a female agent in adulthood afj selects its mate by
evaluating some song sets Song in the song pool Song pool by its song preference
automaton Pj . Details of each definition are shown below.

3.1 Agent

A male agent ami and a female agent afj (i,j is the identifier) are expressed by

ami(filteri, T raini, sai, riski) (3)
afj(filterj, T rainj, paj), (4)
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where filteri, f ilterj is the filter meaning inherent to the hearing function,
Traini, T rainj is the training song set for song learning, sai is the song ex-
pression automaton for generating songs, paj is the song preference automaton
for evaluating songs, and riski is the expectation value of risk due to territorial
behaviour with other agents. The agent’s actions — song learning, territorial
behaviour, and courtship behaviour — are described in detail later.

3.2 Song Set

A song set Songi which is the set of songs generated by a male agent ami, is
defined as

Songi = {sx|x = 1 . . . SONG}, (5)

where SONG is the number of songs that a male generates.

3.3 Song Pool

The song pool, which is a multiset of song sets, is updated each simulation step
(approximating one year each). All song sets generated by male agents are stored
in the song pool and referred to by other agents. The song pool is defined as

Song pool = {Songi|i = 1...AM}, (6)

where AM is the number of male agents.

3.4 Habitat Density

Habitat density is the population density of all birds in a given area. We believe
that habitat density depends on the number of birds that are around a particular
bird, in other words, the high habitat density makes birds hear many other songs.
In our model, we define HEAR as the number of song sets referred to by an
agent in one step for the purpose of expressing habitat density.

4 The Life Cycle of an Agent

The life cycle flowchart of each agent is shown in Fig. 2. An agent’s life consists
of a childhood phase and an adulthood phase. In childhood, each agent learns
songs and in adulthood, male agents generate their songs and calculate the risk
of territorial behaviour, while female agents evaluate the male agent’s song sets
and select their mates. When an agent reaches the end of its lifetime, it dies.

4.1 Agent in Childhood

In songbirds ecology, it is known that songbirds make the mold of song after
hearing it from some male birds through their inherent hearing function. In our
model, an agent collects songs from the song pool through the filter, which is
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an inherent component, and generates the song expression or song preference
automaton from the collected songs. An agent hears HEAR agents’ song sets
that are randomly selected in the song pool and calculate each of the song’s
preference through the filter. The training songs we used included five songs
that were preferred by the filter.

Next, an agent generates a song expression or song preference automaton
from the training songs with the minimum description length (MDL) algorithm
This algorithm, which is a compression algorithm for automatons based on the
minimum description length principle, is generally used as a model of language
acquisition [11]. Any training songs are accepted by the acquired automaton,
and an agent thus develops into adulthood after it finishes learning the songs.

4.2 Male Agent in Adulthood

A male agent in adulthood generates a song set that is the set of SONG songs
accepted by its song expression automaton. However, it is stochastically difficult
to generate songs that have a low preference calculated with the filter. Next, the
potential risk of territorial behaviour of each male agent is calculated (NOTE:
for real songbirds it is better that they memorize simple and recognizable songs
to reduce the risk of territorial behaviour). In our model, the risk is calculated
by song complexity and song recognition relations with among other agents. A
risk riski of male agent ami is defined as

riski =
1
2

(
HEAR · complex(Songi) +

HEAR∑
j=0

cognit(ami, amj)
)
, (7)

where complex(Songi) is the complexity of songs in the song set Songi and
cognit(ami, amj) is the song recognition relations between ami and amj . It is
apparent that the higher the value HEAR expressing habitat density has, the
higher value riski has. The details of complex(Songi) are shown as

complex(Songi) =

∑
sx∈Songi

complex s(sx)
SONG

, (8)

complex s(sx) =
1
2

(
cht(sx)

L MAX
+

ch(sx)
CHUNK

)
, (9)

where complex s(sx) is the complexity of song sx in the song set Songi, cht(sy)
and ch(sy) is the number of chunk transition patterns and the number of chunk
types included in song sy respectively, L MAX and CHUNK is the maximum
number of chunk transitions patterns and the maximum number of chunk types
our model allows respectively.

cognit(ami, amj) is calculated by

cognit(ami, amj) = 1− 1
2

(
ps(filteri, Songj) + ps(filterj, Songi)

)
, (10)
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where ps(filteri, Songj) is the average of prefer(filteri, sx) among sx in the
Songj, defined as

ps(filteri, Songj) =

∑
sx∈Songj

prefer(filteri, sx)

SONG
. (11)

4.3 Female Agent in Adulthood

A female agent in adulthood evaluates song sets in the song pool by a song
preference automaton to select its mate (NOTE: real songbirds, the female birds
prefer more complex songs learned in their childhood, and they consider territo-
rial quality [7]). The value of these multiple cues is defined and a female agent
hear HEAR potential mates’ song sets that are randomly selected in the song
pool. The male agent that is given the highest value is selected as the female
agent’s mate. value(afj, ami), which is a female agent afj ’s assessment of a male
agent ami, is defined as

value(afj, ami) = α · sc s(paj , Songi) + (1− α) sc t(riski), (12)

where sc s(paj , Songi) is the score of the song, sc t(riski) is the score of the
territorial behaviour, and α is the invariable to normalize these scores, resulting
in alpha = 0.9 in our experiment.

sc s(paj , Songi), which consists of the song complexity and acceptability of
the song set, is defined as

sc s(paj , Songi) = complex(Songi) +

∑
sx∈Songi

accept(paj , sx)
SONG

, (13)

where accept(paj, sx) is results in an output 1 if the song sx can be accepted by
song preference automaton paj . If it cannot, the output is 0.

sc t(riski), which is the difference between ave risk (the average of all male
agent’s risks) and riski (a male agent ami’s risk) , is define as

sc t(riski) = ave risk − riski. (14)

A female agent afj selecting its mate ami generates the next generation amn, afo,
whose filters filtern, f iltero are given to operate both ami’s filter and afj ’s filter
genetically. Agents of the next generation amn, afo are defined as

amn(filtern, ∅, ∅, ∅), (15)
afo(filtero, ∅, ∅). (16)

The next generations are exposed to the selection pressure by roulette-wheel, in
which their fitness depends on the value of their parents’ value value(afj, ami).
The AM male agents and the AF female agents in next generation survive, and
the others are remove out.
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Table 2. Simulation Condition

Description Value

Number of songs which bird hears: HEAR 5, 20, 40

Number of step in simulation 3000

Number of male agent: AM 100

Number of female agent: AF 100

Number of an agent’s song: SONG 5

Maximum length of song: L MAX 10

Kind number of chunk: CHUNK 5

Number of step in agent life-time: LIFE 2
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Fig. 3. Average values of complex(Song) in simulations at each HEAR

5 Simulation and Discussion

We conducted a simulation using our model under the conditions listed in Table
Table 2. Our particular focus was on the influence of avian habitat density on
song evolution. As described in section 3.4, avian habitat density is expressed as
the number of song sets referred to by an agent in one step HEAR. We changed
the value of HEAR with 5, 20, and 40 to examine the agent’s song complexity
complex(Song) acquired by evolution.

5.1 Results

Fig. 3 shows the process of the mean value of complex(Song) in each value of
HEAR. The value of complex(Song) is lower as the value of HEAR is higher. In
other words, simple songs are acquired when the agents are closely spaced, and the
complex songs are acquired when the agents are sparse. We conclude that agents
change the weight of their behaviour (territory or courtship) depending on the
habitat. From equation (7), the force to reduce the value of riski arises if the value
of HEAR is higher because of the range expansion in the value of riski.
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Fig. 4. Example of Greenish Warbler’s
song

Fig. 5. Example of the agent automa-
ton in the simulation of HEAR =
5, HEAR = 40

Table 3. Relation Between Habitat Density and Song

habitat density priority behavior song complexity

low courtship complex

high territorial simple

5.2 Comparison to the Greenish Warbler

The Greenish Warbler (Phylloscopus trochiloides) inhabits forests in much of
northern and central Asia, and their songs differ depending on the habitat. Fig. 4
shows the example of Greenish Warbler songs in two different habitats [6]. The
songs obtained at the mark on the map are expressed by spectrogram and labeled
by the characters of each chunk. The Greenish Warbler in north Asia sings a
long complex song, while the one in central Asia sings a stereotyped simple
song. It has been theorized that the Greenish Warbler in north Asia acquired
complex songs because of the priority given to courtship behaviour based on
lower habitat density [6]. The relationship between habitat density and song
complexity is shown in Table 3.

Fig. 5 shows examples of automaton obtained in the simulation experiments of
HEAR = 5 and HEAR = 40. The automaton in HEAR = 5 can output songs
consisting of more complex chunk transitions than the automaton in HEAR =
40. Compared to the songs of the Greenish Warbler shown in Fig. 4, there are
similar relations between song complexity and some difference between song
length. We therefore conclude that the song complexity of birds depends on the
avian habitat density.
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6 Conclusion

In this paper, we examined how a songbird’s song evolves due to sexual selection
with a focus on habitat density. We conducted an artificial life, multi-agent
simulation and determined that the relation between habitat density and song
complexity depends on the balance between courtship and territorial behaviours.
Bird agents equipped with an inherent hearing function acquired song expression
and song preference automatons and then communicated with songs. Influenced
the habitat density, which is the number of other birds in the environment, the
agents engaged in territorial and courtship behaviour and song learning. When
we changed the habitat density, a higher density made the agent’s songs simpler
and a lower density made them more complex. The simulation was similar to
real ecology in term of the relation between habitat density and song complexity.
Though it is necessary to mention whether the more data is same with those
in real ecology, they are hard to be justified. Our future work will focus on the
justification of the proposed model.
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Abstract. We address the problem of visualizing structure of bipartite graphs
such as relations between pairs of objects and their multi-labeled categories. For
this task, the existing spherical embedding method, as well as the other standard
graph embedding methods, can be used. However, these existing methods either
produce poor visualization results or require extremely large computation time to
obtain the final results. In order to overcome these shortcomings, we propose a
new spherical embedding method based on a power iteration, which additionally
performs two operations on the position vectors: double-centering and normal-
izing operations. Moreover, we theoretically prove that the proposed method al-
ways converges. In our experiments using bipartite graphs constructed from the
Japanese sites of Yahoo!Movies and Yahoo!Answers, we show that the proposed
method works much faster than these existing methods and still the visualization
results are comparable to the best available so far.

1 Introduction

Visualization by embedding graphs into a low dimensional Euclidean space plays an
important role to intuitively understand the essential structure of graphs (networks). To
this end, various graph embedding methods have been proposed in the past that include
multi-dimensional scaling [6], spectral embedding [1], spring force embedding [2],
cross-entropy embedding [7]. Each method has its own advantages and disadvantages.

In this paper, we address the problem of visualizing structure of bipartite graphs such
as relations between pairs of objects and their multi-labeled categories. More specifi-
cally, relations of this kind include pairs of movies and their associated genres, pairs

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 697–706, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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of persons and their interested genres, pairs of researchers and their coauthoring pa-
pers, pairs of words and their appearing documents, and many more. Clearly, we can
straightforwardly apply any one of the above-mentioned embedding methods for the
visualization. However, we note that these standard methods have an intrinsic limita-
tion because they cannot make much use of the essential structure of bipartite graphs.
Indeed, the existing spherical embedding method has been proposed for the purpose of
visualizing bipartite graphs [5]. In this method, the position vectors are embedded on
two concentric spheres (circles) with di�erent radii. We consider that such a spherical
embedding can be a natural representation for bipartite graphs. However, the biggest
problem with the existing method is that it often requires an extremely large computa-
tion time to obtain the final visualization results.

In this paper, to overcome these shortcomings, we propose a new spherical embed-
ding method based on a power iteration, which adopts two operations to iteratively ad-
just the positioning vectors: double-centering and normalizing operations. We further
show theoretically that the convergence of the proposed algorithm is always guaran-
teed. In our experiments that use bipartite graphs constructed from the Japanese sites
of Yahoo!Movies and Yahoo!Answers, we show that the proposed method works much
faster than these existing methods, and yet the visualization results are comparable to
the best available so far.

2 Problem Framework

We describe the problem framework of embedding the bipartite graph G � (V� E) into a
K-dimensional Euclidean space, where V � VA � VB, VA � VB � �, and E � VA � VB.
For the sake of technical convenience, we identify each set of the nodes, VA and VB,
by two di�erent series of positive integers, i.e., VA � �1� � � � �m� � � � � M� and VB �

�1� � � � � n� � � � � N�. Here M and N are the numbers of the nodes in VA and VB , i.e.,
	VA	 � M and 	VB	 � N, respectively. Then, we can define the M � N adjacency matrix
A � �am�n� by setting am�n � 1 if (m� n) 
 E; am�n � 0 otherwise. We denote the K-
dimensional embedding position vectors by xm for the node m 
 VA and yn for the
node n 
 VB. Then we can construct M � K and N � K matrices consisting of these
position vectors, i.e., X � (x1� � � �xM)T and Y � (y1� � � �yN)T . Here XT stands for the
transposition of X.

According to the work on the existing spherical embedding method [5], we explain
the framework of spherical embedding of bipartite graph. In Fig. 1, we show an example
in a two-dimensional Euclidean space, i.e., unlike the standard visualization scheme
shown in Fig. 1a, we consider locating the position vectors on two concentric spheres
(circles) as shown in Fig. 1b. We believe that this kind of spherical embedding is natural
to represent bipartite graphs, and its usefulness has been reported [5]. Hereafter, we
assume that nodes in subset VA are located on the inner circle �A with radius rA � 1,
while nodes in VB are located on the outer circle �B with radius rB � 2. Note that
�xm� � 1, �yn� � 2. Then, our aim is to locate the position vectors of the nodes having
similar connection patterns closely to each other.
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(a) Bipartite Graph (b) Spherical Embedding

Fig. 1. Spherical Embedding for Bipartite Graph

3 Proposed Method

3.1 Proposed Algorithm

The new spherical embedding method is based on a power iteration. It has two opera-
tions on the positioning vectors which we call double-centering operation and normal-
izing operation. In order to describe our algorithm, we need to introduce the centering
matrices and normalizing operations. The centering (Young-Householder transforma-
tion) matrices are defined as HM � IM � 1

M 1M1T
M� HN � IN � 1

N 1N1T
N where IM and

IN stands for M � M and N � N identity matrices, respectively, and 1M and 1N are
M- and N-dimensional vectors whose elements are all one. Clearly, the mean vector of
the resulting position vectors becomes 0 by the operations HMX and HNY. On the other
hand, the normalizing operations are defined as�M(X) � rAdiag(XXT )�1�2X� �N(Y) �
rBdiag(YYT )�1�2Y, where diag(�) is an operation to set all the non-diagonal elements to
zero, i.e., diag(XXT ) is a diagonal matrix whose m-th element is xT

mxm.
Intuitively, the basic procedure of our proposed algorithm is that the position vector

xm is repeatedly moved to the position calculated by adding the position vectors �yn�

that are connected to xm. Of course, we need to perform a normalizing operation so as
to satisfy the spherical constraints. Below we describe our proposed algorithm.

1. Initialize the matrix X and Y.
2. Update the matrix X  �M(HMAHNY).
3. Update the matrix Y  �N(HNAT HMX).
4. Terminate if the changes for the position vectors X and Y are small.
5. Return to the step 2.

As the basic framework, our proposed algorithm employs a power iteration, just like the
HITS algorithm [3], which utilizes A and AT , does. However, the main di�erences are
use of the double-centering operations by HM and HN and the normalizing operations
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by �M(�) and �N(�). Here note that the double-centering operation is also employed in
the standard multidimensional scaling method [6].

Now we briefly mention the computational complexity of our algorithm. Clearly,
the main computational complexity of one-iteration comes from the multiplication by
the matrix A (or AT ) which is the most intensive part and is proportional to the num-
ber of links in the bipartite graph. Thus, the proposed algorithm is expected to work
much faster especially for a sparse bipartite graph, compared with the existing spheri-
cal embedding algorithm that require a nonlinear optimization just like a spring force
embedding [2] does. In fact, it has been well known that the PageRank algorithm based
on a power iteration works very fast for a large and sparse network [4].

3.2 Convergence Proof

We prove the convergence property of the algorithm. To do this, we first introduce the
double-centered matrix B � �bm�n� that is calculated from the adjacency matrix A i.e.,
B � HMAHN . Then, by using the matrix B, we can consider the following objective
function with respect to the position vectors X � (x1� � � � � xM)T and Y � (y1� � � � � yN)T .

J(X�Y) �
M�

m�1

N�

n�1

bm�n
xT

m

rA

yn

rB
�

1
2

M�

m�1

�m(r2
A � xT

mxm) �
1
2

N�

n�1

�n(r2
B � yT

n yn)� (1)

where ��m 	 m � 1� � � � � M� and ��n 	 n � 1� � � � � N� correspond to Lagrange multipliers
for the spherical constraints, i.e., xT

mxm � r2
A and yT

n yn � r2
B for 1 � m � M and

1 � n � N.
Now we consider maximizing J(X�Y) defined in Equation (1) by use of a coordinate

strategy. Note that maximizing J(X�Y) pushes the pairs xm and yn to the same direction
if they are connected and pushes them to the opposite direction if they are unconnected,
and realizes the intended visualization. We repeat the following two steps: maximizing
J(X�Y) with respect to X by fixing the matrix Y first, and maximizing J(X�Y) with
respect to Y by fixing the matrix X next. If the maximization of these steps are achieved
by the above algorithm’s step 2 and 3, respectively, we can guarantee the convergence
of our proposed algorithm.

In order to confirm these facts, we consider the following gradient vector of the
objective function J(X�Y) with respect to xm.

�J(X�Y)
�xm

�
1

rArB

N�

n�1

bm�nyn � �mxm� (2)

Thus, for a fixed matrix Y, we obtain the optimal position vector xm which maximizes
the objective function J(X�Y) as xm �

rA
�x̃m�

x̃m, where x̃m �
�N

n�1 bm�nyn. Here note
that the optimal vector xm is calculated by using the matrix Y only. Thus, for m �

1� � � � � M, by using the normalizing operation �M(�) whose diagonal elements become
rA��x̃1�� � � � � rA��x̃M�, we can obtain the solution in the matrix representation, i.e.,

X � �M(BY) � �M(HMAHNY)� (3)



Speeding Up Bipartite Graph Visualization Method 701

1 Science Fiction/Fantasy red circle

2 Action/Adventure black square

3 Animation green diamond

4 Comedy blue star

5 Suspense maroon hexagon

6 Teen orange triangle−up

7 Western purple triangle−down

8 War navy triangle−left

9 Documentary olive triangle−right

10 Drama lime cross

11 Family darkgold plus

12 Horror darkcyan asterisk

13 Musical magenta circle

14 Romance cyan square

15 Special Effects yellow diamond

16 Others gray star

Fig. 2. category names in Japanese Yahoo!Movies site

Recall that Equation (3) performs centering the matrix Y by the matrix HN , multiplies
the adjacency matrix A, performs re-centering the matrix by multiplying the matrix HM,
and normalizes so as to guarantee spherical constraints. By this formula, we can obtain
the optimal solution of position vectors X by fixing the matrix Y.

Similarly, we can also obtain the following optimal solution of position vector
yn by fixing the matrix X as yn �

rB
�ỹn�

ỹn, where ỹn �
�M

m�1 bm�nxm. Thus, for
n � 1� � � � � N, by using the normalizing operation �N(�) whose diagonal elements be-
come rB��ỹ1�� � � � � rB��ỹN�, we can obtain the solution in the matrix representation,
i.e.,

Y � �N(BT X) � �N(HNAT HMX)� (4)

Therefore, since the finite objective function J(X�Y) defined in Equation (1) has the
analytical optimal solution under the condition that either X or Y is fixed, and is always
maximized by performing the step 2 and 3 of the algorithm, we can guarantee that the
algorithm always converges.

4 Evaluation by Experiments

4.1 Network Data

We constructed the bipartite graphs from the Japanese sites of Yahoo!Movies and Ya-
hoo!Answers, and experimentally evaluated the proposed method by comparing it with
the existing embedding methods in terms of both the eÆciency of the algorithms and
ease of interpretability of the visualization results.

We regard the movies as nodes in VB, and their genres as nodes in VA for the Japanese
Yahoo!Movies site 1. Note that each movie is associated with more than or equal to one
genre. In Fig. 2, we show their genre names used in our experiments, and for our vi-
sual analyses purpose, we assign an individual marker with a di�erent color to each
genre as shown in this figure. In order to evaluate our proposed method by using a
set of di�erent bipartite graphs, we classify these movies into 7 groups according to
their release dates(1950-59, 1960-69, 1970-79, 1980-89, 1990-99, 2000-04 and 2005-
09). Here the number of genres is 	VA	 � 16 for all the periods, the numbers of movies

1 �������� ��	��
�������

http://movies.yahoo.co.jp/
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	VB	 are 594, 1079, 1314, 1805, 2659, 2948 and 3264, and the numbers of links 	E	 are
899, 1617, 2071, 2994, 4424, 6057 and 6564 for each period.

We regard the users who answered questions as nodes in VB, and the genres of these
questions as nodes in VA for the Japanese Yahoo!Answers site 2. Note that although each
question belongs to only one genre, the same user frequently answers several questions
belonging to a wide variety of genres. Thus we can obtain bipartite graphs between the
pairs of the users and the genres they answered. In our experiments, we utilized a set
of data from April, 2004, to October, 2005. Again, in order to evaluate our proposed
method by using a set of di�erent bipartite graphs, we classify these questions into 6
groups according to their submission dates(2004-2nd, 3rd, 4th, 2005-1st, 2nd and 3rd).
Here the number of genres is 	VA	 � 10 for all the periods, the numbers of users 	VB	 are
11871, 27446, 35907, 39451, 42884 and 46834, and the numbers of links 	E	 are 30849,
80664, 96926, 95714, 102086 and 112548 for each period.

4.2 Brief Description of Other Visualization Methods Used for Comparison

We first explain the existing spherical embedding method as our primal comparison
method, whose problem framework is the same to ours. In this method the follow-
ing objective function is directly minimized with respect to the position vectors X �

(x1� � � � � xM)T and Y � (y1� � � � � yN)T under the constraints that xT
mxm � r2

A and yT
n yn �

r2
B for 1 � m � M and 1 � n � N. The objective function is defined as �(X�Y) �

1
2

�M
m�1

�N
n�1

�
cm�nrArB � xT

myn

�2
, where cm�n � 2am�n � 1, i.e., cm�n � 1 if (m� n) 
 E;

cm�n � �1 otherwise. In order to obtain the solution vectors, this method repeatedly
moves each position vector by using the Newton method in a framework of nonlin-
ear optimization, i.e., it repeats the following two steps: First, minimizing �(X�Y) for
xm by fixing �x1� � � � xM� � xm and �y1� � � �yN �, and next minimizing �(X�Y) for yn by
fixing �x1� � � � xM� and �y1� � � �yN� � yn. Thus this method requires an extremely large
computation time to obtain the final results.

We have further compared the proposed method with the four well known embed-
ding methods: multi-dimensional scaling [6], spectral embedding [1], spring force em-
bedding [2], and cross-entropy embedding [7]. Here the former two perform a power
iteration with respect to either a double-centered distance matrix or a graph Laplacian
matrix which is calculated from a given graph, just like our proposed spherical embed-
ding method does, while the latter two repeatedly move each position vector by using
the Newton method in a framework of nonlinear optimization, just like the existing
spherical embedding method does. Note that these four methods are not designed for
embedding bipartite graphs, but as mentioned earlier, we can straightforwardly apply
them for our purpose because a bipartite graph is regarded as an instance of general
undirected graph.

In what follows in this subsection, we regard a bipartite graph as an undirected
graph G � (V� E) to describe the basic ideas of these standard embedding methods,
and then consider a framework of embedding it into a K-dimensional Euclidean space.
In this framework, we identify the set of the nodes by a positive integer, i.e., V �

�1� � � � � l� � � � � L�, 	V 	 � L and L � M � N. Then, we can define the L � L adjacency

2 ������������������
�������

http://chiebukuro.yahoo.co.jp/
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matrix A � �am�n� by setting am�n � 1 if (m� n) 
 E; am�n � 0 otherwise. We denote
the K-dimensional embedding position vectors by xm for the node m 
 V , and then
construct an L � K matrix consisting of these position vectors, i.e., X � (x1� � � �xL)T .
We also denote the graph distance matrix by G � �gm�n�, each element of which is the
minimum path length between node m and node n.

Multi-dimensional scaling method [6] first calculates the distance matrix G, and per-
forms the double centering operation (HL � IL �

1
L 1L1T

L ) to the distance matrix. Math-
ematically it is formulated as minimizing �(X) � 1

2

�K
k�1 zT

k (HLGHL)zk, where zk �

(x1�k� � � � � xL�k)T , and �z1� � � � � zK� need to be orthonormal vectors, i.e., zT
k zk � 1 and

zT
k zk� � 0 if k � k�. Spectral embedding method [1] tries to directly minimize distances

between position vectors of connecting nodes. Mathematically it is formulated as mini-
mizing �(X) �

�K
k�1 zT

k (D �A)zk, where D is a diagonal matrix each element of which
is the degree of node (number of links). Note that (D�A) is referred to as a graph Lapla-
cian matrix. Again, we set zk � (x1�k� � � � � xL�k)T , and �z1� � � � � zK� need to be orthonor-
mal vectors, which excludes the trivial vector expressed as z � 1L. Spring force em-
bedding method [2] assumes that there is a hypothetical spring between each connected
node pair and locates nodes such that the distance of each node pair is closest to its mini-
mum path length at equilibrium. Mathematically it is formulated as minimizing�(X) ��L�1

m�1
�L

n�m�1 �m�n(gm�n � �xm � xn�)2, where �m�n is a spring constant which is normally
set to 1�(2g2

u�v). Cross-entropy embedding method [7] first defines a similarity 	(xm� xn)
between the embedding positions xm and xn and uses the corresponding element am�n

of the adjacency matrix as a measure of distance between the node pair, and tries to
minimize the total cross entropy between these two. Mathematically it is formulated as
minimizing �(X) � �

�L�1
m�1

�L
n�m�1

�
am�n log 	(xm� xn) � (1 � am�n) log(1 � 	(xm� xn))

�
.

Here, note that we used the function 	(xm� xn) � exp(� 1
2 		xm � xn		

2) in our experiments.

4.3 Experimental Results

We first evaluated the eÆciency of our proposed method in comparison with the existing
methods. We show our experimental results in Fig. 3, where Spec, MDS, SF, CE, eSE
and pSE stand for the spectral embedding, multi-dimensional scaling, spring force em-
bedding, cross-entropy embedding, existing spherical embedding and proposed spher-
ical embedding methods, respectively (machine used is Intel(R) Xeon(R) CPU X5472
@3.0GHz with 64GB memory). Here Figs. 3a and 3b correspond to the results by using
the bipartite graphs constructed from the Yahoo!Movies and Yahoo!Answers sites, re-
spectively. In these figures, we plotted the average processing time (sec.) over 10 trials
by changing the initial position vectors, where the horizontal and vertical axes stand for
the number of nodes in VB and the processing times, respectively. Here recall that the
number of nodes in VB is di�erent for each bipartite graph as mentioned above.

As expected, these figures show that our proposed spherical embedding (pSE) method
works much faster than all the existing methods we compared. More specifically, the
spectral embedding (Spec) method works comparable to our method. This is because
these methods perform a power iteration on a sparse adjacency matrix. In fact, the multi-
dimensional scaling (MDS) method requires a substantially large computation time be-
cause it needs to perform a power iteration on a full distance matrix. All the other
methods including the existing spherical embedding (eSE) method, which repeatedly
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Fig. 3. Comparison of processing times

move each position vector by using the Newton method, generally require an extremely
large computation time before the final results are obtained. Especially, both the spring
force embedding (SF) and cross-entropy embedding (SE) methods require more than
three days to obtain the final results even for one trial when the numbers of nodes for
the Yahoo!Answers graphs become more than 40,000; thus we omitted these results in
Fig. 3b. Here we should emphasize that the scale of the vertical axis of these figures is
logarithmic.

Next we evaluated the visualization results of our proposed method in comparison
with the existing methods. Due to a space limitation, we only show our experimental
results obtained for a bipartite graph constructed from the Japanese Yahoo!Movies sites
in Fig. 4. Here recall that the genre information has been shown in Fig. 2. In Fig. 4a,
we show the visualization result by our proposed method, which we consider intuitively
natural. Actually, we can see that the genre nodes of Action�Adventure (black square)
and Suspense (maroon hexagon) are located in near positions at the right-side of the
inner circle (�A), while at the opposite left-side of this circle, the genre nodes of Teen
(orange triangle up) and Romance (cyan square) are located in near positions. Overall,
we can observe that the similar genres are located closely on the inner circle (�A).

Now we compare the above results with the five existing methods. The first one is the
visualization result by the existing spherical embedding method shown in Fig. 4b. We
see that there are several minor di�erences but we consider this result comparable to
the result by our method. However, this one is very slow and ineÆcient. Our method is
much faster. The second one is the visualization result by the multidimensional scaling
method shown in Fig. 4c. We can observe some clusters of genres. Although this result
might indicate some intrinsic property, we feel that the spherical embedding scheme
is a more natural representation of bipartite graphs. The third one is the visualization
result by the spectral embedding method shown in Fig. 4d. This one is relatively poor in
our own experiments. In fact, the two genres of Drama (lime cross) at the bottom-right
and Documentary (Olive triangle right) at the top-left are too much isolated, although
this method works reasonably fast among the existing methods.The fourth and the fifth
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(a) proposed spherical embedding (pSE) (b) existing spherical embedding (eSE)

(c) multi-dimensional scaling (MDS) (d) spectral embedding (Spec)

(e) spring force embedding (SF) (f) cross-entropy embedding (CE)

Fig. 4. experimental results obtained for a bipartite graph constructed from the Japanese Ya-
hoo!Movies sites(1950 - 1959)
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ones are the visualization results by the spring force embedding method and the cross-
entropy embedding method shown in Figs. 4e and 4f. We can observe a similar tendency
between these two, e.g., we can easily see that the genre node of Drama (lime cross) is
much isolated in both. The main di�erence in these methods is that we can observe that
some genre nodes are clustered for the spring force embedding method, but there are no
such clusters and all the genres are scattered for the cross-entropy embedding method.
Overall, although each embedding method might have its own characteristics that are
both advantageous and disadvantageous, we believe that our proposed spherical embed-
ding method is most e�ective for visualizing bipartite graphs in terms of eÆciency and
interpretability.

Last but not least, we evaluated our proposed method only in the case of two-
dimensional embedding for our visualization purpose, but this does not mean that it
is limited to two-dimensional embedding. It is quite easy to extend it to the general
K-dimension embedding. We plan to evaluate our method as a powerful technique for
both dimensional reduction and clustering as a future work.

5 Conclusion

In this paper, we addressed the problem of visualizing structure of bipartite graphs such
as relations between pairs of objects and their multi-labeled categories, and proposed a
new spherical embedding method that is based on a power iteration. The key features
of this method is that it employs two operations on the positioning vectors, one called
double-centering operation and the other called normalizing operation. This enables
the iterative approach to be equivalent to maximizing an objective function which is
guaranteed to converge. Thus, our algorithm is theoretically guaranteed to converge.
We applied our method to a set of bipartite graphs with di�erent sizes and connections,
and compared the results with five existing visualization methods. The results showed
that the proposed method works much faster than all the five existing methods, and the
visualization results are intuitively understandable and comparable to the best available
so far known. In future, we plan to apply the new method to evaluate its performance
and robustness for a wide variety of bipartite graphs.
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Abstract. This paper addresses the issue of content sequencing in computer-
based learning (CBL). In doing so, it proposes a Skill-Challenge Balancing 
(SCB) approach as a way to enhance the CBL experience. The approach is 
based on the Flow Theory, allowing self-adjustment of the given levels of 
challenges in a given learning tasks so that the learner will consistently be 
adaptively able to engage in the CBL activity. An empirical study with 70 
students suggested that the SCB-based learners were significantly better in their 
learning experience specifically in their focus of attention and intrinsic interests 
compared to the learners in the system without SCB. The results also revealed 
that SCB was fully utilised by the learners to regulate the levels of difficulty of 
the CBL tasks. 

Keywords: Flow theory, learning experience, skill-challenge balancing, 
computer-based learning. 

1 Introduction 

Content sequencing is a common topic of research in the area of computer-based 
learning (CBL). The basic idea of content sequencing is to help learners to find an 
appropriate learning path which meets certain factors such as their prior knowledge, 
learning style and preferences [1]. The sequencing technique is mainly achieved using 
some computational methods and artificial intelligence (AI) techniques such as 
genetic algorithm [1], particle swam optimisation [2], rule-based [3], and neural 
network [4]. There is no doubt that the sequencing techniques are robust in organising 
learning contents; however, little is known about the effectiveness of the complex 
techniques in the real CBL setting. To be precise, the answer to the question ‘do the 
techniques improve cognitive engagement in performing CBL tasks?’ is still elusive.      

To address this issue, we performed an empirical study to understand the 
effectiveness of the content sequencing approach with regard to the learning 
experience [5, 6]. We assumed that the content sequencing approach would be able to 
partially optimise CBL experience, via balancing between the learner’s skills or 
knowledge against the challenges given by the system.  
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2 Learning Experience and Flow Theory 

In the context of CBL environment, learning experience is an important factor that 
reflects the acceptance, adoption and future use of the systems [7]. CBL systems must 
be able to improve learners’ performance and give them a personally satisfying 
experience so that the systems could sustain. A number of studies had already 
investigated the CBL experience, e.g., [8, 9]. Our approach in this study is to some 
extent different from the previous studies. This article uses the results of our previous 
studies [5, 6] in order to develop a pragmatic method to improve the CBL experience. 

We adapted Csikszentmihalyi’s Flow Theory [10, 11] as the basis to define CBL 
learning experience. It is also an underlying principle for developing the Skill-
Challenge Balancing technique as described in Section 3. Basically, the theory 
suggests the flow condition; a mental state in which a person is totally absorbed in a 
particular activity. The flow condition gives a person a very rewarding experience and 
a feeling of enjoyment which is called ‘optimal experience’. Optimal experience is 
believed to be an important factor to improve human quality of life and achieve 
happiness. In the context CBL, optimal experience gives learners with enjoyable 
learning experience that subsequently fosters independent learning. 

In spite of flow, both boredom and anxiety are two opposite mental states that 
could change the quality of learning experience. These three mental states are 
identified through assessment of one’s current levels of skills against the given levels 
of challenges of an activity. Figure 1 shows four points of the mental states (A1, A2, 
A3, and A4) that one may experience when engaging in a learning activity. The flow 
state is achieved when there is a balance between one’s skills and the given 
challenges. The states are represented by points A1 and A4 in Figure 1. When a 
person’s levels of skills are not sufficient to satisfy the given levels of challenges, he 
or she is in the state of anxiety (i.e. A3). If a person has a high level of skills, a low 
level of challenges given to him or her can cause boredom (i.e. A4). In order to obtain 
flow, a balance between the given levels of challenges and one’s skills is required.  

Flow Theory emphasises that an equal skills and challenges is the key principle to 
achieve the optimal experience. For this reason, we exploited the theory to develop 
the Skill-Challenge Balancing (SCB) approach, which is a new method to improve the 
CBL experience. 

 

Fig. 1. Changes of mental states based on Flow Theory 
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3 Skill-Challenge Balancing Approach 

The aim of the Skill-Challenge Balancing (SCB) approach is to improve interactions 
between learners and CBL systems so that learners obtain satisfying and engaging 
CBL experience. The SCB is developed based on one of the flow theory’s 
assumptions that optimal experience could be achieved when the level of the given 
challenges matches the individual’s level of skills. This paper attempts to answer 
“how to incorporate the theory in the design of CBL systems” 

There are two approaches to serve this purpose: software-based [12-14] and 
hardware-based [15-17]. The hardware-based approach uses special devices or 
sensors for automatic detection of a person’s affective states. Although the devices 
can accurately detect the affective states, they are very expensive and not yet 
available commercially. In contrast, the software-based approach seems to be  
more pragmatic as it is much easier, cheaper and feasible to be implemented using  
the existing computer infrastructure, thereby the underlying principle for our 
approach. 

The main SCB concept is to allow a flexible adjustment of the given level of 
challenges. In CBL, the levels of challenges are characterised by the increasing level 
of difficulty of a learning content. In order to keep learners engaged, the given levels 
of challenges must always equivalent to learners’ current level of knowledge. In doing 
so, the SCB technique allows learners to have self-assessment of their individual level 
of knowledge. Learners are given chances to evaluate whether the learning unit is too 
easy or too difficult for them. If a learner finds that the learning unit is too easy, he or 
she can choose to move forward to a higher level of difficulty of the learning unit. On 
the other hand, if the learner finds that the learning unit is too difficult, he or she can 
move backward to the lower level of difficulty of the learning unit.  

Our approach introduces “flow buttons” in the CBL user interface to support the 
self-assessment capability. The buttons comprise of two types; the “anxiety button” 
comes along with the tutorial questions and the “boredom button” appears with the 
explanation of the concept. The tutorial questions are the tool to measure learner’s 
current knowledge. The decision to move forward to a higher level is depending on 
the learner’s answers in the tutorial session. The correct answers will direct the 
learner to a higher level of learning. In the case that the wrong answer is given, the 
learner will be presented with the explanation associated to the question.  

The “boredom button” accompanies the tutorial questions with the purpose to 
avoid novice learners from lost in their learning path. As the difficulty level of 
learning is increasing along with the tutorial questions, the system forces the learners 
to answer the tutorial in order to move to a higher level so that their current levels of 
knowledge are accurate. The “anxiety button” appears along with the tutorial 
questions to allow learners to move backward to a lower level of learning. Hence, 
they will be able to browse the explanation for the question. Figure 2 shows the 
learning process with the present of the “flow button”. 
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Fig. 2. SCB technique learning process 

A prototype has been developed to demonstrate how the SCB technique would 
work with a realistic learning situation. In doing so, we reused most of the software 
components of the current version of IT-Tutor system [5, 6] including the user 
interface layout, the databases, and the functions. The prototype was developed within 
the .NET platform and set to be accessible through the Internet.  

The implementation of “flow buttons” has been simplified to avoid confusion 
among learners. In doing so, more understandable words were used and printed on the 
buttons. In the case of the “anxiety button”, the authors use the text “Click here if you 
do not know the answer”. For the “boredom button”, the text “Click here if you think 
the section is too easy” is used. The buttons in the red dotted line in Figure 3 and 
Figure 4 show the screen shot examples containing the “anxiety button” and the 
“boredom button”, respectively. The interaction of these buttons with the domain 
knowledge repository is accomplished by a set of pre-programmed rules using the 
following algorithm: 

 
Present the <tutorial questions> 
If <the anxiety button> is pressed then 

 Present the associated learning contents 
      If <the boredom button > is pressed then 

Test <learner’s current knowledge>                   
If <learner’s current knowledge> is <insufficient> then 

Give feedback to learner 
Present the sequence of learning contents 

Test <learner’s current knowledge> 
If <learner’s current knowledge> is <sufficient> then 

Give feedback to learners 
     Proceed to the next level of <tutorial questions> 
         Test <learner’s current knowledge> 
         ……………………………………………… 

              ………………………………………………  
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Fig. 3. The “anxiety button” in the IT-Tutor interface 

 

 

Fig. 4. The “boredom button” in the IT-Tutor interface 
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4 Evaluation of Skill-Challenge Balancing Approach 

4.1 Method 

Subjects 

The subjects were recruited among students from two universities: Massey University 
(New Zealand) and Northern University of Malaysia through advertisements in the 
learning management systems of the corresponding universities for some selected 
courses. Ninety-two students participated on a voluntary basis. However, only seventy 
of them completed the given tasks. Among them were eighteen males and fifty-two 
females. 85% of the participants were students of Northern University of Malaysia 
with 80% of them were undergraduate students. The participants were randomly 
assigned into one of two groups (i.e. the experimental group and the control group). 
This experimental study was conducted between March and April 2011. 

Apparatus 

Two types of materials were used in this study: CBL systems and a set of 
questionnaire. The CBL systems were comprised of two types: IT-Tutor with SCB 
and IT-Tutor without SCB (i.e. the older version of the system as reported in [5, 6]). 
IT-Tutor with SCB was used by the participants of the experimental group, while the 
control group used IT-Tutor without SCB. 

The tutorial session in both types of CBL systems comprised of four questions. As 
the SCB technique used a couple of “flow buttons” that allowed the learners to 
flexibly move between questions and explanations, the stages of the tutorial in this 
version of the CBL system was not transparent to the learners. On the other hand, the 
two stages of tutorial were clearly shown in IT-Tutor without SCB. From the two 
stages of the tutorial session, Stage 1 was used to evaluate learner’s prior knowledge 
to generate a learning path for the learners, while Stage 2 of the tutorial served as a 
reinforcement stage. 

A learning experience questionnaire was adopted from Park et al.[18]. It comprised 
of four components: demographic information (10 items), learning experience (12 
items), and usability (2 items). For the usability questionnaire, it was adopted from 
Chiu et al. [19]. The learners were asked to rate their learning experience and 
usability questionnaire using 5-point Likert Scale (i.e. 1 represents strongly disagree 
and 5 represents strongly agree). 

Experimental Design 

A one-way between-subjects design was used in this study. The independent variable 
was the two types of CBL systems (i.e. IT-Tutor with SCB and IT-Tutor without 
SCB). The dependent variables were comprised of the learning experience  
and usability. For the case of IT-Tutor with SCB, we analysed the SCB usage in  
order to understand whether or not the “flow buttons” were effectively used by the 
learners. 
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Procedure 

This study was conducted in an unsupervised online mode. All materials were pre-
programmed in a form of a web application. The participants were given a URL (an 
Internet address) to access the materials. Firstly, they were given the research 
information sheet. As they consented to participate in the research, the system had 
randomly assigned them into one of two groups of the CBL systems. Then, they were 
redirected to the corresponding CBL systems. The learners were required to undergo a 
virtual tutorial session in the corresponding CBL systems and follow the given 
instructions as they were interacting with the system. As soon as the participants 
completed the tutorial session, they were given the questionnaire. All participants 
performed the tasks at their own paces and their own convenience. In order to retain 
the reliability of the study, the participant will be logged off from the system when 
they were inactive1 for five minutes. 

4.2 Results and Discussions 

The demographic information analysis showed that the average age of the participants 
was 25.20 years with approximately 85% of them were aged 17 to 30. About 75% of 
them had more than 3 years experience in using the computer and at least 60% of 
them had used other CBL systems before. Apart from that, about 64% of the 
participants classified themselves as beginners, while the rest had learned about the 
course before. None of the participants classified themselves as experts in the area of 
the subject of this study (i.e. Computer Networks). 

Learning Experience & Usability 

The learning experience information was derived from the questionnaire. It was 
measured in four dimensions: control, attention focus, curiosity, and intrinsic 
interests. On the other hand, usability measured how useful the corresponding CBL 
systems in improving the learners’ performance and the systems suitability with the 
learners’ learning styles.   

A series of Kolmogorov-Smirnov tests suggested that the data were not normally 
distributed. Hence, simpler non-parametric tests were used to analyse the data. The 
learning experience and usability data were relatively high in their internal 
consistency, and Cronbach’s Alpha coefficient (0.828) confirmed this. The means and 
mean ranks for each dimension of the learning experience including usability were 
calculated and presented in Table 1.   

Table 1 shows that the experimental group learners (i.e. IT-Tutor with SCB) rated 
higher in all dimensions of the learning experience and usability compared to that of 
the counterpart group. For IT-Tutor with SCB, intrinsic interests received the highest 
ratings (3.90), followed by usability (3.87), and curiosity (3.68). In contrast, attention 
focused (3.25) had received the lowest ratings among learners in this group. For the  
 

                                                           
1 Inactive is the situation in which no interaction has occurred (e.g. no clicking buttons, no 

moving mouse, etc.) 
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Table 1. Means and mean ranks for the learning experience dimensions and usability 

Dimensions of 
experience 

IT-Tutor with SCB 
(n=35) 

IT-Tutor without 
SCB (n=35) 

Significant level 

Mean Mean 
rank 

Mean Mean 
rank 

Control (CO) 3.42  39.07 3.13 31.93 (z=-1.498, p=0.136) n.s. 
Attention Focus (AF) 3.25  40.36 2.86  30.64 (z=-2.041, p=0.041) p<0.05 
Curiosity (CU) 3.68  37.66 3.52  33.34 (z=-0.902, p=0.371) n.s. 
Intrinsic Interests (II) 3.90  40.34 3.58  30.66 (z=-2.020, p=0.043) p<0.05 
Average experience 3.56  41.70 3.27  29.30 (z=-2.557, p=0.010) p<0.05 
Usability 3.87  39.34 3.60  31.66 (z=-1.613, p=0.108) n.s. 

 
other group (i.e. IT-Tutor without SCB), usability (3.60) had received the highest 
ratings, followed by intrinsic interests (3.58). The ratings for attention focus in the 
control group were also the lowest in the counterpart group. 

In order to understand whether or not the SCB technique was effective in 
improving the learning experience, a series of Mann-Whitney U tests had been 
performed. The test results suggested that attention focus, intrinsic interests, and the 
overall learning experience for the IT-Tutor with SCB were significantly higher than 
the opposite group. Although the IT-Tutor with SCB ratings were higher for control, 
curiosity and usability compared to the counterpart, the differences were not 
statistically significant. Hence, it can be said that, the SCB technique improved 
learners’ overall learning experience specifically from the context of their attention 
focus and intrinsic interests. 

“Flow buttons” usage 

The log data analysis showed that 77% (26 out of 35) students from the experimental 
group used the “anxiety button” with 34 hits in Stage 2 and 9 hits in Stage 1. For the 
case of the “boredom button”, 34% of the students used this facility with majority 
accesses came from Stage 2 (i.e. 17 hits). The bar chart in Fig. 5 shows the hits of the 
buttons in the two stages of the tutorial. From the graph, it clearly shows that the 
“anxiety button” has been used extensively by the learners in comparison to the 
“boredom button”. This could be justified by the demographic backgrounds of the 
participants which comprised of novice and intermediate learners.  

The results suggest that the “anxiety button” allowed the learners to adjust the 
difficulty levels of the tutorial by moving backward to the lower one which 
consequently giving them a better learning experience. On the other hand, the 
“boredom button” helped learners to move to a higher level of learning to prevent 
them from becoming bored due to the familiar learning content. The analysis on the 
usage data had suggested that both buttons (i.e. the boredom button and the anxiety 
button) were needed by learners in order for them to adjust their own learning path 
flexibly. 

 



 Enhancement of Learning Experience Using Skill-Challenge Balancing Approach 715 

 

Fig. 5. The “flow buttons” usage according to the two stages of tutorial 

5 Conclusion and Future Works 

We have described in Section 3 and 4 of this paper about the SCB design and 
evaluation.  In general, the SCB approach for sequencing learning content seemed to 
improve the overall learning experience in comparison to the older version of the 
content sequencing system. Given that no expert learners were recruited, the effect of 
the SCB is still not fully discovered. It is our plan in the near future to replicate the 
research by recruiting expert learners so that the effectiveness of SCB in managing 
learners with different backgrounds is known. The self-adjustment of levels of 
challenges seems to be an ideal approach to learners regardless of their prior 
knowledge in a particular domain. Through this way, it helps learners to engage in the 
learning tasks constantly which consequently giving them a pleasant learning 
experience. 
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Abstract. Online Test Paper Generation (Online-TPG) is a promising approach
for Web-based testing and intelligent tutoring. It generates a test paper automati-
cally online according to user specification based on multiple assessment criteria,
and the generated test paper can then be attempted over the Web by user for
self-assessment. Online-TPG is challenging as it is a multi-objective optimiza-
tion problem on constraint satisfaction that is NP-hard, and it is also required
to satisfy the online runtime requirement. The current techniques such as dy-
namic programming, tabu search, swarm intelligence and biologically inspired
algorithms are ineffective for Online-TPG as these techniques generally require
long runtime for generating good quality test papers. In this paper, we propose
an efficient approach, called DAC-TS, which is based on the principle of
constraint-based divide-and-conquer (DAC) and tabu search (TS) for constraint
decomposition and multi-objective optimization for Online-TPG. Our empirical
performance results have shown that the proposed DAC-TS approach has outper-
formed other techniques in terms of runtime and paper quality.

Keywords: Online test paper generation, multi-objective optimization, web-based
testing, intelligent tutoring system.

1 Introduction

With the rapid growth of E-learning, Web-based testing and intelligent tutoring [2, 5,
13] have become popular for self-assessment and learning in an educational environ-
ment. To support Web-based testing and intelligent tutoring, Online Test Paper Genera-
tion (Online-TPG) is a promising approach which generates a test paper automatically
online according to user specification based on multiple assessment criteria, and the
generated test paper can then be attempted over the Web by user. More specifically,
Online-TPG aims to find an optimal subset of questions from a question database to
form a test paper based on criteria such as total time, topic distribution, difficulty de-
gree, discrimination degree, etc.

Online-TPG is a challenging problem. Firstly, TPG is categorized as a multi-objective
optimization problem on constraint satisfaction which is NP-hard [10]. Secondly, the
current TPG techniques [6–10, 12, 16] have not taken the online generation requirement
into consideration as TPG is traditionally considered as an offline process similar to other
multi-objective optimization problems such as timetabling and job-shop scheduling [4].

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 717–726, 2011.
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These current techniques have optimized an objective function based on multi-criteria
constraints and weighting parameters for test paper quality. However, determining ap-
propriate weighting parameters is quite difficult and computationally expensive. And
these techniques generally require long runtime for generating good quality test papers.

In this paper, we propose an efficient approach, called DAC-TS, which is based on
the principle of constraint-based divide-and-conquer (DAC) and tabu search (TS) for
Online-TPG. The rest of the paper is organized as follows. Section 2 reviews the related
techniques for automatic test paper generation. Section 3 gives the problem specifica-
tion. The proposed DAC-TS approach for Online-TPG is presented in Section 4. Section
5 gives the performance evaluation of the proposed approach and its comparison with
other TPG techniques. Finally, Section 6 gives the conclusion.

2 Related Work

In [10], tabu search (TS) was proposed to construct test papers by defining an objec-
tive function based on multi-criteria constraints and weighting parameters for test paper
quality. TS optimized test paper quality by the evaluation of the objective function. In
[8], dynamic programming optimized an objective function incrementally based on the
recursive optimal relation of the objective function. In [9], a genetic algorithm (GA) was
proposed to generate quality test papers by optimizing a fitness ranking function based on
the principle of population evolution. In [16], differential evolution (DE) was proposed
for test paper generation. DE is similar to the spirit of GA with some modifications on so-
lution representation, fitness ranking function, and the crossover and mutation operations
to improve the performance. In [12], an artificial immune system (AIS) was proposed to
use the clonal selection principle to deal with the highly similar antibodies for elitist se-
lection in order to maintain the best test papers for different generations.

In addition, swarm intelligence algorithms such as particle swarm optimization and
ant colony optimization have also been investigated for TPG. In [6], particle swarm
optimization (PSO) was proposed to generate multiple test papers by optimizing a fit-
ness function which is defined based on multi-criteria constraints. In [7], ant colony
optimization (ACO) was proposed to generate quality test papers by optimizing an ob-
jective function which is based on the simulation of the foraging behavior of real ants.

3 Problem Specification

Let Q = {q1, q2, .., qn} be a dataset consisting of n questions, C = {c1, c2, .., cm} be
a set of m topics, and Y = {y1, y2, .., yk} be a set of k question types such as multiple
choice questions, fill-in-the-blanks and long questions. Each question qi ∈ Q, where
i ∈ {1, 2, .., n}, has 8 attributes A = {q, o, a, e, t, d, c, y}, where q is the question
identity, o is the question content, a is the question answer, e is the discrimination
degree, t is the question time, d is the difficulty degree, c is the related topic and y is
the question type. Table 1 shows a sample Math question dataset.

A test paper specification S = 〈N, T, D, C, Y 〉 is a tuple of 5 attributes which are
defined based on the attributes of the selected questions as follows: N is the number of
questions, T is the total time, D is the average difficulty degree, C = {(c1, pc1),.., (cM ,
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Table 1. An Example of Math Dataset

(a) Question Table

Q ID o a e t d c y

q1 ... ... 4 8 1 c1 y2

q2 ... ... 7 9 2 c1 y2

q3 ... ... 4 6 6 c2 y1

q4 ... ... 5 9 9 c2 y2

q5 ... ... 4 7 4 c1 y1

q6 ... ... 7 4 7 c2 y1

(b) Topic Table

C ID name

c1 Integration
c2 Differentiation

(c) Question Type Table

Y ID name

y1 Multiple choice
y2 Fill-in-the-blank

pcM )} is the specified proportion for topic distribution and Y = {(y1, py1),.., ((yK ,
pyK)} is the specified proportion for question type distribution.

The test paper generation process aims to find a subset of questions from a question
dataset Q = {q1, q2, .., qn} to form a test paper P with specification SP that maxi-
mizes the average discrimination degree and satisfies the test paper specification such
that SP = S. It is important to note that the test paper generation process occurs over
the Web where user expects to generate a test paper within an acceptable response time.
Therefore, Online-TPG is as hard as other optimization problems due to its computa-
tional NP-hardness, and it is also required to be solved efficiently in runtime.

4 Proposed Approach

In this paper, we propose a constraint-based Divide-And-Conquer Tabu Search (DAC-
TS) approach for Online-TPG. As the constraints specified in the test paper specification
can be formulated as a standard 0-1 fractional Integer Linear Programming (ILP) prob-
lem [10] in the form of linear equality constraints, we can decompose the constraints
into two independent subsets, namely content constraints and assessment constraints,
which can then be solved separately and progressively. In the test paper specification
S = 〈N, T, D, C, Y 〉, the content constraints include the constraints on topic distribu-
tion C and question type distribution Y , whereas the assessment constraints include the
constraints on total time T and average difficulty degree D.

Question R-Tree 

Test Specification Test Paper

Offline Index Construction

Online Test Paper Generation

Index
Construction

Content
Constraint 

Satisfaction

Assessment
Constraint 

Optimization

Fig. 1. The Proposed DAC-TS Approach
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The proposed DAC-TS approach, as shown in Figure 1, consists of 2 main processes:
Offline Index Construction and Online Test Paper Generation. In the Offline Index Con-
struction process, it constructs an effective indexing structure for supporting tabu search
to improve the quality of the generated paper. In the Online Test Paper Generation pro-
cess, it generates a high quality test paper that satisfies the specified content constraints
and assessment constraints. As illustrated in Figure 1, it consists of 2 major steps: Con-
tent Constraint Satisfaction and Assessment Constraint Optimization.

4.1 R-Tree Index Construction

We propose to use an effective 2-dimensional data structure, called R-Tree, to store
questions based on the time and difficulty degree attributes. R-Tree has been widely
used for processing queries on 2-dimensional spatial databases. As there is no specified
rule on grouping of data into nodes in R-Tree, different versions of R-tree have been
proposed [1, 14]. The R-Tree used here is similar to the R-tree version discussed in
[1], with some modifications on index construction in order to enhance the efficiency.
Some of the modified operations include insertion, subtree selection, overflow handling,
and node splitting for index construction. Each leaf node in a R-Tree is a Minimum
Bounding Rectangle (MBR) which is the smallest rectangle in the spatial representation
that tightly encloses all data points located in the leaf node. Each non-leaf node has
child nodes, which contain MBRs at the lower level. Figure 2 illustrates the R-Tree
constructed from the Math dataset.

Ti
m

e 
(t)

Difficulty (d)
2 64 8 10

4

6

8 q1

q2 q4

q5

q6

q3

Spatial Representation of Questions

MBR r1

MBR r2

r1

q1 q2 q5 q3 q4 q6

r2

u1 u2

u3

R-Tree 

Leaf node

Non-leaf node

Question

MBR

Fig. 2. An Example R-Tree

4.2 Content Constraint Satisfaction

It is quite straightforward to generate an initial test paper that satisfies the content con-
straints based on the number of questions N . Specifically, the number of questions
of each topic cl is pcl ∗ N, l = 1..M . Similarly, the number of questions of each
question type yj is pyj ∗ N, j = 1..K . There are several ways to assign the N pairs
of topic-question type to satisfy the content constraints. Here, we have devised an ap-
proach which applies a heuristic to try to achieve the specified total time early. To satisfy
the content constraints, the round-robin technique is used for question selection. More
specifically, for each topic cl, l = 1..M , we assign questions alternately with various
question types yj , j = 1..K , as much as possible according to the number of questions.
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Then, for each of the N pairs of topic-question type (cl, yj) obtained from the round-
robin selection step, we assign a question q from the corresponding topic-question type
(cl, yj) that has the highest question time to satisfy the total time early.

4.3 Assessment Constraint Optimization

Assessment Constraint Violation indicates the differences between the test paper spec-
ification and the generated test paper according to the total time constraint �T (SP ,S)
and the average difficulty degree constraint �D(SP ,S) as follows:

�T (SP ,S) = |TP −T |
T and � D(SP ,S) = |DP −D|

D

A generated test paper P with specification SP = 〈N, TP , DP , CP , YP 〉 is said to sat-
isfy the assessment constraints in S if �T (SP ,S) ≤ α and �D(SP ,S) ≤ β, where α
and β are two predefined thresholds that indicate the acceptable quality satisfaction on
total time and average difficulty degree respectively.

In addition, an objective function is defined for evaluating the quality of test papers
based on assessment constraint violations. The quality of a generated test paper P is
defined by the following objective function:

f(P ) = �T (SP ,S)2 + �D(SP ,S)2

In Assessment Constraint Optimization, we conduct tabu search to improve the qual-
ity of the test paper by minimizing assessment constraint violations. This optimization
process is repeated until the termination conditions are reached.

4.4 Tabu Search

Tabu search [3] is an iterative search method, which aims to find better questions to sub-
stitute the existing questions in the test paper in order to minimize assessment constraint
violation. To form a new test paper, each question qk in the original test paper P0 is sub-
stituted by another better question qm which has the same topic and question type such
that assessment constraint violations are minimized. The tabu search comprises a local
search with 3 strategies: Memory Usage, Up-hill Movement and Memory Relaxation.
The termination conditions for the tabu search are based on the quality satisfaction and
the maximum number of iterations in which no better test paper can be found.

In memory usage, DAC-TS uses a short-term memory and a long-term memory to
avoid visiting a solution repeatedly. The recency-based short-term memory is used to
prevent the substitution of a specific question in the current test paper for some steps
after it has just been substituted. This short-term memory, namely TS, is implemented
as follows: when a question qi is substituted, the position i of that question is put into
the short-term tabu list TS with a tenure tTS . After each move, the tenure of the current
entries in the TS is decreased by 1 and those entries with zero tenure are dropped from
the TS. Whereas the transitional frequency-based long-term memory is used to dynam-
ically avoid using over-active questions that have a specific topic-question type in order
to help diversification and prevent cycling. To achieve this, a Move Frequency Table
(MFT) has been incorporated into the tabu search process to store the move frequency
of each topic-question type. This long-term memory, namely TL, is implemented as
follows: when a question qi is substituted, the move frequency of the topic-question
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type of that question is incremented by 1. If an entry x has been moved more than two
times and TL is not full, it will be put into TL. If TL is full and some entries y in TL
have a lower move frequency than x, we remove y from TL and add x into TL.

In up-hill movement, tabu search can accept a move even if the quality of the next
solution is worse than that of the current solution. The reason is to escape the local
optimal region and explore other new promising regions in the search space. However,
to ensure that the up-hill process will not go too far from the current best solution,
we set the following condition: f(P )−fbest

fbest
≤ r where r is a predefined threshold, and

f(P ) and fbest are the values of the objective function of the current test paper P and
the current best solution respectively.

Finally, memory relaxation is used to relax the tabu lists. If a given number of itera-
tions has elapsed and TL is full since the last best solution was found, or if the current
solution is much worse than the last best solution, we empty all entries in both TS and
TL. Relaxation of the tabu lists will change the neighborhood of the current solution
drastically, which may drive the search into a new promising region and increase the
likelihood of finding a better solution.

Pruning Search Space. As the neighborhood region is very large, we need to prune
the search space to find a 2-dimensional region W that contains possible questions
for substitution. Let SP0 = 〈N, T0, D0, C0, Y0〉 be the specification of a test paper
P0 generated from a specification S = 〈N, T, D, C, Y 〉. Let P1 be the test paper cre-
ated after substituting a question qk of P0 by another question qm ∈ Q with SP1 =
〈N, T1, D1, C1, Y1〉. The relations of total time and average difficulty degree between
P1 and P0 can be expressed as follows:

T1 = T0+tm−tk (1)
D1 = D0+ dm

N − dk

N (2)
where tk and tm are the question time of qk and qm respectively, and dk and dm are the
difficulty degree of qk and qm respectively.

Let’s consider the total time violation of P0. If �T (SP0 ,S) = |T0−T |
T ≥ α and

T0 ≤ T , where α is the predefined threshold. To improve the total time satisfaction of
P1, qm should have the question time value of tk + (T − T0) such that �T (SP1 ,S) is
minimized. Furthermore, as �T (SP1 ,S) = |T1−T |

T ≤ α, qm should have the total time
tm in the interval tk + (T − T0) ± αT . Therefore, we have tm ∈ [tk + T − T0 − αT,

tk + T − T0 + αT ]. If �T (SP0 ,S) = |T0−T |
T ≥ α and T0 > T , we can also derive

the same result. Similarly, we can derive the result for the difficulty degree of qm:
dm ∈ [dk + N(D −D0)− βND, dk + N(D−D0) + βND], where D0, D and β are
the average difficulty degree of P0 and S, and the predefined threshold respectively.

Finding the Best Question for Substitution. Among all the questions located in the
2-dimensional region W , it finds the best question that minimizes the objective function
in order to enhance the test paper quality. Consider question qm as a pair of variables
on its question time t and difficulty degree d. The objective function f(P1) can be
considered as a multivariate function f(t, d):
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f(P1) = f(t, d) = �T (SP1 ,S)2 +�D(SP1 ,S)2 = (
T1 − T

T
)
2

+ (
D1 −D

D
)
2

From Equations (1) and (2), we have:

f(t, d) =
(t − T + T0 − tk)2

T 2
+

(d − ND + ND0 − dk)2

D2
=

(t − t∗)2

T 2
+

(d − d∗)2

D2

≥ (t − t∗)2 + (d − d∗)2

T 2 + D2
=

distance2(qm, q∗)
T 2 + D2

where q∗ is a question having question time t∗ = T − T0 + tk and difficulty degree
d∗ = ND − ND0 + dk.

As T and D are predefined constants and q∗ is a fixed point in the 2-dimensional
space, the good question qm to replace question qk in P0 is the question point that is
the nearest neighbor to the point q∗ (i.e., the minimum value of the function f(P1))
and located in the region W . To find the good question qm for substitution efficiently,
we perform the Best First Search (BFS) [15] with the R-Tree. BFS recursively visits
the nearest question whose region is close to q∗. For efficiency, BFS uses a memory-
resident heap H to manage all the questions in the R-tree that have been accessed. This
continues until a question de-heaped fromH is located in W . We note that because there
may be more than one good question found as mentioned above, the actual best question
should has the maximum discrimination degree among these questions such that the
average discrimination degree of the generated test paper is maximized. Algorithm 1
presents the overall Tabu Search algorithm for the assessment constraint optimization.

5 Performance Evaluation

As there is no benchmark datasets available in the research community, we generate 4
large-sized synthetic datasets, namely D1, D2, D3 and D4 with number of questions of
20000, 30000, 40000 and 50000 respectively for performance evaluation. The values of
each attribute in the 4 datasets are generated according to a normal distribution. Table
2 shows the summary of the 4 datasets. In addition, we have designed 12 test specifi-
cations with different parameters. The experiments are conducted in the Windows XP
environment running on an Intel Core 2 Quad 2.66 GHz CPU with 3.37 GB memory.
We evaluate the performance based on the 12 test specifications for each of the fol-
lowing 6 algorithms: GA, PSO, DE, ACO, TS and DAC-TS. We measure the runtime
and quality of the generated test papers for each experiment. The 3 parameters of the
DAC-TS are set experimentally as follows: tTS = 30, lTL = 200, r = 0.6.

To evaluate the quality of k generated test papers on a dataset D w.r.t. any arbitrary
test paper specification S, we use Mean Discrimination Degree and Mean Constraint
Violation. Let P1, P2, ..., Pk be the generated test papers on a question dataset D w.r.t.

Table 2. Test Datasets

D1 D2 D3 D4

Number of Questions 20000 30000 40000 50000
Number of Topics 40 50 55 60

Number of Question Types 3 3 3 3
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Algorithm 1 . Tabu Search for Assessment Constraint Satisfaction

Input:
S = (N, T, D, C, Y ) - test paper specification; P0 ={q1, q2, .., qN} - initial test paper;
tTS - short-term memory tenure; lTL - long-term memory length; r - relaxation ratio;
R - R-Tree index

Output:
P ∗ - Improved test paper

Process:

1: P ← {P0}; MFT ← ∅; TS ← ∅; TL← ∅; nbmax = 3lTL; nbiter = bestiter = 0
2: while Pbest is not satisfied and (nbiter − bestiter) < nbmax do
3: nbiter := nbiter + 1; optiter := optiter + 1;
4: for each qi in P0 do
5: Compute 2-dimensional range W /* pruning search space*/
6: qm ← Best First Search(qi, W ,R);
7: P1 ← {P0 − {qi}} ∪ {qm}
8: if (qi /∈ TS and (ci, yi) /∈ TL) or f(P1) < f(Pbest) then
9: Inserting new test paper P1 into P

10: end if
11: end for
12: P ∗ ← argmin

P ′∈P
f(P1) ; P ← {P ∗} /* best move*/

13: Update MFT (cm, ym), Update TS(qi), Update TL(cm, ym);
14: if f(P ∗) < f(Pbest) then
15: Pbest = P ∗; bestiter = nbiter; optiter := 0
16: else if optiter > 2lTL or f(P )−fbest

fbest
> r then

17: optiter := 0; TS ← ∅; TL← ∅ /* memory relaxation*/
18: end if
19: end while
20: return P ∗

different test paper specifications Si, i = 1..k. Let EPi be the average discrimination
degree of Pi. The Mean Discrimination Degree MD

d is defined as:

MD
d =

∑ k
i=1 EPi

k

The Mean Constraint Violation consists of two components: Assessment Constraint Vi-
olation and Content Constraint Violation. In Content Constraint Violation, Kullback-
Leibler (KL) Divergence [11] is used to measure the topic distribution violation
�C(SP ,S) and question type distribution violation �Y (SP ,S) between the gener-
ated test paper specification SP and the test paper specification S as follows:

�C(SP ,S) = DKL(pcp||pc) =
∑M

i=1 pcp(i) log pcp(i)
pc(i)

�Y (SP ,S) = DKL(pyp||py) =
∑K

j=1 pyp(j) log pyp(j)
py(j)

The Constraint Violation (CV) of a generated test paper P w.r.t. S is defined as:

CV (P,S) =
λ ∗ �T + λ ∗ �D + log�C + log�Y

4
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where λ = 100 is a constant used to scale the value to a range between 0-100. The Mean
Constraint Violation MD

c of k generated test papers P1, ..., Pk on a question dataset D
w.r.t different test paper specifications Si, i = 1..k, is defined as:

MD
c =

∑ k
i=1 CV (Pi,Si)

k

Figure 3 gives the runtime performance of the proposed approach in comparison with
other techniques on the 4 datasets. The results have shown that DAC-TS outperforms
other techniques in runtime. In Figure 3, it also shows that DAC-TS satisfies the runtime
requirement as it generally requires less than 2 minutes to complete the paper genera-
tion process for various dataset sizes. In addition, the DAC-TS approach is scalable
in runtime. Figure 4 shows the quality performance of DAC-TS and other techniques
based on Mean Discrimination Degree MD

d and Mean Constraint Violation MD
c for the
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4 datasets. As can be seen, DAC-TS has consistently outperformed other techniques. As
such, DAC-TS is able to generate higher quality test papers than other techniques.

6 Conclusion

In this paper, we have proposed an efficient constraint-based Divide-And-Conquer Tabu
Search (DAC-TS) approach for online test paper generation. The performance results
have shown that the DAC-TS approach has not only achieved good quality test papers,
but also satisfied the online runtime requirement even for large datasets in compari-
son with other techniques. Thus, the proposed research is particularly useful for Web-
based testing and intelligent tutoring in an educational environment. For future work,
we would like to combine the DAC-TS with the integer linear programming to further
enhance the constraint satisfaction and runtime efficiency of the DAC-TS approach.
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Abstract. We examine the interactions of knowledge and awareness in
dynamic epistemic logic. Implicit knowledge describes the things that
an agent could infer from what is known, if the agent were aware of
the necessary concepts. Reasoning techniques that are robust to incom-
plete awareness are important when considering interactions of auto-
mated agents in complex dynamic environments, such as the semantic
web. Here we revisit Hector Levesque’s original motivation of implicit
knowledge and consider several contemporary realizations of implicit
knowledge. We present a framework to compare different interactions
of knowledge and awareness in the context of public announcements,
and introduce a new formalism for tacit knowledge.

1 Introduction

The term implicit belief was introduced by Hector Levesque [13] to describe
“not what an agent believes directly, but what the world would be like if what
he believed were true.”

Implicit knowledge has come to describe the things that an agent knows, but
of which the agent is not fully aware [6]. Implicit knowledge has limited signifi-
cance with respect to static knowledge and awareness, where explicit knowledge
suffices for most applications. However, implicit knowledge is essential for the
formalization of dynamic epistemic systems, where the knowledge and awareness
of agents changes over time. Implicit knowledge may be used to model latent
facts that the agent subconsciously recognizes, inferences that the agent can
make, but has not yet made, or aspects of the agent’s knowledge that the agent
does not yet have the vocabulary to express.

Certainty and awareness are two separate and important facets of knowledge.
Certainty describes an agent’s confidence in a given scenario, and awareness
describes an agent’s ability to perceive a given scenario. Epistemic logic is the
logic of knowledge and is very much focussed on the element of certainty (or
uncertainty). It is very well studied [7] and has applications in reasoning about
security in information systems. While epistemic logic presumes logically omni-
scient agents [6], practical agents are not able to hold all relevant facts on their

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 727–738, 2011.
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mind at once, and do not have the computational resources to instantly make
all valid inferences from their knowledge base. This has lead to several models
of incomplete reasoning applied to human activities (particularly commercial
transactions) [13,14,10].

One approach to address these limitations has been to temper an agent’s
knowledge with an element of awareness. Thus, we can have an agent who is
unaware of a proposition (that is, oblivious to its existence), as opposed to
simply uncertain as to its interpretation. This is a simple and elegant approach
that allows us to differentiate information that an agent explicitly knows from
information that may be implicit in the agent’s internal state.

In this paper we will examine dynamic interactions between awareness and
knowledge. As with dynamic epistemic logic [5] where an agent may learn new
facts about the world, we may consider awareness dynamics where an agent
may become aware of new properties in the world. Becoming aware should leave
the agent in an enlightened state, and able to accumulate new knowledge (with
respect to the properties of which the agent is newly aware) that is compatible
with what the agent already knows. The notion of implicit knowledge is essential
to capture this compatibility between knowledge states. We will give a uniform
framework to consider these different notions and examine their expressivity in
the context of dynamic epistemic operations.

2 The Logics of Dynamic Knowledge and Awareness

The properties of knowledge and belief in the presence of full awareness have
been extensively studied and are well-understood. They are effectively modelled
by normal modal operators that are reflexive, transitive and symmetric (for
knowledge) or serial and Euclidean (for belief) [7]. However without full aware-
ness things become more complicated. The first issue to arise is that the logic of
explicit knowledge is no longer a normal modal logic. For example, if an agent is
not aware of the ϕ = p ∨ ¬p, then Kiϕ is not true even though ϕ is valid. That
is, the necessitation rule fails for explicit knowledge.

2.1 Language

We suppose that we are extending a multi-agent propositional epistemic logic,
defined over a set of agents N and and set of atomic propositions, P . We aug-
ment multi-agent epistemic logic with a new operator: Aiϕ, to mean that agent
i is aware of all the concepts in ϕ. We note, some treatments of knowledge and
awareness do not have an explicit operator for awareness, preferring to treat it
as an abbreviation. The construct Kiϕ, “agent i knows ϕ” stands in our case for
“agent i explicitly knows ϕ”, and we add an additional operator, Kiϕ to mean
“Agent i implicitly knows ϕ”. We also use the notation [ψ]ϕ to mean, “After
ψ is announced, ϕ is true”. The effect of this public announcement is two-fold.
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First, it brings ψ to the attention of all agents. Any agent who was previously
not aware of ψ or it’s constituent parts, now is. Secondly, it informs the agent
that ψ is indeed true, so any world the agent considered where ψ is not true
(given the newly found awareness) is discounted.

Definition 1 (Language). Given are a countably infinite set of propositional
variables (facts) P , and a (disjoint) countably infinite set of agents N . The
language L is defined as

ϕ ::= , | p | ϕ ∧ ϕ | ¬ϕ | Kiϕ | Kiϕ | Aiϕ | [ϕ]ϕ

where i ∈ Nand p ∈ P . Implication →, disjunction ∨, and equivalence ↔ are
defined by abbreviation.

Finally we will consider a base semantics as a common framework for considering
various interactions of knowledge and awareness. The semantics will extend those
for multi-agent epistemic (modal) logic with an awareness function that assigns
for each agent and each possible world, the set of formulae of which that agent
is aware of in that world.

Definition 2 (Epistemic awareness model). An epistemic awareness model
for N and P is a tuple M = (S, R,A, V ) that consists of:

– a domain S of (factual) states (or ‘worlds’);
– an accessibility function R : N → P(S × S);
– an awareness function A : N → S → P(L); and
– a valuation function V : P → P(S).

For R(i) we write Ri and for A(i) we write Ai; accessibility function R can be
seen as a set of accessibility relations Ri, and V as a set of valuations V (p). A
pointed epistemic awareness model (M, s) is an epistemic awareness state.

The awareness function is defined such that Ai(s) is the set of propositions that
the agent i is aware of in state s, and as such we will require that it is closed
under subformulas (so ϕ ∈ Ai(s) implies ψ ∈ Ai(s) for all subformulas ψ of
ϕ). In [6] various other closure properties are considered for agent awareness.
As we will consider dynamic models it is convenient to denote the elements of
the models M as (SM , RM ,AM , V M ), and to denote pointed models (M, s) as
Ms. The conditions on the accessibility function RM may be varied to reflect
different interpretations of knowledge and belief. Some semantics are defined
with respect to general frame conditions (K) [13,4], some are defined with respect
to belief (KD45) [6] and some are defined with respect to knowledge (S5) [14,2].
Furthermore, some semantics are only defined in the instance where a frame has a
single accessibility relation [13,11]. The semantics presented here are compatible
with each of these restrictions.
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Definition 3 (Semantics). Let M = (S, R,A, V ) be given, and suppose s ∈ S.

(M, s) |= ,
(M, s) |= p iff s ∈ V (p)
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ¬ϕ iff (M, s) �|= ϕ
(M, s) |= Aiϕ iff ϕ ∈ Ai(s)
(M, s) |= Kiϕ iff ϕ ∈ Ai(s) and ∀t ∈ sRi, (M, t) |= ϕ

(M, s) |= [ψ]ϕ iff s ∈ SMψ ⇒ (Mψ , s) |= ϕ (see below)

The semantic definition for public announcements requires us to adjust the model
to reflect the agents’ newly acquired knowledge. On receiving the public an-
nouncement that ψ is true, all agents may disregard any state where ψ is not
true. Furthermore, they become aware of the formula ψ, if they were not already
[17], [2] . The updated model is Mψ where

SMψ

= {s ∈ SM | (M, s) |= ϕ}
RMψ

= RM ∩ SMψ × SMψ

∀i ∈ N, ∀s ∈ SMψ

, AMψ

i (s) = AM
i (s) ∪ {ψ′ | ψ′ ⊆ ψ}

∀p ∈ P, V Mψ

(p) = V M (p) ∩ SMψ

.

We will consider several interpretations for implicit knowledge, but in all cases
we have that explicit knowledge is simply defined as implicit knowledge plus
awareness, so Kiϕ

.= Kiϕ ∧Aiϕ (where .= is used to define syntactic abbrevi-
ations). We define the dual notions of explicit and implicit knowledge as Liϕ
(agent i explicitly suspects ϕ) and Liϕ (agent i implicitly suspects ϕ). Note that
as it is intuitive that explicit suspicion requires that the agent is aware of ϕ, Li is
not the exact dual of Ki, but rather defined as implicit suspicion plus awareness.
Consequently we may define Ki and Ai as the only atomic operators, and use
the abbreviations: Kiϕ

.= Kiϕ ∧Aiϕ, Liϕ
.= ¬Ki¬ϕ, and Liϕ

.= Liϕ ∧Aiϕ.
We will give a simple example of how public announcements update the knowl-

edge state of an agent. Suppose that Alice and Bob are ordering a meal at a
restaurant. On reading the menu, Bob notes that Chicken and Beef is available,
but he does not know which one Alice will order. He is not aware that the soup of
the day is pumpkin soup. Alice announces she will have either the chicken or the
pumpkin soup. After this exchange Bob knows she will not have the beef, and
he becomes aware of the pumpkin soup. This situation in depicted in Figure 1.
The three worlds labelled c, b and p correspond to the worlds where Alice orders
chicken beef or pumpkin respectively, and the atoms each agent is aware of are
marked at each world (we assume that agents are aware of all propositions made
of these atoms). The agents’ knowledge relations are the transitive, reflexive clo-
sure of the relations shown. (So the arrow labelled Bob between worlds c and
p indicates that Bob cannot distinguish the world where Alice orders beef from
the world where Alice orders chicken.)
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c
B : c, b
A : c, p, b

b
B : c, b
A : c, b

p
B : c, b
A : c, p, bBob Bob, Alice

[c ∨ p]
=⇒ c

B : c, p, b
A : c, p, b

p
B : c, p, b
A : c, p, bBob, Alice

Fig. 1. The scenario before and after Alice makes her announcement

3 Implicit Knowledge

In this section we will examine three different variations of implicit knowledge
and relate them to existing logics of knowledge, belief and awareness.

3.1 Strong Implicit Knowledge

Levesque’s [13] work introduced the concept implicit belief, and was one of the
first papers to separate the concerns of awareness and certainty. His response to
the problem of logical omniscience was to separate implicit belief from explicit
belief. from [13]: “...a sentence is explicitly believed when it is actively held to be
true by an agent and implicitly believed when it follows from what is believed”.
The semantic formulation for this logic is given through situations rather than
possible worlds, and for each formula a situation may support the truth of that
formula, the falsity of that formula or neither. These situations were potentially
incoherent in that a situation may support the truth of both ϕ and ¬ϕ for
some formula ϕ. This gave a very general approach for agents without logical
omniscience. The semantics structures were also kept as general as possible. To
define implicit belief, a compatibility relation was required to determine which
situations are compatible with the agent’s explicit beliefs. An agent implicitly
believes a proposition if it is true in all compatible situations.

This approach combines elements of modal logic and situation calculus to
reason about the knowledge of imperfect reasoners. A subsequent, and more
involved, approach along these lines is given by Cadoli and Schaerf [3] which
separate interpretations for situations which are coherent, but incomplete, and
those which are complete, but incoherent. See [12] for further discussion and
generalizations.

In our setting we present an analogous version of implicit knowledge by re-
fining what is meant by a “compatible situation”. Levesque’s original version
defined compatible to be propositionally consistent with respect to propositions
of which the agent was aware. As we are using modal logic we have a well es-
tablished form of compatibility available, bisimulation, which is known to relate
two finite models exactly when they satisfy identical sets of formulas. In [4] the
concept of a bisimulation was adjusted to reflect the agent’s awareness states.

Awareness bisimulations capture the notion of equivalence in a model, up to
an agent’s state of awareness. Note that the definition is recursive, so that if
agent A considers agent B’s explicit knowledge of ϕ, then both agents must be
aware of ϕ.
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Definition 4 (Awareness bisimulation). Suppose we are given epistemic
awareness models M = (S, R,A, V ) and M ′ = (S′, R′,A′, V ′). For all subformula-
closed A ⊆ L we say a relation B[A] is an A-awareness bisimulation iff for all
(s, s′) ∈ B[A]:

atoms for all p ∈ A, s ∈ V (p) iff s′ ∈ V ′(p);
aware for all i ∈ N , Ai(s) ∩A = A′

i(s
′) ∩A;

forth for all i ∈ N , if t ∈ S and Ri(s, t) then there is a t′ ∈ S′ such that
R′

i(s
′, t′) and (t, t′) ∈ B[Ai ∩Ai(s)];

back for all i ∈ N , if t′ ∈ S′ and R′
i(s

′, t′) then there is a t ∈ S such that
Ri(s, t) and (t, t′) ∈ B[Ai ∩ A′

i(s
′)].

where Ai = {ψ ⊆ ϕ | Kiϕ ∈ A or Kiϕ ∈ A}. An epistemic awareness state
(M ′, s′) is A-awareness-bisimilar to an epistemic awareness state (M, s) (written
(M ′, s′)↔A(M, s)) iff (s, s′) ∈ B[A].

Note the bisimulation is given modulo a subformula closed set of propositions,
so an agent aware of propositions P , would consider structures Ms and M ′

s′

equivalent (as far as he explicitly knows), if they agree on the interpretation
of all propositions in P . Awareness bisimulations can be seen to be reflexive,
symmetric and transitive, so we have the following proposition.

Proposition 1. For all A ⊆ L A-awareness bisimulation is an equivalence
relation.

The strong implicit semantics are given below. Note that as all semantics differ
only in their interpretation of implicit knowledge we will only distinguish the
implicit knowledge operators (KI, knowIL and KT). When the semantics of the
operator is clear from its context, we will just use K.

Definition 5 (Strong implicit semantics). Let M = (S, R,A, V ) be given.
We define (M, s) |= KI

i ϕ if and only if for all t ∈ sRi, for all (M ′, t′)↔Ai(s)(M, t)
we have (M ′, t′) |= ϕ.

The main innovation in these semantics is the treatment of knowledge. An agent
knows ϕ only if in all accessible states ϕ remains true for every possible inter-
pretation of all concepts that she is unaware of. We achieve this by extending
the agent’s accessibility relation by composing it with bisimulation modulo those
concepts of which the agent is unaware.

The following lemma shows the correspondence between strong implicit knowl-
edge and Levesque’s original motivation, and may be proven by induction over
the complexity of ϕ.

Lemma 1. Suppose that ϕ ∈ A and Ms↔ANt. Then in the strong implicit
semantics, Ms |= ϕ iff Nt |= ϕ.

As an agent aware only of the formulas in A will be unable to distinguish any
two models that are A-bisimilar it follows that an agent will implicitly know ϕ
if and only if ϕ is true in every situation that is indistinguishable to the current
situation for that agent.
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3.2 Latent Knowledge

A simpler approach to handling interactions of knowledge and awareness is pre-
sented in Fagin’s and Halpern’s seminal paper [6]. Their approach is to generalize
epistemic logic [7] to also account for the agent’s awareness, rather than to in-
vent a wholly new approach. Fagin and Halpern presented a generalization of
Levesque’s approach, where models are as described in Definition 2 and the
semantics are as in Definition 3 as well as:

Definition 6 (Latent semantics). Let M = (S, R,A, V ) be given. Then (M, s)
|= KL

i ϕ if and only if ∀t ∈ sRi, (M, t) |= ϕ.

These semantics present an elegantly simple way to address the gap between un-
certainty and unawareness. Implicit knowledge is modelled simply as knowledge
with or with out awareness. In essence, the logic presents a syntactic restriction
for explicit knowledge (so that knowledge is only meaningfully considered for
terms the agent is aware of) and for all other terms implicit knowledge stands
as a placeholder for knowledge without awareness.

There were actually three different interpretations of awareness presented in
[6], where the approach reported above is the second (the logic of general aware-
ness). The logics presented in [6] are well-defined for multiple agents, nested
belief, and do not permit incoherent situations, as Levesque’s approach does.
However, these practicalities come at a cost. Whereas Levesque’s logic of ex-
plicit and implicit belief had a clear definition of implicit belief: “a sentence... is
implicitly believed when it follows from what is (explicitly) believed”; there is
no such such motivation or even definition in the work of Fagin and Halpern.

The elegant simplicity of this approach contrasts the complexity of awareness
bisimulations. However, it comes at the expense of having an essential interpre-
tation of implicit knowledge. Indeed the only motivation for implicit belief is
given in terms of the abstract semantics: “Implicit belief differs from explicit
belief in that for implicit belief we do not take the awareness function into ac-
count”. Thus we might infer that implicit belief is the belief an agent would have
were they fully aware, but there is no understanding given for how this state of
parallel awareness might actually manifest itself. For example, Ki(KI

j ϕ∧¬Kjϕ)
describes a situation where agent, i knows that j implicitly knows ϕ, and also
that j does not explicitly know ϕ. This presents a strange situation where other
people may know more about what you know than you do. There are various
interpretations that could support such a scenario (resource-bounded reasoning,
absent-mindedness etc), but there is no general property of knowledge, belief and
awareness that matches this notion of implicit knowledge. Rather, it is a con-
venient semantic device to ensure an agent’s explicit knowledge, whilst possibly
incomplete, is consistent.

3.3 Tacit Knowledge

Tacit knowledge is a weaker version of latent knowledge which differs in its
treatment of information of which an agent is unaware. It occupies a middle
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ground between latent knowledge (which describes exactly what an agent should
know and should not know) and strong implicit knowledge (which assumes an
agent knows nothing that can’t be derived from explicit knowledge). The term
tacit knowledge was introduced by Polanyi [15] to describe knowledge that was
held by someone, but which was very hard to communicate or make explicit.
The example of how to ride a bike is often given. Many people know how to ride
a bike, but if they were asked to write down exactly how they are able to, they
would struggle to share their knowledge.

Tacit knowledge allows for “unspoken knowledge” things an agent can or
should know, but of which the agent is not aware. However it does not extend
this to tacit ignorance as latent knowledge does. Thus we may permit an agent
who does not have the facility of geometry to tacitly know that two distinct
parallel lines will never meet, as this is true in every world the agent considers
possible (the agent does not consider non-Euclidean geometries possible). The
agent is not aware of concepts such as “parallel” so this is not explicit knowledge.
Tacit knowledge captures unspoken truths of which an agent is not aware, but
which persist nonetheless in all worlds all worlds the agent considers possible.
The mechanism by which this is achieved in the the refinement, which is closely
related to the bisimulation.

Definition 7 (Awareness Refinement). Let epistemic awareness models M =
(S, R,A, V ) and M ′ = (S′, R′, A′, V ′) be given. For all A ⊆ L we say the relation
R[A] ⊆ S × S′ is an A-awareness refinement iff for all (s, s′) ∈ R[A] :

atoms for all p ∈ A, s ∈ V (p) iff s′ ∈ V ′(p);
aware for all i ∈ N , Ai(s) ∩A = A′

i(s
′) ∩A;

back for all i ∈ N , if t′ ∈ S′ and R′
i(s

′, t′) then there is a t ∈ S such that
Ri(s, t) and (t, t′) ∈ R[P ].

forth for all i ∈ N , if t ∈ S and Ri(s, t) then there is a t′ ∈ S′ such that
Ri(s′, t′) and (t, t′) ∈ R[Ai ∩ Ai(s)].

Epistemic awareness state (M ′, s′) is an A-awareness-refinement of epistemic
awareness state (M, s) (written (M ′, s′)←A(M, s)) iff (s, s′) ∈ R[A].

Note that as with Awareness Bisimulation (Definition 4 the Awareness Refine-
ment is restricted to range over models of the logic, so models satisfying the
S5 axioms for epistemic logic, and the KD45 axioms for doxastic logic. It is
also interesting to note that the definition of refinement has both the back and
forth relations, but they are not symmetrical. The condition back is defined
with respect to the full language, so that worlds the agent considers must come
from the original model (up to bisimilarity). However forth is defined only with
respect to the atoms of which the agent is aware, so the agent may discount some
worlds of the original model where it does not affect his explicit knowledge. We
then describe tacit knowledge as.

Definition 8 (Tacit semantics). Let M = (S, R,A, V ) be given. The seman-
tics are as in Definition 3 and then (M, s) |= KT

i ϕ if and only if for all t ∈ sRi,
for all (M ′, t′) where (M, t)←Ai(s)(M

′, t′), we have (M ′, t′) |= ϕ.



On the Interactions of Awareness and Certainty 735

Tacit knowledge is a compromise between rigidity of latent knowledge and the
vagueness of strong implicit knowledge. If we consider an agent who is unaware of
a proposition, we may not know exactly how an agent may become aware of that
proposition, but we may know of some intrinsic relation between that proposition
and some other proposition the agent is aware of, which will constrain how an
agent may become aware of the proposition. For example an agent observing
another agent may know that the second agent tacitly knows summer is hot, even
through the second agent is not aware of the concept of summer. As soon as the
second agent becomes aware of the concept of summer, the proposition becomes
evident. However, if the second agent did not tacitly know summer is hot the first
agent still considers it possible that the second agent tacitly knows summer is
hot. Although not explicitly stated, tacit knowledge is evident in Heifetz, Meier
and Schipper’s iterative unawareness [10] which permits a plurality of states of
higher awareness for an agent, built upon a set of ground truths, which is the
essence of tacit knowledge.

We illustrate the difference between latent, strong implicit and tacit knowledge
with the simple example in Figure 2.

(A)

1
a
¬b

2
¬a
b

3
¬a
¬b

alice

alice

alice

(B)

4
a
¬b

5
¬a
¬balice

(C)

6
a
b

7
¬a
balice

Fig. 2. Suppose that Alice is aware of the atom a, but not of b. Given the model (A)
Alice may latently consider the worlds 1, 2, or 3 possible. However, she may also tacitly
consider the worlds 4 and 5 possible in model (B). This is because the worlds 2 and 3
may both be related to the world 5 through a refinement (Alice has no tacit knowledge
of b when a is false, but she tacitly knows that if a is true, then b must be false).
Finally, Alice may consider the worlds 6 and 7 in model (C) possible in the strong
implicit semantics as the interpretation of the atom b is completely unconstrained
by the model (A). Note that none of the models change the state of Alice’s explicit
uncertainty about a.

4 Comparative Analysis of Latent, Tacit and Strong
Implicit Knowledge

From now on, we will use the terms strong implicit, tacit, latent and explicit
in the context of the definitions above. Negative awareness introspection is the
property that an agent knows when it is not aware of a proposition. We note an
interesting distinction between the levels of knowledge that can be seen in the
context of negative awareness introspection: latent knowledge does have negative
awareness introspection (|= ¬Aiϕ→ KL

i ¬Aiϕ); strong implicit knowledge does
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not permit negative awareness introspection (|= ¬Aiϕ → ¬KI
i Aiϕ); and for

tacit knowledge negative awareness introspection is satisfiable, but not valid (so
neither |= ¬Aiϕ→ KT

i Aiϕ nor |= ¬Aiϕ→ ¬KT
i Aiϕ are true).

We consider the application of the various notions of knowledge, by consid-
ering a limited form of awareness change. We show how public announcements
allows us to express the potential knowledge of an agent, and how this can be
related to the levels of knowledge we have described.

Latent knowledge. When an agent, i, becomes aware of a proposition ϕ through
a public announcement, they acquire a knowledge state of the propositions in ϕ
that is equivalent to its latent knowledge of these propositions with respect to
ϕ. That is: M, s |= [ϕ]Kiψ if and only if M, s |= KL

i (ϕ→ ψ).

Tacit knowledge. When an agent, i, receives a public announcement, ϕ, they
learn ϕ is true and also become aware of the subformulas of ϕ. Their knowledge
of these subformulas is equivalent to their latent knowledge of ϕ. However, the
agent i would not tacitly know this to be true before the public announcement.
Rather they would (tacitly) know that on becoming aware of ϕ they would
acquire a knowledge state that is consistent with their explicit knowledge, and
one which preserves their tacit knowledge.

Strong implicit knowledge. When an agent i, receives a public announcement, ϕ,
they learn ϕ is true, and become aware of the subformulas of ϕ. Their knowledge
of these subformulas is described by the set of worlds the agent considers possible,
as with latent knowledge. However, as with tacit knowledge the agent would not
know this prior to the announcement. The agent implicitly knows that becoming
aware of ϕ, could lead to any new knowledge that is consistent with their current
(explicit) knowledge state.

The following lemma establishes the relative strength of each type of knowledge.

Lemma 2. Let (M, s) be a pointed awareness model, and ϕ be a formula. Then:

M, s |= Kiϕ =⇒M, s |= KI
i ϕ

M, s |= KI
i ϕ =⇒M, s |= KT

i ϕ

M, s |= KT
i ϕ =⇒M, s |= KL

i ϕ

Proof. For the first implication it is sufficient to note that if the agent explicitly
knows ϕ, then the agent is aware of ϕ, and so in the context of ϕ the awareness
bisimulation is simply a bisimulation (see Definition 4). As bisimulations preserve
the interpretation of modal formulas it follows that the agent implicitly knows ϕ.

If the agent implicitly knows ϕ then in every accessible world t ∈ sRM , every
model Nu that is Ai(s) bisimilar to Mt, we have Nu |= ϕ. Now by Defini-
tions 4 and 7 any model N ′

v that is a Ai(s) refinement of Mt, is also a Ai(s)
bisimulation of Mt, and thus N ′

v |= ϕ, so Ms |= KT
i ϕ. Finally if Ms |= KT

i ϕ it
follows that Ms |= KL

i ϕ as the awareness refinement relation is clearly reflexive.
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Lemma 3. For all variations of implicit knowledge, Kiϕ∧Aiϕ is satisfied by a
pointed model if and only if Kiϕ is.

Proof This can be seen by noting in the case of both awareness refinement and
awareness bisimulations, when the agent is fully aware of a formula ϕ, with
respect to ϕ both relations are the same as a bisimulation, which preserves the
interpretation of modal formulas.

5 Related Approaches

Here we mention some additional work on awareness. Although these contri-
butions do not add to the variety of semantics for interpreting awareness and
implicit knowledge, they certainly provide an appropriate context to consider
the advantages and disadvantages of each approach. Hill [11] has examined the
dynamics of awareness in the single agent case.

Agotnes and Alechina [1] have considered an expressive extension of logics
of knowledge and awareness that allow us to quantify over formulas an agent
is unaware of. Particularly, this allows an agent to know another agent knows
something that the first agent does not. This expressive ability is also considered
by Halpern and Rego [9].

Sillari [16], has also examined the question of knowledge of unawareness, and
addresses this question in the context of epistemic first order logic. Also, strong
implicit knowledge has previously been examined and axiomatized in [4].

A novel approach to distinguishing what an imperfect agent might know as
compared to a logically omniscient agent can be found in [18,2]. Here a dynamic
epistemic logic is used to model deductive step an agent makes, so we might
find an agent who is able to deduce a fact and may indeed be in the process of
deducing a fact, but has not yet come to the final realization that the fact is
true. We note that [18] gives an axiomatization for such awareness change in the
multi-agent case.

In [8] Grossi and Velazquez expand on these ideas using the ideas of multi-
valued logic. They differentiate between formulas agents are aware of and for-
mulas agents have access to, such that access is stronger than awareness and
captures the idea that a deduction has occurred that has bought the truth of a
formula to the attention of an agent, and thus the agent may proceed to use this
formula in future deductions.

Heifetz, Meier and Schipper [10] presented a complete framework for describ-
ing the interactive knowledge of multiple agents with differing levels of awareness.
By interactive knowledge, we mean one agent may know about the knowledge
and awareness state of another agent. This was an extension of Modica’s and
Rustichini’s theory of unforeseen contingencies [14].

6 Conclusion and Future Work

In this paper we have presented a comparative analysis of the way that awareness
and knowledge may interact in dynamic settings. This is an important analysis
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as different situations will require different types of knowledge and awareness
change: modelling secure communications may suit latent knowledge; modelling
commercial transactions may suit tacit knowledge; and modelling automated
reasoning may be better suited to strong implicit knowledge. The semantic model
for tacit knowledge presented here is particularly interesting as tacit knowledge
is a well known concept of epistemiology, but while strong implicit and latent
forms of knowledge have been previously examined in the context of modal logic,
tacit has not.
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Abstract. A recent theory of perceptual mapping argues that humans do not 
integrate successive views using a mathematical transformation approach to 
form a perceptual map. Rather, it is formed from integrating views at limiting 
points in the environment. Each view affords an adequate description of the 
spatial layout of a local environment and its limiting point is detected via a 
process of recognizing significant features in it and tracking them across views. 
This paper discusses the implementation of this theory on a laser-ranging 
mobile robot. Two algorithms were implemented to produce two different kinds 
of maps; one which is sparse and fragmented, and the other which is dense and 
detailed. Both algorithms successfully generated maps that preserve well the 
layout of the environment. The implementation provides insights into the 
problem of loop closing, moving in featureless environments, seeing a stable 
world, and augmenting mapping with commonsense knowledge. 

Keywords: Perceptual map, SLAM, cognitive agent, spatial layout. 

1 Introduction 

In the past 15 years, robotics researchers have made significant advances in solving 
the simultaneous localization and mapping (SLAM) problem [1, 2]. They argue that 
the standard state-space approach to SLAM is well understood, and future key 
challenges lie in developing larger, more persuasive demonstrations which involve 
mapping a city or structures such as the Barrier Reef or the Mars surface. Although 
these challenging mapping projects will drive the development of useful robots, this 
paper explores the more fundamental question of how nature solves the mapping 
problem of one's own environment. In particular, we ask: do humans (and animals) 
employ a SLAM-like algorithm to map their environment? If not, why not and what 
would their algorithm be like? 

Intuitively, the answer is no since it is unlikely that humans process a map like that 
of current robots. Researchers with disparate backgrounds, ranging from 
psychologists to geographers and urban designers, have been studying this problem 
and refer to it as a cognitive mapping process and its product, a cognitive map [3-5]. 
These studies show much of what we remember is an inaccurate (in metric terms), 
incomplete, and fragmented representation. Yet, as we explore an environment, we, 
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like the robots, need to integrate successive views to form a representation of our 
immediate surrounding, i.e. our perceptual map. This representation is precise enough 
to point to unseen locations just visited and can be learned early during exposure to a 
new environment [6, 7], without which we would ‘forget’ where things are the 
moment we look away [8]. Many researchers interested in human spatial perception 
implicitly or explicitly reason that some kind of a SLAM-like algorithm is used to 
compute a perceptual map [9-12]. 

Probabilistic solutions to the SLAM problem are a significant achievement, 
because it shows how an accurate map can be computed and how errors in one's 
perception can be handled in the integration process to produce a useful map. The 
latter is important if a SLAM-like solution is used to explain how humans integrate 
successive views to produce a perceptual map because human perception is an 
incomplete geometrical description of their environment [8, 13, 14] and illusory [15, 
16]. If humans integrate successive views to produce a perceptual map, then a 
solution at least as powerful as probabilistic SLAM is needed. 

Alas, nature appears to have found a different solution. Judging from past AI 
research in other areas such as stereo vision and bipedal motion, this comes as no 
surprise. In stereo vision, the matching problem was first thought to be solved more 
appropriately at the object level rather than the image level [17] and in locomotion, 
the early machines built were on multiple legs rather than two. In the integration 
problem, human input is more complex than for robotics. For example, humans have 
high visual acuity only in the small foveal region of the retina and thus a large part of 
the input lacks clarity and details. Furthermore, human eyes make rapid movements 
(known as saccades) to focus on different regions. It was thought that successive 
retinal-displaced views were integrated to produce the expected richly detailed and 
stable world representation [18, 19]. However, subsequent tests of this idea 
discovered that we are often insensitive to changes occurring between saccades and 
even between views in natural settings [20-23]. This phenomenon, referred to as 
“change blindness”, presents a strong case against the idea of integrating successive 
views to form a single unified representation. 

Thus, there is an apparent paradox in the way in which humans compute a 
representation of their environment. On the one hand, we need to integrate successive 
views and a probabilistic SLAM approach would be ideal since it copes with the 
presence of errors in one's sensing of the environment. On the other hand, our 
cognitive map bears little resemblance to an accurate metric map and change 
blindness argue against the use of an integrative approach like SLAM. For instance, 
Yeap [24] presented a theory of perceptual mapping that does not use the standard 
mathematical transformation approach to compute a perceptual map. Instead, it 
integrates successive “local environments” obtained from views at limiting points in 
the environment. Here, we implemented that theory on a laser-ranging mobile robot. 
Two algorithms were implemented and tested on two indoor environments: one 
computes the map in a cognitive manner and the other in a robotic manner. Both 
algorithms successfully generated maps that well preserve the layout of the 
environment and provided insights into the nature of perceptual mapping. 
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2 A Theory of Perceptual Mapping 

In developing his theory of perceptual mapping, Yeap [24] made two observations.  
First, he observed that a view affords us more than a description of the surfaces in 
front of us. It tells us what and where things are, where we can move to next, what 
events are unfolding, where there might be dangers, and others [25]. In short, a view 
is in fact a significant representation of a local environment and it should be made 
explicit in the map as a description of a local environment rather than as some 
spatially organized surfaces. Second, he observed that the world we live in is 
relatively stable. That is, it does not change much when we blink our eyes or take a 
few steps forward. As such, there is no immediate need to update the view in our 
perceptual map as we move. For example, consider your first view of a corridor when 
entering it and assume an exit can be seen at the other end. If you walk down this 
corridor to the exit, then the description of the corridor space afforded in the first view 
adequately describes the local environment you were going through. Updating this 
description to include, for example, a view of a room besides the corridor as you walk 
past it will enrich the description, but is unnecessary if the room is not entered. 

Combining both observations, Yeap [24] suggested that one's perceptual map is 
computed by integrating views only when one is about to move out of the local 
environment afforded in an earlier view. This immediately pose two problems: if we 
do not update our map as we move, how do we know where we are in our map and 
more importantly, how do we update the map with the next view when the need 
arises? Yeap argued that humans recognize where they are by recognizing familiar 
objects in their environment. Again consider the corridor example above and 
assuming you are half way down the corridor. How do you then know where you are 
in the map? If you recognize the exit at the end of the corridor to be the same exit in 
the initial view, then, using triangulation, you can locate your approximate position in 
the map. Thus, one possible solution is to keep track of objects seen in the 
remembered view in the current view. These objects are referred to as reference 
targets. If some could be found, one could triangulate one’s position in the map and 
thus localize oneself. However, at some points, one will not be able to do so and this 
is when one needs to expand the map to include a new view (albeit, a new local 
environment). These points are known as limiting points. If the new view to be added 
is selected at a point just before reaching a limiting point, it could be added to the map 
using the same method of triangulation. 

3 Implementations and Results 

We tested Yeap's theory using a Pioneer 3 mobile robot (dimension 40×45 cm) 
equipped with SICK laser rangefinder (laser beam resolution 0.5 degree, maximum 
range 30 meter, view angle 180 degree) mapping two different indoor environments 
as shown in Figure 1. In Figure 1a, the route taken was about 100m long and in Figure 
1b, the route was about 170m long. The theory leaves open three implementation 
issues, namely how and what reference targets are selected, when a new view (a 
collection of surfaces) should be added to the perceptual map, and how much 
information in each view is combined with what is in the map. 
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(a)     (b) 

Fig. 1. Two test environments 

Implementing the theory on a laser-ranging mobile robot means that our choice of 
a reference target is limited to perceived surfaces in view, each being represented as a 
2D line segment. Since these lines are recovered from laser points, their shape varies 
between views depending on the robot vantage point. Consequently, we choose 
reference targets with a minimum length of 40cm, which has at least an occluding 
edge. The latter ensures a reference point exists on the surface for relative positioning 
of new surfaces into the map. A minimum of two such points is needed. 

Since the robot cannot recognize these reference targets directly from one view to 
the next, their recognition has to be “simulated” or done indirectly. For our 
implementation, we use the transformation method. Transforming between two 
successive views, the robot can predict where these reference targets will be. They are 
then “recognized” via the use of some heuristics such as the proximity of two 
surfaces, the sudden appearance of a new surface in front of another, and others. It is 
emphasized that the transformation method is used here because of the lack of any 
recognition ability of our robot. It is not part of the theory. 

In terms of when a view is to be added to the perceptual map, we implemented two 
choices: the first adds a new view at the limiting point and the second adds a view as 
soon as it becomes available. The former should produce a map more akin to the kind 
produced in cognitive beings i.e. sparse and fragmented. The latter should produce a 
map more akin to the kind produced in robots i.e. dense and detailed. We refer to the 
two algorithms as algorithm #1 and algorithm #2, respectively. 

3.1 Algorithm #1 

Let PM be the perceptual map, V0 be one's initial view, and R be some reference 
targets identified in V0. Initialize PM with V0. For each move through the 
environment, do: 
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1. Execute move instruction and get a new view, Vn. 
2. If it is a turn instruction, use Vn to expand PM and create a new R. Go to step 1. 
3. Search for the reference targets in Vn by transforming Vn-1 to Vn using the 

mathematical transformation approach. [recognition] 
4. If two or more targets are found, remove unseen targets from R. Go to step 1. 

[tracking] 
5. Add Vn-1 to PM. This is achieved by first locating the robot’s position and 

orientation in PM and then replaces what is in front of the robot in PM with what is 
seen in Vn-1. [expanding] 

6. Create a new set of R from Vn-1. Go to step 1. 

One key feature of this algorithm is that it does not perform much updating of 
surfaces in the map. What is added as the new local environment is exactly what is 
seen in the current view. The rationale here is that details are unimportant as long the 
overall shape of the environment is maintained. An exception is the updating of the 
length of surfaces that extend from the previous view to the current view. All 
computations are approximate only. This implementation is thus best suited for 
cognitive agents where they don't need to remember everything that they have 
perceived. 

Figure 2a shows a perceptual map produced as the robot traversed the path through 
the environment shown in Figure 1a (in a clockwise direction). We have tested the 
robot with a total of 7 different start locations and all the maps produced show a good 
layout of the environment. 

3.2 Algorithm #2 

Let PM be the perceptual map, and V0 be one's initial view. Initialize PM with V0. For 
each move through the environment, do: 

1. Execute move instruction and get a new view, Vn. 
2. Find all common surfaces between Vn and Vn-1 by transforming previous view to 

the new view using the mathematical transformation approach. Update description 
of these surfaces in the map if necessary. 

3. Identify the best reference target, R, from all found matches in the PM. 
4. For all new surfaces in Vn, add them as new to the PM using the reference target R. 
5. Remove redundant surfaces in PM – compare all surfaces inside PM with those 

just added to see if they are viewed as the same surface. If they are, remove the 
newly added surface. 

6. Re-position robot in PM using the reference target, R. Go to step 1. 

The key feature of this algorithm is that it tries to find the best reference target to 
update the map at each view. Such an implementation is suited for robots since they 
need not forget what they have perceived. Figure 2b shows a perceptual map 
produced as the robot traversed the path through the environment shown in Figure 1a 
(and in a clockwise direction). We have tested the robot with a total of three different 
start locations and all the maps produced show a good layout of the environment. 
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some reference targets. It combined the two steps as one and managed to update its 
map and eventually successfully produce a map (right). 

These tests highlight situations whereby it shows a need to use much of one's 
higher level or common sense reasoning to deal with the learning a new environment. 
These situations include the recognition of objects, the use of the perceptual map 
when returning to a familiar part of the environment, and traversing in featureless 
environments. The map produced using our algorithm provides an adequate basis for 
such reasoning. 

5 Conclusion 

This paper shows the implementation of a new theory of perceptual mapping using a 
laser-ranging mobile robot. The theory was developed to explain how humans and 
animals compute their perceptual map. Two algorithms were implemented to produce 
two different kinds of maps: one which is sparse and fragmented, and the other which 
is dense and detailed. The results showed that despite no error correction, a useful 
layout of the environment is easily computed if good reference targets are made 
available. However, in one of the environments, the lack of good reference targets 
caused a failure to map the environment. This demonstrates that the algorithm, like 
humans, is not robust and one could get lost. In situation like this, one needs to exploit 
other forms of knowledge to resolve the problem.  

Future work will focus on developing more robust algorithms based upon this new 
theory of perceptual mapping for robot mapping, and designing new experiments on 
human and animal cognitive mapping processes to test the validity of the theory as a 
theory of human/animal perceptual mapping. 
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Abstract. The principal goal of the LANdroids program (2007-2010) was to 
validate the concept that mobile tactical radio relay platforms can provide 
improved communications connectivity in non-line-of-sight communications 
environments such as urban terrain. The first phase of the program 
demonstrated that intelligent mobile relays can provide improved system 
performance in network configuration, optimization, and self-healing, and the 
second phase added additional capabilities including intruder detection and 
situational awareness, and included a real-world demonstration to potential 
users. 

Keywords: robotic communications relays, MANET, surveillance, autonomy. 

1 Introduction 

One of the major challenges facing dismounted warfighters operating in urban 
environments is the unreliability of radio communications.  Buildings and other 
obstacles absorb, reflect, and diffract radio signals, causing signal loss or attenuation, 
and creating a generally highly complex signal propagation environment that is 
difficult to accurately predict.  The LANdroids solution to this problem is to deploy 
small inexpensive robotic relay nodes that position themselves intelligently to relay 
signals to warfighters moving through these settings to conduct their operations.  The 
significance of the LANdroids program is that several techniques for intelligent robot 
movement were evaluated, including a kinetic-state machine approach, that 
implemented a decentralized decision-making process and a “playbook” technique, 
that modified pre-defined configurations according to the situation and environment. 

1.1 The Challenging Urban RF Environment 

The LANdroids concept is designed to exploit the fact that a given emitter’s signal 
strength depends sensitively on the position of the receiver.  Fig. 1 shows a map of the 
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signal strength around a building of an FM radio signal broadcast from the other side 
of an urban environment.  This signal strength map contains instances of both multi-
path fading and shadowing.  Multi-path fading typically results in large variations 
within small areas. In this example, a 20dB change in signal strength was measured 
over a distance of only 10 feet (one wavelength). At higher frequencies (e.g., 2.4 
GHz), the shorter wavelength will cause variations to occur on sub-meter scales.  
LANdroids mobile relay nodes would therefore be able to access locations with 
greatly increased signal strength by making only small changes in location. 

 

Fig. 1. Signal strength map around a facility in an urban setting 

Fig. 1 also shows shadowing, illustrated by the deep blue regions in which the 
building is blocking the signal. In these regions, the average signal strength is much 
weaker and the area of poor communications performance can be much larger than is 
caused by multi-path fading. Shadows are another phenomenon that LANdroids 
relays can deal with by carefully choosing their locations. 

The signal propagation characteristics within an urban environment are not just 
poor; they are also usually very difficult to predict. Angle of incidence matters, where 
an emitter is located matters, even the building materials themselves can impact signal 
strength. We often deal with this in the civilian world through an iterated manual 
measure, test, and improve cycle – for example, in optimizing cell phone tower 
placement (“can you hear me now?”).  LANdroids, however, must determine where 
exactly to “sit” based on the situation – not based on pre-programmed maps or other 
approaches that require detailed knowledge a priori.  Such knowledge may augment a 
given approach, but there will always be an element of deciding in real time where a 
given LANdroid node should locate itself.  Another important concept is that 
dynamical changes in the world can impact what constitutes a good location.  Moving 
a convoy of trucks, removing a structure or building, or putting a new structure or 
building in place, can degrade RF connectivity, as can changes in RF noise or in the 
positions of other emitters in the environment.  A LANdroid that finds a good position 
in which to sit at time t1 may well need to adjust its position at time t2. 
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All of these phenomena translate into a need for relay node mobility to achieve 
basic communications coverage.  Once a capability for intelligent autonomous 
movement is incorporated into the relays, other system-level capabilities, such as self-
healing in the face of node loss, can also be implemented. 

1.2 The LANdroids System Concept 

A LANdroid is a small, inexpensive, smart, mobile radio relay node, comprised of a 
robotic platform (providing appropriate mobility and sensing capabilities), processor, 
radio, and power source. The LANdroids system concept is that dismounted 
warfighters (or police, firefighters, etc.) will each carry a number of these LANdroids 
and deploy them as they move through a mission operations area.  Following 
deployment, each LANdroid will then move so that as a group they configure 
themselves to form a mesh network over the area of operations, providing a temporary 
communication infrastructure that covers the initial warfighters, subsequent 
warfighters, deployed sensors, UGVs, etc. Any device operating in the area will be 
able to maintain communications via the LANdroids mesh network. 

The advantage of a mesh network approach to communications is resiliency – the 
network is multi-path, multi-hop, and multiply connected.  If any one node should go 
down or be taken out by an enemy, the packets from other nodes will find other routes 
to reach the gateway. An additional strength specific to the LANdroids system is that 
the remaining nodes can in fact move to create new links – the network as a whole 
can self-heal to cover the area.  LANdroids can also exploit movement in order to 
implement “tethering” or network stretching to keep warfighters or devices covered as 
they move and expand their area of operations. 

Others [1, 2, 3] have investigated the real-time deployment of static relays during a 
mission, both by humans and by robots; the point of the LANdroids Program was to 
demonstrate the value of relay mobility following deployment [4]. 

2 Landroids Software and Hardware 

2.1 LANdroids Software Capabilities and Development Efforts 

The Control Software developed under LANdroids was required to address capabilities 
of Self-Configuration (self organize to form a mesh network over the coverage region, 
including detecting neighboring nodes, establishing connections to one or more 
gateways, and ensuring that the region is fully covered), Self-Optimization (continue to 
make movements ‘in the small’ to try to find locations with higher signal strength even 
after a network is formed), Self-Healing (detect whenever a gap in the coverage region 
is created because a LANdroid node is destroyed by an enemy, powers down, or 
otherwise fails, and self-heal to the best extent possible), Tethering (the network itself 
should adapt and stretch to keep users covered when they move out of the coverage 
area) and Intelligent Power Management (reason about power conservation and make 
explicit decisions about whether or not to move, and whether it is possible to power 
down because another LANdroid is covering the same area).  



752 D.R. Corbett, D.W. Gage, and D.D. Hackett 

Five Phase I contracts were awarded for the development of Control Software, and 
two of these five contractors were selected to continue into Phase II: Intelligent 
Automation, Inc. (IAI), and Lockheed Martin Space Systems Company (LM-SSC).  
These performers explored a variety of approaches to the issues of short range motion 
to find local signal strength maxima, long range motion to establish links and 
optimize network topology, communications between LANdroids to coordinate their 
movements, and management of the information necessary to support this whole 
process [5,6]. 

The IAI approach modeled each robot as a kinetic state machine.  A distributed 
graph-theoretic formulation is adopted for representing the problem and graph metrics 
were used to determine various state transitions [6].  These transitions happen 
independently and asynchronously based solely on local information.  There is no 
global view of the network, but the robot nodes are implicitly coordinated by sharing 
information that gives the robots a common view of the network topology.  In this 
control mechanism, the assumption is that every robot has the same information and 
view of the overall current state of the network.  A robot can therefore make a high-
level decision based on this global view and assume that the other robots will come to 
the same decision.  The decision making is therefore decentralized [6]. 

In the LM-SSC approach, each robot node was given a set of skills, such as corner 
probe (to map or move away from a hallway intersection), wall-follow, and signal-
strength readings.  The robots would execute sequences of various skills assembled 
into set “plays”, such as optimize signal strength, spread out, and follow. 

2.2 LANdroids Hardware Requirements and Prototype Platforms 

Because a dismounted warfighter is obliged to physically carry a lot of gear, including 
weapons, food, water, and ammunition, any prospective additional load is judged 
extremely critically.  For LANdroids to be accepted in the field, they must provide 
value commensurate with their weight, which must be minimized.  It is obviously 
critical that LANdroids must be able to support communications for the complete 
duration of a mission, so batteries must afford maximum mass-energy density. 
Deployed LANdroids must be expendable – dismounted warfighters must be able to 
drop and go – to use the communications infrastructure while it is in place, but not 
have to move back into harm’s way to retrieve the robots.  The LANdroids program 
therefore undertook to develop robotic platforms that could have a final production 
cost of $100 per LANdroid at modest production volumes (e.g., one thousand units), 
assuming that technology will continue to provide greatly increased performance and 
reduced cost (and mass) in processing and radios, and, to some degree, in batteries. 

A single contract was awarded for the development of the LANdroids robot 
platform to iRobot, Inc.  The LANdroids Phase I prototype robot platform developed 
by iRobot was the Ember, a small tracked robot with flipper arms extending from the 
rear wheel hubs (Figure 2).  Ember resembles a greatly downsized iRobot PackBot, 
except that it does not have powered tracks on its flippers.   These flippers, however, 
because they are actively positioned, can be used as levers to greatly enhance the 
robot’s mobility capabilities. 
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The Ember’s external sensors parallel those of the iRobot Create [7,8] robot used 
as a surrogate platform by the LANdroids software performers in Phase I.  They 
include two infrared cliff sensors located at the bottom-front edge of the robot, one 
infrared wall sensor on the right side, optical wheel encoders on each track (left and 
right) and a single camera.  Navigation sensors include a 3-axis accelerometer, and a 
yaw sensor.  The power source is an internal 12.8V rechargeable Lithium-Ion battery, 
which is permanently installed, and can be recharged only in place.   

 

Fig. 2.  Ember, the Phase I LANdroid prototype robot developed by iRobot (left), the Phase II 
LANdroid Development robot (LDR) developed by iRobot – standard top (middle) and sensor 
development payload bay top (right) 

Ember ran OpenEmbedded Linux on a Freescale i.MX-31 processor, which hosted 
all of the high-level processing, while a separate AVR microcontroller was used for 
low-level motor control and sensing.  The two processors communicate via a serial 
link at 38.4 kbps. 

For Phase II, iRobot iterated its Ember design in the LANdroids Development 
Robot (LDR), also shown in Figure 2. In addition to resolving a number of 
mechanical and heat-related problems encountered in the Ember (inevitable in any de 
novo prototype), the LDR added a microphone and loudspeaker and a set of four 
cameras to the Ember sensor suite, and included updated processing and radio 
hardware. 

Both the Ember and the LDR were designed to operate autonomously, including 
software to execute basic low-level behaviors such as self-righting (to automatically 
use its flippers to right itself when upside-down or on its side), as well as simple 
forward/reverse and left/right commands.  Also included were several behaviors that 
can be invoked from a simple Operator Control Unit (OCU) via 802.11 
communications, including demonstration programs of figure-eight and wall-
following, and simple manual driving (forward/reverse and left/right commands). 

3 LANdroids Testing 

Formal evaluation of both the LANdroids software and hardware was performed at 
the end of both Phase 1 and Phase II, and, in addition, the LANdroids concept was 
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demonstrated in an operational setting to potential military users at the end of Phase 
II.  The software evaluation effort was executed by CenGen, Inc., the hardware 
evaluation by Southwest Research Institute (SwRI) [9]. 

3.1 Phase I Formal Evaluation 

The LANdroids Phase I software evaluation was performed by CenGen at their 
facilities in Columbia, MD, in January 2009.  Several types of scenarios focused on 
the evaluation of each contractor’s software for self configuration, self optimization, 
and self-healing.  Details of the Phase I Evaluation process and its specific results are 
reported in reference [10]. 

3.2 Phase II Formal Evaluation 

The LANdroids Phase 2 software evaluation was performed by CenGen at the 
Howard Community College in Columbia, MD, in July 2010.  Performer team 
software was loaded onto 15 LANdroids robots distributed among three floors of a 
large building.  Three types of scenarios were established to test the software’s 
capabilities: 

• Optimizing – LANdroids moved to establish and maintain an optimal 
network between four warfighter nodes and a gateway node 

• Self-Healing – the LANdroids network attempted to reconnect itself after 
some LANdroids were intentionally disabled 

• Tethering – the LANdroids network accommodated a moving warfighter by 
either stretching of the LANdroids network (by moving the nodes), or 
signaling the warfighter to power up and drop new LANdroids nodes 

An example Optimizing scenario is shown in Fig. 3.  This configuration simulated a 
fire team placing LANdroids near the doorways of a building.  When turned on, the 
LANdroids (red) autonomously moved into the building to connect the warfighter 
nodes (blue) to the gateway node (green).   

 

Fig. 3. An example Optimizing scenario – LANdroids moved from the initial positions (in red) 
to connect all four warfighters (blue) to the gateway (green) 
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A thorough set of metrics were collected on network performance: Connectedness, 
Coverage, Goodput Margin, Mission Bits, Coordination Overhead, Convergence 
Time, Total Energy, and Bits per Energy.  Although the number of test runs was of 
necessity very limited (2-7), the standard deviations of the results were small and 
therefore the results can be considered statistically meaningful. 

Average network coverage for scenarios where the starting configuration had poor 
connectivity (50-60%) was almost as good as those starting with excellent coverage 
(60-70%), showing that LANdroids movement optimized the network. 

Self-healing was demonstrated to be possible, but the network reconverged slowly.  
In the Tethering scenario, the LANdroids did not move rapidly enough to stretch the 
network.  Extra nodes were either dropped too soon or not at all. 

In summary, the evaluation showed solid performance in optimizing the network.  
Significant work remains to be done for self-healing and tethering scenarios.   

3.3 Phase II Field Demonstration 

The LANdroids program culminated in a field demonstration held at the McKenna 
MOUT site at Fort Benning, Georgia, on September 7-10, 2010.  The goal of this 
event was to showcase LANdroids capabilities for potential military users and 
partners in a realistic, urban tactical environment.   

The scenario was as follows:  two fire teams each deployed a set of LANdroids at 
the door of two separate buildings.  The LANdroids distributed themselves 
throughout each building to establish a communications network.  Communications 
were passed back to the command center through three iRobot PackBot robots.  Each 
PackBot was equipped with a LANdroids-compatible radio. 

The fire teams entered and cleared the building, using the LANdroids to maintain 
communications.  Once the building was cleared, the LANdroids were commanded to 
assume their leave-behind sensor mode, allowing the command center to monitor the 
building for intruders. 

To implement the leave-behind mode, LANdroids were augmented with four 
sensors: a Hokuyo lidar, a Sperient ultrawideband radar, passive infrared detectors, 

 

 

Fig. 4. LANdroids deploying in buildings (left), and traversing underground tunnels (right) at 
the Ft. Benning MOUT site 
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and a pair of microphones.  This package allowed the LANdroids to remain in place 
and monitor for intruders.  Alerts, audio, and video were passed back to the command 
center through the LANdroids network.   

In separate demonstrations, the LANdroids were teleoperated into confined spaces 
such as tunnels, relaying back video through their linked radios.  Fig. 4 shows 
elements of the LANdroids demonstration. 

At Ft. Benning, the LANdroids program demonstrated the following: 

• Utility as a stand-alone UGV platform, teleoperated into confined spaces, 
sensing and serving as radio relays in MOUT features (buildings, tunnels) 

• Autonomous dispersal of LANdroids, from the doors of buildings, to 
establish a communications network in the MOUT area buildings 

• A “leave behind” intruder detection sensor capability, with alerts, audio, and 
videos relayed through the optimized LANdroids network 

• A rudimentary LANdroid-based mapping of interiors, based on odometry 
and radio signal strength 

As a research platform, the LANdroids network fell short of demonstrating a full 
military capability in several ways.  First, the LANdroids were outfitted with 802.11 
radios, not a military waveform.  Second, the LANdroid robots were not sufficiently 
tall to climb stairs, and so were unable to disperse throughout the upper floors of a  
multi-story building.   Third, the developed platform’s mobility, combined with its 
maximum speed of 0.5 m/s, meant that the LANdroids fall far short of being able to 
maintain a realistic operational tempo (OPTEMPO). 

Nonetheless, the military community expressed interest in several important 
elements of the LANdroids development.  Some of the attendees were attracted to 
specific capabilities of the LANdroid robots.  Specifically, the use of the platforms as 
tethered nodes to keep up with warfighters, for mapping unknown environments 
before sending warfighters in, and in the localization and registration of assets.  There 
was also interest in using LANdroids to maintain connectivity of dismounted infantry 
to the network in the Land Warrior environment. 

4 Conclusions: Issues and Next Steps 

The LANdroids program has validated the concept that employing mobile tactical 
radio relay platforms can provide improved communications connectivity in NLOS 
communications environments such as urban terrain.  The LANdroids program 
showed in Phase I that “intelligent” mobile relays can provide improved system 
performance in network configuration, optimization, and self-healing. 

The distributed graph-theoretic formulation that produced a decentralized-but-global 
decision making process was shown to be highly successful.  The robots using this 
technique demonstrated that they were able to configure, relay data and map an area.  
The playbook technique, that demonstrated robots executing sequences of various 
skills assembled into set “plays”, was also validated in a real-world environment. 
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One explicit challenge addressed by Phase II of the LANdroids program was the 
need to articulate a specific concept of operations (CONOPS) that could gain 
acceptance with identified military customers, and to modulate the design of the 
robotic platform to specifically address this CONOPS.  The inclusion of additional 
platform capabilities through an augmented sensor suite made the LDR a useful tool 
for surveillance, intruder detection and situational awareness.  Moreover, sensors 
added as payload were exploited to enhance the robots’ navigational capabilities.  It is 
possible that a future CONOPS will involve outdoor areas of operation on the scale of 
hundreds or thousands of meters, rather than the indoor areas on the scale of tens of 
meters considered so far.  Hence, the scale and nature of the navigational problem 
would definitely be much different, with obvious impacts on software development.  
Further, greater mobility capabilities (and a consequent possible increase in robot 
size) would likely be required in this case. 

In fact, determining the appropriate scale for LANdroids robotic platforms is a 
major challenge in several respects.  The original LANdroids plan called for a robot 
the size of a deck of cards, so that each dismounted warfighter could carry and deploy 
several of them, and such a small platform would also be quite covert.  However, 
Phase II has demonstrated that a robot of this small size cannot currently carry the 
sensors needed to support localization (much less intruder detection), the batteries 
required to provide mission-length endurance, or a radio compatible with military use.  
Moreover, even the current larger LANdroids prototypes are not capable of climbing 
an 8-inch curb or stair riser.   

Another challenge is to identify an appropriate target radio and military network 
for a future LANdroids system.  Military tactical radios currently in use and under 
development are all far too large for the current LANdroids platform concept, but 
deployed LANdroids will have to be able to interoperate with the communications 
gear that the forces actually use.  A decision to implement LANdroids as a “black” 
subnet implemented with COTS radio equipment (such as the 802.11 devices used in 
Phase I) would have the advantage of eliminating the need to deal with crypto and 
other security concerns, and would allow the continued direct leveraging of rapidly 
evolving COTS radio systems, ensuring a higher level of performance by avoiding the 
lengthy development cycle required to produce a military radio. 

One very tangible result of the LANdroids program is that iRobot has developed a 
new commercially-available robot platform based on the LDR: the iRobot 110 
FirstLook [11].  This is a throwable robot, larger than the Ember and LDR, that 
weighs less than 5 pounds and can be rapidly deployed to acquire situational 
awareness, to investigate confined spaces, or to perform persistent observation. 

Acknowledgements. The authors thank all the participants in the LANdroids 
Program for their efforts, in Phase I, Phase II and in predecessor seedling projects.  
We also thank Jonathan Smith, Tom Wagner, Mark McClure and Robbie 
Mandelbaum for their work in initiating and managing this program. 

The views, opinions, and/or findings contained in this article/presentation are those 
of the author/presenter and should not be interpreted as representing the official views 
or policies, either expressed or implied, of the Defense Advanced Research Projects 
Agency or the U.S. Department of Defense. 



758 D.R. Corbett, D.W. Gage, and D.D. Hackett 

References 

1. Souryal, M.R., Geissbuehler, J., Miller, L.E., Moayeri, N.: Real-time deployment of 
multihop relays for range extension. In: Proc. ACM MobiSys (June 2007) 

2. Nguyen, H.G., Farrington, N., Pezeshkian, N.: Maintaining Communication Link for 
Tactical Ground Robots. In: AUVSI Unmanned Systems North America 2004, Anaheim, 
CA, August 3-5 (2004),  
http://www.spawar.navy.mil/robots/pubs/auvsi04_amcr.pdf 

3. Pezeshkian, N., Nguyen, H.G., Burmeister, A.: Unmanned Ground Vehicle Radio Relay 
Deployment System for Non-line-of-sight Operations. In: Proc. 13th IASTED Int. Conf. 
on Robotics and Applications, Wuerzburg, Germany, August 29-31 (2007),  
http://www.spawar.navy.mil/robots/pubs/IASTED_ADCR_2007.pdf 

4. BAA 07-46 LANdroids Broad Agency Announcement (BAA) for Information Processing 
Technology Office (IPTO) Defense Advanced Research Projects Agency (DARPA), June 
5 (2007),  
http://www.darpa.mil/ipto/solicit/baa/BAA-07-46_PIP.pdf 

5. Chiu, H.C.-H., Ryu, B., Zhu, H., Szekely, P., Maheswaran, R., Rogers, C., Galstyan, A., 
Salemi, B., Rubenstein, M., Shen, W.-M.: TENTACLES: Self-Configuring Robotic Radio 
Networks in Unknown Environments. In: IROS 2009, St Louis MO, October 11-15 (2009) 

6. Mayhew, D., Judkins, T., Abeles, P., Manikonda, V.: Agile Robot Teams for Mobile 
Networking In Urban Environments. In: Proc. AUVSI Unmanned Systems North America 
(August 2010) 

7. iRobot Corporation, iRobot Create Owners Guide (2006),  
http://www.irobot.com/filelibrary/pdfs/hrd/create/ 
Create%20Manual_Final.pdf 

8. iRobot Corporation, iRobot Create Open Interface (2006),  
http://www.irobot.com/filelibrary/pdfs/hrd/create/ 
Create%20Open%20Interface_v2.pdf 

9. http://www.swri.org/4org/d14/ElecPow/SmalRobo.htm 
10. McClure, M., Corbett, D.R., Gage, D.W.: The DARPA LANdroids program. In: 

Unmanned Systems Technology XI, Orlando FL. SPIE Proceedings, vol. 7332 (April 
2009) 

11. http://www.irobot.com/gi/ground/110_FirstLook 



D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 759–768, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Data Extraction for Search Engine Using Safe Matching 

Jer Lang Hong1, Ee Xion Tan2, and Fariza Fauzi2 

1 School of Computing and IT, Taylor’s University 
jerlang.hong@taylors.edu.my 

2 School of IT, Monash University 
{tan.ee.xion,wan.fariza}@monash.edu 

Abstract. Our study shows that algorithms used to check the similarity of data 
records affect the efficiency of a wrapper. A closer examination indicates that 
the accuracy of a wrapper can be improved if the DOM Tree and visual 
properties of data records can be fully utilized. In this paper, we develop 
algorithms to check the similarity of data records based on the distinct tags and 
visual cue of the tree structure of data records and the voting algorithm which 
can detect the similarity of data records of a relevant data region which may 
contain irrelevant information such as search identifiers to distinguish the 
potential data regions more correctly and eliminate data region only when 
necessary. Experimental results show that our wrapper performs better than 
state of the art wrapper WISH and it is highly effective in data extraction. This 
wrapper will be useful for meta search engine application, which needs an 
accurate tool to locate its source of information. 

Keywords: Information Extraction, Automatic Wrapper, Search Engines. 

1 Introduction 

A computer user is able to obtain relevant information from the World Wide Web 
simply and quickly due to the advent of Information Technology. As the World Wide 
Web contains a huge amount of data, the extraction of required information has been 
significantly simplified as the user needs to enter only search queries for the database 
servers to generate the information needed and deliver directly to the user. The 
generated information is usually enwrapped in HTML (HyperText Markup Language) 
pages as data records and it forms the hidden web (or deep web or invisible web). As 
the generated data records from the deep web is highly dynamic, it is difficult for the 
current search engines to index these HTML pages. Thus, these web pages are called 
deep web pages. Data records presented in a web page are usually presented using a 
predefined template, and these data records normally possess similar structures and 
patterns to form groups of data called data region. Specific information such as 
relevant data records from the deep web pages are the main source of information for 
a meta search engine. However, before data records can be used in a meta search 
engine, they need to be extracted from the search engine results page and converted to 
a machine readable form. Automatic wrapper is the tool developed for this purpose 
and it is used to automate meta search engine to increase the speed and efficiency of 
these search engines [1], [2]. 
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A meta search engine normally receives a user’s query and disambiguate the query for 
further processing. The query will then be passed to other search engines after they are 
classified based on the search query. The search engines will generate search results based 
on the query and this needs a tool (wrapper) to extract the information before it is sent 
back to the original server. Meta search engine will then compile the returned information, 
filter out the irrelevant search results, rank them and display the final results to the user. 
An accurate and fast tool is required to extract the relevant information from search engine 
results pages so that the meta search engines can be more efficient in ranking and filtering 
the search results in a timely manner. Thus, the robustness and accuracy of a wrapper will 
greatly affect the performance of a meta search engine. 

Current wrappers use DOM Tree and Visual Cue to extract relevant data region 
from search engine results pages. These wrappers use the regularity of the structure 
and layout of data records for data extraction. Our observations show that 30% of the 
relevant data regions contain irrelevant information such as search result identifier 
(e.g. Search returns 10 records). Current wrappers (MDR[1], DEPTA[8], WISH[4]) 
are used to extract data records in a sequential order (first to last data records) and 
they are not designed to extract the said data regions as these data regions contain a 
mixture of similar and dissimilar data records. In this paper, we propose a novel and 
robust wrapper to extract relevant data region from search engine results pages. We 
use algorithms which are able to check the similarity of data records more accurately. 
Our approach is to use algorithms to check the similarity of data records using the 
DOM Tree and visual cue properties of these records which are unique and can be 
recognized easily. In order not to exclude data regions unnecessarily, we also develop 
a voting algorithm to distinguish the relevant data region, that is, if 85% of its data 
records are similar, the data region will be treated as potential relevant data region and 
retained for further processing. Our wrapper then extracts the relevant data region 
from the list of available data regions. Finally, we use a filtering technique to remove 
irrelevant data (search identifiers) from the relevant data region. Our wrapper is called 
SafeMatching Wrapper (SafeMatch). 

Our wrapper is divided into 2 components. We first discuss the data extraction 
module of our wrapper. Given a web page, our approach is to parse the page and 
arrange it into a DOM Tree. We then use an Adaptive Search Algorithm to label and 
detect the correct data region. Our algorithm uses a few filtering stages which are able 
to group the list of data records available in a web page and filter out irrelevant 
information such as menu bars. Potential data records are then passed through the 
similarity check and data record detection filters to further exclude irrelevant data to 
obtain the correct data region. Tests on datasets obtained from various sources and 
comparison with other existing wrappers show that our wrapper is highly effective in 
data extraction. 

This paper contains several sections. Section 2 describes the current work that is 
related to ours. Section 3 gives the implementation details of our wrapper. Section 4 
provides the experimental tests conducted on our wrapper and finally Section 5 
summarizes our work. 

2 Related Work 

DEPTA [8] uses a bottom up tree matching algorithm to match tree structures of data 
records. A tree matching algorithm matches two tree structures and determines how 
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the first tree can be transformed into the second tree. DEPTA’s tree matching 
algorithm determines the maximum matches between two trees by comparing the 
location and identity of the nodes in the tree structures. DEPTA checks the similarity 
of two trees using the percentage similarity of the trees.  

ViNT [3] extracts content line features from the HTML page, where a content line 
is a type of text which can be visually bounded by a rectangular box.  Content lines 
are categorized into 8 types, each with their own distinguishing characteristics and 
features, which are grouped to form content blocks. ViNT parses these content blocks 
to identify the data records. Essentially, ViNT defines a data record as a content block 
containing a specific ordering of content lines.  

ViPER [5] takes a more “natural” approach by projecting the contents of the 
HTML page onto a 2-dimensional X/Y co-ordinate plane, effectively simulating how 
the HTML page may be rendered on a printed hard-copy. This enables ViPER to 
compute two content graph profiles, one for each X and Y planes, which it uses to 
detect data regions by locating valleys between the peaks as the separation point 
between two data records (valleys are usually the space within two data records, 
separating them apart). 

WISH [4] uses frequency measures to match the tree structures of data records. 
WISH works in a time complexity of O(n) and is able to match tree structures of data 
records containing iterative and disjunctive data. However, tree matching algorithm of 
WISH is not able to match data records with dissimilar tree structures.  

Recently, ODE wrapper [7] uses ontology technique to extract, align and annotate 
data from search engine results pages. However, ODE requires training data to 
generate the domain ontology. ODE is also only able to extract a specific type of data 
records (single section data records), thus it is not able to extract irregular data records 
such as multiple sections data records and loosely structured data records. 

3 SafeMatch Wrapper 

3.1 Overview of SafeMatch 

SafeMatch requires that the HTML web page of the search engine result pages are 
parsed and stored in a DOM Tree. In order to simplify our wrapper, we assume that 
the page under extraction must contain at least 3 repetitive patterns. This assumption 
is based on our observations that the majority of search engine result pages contain 
more than 3 repetitive patterns. These useful repetitive patterns are potential data 
records. SafeMatch consists of two main components. The first component involves 
parsing the HTML page and organizing it into Document Object Model (DOM) tree 
representation. In the second component, SafeMatch extracts data records using visual 
cue and DOM properties of the data records. In Component 2, SafeMatch goes 
through four stages for the extraction of data records. The initial stage is to come out 
with a list of data records. The initial list before the filtering processes is usually 
large. At each step from Stages 1 to 4 of the filtering processes, SafeMatch reduces 
the list by removing irrelevant data records in each data region. The underlying 
implementation varies in each of these stages and will be explained in detail in 
Section 3.2. At the end of the filtering processes, if successful there will only be one 
data region with only the correct data records left. 
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3.2 SafeMatch Extraction Module 

Overview 

Once the DOM tree is constructed, it is passed through a three filtering stages to filter 
out irrelevant information and identify the correct data region which also contains the 
data records. Before the filtering processes can be carried out, we use the Adaptive 
Search Algorithm to detect and label potential data records in a DOM Tree. Details of 
these works are presented in the following sections. 

Assumptions 

We have made several important observations on several unique features inherent to a 
data record. Based on these observations, we come out with a way to correctly extract 
data records. The following are the observations made by us: 

Observation 1 
The size of the data records in a search engine results page is usually large in relation 
to the size of the whole page. 

Observation 2 
Data records usually occur three or more times in a given search engine results page.       

Observation 3 
Data records usually conform to a specific regular expression rule to represent their 
individual data, hence they have nearly similar tree structure.  

We examine carefully these three observations and found that these criteria could 
be formulated using visual cue and DOM tree structure of data records. Three steps of 
filtering rules are proposed, each of them considering the above observations. 

Adaptive Search 

The inclusion of this stage is to detect and label the different groups of potential data 
records. Groups of data records can be defined as a set of data records having similar 
parent HTML tag, containing repetitive sequence of HTML tags and are located in the 
same level of the DOM tree. SafeMatch uses the Adaptive Search extraction 
technique to determine and label potential tree nodes that represent data records. 
Subtrees which store data records may be contained in potential tree nodes. The nodes 
in the same level of a tree are checked to determine their similarity (whether they 
have the same contents). If none of the nodes can satisfy this criterion, the search will 
go one level lower and perform the search again on all the lower level nodes. Our 
method involves the detection of repetitive nodes which may contain data records and 
the rearrangement of these nodes to form groups of potential records in a list in  
2 steps:  

1. In a particular tree level, if there are more than 2 nodes and a particular node 
occurs more than 2 times in this level, SafeMatch will treat it as a potential data 
record irrespective of the distance between the nodes.  
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2. These potential data records identified in this tree level are then grouped and 
stored in a list. The potential data records in this list are identified by the notation 
[A1, A2, …An] where A1 denotes the position of a node in the potential data records 
where it first appears, A2 is the position where the same node appears the second 
time and so on. Fig. 1 shows an example where nodes A, B, C are grouped and 
stored in list 1. 

 

Fig. 1. Potential data records in SafeMatch 

Overview of SafeMatch Extraction Rules 

After going through the Adaptive Search stage, SafeMatch will have a list of data 
regions. Our examination shows that data regions fall into one of several groups.  We 
group the first set of potential data regions as menus, this group of data regions 
determines the layout of HTML pages and is usually large in size and highly 
dissimilar. The second group is advertisements, regions of this group are highly 
similar but with simple structures. The third group consists of menu bars, these 
regions are simple but nearly similar in structure. It is the last group of data records 
that are relevant to our work, the search engine results output, these regions are highly 
similar in structure and large in size. We aim to design our wrapper so that it can 
extract this last group of data regions, while removing the other irrelevant ones. We 
used filtering stage 1 to remove menus which determine the layout of the HTML 
page, and filtering stage 3 to remove the remaining irrelevant data (e.g. 
advertisements). Filtering stage 2 is designed to remove data records which occur less 
frequently, as observed by author of [8]. 

 
Stage 1: Similarity Filter 

Proposed Algorithms  

In this section, we introduce our algorithms which are able to check the similarity of 
data records more accurately. Our algorithms include the DOM tree based and visual 
cue similarity check and a voting algorithm. We derived the DOM tree based 
matching algorithm based on Observation 3 and our finding that data records share an 
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important characteristic, i.e. the distinct tags of a tree and the total number of distinct 
tags in each level of the tree are nearly similar to those of the other trees of the group. 
Thus we are able to formulate a similarity check algorithm which can mimic the 
behavior of a full tree matching algorithm. Our approach is to carry out the similarity 
check of two trees by examining the distinct tags and comparing the total number of 
distinct tags in all levels of the trees. Our algorithm is simple but efficient and it can 
obtain similar results as those of a tree matching algorithm but it has a reduced time 
complexity. Our further investigation shows that visual information of data records is 
also useful in checking the similarity of these data records. This can be achieved by 
comparing the sizes of the bounding boxes which contain the data records. As noted, 
not all the data records in the relevant data region are similar, for example, some 
pages contain relevant data region with search identifiers. It is considered appropriate 
that if 85% of the data records in a data region are similar, this data region can be 
treated as relevant and retained for further processing. Otherwise, the data region will 
be discarded. Our voting algorithm is designed to check whether more than 85% of 
data records in a data region are similar. It is used together with the DOM Tree and 
visual cue algorithms to check the similarity of data records. Our similarity check 
works as follows: 

1. The tree structure of data records in a data region are first checked for similarity 
using the DOM Tree based algorithm. If they pass the test, the voting algorithm 
will be used to further check the similarity of the data records (i.e. whether more 
than 85% of the data records are similar)  

2. If the trees in the data records are similar, then the trees of Item 1 will be used for 
visual similarity check and if they pass the test, the voting algorithm will be 
applied for further test and if they pass the test again, they are considered similar.   

The details of our algorithm and its use in detecting similarity of data records and 
filtering dissimilar data regions are presented in the following subsections. 

DOM Tree Based Similarity Check 

Our Tree Matching algorithm consists of a two stage screening procedure to check the 
similarity of a group of trees. Given a number of trees, our algorithm first examines 
the distinct tags of the first tree and those of the second tree. If almost all the distinct 
tags occur concurrently in the two trees (overall with say only one element different), 
then the trees pass the similarity test of the first stage and they are used for the second 
stage similarity test. In the second stage, we calculate the total number of distinct tags 
in all the levels of the first tree and that of the second tree. If the first two trees have 
almost equal number of distinct tags in all levels of the trees (overall with a difference 
of only one tag), then the two trees are considered similar according to the stage two 
criterion. The first two trees are similar only if they pass the screening procedures of 
both stages. If the first two trees are similar, the first tree is retained for further 
processing and the second tree is then compared with the third tree of the group to 
check their similarity using Stages 1 and 2 of our screening algorithm. On the other 
hand, if the first two trees are not similar, our voting algorithm will mark this data 
region as having one dissimilar data record and the second tree will be compared with 
the third tree to check their similarity. The screening procedures for both the above 
cases are repeated until the last tree is used for comparison.   
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Fig. 2 shows data records presented in a tree form obtained from the DOM Tree of 
HTML pages. For simplicity, we show only two trees in each figure. We calculate the 
similarity of the two trees of Fig. 2 using our Tree Matching algorithm. In Fig. 2, the 
distinct tags are <table, tr, td, div, a, p, b> for both the left and the right trees. The first 
screening procedure shows that the trees are similar. The total number of distinct tags 
in all levels is 7 for the left tree and 7 for the right tree respectively (1 <table> tag in 
level 1, 1 <tr> tag in level 2, 1 <td> tag in level 3, 1 <div> tag in level 4, 1 <a> tag 
and 1 <p> tag in level 5, 1 <b> tag in level 6 of the trees). Therefore, the left tree is 
retained for further processing as the two trees are similar. The screening procedures 
will be repeated using the second tree and third tree and so on until the last tree of the 
group is used if there are more than 2 trees. 

 

Fig. 2. Two trees with similar structures 

Visual Cue Similarity Check 

Fig. 3 shows the Lycos search engine results page. As can be seen from Fig. 3, Data 
Region 1 (solid rectangles in Fig. 3 are considered not similar because they have 
bounding boxes with different sizes. Data records in Data Region 2, which are 
represented by the dotted rectangles in Fig. 3 are similar because they are having 
bounding boxes of similar sizes. The same applies to Data Regions 3, 4 and 5. 
SafeMatch will determine the bounding box of each data records and the voting 
algorithm will mark the data region with one dissimilar data record if the data records 
differ greatly (say more than 50 pixels) in width and height compared to other data 
records.   
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Stage 2: Number of Nodes Filter 

Stage 2 of the filtering processes involves removing data regions with less than 3 data 
records. This Stage is carried out based on Observation 2. 

 

Fig. 3. An example of HTML page containing data regions with similar and dissimilar data 
records 

Stage 3: Largest Scoring Function Filter 

After passing through the 3 Stages, SafeMatch will have a list of data regions. It is 
assumed that these data regions contain data records which are visually and 
structurally similar as they survived the filtering Stages 1 to 3. Menus which represent 
the layout of the web page are removed in Stage 2 of the filtering rules. Some of the 
possible data regions available are the menu bars, advertisements, and data records 
which are relevant to our work. Each of these data regions is assigned a scoring 
function. The correct data region is assumed to have the largest score value. Stage 4 is 
carried out based on Observation 1. We measure the sizes of texts and images of data 
regions. The sizes of texts and images are measured based on the bounding box of 
HTML Text and HTML <IMG> tag. Once the area of the bounding box is 
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ascertained, they are summed up to give a final score value. Each of the data regions 
has its own score value. It is noted that HTML separator nodes such as <BR> also 
contribute to the space occupied in a data record. SafeMatch will therefore measure 
the size of the bounding box of these nodes.   
 
The scoring function used by SafeMatch wrapper is given below: 
a=Size of Texts in a Data Region 
b=Size of IMG tags in a Data Region 
c=Size of HTML separator nodes in a Data Region 
x=Data region 

Score(x) = a + b + c (1) 

Stage 4: Removing Irrelevant Data from the Relevant Data Region 

In this stage, we use the same tree matching algorithm mentioned previously to match 
all the data records in the relevant data region. We also match data records based on 
their visual boundaries. Data records that matched each other are put into the list of 
correct data records. Those data records that are not similar are removed from the 
relevant data region.   

4 Experimental Tests 

The dataset used in this study is taken from complete planet repositories 
(www.completeplanet.com). This dataset contains 250 web pages. The distribution of 
data for the data set varies, ranging from academic sites, general sites to governmental 
sites. We compare our work with state of the art wrapper, WISH [4] using this 
dataset. We do not make comparison with other state of the art wrappers such as 
ViNT [3] and DEPTA [8] as study in [4] shows that WISH performs comparatively 
better than ViNT and DEPTA. The measures of wrapper’s efficiency are based on 
three factors, the number of actual data records to be extracted, the number of 
extracted data records from the test cases, and the number of correct data records 
extracted from test cases. Based on these three values, precision and recall are 
calculated according to the formula:   

 
Recall=Correct/Actual*100 (2) 

Precision=Correct/Extracted*100 (2) 
 
SafeMatch takes about 400 milliseconds on average to generate a result for a web 
page and achieves a high recall and precision rate (Table 1). ViNT [3] (state of the art 
visual assisted wrapper) takes 1200 milliseconds to generate a result page. This shows 
that the speed of SafeMatch is better than other existing state of the art system (ViNT 
[3]) while achieving higher accuracy than WISH [4]. SafeMatch outperforms WISH 
in terms of recall rate and has precision rate comparable to WISH. Our dataset 
contains mostly complicated web pages, particularly web pages containing a number  
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Table 1. Experimental result for SafeMatch and WISH 

Term SafeMatch WISH [4] 
Actual 4139 4139

Extracted 3909 3363
Correct 3758 3288
Recall 90.79% 79.43%

Precision 96.13% 97.76% 
 
of data regions which are similar torelevant data region. As SafeMatch uses visual cue 
that measures text and image size, it will be able to distinguish more efficiently 
correct data region from incorrect ones. Unlike WISH, SafeMatch is able to match 
data records with dissimilar tree structures.   

5 Conclusions 

In this study, we develop a wrapper (SafeMatch) which is able to extract data records 
from deep webs more efficiently than existing state of the art wrapper WISH. Unlike 
existing works, our wrapper is able to extract relevant data region which contains 
search identifiers. We use our voting algorithm in addition to tree matching algorithm 
and visual cue to extract the relevant data records and remove irrelevant data from the 
data region accordingly. We also use text and image size to locate and extract the 
correct data region containing data records. The exact measurements of text and 
image and the use of visual information to remove dissimilar data records improve the 
accuracy of our wrapper in data extraction. The accuracy and speed of our wrapper 
will be useful in meta search engines application. 
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Abstract. Modern compilers have many optimization passes which help
to get a better binary code for a given program. These optimizations are
NP-hard. People use different heuristics to get a near optimal solution.
These heuristics are designed by a compiler expert after examining sam-
ple programs. This is a challenging task. Recently, people have used
machine learning techniques instead of heuristics for compiler optimiza-
tions. Machine learning techniques have not only eliminated the human
efforts but have also out-performed human made huristics. However, the
human efforts have now been moved from creating heuristics to selecting
good features. Selecting right set of features is important for machine
learning techniques since no machine learning tool will work well with
poorly choosen features. This paper introduces a noval approach to gen-
erate features for machine learning for compiler optimization problems
with out any human involvement.

1 Introduction

Modern compilers provide large number of optimization passes to get a better
binary code for a target machine. All-most all optimizations are NP-hard [14].
There are no deterministic algorithums for these optimizations to get an optimal
solution. People use heuristics to find a near optimal solution for these optimiza-
tion problems. These heuristics are created by a compiler expert by observing
various program applications. It is a challenging task and requires many man
hours. If one is able to fine tune a heuristic for a given architecture, when a new
processor comes to the market, compiler expert has to repeat the whole process
again to fine tune the heuristic for the new architecture. A company’s greatest
interest is to shorten this process in order to market the new product as soon
as possible. Recently, people have used machine learning techniques to reduce
this time cycle. The ultimate goal of using machine learning techniques is to
learn a heuristic for a new enviorment at the press of a botton. Also, in practice,
machine learning techniques have given better performance than their human
created counter parts [16].

In a typical machine learning enviornment for a compiler optimization prob-
lem, number of programs are transfored into input vectors. For each program,
we determine a desired output vector. Input vectors along with output vectors
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Fig. 1. Typical compilation path in a compiler for modern processors

form a training set. A machine learning tool will then try to construct a model
which maps input vectors to output vectors. An input vector is a set of features
which captures charateristics of a program. Now, an important question is; what
are the best features for a given machine learning approach? A compiler expert
has to decide set of features keeping in view the target compiler optimization
and architecture. This is a difficult task. Every machine learning tool is bounded
by the performance of the input features. Hence, selecting good features is an
important research area in the field of applying machine learning techniques for
various compiler optimization problems.

A typical compilation path in a modern compiler is shown in Figure 1. A
compiler takes a source program written in a high-level language as an input.
It performs lexical analysis (scanning), syntax analysis (parsing) and semantic
analysis (type checking) in the front-end. It converts a given program into an
intermediate representation (IR). IR is a machine and language independent ver-
sion of the original source code. IR is used to create various data structures like
abstract syntex tree (AST), control flow graph (CFG), data dependency graph
(DDG) etc. These data structures are taken by the back-end to apply various
optimizations. These data structures contain wealth of information about pro-
grams. People use these data structures to create features for machine learning
techniques. Although machine learning alleviates a compiler expert from the task
of building a heuristic, but it put on him another challenging task of reducing
the wealth of information to a small set of features. This paper introduces an
approach for autmatically creating a feature set with out the involement of a
compiler expert by considering a compiler optimization problem as a classifica-
tion problem.

The rest of the paper is organized as follow. Section 2 gives the related work
in this area. Section 3 discusses our approach. Section 4 talks about the experi-
mental set up for the work. Section 5 talks about the results. Section 6 concludes
our contributions and talks about our future line of action in this area.

2 Related Work

One of the first researchers to incorporate machine learning into compiler for
optimization problems were McGovern et al. [13] who used reinforcement learn-
ing for scheduling of straight-line code. Cavazos et al. [5] extended this idea by
learning whether or not to apply instruction scheduling. Stephenson et al. [17]



Automatic Static Feature Generation for Compiler Optimization Problems 771

looked at tuning the unroll factor using supervised classification techniques such
as K-nearest neighbor (KNN) and support vector machines (SVM).

Subsequent researchers have considered predictive models using machine
learning techniques to automatically tune a compiler for an existing micro-
architecture. These models use programs features to focus the search of opti-
mization space in promising areas. Agakov et al. [2] use static code features
to characterize a given program while Cavazos et al. [4] investigate the use of
hardware performance counters. Leather et al. [16] give grammar to select the
features to represent a program. Christophe et al. [8] use hardware features for
selecting the best compiler options for a given architecture. The work by Gana-
pathi et al. [10] applies machine learning for compiler optimization problems
for multi-core architectures. Malik [11] tries to capture spatial information of
DDGs for the machine learning techniques. Yoki et al. [19] give static features
for machine learning for tile selection problem.

Recently, MILEPOST-GCC framework has been developed by IBM Haifa to
drive the compiler optimization process based on machine learning. The frame-
work gives features which are very comprehensive in terms of capturing all im-
portant characteristics of a given program. Interested readers can consult the
work by Fursin et al. [9] for complete list of features. In this paper, we compare
the performance of our approach against MILEPOST-GCC framework.

3 Our Approach

Previous work in this area needs lot of compiler expert involvement in crafting or
selecting the best features for a machine learning technique for a given compiler
problem. The main contribution of this work is an approach that does not require
this involvement at any stage.

Figure 2(a) is an IR for the C code in Figure 2(b). Due to the space constraints,
we are not re-producing the whole IR for the code1. We are showing only that
part of IR that is good enough to establish our point of view. Figure 2(a) has two
types of branch instructions. Branch instruction, br label register, takes one
argument. Branch instruction, br i1 register label register label register,
takes three arguments. The branch instruction with one argument is an uncon-
ditional branch instruction. The branch instruction with three arguments is a
conditional branch instruction. The two branch instructions change the control
flow of a program in a different way. The unconditional branch changes the con-
trol of a program with-out any testing. The conditional branch first does a test
in the first argument and then changes the control of a program to the second or
third argument depending upon the out come of the test. These instructions are
categorized as one class in the previous work. However, both the branch instruc-
tions capture different semantics of a given program. An unconditional branch
instruction may represent an endless loop while a conditional branch instruc-
tion shows a loop with limited iterations in a program. If one develops a feature
set by considering such instructions as one class, it will be hard for a machine
1 Interested readers can consult the GCC documentation [1] to reproduce it.
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Fig. 2. (a) IR code for the C code using the GCC compiler. Most parts of IR have
been replaced by the dotted lines due to space constraints (b) C code program.

learning tool to differentiate between semantics of different programs. With this
approach, there is a possibility that two programs might have different semantic
meanings but have similar feature vectors.

For the approach in this paper, we borrow the idea from the feature selection
approaches that are being used in the text classification problem. A text doc-
ument consists of words which capture it’s semantics. In the text classification
problem, a text document is represented by a set of words which are considered
the most helpful in classifying the document with respect to a given class. Many
statistical approaches are used to select the best features [20]. In the approach,
we consider IR of a program as a text document. Instead of collapsing certain
types of instruction as one instruction in order to reduce the dimensionality of
search space, we treat each instruction type at IR level as one feature. A com-
piler has limited number of instruction types at IR level. In this work, we use the
GCC compiler [1] which has 200 intruction types. One can use all 200 intruction
types as a feature set for a machine learning tool for any optimization problem.
However, this may lead to the curse of dimensionality problem which decreases
the performance of a machine learning tool [12].
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To select the best features with respect to a compiler optimization problem, we
used feature selection methodology adopted by people for the text classification
problem. For this, we first defined a compiler optimization problem as a classifi-
cation problem. In this work, we applied the approach to the best optimization
options selection problem. Modern compilers have more than 100 options and
selecting the best option for a given program is NP-hard. People use heuristic to
find the best options for a given problem. If each optimization option is consid-
ered as a class, then the best compiler options selection problem can be defined
as a classification problem as follow:

Given a progarm P and compiler optimization class C, determine
whether P belongs to C or not.

For simplicity, we assume that each optimization is independent of each other.
We use the following criteria from the work [20] to select the best 30 features 2

for our feature vector representation.

3.1 Frequency Thresholding

The number of times an instruction type occurs in the training set. The basic
assumptions is that rare instructions are not influential for compiler optimization
options. Rare instruction removal reduces the dimensionality of the feature space.
This is the simplest technique but not a very good criterion to pick the best
features.

3.2 Information Gain(IG)

Information gain is frequently employed as a term-goodness criterion in the field
of machine learning. It measures the number of bits of information obtained for
category prediction by knowing the presence and absence of a term. Let {Ci}mi=1

gives the set of compiler options available in a compiler. The information gain
of an instruction type t is defined by Equation 1.

G(t) = −
m∑

i=1

Pr(Ci)logPr(Ci) + Pr(t)Pr(Ci|t)logPr(Ci|t) + Pr(t)Pr(Ci|t)logPr(Ci|t)
(1)

Pr(Ci) gives the probablity of compiler option Ci being turned ON in the training
set. Pr(t) gives the probablity of an instruction type in the training set . Pr(Ci|t)
gives the probability of Ci turned ON given an instruction type t. Pr(Ci|t) gives
the probability of Ci turned ON given an instruction type t is absent.

2 We want to see how robust the approach is as compare to MILEPOST-GCC frame-
work. MILEPOST-GCC gives 55 hand made features.
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3.3 χ2 Statistics (CHI)

CHI measures the lack of independence between two terms. Equation 2 gives
CHI for an instruction type t with respect to a compiler option Ci.

χ2
avg(t, Ci) =

N × (AD − CB)2

(A + C)× (B + D)× (A + B)× (C + D)
(2)

Where A is the number of times an instruction type t and compiler option Ci

being turned ON co-occur for a program. B is the number of times the instruction
type t occurs with the compiler option Ci being turned OFF. C is the number
of times option Ci is turned ON with out instruction type t. D is the number of
times neither instruction type t is present nor option Ci is turned ON. N is the
total number of programs in the training set. We calculate the average value of
CHI for each instruction type using Equation 3.

χ2
avg(t) =

m∑
i=1

Pr(Ci)χ2(t, Ci) (3)

Where m is the total number of compiler options and Pr(Ci) gives the probablity
of compiler option Ci being turned ON in the training set.

4 Experimental Setup

The tools, benchmarks, architecture and environment used for the work are
briefly described in this section.

4.1 Compiler

The GCC was selected as it is a mature and popular open-source optimizing
compiler that supports many languages, has a large community, is competitive
with the best commercial compilers, and features a large number of program
transformation techniques. The GCC is the only open source compiler that sup-
ports more than 30 processor families. For our work, we selected the latest GCC
4.4x version.

4.2 Flags

In the latest version of GCC, there are about 100 flags. It is impossible to validate
all combinations of optimization of flags. Most of these flags are considered with
the global GCC optimization levels ,i.e., -O1, -O2 and -O3. For our work, we
considered the GCC optimization level -O3 and then considered a particular
optimization by tunning it ON or OFF through a corresponding flags −f <
optimization−name > and −fno− < optimization−name > flags respectively.
Certain combination of flags cause the compiler to break or produce incorrect
program execution and hence incorrect result. We reduced the probability of
such cases by comparing outputs of program with the reference ouputs.
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4.3 Plateforms

We used Intel Dual core running at 2.0 GHz with 4.0 GB of main memory and
1 MB of L2 cache, runing Ubuntu Linux .

4.4 Benchmarks

We used the MiBench and SPEC2006 benchmark suites. The MiBench consists
of six categories of C programs. These categories offer different program char-
acteristics that enable researchers in architecture and compiler to examine their
design more effectively. The SPEC2006 benchmark consists of 39 applications
both in FORTRAN and C. It is a standard benchmark which is used to ver-
ify various compiler optimization techniques. We only considered C applications
from the SPEC2006.

4.5 Experiments

First, we identified hot functions in the benchmark applications. We define a
hot function as one which is mostly executed in a given program application.
We used the gprof tool to determine hot function for a given application. The
features extracted from a hot function was used to build a feature vector for ma-
chine learning. Feature vector of a hot function was used to represent a program
instance. Each feature in a feature vector was weighted using a novel approach
given by Malik [11].

We build a training set using the SPEC2006 C applications. We used the
genetic algorithm (GA) from work [6] to get the best compiler options for each
application. We used 1000 evolutions for GA approach. Each run was repeated
five times so that the speedups were not cacused by cache priming etc. This was
the most time consuming part of our work. In some cases, it took more than a
day to find the best compiler options for an application.

For our work, we selected two machine learnng techniques; decision tree (DT)
and support vector machines (SVM). We used MILEPOST-GCC work [9] as a
reference to compare the quality of our work as it gives the most detailed man
made features for machine learning techniques. We used the C4.5 algorithm [7]
for DT implementation. We used the default values for various parameters given
by the developer. We implemented both the linear and non-linear SVMs. We used
the SVMlight tool which is freely availabe on the web [18]. Again, we used the
default values for various parameters set by the SVMlight tool. However, for
the non-linear SVMs, we used radial basis function kernel with σ = 1 and the
upper bound parameter (C) of SVMs equal to 10.

DT learning took about a minute to build a model. However, SVM learning
took 2 to 5 minutes to build a model for the best compiler flag selection problem.

5 Experimental Results

We compare the performance of the iterative approach using GA with the perfor-
mance of the two machine learning techniques using MILEPOST-GCC framework
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Fig. 3. Performance of the non-linear SVMs learning using χ2 statistics (CHI) as a
selection criterion for our framework

and our approach. Our approach did better on both DT and SVM techniques. How-
ever, due to the space constraints, we will discuss the non-linear SVM results.

Figure 3 compares the performance of non-linear SVM using MILEPOST-
GCC (ML) and our approah (SP) using CHI criterion againt the iterative model
(ITR) using GA. In Figure 3 the horizontal axis gives name of each benchmark
application used for testing and its performance using ITR, ML and SP models.
The vertical axis gives the speed up over the running time when the same appli-
cation is compiled with the -O3 GCC optimization level 3. For the bitcount appli-
cation using ITR model, we are able to find a binary code which is 1.6 times faster
than a binary code when one compiles it with the -O3 GCC optimization level.
Figure 3 shows that with CHI selection criterion, our automatic approach out-
classes MILEPOST-GCC framework. On average, our approach out performs
MILEPOST-GCC framework on average by 6%. The reason of good performace
using CHI criterion is its ability to capture the inter-dependency to some extent
between different optimization options. Note, CHI criterion calculates the weigh-
tage of each instruction type by determining its presence and absence in each
compiler option. This information is missing in MILEPOST-GCC framework.

Figure 4 shows the performace of our framework using different selection cri-
teria with the non-linear SVM learning. CHI criterion gives the best performace
while the frequeny based selection gives the worst. The information gain perfor-
mace is reasonable but is not as good as CHI.

3 -O3 is the highiest optimization level in the GCC compiler.
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Fig. 4. Performance of the non-linear SVMs learning using χ2 statistics (CHI), infor-
mation gain (IG) and frequency (FREQ) as selection criteria for our framework

6 Conclusion and Future Work

Applying machine learning techniques to compilers require experts to generate
features. At no point could the expert be sure that they have the best set of fea-
tures to assist the learner. We presented in this paper a novel technique to gener-
ate features automatically with out the assistence of compiler expert. We tested
the approach extensively using the two standard benchmarks and compared it
against human created features from IBM MILEPOST-GCC framework. The re-
sults showed that our framework clearly out-performed IBM MILEPOST-GCC
framework on almost all benchmark applications using SVM and DT learning
on the best compiler option selection problem.

In future, we plan to use the approach to investigate the automaic selection
of better order of optimization passes and fine-grained tuning of transformation
parameters for important optimization,e.g., unrolling factor of loop unrolling
optimization.
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Abstract. This paper proposes a new multi-objective approach for the
problem of power restoration in (n-1) contingency situations. It builds
on a previous, mono-objective approach introduced in Mendes et al.
(2010) [14]. Power restoration normally relies on network reconfigura-
tion, and typically involves re-switching and adjustment of tap-changers
and capacitor banks. In this work, we focus on re-switching strategies.
The quality of the re-switching strategy is measured in terms of voltage
deviations, number of consumers still affected after the reconfiguration,
number of overloaded branches and number of switches changes. Due to
the number of criteria and conflicting objectives, power restoration is
a prime candidate for multi-objective optimisation. The method stud-
ied is based on a genetic algorithm and was tested using two real-world
networks, with up to of 1,645 branches and 158 switches. We present a
contingency example for each network and discuss the results obtained.
Finally, we discuss the approach’s convergence by analysing the evolution
of the solutions that compose the Pareto frontier.

Keywords: Multi-objective optimisation, genetic algorithms, power
distribution, electricity networks.

1 Introduction

Contingency situations are caused by a single failure (n-1), or multiple failures
(n-k) of equipment in the distribution network. They are a relatively common
occurrence and electricity companies must quickly implement a contingency plan
to re-establish power supply to the consumers affected. In the scientific litera-
ture, (n-1) contingency problems can be categorized as either mono- or multi-
objective; and the solution methods can be either exact, heuristic, or hybrid. In
this work we present a new heuristic based on genetic algorithms to deal with
multi-objective version of the (n-1) contingency problem.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 779–788, 2011.
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A literature review on the (n-1) contingency problem applied to electricity dis-
tribution networks shows several studies dealing with the mono-objective version.
From 1987 to 1989, Aoki et al. [1,3,2] have published a series of papers dealing
with the electricity distribution restoration problem and the maximization of
total load restored. All studies used different types of heuristics. In Dyalinas
et al. (1989) [7], a heuristic was implemented to minimize the number of switch
operations. In 1992, two works addressed the reconfiguration problem again min-
imizing the number of switch operations (Kim et al. [13], Fujii et al. [9]). In 2001,
Ferreira et al. [8] worked on the minimization of out-of-service load using a ge-
netic algorithm. Finally, Mendes et al. (2010) [14] studied the problem of power
supply restoration minimizing number of disconnected buses, cable overloads
and switching operations, combined into a mono-objective function.

In terms of multi-objective approaches, there are four works on service restora-
tion. In 1998, Tourne et al. [19] worked on the optimisation of load balance and
voltage levels. In the same year, Miu et al. [15] addressed the maximization of
load restored, with and without priorities, and number of switch operations,
using a local search heuristic. In 2001, Augugliaro et al. [4] addressed load sup-
ply and power losses with a fuzzy genetic algorithm. More recently, Garcia and
Franca (2008) [10], addressed the multi-objective problem by minimizing the
number of affected consumers and the number of switch operations. They used
a local search heuristic. For a broad picture of the area, we refer the reader to
the two review papers of Perrier et al. (2010a,b) [16,17].

From the perspective of Artificial Intelligence (AI), two works are particu-
larly interesting as they integrate diagnosis and repair of power supply; a more
complete scenario than that considered here [18,5]. The main issue with some
AI approaches, though, is that restoration is treated mainly as a topological
problem – the network must be reconnected and radiality must be maintained.
Not much emphasis is given to power quality, e.g. voltage deviations, equipment
overloading, etc. The approach presented in this paper tries to address network
re-connectivity as well as power quality in a more balanced way.

In this study we consider distribution networks composed of generators, buses,
loads, switches and branches. Even though the network has to operate in a
radial topology, there is a level of redundancy. That is, power supply can flow
through different paths to reach the same customer. This excess connectivity
means that if all switches in the network are closed, several loops might be
formed, thus violating the radiality requirement. Under normal circumstances,
a feasible switching state will have a mix of open and closed switches.

The problem of finding alternative routes for the power distribution is very
complex. Alternative routes are determined by re-switching the network, which
implies searching through the solution space of switches states. That is a high
complexity task; if there are k switches present in the network, the search space
has a size 2k, corresponding to each switch either being closed or open. Due to
the exponential increase in the search space, the presence of a few dozen switches
are sufficient to require the use of a heuristic such as genetic algorithms [12] to
reach high quality solutions in short computational times.
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The multi-objective version of the (n-1) contingency problem addressed in this
work considers four criteria: buses voltage deviations, number of disconnected
buses, number of overloaded cables and number of switch operations. It uses
a genetic algorithm to evolve a population of non-dominated solutions, which
compose the Pareto front for the problem. This preliminary study used two
real-world networks. The first, network A, has with 96 buses, 16 switches and
two generators; the second, network B, has 1,645 buses, 158 switches and 4
generators. We present computational results for one contingency example for
each network; and for the larger network, we show how the Pareto front evolved
with the generations.

2 The Network Reconfiguration Problem

The reconfiguration problem addressed in this study can be described as follows.
Given an input distribution network in some initial state, consider the loss of a
single branch. If any bus in the network becomes disconnected, find a re-switching
strategy that will send the power flow back to the affected buses, taking into
account operational limits for voltage and load in all sections of the network.
The goal in terms of voltages is to minimize the number of buses without power;
and for those buses being supplied, minimize the voltage deviation from 1.0
(measured as per-unit). In addition, minimize the number of branches with load
above the operational limits. The final solution should also be reached with a
minimum number of switch operations.

The genetic algorithm receives as input the physical network and the current
state of the switches. Then, a given branch is removed from the network (i.e.
all references to it in the network model are removed), simulating an outage.
This represents a situation in which the faulty branch has been identified and
isolated from the rest of the network. The criteria we use to define high quality
reconfigurations are:

– Topology: The network has radial topology.
– Load : The load on any cable (branch) does not exceed a specific limit. In

our tests, that limit was set at 120% of the transmission capacity.
– Voltage: The voltage at any bus of the network lies between 0.9 and 1.1

(measured as per-unit). Disconnected buses have zero voltage.
– Switches : The reconfigured network state should be reached with a minimum

number of switch operations.

2.1 Multi-objective Approach

The multi-objective approach optimizes four quality criteria [c1, c2, c3, c4]:

– c1: Buses voltages =
∑nbuses

i=1

∣∣vdev(i, s)
∣∣

– c2: Buses disconnected = nvoltout(s)
– c3: Branches overloaded = nloadout(s)
– c4: Switch operations = nswitches(s)
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Where:

– s → a solution, i.e. a switching configuration;
– nbuses → number of buses in the network;
– vdev(i, s) → voltage deviation from 1.0 p.u. at bus i in solution s;
– nvoltout(s) → number of buses without power in s;
– nloadout(s) → number of overloaded branches in s;
– nswitches(s) → number of switch changes in s.

In addition to that, a penalty P (s) is added to all four criteria ci whenever
a reconfiguration induces loops in the network. That penalty is calculated as
the number of loops in the network multiplied by a large constant, i.e. P (s) =
nloops(s) ∗M . That penalization guarantees that after the first radial solution
is obtained, only radial solutions will be present in the Pareto frontier. Non-
radial solutions will be always dominated by any radial solution. On the other
hand, this scheme allows the presence of non-radial solutions in the beginning
of the evolutionary process, which is an important feature to improve the initial
convergence of the population. For more information about the concept of Pareto
frontier and solution dominance, and how they are applied to optimisation, we
refer the reader to reference [6].

3 Genetic Algorithm Approach

Genetic algorithms are population-based search methods that use analogies from
the Theory of Evolution to find high quality solutions for complex computational
problems [6,12]. Normally, GAs start with a population of low quality solutions,
usually randomly generated, and then ‘evolve’ this population via genetic oper-
ators, i.e. crossover, mutation and selection, towards better quality individuals,
corresponding to solutions with better objective function values. The genetic
algorithm used in this study is described next.

3.1 Pseudocode

The first part of the pseudocode (Figure 1) creates an initial random population
of solutions, followed by the calculation of the initial Pareto frontier. Then, in
the main loop section, solutions are created via crossover and mutation. If a
new solution is not dominated by any solution in the current Pareto frontier, it
is inserted into the population, triggering a check and removal of any existing
solution that became dominated by the new one. The main loop continues until
a time limit is reached. Next we will describe the main elements of the genetic
algorithm.

3.2 Objective Function and Pareto’s Dominance

The objective function of a solution s is represented as a vector of real numbers,
with each position associated to one of the four criteria, i.e. f(s) = [c1, c2, c3, c4].
The Pareto’s dominance criterion states that solution s′ dominates a solution s′′

if ci(s′) ≤ ci(s′′); ∀ ci, 1 ≤ i ≤ 4.
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Method. MultiObjGeneticAlgorithm
begin

initializePopulation(pop);
updateParetoFrontier(pop);
do % main loop

parents = selectParents(pop);
newSolution = generateOffspring(parents);
newSolution = mutate(mutrate, newSolution);
insertNewSolution(pop, newSolution);
if (inserted) updateParetoFrontier(pop);

while(cpuTime < limit)
end

Fig. 1. Pseudo-code of the genetic algorithm implemented. Initially, a population of
random solutions representing switching strategies is created; and then the algorithm
enters the main loop. The main loop iteratively creates new solutions which are inserted
into the population depending of whether they are dominated or not by another solution
already present. If the new solution is not dominated, it is inserted and the Pareto
frontier is then updated to remove if any existing solutions that became dominated by
the new one. This process is repeated until a time limit is reached.

3.3 Representation and Initialization

The representation and initialization used in this work is the same of Mendes
et al. (2010) [14]. Solutions for the problem of switching reconfigurations have a
binary representation, with an array of bits of size n representing the states of
the n switches. The value ‘0’ indicates open and ‘1’ indicates closed. The initial
population is composed of random solutions created by assigning values 0 or 1 to
each switch, uniformly at random. The probability is 20% for any given switch
to be open, and 80% for it to be closed. This proportion was chosen to match the
proportion of open and closed switches in the real networks; and aim at reducing
the likelihood of creating solutions with loops or disconnected sections.

3.4 Recombination – Selection, Crossover and Mutation

Parents are selected from solutions in the Pareto frontier. When there is more
than one solution in the Pareto frontier, two solutions are randomly selected and
a new solution is created via crossover. If there is only one solution in the Pareto
frontier, then that solution becomes one of the parents, and the second parent
will be a randomly generated solution.

The crossover method implemented is a Uniform Crossover (UX) [11], where
the value of each switch state in the child solution is chosen uniformly at random
from one of its parents. If both parents have the same state for a specific switch
(either 0 or 1), the child will inherit that state. If each parent has a different
value, then the value inherited can be 0 or 1, with equal probability.

As the representation is an array of bits, the logical choice for mutation is
the bit-swap [11]. If a solution is selected to go through mutation (according to
a probability mutrate), a switch is chosen uniformly at random, and its state is
swapped, either 0→ 1 or 1→ 0.
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3.5 Acceptance Policy

After a new solution is created, because of the multi-objective nature of the
problem and Pareto’s optimality criterion, two steps have to be followed. First,
the algorithm verifies if the new solution is dominated by any other solution
already present in the Pareto frontier. If so, the new solution is discarded and the
algorithm continues. On the other hand, if the new solution is not dominated, it
is inserted into the population. After insertion, the algorithm checks whether the
new solution now dominates any solution already present. If so, those dominated
solutions are removed from the population and the algorithm continues. This
acceptance policy guarantees two things. First, the population will not have
duplicated individuals. Second, all individuals in the population belong to the
Pareto frontier.

4 Computational Results

In this section we will show two illustrative contingency examples for the test net-
works. In Figure 2a we show the small network’s state (network A) as it is normally
operated. The network has two generators (‘A’ and ‘B’), marked as rectangles.
Hexagons represent switches. Open switches are indicated in white (30, 50 and
92), whereas yellow indicates closed switches (22, 25, 33, 37, 43, etc). The circles

Fig. 2. Network A: (a) Diagram of the test network. The two rectangles labeled ‘A’
and ‘B’ represent generators. Yellow/white hexagons represent closed/open switches,
respectively. Circles indicate ordinary buses. (b) Depiction of a fault in the cable con-
necting buses 23 and 24. That fault will cut power supply to the buses indicates in red
(24, 25, 27, 28, 29, 49 and 51). (c) Solution 2 from Table 1, with 1 switch operation
(switch 30 is now closed) and no disconnected buses.
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indicate ordinary buses. The network has all buses connected, voltages are within
operational limits and no cables are overloaded. In Figure 2b, we introduce a fault
in the cable connecting buses 23 and 24. That fault will cut power supply to the
buses in red (24, 25, 27, 28, 29, 49 and 51). After running the multi-objective ap-
proach, two solutions compose the final Pareto front (see Table 1). The first one
represents the ‘do-nothing’ strategy, with zero switch changes. The second solu-
tion is depicted in Figure 2c and requires 1 switch operation. Switch 30 is closed
thus redirecting power supply to the affected buses from generator B. That solu-
tion has no buses outside operational limits and no overloaded branches.

Table 1 shows the reconfiguration results for networks A and B, after an (n-1)
contingency situation happens to each of them. The table shows results for the
four quality criteria described before. For each of the two networks, we first show
the values of those criteria when the network is operating normally, and after
the fault is introduced. For network A, the fault cut power supply to 7 buses.
For network B, the fault affected the supply to 22 buses. Notice that network
B has three overloaded cables under normal operations and the fault reduced
that number to two. Then, under the ‘After reconfiguration’ labels, we present
the solutions that compose the final Pareto frontier. For network A, there are
two solutions; one with no switch operations (‘do-nothing’ strategy) and another
with one, corresponding to the solution depicted in Figure 2c. For network B, the
final Pareto frontier is composed of four solutions, with zero, one, two and five

Table 1. Reconfiguration results for networks A and B, after an (n-1) contingency
situation. For each network, we show the four quality criteria: buses voltages, buses
disconnected, branches overloaded and number of switch operations. The table yields
the original values for those criteria when the network is operating normally; after
the fault is introduced; and for the solutions obtained by the genetic algorithm. For
network A, the final Pareto frontier has two solutions; one with no switch changes and
another with a single one. For network B there are four solutions, with zero, one, two
and five switch changes. Two of those bring power supply back to all buses.

Network A - 96 branches, 16 switches
Criteria

Buses Buses Branches Number of
Configuration voltages disconnected overloaded switch operations
Original (Fig. 2a) 1.33 0 0 –
After outage (Fig. 2b) 8.32 7 0 –
After reconfiguration
Solution 1 8.32 7 0 0
Solution 2 (Fig. 2c) 1.31 0 0 1

Network B - 1,645 branches, 158 switches
Criteria

Buses Buses Branches Number of
Configuration voltages disconnected overloaded switch operations
Original 29.85 0 3 –
After outage 50.73 22 2 –
After reconfiguration
Solution 1 50.73 22 2 0
Solution 2 30.40 0 3 1
Solution 3 30.12 0 3 2
Solution 4 50.16 12 2 5
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switch operations. Two of those bring power supply back to all buses (solutions
2 and 3). Solution 3, with two switch operations, has a slightly better overall
voltage deviation than Solution 2, which has a single switch operation. The
solution with five switch operations reduces the number of buses disconnected
but does not eliminate them.

To illustrate how the quality of the solutions improve as the genetic algorithm
evolves, we present Figure 3. That figure depicts the values for the four quality
criteria separately (y-axis), and the number of generations in the x-axis. Values
were taken from the test for network B. Each data point represents the value
for that criterion, for a solution present in the Pareto frontier, in that particular
generation. Notice that in generation 1 the values for the Pareto frontier solu-
tions are all very poor. Voltage deviations are very high; the number of buses
disconnected is over 450; and the number of switch operations is also very high.
As the genetic search progresses, we see a steady decline in the number of switch
operations from over 40 down to less than 10 by generation 50. Voltage devia-
tions and number of disconnected buses decline as well, but at a slower pace,
until between generations 40 and 50, when there is a steep drop. The four crite-
ria continue to improve until generation 220, when we obtained the final Pareto
frontier configuration.

Fig. 3. Quality improvement of the solutions in the Pareto frontier for network B. The
four quality criteria are depicted separately. The x-axis depicts the number of gener-
ations. Each data point represents the value for that criterion, for a solution present
in the Pareto frontier, in that particular generation. Notice the steady improvement of
the four criteria, as the random solutions from generation 1 evolve into higher quality
solutions by generation 220.
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The configuration of the genetic algorithm is as follows. In each generation,
20 new individuals are created, and each of them has a 1% change of going
through mutation (mutrate = 0.01). The number of individuals created in each
generation is not critical in our genetic algorithm design, as no intermediate
population is created between generations. Individuals are continuously being
created/inserted/removed from the population. The value of 20 new individuals
per generation was determined because the tests were conducted in a multi-
threading environment, with 20 threads executing independent power flow cal-
culations. The CPU time for each of the tests was small. Network A required less
than 30 seconds to converge, whereas network B required less than 4 minutes.
The two tests shown in this study were run on a Dual Intel Xeon X5650 six-core
computer. The software was implemented in Java, version 1.6.0 21-ea 64-bit.

5 Conclusion

This paper introduced a genetic algorithm approach for the multi-objective ver-
sion of the power restoration problem after an (n-1) contingency situation. Two
real-world networks were tested; one with 96 buses and 16 switches, and an-
other with 1,645 buses and 158 switches. The multi-objective approach produced
a population of non-dominated solutions in which four criteria are optimized:
summation of voltage deviations, number of buses still without supply after the
reconfiguration, number of overloaded branches and number of switches opera-
tions. A table with the solutions obtained for the two tests is shown. For the
large network, we describe the convergence of the genetic algorithm by plot-
ting the evolution of the four criteria in the individuals composing the Pareto
frontier, as the generations progress. The ability of the genetic algorithm to con-
sistently improve the solutions is clearly observed. As future research we will add
the possibility of tap-changer transformers adjustments as part of the network
reconfiguration strategy.

Acknowledgement. The authors wish to thank Ausgrid for providing the net-
work data for this study.
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Abstract. As expressive schema languages, Web Ontology Language
(OWL) and Semantic Web Rule Language (SWRL) have been widely
introduced to many industrial applications. Most existing OWL reason-
ers hold Open World Assumption (OWA) and do not hold Unique Name
Assumption (UNA). They lack efficiency when they are applied to indus-
trial models which capture information under Closed World Assumption
(CWA) and UNA. To overcome the problem, this paper proposes a novel
backward chained ABox reasoner which efficiently reasons through OWL
and SWRL under CWA and UNA.

Keywords: Ontology and rules, ABox query, Backward chaining.

1 Introduction

Ontology-based approaches have been widely used in many industrial applica-
tions. In those applications, OWL is mostly used to represent concepts and their
relationships, and SWRL is usually used as an rule extension of OWL to im-
prove the expressivity. Existing OWL reasoners, such as Pellet [11], Racer [4],
and Kaon2 [7], do not make CWA and UNA. This is reasonable because OWL
and SWRL originally focus on the Semantic Web (SW) in which the internet
can be seen as an unlimited knowledge resource. However, when they are applied
to some industrial areas where the information is usually captured under CWA
and UNA, some incorrect results may be produced.

For example, OWL and SWRL have been used a lot in computer-aided Prod-
uct Design and Manufacturing (PDM) to address the semantic interoperability
issues [5] [12] [1] [13] [2]. In PDM, the STEP standard [9] captures information of
a product under CWA and UNA. Those existing works mainly focus on how to
map the STEP-based product information to the ontology while the reasoning
issues are rarely mentioned. Most of them simply choose one of the general ontol-
ogy reasoners for their reasoning tasks without evaluating the reasoner, whereas
the reasoner may result some errors due to CWA/OWA and UNA issues, e.g.,
for an geometrical ontology which captures information of STEP-based product
shape, existing reasoners cannot automatically find out any 4-edge face because
the reasoners always assume that a face may have countless unknown edges
which are not explicitly expressed in the STEP file.

D. Wang and M. Reynolds (Eds.): AI 2011, LNAI 7106, pp. 789–798, 2011.
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This paper proposes a novel Backward Chained ABox Reasoner (BCAR) to
address the above problem. The objective of BCAR is to provide efficient ABox
query reasoning for ontology-based industrial models. Features of BCAR are
highlighted below:

1. BCAR partly interprets OWL and SWRL under CWA and UNA (only for
ABox) to improve the reasoning for closed world based industrial models.

2. Some existing OWL reasoners support SWRL by translating SWRL to some
other formats (Jess, Jena or Seasame) [6] [8]. BCAR directly works on SWRL
without any translation, which improves the efficiency.

3. BCAR adopts backward reasoning similar to the Prolog derivation tree. Re-
ordering technique from Optimized Conjunctive Query (OCQ) [10] is inte-
grated to improve the performance.

The rest of the paper is organized as follows: section 2 introduces technical details
of BCAR; section 3 discusses the experiments and section 4 concludes the paper.

2 Technical Details

BCAR only focuses on ABox query reasoning for two reasons: 1)In most of the
industrial applications, TBox is always decided by the valid and fixed schema of
mature information models, e.g. STEP. The TBox reasoning is not necessary in
this case. 2)The TBox reasoning under CWA may result inconsistence (ABox can
completely determine its TBox under CWA, which may conflict with the source
schema). Generally, the objective of BCAR is to help users to find out implicit
instances or fillers for some defined classes or properties. For this purpose, BCAR
holds following assumptions:

1. Assumption 1: The ontology contains only the explicitly expressed individ-
uals. There is not any unknown individuals.

2. Assumption 2: Only defined classes (or properties) are allowed to have im-
plicit instances (or fillers). Other classes (or properties) only contains in-
stances (or fillers) that are explicitly expressed.

3. Assumption 3: If a class (or property) cannot be proved to contain an in-
stance (or filler), then the class (or property) does not contain the instance
(or filler). If a class (or property) cannot be proved to contain any instance
(or filler), then the class (or property) contains nothing (negation as failure).

4. Assumption 4: Two individuals are same if and only if their names are same.

In OWL/SWRL ontologies, the most two popular methods to define classes and
properties are SWRL rules and OWL Equivalent Class Axiom (ECA). BCAR
only considers classes (or properties) which have corresponding ECAs or appear
in heads of SWRL rules as defined classes (or properties), and the corresponding
ECAs and SWRL rules are their definitions.

In the rest of this section, the concept framework of BCAR is firstly given;
how to create a rule base is secondly introduced followed by details of reasoning
algorithm; some special cases of reasoning are finally discussed.
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Fig. 1. Cocnept framework of BCAR

2.1 Concept Framework

Fig.1 shows the concept framework. BCAR firstly creates a unified rule base
with SWRL rules and OWL ECAs. Once a query is inputted, the rule which
matches the query fires. The reasoning engine is then applied to the firing rule
to search for solutions for the firing rule. The engine requires information from
the ABox and also may fire some other rules if required. After the searching is
finished, query result is then generated based on the achieved solutions.

2.2 Building Rule Base

As mentioned above, BCAR only accepts two ways to define classes and prop-
erties: SWRL rule and ECA. Since that the backward chained reasoning engine
requires a unified rule base, there is a need to translate ECAs to SWRL-like
rules. The translation is generally based on the FOL semantics of the OWL con-
structs, and is described in Tab.1. (A, B, C are classes, P is a property, I is an
individual and n is a number).

Normally, ECAs cannot be translated to rules directly since that they rep-
resent bidirectional relationships. However, BCAR consider ECAs only as class
definition rules, and process ECAs equally with SWRL rules. In this case, inter-
pret ECA as one direction logic, from definition to the class, is reasonable.

2.3 Reasoning Algorithm

In BCAR, retrieving instances (or fillers) of defined classes (or properties) fires
their definition rules. The process of query is then transformed to a process of
searching the ABox for solutions for the definition rule. Reasoning results are
generated based on the solutions. In the following discussion, the solution is
firstly defined, the searching algorithm is secondly given, how to generate results
based on solutions is then described, the backward chaining in the rule base is
finally discussed.
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Table 1. Translating ECA to SWRL-like rules

Construct Name ECA Syntax Rules
owl: intersectionOf C = A and B A(?x) ^B(?x) -> C(?x)

owl: unionOf C = A or B A(?x) -> C(?x)
B(?x) -> C(?x)

owl: complementOf C = not A Not (A(?x))-> C(?x)

owl: someValuesFrom C = R some A R(?x,?y)^A(?y) -> C(?x)

owl: allValuesFrom C = R only A ?y(R(?x,?y)^A(?y))->C(?x)

owl: hasValue C = R has I R(?x, I) -> C(?x)

owl: minCardinality C = R min n (R >= n) (?x) ->C(?x)

owl: maxCardinality C = R max n (R <= n) (?x) -> C(?x)

owl: cardinality C = R exactly n (R = n) (?x) -> C(?x)

Complex ECA C = A and (R some B) R(?x,?y)^B(?y) -> H(?x) (create an 
intermediate class H)
A(?x)^H(?x) -> C(?x)

For the purpose of simplicity, we introduce following terms to represent rea-
soning tasks (C and P are defined class and property respectively):

C (?) : query for all the instances of C
C (? = a) : check whether a is an instance of C
P(?, ?) : query for all the fillers of property P

P(? = a, ?) : query for the instances which are the property values of a for P
P(?, ? = a) : query for the instances whose property value is a for P

P(? = a, ? = b) : check whether (a, b) is a filler of property P

The example ontology given below is for the following algorithm discussion:
TBox
Atomic Classes:A; B; C; D
Defined Class:E = OP4 some C;
Object Properties:OP1(Domain : A,Range : B); OP2(Domain : B, Range : C, D)
Defined Object Property:OP4(Domain : A,Range : C)
rule1(SWRL):OP1(?x, ?y) ∧OP2(?y, ?z) ∧ C(?z)→ OP4(?x, ?z)
ABox
A{A1; A2; A3}; B{B1; B2; B3; B4}; C{C1; C2; C3; C4}; D{D1; D2}
OP1{(A1, B1); (A1, B2); (A2, B3); (A3, B3); (A3, B4)}
OP2{(B2, C2); (B2, C3); (B3, D1); (B4, C4)}

Solution. In a solution, all the variables in the rule are bound to a value (value
can be individuals or datatype values such as integer and string), which makes
all the atoms in the rule body hold true. In the example ontology, rule1 has three
variables: ?x, ?y, ?z. With the above ABox, solutions for rule1 are:

{?x← A1; ?y ← B2; ?z ← C2}
{?x← A1; ?y ← B2; ?z ← C3}
{?x← A3; ?y ← B4; ?z ← C4}
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Fig. 2. The root of searching tree

All the reasoning results of BCAR is generated based on solutions, details of
which is discussed later.

Searching for Solutions. Searching for solutions is the key of BCAR. The
searching process in BCAR is generally an OCQ process based on the well-
known Prolog derivation tree. The idea of atoms reordering [10] is integrated to
improve the performance.

Taking the example ontology, assuming the reasoning task is OP4(?, ?), rule1
fires. The search is then started with the following steps:

1. Preprocessing: Build a Temporary Atom List (TAL) from the rule body.
Define a Value Range (VR) for each variable based on the Assumption 2.
In the example, from rule 1 it is easy to find out that ?x belongs to A, ?y
belongs to B, and ?z belongs to C. Based on Assumption 2, ?x, ?y and ?z
can only be the explicitly asserted members of A, B and C respectively.
Fig.2 shows the TAL and VRs of the example. Other cases are listed below:
(a) The VR of ?x (or ?y) contains only A1 (or B1) if the reasoning task is

OP4(? = A1, ?) (or OP4(?, ? = B1));
(b) For constant, BCAR create new variables whose VR only contain the

constant’s value;
(c) For variable belonging to a defined class, the VR = , (Assumption3);
(d) For datatype variable, the VR = ∞

2. Variable choosing and branching: The performance of CQ heavily relies
on the query ordering. In BCAR, the reasoning always start from the variable
which has minimal size of VR and have not been bound to a value, so that
the number of branches of the searching tree is minimized. The selected
variable is called SV. In the example, ?x is SV since it has minimal size of
VR among all the variables. BCAR then generate branches for each value in
VR of ?x.

3. Binding and intersecting: In each branch, the SV is bound to a value.
BCAR then processes the atoms related to the SV in TAL, which may re-
duce the VR of SV or other variables which are related to SV by an inter-
secting process. After that, the processed atoms are removed from TAL. In
the example, ?x is bound to A1 in the first branch. BCAR then processes
OP1(?x(= A1), ?y) which is the only atom related to ?x in TAL. Based on
the ABox and Assumption 3, ?y can only be either B1 or B2. BCAR then
intersects {B1, B2} with ?y’s original VR {B1, B2, B3, B4} to be the new
VR of ?y, as Fig.3 shows:
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Fig. 3. Generating branches
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A1 B1 ø

C

?x<-A1 ?y:<-B2 ?z:<-

A1 B2 C2,C3

C

?x<-A2 ?y:<-B3 ?z:<-

A2 B3 ø

C

?x<-A3 ?y:<-B3 ?z:<-

A3 B3 ø

C

?x<-A3 ?y:<-B4 ?z:<-

A3 B4 C4

?x<-A1 ?y:<-B2 ?z:<-C2

A1 B2 C2

?x<-A1 ?y:<-B2 ?z:<-C3

A1 B2 C3

?x<-A3 ?y:<-B4 ?z:<-C4

A3 B4 C4

Unsolvable Unsolvable

Unsolvable

Solution Solution Solution

Fig. 4. Searching tree

4. Termination: BCAR repeats the above step 2 and step 3 until: 1)VR of
any variable turns out to be empty (based on Assumption 1&2, it means this
variable is unsolvable in this branch); 2)All the variables have been bound
to a value (a solution has been found in this branch); Fig4. shows how the
search tree find solutions and how it is terminated.

Generating Reasoning Results. With solutions, BCAR generate results for
every reasoning tasks as follows (assuming the head of the definition rule of C
and P are C (?x) and P(?x, ?y) respectively):

1. C (?) : return all the values of ?x from all the solutions;
2. C (? = a) : set the initial VR of ?x to be {a}, check wether a solution can be

found;
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3. P(?, ?) : pick up all the values of ?x and ?y from all the solutions;
4. P(? = a, ?)(orP(?, a)) : set the initial VR of ?x (or ?y) to be {a}, return

all the values of ?y (or ?x) from all the solutions;
5. P(? = a, ? = b) : set the initial VR of ?x and ?y to be {a} and {b} respec-

tively, check wether a solution can be found;

Backward Chaining. In the “Binding and intersecting” step of the searching
process, if BCAR need to process an atom corresponding to a defined class
or property, another rule fires. For example, considering defined class E =
OP4 some A, from Tab.1 the translation rule is OP4(?x, ?y) ∧D(?y)→ E(?x).
Assuming the reasoning task (goal) is E(? = A1), when searching for the so-
lutions for the translation rule, the “Binding and intersecting” step will add
another reasoning task (new goal) OP4(? = A1, ?) and rule 1 consequently fires.
This is so-called backward chained reasoning.

2.4 Handling Special Rules and Atoms

In Tab.1, some of the translation rules can be solved normally using the above
algorithm (e.g. owl:intersectionOf; owl:unionOf; owl:someValuesFrom), while the
others can not. This section generally discusses how BCAR handles some special
rules and atoms.

owl:complementOf. C = notA is translated to Not(A(?x)) → C(?x). Based
on Assumption 3 (negation as failure), BCAR handles the translation rule as
follows:

1. C(?) : return the individuals which cannot be proved to be instances of A;
2. C(? = a) : return false if a is proved to be an instance of A, otherwise return

true;

owl:allValuesFrom. C = R only A is translated to ∀?y(R(?x, ?y) ∧A(?y))→
C(?x) . Based on Assumption 2, BCAR handles the translation rule as follows:

1. C(?) : return the individuals which are proved to have some property values
for R and all these values are proved to be instances to A;

2. C(? = a) : return true if a is proved to have some property values for R and
all these values are proved to be instances of A, otherwise return false;

owl:minCardinality/maxCardinality/cardinality. C = min or max or
exactly a is translated to (R ≥ or ≤ or = a)(?x)→ c(?x). Based on Assumption
2, BCAR handles the translation rule as follows:

1. C(?) : return the individuals which are proved to have more than or less
than or exactly a different property values for R;

2. C(? = a) : return true if a is proved to have more than or less than or exactly
a property values for R, otherwise return false;
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Complex ECA. A complex ECA is a combination of basic OWL constructs.
As Tab.1 shows, BCAR transform complex ECA to multiple basic rules with
self-created intermediate classes between them.

swrl:differentFrom/sameAs. An SWRL rule may contains atoms such as
“differentFrom(?x,?y)” and “sameAs(?x,?y)”. In this case, BCAR firstly remove
these atoms from TAL before searching for solutions. After solutions are found,
these comparison atoms are used to validate each solution based on Assumption
4. Only validated solutions are outputted in the end.

swrl:built-in. BCAR only supports built-Ins for comparison in current stage.
BCAR process built-In atom similar to the “differentFrom/sameAs” atoms. The
only difference is “differentFrom/sameAs” atoms focus on comparing individuals
while built-In atoms focus on comparing datatype values.

3 Experiments

In this section, two experiments has been done to test the performance of search-
ing and the effectiveness of BCAR in industrial applications.

The first experiment tests BCAR with LUBM[1,0] [3] which contains 103074
triples, and compares the performance with popular reasoner Pellet and Racer-
Pro. The 14 standard quires are transferred to rules for BCAR. An example of
transfer is shown below:

ub : GraduateStudent(?x) ∧ ub : takesCourse(?x, http :
//www.Department0.University0.edu/GraduateCourse0)→ Query01(?x)

As mentioned before, in BCAR, generating results for Query01(?) is the process
of searching for solutions for rule body. And searching for solutions is essentially
a conjunctive query of body atoms. In this way, the 14 standard quires of LUBM
are used to test the searching performance of BCAR.

Table 2. Experimental result (Unit: ms)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

BCAR <1 340 4 <1 112 670 12 966 380 1 N/A 6 7 660

Pellet 78 536 2 8 34 97 11 1102 867 3 35 38 2 88

RacerPro 308 896 24 201 66 899 1033 1297 1156 92 43 881 306 630

The experimental result is shown in Tab.2. Currently BCAR doesn’t sup-
port transitive roles, so no result can be found for Query 11. Generally BCAR
shows a decent performance comparing with other two reasoners. Especially for
quires which require only small part of ABox information, BCAR performs very
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Fig. 5. Input model and rules

Fig. 6. Visualization of query result

good since that backward reasoning guarantees only necessary information is
processed.

Another experiment tests the effectiveness of applying BCAR to an industrial
model as shown in the left of Fig.5. The model comes from a STEP file which
captures the geometric information of a product. After transferring from STEP
to OWL, the ontology contains classes such as faces, edges and points. Instances
of the STEP file are mapped to OWL individuals. Several SWRL rules and
OWL ECAs (shown in right of Fig.5) are added to the ontology to define a
class pocket bottom face, and BCAR is applied to find out all the members of
pocket bottom face. The visualization of query result is shown in Fig.6.

Other reasoners are not applicable in this case for the UNA and OWA/CWA
issues. For example, without making UNA the atom differentFrom(?x, ?y) in
Rule2 always returns false because the STEP file doesn’t explicitly mention that
an instance is different from another instance. Similarly, the universal quantifi-
cation in ECA1 always returns false, because under OWA the reasoners always
believe there must exist some unknown edges.

4 Conclusion

This paper has proposed a novel Backward Chained ABox reasoner which pro-
vides efficient ABox query reasoning under CWA and UNA for industrial
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applications. The reasoner firstly translated OWL ECAs to SWRL-like rules,
and then backward reason through the unified rule base of the ontology to re-
trieval instances for query tasks.

Experiments shows that the BCAR can effectively execute queries for indus-
trial models under CWA and UNA, and also demonstrates that it has a decent
performance. Future works will focus on improving the reasoner to support more
OWL constructs and evaluating the reasoner using more practical industrial
cases.
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Abstract. Since a social network, by definition, is so diverse, the prob-
lem of estimating the preferences of its users is becoming increasingly
essential for personalized applications which range from service recom-
mender systems to the targeted advertising of services. However,
unlike traditional estimation problems where the underlying target dis-
tribution is stationary, estimating a user’s interests, typically, involves
non-stationary distributions. The consequent time varying nature of the
distribution to be tracked imposes stringent constraints on the “unlearn-
ing” capabilities of the estimator used. Therefore, resorting to strong
estimators that converge with probability 1 is inefficient since they rely
on the assumption that the distribution of the user’s preferences is sta-
tionary. In this vein, we propose to use a family of stochastic-learning
based Weak estimators for learning and tracking user’s time varying in-
terests. Experimental results demonstrate that our proposed paradigm
outperforms some of the traditional legacy approaches that represent the
state-of-the-art.

Keywords: Weak estimators, User’s Profiling, Time Varying Prefer-
ences.

1 Introduction

Utilizing the power of the Internet to affect marketing, business and politics via
strategies applicable for social networking, is becoming increasingly important,
especially in a user-driven universe. Over the last few years, the issue of main-
taining users’ profiles has become more crucial for designing and streamlining
personalized applications ranging from service recommender systems to the ad-
vertising of targeted services. Mastering and optimally utilizing the knowledge
about a user’s interests has led to promising applications in filtering and recom-
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Usually, constructing a user’s profile involves applying estimation techniques
to leverage the knowledge about his interests, which, in turn, is gleaned from
the history of the services that he utilizes [4,5]. A number of previous studies [8]
have shown that a user’s interests are not constant over time, and consequently,
paradigms which are to be promising, should take into account the drift of these
interests. The time varying nature of the distribution of the user’s interests
renders the problem of estimating them both difficult and non-trivial.

Recently, Oommen and Rueda [16] have proposed a strategy by which the
parameters of a binomial/multinomial distribution can be estimated when the
underlying distribution is non-stationary. The method is referred to as Stochastic
Learning Weak Estimation (SLWE), and is based on the principles of stochastic
Learning Automata (LA) [13,20]. The SLWE has found successful applications in
many real-life problems that involve estimating distributions in non-stationary
environments such as in adaptive encoding [17], route selection in mobile ad-hoc
networks [15], and topic detection and tracking in multilingual online discussions
[19]. Motivated by these successful applications of the SLWE in various areas,
in the course of this study, we consider employing the SLWE for solving the
intriguing problem of tracking user’s interests. The objective of the paper is
to present a personalized Learning Preferences Manager, a modus operandus for
capturing user’s preferences. The latter will be able to cope with changes brought
about by variations in the distribution of the user’s interests, which will be where
the SLWE plays a prominent part.

2 State of the Art

The core function of a personalized Learning Preferences Manager is to update
the user’s profile in a dynamic and incremental way. This is done so that the
“Manager” can closely follow the real-time evolution of the user’s interests. In
fact, any user’s interests are not constant over time, and therefore it is imperative
that the system takes the profile’s drift into account. In this sense, whenever one
attempts to represent the user’s current interests, the most recent observations
are more reliable than older ones. From a more general perspective, the task of
learning the drifts in the user’s interests corresponds to the problem of learning
evolving concepts [21]. There are several studies that have dealt with the task
of learning a user’s interests. These include the use of a sliding window [11],
aging examples [9], and a Gradual Forgetting (GF) function [6,7,8] etc. However,
of all these, a sliding window approach is the most popular one. It consists of
learning the description of the user’s interests from the most recent observations,
and thereafter, of discarding the observations that fall outside the window. A
substantial shortcoming of the sliding window approach is the choice of the
window size. In [11], the authors adopted a fixed-size time window in order to
learn a user’s scheduling preferences. They empirically determined that a window
size of 180 was a proper choice for their particular scheduling application. The
GF, on the other hand, relies on assigning weights to the observations that
decrease over time. Hence, the influence of older (more “stale”) observations
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on the running estimates, decreases with time. The authors of [8] suggested a
linearly-decreasing function, w = f(t), for decaying the relative weights of the
GF as follows:

wi =
−2k

n− 1
(i− 1) + 1 + k, (1)

where i denotes a counter of observations starting from the most recent one,
n is the number of observations, k ∈ [0, 1] is a parameter that represents the
percentage by which the weight of any subsequent observation is decreased, and
consequently the percentage by which the weight of the most recent one, in com-
parison to the average, is increased. Thus k is a parameter that controls the slope
of the forgetting function. In order to achieve a synergy between both the two
approaches, namely GF and sliding window, Koychev in [8], proposed to apply
the GF within each sliding window. Thus, in this case, the parameter n (i.e., the
length of the observation sequence) in equation (1) was set to be equal to L,
where L denotes the length of the window. Apart from the sliding window and
GF schemes, other approaches, which also deal with change detection, have also
emerged. In general, there are two major competitive sequential change-point
detection algorithms: Page’s cumulative sum (CUSUM) [1] detection procedure
and the Shiryaev−Roberts−Pollak detection procedure. In [18], Shiryayev used
a Bayesian approach to detect changes in the parameters distribution, where
the change points were assumed to obey a geometric distribution. CUMSUM is
motivated by a maximum likelihood ratio test for the hypotheses that a change
occurred. Both approaches utilize the log-likelihood ratio for the hypotheses
that the change occurred at the point, and that there is no change. Inherent lim-
itations of CUMSUM and the Shiryaev−Roberts−Pollak approaches for on-line
implementation are the demanding computational and memory requirements. In
contrast to the CUMSU and the Shiryaev−Roberts−Pollak, the SLWE avoids
the intensive computations of ratios, and do not invoke hypothesis testing. A
particularly interesting recent study for learning user’s interests in ambient me-
dia services (and in, consequently, locating relevant services) was reported in [5].
Hossain et al devised the so-called Ambient Media Score Update method, which
we shall refer to as SU for the rest of the paper. The SU method was used to
learn a user’s changing interests [4,5] by recording the so-called “scores”, which
represented his/her affinity of interests. In order to follow closely the evolution
of the scores, the authors of [5] refined their proposed updating method defined
earlier in [4] and updated the scores of the services at every time instant when-
ever the service was used. This was done instead of performing updates in a
batch mode [4].

3 SLWE-Based Solution to Adaptation to User’s Interests
Drift

In this section, we devise a Learning Preferences Manager which takes advantage
of the SLWE updating scheme [16], so as to accurately estimate the user’s interest
affinity in non-stationary environments. First, we will present our adapted model,
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as it pertains to the presentation of the user’s profile. Thereafter, we introduce
two profile update methodologies based on whether the data items attached to
an attribute are disjunctive or conjunctive.

3.1 Profile Representation

An essential element of the Learning Preference Manager is the Profile Repre-
sentation. For instance, a possible representation model for a user’s interests can
be in terms of the topic hierarchies [3,10]. We adopt the Profile Representation
Model advocated by Hossain and his co-authors in [4,5]. It is important to re-
mark that in these publications, the latter Profile Representation Model was
mainly devised for representing the user’s preferences in content media. Never-
theless, the model can be easily applied to encompass a wider set of interests.
It should also be noted that the model reported in [4,5] is similar to that of [23]
in the sense that it is based on <feature, weight> pairs, except that in [4,5],
the authors have invoked a normalized score for the data items. We shall first
briefly present the Profile Representation Model reported in [4,5]. The user’s
affinity of interests in a service type, such as movies, or restaurants, is repre-
sented by a set of attributes. For example, for a repository of services of type
movie, the set of possible attributes could be {movie genre, director name, etc.}.
An attribute, in turn, possesses a set of data items. For example, if the movie
attribute “genre” has two data items, namely “action” and “comedy”, a vec-
tor associated with the attribute (comedy affininity=0.7, action affininity=0.3)
reflects that the user likes comedy movies more than action movies, with a rel-
ative weighting of 0.7 to 0.3. The update of the weights of the data items for a
particular attribute is done in an incremental manner.

3.2 Profile Updating Method

In the quest to learn the user’s dynamic profile, the Learning Preferences Man-
ager is guided by so-called Relevance Feedback (RF) [12]. In this paper, we rely
on the Service Usage History (analogous to the history maintained by the au-
thors of [4,5]) as the main source of the RF. In fact, a common approach towards
constructing a user’s profile is through non-intrusively monitoring the history of
the usage of his services. A Service Usage History (also known as the Interac-
tion History), contains the history of the services used by the user over time.
For example, when the user has used a certain service at a certain time instant,
the Learning Preferences Manager refines and revises the user’s profile based on
the current instance of the usage history, which, in turn, is automatically and
unobtrusively observed in the background. To obtain an index to measure this,
the sum of the scores of a data item for a given attribute is made to be equal to
unity. To now quantify this, we have opted to use the SLWE [16], so as to update
the score of the data item based on the usage history. Whenever a user selects
a service, the metadata describing the service is used to update the score of the
data item. Thus, for example, if a user currently views an “action” movie, the
scheme would increase the weight associated with the data item “action”. Apart
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from the updating mechanism, our strategy can also be seen to be philosophi-
cally related to the approach presented in [4,5] in which the authors utilized the
history to update the affinity of the user’s interests. We believe that this will
facilitate the ease of the retrieval of personalized information, and help alleviate
the user’s cognitive load, i.e., that which is needed to locate relevant information.
At this juncture, we distinguish two classes of data items that, in turn, require
two different forms of update mechanisms. In fact, the data items related to a
given attribute could be either semantically disjunctive or semantically con-
junctive. We illustrate what we mean by the latter concepts by alluding to two
simple examples.

Profile Update for Disjunctive Data Items. Data items of a particular
attribute are said to be disjunctive if every service usage history can only be
instantiated with the exclusive realization of one of the data items at a time.
To illustrate the idea in simpler terms, consider the example of learning a user’s
preferences when it concerns a type of services such as restaurants. In this case,
we can consider the attribute genre of the restaurant, with the data items be-
ing, for example, Chinese, Italian, Indian, French etc. The latter data items
correspond to a possible semantic taxonomy of restaurants according to their
genre. Whenever a user interacts with a service of type restaurant, a Service
Usage History instance is submitted to the Learning Preference Manger where
the restaurant is described by a single exclusive attribute, such as Italian. Con-
sequently, the weight of the latter data item can be incremented while the weight
of the remaining data items of the same attribute can be decremented. There-
fore, a multinomial SLWE is a viable option for estimating the evolving weights
of the data items. Proceeding to make inferences from these weak estimators
becomes then a suitable choice for managing the time-varying preferences. It is
crucial for the reader to observe that the SU approach presented in [4,5] deals
only with this specific case, i.e., of disjunctive data items.

Profile Update for Conjunctive Data Items. Data items of a particular
attribute are said to be conjunctive whenever every service usage history can
be instantiated with one or more data items at a time. To illustrate this, con-
sider the example of the service usage history corresponding to the services
for movies. The attribute movie genre is associated with the data item set
Sgenre = {action, romantic, comedy, horror}. The latter data items are con-
junctive (not disjunctive) in the sense that a movie’s genre can be described
with more than a single data item at a time. For instance, a movie genre could
be “romantic” and “action packed” at the same time. Suppose that the user
watches a movie that belongs to the genres action and romance at a given time
instant ‘n’. In this case, the weights of both the data items action and romance
can be increased at time ‘n + 1’. In this case, a multinomial SLWE will not be
able to update the different weights of the data items because it is not designed
to increase the weights of more than a component at a time. Thus, a different
methodology for updating the weights of the data items is needed, where more
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than a single data item’s weight can be incremented at a time. To solve the
problem, we propose to attach a binomial SLWE to each data items instead
of having a multinonmial probability vector for each attribute, as in the case
of disjunctive data items. In other words, a binomial probability vector will be
attached to each of data items in Sgenre. For the sake of clarity, we consider the
above-mentioned example and describe the update at the subsequent instant
‘n + 1’ of each binomial probability vector as:

paction(n + 1)← 1− λ(1 − paction(n)) (2)

promantic(n + 1)← 1− λ(1 − promantic(n)) (3)

pcomedy(n + 1)← λpcomedy(n) (4)

phorror(n + 1)← λphorror(n) (5)

Once these binomial-based computations have been achieved, we then resort to
an additional computation in order to normalize the weights of each data items.
The normalization is, quite simply, given by: For k ∈ Sgenre = {action, romantic,
comedy, horror}

Wk(n + 1) =
pk(n + 1)∑

j∈S pj(n + 1)
(6)

Consequently Wk tracks, with a SLWE-philosophy, the ratio of the number
of times the particular data items (k ∈ Sgenre = {action, romantic, comedy,
horror}) of the particular attribute (movie’s genre) appears in the service usage
within a given number of usage records, to the total number of occurrences of the
data items of Sgenre. In order to model this in a “tangible” (or realistic) way, we
suppose that the occurrence of each data item in the usage history is controlled
by a binomial distribution. We further suppose, that the occurrence of the data
items is independent of each other. Let sk be the binomial parameter that de-
scribes the occurrence of data item k in the usage history, where k ∈ Sgenre.
With these assumptions, based on the results of the previous subsection, we
easily derive the asymptotic weight:

E [Wk(∞)] =
sk∑

j∈S sj
. (7)

It is worth noting that whenever the data items corresponding to a given attribute
are disjunctive, it is computationally more efficient (although only marginally) to
employ a multinomial SLWE – instead of a set of binomial SLWEs.

Modelling changes in the Interests. We suppose that at every time in-
stance ‘n’, the Learning Preferences Manager is fed by a service usage instance.
We further assume that the distribution of the user’s interests, relative to a given
attribute, undergoes an abrupt change at a random time instance with an un-
known probability p. In the case of disjunctive data items, we assume that the
parameters of the multinomial distribution change to yield a new distribution.
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4 Experimental Results

To verify our computational model and our proposed solution, we have per-
formed extensive simulations. However, in the interest of space and brevity, we
report here only a subset of these results. Due to space limitations, experimental
results concerning the case of disjunctive data items are omitted in this paper
and are found in [22]. We emphasize though that these results are both rep-
resentative and typical. The obtained experimental results are conclusive, and
demonstrate that our SLWE-based update schemes, when applied to tracking
users’ interests, outperforms the GF approach, the sliding window, and the SU.
In order to model the changes in the interests’ distribution, we assume that at
any given time instant, the distribution of the user’s preferences changes with
probability 0.02. This implies that on average, a change occurs every 50 time
instants. The reader should observe that our experimental results are based on
synthetic data due to fact that it is difficult (if not impossible) to obtain real-
life data that describe user’s preferences. Indeed, no existing organization will
disclose or share such data because of the implied privacy and security consider-
ations. However, we believe that the model which we have used to “artificially”
indicate the changes in the user’s interest distributions is strong enough to mimic
real-life settings. To study the case of disjunctive data items, we assume that we
are dealing with estimating the evolving user’s interests’ weights of data items
of this type, namely, those which are associated with a given attribute. In the
interest of completeness, we will present separate experimental results for the
multinomial case. We considered a multinomial random variable, X , which can
take any of four different values, namely ‘1’, ‘2’, ‘3’ or ‘4’, whose characterizing
parameters changed (randomly) at random time instants. We ran the estimators
for 400 steps, repeated this 1, 000 times, and then computed the corresponding
ensemble averages. For each experiment, we computed ||P − S||, the Euclidean
distance between P and S, which we reckoned as a measure of how good our
estimate, P , was of S. The plots of the latter distance obtained from the SLWE,
the GF and the SU are depicted in Figures 1(a), 1(b), 1(c) and 1(d), where
the values of λ were 0.908, 0.903, 0.952 and 0.948, and the sizes of the win-
dows were 35, 44, 63 and 76 respectively. The values for λ and the window size
were obtained randomly from a uniform distribution in [0.9, 0.99] and [20, 80]
respectively. From these figures, we observe that the GF, the SU and the SLWE
converge to zero relatively quickly prior to the first instant when the distribu-
tion changes. However, this behavior is not present for subsequent (successive)
distribution “switches”. Rather, we notice that the GF is capable of tracking
the changes of the parameters when the size of the window is small, or at least
smaller than the intervals of constant probabilities. It is, however, not able to
track the changes properly when the window size is relatively large. Since neither
the magnitude nor the instants of the changes is known a priori, this scenario
demonstrates the weakness of the GF, and its dependence on the knowledge of
the input parameters. Again, such observations are typical. In Table 1, we report
the error rates associated with the experiments plotted in Figures 1(a), 1(b), 1(c)
and 1(d). We also include the error rates for the MLE augmented with a sliding
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window in Table 1. Clearly, one observes that the SLWE exhibits a lower error
rate than the GF, the SU and the MLE.

Table 1. The effects of varying the window size and the updating parameter on the
error rates for the various schemes investigated for disjunctive data items

Figure No. Error rate: SLWE Error rate: GF Error rate: SW Error rate: SU

Figure 1(a) 0.0612 0.0724 0.0836 0.4606
Figure 1(b) 0.0665 0.1006 0.1152 0.4037
Figure 1(c) 0.1601 0.1893 0.2074 0.4175
Figure 1(d) 0.0507 0.0567 0.0672 0.4165
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Fig. 1. Plot of the Euclidean norm ||P − S|| (the Euclidean distance between P and
S) for disjunctive data items, for the SLWE, the GF and the SU, where (a) λ = 0.908
and w = 35, (b) λ = 0.903 and w = 44, (c) λ = 0.952 and w = 63 and (d) λ = 0.948
and w = 76
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5 Conclusions

In this paper we have studied the complex problem of having a social network
adapt with the preferences of its users. The premise for this study is that the
diversity of a social network cannot be accurately modeled by a static set of
preferences. Thus, the problem of “estimating” the preferences of its users is
becoming increasingly essential for personalized applications which range from
service recommender systems to the targeted advertising of services. This being
the case, one observes that a traditional estimation strategy, (for estimating the
user’s interests) which works when the underlying target distribution is station-
ary, is unsuitable for dynamic non-stationary environments. We have therefore
argued that resorting to strong estimators that converge with probability 1 is
inefficient since they rely on the assumption that the distribution of the user’s
preferences is stationary. Consequently, we have proposed the use of a family
of stochastic-learning based weak estimators for learning and tracking the user’s
time varying interests. To solve the problem, we have approached the problem
by modeling the user’s interests using the concept of data items. Thereafter, we
have devised two cohesive models for updating the score of the data items in
the user’s profile depending on whether the data items associated with a given
attribute are disjunctive or conjunctive. Simulations results based on synthetic
data demonstrates the superiority of our proposed weak estimator-based update
methods when compared to the state-of-the-art methods involving “Gradual
Forgetting”, the Ambient Media Score Update method (SU), and the Maximum
Likelihood Estimation (MLE) scheme augmented with a sliding window. The
problem of utilizing of the learned profiles in order to perform efficient match-
making between available services and the user’s profile is a potential avenue
for future research, for which we do, indeed, have some very promising initial
results.
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Abstract. In an auction market where the price of each selling item is restricted
to an admissible interval (price rigidities), a Walrasian equilibrium usually fails to
exist. Dreze (1975) introduced a variant concept of Walrasian equilibrium based
on rationing systems, named constrained Walrasian equilibrium, for modelling an
economy with price rigidities. Talman and Yang (2008) further refined the con-
cept and proposed a dynamic auction procedure that converges to a constrained
Walrasian equilibrium. However, a constrained Walrasian equilibrium does not
guarantee market efficiency. In other words, a constrained Walrasian equilibrium
allocation does not necessarily lead to the best market value. In this paper, we
introduce a concept of competitive equilibrium by weakening the concept of con-
strained Walrasian equilibrium and devise an dynamic auction procedure that
generates an efficient competitive equilibrium.

1 Introduction

Auctions have been widely used for discovering market-clearing prices and efficient
allocations [1]. However, in many market situations, the price of an item cannot be
fully determined by its market. There are certain exogenous reasons that could cause
the price of a selling item not completely flexible. For instance, price ceilings and floors
in stock markets to prevent breakdown; price controls to reduce inflation or deflation;
and imposing upper prices to protect low-income buyers [2,3,4]. Such a phenomenon is
normally referred to as price rigidities in economics.

In a market with price rigidities, certain rationing mechanism is normally needed
to facilitate the distribution of commodities among agents in additional to the price
leverage. Dreze (1975) introduced a variant concept of Walrasian equilibrium based on
rationing, named constrained Walrasian equilibrium, for economies with price rigidi-
ties [2]. Talman and Yang (2008) further refined the concept and proposed a dynamic
auction procedure that produces a constrained Walrasian equilibrium outcome in a finite
number of steps [4]. However, as we will show in this paper, a constrained equilibrium
under Talman and Yang’s definition does not guarantee market efficiency.

At first glance, it seems impossible for a dynamic auction procedure to achieve mar-
ket efficiency in a market with price rigidities because the market value of an item over
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its price upper limit can never be discovered by any auction procedure. However, if we
count bidders’ contributions to the market value within the constraint price intervals,
market efficiency will be achievable.

Similar to Talman and Yang (2008), we study the market situations where the fol-
lowing conditions hold:

– The commodities to be sold are heterogeneous and indivisible, such as cars and
houses;

– Each buyer can buy at most one item at each auction;
– The price restriction on each item is represented by an interval, the lower bound and

the upper bound, which is given to the auctioneer as a reservation at the beginning
of an auction procedure.

The rest of the paper is organised in the following. Section 2 sets up the model of the
underlying markets. Section 3 presents our dynamic auction procedure and prove that
the procedure can find an efficient competitive equilibrium in a finite number of steps.
Section 4 gives an example of how the procedure runs. Finally we conclude the work
with brief remarks on the related work.

2 The Market Model

Consider a market situation where a seller wishes to sell a finite set of items to a finite
number of buyers. Each item is indivisible and the items are heterogeneous. Each buyer
has a private value over each item. Formally, let X be the set of items on offer, N the
set of buyers, and vi the value function of buyer i (i ∈ N). We assume that the seller
values each item in X at zero. We also assume that among the items in X , there is a
specific item, called the dummy item, which value is zero to each buyer and the seller.
For sake of simplicity, we let N = {1, 2, · · · , n} and X = {0, 1, · · · , m}, where item 0
represents the dummy item.

We assume that each buyer i has an integer value function, i.e., vi : X → Z+, which
assigns each item j ∈ X an integer vi(j) (in the unit of money) with vi(0) = 0.

A price vector p is a function p : X → Z+ that assigns a non-negative integer to
each item in X . For each j ∈ X , we write pj , instead of p(j), to indicate the price of
item j under the price vector p.

As we have mentioned in the previous section, we will consider in this paper the
problem of price discovery under price rigidities. We assume that the price of each item
j ∈ X is restricted to an interval [p

j
, pj ], where p

j
and pj are integers and 0 ≤ p

j
≤

pj < +∞. Specifically, we assume that p
0

= p0 = 0, which means that the price of the
dummy item can only be zero. pj = +∞ means that there is no upper bound limit of
price to item j. We say that a price vector p is admissible if p

j
≤ pj ≤ pj for all j ∈ X .

Traditionally, the following defines the demand correspondence of bidder i at price
vector p:

Di(p) = {j ∈ X | vi(j)− pj ≥ vi(k)− pk, ∀k ∈ X}. (1)

The following defines all the items that the bidder i would demand thus we call it the
demand set of bidder i at p:

M i(p) = {j ∈ X \ {0} | vi(j) ≥ pj} (2)
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In a competitive market, it is possible that one item is demanded by more than one
bidders. The following notation represents all the items that are demanded by more
than one buyers at price vector p, called over-demanded set:

O(p) = {j ∈ X : ∃i, i′ ∈ N(i �= i′ & j ∈M i(p) ∩M i′(p))} (3)

Following the assumption of Talman and Yang [4], we assume in this paper that each
buyer can only receive one item and each item, except the dummy item, can only be
allocated to one buyer. Based on the assumption, an allocation of X can be represented
as a function π : N → X that satisfies the following condition:

– If π(i) = π(i′) and i �= i′, then π(i) = π(i′) = 0.

Traditionally, an allocation π∗ being efficient means that it gives the best market value,
i.e., for any allocation π of X in N ,∑

i∈N

vi(π∗(i)) ≥
∑
i∈N

vi(π(i))

However, such a traditional definition of efficiency is not applicable to the markets with
price rigidities because the market value of an item over its price upper limit can never
be discovered by any auction procedure. For this reason, we redefine the concept of
market efficiency as follows.

Definition 1. Let π be an allocation π of X , the market value of π at price vector p
under price rigidities is

∑
i∈N (min(vi(π(i)), p̄π(i)) − p

π(i)
), where vi is the value

function of bidder i.

Note that the market rule means the totally value the market generates. No value can be
generated under the lower bound.

Definition 2. An allocation π∗ of X is efficient if, for any allocation π of X ,∑
i∈N

(min{vi(π∗(i)), p̄π∗(i)} − p
π∗(i)

) ≥
∑
i∈N

(min{vi(π(i)), p̄π(i)} − p
π(i)

) (4)

In economics, a rationing system describes a set of market rules. Formally, a rationing
system R = (Ri

j)i∈N,j∈X is a |N | × |X | matrix, which element has a value either 1 or
0. For each i ∈ N and j ∈ X , Ri

j = 1 means that buyer i has right to buy item j while
Ri

j = 0 indicates that buyer i is prohibited to buy item j. With a rationing system R,
the demand correspondence can be re-defined as follows:

Di(p, R)={j ∈ X | Ri
j =1 and min{vi(j), p̄j}−pj ≥ max{min{vi(h), p̄h}−ph | Ri

h =1}}
(5)

Based on a rationing system, Talman and Yang [4] gave the following variation of Wal-
rasian equilibrium:

Definition 3. [4] A tuple (p∗, π∗, R∗) is a constrained Walrasian equilibrium if

1. π∗ is an allocation, p∗ is an admissible price vector, and R∗ is a rationing system;
2. π∗(i) ∈ Di(p∗, R∗) for all i ∈ N ;
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3. p∗j = p
j
, if π∗(i) �= j for all i ∈ N ;

4. p∗j = p̄j and π(h) = j for some h ∈ N if R∗i
j = 0 for some i ∈ N ;

5. j ∈ Di(p∗, R∗i
−j) if R∗i

j = 0.

where R∗i
−j denote that Ri

j is being ignored and bidder i is allowed to demand item j
(see [4]).

Talman and Yang devised a dynamic auction procedure that can generate a constrained
Walrasian equilibrium [4].

Theorem 1. [4] There exists at least one constrained Walrasian equilibrium in the
model under price rigidities.

Unfortunately, the allocation of a constrained Walrasian equilibrium is not necessarily
efficient.

Example 1. Suppose that N = {1, 2, 3} and X = {0, 1, 2, 3}. The lower and upper
bound of prices are p = {0, 0, 0, 0, } and p = {0, 10, 10, 30}. Bidders’ values are given
as follows:

item 0 item 1 item 2 item 3
Bider 1 0 6 7 38
Bider 2 0 8 6 40
Bider 3 0 0 0 28

There are two constrained Walrasian equilibria. The price vector of both equilibria
is p∗ = (0, 0, 30). The allocation and rationing system of the first equilibrium is π∗ =
(2, 3, 1) and R∗ = ((1, 1, 0), (1, 1, 1), (1, 1, 0)). The equilibrium gives a market value
7 + 30 + 0 = 37. The other equilibrium is p′∗ = (0, 0, 30), π′∗ = (3, 1, 2) and R′∗ =
((1, 1, 1), (1, 1, 0), (1, 1, 0)). The market value of this equilibrium is 30 + 8 + 0 = 38.
However, if the allocation is (2, 1, 3), which is not a constrained Walrasian equilibrium
allocation, the market value can be 7 + 8 + 28 = 44.

The above example shows that an efficient allocation may not be a constrained Wal-
rasian equilibrium allocation. Therefore, if our target is to get an efficient allocation,
we have to weaken the concept of constrained Walrasian equilibrium. The following
definition of competitive equilibrium is actual a weak version Talman and Yang’s con-
cept of constrained Walrasian equilibrium:

Definition 4. A competitive equilibrium with rationing is a triple (p∗, π∗, R∗), where
p∗ is an admissible price vector, π∗ is an allocation and R∗ is a rationing scheme at
p∗ such that

1. π∗(i) ∈ Di(p∗, R∗) for all i ∈ N .
2. p∗j = p

j
, if π∗(i) �= j for all i ∈ N ;

3. min(vi(j), p̄j) ≥ min(vi′ (j), p̄j) and π∗(i′) = j if R∗i
j = 0 for some i ∈ N .

A competitive equilibrium with rationing (p∗, R∗, π∗) is efficient if the allocation π∗ is
efficient.
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The first two conditions are exactly the same as Talman and Yang’s definition. The
third reads a bid strange: only the bidders who has the highest value on the item get
rationed. In fact, rationing is a privilege of the auctioneer to govern a market and only
those bidders who have high valuation on an item need to be rationed (because they
are more likely to get the goods). For instance, a government could ban high-income
people applying for public housing.

Lemma 1. Each constrained Walrasian equilibrium is a competitive equilibrium with
rationing.

Proof. Assume that (p∗, R∗, π∗) is a constrained Walrasian equilibrium. Then the first
two conditions for a competitive equilibrium with a rationing system is satisfied. Now
we prove that the third condition holds. Let R∗i

j = 0 for some i ∈ N . According to
Condition 4 for a constrained Walrasian equilibrium, we have p∗j = p̄j and π(h) = j

for some h �= i. It turns out that min(vi(j), p̄j) = p̄j and min(vh(j), p̄j) = p̄j .
Consequently, min(vi(j), p̄j) = min(vh(j), p̄j), as desired. -.
As we have shown in above example, an efficient competitive equilibrium with rationing
is not necessarily a constrained Walrasian equilibrium.

3 Dynamic Auction Procedure under Price Rigidities

In this section, we will introduce a dynamic auction procedure that can generate an
efficient competitive equilibrium with rationing.

Given a set N = {1, 2, · · · , n} of bidders and a set X = {0, 1, 2, · · · , m} of items
on offer, where 0 is a dummy item which can be allocated to more than one bidders. p̄
and p are the upper price bound and the lower price bound respectively. The dynamic
auction procedure consists of the following steps:

Step 1. Set the initial price vector p := p and the initial rationing scheme Ri
j = 1 for

all i ∈ N, j ∈ X . Let S = (Si,j)i∈N,j∈X be a n×m matrix initiated as follows:

S =

⎛
⎜⎜⎜⎜⎝

0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞

⎞
⎟⎟⎟⎟⎠ (6)

In this matrix, the rows represent the bidders and the column for items. The ele-
ments are initiated by Si,j := −∞ for all i ∈ N, j ∈ X except zero for the dummy
item.

Step 2. Auctioneer announces the price vector p and invites all the buyers to submit
their demand set M i(p). For all j ∈M i(p), Si,j := pj .

Step 3. Calculate over-demanded set O(p). If O(p) �= ∅ and pj < p̄j for all j ∈ O(p),
then go to Step 4. Otherwise go to Step 5.
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Step 4. For all j ∈ O(p) such that pj < p̄j , let pj := pj + 1. Go back to Step 2.

Step 5. Construct a weighted bipartite graph G = (N ∪X, E, W ), where
– E ⊆ N ×X such that ei,j ∈ E iff Si,j �= −∞ for all i ∈ N, j ∈ X
– W : E → Z such that W (ei,j) = Si,j − p

j
for each ei,j ∈ E.

Step 6. Let Ω ⊆ E be a maximum weighted bipartite matching in G1.

Step 7. For each i ∈ N , if ei,j ∈ Ω, let π∗(i) = j and p∗j = Si,j ; Meanwhile, for each
k ∈ N such that k �= i and Sk,π∗(i) ≥ Si,π∗(i), let R∗k

π∗(i) := 0.

Since each item has a finite price upper bound, the above dynamic auction procedure
terminates in finite number of steps. Let (p∗, R∗, π∗) be the outcome of the procedure
when it terminates.

Lemma 2. π∗(i) ∈ Di(p∗, R∗).

Proof. Let π∗(i) = j. Firstly, Si,j �= −∞ because no edge links between i and j in
the associated bipartite graph. For all k ∈ N , if k �= i and Sk,j ≥ Si,j , then R∗k

j = 0.
Assume that there is a h ∈ X such that min{vi(h), p̄h} − p∗h > min{vi(j), p̄j} − p∗j
and Ri

h = 1. If p∗h < p̄h, it means that only i bids for h at price ph. We change the
matching from π∗(i) = j to π∗(i) = h and keep the other allocation unchanged. We
can then increase the weight of the matching, which contradicts the fact that π∗ is a
maximum weighted matching. If p∗h = p̄h, then we have vi(j) < p∗j . It implies that
Si,j < p∗j . By the construction of the rationing system, R∗k

j = 0 for all k �= i and
Sk,j >= Si,j . In other words, vi(j)− p∗j ≥ max{vi(h)− p∗h | Ri

h = 1}. Therefore we
have π∗(i) ∈ Di(p∗, R∗). -.
Theorem 2. (p∗, R∗, π∗) is an efficient competitive equilibrium.

Proof. Lemma 2 has shown that the dynamic auction mentioned above can yield a
competitive equilibrium (p∗, R∗, π∗). We now prove that π∗ is an efficient allocation.

π∗ is the maximum weighted matching of the weighted graph G = (N ∪X, E, W )
as defined in the auction procedure. Assume that there is π

′
is efficient allocation, which

obviously satisfies the following inequality:∑
i∈N

(min{vi(π
′
(i)), p̄π′ (i)} − p

π′ (i)
) >

∑
i∈N

(min{vi(π∗(i)), p̄π∗(i)} − p
π(i)

) (7)

Note that the allocation π′ also determines a matching in the weighted bipartite graph
unless there is an i such that Si,π′(i) = −∞. In this case, vi(π′(i)) < p

π(i)
. Now

we define a new allocation π′′ such that π′′(i) = 0 and π′′(j) = π′(j) for all j �= i.
It turns out that π′′ can implement more market value than π′, which contradicts to
the assumption. On the other hand, π′ cannot be a maximum weighted matching of
G because otherwise π will not be a maximum weighted matching of G. Therefore
(p∗, R∗, π∗) is an efficient competitive equilibrium. -.

1 We omit the algorithm for finding a maximum weighted matching in a bipartite graph. In fact,
any maximum weighted bipartite matching algorithm is applicable. The reader is referred to
the algorithm in [5].
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4 Calculation and Comparison

To compare our auction procedure with Talman and Yang’s, we use the same exam-
ple that has been used in [4] to demonstrate how to calculate an efficient competitive
equilibrium with rationing by using the dynamic auction procedure introduced in the
previous section.

Example 2. Suppose that there are five bidders N = {a, b, c, d, e} and five items X =
{0, 1, 2, 3, 4} in a market, where 0 is a dummy item and the others are real items. The
lower and upper price vectors are p = (0, 5, 4, 1, 5) and p̄ = (0, 6, 6, 4, 7), respectively.
Bidders’ values are given by the following table.

Item dummy 1 2 3 4
Bidder a 0 4 3 5 7
Bidder b 0 7 6 8 3
Bidder c 0 5 5 7 7
Bidder d 0 9 4 3 2
Bidder e 0 6 2 4 10

Initially, we set p = p and S as follows.

S =

⎛
⎜⎜⎜⎜⎝

0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞
0 −∞ −∞ −∞ −∞

⎞
⎟⎟⎟⎟⎠ (8)

After p is announced to all bidders by the auctioneer, they submit their M i(p) respec-
tively:

Ma(p)={3, 4}
M b(p)={1, 2, 3}
M c(p)={2, 3, 4}
Md(p)={1, 3}
M e(p)={1, 3, 4}.

For each j ∈M i(p), let Si,j := pj , then the matrix S becomes:

S =

⎛
⎜⎜⎜⎜⎝

0 −∞ −∞ 1 5
0 5 4 1 −∞
0 5 4 1 5
0 5 4 1 −∞
0 5 −∞ 1 5

⎞
⎟⎟⎟⎟⎠ (9)

Now O(p) = {1, 2, 3, 4}, i.e., all the items except the dummy item are over-demanded.
p1 < p̄1, p2 < p̄2, p3 < p̄3 and p4 < p̄4. We then let p1 := p1 + 1, p2 := p2 + 1,
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p3 := p3 + 1, p4 := p4 + 1, and the price vector is adjusted to p = (0, 6, 5, 2, 6). The
auctioneer announces the new price vector and asks all bidders resubmit their demand
sets, which areMa(p) = {3, 4}, M b(p) = {1, 2, 3}, M c(p) = {3, 4}, Md(p) =
{1, 3}, and M e(p) = {3, 4}.

Use the demand sets and the new price to update matrix S as follows:

S =

⎛
⎜⎜⎜⎜⎝

0 −∞ −∞ 2 6
0 6 5 2 −∞
0 5 5 2 6
0 6 4 2 −∞
0 6 −∞ 2 6

⎞
⎟⎟⎟⎟⎠ (10)

In this case, O(p) = {1, 3, 4}, p1 = p̄1, p2 < p̄2, p3 < p̄3 and p4 < p̄4. Let p2 :=
p2 + 1, p3 := p3 + 1 and p4 := p4 + 1. The auctioneer announces the new price vector
p = (0, 6, 6, 3, 7) and requests the bidders to report their new demands. Assume the
new demand sets are:

Ma(p) = {3},
M b(p) = {1, 2, 3},
M c(p) = {3},
Md(p) = {1} and
M e(p) = {4}.

Then the matrix S becomes

S =

⎛
⎜⎜⎜⎜⎝

0 −∞ −∞ 3 7
0 6 6 3 −∞
0 5 5 3 7
0 6 4 3 −∞
0 6 −∞ 3 7

⎞
⎟⎟⎟⎟⎠ (11)

Increase one unit of the price of item 3 because O(p) = {1, 3} and p3 < p̄3. After
the auctioneer announces p = (0, 6, 6, 4, 7), the bidders report their demands again:
Ma(p) = {3}, M b(p) = {1, 2, 3}, M c(p) = {3}, Md(p) = {1} and M e(p) = {4}.
The matrix S can be rebuilt according to the current demands and price vector p.

S =

⎛
⎜⎜⎜⎜⎝

0 −∞ −∞ 4 7
0 6 6 4 −∞
0 5 5 4 7
0 6 4 3 −∞
0 6 −∞ 4 7

⎞
⎟⎟⎟⎟⎠ (12)

At this time, we find that only item 1 and item 3 are over-demanded, but their prices
have both reached their upper bound. The auction procedure stops because pj = p̄j for
all j ∈ O(p).

According to matrix S, we build a weighted graph G = (N ∪ X, E, W ), where
Si,j ∈ E iff Si,j �= −∞ and W (ei,j) = Si,j for each i ∈ N, j ∈ X . It is easy to verify
that Ω = {(a, 3), (b, 2), (c, 0), (d, 1), (e, 4)} is a maximum weight matching, which
determines an allocation π∗ = (3, 2, 0, 1, 4). The following picture shows the weighted
graph. Bold lines represent the maximum weight matching.
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The rationing system is then R∗ = (R∗a, R∗b, R∗c, R∗d, R∗e) where
R∗a = (1, 1, 1, 1, 0)
R∗b = (1, 0, 1, 0, 1)
R∗c = (1, 1, 1, 0, 0)
R∗d = (1, 1, 1, 1, 1)
R∗e = (1, 0, 1, 0, 1).

The equilibrium price is P ∗ = (0, 6, 6, 4, 7). The equilibrium implements a market
value at 8.

We would like to remark that the constrained Walrasian equilibrium allocation under
Talman and Yang’s definition is (0, 3, 2, 1, 4) at price (0, 5, 4, 2, 5). The associated mar-
ket value is 7, which is lower than the efficient competitive equilibrium.

5 Conclusion and Related Work

In this paper, we have introduced a concept of competitive equilibrium by weakening
the concept of constrained Walrasian equilibrium. We have devised an dynamic auction
procedure and prove that it can generates an efficient competitive equilibrium for any
economy for selling in dividable items with price rigidities.

For the purpose of controlling price macroscopically, preventing speculation or pro-
tecting the profits of low-incoming buyers, price rigidity is widely adopted to restrict
the price of each item to an interval. The phenomenon of price rigidity, i.e., the persis-
tence of price at which supply and demand are not equal, is frequently observed, and
plays an important role in some macro-economic models [2]. After investigating the
ability of nominal price rigidity, a dynamic general equilibrium model is constructed
by [6] with the introduction of monopolistic competition and nominal price rigidity in
a standard real business cycle model, allowing for an endogenous money supply rule.
From the aspect of banking industry, the price rigidity is significantly greater in markets
characterised by higher levels of concentration [7].

Ausubel proposed a dynamic auction procedure for auctioning multiple heteroge-
neous commodities, and this auction yields a Walrasian equilibrium price and an ef-
ficient allocation without considering price rigidities [8]. The Vickrey and Groves-
Clarke auctions can be generalised to attain efficiency when there are common values,
if each buyers’ information can be represented as a one-dimensional signal. Also, when
a buyer’s information is multidimensional, no auction is generally efficient [9].

Subsequently, Talman and Yang proposed a dynamic auction for differentiated items
under price rigidities and by which yielded a constrained Walrasian equilibrium in finite
steps [4]. As can be seen from the procedure of dynamic auction, a group of constrained
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Walrasian equilibria taking the form (p∗, π∗, R∗) can be generated. It is obviously that
each of their social efficiencies at certain price vector p can be computed, but not all
of them have the same efficiency. So, these constrained Walrasian equilibria are not
efficient.

Motivated by the difficulty to achieve the social efficiency under price rigidities, the
dynamic auction, suggested by this paper, invite bidders to present their demand set for
all items so as to promote the possibility to be allotted an item and drive price ascending
under over demands. The efficient competitive equilibrium can be found by the dynamic
auction procedure in a finite number of step. Also, this dynamic auction procedure is
useful to discover the social revenue of auctioneer. For the further research, we will
devote ourself to analysis, present and value the relations among different items, such
as substitute relation and complement relation, because these relations effect bidders’
strength of demands and the distance of price ascending.
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