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Preface

Welcome to the 12th edition of the ACM/IFIP/USENIX International
Middleware Conference.

The importance of middleware software and systems keeps growing in a world
where distribution and heterogeneity are the norm. Middleware abstractions
are present everywhere, e.g., from data centers to networks of mobile devices,
from multi-core architectures to social networks, bridging the gap between many
areas including programming languages, distributed algorithms, networks, and
databases.

Among the 125 initial submissions (from 28 countries) to Middleware 2011,
22 research papers and 2 industry papers were selected for inclusion in the tech-
nical program and the proceedings of the conference, resulting in an acceptance
rate of 19%. All papers were reviewed by at least three reviewers and some of
them had four or six reviews. After a discussion period and a rigid selection
process, in which some good papers had to be cut out, we selected the 24 pa-
pers that appear now in the proceedings. Five of those papers passed through
a shepherding process to make sure that minor problems detected by some re-
viewers were resolved before the papers were published. The papers were judged
according to their originality, presentation quality, and relevance to the confer-
ence. The accepted papers cover a wide range of topics with a slight bias toward
papers related to cloud computing and reliability, which are obviously hot topics
at the moment. Many submissions were related to emerging cloud computing,
data centers and server farms, as well as scalability and performance for system
issues. We thank the Industry Track Chairs Dilma da Silva and Jan de Meer for
their help with the selection of industry papers.

We are grateful to Rachid Guerraoui from EPFL for being the keynote
speaker of Middleware 2011. He related one of the most successful middleware
stories, namely, software transactional memory (STM) systems. An invited pa-
per, included in the proceedings, co-authored by Vincent Gramoli and Rachid
Guerraoui, conveys the message that STM systems should not only simplify a
programmer’s life but also be flexible enough to enable skilled programmers to
take the most from this abstraction to ensure STM a promising future.

We were also delighted to grant the 10-Year Best Paper Award to Peter Dr-
uschel and Antony Rowstron for their Middleware 2001 paper “Pastry: Scalable,
Decentralized Object Location and Routing for Large-Scale Peer-to-Peer Sys-
tems.” The 10-Year Best Paper Award seeks to reward those papers from the
Middleware conference that was held exactly 10 years ago based on their impact
on the academy and industry in the past 10 years. This tradition started with
the 10th Middleware in 2009 in Urbana-Champaign, USA, and had its second
edition in 2010 in Bangalore, India; Middleware 2011 in Lisbon, Portugal, hosted
the third edition. This paper, published in 2001, is cited more than 4,000 times



VI Preface

according to Google Scholar and describes probably the most well-known struc-
tured peer-to-peer overlay platform. This represents one of the most influential
papers in the past decade in distributed systems and we are honored that the
Middleware conference was the one to give the authors this award.

We would like to express our deepest thanks to the authors of submitted
papers, to the Program Committee members for their work in reviewing the
papers and their enthusiasm in the discussions, to Paulo Ferreira and Lúıs Veiga
the General Chairs and their team and, finally, to the members of the Steering
Committee for their efforts toward making Middleware one of the major venues
in distributed systems.

We hope you enjoy the papers in this volume of Lecture Notes in Computer
Science.

December 2011 Anne-Marie Kermarrec
Fabio Kon
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Notification and Streaming

A Content-Based Publish/Subscribe Matching Algorithm for 2D
Spatial Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Athanasios Konstantinidis, Antonio Carzaniga, and
Alexander L. Wolf

FAIDECS: Fair Decentralized Event Correlation . . . . . . . . . . . . . . . . . . . . . 228
Gregory Aaron Wilkin, K.R. Jayaram, Patrick Eugster, and
Ankur Khetrapal

AmbiStream: A Middleware for Multimedia Streaming on
Heterogeneous Mobile Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Emil Andriescu, Roberto Speicys Cardoso, and Valérie Issarny

Virtualizing Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Michael Duller, Jan S. Rellermeyer, Gustavo Alonso, and
Nesime Tatbul

Replication and Caching

Leader Election for Replicated Services Using Application Scores . . . . . . . 289
Diogo Becker, Flavio Junqueira, and Marco Serafini

PolyCert: Polymorphic Self-optimizing Replication for In-Memory
Transactional Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Maria Couceiro, Paolo Romano, and Luis Rodrigues

A Trigger-Based Middleware Cache for ORMs . . . . . . . . . . . . . . . . . . . . . . . 329
Priya Gupta, Nickolai Zeldovich, and Samuel Madden

Security and Interoperability

Deploy, Adjust and Readjust: Supporting Dynamic Reconfiguration of
Policy Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Gabriela Gheorghe, Bruno Crispo, Roberto Carbone,
Lieven Desmet, and Wouter Joosen



Table of Contents XIII

A Middleware Layer for Flexible and Cost-Efficient Multi-tenant
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Stefan Walraven, Eddy Truyen, and Wouter Joosen

Bridging the Interoperability Gap: Overcoming Combined Application
and Middleware Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
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Democratizing Transactional Programming

Vincent Gramoli and Rachid Guerraoui

EPFL
Switzerland

Abstract. The transaction abstraction is arguably one of the most ap-
pealing middleware paradigms. It lies typically between the programmer
of a concurrent or distributed application on the one hand, and the oper-
ating system with the underlying network on the other hand. It encapsu-
lates the complex internals of failure recovery and concurrency control,
significantly simplifying thereby the life of a non-expert programmer.

Yet, some programmers are indeed experts and, for those, the trans-
action abstraction turns out to be inherently restrictive in its classic
form. We argue for a genuine democratization of the paradigm, with dif-
ferent transactional semantics to be used by different programmers and
composed within the same application.

1 A Brief History of Transaction

The transaction abstraction is in essence a middleware paradigm: it allows mul-
tiple processes running on one or more processors (machines) to interact. The
transaction abstraction lies typically between the programmer of concurrent and
distributed applications and the operating system. It encapsulates complex con-
currency control and failure recovery mechanisms behind a simple user interface.

The transaction abstraction is very old. It dates back to the 70’s when it was
proposed as a means to ensure the consistency of shared data [1], determined
with respect to a sequential behavior. To formalize this notion of consistency, the
serializability definition recast the consistency of an execution of transactions in
terms of its equivalence to a sequential execution of transactions [2]: concurrent
accesses have to behave as if they were executing sequentially—in other words,
they must be atomic. Since that definition, researchers have derived other vari-
ants, like opacity [3], applicable to different transactional contexts.

Formerly used in databases, the transaction abstraction was adapted for the
first time as a language construct in the form of guards and actions [4] in partic-
ular to address issues like robustness to hardware failures. The programmability
of transactions has subsequently been studied in distributed systems in vari-
ous forms, e.g., Argus [5], Eden [6] and ACS [7]. During that period, the first
hardware support for such a transactional construct was invented to introduce
parallelism in functional languages by providing synchronization on multiple
memory words [8].

Later, transactional memory was proposed for concurrent programming espe-
cially to remedy the existing difficulties of programming with locks, e.g., priority

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 1–19, 2011.
c© IFIP International Federation for Information Processing 2011
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Fig. 1. A brief history of transactions

inversion, lock-convoying and deadlocks [9]. Since the advent of multicore archi-
tectures, the very notion of transaction memory has became an active topic
of research1. Hardware implementations of such transactional systems [9] were
generally limited by specific constraints and the programmer could only abstract
away from these limitations using unbounded hardware transactions, a complex
solution that most industrials are no longer exploring. Instead, a more hybrid
tendency was adopted by implementing a best-effort hardware component that
needs to be complemented by software transactions [10,11,12,13].

Software transactions were originally designed as a portable solution to exe-
cute a set of shared memory accesses fixed prior to execution [14]. Later software
transactions were applied to a dynamic variant of this model, in which the con-
trol flow of the transaction was not predetermined [15]. Besides improvements
stemming from the usage of timely information [16,17], new software transac-
tions were derived to access more complex objects [18,19]. Nowadays, software
transactions are even used in concurrent programs for the sake of coordinated
failure recovery [20]. Despite these promising results, early investigations on the
performance of software transactions have suggested their confinement to a re-
search toy by questioning their ability to leverage multicore architectures [21].

Software transactions have finally won their spurs by outperforming sequen-
tial applications with only few cores. The result of [22] shows that an STM
with manually instrumented benchmarks and explicit privatization outperforms
sequential code by up to 29 times on SPARC with 64 concurrent threads and
by up to 9 times on x86 with 16 concurrent threads. Even though the software
overheads, induced by compiler instrumentation and transparent privatization,
do not prevent transactions from outperforming sequential code, performance
remains one of the major issue of transactions. Basically, an expert will never
be able to extract as much concurrency from classic transactions than from syn-
chronization primitives under the hood.

1 A bibliography of the topic can be found at
http://www.cs.wisc.edu/trans-memory/biblio/list.html.
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Not surprisingly, researchers have kept exploring possible relaxations of the
classic model since the early stage of transactions. Nesting models exploited
commutativity of high level operations to favor concurrency [23,24]. In short,
commutativity applies to operations whose order does not impact the transaction
outcome. Such techniques would typically require the programmer to identify
operations that can commute statically or to introduce code breakpoints. Others
were dedicated to improve performance of typical contention hotspots: relaxed
transactions were proposed for aggregate fields of database systems [25,26] on
the one hand, and for search structures of multicore programs [15,27] on the
other hand. A large majority of these relaxations rely however on complex code
refactoring to improve performance and only a few, like [27], preserve both the
sequential code and composition, most of them remaining non-exploitable by
novice programmers.

To summarize, the transaction is an old appealing abstraction that has been
the main topic of many practical and theoretical achievements in research, how-
ever, it has never been widely adopted in practice. Despite their genericness,
transactions failed to be unified across distinct usages. Instead, transactions
have always been tuned differently for different purposes, enforcing their incom-
patibility. An example is the recent adoption of transactions by IBM in their
BlueGene/Q processor. This choice has been made in order to obtain the fastest
supercomputer ever, yet only a very limited set of applications, which are super-
computing applications, will benefit from these highly tuned transactions. The
incompatibility between distinct transactions breaks the appeal of the abstrac-
tion itself and prevents it from being used by the masses.

2 The Inherent Appeal of Transactions

The transaction paradigm is appealing for its simplicity as it preserves sequential
code by hiding synchronization internals and its ability to promote concurrent
code composition.

Algorithm 1. An implementation of a linked list operation with transactions
1: tx-contains(val)p:
2: int result ;
3: node ∗prev , ∗next ;
4: transaction {
5: curr = set → head;
6: next = curr → next;
7: while next → val < val do
8: curr = next;
9: next = curr → next;

10: result = (next → val == val);
11: }
12: return result ;
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2.1 Preserving Sequentiality

Transactions preserve the sequential code in that their usage does not alter
the sequential code, besides segmenting it into several transactions. More pre-
cisely, the regions of sequential code that must remain atomic in a concurrent
context are simply delimited, typically by a transaction{...} block or similar
tx-begin/tx-commit delimiters, as depicted in Algorithm 1—the existing data
organization appears unchanged (Algorithm 2 (left)).

Programming with transactions shifts the inherent complexity of concurrent
programming to the implementation of the transaction abstraction which must
be done once for all. Thanks to transactions, writing a concurrent application
follows a divide-and-conquer strategy where experts have the complex task of
writing a live and safe transaction system with an unsophisticated interface so
that the novice has simply to write a transaction-based application, namely
delimit regions of sequential code.

Algorithm 2. The linked list node

1: Transactional structure node:
2: intptr t val ;
3: struct node ∗ next ;
4: // Metadata management is implicit

5: Lock-based structure node lk :
6: intptr t val ;
7: struct node lk ∗ next ;
8: volatile pthread spinlock t lock ;

On the one hand, traditional synchronization techniques require generally the
programmer to first re-factorize the sequential code. Using lock-free techniques,
the programmer would typically need to use subtle mechanisms, like logical
deletion, to prevent inconsistent memory deallocations, yet the memory man-
agement would not even be guaranteed to be simple, and may require additional
re-engineering [28]. Using lock-based techniques, the programmer must explicitly
declare and initialize all locks before protecting memory accesses as depicted in
Algorithm 2; the programmer may even need to use a logical deletion technique
as well as an additional validation phase to guarantee consistency [29].

log 

Fig. 2. The transaction abstraction hides complex synchronization mechanisms behind
a simple interface
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On the other hand, the transaction abstraction hides both synchronization
internals and metadata management. If locks are internally used, they are de-
clared and initialized transparently by the transaction system. Moreover, as the
transaction system wraps memory accesses, a simple reference counting can keep
track of the status of transactions accessing a particular location, before freeing
the memory.

Despite its apparent simplicity and as depicted in Figure 2, the transaction
system internally hides complex synchronization mechanisms. For example a
single transactional system can exploit (i) time, to associate timestamps to values
and guarantee that all values read belong to the same snapshot the transaction
is acting upon; (ii) locks, for concurrent transactions to detect conflicts when
accessing common data; and (iii) logs, to record operations that will be re-
executed at commit time, or rolled back at abort time.

2.2 Enabling Composition

Transactions are also appealing for they allow concurrent programs to be reused
in a modular fashion. More specifically, transactions allow Bob to compose ex-
isting transactional operations developed by Alice into a composite one that
preserves the safety and liveness of its components [30] as depicted in Figure 3.

Alice Bob 

remove(f1) 

create(f2) 

rename(f1, f2) 

Fig. 3. Bob composes Alice’s component operations remove and create into a new
operation rename that preserves the safety and liveness of its components

By contrast, alternative synchronization techniques do not facilitate composi-
tion. For example, consider a simple directory abstraction mapping a name to a
file. With transactions, one can compose the removal of a name and the creation
of a new name into a rename action. If a user renames a file from one directory
d1 to another d2 while another rename a file from d2 to d1, directories must be
protected with care to avoid deadlocks. In the lock-based file system hierarchy
of the Google File System [31], each directory at the same path depth has to be
locked in a pre-determined ordering to prevent deadlock in such a scenario. In
other words, Bob must first understand the locking strategy of Alice to ensure
the liveness of his own operations. For the same reason, the header of the Linux
kernel file mm/filemap.c comprises 50 lines of comments explaining the locking
strategy.
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Existing lock-free techniques are even more complex as they require a multi-
word compare-and-swap to make the two renaming actions atomic while retain-
ing concurrency [32].

By contrast, a transaction system detects a conflict between the two renaming
transactions and let only one of the two commit, the other one is restarted or
resumed later. Deciding upon the conflict resolution strategy is the task of a
dedicated service, called a contention manager and various strategies have been
proposed [33].

3 The Inherent Limitations of Transactions

A transaction delimits a region of accesses to shared locations and protects the
set of locations that is accessed in this region. By contrast, a (fine-grained) lock
generally protects a single location even though it is held during a series of
accesses as depicted in Algorithm 3. This makes a crucial difference between
transactions and locks in terms of expressiveness, concurrency and performance.

Algorithm 3. An implementation of a linked list operation with locks
1: lk-contains(val)p:
2: int result ;
3: node lk ∗prev , ∗next ;
4: lock(&set → head → lock);
5: curr = set → head ;
6: lock(&curr → next → lock);
7: next = curr → next ;
8: while next → val < val do
9: unlock(&curr → lock);

10: curr = next ;
11: lock(&next → next → lock);
12: next = curr → next ;

13: unlock(&curr → lock);
14: unlock(&next → lock);
15: result = (next → val == val);
16: return result ;

3.1 Lacking Expressiveness

To make our point that transactions are inherently limited in terms of expres-
siveness we define atomicity as a binary relation over shared memory accesses π
and π′ of a single transaction within an execution α: atomicity(π, π′) is true if
π and π′ appear in α as if they were both occurring at one common indivisible
point of the execution. It is important to notice that this relation is not tran-
sitive, i.e., atomicity(π1, π2) ∧ atomicity(π2, π3) �⇒ atomicity(π1, π3). In fact, as
π2 may appear to have executed at several consecutive points of the execution,
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the points at which π1 and π2 appear to have occurred may be disjoint from the
points at which π2 and π3 appear to have occurred.

A process locking x during the point interval (p1; p2) of α, in which it
accesses x, is guaranteed that any of its other accesses during this interval
will appear atomic with its access to x. For example, the process guarantees
atomicity(r(x), r(y)) and atomicity(r(y), r(z)) but not atomicity(r(x), r(z)) in
the following lock-based program:

P� = lock(x) r(x) lock(y) r(y) unlock(x) lock(z) r(z) unlock(y) unlock(z).

Conversely, a process executing the following transaction block ensures
atomicity(r(x), r(y)), atomicity(r(y), r(z)) but also atomicity(r(x), r(z)), which
is the transitive closure of the atomicity relations guaranteed by P�. Note that
there is no way to ensure the two former atomicity relations with classic trans-
actions without also ensuring the latter.

Pt = transaction{r(x) r(y) r(z)}.

This lack of expressiveness when using transactions is directly implied by their
syntax, which consists of an open/close block delimiting a compound state-
ment [34]. In this sense, this expressiveness limitation is not related to the way
transactions are used but to the transaction abstraction itself. This open/close
block does neither accept a memory location nor a semantic hint as a parame-
ter. Hence, it blindly guarantees that all its accesses appear as if there was an
indivisible point in the execution where they all take effect.

Fig. 4. Among the correct linked list schedules, 20% of them are precluded when using
transactions

3.2 Impact on Concurrency

The level of expressiveness is crucial especially when it restricts the set of accept-
able schedules, and hence achievable concurrency, in a real workload. The low
expressiveness of transactions translates actually into a concurrency loss on very
common workloads. For example, consider the transactional linked list program
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depicted in Algorithm 1. Clearly, the value of the head → next pointer observed
by the transaction (Line 6) is no longer important when the transaction is check-
ing whether the value val corresponds to a value of a node further in the list
(Line 7), yet a concurrent modification of head → next can invalidate the trans-
action when reading next → val ; this is a false-conflict leading to unnecessary
aborts. Such unnecessary aborts limit concurrency because they preclude sched-
ules that would be correct, be all the transactions committed [35]. Conversely,
the hand-over-hand locking program of Algorithm 3 allows such concurrent up-
date (Line 7) when checking the value (Line 8), starting from the second iteration
of the while-loop. Lock-free linked list algorithms [36,28] would not suffer such
false-conflict either.

To quantify the impact of the limited expressiveness of transactions on the
number of accepted schedules, consider that program Pt above executes concur-
rently with program P1 = transaction{w(x)} and P2 = transaction{w(z)}. As
there are four ways of placing the single access of one of these two programs
between accesses of Pt and five ways of placing the remaining one in the result-
ing schedule, there are twenty possible schedules. Note that all are allowed in a
linked list implementation; however, transactions that ensure opacity [3] (as it is
the case for most classic ones) preclude four of these schedules: those in which Pt

accesses x before P1 (Pt ≺ P1), P1 terminates before P2 starts (P1 ≺ P2) and in
which P2 accesses z before Pt (P2 ≺ Pt). The proportion of schedules precluded
by transactions among all possible ones is depicted in Figure 4.

3.3 Impact on Performance

The metadata management overhead of transactions when starting, accessing
shared memory and committing, is expected to be compensated by exploiting
concurrency [22]. In scenarios like the previous linked list program where trans-
actions fail to fully exploit all available concurrency, their performance cannot
compete with lock-based or lock-free algorithms. Recall that this is due to the
expressiveness limitation inherent to transactions—it is thus not tied to the way
transactions are used but to the abstraction itself. The conjunction of overhead
and limited concurrency of transactions prevents them from outperforming well-
engineered lock-based and lock-free alternatives.

To illustrate the impact on performance, we compared the existing Java con-
currency package to a classic transaction library written in Java, TL2 [16],
on a 64-way Niagara 2 machine. We present the results obtained on a sim-
ple Collection benchmark of 212 elements providing contains, add, remove and
size operations with an update and a size ratios of 10% each. As the exist-
ing lock-free data structures do not support atomic size we had to use the
copyOnWriteArraySet workaround of this package as recommended for circum-
venting this limitation [37]. We compared it against the linked list implemen-
tation building upon TL2. The throughput speedups over sequential of classic
transaction and the existing collection are depicted in Figure 5. The existing
collection performs 2.2× faster than classic transactions on 64 threads.
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Fig. 5. Throughput (normalized over the sequential one) of classic transactions and
the existing concurrent collection

4 Democratizing Transactions: The Challenge

Classic transactions share a single semantics for all types of applications. This
simplifies the development of a transaction system by requiring the same guar-
antee for all its transactions, independently from their role in the concurrent
applications. In some scenarios this semantics is, however, overly conservative
and limits concurrency and performance (cf. Section 3). Without additional con-
trol, skilled programmers are frustrated by not being able to obtain highly ef-
ficient concurrent programs as depicted in Figure 6. In order to rather exploit
adequately the concurrency allowed by the semantics of an application it is nec-
essary to trade part of the simplicity of transactional memory for additional
control.

We argue that for the transactional abstraction to really become a widely used
programming paradigm it should be democratized. Not only is it important for
transactions to be an off-the-shelf solution for novices, but also to give additional
control to experts in concurrent programming.

Therefore, we believe that various transaction semantics should be able to
run concurrently: a default semantics capturing the classic single-global-lock
atomicity (i.e., opacity [3]), and more complex semantics capturing more subtle
behaviors (e.g., elastic-opacity [27]). The challenge is twofold. First, the trans-
action abstraction should allow the expert programmers to easily express hints
about the targeted application semantics without modifying the sequential code
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Fig. 6. The novice programmer benefits from the simplicity of transactions whereas
the expert programmer is frustrated by its lack of flexibility

but simply delimiting its regions like for classic transactions. Second, the seman-
tics of each transaction must be preserved even though multiple transactions of
different semantics can access common data concurrently.

This second property is crucial and makes the development of a transactional
system even more complex.

4.1 Expressiveness and Simplicity

Several relaxed transaction models have been proposed as an alternative to the
classic transaction model. Such relaxed models can generally achieve a greater
level of flexibility than the classic model by avoiding unnecessary aborts thus
tolerating additional schedules.

An explicit early release can be used to ask statically the transaction to
ignore false conflicts [15] and hence avoid unnecessary aborts. For example, to
achieve the same expressiveness as the lock-based linked list of Algorithm 3
one could use early release to force the transaction to unprotect some of its
read locations while executing. More precisely, a release call of location x could
indicate from which point of the transaction all conflicts involving its read of
x can start being ignored. Despite increasing expressiveness, the use of early
release may hamper transaction composition. Alice may implement an atomic
linked list add(x) using early release, yet Bob cannot reuse Alice’s code to develop
an atomic addIfAbsent(x, y) that inserts x only if y is absent. Typically, the
resulting operation would not be atomic: two instances addIfAbsent(x, y) and
addIfAbsent(y, x) may insert concurrently x and y, leading to an inconsistency.

A first relaxing methodology consists in open nesting [24] that is considered
effective to increase concurrency. The key underlying idea is that nested trans-
actions typically commit before the outer transaction ends but pass a high level
abstraction of their changes to the outer transaction. As a result, the changes
committed by a nested transaction become immediately visible from concurrent
transactions and abstract locks indicate which pairs of nested operations con-
flict. Open nesting may lead to deadlocks if the accesses to shared locations are
not ordered with care [38]. Specifically, this problem is similar to the one raised
with explicit locks as open nesting let the programmers acquire abstract locks
even upon abort.
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A second relaxing methodology is transactional boosting [39]. It benefits from
commutativity by considering transactional operations at a high level of ab-
straction. If two high level operations commute, they can be executed in any
order despite the conflicts between their low-level operations. To this end, high
level operations are considered as a whole and the programmer must identify
operations that commute and define inverse operations. Considering higher level
operations diminishes the amount of information that needs to be logged and
possibly rolled back. Each operation acquires an abstract lock similar to open
nesting so that two operations conflict if and only if they do not commute. Upon
abort, a transaction rolls back its changes by executing the appropriate inverse
operations that compensate its logged operations. Typically such models require
the programmer to identify commutative operations and to write an appropri-
ate compensating block of action for each non-commutative operation, such a
compensate block is typically as long as the corresponding transaction block
itself.

Inherently more complex to use than the classic transaction model, these ini-
tial relaxed transaction models lost the appealing aspects of transactions: either
by requiring significant code refactoring or by breaking composition. Therefore,
it is crucial to guarantee sequential code preservation and transaction composi-
tion when deriving new relaxed models targeting high expressiveness.

4.2 Sequentiality and Composition

A relaxed transaction model preserving sequential code and guaranteeing com-
position was proposed as the elastic transaction model [27]. This model provides
a semantics of transactions that enables to efficiently implement search struc-
tures. Just like for a classic transaction, the programmer must simply delimit
the blocks of code that represent elastic transactions, thus preserving sequential
code as depicted in Algorithm 4. Elastic transactions are fully compatible with
classic transactions thus inheriting the ability to compose of the classic model.
Bob directly encapsulates Alice’s elastic transactions, into another transaction,
choosing between labeling it as elastic or classic, hence guaranteeing atomicity
and deadlock-freedom of its own operation. Typically, Bob can easily compose
Alice’s elastic add(x) into a classic addIfAbsent(x, y).

In contrast with classic transactions, during its execution an elastic transac-
tion can be cut (by the elastic transactional system) into multiple classic trans-
actions, depending on the conflicts it detects. For example, consider the following
history of shared accesses in which transaction j adds 1 while transaction i is
parsing the data structure to add 3 at its end.

H = r(h)i, r(n)i, r(h)j , r(n)j , w(h)j , r(t)i, w(n)i.

This history is clearly neither serializable [2] nor opaque [3] since there is no
history in which transactions i and j execute sequentially and where r(h)i occurs
before w(h)j and r(n)j occurs before w(n)i (yet the high level insert operations
of this history are atomic). A traditional transactional scheme would detect two
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Algorithm 4. Java pseudocode of the add() operation with elastic transactions
1: public boolean add(E e):
2: transaction(elastic) {
3: Node〈E〉 prev = null
4: Node〈E〉 next = head
5: E v
6:
7: if next == null then // empty

8: head = newNode〈E〉(e,next)
9: return false

10: while (v = next .getValue()).compareTo(e) < 0 do // non-empty

11: prev = next
12: next = next .getNext()
13: if next == null then break
14: if v.compareTo(e) == 0 then
15: return false
16: if prev == null then
17: Node〈E〉 n = new Node〈E〉(e,next)
18: head = n
19: else prev .setNext(new Node〈E〉(e,next))

20: return true
21: }

contradicting conflicts between transactions i and j, and the transactions could
not both commit. Nonetheless, history H does not violate the correctness of the
integer set: 1 appears to be added before 3 in the linked list and both are present
at the end of the execution.

The programmer has simply to label transaction i as being elastic to solve
this issue. Then, history H can be viewed as the combination of several pieces:

f(H) = r(h)i, r(n)i
s1

, r(h)j , r(n)j , w(h)j , r(t)i, w(n)i
s2

.

In f(H), elastic transaction i has been cut into two transactions s1 and s2.
Crucial to the correctness of this cut no two modifications on n and t have
occurred between r(n)s1 and r(t)s2 . Otherwise the transaction would have to
abort.

These cuts enable more concurrency than what the expert programmer could
do with classic transactions. First, a cut can split dynamically an elastic transac-
tion depending on the interleaving of its accesses with other transaction accesses,
yet it would be incorrect to replace statically the elastic transaction by multiple
classic transactions, as the interleaving is not predictable. Second, identifying
commutativity of accesses cannot enable the concurrency of elastic transactions
because, depending on the current interleaving of accesses, two accesses that
are (statically) non-commutative can be considered dynamically-commuting in
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elastic transactions. For example, elastic transactions enable additional concur-
rency between two linked list adds by allowing the history involving transactions
t1 and t2: r(h)t1 , r(n)t2 , w(h)t2 , w(n)t1 in which neither r(n)t2 and w(n)t1 nor
r(h)t1 and w(h)t2 commute.

4.3 Impact on Performance

To illustrate the benefit of combining relaxed and classic transactions, the col-
lection benchmark was run in the exact same settings as the one used to ob-
tain Figure 5. Each of the three parse operations contains, add and remove is
implemented with an elastic transaction and the size operation, which returns
an atomic snapshot of the number of elements, is implemented with a classic
transaction to ensure atomicity of all four operations. As an example, the Java
pseudocode of the add operation based on an elastic transaction is depicted in
Algorithm 4.

The performance of combining elastic transactions with classic transactions,
is compared in Figure 7 against the performance obtained with the existing
concurrent collection package and with the classic transactions alone. The best
performance we obtained by combining elastic and classic transactions is higher
than classic transactions alone by 3.5× and than the existing collection package
by 1.6×. Unfortunately, the performance does not scale up to the maximum
number of threads 64. We conjecture that the slow-down between 32 and 64

Fig. 7. Throughput (normalized over the sequential one) of elastic and classic trans-
actions, the classic transactions alone and the existing concurrent collection
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threads by repeatedly aborting the size operations, in the same vein as balance
operations of the bank benchmark [40] or toxic transactions [41]. More precisely,
the size executes within a classic transaction that has limited concurrency and
which may thus produce an abort each time a concurrent update (add or remove)
is modifying concurrently any location of the data structure.

5 Mixing Several Semantics

Mixing semantics means providing multiple transactions of different semantics
to let the programmer choose the right semantics for each delimited region of
the program. As these transactions can potentially access concurrently the same
locations, it is crucial that one transaction does not alter the semantics of the
others.

More precisely, we consider the semantic of classic transactions, opacity, to
be the strongest one. Hence the novice can use exclusively the default semantics
for all transactions, making sure that the resulting program is correct. Never-
theless, the expert can use a relaxed semantics that preserves sequential code
(like elastic one) for some transactions and the classic one for others, to obtain
higher expressiveness and better performance. The challenge is to preserve the
semantics of all individual transactions. In the case of mixing elastic with classic
transactions the resulting correct histories should thus be equivalent to a se-
quential legal history of elastic sub-transactions and classic transactions, as long
as elastic sub-transactions result from consistent cuts (as required by the elastic
transaction semantics). Consequently, mixing additional semantics may become
rapidly challenging.

The key idea of mixing several semantics relies on providing various kinds of
transactions among which the programmer can choose the adequate one that
better matches its needs. More specifically, the programmer can start a transac-
tion that executes the default intuitive semantics unless the tx-begin call is given
some parameter, that serves as a hint to indicate the transaction semantics. With
mixed semantics, not only does the transaction remain an off-the-shelf paradigm
for novices, but it also gives control to the experts to boost the performance of
some transactions (Figure 8).

Fig. 8. Novice and expert programmers should both benefit from the simplicity and
flexibility of a mixed transactional model
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5.1 Combining Classic, Snapshot and Elastic Transactions

To go a step further in exploiting mixed transactions, here is an example of an
additional transaction semantics, called snapshot, in addition to the two pre-
existing ones, elastic and classic. This snapshot transaction semantics provides
a way for the programmer to implement an atomic snapshot operation that can
run concurrently with updating transactions (elastic or classic) modifying the
data structure in a complex way (even at distinct locations). This is typically
an appealing semantics to design an operation whose result depends on multi-
ple elements of the data structure, like a Java Iterator. As an example, a size
operation preserving sequential code and that is depicted in Algorithm 5 uses a
snapshot transaction.

Algorithm 5. Java pseudocode of the size() operation with snapshot transactions
1: public int size():
2: transaction(snapshot) {
3: int n = 0
4: Node〈E〉 curr = head
5:
6: while curr �= null do
7: curr = curr .getNext()
8: n++

9: return n
10: }

The key idea is for the snapshot to detect the locations that have been concur-
rently modified and to exploit multiversion concurrency control to bypass these
conflicts. Using a global counter and version numbers associated with location
values, the snapshot can detect at read time whether a location has been con-
currently updated by comparing its current version to the value of the global
counter at the time the snapshot started. If such a concurrent modification is
detected, the snapshot has to select an old value (with a lower version number)
of the overwritten location that is consistent with the start time of the snap-
shot transaction (i.e., higher than the value of the global counter at the time it
started).

More precisely, multiple versions must be maintained at each location by
every update transaction, be they elastic or classic—in our case two versions were
maintained, this was actually sufficient to speed up the performance significantly.
All update transactions create a backup value-version pair before overwriting
them. The snapshot transaction has simply to detect whether the location it
aims at accessing has a higher version than its upper bound ub to try getting an
older version that could let it commit. Naturally, the snapshot transaction may
have to abort if the older version is still too recent as no transactions keep track
of more than two versions here.
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Fig. 9. Throughput (normalized over the sequential one) of the mixed transactions,
the classic transaction and the collection package

5.2 Impact on Performance

The performance obtained when combining snapshot semantics in addition to
the elastic one on the previous collection benchmark is depicted in Figure 9.
The mixed transaction model performs 4.3× faster than the classic transaction
model, TL2, and improves the concurrent collection package by 1.9× on 64
threads. Thanks to the snapshot semantics that remedy the scalability issue
of the classic transactions, size operation in snapshot transactions commit more
frequently than in default transactions. The reason is that a snapshot size returns
potentially stale values that have been concurrently overwritten, while classic size
would abort. Even though the overhead of the polymorphic transactions makes
it slower than the concurrent collection package at low levels of parallelism, the
performance scales well with the level of concurrency up to the maximum number
of hardware threads we had at our disposal, and compensates the overhead effect
at high level of parallelism.

6 Concluding Remarks

The transaction abstraction is in essence a middleware paradigm that allows
multiple processes running on one or more processors (machines) to interact.
The transaction abstraction was proposed long ago and has constituted an active
area of research over the years.
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Yet, transactions have not been widely adopted in practical concurrent and
distributed programming and this is due, we believe, to their inherent cost and
limited concurrency. In short, expert programmers need an alternative to bypass
the simplicity of the concept and express their skills, potentially to obtain better
performance.

We argue for democratizing the concept by enabling the co-existence of differ-
ent semantics of it in the same application. Although a novice programmer will
still be able to exploit the simplicity of the transaction abstraction in its default
semantics, expert programmers would exploit, when possible, more expressive
semantics of relaxed transaction models to gain in concurrency. This raises new
challenges to guarantee that various semantics can cohabit smoothly in the same
system but promises to further leverage the transaction abstraction.
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Abstract. Today’s microblogging services such as Twitter have long
outgrown their initial designs as SMS-based social networks. Instead, a
massive and steadily-growing user population of more than 100 million is
using Twitter for everything from capturing the mood of the country to
detecting earthquakes and Internet service failures. It is unsurprising that
the traditional centralized client-server architecture has not scaled with
user demands, leading to server overload and significant impairment of
availability. In this paper, we argue that the divergence in usage models
of microblogging services can be best addressed using complementary
mechanisms, one that provides reliable messages between friends, and
another that delivers events from popular celebrities and media outlets
to their thousands or even millions of followers. We present Cuckoo, a
new microblogging system that offloads processing and bandwidth costs
away from a small centralized server base while ensuring reliable message
delivery. We use a 20-day Twitter availability measurement to guide our
design, and trace-driven emulation of 30,000 Twitter users to evaluate
our Cuckoo prototype. Compared to the centralized approach, Cuckoo
achieves 30-50% server bandwidth savings and 50-60% CPU load reduc-
tion, while guaranteeing reliable message delivery.

1 Introduction

In recent years, microblogging services such as Twitter have reached phenomenal
levels of success and become a significant new form of Internet communication
utility. Twitter, the most successful service, has more than 100 million users and
generates more than 65 million “tweets” per day [23, 29]. In addition, Twitter
usage peaks during prominent events. For example, a record was set during the
FIFA World Cup 2010 when fans wrote 2,940 tweets per second in a 30-second
period after a goal [21].

While originally designed as an online social network (OSN) for users with
quick updates, the usage of Twitter has evolved to encompass a wide variety
of applications. Twitter usage is so wide spread and pervasive that its traffic is
often used as a way to capture the sentiment of the country. Studies have used
Twitter traffic to accurately predict gross revenue for movie openings [9], even
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producing effective predictions for election results [12]. Still other projects have
demonstrated that Twitter traffic can be mined as a sensor for Internet service
failures [20] and even a real-time warning system for earthquakes [1].

In addition to these applications, Twitter usage by its users has also evolved
significantly over time. Recent studies have shown that while many users still
use it as a social communication tool, much of Twitter traffic today is communi-
cation from celebrities and personalities to their fans and followers [4, 17]. These
asymmetric communication channels more closely resemble news media outlets
than social communication channels. Because of the popularity of celebrities on
Twitter (e.g., Lady Gaga, Britney Spears, and Justin Bieber account for over
30 million followers), these accounts are generating a large amount of traffic and
placing tremendous load on Twitter’s servers.

These major sources of traffic have a very tangible impact on the perfor-
mance and availability of Twitter as a service. Despite the efforts to scale the
system, Twitter has suffered significant loss in availability from malicious at-
tacks and hardware failures [5, 8], and more frequently from traffic overload and
flash crowds [25, 30, 31]. As short-term solutions, Twitter has employed per-user
request and connection limits [11], as well as network usage monitoring and dou-
bling the capacity of internal networks [31], all with limited success. Given the
rapid and continuing growth of traffic demands, it is clearly challenging and likely
costly to scale up with the demands using the current centralized architecture.

In this paper, we explore an alternative architecture for popular microblogging
services such as Twitter. In our system, Cuckoo1, our goal is to explore designs
that leverage bandwidth and processing resources at client machines without
sacrificing service availability or reliable delivery of contents. One of our insights
is to recognize the two different roles these services play, those of an online so-
cial network and a news delivery medium. We use complementary mechanisms
to address the dual roles while minimizing resource consumption. In the social
network component, users are connected via mostly symmetric social links, and
have a limited number of connections. Here, we allow a “publisher” or creator
of a tweet to directly push the content to his (or her) friends via unicast. In
the news delivery component, content producers are typically celebrities or me-
dia outlets, each connected via asymmetric links to a large number of followers.
Given the large number of users with shared interests, we use gossip to provide
highly reliable and load-balanced content delivery. Moreover, Cuckoo’s deliv-
ery mechanisms support heterogeneous client access (e.g., mobile phone access)
which is becoming increasingly common in microblogging services [19].

To ensure consistency and high data availability, Cuckoo uses a set of cen-
tralized servers to augment client peers in a peer-assisted architecture. This
combination greatly simplifies data management challenges while reducing the
server load. From an economic perspective, a Cuckoo service provider is still
viable, because he (or she) will keep the master copies of all user contents, and
can still generate revenue, e.g., by using content-based ads.

1 We first outlined our idea in an earlier workshop paper [35].
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We have implemented a Cuckoo prototype and made its source code and
datasets publicly available2. We evaluated a small-scale deployment for 50 Twit-
ter users running on 5 laptops as a demonstration [33]. In addition, we have con-
ducted laboratory experiments using a detailed Twitter trace containing 30,000
users. We show that Cuckoo incurs 30-50% server bandwidth savings, 50-60%
server CPU reduction compared with its centralized ilk, as well as reliable mes-
sage delivery and efficient micronews dissemination between Cuckoo peers.

In summary, this paper makes three key contributions:
1. A novel system architecture for microblogging services to address the scala-

bility issues, which relieves main server burden and achieves scalable content
delivery by decoupling microblogging’s dual functionality components.

2. A detailed availability measurement of Twitter during a flash crowd event.
3. A prototype implementation and trace-driven emulation of 30,000 Twitter

users yielding notable bandwidth savings, CPU and memory reduction, as
well as reliable message delivery and efficient micronews dissemination.

2 Background and Related Work

With immense and steadily-growing popularity over recent years, microblogging
services have attracted considerable interests in the research community. We
provide some background and summarize the state of the art.

Microblogging Model. The common model of microblogging services is the
simplified publish-subscribe (Pub-Sub) model (c.f., [34]) based on the “follow”
operation. The microblogging model is deceptively simple: The user can pub-
lish tweets within a length limit of viewable text (e.g., up to 140 characters in
Twitter). The other users who have explicitly followed that user will receive all
his (or her) tweets, i.e., being a follower means that the user will receive all the
news from the followees. Currently, the microblogging model is implemented by
using näıve polling for detecting updates in the centralized architecture.

There are several prior works on Pub-Sub systems that abandon the use of
näıve polling, thus achieving high scalability and performance [22, 26]. Their
key idea is cooperative polling between dedicated middleware mediators, named
brokers. Microblogging differentiates from the traditional Pub-Sub systems by
the system architecture. In microblogging, there is no always-on broker that
collects events from publishers and sends notifications to subscribers. The key
problem of microblogging is how to directly deliver publishers’ tweets to their
followers with divergent traffic demands. Cuckoo shares the insight with the
prior works that the blind polling is the prime culprit of poor performance and
limited scalability. Instead, Cuckoo enables user clients to share tweets in the
peer-assisted fashion. On the other hand, Cuckoo interoperates with the current
polling-based web architecture, requiring no change to legacy web servers.

Microblogging Measurement and Analysis. Microblogging services are
widely recognized as online social network services for the explicit and implicit
2 Cuckoo source code and selected datasets can be found at http://mycuckoo.org/.

http://mycuckoo.org/.


Scaling Microblogging Services with Divergent Traffic Demands 23

social relations [11, 14, 16, 20]. For example, users exhibiting reciprocity (i.e.,
following each other) should be acquaintances, typical in OSNs. According to the
“follow” relations, Krishnamurthy et al. identify distinct groups of users, e.g.,
broadcasters and evangelists [16]. Different social groups have different social be-
havior. Ghosh et al. study the relations and restrictions on the number of social
links in microblogging, based on which a network growth model is proposed [11].
Java et al. report early observations of Twitter and analyze social communities
formed by users with similar interests [14]. On the other hand, some researchers
recently argue that microblogging, as exemplified by Twitter, serves more as
news media outlets than OSN services [4, 17, 27]. Due to the one-sided nature of
the “follow” relation, there are a small number of highly-subscribed users (e.g.,
celebrities and mass media) who have large numbers of followers and post far
more tweets than the other users. These users generate the greatest per-capita
proportion of network traffic and trend the trends.

One of Cuckoo’s design rationales is to separate microblogging’s dual compo-
nents, i.e., social network and news media. Cuckoo employs different mechanisms
towards scalable message delivery, gearing to the different dissemination models
of the two components. Moreover, Cuckoo takes advantage of the inherent social
relations to optimize system performance and information sharing.

Decentralized Microblogging and OSN Systems. There are several de-
centralized OSN systems proposed for different research concerns. FETHR [27]
is a recently proposed microblogging system that envisions fully decentralized
microblogging services. Its main idea is to let users directly contact each other
via HTTP and employ gossip for popular content propagation. However, as a
truly P2P system, FETHR cannot guarantee reliable data delivery since it does
not consider the asynchronism of user access. As a result, some tweets will not
get to users. Moreover, FETHR does not elaborate the gossip component nor
implement it in its prototype. Other practical issues such as client heterogeneity
support are also missing in FETHR. PeerSoN [2] is a prototype of P2P OSNs that
uses encryption to protect user privacy against OSN providers and third-party
applications. It uses dedicated DHT for data lookup, based on which direct user
information exchanging can be achieved. Vis-à-Vis [28] is based on the concept of
VIS, a kind of paid cloud-computing utility such as Amazon EC2 used for man-
aging and storing user data. VISs self-organize into multi-tier DHTs representing
OSN groups, with one DHT for each group. Safebook [6] is a decentralized OSN
that aims at protecting users’ security and privacy based on trust transitivity.

Cuckoo proposes a new system architecture tailored for microblogging
services. It consists of two overlay networks with different content delivery mech-
anisms. The delivery mechanisms support heterogeneous client access by differ-
entiating client types. On the other hand, since fully distributed P2P systems
have hardly achieved success in terms of availability and reliability, Cuckoo em-
ploys a set of servers as a backup database that ensures high data availability and
effectively eliminates the inconsistency due to the asynchronism of user access.
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Fig. 1. Twitter measurement: Service rejection (a) in time series (Jun. 4–18, 2010), (b)
in 24 hours; Response latency (c) in time series (Jun. 4–18, 2010), (d) in 24 hours

3 Measuring Availability at High Load

To provide concrete motivation for our work beyond the prior efforts, we con-
ducted measurement studies on current microblogging systems. Our study in-
cludes a 20-day Twitter availability and performability [34] measurement and a
user behavior analysis for over 300,000 Twitter users. In addition, we measure
the system scalability of the generic centralized microblogging architecture.

Availability and Performability of Twitter. We first conducted a measure-
ment study on the availability and performability of Twitter in terms of service
rejection rate and response latency. The study was set in NET lab in Göttingen,
Germany from 00:00, Jun. 4 to 23:00, Jul. 18, 2010, Berlin time (CEST), includ-
ing the period of World Cup 2010 in the same time zone, which is regarded as
Twitter’s worst month since October 2009 from a site stability and service outage
perspective [30]. We used JTwitter as the Twitter API to do the measurement.

For service rejection rate, we randomly selected a Twitter user and sent the
request for his (or her) recent 200 tweets to the Twitter site every 5 seconds. If
the Twitter site returns a 50X error (e.g., 502 error), it indicates that something
went wrong (over-capacity in most cases) at Twitter’s end and we count for
one service rejection event. Fig. 1(a) shows the average service rejection rate
per hour during our measurement period. We see that Twitter’s availability was
poor – the rejection rate was already about 10% in normal time. Moreover, the
flash crowd caused by FIFA World Cup made an obvious impact on service
rejection rate which increased from 10% to 20%. Since the flash crowd generated
a significant surge over Twitter servers’ capacity, the performance of the offered
service degraded tremendously. Fig. 1(b) reports the average rejection rate for
each hour in one day. We find that there existed some peak hours (e.g., 18:00 –
19:00) that had the worst performance in terms of service rejection.

For response latency, we measured both upload latency and download latency.
Upload latency refers to the interval between sending a tweet to the Twitter
site and receiving the ACK, while download latency is the interval between
sending the request and receiving the required contents. For one measurement
round, we first generated an artificial tweet by combining random characters in
an predefined alphabet, posted it on Twitter and recorded the upload latency.
Then, we requested the posted tweet from Twitter and recorded the download
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Fig. 2. User access patterns: (a) # of request messages to the servers; (b) Time differ-
ences of two adjacent tweets; (c) Incoming traffic load; (d) Outgoing traffic load

latency. Such round was repeated every 5 seconds. Similar as Fig. 1(a) and 1(b),
Fig. 1(c) and 1(d) shows the measured response latency of the Twitter service3.
No surprisingly, Twitter’s performability, in terms of response latency, was un-
satisfactory especially during World Cup with the download latency about 200
seconds and upload latency about 400 seconds. Twitter engineers also noticed
this outage and poor site performance [30, 31], their solutions include doubling
the capacity, monitoring, and rebalancing the traffic on their internal networks,
which do not scale well with the unprecedented growth.

User Access Pattern Analysis. To further study the server load according
to user access patterns of Twitter services, we analyze large-scale Twitter user
traces. We collected 3,117,750 users’ profile, social relations, and all the tweets
maintained on the Twitter site. Using 4 machines with whitelisted IPs, we used
snowball crawling that began with the most popular 20 users reported in [17]
using Twitter API. The crawling period was from Mar. 6 to Apr. 2, 2010. In this
paper, we focus on the user access patterns in the 1-week period from Feb. 1 to
Feb. 7, 2010. To simplify the problem and yet accurately represent the traffic pat-
terns of Twitter services, we consider two built-in Twitter’s interaction models:
post and request. The polling period is set as one minute according to the setting
options of common Twitter clients (e.g., Ambientweet, Gwibber, Osfoora) [34].
For session durations, we use the duration dataset provided in [13]. The details
of the above datasets and data processing are described in Section 5.1.

Fig. 2(a) shows the server load in terms of the number of received messages
on the server side. We can see that over 90% are request messages which make
up the dominating traffic proportion. Specially, at leisure time when users post
fewer tweets, the request messages almost occupy the whole traffic. One objective
of Cuckoo is thus to eliminate the unnecessary traffic caused by these polling
requests. Fig. 2(b) is the cumulative distribution function (CDF) of the time
differences between two adjacent tweets of each user. Although the burstyness
of human behavior leads to tweets with small time intervals, there are still 50%
of time differences larger than 1200 second and 20% larger than 24,000 second.
In the worst case that the polling requests are fully scheduled in these intervals,
the resource waste due to unnecessary traffic is tremendous.

3 The gaps in Fig. 1(c) is due to server cutoffs during the measurement period.
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We further analyze the traffic load by separating it into social network usage
and news media usage. The separation is based on the observations of previous
studies [4, 17, 27] which report that there are two kinds of users in microblogging:
social network users and news media outlets. We regard users having more than
1000 followers as media users and the others as social users. The threshold
1000 is chosen according to the homophily analysis in [17] which reports that
in Twitter only users with followers 1000 or less show assortativity, one of the
characteristic features of human social networks. There are 3,087,849 (99.04%)
social users and 29,901 (0.96%) media users among all users. Tweets posted by
media users are identified as news media usage while social users’ tweets are
regarded as social network usage. Fig. 2(c) shows the incoming traffic load in
terms of received messages. For a request message, we calculate the percentage
of media users among the requester’s followees as news media usage and the
rest percentage as social network usage. From Fig. 2(c), we find that the social
network usage occupies the dominant proportion of incoming traffic load – about
95% of incoming load is for social network usage while less than 5% is for news
media. Fig. 2(d) reports the outgoing traffic load in terms of replied tweets. For
each tweet within a reply message (reply to a request), we identify it into social
network or news media according to whether its publisher is a media user or a
social user. We can see from Fig. 2(d) that although news media usage holds
small proportion of server requests (Fig. 2(c)), it occupies a great proportion of
outgoing traffic load, with 1.66 times on average more than the proportion of
social network usage. Thus, the dual functionality components of microblogging
have divergent traffic patterns, and the mix of them at the same time makes the
system using a single dissemination mechanism hard to scale.

Scalability of the Generic Centralized Microblogging System. To study
the scalability of the generic centralized microblogging system, we treat Twit-
ter as a black box and reverse engineer its operations based on Twitter traces
because the details of Twitter’s implementation remain proprietary. Still, we
consider post and request as the main interaction models. Each user interaction
is implemented through one or more connections with centralized servers. For
example, to post a new tweet, a user opens a TCP connection with one server,
sends the tweet message, and then receives ACK to display. On the other hand,
users detect updates by periodically polling through established connections.

We use the Twitter trace described in the previous section to evaluate the
scalability of the centralized microblogging architecture. We employ Breadth
First Search (BFS) as the graph search algorithm with the start user Ustream who
has over 1,500,000 followers. We prepare 4 datasets for 10,000, 30,000, 50,000,
and 100,000 users respectively and prune the social links outside the datasets.
We set the polling period to one minute. We run 4 server programs on a Dell
PowerEdge T300, with four 2.83 Ghz quad-core 64-bit Intel Xeon CPU and 4GB
of RAM. To measure CPU and memory usage of the server machine, we use the
statistics provided by vmstat utility. For traffic usage, we use bwm utility to
record incoming and outgoing bandwidth in every 5 seconds.
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Fig. 3. Scalability of the centralized microblogging architecture: (a) CPU and memory
usage; (b) Traffic usage; (c) Service rejection rate; (d) Response latency

Fig. 3 demonstrates the limited system scalability of the centralized architec-
ture in terms of CPU and memory usage, traffic usage, service rejection rate,
and response time. For CPU usage, memory usage, and traffic usage (Fig. 3(a)
and Fig. 3(b)), we can find the linear growth of these metrics with the increasing
number of users. For example, the 50th percentile of CPU usage is 5.2%, 19.5%,
28.4%, and 47.9% for user scale 10,000, 30,000, 50,000, and 100,000 respectively.
Fig. 3(c) shows service rejection rate with different user scales. When user scale
is 10,000, the servers can handle all the requests even at peak time. Thus, the
server rejection rate is almost 0 for 10,000 users. For 30,000 users, it is difficult
for the servers to satisfy all the requests at peak time and the service rejection
rate is lower than 5%. But for 100,000 users, even in regular time, the servers are
overloaded so that the rejection rate is extremely high. Fig. 3(d) shows the CDF
of the round-trip response time of the service with different user scales. We can
see that the response latency is greatly impacted by the scale of users. When the
user scale is 10,000, over 90% of requests are satisfied within 100 ms. While the
user scale increases to 30,000, only 80% of requests have the response time less
than 100 ms. For 50,000 user scale, the servers have to reject most user requests
to avoid getting exhausted and keep response to limited number of requests.

In summary, we make three key observations from our measurement stud-
ies. First, the centralized architecture has limited scalability with the increasing
number of users. Second, the main server load and traffic waste are caused by
the polling requests. Third, the social network and news media components of
microblogging have divergent traffic patterns, which makes the system using a
single dissemination mechanism hard to scale. Thus, there is a significant oppor-
tunity to eliminate the server burden and traffic waste towards high scalability
by abandoning polling and decoupling the dual functionality components.

4 Design

In this section, we first present Cuckoo’s system architecture and explain how
Cuckoo is geared to the characteristics of microblogging services. Next, we de-
scribe the building blocks of Cuckoo, which put together the whole system.
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Fig. 4. Cuckoo: (a) System architecture; (b) Complementary content delivery

4.1 System Architecture

Decoupling the Two Components. The biggest reason that microblogging
systems like Twitter do not scale is because they are being used as both social
networks and news media infrastructures at the same time. The two components
of microblogging have divergent traffic and workload patterns due to their differ-
ent dissemination models. As discussed in Section 3, although the social network
component occupies more than 95% request load, the news media component
holds greater proportion of dissemination load, 1.66 times more than that of
the social network. On one hand, the social network component is made up of
most of users with limited numbers of followers. It is reported in [27] that half
of Twitter users have 10 or fewer followers, 90% have less than 100 followers,
and 95% have less than 186 followers. Moreover, social users do not generate
much per-capita traffic. The three-week Twitter trace in [27] shows that most
users sent about 100 messages during that period. On the other hand, the news
media component is initiated by a small number of highly-subscribed users and
then broadcasted to large numbers of other users. The study on entire Twitter-
sphere [17] shows that there are about 0.1% users with over 10,000 followers.
There are only 40 users with more than a million followers and all of them
are either celebrities or mass media. Besides, media users post tweets (named
micronews) much more frequently than social users. The correlation analysis
in [17] shows that the number of tweets grows by an order of magnitude for the
users with number of followers greater than 5000. Due to the sharp gap between
the dissemination models of microblogging’s two components, there is no single
dissemination mechanism can really address these two at the same time.

Cuckoo effectively addresses both dissemination models by decoupling the two
functionality components and using complementary mechanisms. Fig. 4(a) shows
the high-level architecture of Cuckoo which includes two kinds of logical overlay
networks formed by Cuckoo peers at the network edge. For the social network
component, a social network is formed where each publisher peer sends new
tweets directly to all its follower peers in the unicast fashion. For the news me-
dia component, Cuckoo peers with the same interest form a media network and
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use gossip to disseminate micronews, i.e., enabling followers to share micronews
with each other. The two overlay networks are geared to the two dissemination
models of microblogging’s dual components. For social users with limited num-
bers of followers, the one-to-one unicast delivery is simple and reliable. While for
news media, no single peer can afford delivering micronews to large numbers of
news subscribers. For example, in Twitter, Lady Gaga has more than 10.4 mil-
lion followers. If using unicast-like delivery, it will take at least several hours to
disseminate only one tweet, not to mention the overload of the sender. Thus, it
is necessary to let interested peers be involved in the micronews dissemination.
Fig. 4(b) demonstrates Cuckoo’s complementary content delivery mechanisms
corresponding to the two overlay networks. Besides, Cuckoo employs a set of
stable peers to form a DHT (Distributed Hash Table), e.g., [24, 36] that main-
tains all the users’ connection information (e.g., IP address, port) named node
handlers (NHs). Thus, distributed user lookup is realized: Firstly, a peer can
find any other user’s connection information in less than O(log(N)) hops on av-
erage in an N -node DHT. Secondly, we use DHT-based random walks to provide
efficient partner information collection for gossip dissemination.

Combination of Server Cloud and Client Peers. As shown in Section 3,
centralized microblogging systems such as Twitter impose high server load and
traffic waste, which makes centralized servers to be the performance bottleneck
and central point of failure. Thus, the traditional centralized client-server archi-
tecture is hard to scale. Meanwhile, truly decentralized P2P systems have earned
notoriety for the difficulties coping with availability and consistency, and thus
achieved limited success in the past. For example, FETHR [27] provides no guar-
antee on data delivery. The FETHR peer can receive tweets posted during its
online duration while missing most tweets posted at its offline time. The follow
operation will also be crippled if the potential followee is not online.

Cuckoo incorporates the advantage of both centralized and decentralized ar-
chitectures by the combination of a small server base (named server cloud) and
client peers (i.e., Cuckoo peers). In Cuckoo, the server cloud plays important
roles including ensuring high data availability and maintaining asynchronous
consistency for peers. Besides the content delivery on the two overlay networks,
the Cuckoo peers also upload their new tweets and social links to the server
cloud, based on which each peer performs consistency checking at bootstrapping
to detect missing events during its offline period. By abandoning näıve polling
and offloading the dissemination operation cost, the server cloud gets rid of the
main server load towards high scalability. On the other hand, the servers still
keep their original functions to support other operations which do not lead to
performance bottleneck such as tweet searching. On the rare occasion when the
server cloud is unavailable (e.g., outage [25], under attack [5]), Cuckoo peers
can still find and communicate with each other. Moreover, information loss in a
single location [8] can be easily recovered, since in Cuckoo both service providers
and users possess the data ownership. From the service providers’ perspective,
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Cuckoo lets them keep the same resources as in centralized systems, which is
the basis of their business. In addition, Cuckoo is backward-compatible with the
polling-based web architecture, requiring no special feature on the server side.

4.2 Social Relations

We describe how Cuckoo peers maintain the social relations to form the two
overlay networks, and how “follow” is operated to build these relations.

Social Relation Maintenance. In typical microblogging services, a user has
the following social relations: followee, follower, and partner. To form the social
network, each peer maintains the followee and follower information in its local
database. The follower information is maintained according to whether the peer
is a social user or a media user. The social user who has only a few followers
maintains all the followers’ information, while the media user with large numbers
of followers maintains only a logarithmic subset. Thus, the number of entries ei in
user i’s follower list can be presented as: ei = max(min(Fi, H), log(Fi)), where
Fi denotes the number of followers of user i, and H is the threshold to sepa-
rate social users and media users. To form the media network, the Cuckoo peer
maintains sets of partners corresponding to the media users it follows (partners
are only needed for media followees). Each Cuckoo peer collects and updates
partner information using the DHT-based random walk mechanism. Note that
the more people a user follows, the more information the user has to maintain
so as to join multiple dissemination groups, which to some extent suppresses the
behavior of evangelists (e.g., spammers or stalkers) [16].

Follow. The “follow” operations explicitly build the followee-follower relations
between user pairs, which forms the basis of the social network. To follow a
specific user, the Cuckoo peer first lookups the followee’s NH according to his (or
her) userId4 via the DHT. The DHT maintains all users’ NHs in the key-value
format (userId as key and NH as value). Then, the peer sends a follow request
that attaches its profile to the followee peer using the NH. There are 2 cases
according to whether the followee peer is online or not: (1) If the followee peer
is online, it receives the request and sends back a reply directly to the requester.
After receiving the reply, the follower sends a notification to the server cloud to
inform the built relation; (2) If the followee peer is offline, the requester submits
its willing to the cloud. The cloud checks the validity and replies the results.
Each Cuckoo peer checks the inconsistency between the follower list maintained
locally and the one maintained by the server cloud at online bootstrapping. If
there exist some new followers during its offline period, the peer sends replies as
compensation. The consistency checking does not require complete comparison
of the two follower lists. As long as the server cloud maintains users’ follower list
in reverse chronological timeline like Twitter, the Cuckoo peer is able to send
the cloud its last recorded follower’s userId and get back the new guys.

4 In Cuckoo, each user is assigned a unique userId by the server cloud at registration,
which simplifies the authentication and Id assignment.
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4.3 Unicast Delivery for the Social Network

When a user posts a new tweet, the microblogging service should guarantee that
all the users’ followers could receive that tweet. For the social network where
users’ social links are limit in size (e.g., a few hundred followers), serial unicast-
like content delivery is simple and reliable. The publisher peer tries to push the
newly posted tweet via direct unicast socket to each follower. This is achieved by
locally caching each follower’s latest node handler (NH). To ensure that followee
peers always keep the up-to-date NHs, a user informs all his (or her) followees
when changing the NH, e.g., in the case that the user accesses the service using
different devices in different places. Moreover, the user is required to update the
NH replicas in the DHT so that any other user can search up-to-date NHs.

The unicast-like delivery for the social network can ensure all the online follow-
ers to receive their followees’ new updates in time. However, for offline followers
being absent from the delivery process, they should regain the missing tweets
when re-entering the system. Cuckoo achieves this also by consistency checking,
i.e., each peer fetches the bunch of tweets posted at its offline period from the
server cloud at bootstrapping. Since tweets are maintained in the reverse chrono-
logical timeline, a new coming user’s missing parts can be efficiently detected
by giving his (or her) last departure time or the statusId5 of his (or her) last
received tweet. This checking process is also applicable for media users in the
media network. Note that the consistency checking is only used to detect missing
tweets and social links, not to check the NHs maintained in the DHT.

4.4 Gossip Dissemination for the Media Network

In the media network, media users cannot afford sending updates to all their
followers. In this case, Cuckoo uses gossip-based dissemination, i.e., enable in-
terested users to be involved in the micronews dissemination process. Gossip
information dissemination has been proved to be scalable and resilient to net-
work dynamics. The theoretical support provided in [15] proves if there are n
nodes and each node gossips to log(n) + c other nodes on average, the probabil-
ity that everyone gets the message converges to e−e−c

, very close to 1.0 without
considering the bandwidth constraint, latency, failure, etc. This result provides
a guideline for Cuckoo’s partner management, i.e., maintain the number of part-
ners (called fanout) to be logarithmic of the number of followers.

To discovery online partners in case of churn, we design a DHT-based partner
collection mechanism which is elaborated in [34]. We sketch our basic idea as
follows. The joining peer picks a random nodeId X and asks a bootstrap node
to route a special hello message on the DHT using X as the destination key.
The hello message announces the new peer’s presence as well as its interests on
media users (i.e., its media followees’ userIds). This hello message is routed
to the DHT node with nodeId numerically closest to X . Meanwhile, the nodes
along the DHT route overhear the message and check the new node’s interests.
In this way, the stable nodes in the DHT construct probabilistic follower indices

5 In Cuckoo, each tweet is bounded to a unique statusId.
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of media users. To look for new online partners of a media user, a Cuckoo peer
uses DHT-based random walks [3] to collect partners over the DHT topology
by checking these indices. The DHT-based random walk ensures that nodes in
the DHT are visited only once during a collection process. Since the media users
have high popularity, the random walk-based collection is efficient [34].

Cuckoo adopts the simple “infect and die” model [7] for micronews dissem-
ination. Peers, once infected, remain infectious for one round precisely, before
dying, i.e., the peer followed a media user gossips each of the followee’s tweet
(i.e., micronews) exactly once, namely after receiving that tweet for the first
time, but will not further gossip even when receiving subsequent copies of the
same tweet. Initially, the media user sends a gossip message containing the mi-
cronews to a subset of its online followers. Upon receiving the gossiped message,
the Cuckoo peer determines whether it has received this micronews or not by
checking the statusId of the tweet. For a new tweet, the peer saves it locally
and continues gossiping to the log(n) + c partners, where n is the number of all
the online followers of the media user. Otherwise, the peer discards the message
and takes no action. In this case, the micronews is disseminated within the cir-
cle of interested peers, i.e., the followers. The number of gossip rounds R, i.e.,
the network hops necessary to spread a micronews to all the online followers re-
spects the equation [7]: R = log(n)

log(log(n)) +O(1), which shows that it takes at most
a logarithmic number of steps for a micronews to reach every online follower.

4.5 Support for Client Heterogeneity

User clients in deployed microblogging systems are heterogenous with different
bandwidth, energy, storage, processing capacity, etc. For example, the CEO of
Twitter recently stated that over 40% of all tweets were from mobile devices, up
from only 25% a year ago [19]. Thus, it is important to support client hetero-
geneity in Cuckoo, considering the economic burden of increased load on mobile
peers such as higher cost for network usage (due to expensive or limited mobile
data plans), and higher energy consumption resulting in reduced battery life.

Cuckoo differentiates user clients into three categories named Cuckoo-Comp,
Cuckoo-Lite, and Cuckoo-Mobile. Cuckoo-Comp is designed for stable nodes
which reside in the system for a relatively long time (more than 6 hours per
day in our experiments). These stable Cuckoo-Comp peers construct the DHT
to support user lookup and partner collection. The stable nodes are only a small
subset of all the nodes (about 15% in our dataset), but their relatively long life
spans allow them to keep the DHT stable with low churn. Several mechanisms
can be integrated to identify stable nodes in overlay networks, e.g., the nodes
already with higher ages tend to stay longer [32]. Cuckoo-Lite is designed for
lightweight clients (e.g., laptops with wireless access) while Cuckoo-Mobile is
for mobile devices (e.g., smart phones). Neither of them joins the DHT and the
main difference between them is that Cuckoo-Mobile peers do not participate in
the gossip dissemination process in the media network while the Cuckoo-Lite do
(as the Cuckoo-Comp). Since mobile devices have energy and bandwidth con-
straints, they have no incentive to further forward the received messages. Thus,
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we regard the Cuckoo-Mobile peers as leaf nodes. We call both Cuckoo-Comp
and Cuckoo-Lite peers as gossip nodes that can use heterogeneity-aware gossip
(e.g.,[10]) to tune the fanout. The dissemination is initiated from the publisher,
gossiped through the Cuckoo-Comp and Cuckoo-Lite peers, and simultaneously
spread to Cuckoo-Mobile peers. The details of dissemination with heterogenous
clients can be found in [34] including the solutions to support text message based
phone clients and clients behind NATs (Network Address Translations).

4.6 Message Loss Detection and Security Issues

Detecting Lost Tweets. While Cuckoo’s gossip-based probabilistic dissemi-
nation achieves high resilience to node failures as well as high coverage rate, it
provides no guarantee that each tweet is reached to all the followers due to the
intrinsic uncertainty brought by the randomness. Thus, we need a mechanism
to detect which tweet fails to arrive. Cuckoo exploits the statusId to solve this
problem. In Cuckoo, each tweet is bounded to a unique statusId. The statusId
is made up of two parts. The prefix is the userId of its publisher and the postfix
is a long sequence number maintained by the publisher’s counter. By checking
statusIds of received tweets, the Cuckoo peer can easily identify gaps between
the sequence numbers of statusIds. Then, the Cuckoo peer could fetch the lost
tweets from either other peers by content query [34] or the server cloud.

Security. The presence of malicious users (e.g., attackers, spammers) requires
additional components to safeguard against various kinds of security threats.
Although the main concern of this paper is not on the security aspect, we intro-
duce the basic ideas of Cuckoo’s security components in this section and refer
the details to [34]. To defend against spam distributed by the malware that
impersonate normal users, the digital signature based on asymmetric key cryp-
tography is attached within each message for authentication. Moreover, these
digital signatures are capable of defending against violating message integrity
by altering the contents of tweets. For DoS attacks and content censorships that
target on crippling the server cloud [5], Cuckoo exploits its distributed nature:
peers can still deliver/disseminate messages via the social/media network, and
mark the blocked tweets for further uploading. For the brute-force attacks where
malicious nodes generate unwanted traffic to harass normal peers’ operations,
trust and reputation mechanisms can be employed. The social relations main-
tained on each peer provide nature trust relationships to build the reputation
model, based on which unwanted communications can be thwarted [18].

5 Experimental Evaluation

To evaluate Cuckoo’s performance, we run Cuckoo prototype using trace-driven
emulation of the Twitter trace containing 30,000 users which reconstructs the
part of Twitter’s traffic patterns from Feb. 1 to Feb. 7, 2010. We evaluate Cuckoo
in two aspects: the performance gain of the server cloud, as well as the perfor-
mance of message sharing and micronews dissemination between Cuckoo peers.
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Fig. 5. Dataset: (a) Number of followe{e, r}s; (b) Session duration; (c) Online time

5.1 Experiment Settings

Dataset. We use the raw dataset described in Section 3 to evaluate Cuckoo’s
performance. The raw dataset contains 3,117,750 users’ profiles, social links,
and all the tweets maintained on the Twitter site6 from Mar. 6 to Apr. 2, 2010.
Still, we focus on user access patterns during the 1-week period from Feb. 1 to
Feb. 7, 2010. We use BFS with the start user Ustream to create the experiment
dataset containing 30,000 users’ information to match the capacity of the emu-
lation testbed. For social links, we prune the irrelevant links outside the dataset.
Fig. 5(a) shows the CDF of users’ followee/follower number. We separate the
social users and media users according to each user’s follower number with the
threshold H as 100 instead of 1000 in Section 3 due to the social link pruning,
and get 29,874 (99.58%) social users and 126 (0.42%) media users. We use the
OSN session dataset provided by [13] to conservatively emulate Cuckoo users’
session durations because so far no microblogging service provides user session
information or user online/offline status information. Fig. 5(b) plots the CDF of
the average session duration of each user and the CDF of all the durations. We
classify the three types of Cuckoo users according to their daily online time, i.e.,
Cuckoo-Comp users are those whose daily online time exceeds 360 minutes, and
Cuckoo-Mobile users spend less than 60 minutes online per day, and the others
are Cuckoo-Lite users. Fig. 5(c) shows the CDF of the daily online time and
the classification. We can see that about 50% Cuckoo peers are Cuckoo-Mobile
clients. The details of data processing and dataset analysis can be found in [34].

Implementation. We have built a Cuckoo prototype using Java. Our imple-
mentation comprises both the Cuckoo peer and the server cloud. The prototype
of Cuckoo peer adds up to 5000 lines of Java code including the three types of
clients with different software components. We use Java socket to implement end-
to-end message delivery, and define different types of application-layer messages.
For local data management, we use XML to store node states and social links
including followee/follower profiles, followee tweets, and self-posted tweets. We
choose Pastry [24] and its implementation FreePastry as our overlay infrastruc-
ture for Pastry’s good properties (e.g., locality awareness) as well as FreePastry’s
platform independence (Java source code). Note that Cuckoo does not rely on
any Pastry’s special feature (e.g., leaf set), so it is applicable for any structured

6 Twitter only reserves about 3000 tweets per user and discards the previous tweets.
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Fig. 6. Resource usage of the server cloud in time series (from Feb. 1 to Feb. 7, 2010):
(a) CPU; (b) Memory; (c) Incoming traffic; (d) Outgoing traffic

overlay that supports the key-based routing. The server cloud prototype adds up
to 1500 lines of Java code. It uses plain text files to store all users’ information.

Deployment. We deploy 30,000 Cuckoo peers without GUI on 12 machines
including 3 Dell PowerEdge T300, each with four 2.83 Ghz quad-core 64-bit Intel
Xeon CPU and 4 GB RAM, and 9 Dell Optiplex 755, each with two 3.00 Ghz Intel
Core 2 Duo CPU and 3.6 GB RAM. We deploy four servers to build the server
cloud on another Dell PowerEdge T300 machine and let them share storage, so
that these servers have no inconsistency problem. We locate these machines into
two LANs connected by a 10 Gb/s Ethernet cable. We run the Cuckoo peers
based on the 1-week Twitter trace described in the previous section. Still, we use
vmstat utility to measure CPU usage and memory usage for the cloud machine,
and bwm utility to record server bandwidth in every 5 seconds.

5.2 Server Cloud Performance

To characterize the performance gain of Cuckoo, we compare the performance of
the server cloud under the Cuckoo architecture with that under the traditional
client-server architecture (c.f., Section 3), denoted as “C/S-Arch”. Remember
that Cuckoo is fully compatible with the current polling-based web architecture,
i.e., Cuckoo does not require any extra functionality on the server side. Thus, the
server cloud implementations for Cuckoo and C/S-Arch are exactly the same. For
fair comparison, both of them use the same machine and system configuration.

Resource Usage. We characterize the resource usage of the server cloud in
Cuckoo compared with that in C/S-Arch in terms of CPU usage, memory usage,
as well as incoming and outgoing bandwidth usage. Fig. 6(a) shows the server
cloud’s CPU usage of Cuckoo and C/S-Arch in time series. We can see that
Cuckoo achieves notable reduction of CPU usage compared with C/S-Arch –
the server cloud in Cuckoo consumes 60% less CPU than C/S-Arch, with the
average value being 5%. The main usage of CPU is for the database lookup
and I/O scheduling. Since the server cloud in Cuckoo receives far less requests
than that in C/S-Arch, the CPU usage reduction is not surprising. Fig. 6(b)
shows the server cloud’s memory usage of Cuckoo and C/S-Arch in time series.
Compared with CPU, memory usage is more sensitive to the number of requests.
As a result of message overhead savings, Cuckoo effectively reduces the memory
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Fig. 7. Response latency (a) in time se-
ries, (b) in CDF

Fig. 8. Percentage of received tweets (a)
in time series, (b) in CDF

usage compared with C/S-Arch. The server cloud of C/S-Arch consumes 50%
of memory at peak time and 30% at leisure time, while the Cuckoo cloud’s
memory usage is around 25%. In summary, Cuckoo achieves about 50%/16%
of memory usage reduction for the server cloud at peak/leisure time. Fig. 6(c)
and Fig. 6(d) demonstrate the server cloud’s incoming and outgoing bandwidth
usage of Cuckoo and C/S-Arch in time series. The bandwidth usage is directly
decided by the message overhead. The larger volume of messages the server cloud
receives/sends, the more bandwidth is consumed. Cuckoo effectively reduces the
incoming and outgoing bandwidth consumed, with about 120 KB/s, 70 KB/s at
peak, leisure time for incoming bandwidth, about 200 KB/s, 90 KB/s at peak,
leisure time for outgoing bandwidth. The incoming, outgoing bandwidth for C/S-
Arch is 300 KB/s, 400 KB/s at peak time and 400 KB/s, 100 KB/s at leisure
time. Thus, the server cloud of Cuckoo saves about 50% of bandwidth consumed
for both incoming and outgoing traffic compared with that of C/S-Arch.

Response Latency. We examine the response latency provided by the server
cloud of Cuckoo and C/S-Arch. Fig. 7(a) shows the response latency in time
series and Fig. 7(b) shows the CDF of all the recorded response latency. We can
see that at leisure time, the response latency of Cuckoo and C/S-Arch is similar
(about 50 ms). However, at peak time, the response latency of Cuckoo is far less
than that of C/S-Arch. The response latency of Cuckoo is relatively smooth,
being around 50 ms in most time, while at peak time the response latency of
C/S-Arch is more fluctuant and higher that can reach 100 ms or more. Since in
Cuckoo the peak-valley difference of message overhead is smaller than that in
C/S-Arch in terms of CPU, memory usage as well as bandwidth consumed, even
at peak time the server cloud has enough resources to satisfy all the requests
and posts. In contrast, at peak time, the server cloud of C/S-Arch has too much
burden so that it can hardly satisfy all the concurrent requests at the same time.

5.3 Cuckoo Peer Performance

In this section, we characterize the performance of Cuckoo peers. Each peer
maintains a message log that records all the received, sent, and forwarded mes-
sages. By collecting these logs from Cuckoo peers, we analyze the performance of
message sharing. Moreover, the message logs provide the detailed information of
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disseminated messages including statusIds of tweets, network hops, and redun-
dancy. Based on these, we analyze the performance of micronews dissemination.

Message Sharing. Fig. 8 shows the performance of message sharing between
Cuckoo peers. Fig. 8(a) shows for each peer, the percentage of tweets received
from other Cuckoo peers other than from the server cloud, while Fig. 8(b) is the
CDF of the percentages. According to Fig. 8(a) and 8(b), around 30% users get
more than 5% of their overall subscribed tweets from other peers, and around
20% get more than 10%. The performance of message sharing is mainly decided
by two aspects: users’ access behavior and users’ online durations. Generally
speaking, the more overlapped behavior the followee-follower pairs have, the
higher probability that follower peers could receive tweets from followees. For
online durations, the longer the user stay online, the higher probability he (or
she) can receive tweets from other peers. In the extreme case that a user keeps
online all the time, he (or she) cannot miss any subscribed tweet without fetching
from the server cloud. We should note that the duration dataset used in our
experiments leads to a pessimistic deviation of the message sharing performance.
Due to the centralized architecture of existing OSN services, the OSN operators
employ session timeout to reduce users’ polling so as to mitigate server load. In
our duration dataset, the timeout is set as 20 minutes (see the vertical jump in
Fig. 5(b)) [13], i.e., a user session is supposed to be disconnected as long as the
user has no interaction (e.g., post tweets, follow friends) with the server in 20
minutes. However, the situation is completely opposite in Cuckoo where users are
highly encouraged to stay online as long as they can. The long online durations
of users can significantly improve the performance of message sharing without
performance degradation of the server cloud (no polling any more). Thus, we
can expect the better performance of message sharing in Cuckoo.

Micronews Dissemination. We evaluate the performance of micronews dis-
semination in the media network. Media users who have more than 100 followers
use gossip to disseminate tweets, i.e., micronews (see Fig. 5(a)). In our experi-
ment, each Cuckoo-Comp or Cuckoo-Lite peer (i.e., gossip node) maintains the
fanout f = T for one media followee, where T = log(n) + 2. In addition, due to
the mobile spreading mechanism [34] that delivers tweets to leaf nodes, a gossip
peer is likely to maintain some Cuckoo-Mobile partners. Since leaf nodes occupy
50% of all the nodes in our dataset (Fig. 5(c)), a gossip peer maintains at most 2T
partners for gossip and mobile spreading. For instance, the media user Ustream

with 29,927 followers sends no more than 24 messages for each dissemination pro-
cess. Fig. 9 demonstrates the performance and overhead of Cuckoo’s micronews
dissemination in terms of coverage, network hops, and redundancy. The cover-
age and redundancy are conflict with each other impacted by the fanout. Larger
fanout leads to higher coverage while imposing higher redundancy. Thus, the
fanout should be chosen carefully to tradeoff the two metrics.

For the ease of presentation, we select three typical media users to illustrate
the dissemination performance in terms of coverage rate. Fig. 9(a) shows the
coverage rate of each dissemination process in time series. In this figure, the
media user Ustream, Etsy, jalenrose with 29,927, 6,914, 696 followers publishes
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Fig. 9. Micronews dissemination: (a) Coverage; (b) Average network hops; (c) Coverage
rate with different proportion of mobile nodes; (d) Average redundant messages

61, 59, 117 tweets respectively in the one-week period. We can see from the
CDF that around 85% dissemination processes cover more than 92.5% of all
the online followers of the media users, with the average coverage rate equal to
96.7%. All the dissemination processes of the three media users have coverage
rate higher than 70%, and there is only few process with coverage rate lower
than 80% due to the uncertainty of gossip and user asynchronism. Fig. 9(b)
shows the CDF of the network hops of tweets received by all the users. We
compare the network hops of valid tweets (i.e., tweets received for first time)
with those of redundant (marked as “Redt” in Fig. 9(b)) tweets, as well as the
hops of valid tweets with doubled fanout, i.e., f = 2T . We can see that 90%
of valid micronews received are within 8 network hops, while redundant tweets
use more hops to reach the followers. On the other hand, increasing fanout
reduces limited network hops of dissemination. With f = 2T , each user only
reduces less than one hop on average to receive micronews, while the partner
maintenance overhead is doubled. We further study the performance of Cuckoo’s
client heterogeneity support by tuning the proportion of Cuckoo-Mobile peers
among all the nodes. Fig. 9(c) shows the average coverage rate of micronews
dissemination with different mobile proportion. According to the figure, Cuckoo
achieves stable dissemination performance in terms of coverage rate under client
heterogeneity. Even when the mobile proportion reaches 80%, the dissemination
can still achieve over 90% coverage. Nevertheless, when the mobile proportion is
high, the high dissemination coverage is based on the high overhead of Cuckoo’s
gossip nodes: each gossip node is likely to maintain and spread micronews to
extra ( ρ

1−ρ )×T leaf nodes, where ρ is the proportion of Cuckoo-Mobile peers [34].

Client Overhead. In Cuckoo, the client overhead for message delivery is twofold:
outgoing traffic overhead and incoming traffic overhead. The outgoing traffic
overhead is bounded according to the delivery/dissemination mechanisms. The
overhead of unicast delivery is n-tweet sending per process, where n is the number
of online followers. For gossip dissemination, the overhead is f -tweet sending per
process where f is the fanout. The incoming traffic overhead is mainly caused by
receiving redundant messages. Fig. 9(d) shows the CDF of average redundant
messages received by each peer for one dissemination process, compared with
that of f = 2T . Moreover, we pick out the mobile users (i.e., Cuckoo-Mobile)
and show their redundancy. According to the figure, around 89% of users receive
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less than 6 redundant tweets for one dissemination process while 80% of mo-
bile users among them receive less than 6, which is of acceptable overhead due
to the small size of tweet messages. On the other hand, the increase of fanout
causes larger redundancy. For f = 2T , more than 65% of users receive more
than 6 redundant tweets, while the increase of coverage rate is trivial (less than
1%). Other client overhead includes the overhead for DHT maintenance (only for
Cuckoo-Comp peers) and partner maintenance (e.g, announcement, discovery).

6 Conclusion

We have presented Cuckoo, a novel system architecture designed for scalable
microblogging services. Based on the observation of divergent traffic demands,
Cuckoo decouples the dual components of microblogging services. We use com-
plementary mechanisms for reliable content delivery while offloading process-
ing and bandwidth costs away from a small centralized server base. We have
prototyped Cuckoo and evaluated our prototype using trace-driven emulation
over 30,000 Twitter users. Compared with the centralized architecture, Cuckoo
achieves notable server bandwidth savings, CPU and memory reduction, while
guaranteeing reliable message delivery. In short, Cuckoo provides good perfor-
mance for microblogging both as a social network and as a news media.
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Abstract. Mobile devices are increasingly used for social networking applica-
tions, where data is shared between devices belonging to different users. Today,
such applications are implemented as centralized services, forcing users to trust
corporations with their personal data. While decentralized designs for such appli-
cations can provide privacy, they are difficult to achieve on current devices due to
constraints on connectivity, energy and bandwidth. Contrail is a communication
platform that allows decentralized social networks to overcome these challenges.
In Contrail, a user installs content filters on her friends’ devices that express her
interests; she subsequently receives new data generated by her friends that match
the filters. Both data and filters are exchanged between devices via cloud-based
relays in encrypted form, giving the cloud no visibility into either. In addition to
providing privacy, Contrail enables applications that are very efficient in terms of
energy and bandwidth.

1 Introduction

The emergence of powerful smartphones and ubiquitous 3G connectivity has led to a
number of new mobile applications. Many of these applications are centered on social
networking, where users on mobile devices want to selectively consume content gener-
ated by their friends’ devices. For example, Alice wants to receive pictures taken by her
friends in which she is tagged, view status updates by her friends mentioning the movie
“The Social Network”, and be notified of her child’s location if he strays too far from
home.

Today, such applications exist in the form of centralized services such as Facebook,
FourSquare or Flickr; new content generated by a device is first uploaded to a central
server, which then selectively redistributes it to other devices. A centralized version
of the child-tracking application would have the child’s phone periodically update a
central server with his location; the server would then notify Alice if the location is
outside bounds specified by her. Centralized solutions are simple and efficient, allowing
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a device to upload data just once to the cloud in order to share it with multiple recipients,
without requiring any of them to be online at the same time.

However, centralized solutions come at the cost of user privacy. Individuals are
forced to trust corporations to not misuse their data or sell it to third parties. They
must also trust companies to guard their data against malicious hackers or repressive
governments. These concerns are amplified by the very personal nature of data gen-
erated on mobile devices. In the example of Alice’s location-tracking application, the
central server knows both the current location of her child as well as the location of Al-
ice’s home. While privacy requirements are subjective and vary from person to person,
today’s technology offers a stark choice: give up privacy or stay offline.

In contrast, decentralized designs can offer better privacy to end-users. Since our fo-
cus is on privacy, we use the term ‘decentralized’ to refer to any system where a user’s
data can be viewed unencrypted only on trusted devices, and not at any intermediate
point in the network. We expect such systems to execute application logic exclusively
on edge devices, using encrypted channels between devices to coordinate across them.
Decentralized designs for privacy-aware social networks have been explored in the con-
text of wired end-hosts [1,3].

Unfortunately, implementing decentralized applications on modern smartphones is
challenging. At a basic level, getting messages from one device to another can be sur-
prisingly difficult; smartphones and the wireless 3G/4G networks they run on are de-
signed for simple client-server interactions, not inter-device communication. Assuming
smartphones can somehow exchange messages, a more complex challenge for decen-
tralized applications relates to minimizing communication, a crucial goal in the context
of battery limitations and bandwidth caps.

In this paper, we present Contrail, a communication platform that enables efficient,
decentralized social networks on smartphones. At the heart of Contrail is a simple
cloud-based messaging layer that enables basic connectivity between smartphones, al-
lowing them to efficiently and securely exchange encrypted data with other devices.
Over this messaging layer, Contrail implements a novel form of publish/subscribe that
uses sender-side content filters to minimize bandwidth and energy usage while preserv-
ing privacy. Additionally, Contrail provides mechanisms that are critical for reducing
the energy and bandwidth footprint of applications, such as the ability to flag in-flight
data as expired or obsolete.

Contrail’s content filters allow devices to selectively receive subsets of data produced
by other devices. When Alice wants some data from Bob – for example, all photos taken
by Bob in Seattle – she attempts to install a content filter on his smartphone expressing
her interest. If Bob agrees to install this filter on his device (he can choose to decline
the request), all subsequent photos taken by him in Seattle are routed to Alice’s phone.
Similarly, Alice could install a filter on her child’s phone expressing her interest in
his location if he leaves a certain bounding area. Content filters support a wide range of
social network applications, including location-based services, photo and video sharing,
message walls and social games.

Contrail is implemented on the Windows Azure cloud platform and on Windows
Mobile 6.5 devices. Our evaluation shows that this implementation offers latency and
throughput between edge devices that is limited only by current 3G network speeds.
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We have also implemented several social network applications on Contrail, including
location-tracking and photo-sharing. This paper makes the following contributions:

– We describe the challenges faced in implementing a decentralized social network
on smartphones, and translate these into a set of requirements for a communication
platform.

– We describe the design of the Contrail system, which combines the novel idea of
sender-side content filters with other techniques to enable efficient social networks
on smartphones.

– We present an implementation of Contrail on Windows Azure and Windows Mobile
6.5, and evaluate its performance.

2 Problem Statement

Our primary goal is to enable decentralized social network applications on smartphones.
As described, we expect such applications to obtain privacy by placing logic at edge
devices and coordinating via encrypted channels. In this section, we elaborate on the
challenges such applications face.

We use the child-tracking application as a running example. Consider a simple im-
plementation of this application — once every five minutes, the child’s (let’s call him
Junior) device generates a location update, encrypts it, and sends it to Alice’s phone.
On Alice’s phone, the update is decrypted and then checked against predefined bounds
(that correspond to Alice’s home, for example). If Junior is out of bounds, an alarm
is triggered on Alice’s phone. This implementation is decentralized – no central server
sees Junior’s location or Alice’s interests – and consequently offers privacy.

As we mentioned, the first challenge faced in building such an application is basic
connectivity: Junior’s phone can’t easily send messages to Alice’s phone. 3G/4G net-
works do not usually support incoming TCP connections. Even when they do, smart-
phones are disconnected more often than not; devices can be in low-signal areas, run
out of battery, have power-aware radios that sleep intermittently, or simply be turned
off. In fact, two devices that wish to communicate with each other may never be online
simultaneously. As a result, conventional tunneling solutions used in wired networks do
not translate well to this setting.

One option for connectivity is to use existing solutions meant for decoupled commu-
nication, such as SMS or e-mail. Junior’s phone can send its current location to Alice’s
phone inside an e-mail. Since SMS and e-mail use centralized servers only as “dumb”
message relays, their payloads can be encrypted, offering private communication chan-
nels between devices. However, these mechanisms are designed for human-readable
content, and can be slow, bulky and inflexible when used as a general message transport.

More fundamentally, transports such as e-mail or SMS offer no support for building
efficient social networks on smartphones. To understand this point, we outline a number
of key dimensions of efficiency. We also illustrate how the location-tracking application
(implemented over e-mail) fails to be efficient on each count.

Download Efficiency: A device should only download data it is interested in. Alice’s
phone receives a constant barrage of updates from Junior’s phone even when he’s at
home, draining her battery and using up bandwidth.
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Upload Efficiency: A device should only upload data if some other device is interested
in it. Junior’s phone continuously uploads location updates even when he’s at home,
using up energy and bandwidth.

Multicast Efficiency: A device should upload data only once for multiple recipients.
Bob wants to know where Junior’s phone is, as well. If Junior’s phone sends separate
messages to Bob and Alice, it now drains even faster and uses up more bandwidth.

Semantic Efficiency: A device should only download data that is not expired or ob-
solete. When Alice turns on her phone after keeping it switched off for a meeting, she
receives a flood of location updates from Junior’s phone, even though she only cares
about his last location.

Some of these properties (such as upload and download efficiency) can be achieved
via extra application logic, while others (such as multicast and semantic efficiency)
require explicit hooks from the transport layer. Clearly, the simple decentralized im-
plementation of the location-tracking application that uses e-mail as a transport fails
to offer any of these efficiency properties (except multicast efficiency, since a single
e-mail can be uploaded once for multiple recipients). In contrast, a purely centralized
solution does not provide privacy, but does offer all the efficiency properties (except
upload efficiency).

Required is a transport layer that makes it trivial for applications to achieve all
four efficiency properties while also providing decoupled connectivity and privacy. In
essence, these efficiency properties amount to ensuring that data is only uploaded and
downloaded by devices when absolutely necessary. For a transport layer to assist ap-
plications in achieving this goal, it has to understand application-level requirements; in
other words, the application has to specify to the transport layer which devices require
what data.

Why not use existing Pub/Sub implementations? Publish/subscribe interfaces are
a natural fit for this problem. In a pub/sub system, the application running on each node
subscribes to specific data; for example, a server might wish to receive stock quotes
of MSFT if it is above $25. Subsequently, data published by other nodes — such as
updates to the MSFT stock price — is routed selectively to other nodes based on their
subscriptions.

Unfortunately, existing pub/sub implementations do not provide the guarantees we
need to build decentralized social networks. Pub/sub systems typically filter data — i.e.,
match data to subscriptions — at centralized servers, in which case they do not provide
privacy. Alternatively, they filter data at the edge receivers, in which case they cannot
provide the upload and download efficiency properties; data must be uploaded by the
sender and downloaded by the receiver before it can be determined if the receiver really
wants it.

More generally, an important goal of publish/subscribe systems is anonymous com-
munication, where senders can transmit data to interested receivers without having to
know and enumerate their identities. In contrast, we are interested in secure, private
communication between trusted nodes. This leads us to make very different design
choices from current pub/sub systems, as will become clear in the following sections.
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3 Design of Contrail

Here, we provide a high-level description of Contrail’s design. We describe the two
main mechanisms in Contrail – sender-side filters and cloud relays – and explain how
they provide the properties enumerated in the previous section.

3.1 Sender-Side Filters

The Contrail universe consists of users, the devices belonging to those users, and cloud-
based relay servers. In a brand new instance of Contrail, no device sends or receives
messages; from this starting point, we progressively describe how communication oc-
curs. Two kinds of messages exist in Contrail — filter installation requests and data
messages. First, we describe when and why these messages are sent between devices;
later, we will describe how they are sent.

A Contrail filter is simply an application-defined function that accepts some unit of
data as input and returns true or false. Filters are installed by one device (we call this
the consumer device) on another device (the producer device). Once a filter is installed
on the producer device, it is evaluated by that device on any new data; if it matches,
that data is transmitted to the consumer device. Filters are application-defined; for ex-
ample, they might check if GPS coordinates lie within some area, test photograph tags
for equality with some string, or scan status updates for some keyword. For ease of
exposition, we assume that there is only one application running on the devices; later,
we will describe multiplexing mechanisms.

A device can attempt to install a Contrail filter on some other device by sending a
filter installation request. The request only reaches the producer device if it includes the
consumer device in a white-list. This is similar to users ‘adding’ each other on conven-
tional social networks; for example, for Alice’s phone to install a filter on Bob’s phone,
Bob would have to include Alice’s phone (or, using a wildcard, any of her phones) on
the white-list of his phone (or all of his phones). This allows Alice’s device to request
filter installations on his device.

The filter installation succeeds only if the producer device accepts the request. On
the producer device, incoming filter installation requests are relayed to the application,
which decides whether to accept them or not (possibly based on user input). Once a
filter is installed, data matching it is allowed to travel back from the producer device to
the consumer device.

Contrail’s content filters give us privacy, since the filtering of data occurs on trusted
edge devices, not central servers. They also give us upload and download efficiency; a
device only uploads data matching a filter installed on it by another device. Conversely,
it only downloads data matching a filter installed by it on another device.

3.2 Cloud Relays

Now we describe the mechanics of how messages (filter installation requests as well as
data messages) travel from one device to another. Contrail consists of a client-side mod-
ule that executes on each device, and a messaging layer that resides in the cloud. Each
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client-side module periodically initiates a TCP connection to the cloud-based messag-
ing layer via 3G (or a WiFi hotspot). In simple terms, a message sent by one device
to another is first uploaded to the cloud via one device-to-cloud connection, and sub-
sequently pulled by the recipient device via another such connection. These device-to-
cloud interactions are the only network-level connections that occur in the system; for
ease of exposition, we assume no out-of-band interactions between devices via channels
such as Bluetooth.

Contrail’s cloud layer consists of stateless application servers and a persistent storage
tier. When devices connect to the cloud, they interact with one of these application
servers; we call this the proxy for the device. If a device uploads a message meant for
an offline recipient, its proxy stores the message in the storage tier. When the recipient
device comes online, its proxy checks the storage tier for any messages meant for it and
transfers them. On the other hand, if the recipient is online and connected to some other
application server, the two proxies interact directly to transfer the message, without the
storage tier in the critical path.

As described, the design of Contrail’s cloud layer enables decoupled connectivity be-
tween devices. To provide multicast efficiency, the cloud layer allows senders to specify
multiple recipients on a message. To provide semantic efficiency, it allows senders to
set expiry times on messages, and to mark new messages as superseding older in-flight
messages. When a message sent to an offline device expires before the device comes
online, or is made obsolete by a new message, it is deleted from the cloud’s storage tier.

Consequently, Contrail’s combination of edge-based content filters and a cloud-
based relaying layer allow it to offer all the properties of interest to us. Social network
applications built using Contrail are privacy-aware, can work across devices decoupled
in space and time, and are naturally efficient in terms of energy and bandwidth.

3.3 Reliability and Security in Contrail

To understand Contrail’s reliability and security guarantees, we need to first state our
assumptions about the cloud. Our reliability guarantee assumes the cloud does not lie
about persistence; data stored in the cloud will not be lost. Our privacy guarantees do not
make any assumptions about the cloud. In other words, a malicious cloud can interfere
with Contrail’s reliability and performance, but cannot view user data. Also, our design
can be easily implemented on any existing cloud platform; consequently, if the cloud
we use does not offer the desired reliability and performance, we can switch to one that
does.

Contrail’s cloud layer offers reliable communication — all messages are buffered
on the sender device until its proxy acknowledges that it has stored the message per-
sistently in the cloud’s storage tier. This in-cloud copy of the message is deleted once
the receiver device acknowledges receipt to its own proxy. This allows reliable com-
munication between devices that are not simultaneously online. It is also an efficient
reliability option when both devices are online, since it allows a fast sender to upload
and disconnect once all messages have been persisted, without waiting for the receiver
to finish downloading them.

Contrail’s cloud layer also offers secure communication via a combination of well-
known mechanisms. The flow of messages is tightly restricted by the white-lists
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described previously; for social network applications, we expect these white-lists to
correspond to friend lists, ensuring that messages only travel along the edges of the
social graph. White-lists for users are stored in the cloud and proxies only relay filter
installation requests between devices as permitted by these. Our assumption is that the
cloud will honor these white-lists. As a result, devices cannot be spammed with filters
by unknown rogue devices.

Privacy is ensured via device-to-device encryption: the cloud sees only encrypted
payloads. Our strategy for encrypted communication is not novel; we use simple off-
the-shelf techniques. We use public key encryption to exchange symmetric keys be-
tween devices, which are then used for encrypting all messages. For example, if Bob
wants to send messages to Alice, he first sends her a message encrypted with her public
key, so that only someone with her private key can decrypt it. That message contains
a symmetric key which is used for all future messages (since symmetric encryption is
faster and uses less energy on a smartphone than public key encryption).

For messages meant for multiple recipients, we encrypt the payload with a freshly
generated symmetric key and then include this symmetric key as well in the message,
encrypted separately with each recipient’s public key. For example, if Alice is send-
ing a photograph to Bob, Charlie and Donald, the outgoing message consists of the
photograph encrypted with the new symmetric key, along with three versions of the
symmetric key, encrypted with Bob’s, Charlie’s and Donald’s public keys respectively.
These per-message symmetric keys are cached and reused if many messages are sent to
the same set of people.

In some applications, users may want to authenticate messages, ensuring that they
did indeed originate from the apparent sender and were not tampered with. To handle
this, Contrail computes a hash of the payload of each message and signs it with the
sending user’s private key.

Contrail does not provide privacy of inter-device relationships; through the white-
lists, the cloud knows which devices (and which users) are talking to each other, even
if it does not know what they are talking about. In the context of a social network, this
amounts to the cloud knowing who your friends are. We think this is an acceptable
trade-off: white-lists enable a spam-free system resistant to denial-of-service attacks
(a critical property for resource-constrained devices), but require users to reveal their
friend lists to the cloud.

4 The Contrail System

As described, Contrail consists of a client-side module that executes on each device
and a messaging layer that runs in the cloud. In this section, we delve into the details of
these two components.

4.1 Contrail on the Phone

Identifiers in Contrail: The basic unit of data in Contrail is an item. An item is de-
fined as the combination of a payload and application-defined metadata. While metadata
can be in any form, the default option in Contrail is to represent it as a hash-table of
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Fig. 1. The path taken by a data item through the Contrail stack

key-value pairs. For example, an item used by a photo-sharing application would store
the actual photograph in the payload, and attach metadata pairs to it such as (“date”,
“9/19/2010”) and (“location”, “San Francisco, CA”). Each item has an application-
specified ItemID. The ItemID does not have to be unique across items generated by
different applications; applications can set the same ItemID for different items (such as
different versions of a document) to indicate that the later one makes the other obsolete.

A Contrail end-point is a pair consisting of a DeviceID and a PortID. The DeviceID
is a globally unique identifier similar to a DNS name that is assigned to each client-
side module. The PortID is a locally unique identifier used to multiplex traffic across
different applications on the same device.

Contrail API: Contrail provides a library for applications running on the mobile de-
vice. The library offers to following API:

OpenPort(PortID local, Callback cb)
Publish(PortID local, Item itm, ItemID iid)
InstallFilter(PortID local, Filter f, DeviceID dest, PortID remote)
ReceiveItem(PortID local)

To use Contrail, an application creates an end-point by calling the OpenPort func-
tion, specifying a PortID and a filter installation callback function. Once the application
opens a port, other end-points – i.e., other instances of the application on different de-
vices with open ports – can try to install filters on it, in order to receive data from it.
These filters are delivered to the application via the filter installation callback. When
a filter is received by the application, the application can either accept or reject it, by
returning true or false from the callback, respectively.

To actually send data to other end-points, the application calls the Publish function
with an item as a parameter; see Figure 1. This results in all the installed filters on
that port being evaluated on the item. The evaluation of the filters is performed by the
Contrail library, within the application’s own process. If the item is matched by one or
more filters, it is transferred by the library to the shared module via IPC, along with a
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list of destinations corresponding to the end-points that installed the matching filters.
The shared module in turn constructs a data message with the item as the payload and
uploads it to the cloud.

The basic format of a data message is shown in Figure 1. The header of the data
message includes the source end-point information, the ItemID of the encapsulated item,
the number of destination end-points, and routing information for each destination. The
routing information for each destination consists of the (DeviceID, ItemID) pair as well
as the expiry time of the item for that destination. Expiry times are destination-specific
since we believe their utility to be driven by receivers that don’t wish to receive stale
data.

To install filters on other end-points, the application uses the InstallF ilter func-
tion. Once it has installed filters, the application can receive messages by calling the
ReceiveMessage function, which blocks for incoming items. The Contrail library also
supports asynchronous interfaces for receiving messages; we omit these for brevity.

Push vs Pull: In addition to these interfaces, Contrail allows applications to tune the
behavior of the shared module. For many applications, the shared module can simply
keep a connection constantly open to the cloud; this is how push notifications work for
the iPhone e-mail client, for example. For others, keeping a connection open constantly
can be wasteful. If the application receives data at fixed, long intervals (a message every
hour, for instance), or does not care about minimizing end-to-end latency, it may prefer
the shared module to connect and disconnect periodically.

To support such applications, Contrail exposes two parameters. The polling-interval
parameter, expressed in milliseconds, allows the application to regulate the frequency
with which the shared module polls the cloud for new messages. The idle-timeout pa-
rameter specifies how long a connection is allowed to remain idle before it is torn down.
Creating connections more frequently and keeping them open longer results in lower
latencies for message delivery at the cost of energy and bandwidth. Since the shared
module is shared by multiple applications, it chooses the lowest polling-interval and
longest idle-timeout requested across all applications.

4.2 Contrail in the Cloud

The Contrail messaging layer is designed to run on any generic cloud provider; this flex-
ibility allows for applications to switch between cloud providers when faced with faults
and security issues. The only assumption Contrail makes about the cloud infrastructure
it runs in, is that it provides an object store accessible through a put/get interface. Today
most cloud providers (e.g., Microsoft Azure, Google AppEngine, Amazon AWS) do
provide such a service.

Connecting with the Cloud: When a Contrail device connects to the cloud, it is di-
rected to a randomly chosen application server (in Azure, these are called worker roles).
We call this application server the proxy for that device during that connection. If this
is the first time that the device has connected to the cloud, the proxy creates a message
queue for the device in the storage tier. The name of this queue is simply the DeviceID
of the connecting device. The purpose of the queue is to hold incoming data items and
filters sent to the device from other Contrail end-points.
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Fig. 2. Contrail implementation: data travels between proxies on a fast path for online devices
and a slow path for reliability and offline devices

Upon accepting the connection from the device, the proxy updates a central map with
the status of the device. This map has an entry for each device, including whether it’s
currently online or offline, along with its current proxy if it’s online. The map is stored
in an in-memory storage service such as memcached; since Azure does not currently
have such a service, we implemented our own over standard worker roles.

Relaying messages: If the connecting device has a message to send to another device,
the proxy first checks the device map. If the receiver device is online and connected to
the cloud, the proxy of the sending device opens a connection to the proxy of the target
device and transfers over the message (we call this the fast path). The destination proxy
then relays the message to the target device.

In parallel, it also writes the message to the queue of the target device in the storage
tier (the slow path). This happens whether the target device is offline or online. When
the target device is offline, writing it persistently allows the device to retrieve it at a
later time; when it is online, it ensures that the message will be reliably delivered with-
out requiring the sending device to stay online. Once the message is persisted in the
storage tier, the proxy sends back an acknowledgment to the sending device. This lets
the sending device delete the message from its buffers and go offline if required, with
the guarantee that the message will be eventually delivered to the recipient.

Delivering messages: To receive messages from other devices via the fast path, the
proxy listens for connections from other proxies. When the device first connects, the
proxy also checks for incoming messages in the storage tier sent via the slow path
while the device was offline. When a device successfully downloads a message, it sends
back an acknowledgment to its proxy that triggers the deletion of the message from the
storage tier. This ensures that messages are not stored forever in the storage tier.
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Alice

PortID localP = OpenPort("any_port", null);
SetPollingInterval(localP, 30);
SetIdleTimeout(localP, 0);
/* App-defined function to a filter

matching locations within Mountain View */
Filter filter = create_mtnview_filter();
/* Install filter on remote port with

id equals "location_update" */
InstallFilter(localP,filter,

remotedevice,"location_port");
/* Alice receives location updates from
child’s phone if he leaves Mountain View */
Item msg = ReceiveItem(localP);
if(msg!=null)
/*child has left Mountain View!*/

freak_out();

Alice’s Child

PortID localP = OpenPort("location_port", null);
while(true)
{
/* Alice’s phone determines her location using GPS */
Location current_location = get_current_location();
Item msg = new Item();
AddMetadataToItem(msg, "location",current_location);
/* Publishing with same ItemID "mycurlocation"

every time makes previous location
updates obsolete */

Publish(localP, msg, "mycurlocation");
sleep(1 minute);
}

Fig. 3. Code for child-tracking application using the Contrail API

Contrail ensures reliable delivery once the sender receives an acknowledgment, as-
suming that the cloud’s storage tier does not suffer data loss and that the receiving
device eventually connects to the cloud. The message is not removed from the sender’s
buffer until it is persisted on the cloud’s storage tier, as indicated by the acknowledg-
ment to the sender. It is not removed from the storage tier until it has been acknowledged
by the receiver. Failures of the sender and receiver proxies or disconnections of the de-
vices from the cloud can result in duplicate uploads and downloads of messages, but
not loss.

5 Applications

Contrail makes it easy for developers to build social network applications that are
decentralized yet efficient. We built several applications using Contrail, including
location-tracking, photo-sharing, folder-sharing and chat. In this section, we first de-
scribe the design of the location-tracking application, and then elaborate on other pos-
sible applications.

5.1 The Location Notification Application

Here, we describe the details of the location notification application. The goal of this
application is to notify users when the location of their friends satisfies some fixed
condition; for example, as mentioned previously, a user Alice may want to know if her
child is outside a threshold distance from his school, or if a friend she planned to meet
at the mall has reached there. We will describe how Contrail allows such an application
to be built in a manner that conserves bandwidth and power without sacrificing privacy,
using filters as well as functionality such as item obsolescence and expiry times.

Figure 3 shows the pseudo-code for the location notification application. At a high
level, this application uses filters in the following manner: Alice’s device installs a filter
on her child’s device that includes the condition to be checked. The application running
on her child’s device periodically publishes his location as an item. Contrail on the
child’s device checks the installed filter on the location item, and pushes the item to the
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Fig. 4. Contrail application for selective location sharing

cloud if it matches. Importantly, each matching location update is published using the
same ItemID (”mycurrentlocation” in the figure), making previous updates obsolete; as
a result, if Alice’s device connects to the cloud after a prolonged disconnection, she
receives only the latest location update.

In the pseudo-code, we omit the details of the filter. In our example, the filter is a
bounds check on the location item’s latitude and longitude. We represent the Mountain
View area as a box with four corners, each of which has a latitude and longitude. Our
filter is a conjunction of comparisons between the current coordinates and the bounds
of the box. While our current implementation is restricted to such filters, Contrail can
easily support more complex queries; for example, we could compute the distance of
the current coordinates from a fixed point and check it against a threshold.

This application can also be used to notify users of their friends’ location within a
specific area. For example, Alice may want to know Bob’s location, but he may choose
to reveal it to her only when he’s within the Microsoft campus. Figure 6 shows our
location-tracking application in such a scenario. Alice installs a filter on Bob’s phone
asking for his location within a specific part of Seattle, which he accepts. On the right
is Bob’s phone generating location updates, and on the left is a computer where Alice
is tracking Bob’s location. As can be seen, Alice views Bob’s location only when he is
within the bounds specified.

5.2 Potential Contrail Applications

Real-Time Interactive: Applications such as chat, collaborative document editing,
audio/video-conferencing and real-time games can be built easily using Contrail. Cur-
rently, such applications use either centralized servers (e.g., Google Wave) or – as in the
case of Skype – leverage application-specific peer-to-peer networks on the wired Inter-
net to tunnel traffic from and to 3G devices. To set up a chat session involving two or
more people, for example, the application would simply have each participating device
install filters on the other devices.

In addition to the obvious benefit of privacy, real-time applications benefit from Con-
trail’s upload and multicast efficiency — a web-cam could stop uploading if nobody
is watching it, or upload a stream just once for multiple viewers. Contrail’s semantic
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efficiency properties are also useful to such applications; they can set expiry times on
outgoing items, ensuring that receivers do not get stale video frames, for example. Simi-
larly, they can set up obsolescence relationships, ensuring that the receiver only receives
the latest video frame or the latest version of a document.

Content Sharing: Contrail is useful for sharing bulk data items such as photographs or
videos. Simple sharing is trivial to implement in Contrail; users can accept filters from
their friends to enable sharing and then tag new media with the appropriate metadata. An
application that wants to let users search their social network for existing content – as
opposed to continuously receive new content – would simply use temporary filters with
very short lifetimes and re-publish existing content through these filters. Interestingly,
each query can also be propagated along the social graph at the application-level if
recipients of the filter install it on their own friends, thus implementing P2P search
on the social graph. Contrail’s main benefit for content sharing applications is privacy,
since the content metadata is not exposed to third parties.

Sensor Aggregation: Mobile devices can be viewed as sensors from which data can
be aggregated, processed and queried (for example, phones being used to track traf-
fic). Contrail is a great fit for sensor aggregation applications, since filters can be used
to construct arbitrary aggregation topologies that save bandwidth and enforce privacy.
For example, all Microsoft employees at the Silicon Valley campus could transmit their
GPS locations to a local Microsoft server they trust, which then knows their individual
locations; in turn, this server could transmit anonymized or aggregated data to a public
server. This example would require the local Microsoft server to install filters on em-
ployee devices, and the public server to install a filter on the Microsoft server. As such,
this example shows that a Contrail instance can include trusted machines in addition to
edge devices.

Can Facebook be built using Contrail?

An interesting question for Contrail is whether it can support the same kinds of ap-
plications currently found on centralized services such as Facebook. We believe that
most of these applications are easy to build on Contrail. For instance, message walls
are simple to implement — Alice can install a catch-all filter on Bob’s device that is
evaluated on all new status updates. Facebook-style commentary threads for individual
status updates seem difficult to achieve at first glance, since users can view comments
made by each other on a common friend’s wall even if they aren’t each other’s friends;
for example, if Alice comments on Bob’s status update, all of Bob’s friends can view
her comment.

In Contrail, communication between non-friends can be achieved by having users
republish information at the level of the application. For example, to allow all of Bob’s
friends to view Alice’s comment on his status update, consider a scheme where each
user installs two filters on their friends: one to get status updates, and another to get
comments. Now, Alice gets Bob’s status update (along with all his other friends) via the
status update filter; she then publishes a comment that only Bob gets via the comments
filter. Bob then publishes the comment as a status update to his wall so that everybody
else gets it.
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6 Evaluation

We have evaluated Contrail using our prototype implementation. All our experiments
are on a real implementation of Contrail running on Windows Azure. For clients, we use
Windows Mobile phones connected to 3G networks, laptops tethered to these phones,
and (for scaling experiments) instances in the Amazon EC2 cloud.

The first part of our evaluation focuses on the Contrail cloud-based messaging layer.
We show that it provides good performance in terms of end-to-end latency and through-
put. We also show that it is highly scalable. The second part of our evaluation focuses on
the edge device; we show that Contrail’s sender-side filters do not have a high compu-
tational overhead. We also evaluate the impact on the edge device of Contrail’s tunable
parameters.

6.1 End-to-End Latency

Figure 5a shows the end-to-end latency for an item to travel from one laptop to another
via Contrail over different networks: when directly attached to a home cable network,
when accessing that cable network over WiFi, and when tethered to a 3G phone. Both
laptops are in the same physical location and the size of the message is 400 bytes.
To understand what fraction of the observed latency was Contrail overhead, we also
measured network-level ping latency from one of the devices to a ping server located
near the Azure data center hosting the Contrail instance. The resulting graph shows
that Contrail’s end-to-end latency is limited almost entirely by latency on the network.
Contrail itself adds no more than 5 to 10 ms of latency overhead.

Where is this extra latency used up? To find out, we instrumented the path of a
Contrail message through the cloud using the Azure Diagnostics tracing framework. In
Figure 5b, we show the measurement results for two different message payload sizes,
of 100B and 10MB respectively. All the numbers shown are averages taken from 10
samples; we found the differences between each sample to be very small.

To understand Figure 5b, recall that messages in the Contrail cloud follow two sepa-
rate paths: a fast path via a direct TCP connection between proxies when the communi-
cating devices are both online, and a slow path that involves persisting the message to
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disk. The right-most bar in Figure 5b shows the latency on the fast path. This number
is crucial; it determines Contrail’s latency overhead between two online devices. As
can be observed, the latency overhead of a message on the fast path lies slightly below
50ms for a 10MB packet, and is around 4ms for a 100B message; this corresponds to
the overhead observed in the previous end-to-end latency graph (Figure 5a).

The four left-most bars in Figure 5a show latency on the slow path. The ‘write blob’
stage refers to the time it takes the sender proxy to persist a message to the cloud’s
storage tier (in this case, Azure Blob Storage). The ‘message write’ stage refers to the
time taken to update the queue of the offline recipient with a pointer to the message in
the blob store.

6.2 Contrail Scalability

Next, we show that Contrail can scale to large numbers of client devices simply by
adding more application servers (or Azure worker role instances) in the cloud. An im-
portant value proposition for cloud computing is the notion of elasticity. As load in-
creases, additional computing resources can be harnessed to prevent degradation in the
user experience. In the case of Azure, the unit of scaling is an instance, which cor-
responds roughly to a single virtual machine. We conducted an experiment where we
varied the number of clients that were simultaneously connected to the cloud. The ex-
periment was performed under three conditions: where message traffic was being han-
dled by 1, 2 and 10 Azure instances. In this experiment, the clients ran on Amazon EC2
machines (in their US-West Coast facility). We used 100 small EC2 instances and ran
10 clients per instance, after verifying that running 10 clients per machine would not
saturate the resources of one instance. Each EC2 client sent a message via Contrail –
running in the Azure cloud – to itself every second. Figure 6a shows the average end-to-
end message latency across users. We see that while a single instance can easily handle
up to 200 simultaneous clients (average round-trip message latency of under 80ms),
supporting 300 clients at the same time results in degraded performance (an average
message latency of over 200 seconds). However, with 2 Azure instances, we can sup-
port up to 400 simultaneous clients (77ms for 300 clients and 87ms for 400 clients).
With 500 clients, we start to notice performance degradation (over 200ms), while 600
simultaneous clients result in very high message latency. Finally, we observed that with
10 Azure instances, we were able to support at least 1000 simultaneous clients (78ms).
These results indicate that the elastic nature of the cloud provides a scalable routing
fabric for Contrail applications. Contrail is a trivially partitionable cloud application:
as additional clients use Contrail, performance can be maintained by increasing the
number of cloud instances.

6.3 Contrail Throughput

Apart from end-to-end latency on small items, we are also interested in knowing the data
rate at which two Contrail clients can communicate. In this experiment we measured
throughput of two different scenarios. Online throughput is the data rate at which two
devices can communicate if both devices are connected to the cloud simultaneously.
Offline throughput is the data rate at which a device can receive data waiting for it in



56 P. Stuedi et al.

 1

 10

 100

 1000

 10000

 100000

 0  200  400  600  800  1000

1 Instance 2 Instances 10 Instances

L
at

en
cy

 (
m

s)

# of Clients

300, t
600, t

 100

 1000

 10000

 100000

cable WiFi 3G

th
ro

ug
hp

ut
 [

kb
its

/s
ec

]

online goodput
online throughput

offline goodput
offline throughput

uplink speed
downlink speed

Fig. 6. a) Contrail can scale to thousands of clients simply by adding more server instances in the
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the Contrail cloud’s persistent storage; this is data sent to the cloud while the receiver
device was offline.

Figure 6b shows both online and offline throughput for the case where two lap-
tops are attached to a) a cable network, b) a WiFi network, and c) a 3G network. The
meanings of throughput and goodput in the figure are standard: one measures the total
bytes transferred per second and includes the overhead of Contrail’s headers and seri-
alization mechanisms, while the other measures only the payload bytes transferred per
second.

We can see in Figure 6b that Contrail’s raw throughput reaches the network limit for
all three network types. For online throughput, we are limited by the sender’s uplink
bandwidth, since the sending device is actively transferring data even as the receiver
consumes it. For offline throughput, we are limited by the receiver’s downlink band-
width, since the cloud is able to send data at a fast enough rate.

The figure also shows that Contrail’s goodput is much lower than its throughput.
This is a limitation of our current implementation, which uses XML serialization of
data messages (mainly because it is the only serialization mode natively supported on
the Windows Mobile SDK). In the future, we expect to implement custom binary seri-
alization to reduce the gap between goodput and throughput.

In Figure 7a, we evaluate the performance impact of item granularity. The Contrail
implementation does not fragment items across multiple messages; each item is sent in
a single Contrail message. As a result, applications must decide at what granularity to
use items; for example, an application sharing a collection of photos could bundle them
all into a single item, or send each photo individually as a separate item.

Accordingly, Figure 7a shows the transfer time of a) a 10MB file when both Con-
traildevices are attached to a cable network, b) a 10MB file if both sender and receiver
are connected to a WiFi network, and c) a 100KB file for the case where both devices
are using a 3G network. For all three configurations, smaller items result in lower trans-
fer times up to a point; this is because the messaging infrastructure of Contrail behaves
like a store-and-forward network, reading a message to completion before forwarding
it to the receiver device. Consequently, the smaller the items, the faster the receiver de-
vice starts downloading useful data. Beyond a point, however, smaller items give worse
performance, since each message comes with its own headers.
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6.4 Energy Consumption and Filtering

In the next set of experiments we study the effects of different options for a Contrail
client to communicate with the cloud. As explained in Section 4, the Contrail API lets
the application choose proper values for polling-interval (pi) and idle-timeout (it). To-
gether, these parameters control how frequently the device opens a connection to the
cloud and how long it keeps this connection open. Our initial hypothesis was that a
longer value of idle-timeout would result in higher battery usage but lower message la-
tencies, since the device would stay connected to the cloud for longer periods of time.
We tested this hypothesis using a mobile phone running Windows Mobile 6.1. We in-
tercepted the main power cycle between the battery and the phone and measured the
instant power consumption using a dedicated power monitor [2].

Figure 7b shows power consumption of two different configurations, one where the
polling interval is zero but the idle-timeout is 60 seconds (corresponding to tearing down
and re-opening a connection immediately, once a minute), and another one where the
polling interval is 30 seconds and the idle-timeout is 0 (establishing a connection every
half-minute and tearing it down immediately). Essentially, the first case corresponds
to having the connection open almost constantly (mostly-on), while the second case
corresponds to creating short-lived connections periodically (mostly-off). The y-axis of
the figure corresponds to the instant power consumption and the x-axis refers to time
the experiment is running. We are not sending or receiving any data in this experiment.

The figure shows that for both configurations the mobile phone manages to enter a
low power state: in the mostly-on case, this state occurs while the connection is on,
whereas in the mostly-off case it occurs when the connection is off. This indicates that
keeping a connection open does not come with a significant energy penalty. Also, keep-
ing the connection open allows the phone to receive Contrail messages immediately, as
opposed to the mostly-off case where it has to wait for a connection to be opened. This
result suggests that – at least on this particular hardware – keeping a connection open is
always the better strategy.

Despite this result, Contrail still supports the option to configure idle-timeout and
polling interval. Our rationale is that different mobile devices may show different
characteristics when it comes to energy consumption. In addition, certain applications
may expect messages only at fixed intervals – for example, if a user is receiving updates
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from a 3G-enabled temperature sensor – or may prefer to only download the latest ver-
sion of some data instead of all intermediate versions.

Next, we evaluate the feasibility of Contrail’s sender-side filters. Evaluating filters
on edge devices may seem infeasible when we consider that it is not uncommon for
users on a social network website to have hundreds of friends (which might translate
to an equivalent number of installed filters for each application). In this experiment, we
study how fast Contrail can match all these filters when a new data item is generated on
the mobile phone. We use a specific type of filter in our experiments: conjunctions of
equality checks.

The matching time depends heavily on the matching algorithm and the actual set
of filters that need to be matched. We study three cases. In the first case, we keep
the filters in a list and iterate through the list every time a new item is generated. As
can be observed from Figure 8a (label ‘scan’), this approach very quickly results in a
matching time of several seconds if the number of filters is large. In a second case we
implemented a well known matching algorithm that uses a tree data structure to store
the filters [4]. We generated filters in the worst possible manner which would cause the
algorithm to visit every node in the tree while matching a data item. From Figure 8a
(label ‘balanced tree’) it can be seen that the tree-based matching algorithm reduces
the average matching time to a value below one second for 512 filters. In a third case,
we used the same matching algorithm, but this time with randomly generated filters.
The matching time in this case is just a few milliseconds, even for 1000 filters. This is
because the algorithm mostly only traverses one path from the root of the tree to a leaf,
where a leaf stores all the filters matching a particular data item.

Lastly, Table 8b present some measurements to show the energy consumption on
a Contrail device at different data rates. Clearly, reducing messages improves battery
lifetime by a large amount. Thus, Contrail’s filtering mechanisms can help applications
minimize their battery consumption.

7 Related Work

Content-based Publish/Subscribe [8] is a well-known paradigm that uses content fil-
ters to route messages from publishers to subscribers. Contrail filters are similar to those
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used by Pub/Sub systems and offer similar benefits, such as decoupled transmission
and bandwidth efficiency. However, Contrail uses filters for one-to-one and one-to-
many communication between trusted, known devices. In contrast, Pub/Sub is aimed
at scaling communication between anonymous sets of publishers and subscribers who
do not know each other directly. Many of the results from the Pub/Sub literature on
efficient filter matching apply to Contrail as well. Content filters are also to be found in
replication frameworks [13].

Prior work by Ford et al. [9] has investigated naming and interconnection schemes
for personal mobile devices. Haggle [18] is a network architecture for mobile devices
that includes addressing and routing. MobiClique [11] explores opportunistic commu-
nication between devices on a social graph. All these projects are focused on settings
where devices do not necessarily have ubiquitous 3G connectivity; as a result, many of
the design decisions involve cooperation between proximal devices.

Contrail is an example of an Off-By-Default [5,19] network architecture; devices
have to install filters on each other to enable communication.

The design of the Contrail client-side module is related to work on efficient polling
strategies for phones [10]. Contrail can also leverage hierarchical power management
techniques [17,15]. In addition, Contrail can be easily enhanced to support upload and
download priorities for data [12]; for example, if a user wants to prioritize her tweets
over her video uploads.

Privacy-aware architectures for mobile devices typically rely on trusted delegate ma-
chines for computing [14,7]. Contrail is complementary to such techniques; it provides
a networking layer that can be used to interconnect devices and delegates.

Privacy-preserving computing techniques already enable specific functionality such
as keyword search [6,16]. Contrail is complementary to these solutions; it is possible
that applications will push simple functionality into the cloud using privacy-preserving
techniques while retaining more general functionality on edge devices in the form of
Contrail.

8 Conclusion

Building decentralized, privacy-aware social networks on smartphones is a daunting
task; devices are often disconnected and have tight budgets for energy and bandwidth.
Contrail is a communication platform that makes it easy for developers to build de-
centralized social network applications. Contrail enables efficient, privacy-aware ap-
plications that trigger communication between devices only when strictly necessary. It
achieves this via two mechanisms: sender-side filters that reside on edge devices and
cloud-based relays that provide reliable, secure communication between devices.

References

1. Diaspora, http://www.joindiaspora.com
2. Monsoon power monitor,

https://www.msoon.com/LabEquipment/PowerMonitor
3. Privacy-aware and highly-available osn profiles. In: 6th International Workshop on Collabo-

rative Peer-to-Peer Systems (COPS 2010) (2010)

http://www.joindiaspora.com
https://www.msoon.com/LabEquipment/PowerMonitor


60 P. Stuedi et al.

4. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching events in
a content-based subscription system. In: PODC 1999: Proceedings of the Eighteenth Annual
ACM Symposium on Principles of Distributed Computing. ACM, New York (1999)

5. Ballani, H., Chawathe, Y., Ratnasamy, S., Roscoe, T., Shenker, S.: Off by default. In: Proc.
4th ACM Workshop on Hot Topics in Networks (Hotnets-IV), Citeseer (2005)

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Key-
word Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 506–522. Springer, Heidelberg (2004)
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Abstract. Online social networks (OSNs) are immensely popular, but partici-
pants are increasingly uneasy with centralized services’ handling of user data.
Decentralized OSNs offer the potential to address user’s anxiety while also en-
hancing the features and scalability offered by existing, centralized services. In
this paper, we present Confidant, a decentralized OSN designed to support a scal-
able application framework for OSN data without compromising users’ privacy.
Confidant replicates a user’s data on servers controlled by her friends. Because
data is stored on trusted servers, Confidant allows application code to run di-
rectly on these storage servers. To manage access-control policies under weakly-
consistent replication, Confidant eliminates write conflicts through a lightweight
cloud-based state manager and through a simple mechanism for updating the
bindings between access policies and replicated data.

Keywords: Decentralization, Onlie Social Networks, Peer-to-peer, Cloud.

1 Introduction

Online social networks (OSNs) such as Facebook, MySpace, and Twitter have enhanced
the lives of millions of users worldwide. Facebook has surpassed 700 million active
users per month and already attracts 32% of global Internet users every day, with the
average user spending 32 minutes each day on the site [8, 9]. The aggregate volume
of personal data shared through Facebook is staggering: across all users, Facebook re-
ceives nearly 30 billion new items each month. Such high levels of participation should
not be surprising: OSNs are fun, useful, and free.

OSN users also trust providers to manage their data responsibly, mining it inter-
nally for targeted advertising, and otherwise enforcing user-specified access policies
to protect their profiles, messages, and photos from unwanted viewing. Unfortunately,
behavior by OSN providers has not met these expectations. In late 2009, Facebook uni-
laterally eliminated existing restrictions on users’ friend lists and other information by
making them world-readable. In addition, the site’s privacy “transition tool” actively
encouraged users to replace restrictions limiting access to “Networks and Friends” with
the more permissive “Everyone” option. Similarly, Google revealed many users’ most-
emailed Gmail contacts by making their Buzz friend list world-readable. Both services
eventually reinstated previous access policies after heavy criticism, but many users’
sensitive information was exposed for days or weeks.

With OSNs now central to many people’s lives, it is critical to address the rising ten-
sion between the value of participation and the uncertain privacy guarantees provided
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by existing services. Users want to continue enjoying OSNs, but they also want to retain
control of their data and limit the trust they place in large service providers. Decentral-
ized OSNs offer the hope that these goals can be met while potentially improving the
functionality and scalability offered by today’s successful centralized services.

Several decentralized OSN architectures have been proposed [1, 16, 22] that assume
the servers where OSN data is stored are untrusted: data is encrypted before it is stored
and plaintext is only viewable by client machines with the appropriate decryption keys.
The appeal of this approach is that encrypted data can be stored anywhere, including
peer-to-peer DHTs, cloud services such Amazon S3, or even existing OSNs such as
Facebook.

However, OSNs have also evolved into large-scale platforms for third-party appli-
cations, and we observe that decentralized OSNs that rely on untrusted storage funda-
mentally limit the kinds of applications that can be built on top of an OSN: if storage
servers cannot be trusted with plaintext data, application code that accesses OSN data
can execute only on trusted clients. In the worst case, application code must download
all relevant data to a client machine, and then decrypt and operate on the data locally.
For mobile and desktop clients alike, this can lead to bandwidth, storage, and compute
scalability problems.

A partial solution is for OSN designers to anticipate in advance how applications
might want to use users’ data and require clients to maintain an index of pre-defined
features such as key words over the encrypted data [6, 7, 16, 20]. Unfortunately, these
techniques limit applications to searching over those pre-defined features, and cannot
scalably support richer interactions with the data such as trend spotting or image-based
search.

The central question of this paper is: how can decentralized OSNs support a scalable,
general-purpose application framework? To answer this question we present the design
and implementation of Confidant. Confidant’s approach to decentralized OSNs is to use
information from the social graph to store users’ data in plaintext on machines that they
trust. The intuition behind our approach is that since a user’s friends’ machines already
have read access to her OSN data, why not allow them to serve her data as well?

Confidant participants use commodity machines such as personal desktop PCs or
enterprise workstations as storage servers, and create replicas on machines controlled
by a small subset of their friends (e.g., ten friends). Trust relationships between users
can be exposed to Confidant in many ways, such as by mining the social graph of
existing OSNs (e.g., the level of interaction between users or the number of overlapping
friends), or by asking users to manually identify friends to host their data. Once a user
has selected her replicas, an application running on behalf of a Confidant user may be
authorized to remotely execute sandboxed scripts on these trusted machines.

It is important to note that serving OSN data from personal machines does not intro-
duce new risks to data confidentiality. Centralized and decentralized OSNs alike must
store credentials on personal machines (e.g., web cookies, OAuth tokens, or crypto-
graphic keys), and if an attacker compromises a personal machine it will have access to
any of the data authorized by the credentials stored on that machine. At the same time,
as with other decentralized OSNs, users can feel safe knowing that any data entrusted
to Confidant will not be leaked by a centralized OSN behind their back.
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The main challenge for Confidant is managing OSN data and access-control poli-
cies under weakly-consistent replication. As in prior work [17, 27], Confidant relies
on eventual consistency among replicas and treats objects and access policies as im-
mutable first-class data items. However, managing data shared within an OSN presents
a different set of challenges than those addressed previously. First, OSN users com-
monly create new OSN data from multiple clients and should not have to deal with the
inconvenience of manually resolving conflicts. Confidant eliminates conflicts without
compromising data confidentiality or integrity by serializing a user’s updates through
a highly available and lightweight state manager hosted in the cloud. In addition, OSN
users who inadvertently mis-share an item must be allowed to recover from their mis-
take without perturbing the policies protecting other data items. Confidant addresses
this issue through flexible rebinding of access policies to data items.

To summarize, this paper makes the following contributions. Confidant’s design rep-
resents the first decentralized OSN architecture to leverage trustworthy storage servers
based on inter-personal relationships. This design choice allows Confidant to support a
scalable, general-purpose application framework without relying on a centralized OSN
to manage users’ data. Confidant also provides an access-control scheme for weakly-
consistent, replicated data that is tailored to the needs of OSN users. In particular, Con-
fidant eliminates write conflicts and allows participants to recover from access-control
mistakes by binding access policies to individual data items rather than to groups of
items.

Finally, we have evaluated Confidant using trace-driven simulations and experiments
with a prototype. Our simulation results show that typical OSN users should expect read
and write success rates of between 99 and 100%. Experiments with our prototype show
that applications such as remote keyword search, trending topics, and face detection
will scale well; Confidant scripts for processing status updates and photos from 100
friends are between 3 and 30 times faster than an approach relying on untrusted remote
storage.

The rest of this paper is organized as follows: Section 2 gives a high-level overview of
the Confidant architecture, Section 3 describes Confidant’s design, Section 4 describes
our prototype implementation, Section 5 presents an evaluation of our design and pro-
totype implementation, Section 6 describes related work, and Section 7 provides our
conclusions.

2 Overview

This Section provides a high-level overview of the Confidant architecture and trust
model.

2.1 Architecture

Figure 1 shows the Confidant architecture, including paths for posting new data (steps
1-2), retrieving new data (steps 3-5), and running Confidant applications (steps 6-8).
Keeping costs low is a critical design goal for Confidant, since existing OSNs such as
Facebook are popular in large part because they are free. As a result, Confidant relies
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Fig. 1. Confidant architecture

on two low-cost forms of infrastructure: desktop and enterprise PC storage servers, and
lightweight cloud-based name servers. PCs and workstations are a sunk cost for most
users and free cloud services such as Google AppEngine and Heroku allow a user to
execute a single-threaded server process while maintaining a small amount of persistent
state. We assume that every Confidant user controls both a storage server and a name
server.

A storage server hosts a user’s OSN data and authorizes client read and write re-
quests. Because storage servers can experience transient failures, a user may select a
small number of her friends’ servers to host replicas of her data. Each replica manages
a copy of the user’s data and participates in anti-entropy protocols to ensure eventual
consistency. Storage servers also allow authorized users to run sandboxed application
scripts directly on their hardware.

Name servers are assumed to be highly available, but due to resource and trust con-
straints have limited functionality. A name server is only responsible for maintaining
two pieces of state: its owner’s logical clock, and a list of available replicas. Maintain-
ing this state in a highly-available, centralized location is appealing for two reasons.
First, placing the list of available replicas in a stable, well-known location simplifies
data retrieval. Second, maintaining logical clocks in centralized locations allows Confi-
dant to serialize a user’s updates and eliminate write conflicts.
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Eliminating conflicts is important because users are likely to access Confidant data
via multiple clients. A single physical machine such as a laptop can serve as both a
storage server and a client, but we explicitly separate client and server roles due to the
resource constraints of clients such as mobile phones. Client functionality is limited to
uploading and retrieving content and remotely executing application scripts.

2.2 Trust and Threat Model

Trust in Confidant is based on physical control of hardware and inter-personal relation-
ships.

Users trust their clients to read their data, create new data on their behalf, and update
the access policies protecting their data. A user’s clients are not allowed to create objects
on behalf of other users or alter the access policies protecting other users’ data.

We assume that a user’s storage server and its replicas will participate in anti-entropy
protocols, enforce access policies, and correctly run application scripts. Correct execu-
tion of scripts requires storage servers to access plaintext copies of data and to preserve
the integrity of a script’s code, runtime state, and input data. To ensure that replicas meet
these trust requirements, Confidant users place their data only on servers controlled by
trusted friends.

Serving a user’s data from her friends’ PCs rather than from third-party servers cre-
ates no additional threats to data confidentiality than existing centralized and decentral-
ized OSNs. Users already share their OSN data with their friends and, as with all other
OSNs, we assume that users do not collude or share data with unauthorized entities.
Software misconfiguration and malware are serious problems for user-managed ma-
chines, but these vulnerabilities are not unique to Confidant. If an attacker compromises
a Facebook user’s PC or mobile device, the attacker can use the Facebook credentials
stored on the machine to access any data the owner is authorized to view. Decentralized
OSNs such as Persona are also vulnerable to compromised personal machines.

However, even if a user is trusted to preserve the confidentiality of their friend’s
data, their storage server might not be trusted to preserve the integrity of application
scripts. A compromised storage server can corrupt script results by modifying a script’s
execution, injecting false data, or removing legitimate data. To reduce the likelihood of
corrupted script results, we assume that users can identify a small number of friends
whose storage servers will behave as expected. Based on several proposals to gauge the
strength of social ties using the level of interaction between OSN users [3, 10, 25], it is
reasonable to assume that users will find enough storage servers to act as replicas. For
example, Facebook has reported that male users regularly interact with an average of
seven friends, while women regularly interact with an average of ten friends [21].

Limiting the trust users must place in cloud-based services is an important design
goal for Confidant. Thus, our cloud-based name servers are trusted to correctly maintain
information about storage servers’ availability and a user’s logical clock, but are not
trusted to access plaintext data. Confidant is agnostic to the mechanism by which users
become aware of new data, though for convenience and incremental deployability our
prototype implementation uses Facebook. Services like Twitter or open, decentralized
alternatives could also be plugged in. Regardless of what notification service is used,
Confidant only trusts machines controlled by friends to access plaintext data.
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3 Design

In this section, we describe the Confidant design.

3.1 Cryptographic State

Confidant encodes component roles and trust relationships using techniques described
by work on Attribute-Based Access Control (ABAC) [26]. We do not support the full
power of an ABAC system, and have adopted a subset of techniques (e.g., independently
rooted certificate chains and signed attribute-assignments) that are appropriate to our
decentralized OSN.

Principals in Confidant are defined by a public-key pair, and users are defined by a
public-key pair called a root key pair. Users generate their own root keys, and distribute
their root public key out of band (e.g., through their Facebook profile or via email). A
user’s root public key is distributed as a self-signed certificate called a root certificate;
the root private key is kept in a secure, offline location. Through her root key-pair,
a user also issues certificates for her storage server (storage certificate), name server
(name certificate), and any clients under her control (client certificate): these certificates
describe the principal’s role (i.e., storage server, name server, or client) and its public
key. For each certificate signed by a user’s root key pair, the matching private key is
only stored on the component, and expiration dates are set to an appropriate period of
time. Users also generate replica certificates with their root key pair for any storage
servers controlled by others who are authorized to serve their objects. All certificates
are distributed out of band through a service such as Facebook or via email.

Users encode their inter-personal relationships through groups. A group is defined
by four pieces of state: 1) a unique user who owns the group, 2) a list of users making
up the group’s membership, 3) an attribute string, and 4) a secret key. Group owners
are the only users who can update a group’s state. Group memberships grow monotoni-
cally; “removing” a member requires an owner to create a new group with the previous
membership minus the evicted member.

A group’s string provides a convenient mechanism for assigning attributes to sets
of users, which can in turn be used to express access-control policies over sensitive
data. For example, user Alice may wish to define groups with attributes such as ”New
York friends,” ”college friends,” and ”family.” Group membership does not need to be
symmetric. Bob may be included in Alice’s group ”New York friends,” but Bob is not
obligated to include Alice in any of the groups he owns.

Group keys are generated on the group owner’s storage server and distributed as so-
cial attestations [22]; attestations are signed using the key pair of the owner’s storage
server. Social attestations in Confidant are nearly identical to those in Lockr, except that
Confidant attestations also enumerate their group’s membership. Within a social attes-
tation, group members are represented by the string description and public key found
in their root certificate. If new members are added to the group, the group owner dis-
tributes a new social attestation to members reflecting the larger group size. New and
updated attestations are distributed epidemically among storage servers; clients period-
ically synchronize their set of attestations with their owner’s storage server. Although
there is no bound on the time for a client to receive an attestation, the key embedded
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in an existing attestation can remain valid even if the membership enumerated in the
attestation becomes stale.

Access policies specify the groups that are allowed to view an object, and are repre-
sented by logical expressions in disjunctive normal form (e.g., (g0 ∧ g1) ∨ (g2 ∧ g3)),
where each literal describes a group, and each conjunction indicates a set of group keys
that could be used for authorization.

Finally, because social attestations contain a secret key, they must be handled care-
fully. Name servers cannot access social attestations since the machines on which name
servers execute are physically controlled by a cloud provider rather than a user. Storage
servers store copies of any attestations needed to authenticate access requests. Clients
store any attestations required to upload new objects or access friends’ objects.

Key revocation is known to be a difficult problem, and we use a set of well known
techniques to address it. First, certificates and social attestations include an expiration
date. If a private or secret key leaks, the certificate expiration date provides an upper
bound on the key’s usefulness. For group keys, users can generate new keys and at-
testations to protect any new objects they create. Storage servers can also be asked to
ignore group keys that become compromised. This approach should scale well since
the number of storage servers hosting a user’s data is expected to be on the order of
ten machines. We discuss how new policies can be assigned to old objects in the next
section.

3.2 Objects and Access Policies

Data in Confidant is managed as items. Confidant supports two kinds of items: objects
and access policies.

The unit of sharing in Confidant is an object. Like Facebook wall posts, comments,
and photos, or Twitter tweets, objects are immutable. Every object has a unique de-
scriptor with the following format:

{owner, seq, acl}

Descriptors function strictly as names (i.e., not capabilities) and can be embedded in
feeds from untrusted services such as Facebook and Twitter without compromising data
confidentiality.

The owner and seq fields uniquely identify the object. The owner field of a de-
scriptor is set to the root public key of the user whose client created the object. The seq
field is the object’s sequence number. Each number is generated by a user’s name server
when an item is created and is unique for all items created by a user. The acl field is an
expression in Confidant’s access-policy language.

Objects consist of a meta-data header, followed by the object’s content:

{owner, seq, typ, t, len, 〈data〉}

The owner and seq fields are identical to those present in the object’s descriptor. The
typ field indicates the object’s format (e.g., text or JPEG image), t field is a wall-clock
timestamp. The end of the object is opaque data of length len.
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The unit of protection in Confidant is an access policy. Access polices are treated as
distinct data items with the following representation: {owner, seqap, acl, seqobj}. As
before, the acl field is an expression in Confidant’s access-policy language. seqap is the
sequence number associated with the access policy; this number is unique across all
items (objects and policies) created by a user. The owner and seqobj fields of an access
policy refer to the object to which the expression applies. To ensure that clients do not
attempt to assign access policies to objects they do not own, storage servers must check
that a new policy’s owner field matches the identity of the issuing client’s certificate
signer.

Like objects, access policies are immutable, although the binding between objects
and polices can change according to the following rule: an object is protected by the
policy with the greatest sequence number that refers to the object. Application of this
rule allows clients to add and remove permissions using a single, simple mechanism.
If a client wants to bind a new access policy to an old object, it increments its user’s
logical clock and creates a new policy using the new sequence number. To invalidate
an object, a client can issue a new access policy with a null expression. If two objects
are protected by the same logical expression, they will require separate access policies.
Note that because the binding between objects and policies can change the acl included
in an object descriptor is meant only as a hint [12], and may not reflect the current
protection scheme for the object.

There are two potential drawbacks of not aggregating policies across objects: the
overhead of storing and transferring extra policy items, and the added complexity of
bulk policy changes. However, both drawbacks are minor concerns, given the relatively
small number of items that individual users are likely to generate. According to Face-
book, the average user creates only 70 data items every month [9]. Even for bulk policy
rebindings covering years’ worth of user data, iterating through all of a user’s items sev-
eral times should be reasonably fast. As a result, the flexibility to bind arbitrary policy
expressions to items at any point in the item’s lifetime outweigh the drawbacks.

Confidant’s approach to object protection is similar to recent work on managing ac-
cess policies in Cimbiosys [17, 27]. Both systems manage data as a weakly-consistent
replicated state store, and both treat objects and policies as first-class data items. De-
spite the similarities, there are several important differences between Confidant and
Cimbiosys.

First, Confidant serializes all of a user’s updates by assigning new items a unique
sequence number from the user’s name server. This eliminates the complexity and in-
convenience of automatically or manually resolving concurrent updates. Avoiding the
pain of handling conflicts is an important consideration for OSNs. Experience with the
Coda file system found that most write conflicts were caused by users updating their
data from multiple clients [14], which mirrors the common behavior of OSN users ac-
cessing services from both a PC and mobile device. Confidant’s name servers create a
single point of failure, but we believe that this is an appropriate tradeoff given inconve-
nience of handling conflicts and the high availability of cloud services such as Google
AppEngine.

Cimbiosys also applies access policies at a coarser granularity than Confidant. Cim-
biosys access policies (called claims) are bound to labels rather than objects. Claims
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allow principals to read or write sets of objects that bear the same label (e.g., “photos”
or “contacts”). However, because the labels assigned to Cimbiosys items are permanent
and claims are expressed in terms of labels, it is impossible for users to change the
permissions of a single item within a labeled set; permissions can only be granted or
revoked at the granularity of complete sets of items with a particular label. While this is
a reasonable design choice for the home-networking setting for which Cimbiosys was
designed, it is inappropriate for OSNs.

As the Cimbiosys authors point out, it is important for Cimbiosys users to label
items correctly when they are created. This is too great a burden for OSN users, for
whom fine-grained control is useful in many situations. For example, consider a user
who initially labels an item “mobile photo” (perhaps accidentally) and shares it with her
family and friends. Under Cimbiosys, if she later decided that it was a mistake to give
her family access to the image, she would have to revoke her family’s access to all items
labeled “mobile photo,” including any other images she might want to continue sharing
with them. In Confidant, the user could simply create a new policy with a pointer to the
image she would like to hide and a policy expression including only friends.

It should be noted that Cimbiosys could provide the same flexibility as Confidant
by assigning each object a unique label, but the designers did not pursue this approach
due to its perceived lack of efficiency. This design decision appears to be related to
Cimbiosys’s focus on defining policy claims in terms of principals rather than groups
of principals, and an implicit assumption about the number of objects a user owns.
SecPAL (Cimbiosys’s policy logic) supports groups of principals, but without groups,
creating a separate claim for each principal authorized to access each item in a massive
data set might introduce scalability problems. Confidant can avoid these issues because
individual user’s OSN data sets are relatively small, allowing us to define policies in
terms of groups of principals.

3.3 Name Servers

As described in Section 2.1, each user runs a name server within a low-cost cloud
service such as Google AppEngine. Name servers manage two pieces of state: a list of
IP addresses corresponding to online replicas and a logical clock. Entries in the list of
IP addresses also include an expiration time, and become invalid if not updated in time.
Name servers also maintain a list of storage servers authorized to act as replicas.

Retrieving a list of replicas is similar to a DNS lookup. Requests are unauthenticated,
require no arguments from the caller, have no side-effects, and return the name server’s
list of 〈 IP addresses, public-key 〉 pairs for each valid storage-server as well as the
current value of the user’s logical clock. Name servers use SSL to preserve the integrity
of queries.

Storage servers set the IP address where they can be reached by periodically con-
tacting the name servers associated with the replicas they host. These calls refresh the
expiration time of the server’s entry and allow the server’s IP address to be returned as
part of a lookup. Expiration times are intended to be on the order of tens of minutes. Be-
cause only authorized storage servers should be allowed to serve as replicas for a user’s
data, refreshing a server entry must be authenticated. Initial lease renewals require the
name server and storage server to mutually authenticate and establish a session key
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Table 1. Storage-server messages

Message Format
Store request {{g0, g1, . . . gn}, certC , {replicas, obj, ap, rand, {hash(obj, ap)rand}

K−
C
}gk0,gk1,...gkn}

Policy update {certC , replicas, ap, rand, {hash(ap), rand}
K−

C
}

Retrieve request {owner, seq, {g0, g1, . . . gn}}
Retrieve response 1 {{g0, g1, . . . gn}, certR, {obj, ap, rand, {hash(obj, ap), rand}

K−
R
}gk0,gk1,...gkn}

Retrieve response 2 {certR, ap, rand, {hash(ap), rand}
K−

R
}

using their signed certificates, but once the session key has been established it is used
to authenticate future requests.

A name server’s logical clock is used to assign sequence numbers to items and to
help replicas synchronize when they come back online. The value of the logical clock
increases monotonically. When a client wants to assign a sequence number to a new
item, it requests an increment; the name server responds by adding one to the existing
value and returning the new value of the clock. Since only clients under the user’s
control should be allowed to advance the clock, increment requests are authenticated.
As with entry-refresh requests, clients and name servers initially establish a session key
with their signed certificates, and use the session keys to authenticate future requests.

3.4 Storage Servers

Each Confidant user runs a storage server that contains plaintext copies of all of her
objects and access policies. A storage server may also act as a replica for another user
if the other user trusts the server’s owner to 1) read all of her objects, 2) enforce access
policies, and 3) preserve the integrity of any application scripts run on the server. As
explained in Section 2.2, it is reasonable to assume that users can identify on the order
of ten trustworthy replicas.

Once replicas have been selected, the user in control of each replica-set member
must install its storage server’s public key at the data owner’s name server. Also, since
replicas must authorize requests on behalf of the data owner, each member of a replica
set must have access to all of the social attestations generated by the data owner. Sharing
attestations with replicas does not affect confidentiality since, by definition, replicas
already have full read access to the data owner’s objects. Storage servers store objects
and their associated access policies in a relational database and local processes access
Confidant data through SQL queries.

For the rest of this paper, we assume that the entirety of a user’s data is managed by
a replica set, but Confidant is general enough to accommodate multiple data partitions.
For example, users wishing to separate their data into work data and personal data can
do so by creating separate sequence numbers and replica sets for each partition. The
number of distinct data sets that a user wants to maintain with Confidant is limited by
the amount of state she can afford to host in the cloud and the number of storage servers
she trusts to host each partition.
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Consistency. We apply an eventual consistency model to data stored within a replica
set and rely on epidemic propagation to synchronize storage servers [5, 11]. Because
objects and access policies are immutable, ensuring a consistent ordering of updates
across replicas is not material. We are only concerned with whether the set of data items
stored on behalf of a data owner is consistent with the set of all items the data owner
has created. Servers achieve eventual consistency by applying standard anti-entropy
techniques, which are described in greater detail in the Confidant Technical Report [13].

Updating and retrieving items. The messages used to update and retrieve items are
listed in Table 1.

To add a new object, a client first retrieves a list of online replicas and two new
sequence numbers (one for the object and one for the object’s access policy). To store
the new items, a client connects to the first server in the list returned by the name server
and submits the store-request message described in Table 1. The header corresponds
to a conjunction, {g0, g1, . . . gn}, from the the access policy ap; this indicates which
group keys, gk0, gk1, . . . gkn, are used to protect the message in transit. The client also
sends the replica its client certificate, certC .

The message payload consists of an object obj, an access policy ap, a random nonce
rand, and a signed hash of the object and access policy. The client certificate and signed
hash prove to the storage server that the update was generated by a trusted client. If
store requests were only protected with group keys, then anyone with access to the
proper social attestations could create items on the user’s behalf; social attestations are
meant to confer only read access, not write access. Note that the store-request message
is vulnerable to a harmless man-in-the-middle attack in which another client swaps in
its own certificate and re-encrypts the payload with its own private key.

Once a server has unpacked and verified a store request, it commits the new items
to its local database and returns control to the client. The storage server is now respon-
sible for propagating the update to the other replicas listed in the replicas field of the
message payload. We rely on anti-entropy to spread new items to the rest of the replica
set in the face of network partitions and server failures. Storage servers’ local database
and the protocol for authorizing retrieve requests are described in more detail in the
Confidant Technical Report [13].

Application framework. Our primary motivation for leveraging social relationships
to select replicas is to enable scalable, general-purpose applications without sacrific-
ing data confidentiality. Prior decentralized OSNs assumed that storage servers were
not trusted to view plaintext data, which limited the class of operations that storage
servers could perform on OSN data to feature-based searches (e.g., key-word [6, 7, 20]
or location-based [16] search). Unfortunately, many popular and emerging OSN ap-
plications such as Twitter’s trending topics and face.com’s face-recognition service re-
quire iterating over a large corpus of plaintext data. Services such as these require a
general-purpose distributed programming framework like MapReduce [4]. However,
unless storage servers are trusted to view plaintext data, such applications can only be
implemented by downloading an entire encrypted corpus to a client, where it must be
decrypted and analyzed. This approach will not scale for clients executing on resource-
limited desktop PCs and mobile devices.
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Since a Confidant user’s replicas are trusted, the biggest challenge in designing a
scalable application framework is balancing the need to safely sandbox code executed
on storage servers and and provide a rich programming API. We do not claim that our
solution is perfect, only that it represents a reasonable point in the design space.

The unit of execution for Confidant’s application framework is a script. Scripts must
be constrained so that they cannot harm the storage servers on which they execute or
access any unauthorized data. To protect the host storage server, scripts are written in
Python and execute in a sandboxed Python environment, with pre-built libraries and
modules; scripts run under a unique, temporary uid with limited privileges. The chroot
utility allows storage servers to start scripts in a temporary “jail” directory such that
they will not be able to access any other part of the file system.

Storage servers impose CPU, core size and execution time limits on scripts, and
run a per-script reference monitor that mediates scripts’ access to the object database.
The DBus message system is used as an interprocess communication channel between a
script and its reference monitor. Similar to Java RMI, the script obtains a proxy object of
the reference monitor from the DBus registry service and uses its interface to query the
object database. Scripts submit SQL queries to the reference monitor, which examines
and rewrites their queries by adding predicates so that the query only returns data that
is authorized by the group credentials submitted with the script. This creates a clean,
flexible, and familiar programming environment for developers and relies on existing
database mechanisms to enforce confidentiality. After the script completes its work it
creates a file in its temporary directory which is returned to the requesting client as a
response. If a script exceeds its resource limits the reference monitor terminates it and
the storage server sends back an error message.

4 Implementation

We have implemented a Confidant prototype based on the design described in Section 3.
This section describes our client, name server, and storage server implementations. We
also describe three applications that we have implemented on top of Confidant.

4.1 Client

Our client is implemented as a Firefox web-browser extension that rewrites Facebook
web pages and communicates with Confidant name and storage servers. Our Firefox
extension transparently integrates Confidant data with a user’s Facebook page.

We derive several benefits from interoperating with Facebook. One, users continue
using their existing Facebook accounts, thus leveraging their considerable investment
in creating social connections there and learning how to use the many popular features.
Two, we take advantage of Facebook as a reliable medium for storing object descrip-
tors and distributing them throughout the social graph. For more details on our client
implementation, please see the Confidant Technical Report [13].

Facebook remains an untrusted service that should not have access to users’ secret
keys or sensitive data. Our browser extension modifies Facebook’s default behavior by
listening for browser events such as document loads, form submits, and button clicks.
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When these events happen, our handling functions are triggered to run prior to Face-
book’s original functionality. For example, when a user wants to share a status update or
post a wall message, the browser extension intercepts the control flow. Once in control,
it contacts the user’s Confidant name server to retrieve sequence numbers for the new
object and policy as well as the IP address of the available replicas for storing these
items. It then creates an object and policy with the appropriate descriptor and sends
the items to a replica. Finally, the extension substitutes the original content from the
Facebook page with the object descriptor to be sent to Facebook.

To retrieve a status update the browser extension scans the loaded page for the object
descriptors, parses them, obtains a correct replica IP address from the name server, and
downloads the object. Then the extension performs integrity checks, decrypts the data,
and replaces the descriptor with the actual content.

For uploading pictures we modified Facebook’s ”Simple Uploader” that accepts in-
dividual pictures. The uploader proceeds in two steps. First, instead of uploading the
actual picture to Facebook our extension sends a dummy image to be stored on Face-
book. Next, when a user has to add a description of the picture, the extension creates a
new object and descriptor. The object consists of the original picture and the picture’s
description. Using the IP address of a replica from the name server, the extension sends
the object to Confidant and substitutes the actual description with the object’s descriptor
to be sent to Facebook.

Retrieving a picture in Confidant works similarly to a status update retrieval with
the exception that the actual image is downloaded locally and linked to the web-page
directly from the filesystem.

4.2 Name Server

As described in Section 3.3, each user runs a lightweight name server that maintains
a list of available replicas. We host this server in the Google AppEngine. AppEngine
is a highly available and low-cost cloud-computing infrastructure where users can run
applications written in several languages; we used Python. Google does not charge for
running applications until they exceed a free-resource quota. We engineered our name
server so that its resource utilization should remain comfortably within AppEngine’s
free quota.

4.3 Storage Server

As described in Section 3.4, each user also runs a storage server with multiple roles: it
maintains the primary copy of the user’s sensitive data; it maintains a replica of the data
belonging to a subset of the user’s friends; it arbitrates and serves requests for this data;
and it runs application scripts submitted for execution by the user’s friends.

We implemented a storage server prototype in Python using the Django web frame-
work. We also use MySQL to store data, Apache2 for serving requests, and JSON as a
lightweight data-interchange protocol.
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4.4 Applications

As described in Section 3.4, Confidant allows application scripts to execute on the dis-
tributed collection of storage servers. We have implemented the three representative
applications described below:

Keyword-search Script: The keyword-search script is a simple script that searches
through a user’s friends’ accessible status updates and returns those that satisfy criteria
such as falling within a date range or having specific keywords. This is the simplest
script we implemented. It creates a SQL statement with the required conditions, receives
the result from the reference monitor, encrypts the result, and sends back the encrypted
data to the client.

Trending-Topics Script: The trending-topics script calculates the most frequently
used words within a user’s friends’ status updates. This script prepares a dictionary
object [”word1” : ”count”, ”word2” : ”count”, ...] using the available status updates
and wall messages on each storage server. We eliminate common words that should not
be interpreted as trends such as ”I”, ”me”, ”am”, and ”you”. A client downloads these
pre-processed objects from their friends’ replicas and merges them into a single list.
The client then sorts the list by value to produce the most trending keywords.

Face-Detection Script: We implemented a face-detection script that returns friends’
pictures with a predefined number of faces in each of the returned pictures. For example,
with N = 1 the script will return only portrait pictures, however with N ≥ 5 it will
return group photos such as pictures from a party or a conference. We implemented the
face detection algorithm using the Python wrapper for OpenCV and we assume that the
sandboxed environment has the wrapper along with the OpenCV library itself.

4.5 Untrusted Storage Server

In order to compare Confidant with the alternative approach to decentralized OSNs
where storage servers are considered untrusted, we implemented a simple server that
stores encrypted data and returns it to the requester with minimal security checks. We
use this server to help evaluate the performance of Confidant in application tasks such
as finding trending topics and face detection.

5 Evaluation

In evaluating Confidant, we sought answers to the following questions:

• How does the performance of our application framework compare to approaches that
rely on untrusted storage servers?

• How many trusted friends will Confidant users need to ensure that at least one replica
is always available?

Note that the Confidant Technical Report also describes the results from experiments
measuring the latency of creating and retrieving photo and text objects [13]. We have
omitted these results to focus on scalability and availability.
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5.1 Application Performance

In this section, we compare the performance of Confidant’s application framework to
the performance of approaches that rely on untrusted storage servers. We measured the
end-to-end latencies of the face-detection, keyword-search, and trending-topics scripts
described in Section 4.4 and compared them to the latencies of fetching data encrypted
under AES from an untrusted server and processing it locally. We refer to the latter
approach as Encrypted.

All experiments used EC2 virtual machines as trusted storage servers. Using Ama-
zon’s EC2 allowed us to test the scalability of Confidant. We used a single untrusted
server running on EC2 for all Encrypted experiments. Varying the number of untrusted
servers had almost no effect on end-to-end latency of our Encrypted experiments be-
cause the decryption and processing time spent at the client dominated our
measurements.

For a client, we used a consumer laptop (Intel Core 2 Duo processor, 1.86GHz, 6
MB L2, and 2 GB of memory) on Duke University’s network. The client ran a multi-
threaded python program that queried storage servers and processed replies as required.
A separate thread was spawned for each request.

To populate the remote servers for our trending-topics and keyword-search experi-
ments, we used status updates collected from Facebook by researchers at UCSB [18].
We used images from publicly available datasets from computer vision research groups
at CMU, MIT and Cal Tech for evaluating the face-detection script’s performance. Our
image corpus contained 70 images altogether. We tuned the parameters of the face-
detection algorithm so that it was reasonably accurate and required about 500 ms to
process a 30Kb picture. It should be noted that we did not evaluate the accuracy of our
face detection algorithm and, thus, we do not report how many of the returned pictures
were false-positives. The average size of a picture used for the evaluation is 30 KB,
with sizes ranging from 8Kb to 200Kb.

Confidant achieves compute scalability by off-loading computational tasks to trusted
remote servers, while the Encrypted approach must first download data to a client and
decrypt it before processing it locally. To isolate the effect of computational scalabil-
ity on end-to-end latency, during our experiments the Confidant clients and Encrypted
clients only differed in how much processing they performed rather than the volume
of data they received. For the keyword-search experiments, we partitioned 1,000 status
updates across the remote storage servers. For the trending-topics experiments, remote
Confidant scripts collectively returned dictionaries based on 1,000 status updates to the
client. For the face-detection experiments, we assigned each remote server 10 photos.
Finally, for our experiments, we conservatively assumed that each of the client’s friends
had only one replica available.

Figure 2 shows the average over 20 trials of each script’s latency under Confidant
divided by the latency to perform the same task under the Encrypted scheme. Please
note the logarithmic scale of the y-axis. Standard deviations for all averages were less
than 2%. For 100 friends, Confidant was between 3 and 30 times faster (trending top-
ics and face detection, respectively). While all three scripts performed better under
Confidant, the face-detection script benefited the most from parallel remote execu-
tion due to the computational complexity of detecting faces in images. Trending topics
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Fig. 2. Script performance

benefits the least due to the computational complexity of merging dictionaries from
many sources that must be performed at the client. Nonetheless, these results demon-
strate the performance and scalability benefits of Confidant’s application framework.

5.2 Availability

Confidant relies on replicated storage servers to ensure that clients can successfully
submit and retrieve items. The availability of a user’s replica set is a function of two
properties: the number of trusted friends a user has (i.e., the size of the replica set),
and the availability of individual replica-set members.To explore the impact of these
properties on the rates at which clients can successfully read and write, we simulated
Confidant using two types of traces. To characterize how many friends users have and
how they interact with their friends,we used a trace of the Facebook graph and wall
messages collected at MPI [24]. This trace captures links and interactions between users
and consists of approximately 60,000 users, connected by over 0.8 million links, with
an average node degree of 25.6.

To characterize storage-server availability, we used the well-known Gnutella
trace [19] and Microsoft-workstation trace [2]. The Microsoft-workstation trace is much
more forgiving and machines have a much higher average online time than hosts in
the Gnutella trace. It should be noted that there were many IP addresses listed in the
Gnutella trace that were never online, and we removed all such nodes. This left us with
approximately 15,000 hosts over 60 hours. From the Microsoft trace, we used roughly
52,000 hosts’ records over 35 days.

Since the MPI trace contains more users than hosts in the Gnutella or Microsoft-
workstation traces, we pruned the MPI trace to fit each availability trace. First, we
sorted users in the MPI trace by level of interactivity (i.e., the number of wall posts and
comments written and received), and assigned the users who were the most active a host
from the availability trace. Connections to users who were not among the most active
were cut. The resulting subgraph was denser than the original, exhibiting an average
connection degree of 44.8 and 30.2, for the top 15,000 (Gnutella) and top 52,000 users
(Microsoft), respectively. 86% of the top 15,000 users have 10 friends or more, while
61% of the top 52,000 users have 10 friends or more.



Confidant: Protecting OSN Data without Locking It Up 77

We included the most-active Facebook users from the MPI traces because they gener-
ated the most write events for our simulation. Of course, there is a correlation between
activity and connectedness, as our increased average node degree demonstrates. This
correlation biases in our favor since the resulting graph includes a larger fraction of
highly-connected users. However, even with the higher average node degree of 44.8,
this is still substantially lower than the average of 130 reported by Facebook [9].

The relationship between a user’s activity on Facebook and the availability of her
storage server is unknown. As a result, we explored three possible ways of assigning
users in the MPI trace to hosts in our availability traces: randomly, by connection rank
(a more connected user was assigned higher availability), and by interaction rank (a
more active user was assigned higher availability). Under each of these mappings, nodes
had a maximum replication factor of 10. If a user had 10 or more friends, its replicas
were chosen to be the 10 users it interacted with the most. Nodes with fewer than 10
connections used all of their connections as replicas.

We assumed that reads and writes were generated by an always-available client such
as a mobile device. We simulated writes using interactions from the MPI trace. For
a write event, if at least one member of a client’s replica set was available, the write
was considered a success and was added to a read queue for each of its friends. Writes
generated when no replica-set members were available counted as a failure and were
not added to friends’ read queues.

Reads were not captured in the MPI trace so we generated them synthetically. Clients
chose a random time between 30 minutes and 60 minutes, and after that time passed
attempted to retrieve the objects in their read queue. This read rate is consistent with the
reported behavior of Facebook users [9]. Read failures occurred if a client tried to read
an object while no member of the replica set was available, or none of the online replica
servers had the object at that time. Otherwise, the read was considered a success. After
clearing its read queue, clients chose another random period before they read again.

Figure 3(a) and Figure 3(c) show the read and write success rates for simulations
using the Microsoft availability trace, while Figure 3(b) and Figure 3(d) show the read
and write success rates using the Gnutella trace. As expected, nodes with more replicas
had higher read and write success rates, regardless of how Facebook users were assigned
host availability records. The overall higher read success rates across experiments are
partially an artifact of failed write attempts being suppressed in the read results; if a
node failed to perform a write, no other nodes attempted to read it.

One of the most striking features of our results is how much worse nodes with fewer
replicas fared when low connectivity was correlated with low availability. This is be-
cause nodes with low connectivity were penalized twice. Not only did these users have
access to fewer replicas, but their own server was assigned low availability as well. This
combination of factors led to significantly lower success rates than for nodes with low
connectivity under the other schemes or nodes with more replicas.

Unsurprisingly, read and write success rates under the Gnutella trace are much worse
than under the Microsoft-workstation trace. The Gnutella trace likely provides a close
to worst-case scenario for host availability since it captures client-process uptime rather
than machine uptime. On the other hand, results from the Microsoft-workstation trace
are likely close to a best-case scenario since the trace captures machine uptime in a
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(a) Read success rates (Microsoft). (b) Read success rates (Gnutella).

(c) Write success rates (Microsoft). (d) Write success rates (Gnutella).

Fig. 3. Simulation results

corporate environment. Reality likely lies somewhere in between. It is important to note
that even under the less-forgiving availability of the Gnutella trace, users with ten repli-
cas fared well. The worst case for ten replicas was under a connection-based mapping,
which generated a write-success rate of 99.6%. Under the Microsoft-workstation trace,
three or four replicas provided a write-success rate of 99.5% using the connection-based
mapping. Users with more than four replicas under the Microsoft trace had perfect read
and write rates for all mappings. All of these results bode well for Confidant. Facebook
users have an average of 130 friends, and we suspect that it would be straightforward
for most users to identify 5-10 trusted friends who are willing to host their data.

6 Related Work

FriendStore [23] is a backup system that also identifies trustworthy storage sites through
inter-personal relationships. FriendStore leverages trustworthy remote storage servers
to mitigate long-standing fairness problems in peer-to-peer systems. A primary differ-
ence between Confidant and FriendStore is the nature of the data they must manage.
Backup data is not meant to be shared and thus FriendStore does not require the same
level of complexity to manage access-control policies that Confidant does.

While Confidant leverages knowledge of the social graph to provide data privacy
without compromising data processing in a decentralized OSN, SPAR [15] uses social



Confidant: Protecting OSN Data without Locking It Up 79

information to improve the scalability of centralized OSNs such as Facebook or Twit-
ter. By co-locating the data of socially proximate users on the same physical machine,
SPAR can reduce the time to compose a user’s update feed and eliminate network traf-
fic. SPAR may also be useful for decentralized systems such as Confidant for reducing
the number of storage servers clients have to communicate with.

As discussed Section 3.2, recent work on Cimbiosys [17, 27] comes closest to Con-
fidant’s scheme for managing replicated access policies. The two systems have a great
deal in common, but their are two main differences. First, Confidant eliminates write
conflicts by serializing a user’s updates through her name server. Second, in Cimbiosys,
policies are bound to immutable object attributes (labels), while in Confidant, policies
are bound to individual data items. By binding policies at a finer granularity is more ap-
propriate for OSNs, where users often want to change the permissions of a single item.
However, Confidant can also enable efficient bulk policy changes due to the limited
scale of user’s personal OSN data sets.

Lockr [22] is an identity-management tool for OSNs that allows users to codify their
relationships through social attestations. Confidant borrows this idea from Lockr and
uses it to manage groups of users.

Persona [1] is one of many systems [6, 7, 16, 20] that assumes that remote storage
servers are untrusted. We have articulated the advantages of locating trusted storage
servers throughout this paper. However, it is worth noting that Confidant’s collusion
protections are weaker than those provided by Persona. Persona uses an attribute-based
encryption scheme to defend against attacks in which colluding users combine keys
to falsely claim membership in an intersection of groups. In Confidant we trade ro-
bustness to collusion attacks for a faster, simpler protection scheme based on common
symmetric-key algorithms.

7 Conclusion

We have presented Confidant, a decentralized OSN designed to support a scalable ap-
plication framework. The key insight behind Confidant is that friends who already have
access to a user’s data may be trusted to serve it as well. Trace-based simulations and
experiments with a Confidant prototype demonstrate the feasibility of our approach.
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Abstract. Deduplication is an approach of avoiding storing data blocks with
identical content, and has been shown to effectively reduce the disk space for
storing multi-gigabyte virtual machine (VM) images. However, it remains chal-
lenging to deploy deduplication in a real system, such as a cloud platform, where
VM images are regularly inserted and retrieved. We propose LiveDFS, a live
deduplication file system that enables deduplication storage of VM images in an
open-source cloud that is deployed under low-cost commodity hardware settings
with limited memory footprints. LiveDFS has several distinct features, includ-
ing spatial locality, prefetching of metadata, and journaling. LiveDFS is POSIX-
compliant and is implemented as a Linux kernel-space file system. We deploy our
LiveDFS prototype as a storage layer in a cloud platform based on OpenStack,
and conduct extensive experiments. Compared to an ordinary file system without
deduplication, we show that LiveDFS can save at least 40% of space for storing
VM images, while achieving reasonable performance in importing and retriev-
ing VM images. Our work justifies the feasibility of deploying LiveDFS in an
open-source cloud.

Keywords: Deduplication, virtual machine image storage, open-source cloud,
file system, implementation, experimentation.

1 Introduction

Cloud computing makes computing and storage resources available to users on de-
mand. Users can purchase resources from commercial cloud providers (e.g., Amazon
EC2 [1]) in a pay-as-you-go manner [2]. On the other hand, commercial clouds may
not be suitable for some users, for example, due to security concerns [25]. In partic-
ular, from developers’ perspectives, commercial clouds are externally owned and it is
difficult to validate new methodologies for a cloud without re-engineering the cloud
infrastructures. An alternative is to deploy a self-manageable cloud using open-source
cloud platforms, such as Eucalyptus [18] and OpenStack [22]. Such open-source cloud
platforms can be deployed within in-house data centers as private clouds, while provid-
ing functionalities similar to commercial clouds. For example, Eucalyptus resembles
the functionalities of Amazon EC2. Note that an open-source cloud can be deployed
using low-cost commodity hardware and operating systems that are commonly avail-
able to general users [18].
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Similar to commercial clouds, an open-source cloud should provide users with vir-
tual machines (VMs), on which standard applications such as web servers and file stor-
age can be hosted. To make deployment flexible for different needs of users and ap-
plications, it is desirable for the open-source cloud to support a variety of versions of
VMs for different types of configurations (e.g., 32-bit/64-bit hardware, file systems,
operating systems, etc). A major challenge is to scale up the storage of a large number
of VM images, each of which is a file that could be of gigabytes. Certainly, increasing
the storage capacity for hosting VM images is one option. However, this also implies
higher operating costs for deploying an open-source cloud under commodity settings.

One promising technology for improving storage efficiency of VM images is dedu-
plication, which eliminates redundant data blocks by creating smaller-size pointers to
reference an already stored data block that has identical content. One major applica-
tion of deduplication is the data backup in Content Addressable Storage (CAS) systems
[23], in which each data block is identified by its fingerprint computed from a collision-
resistant hash of the content of the data block. If two data blocks have the same finger-
print, then they are treated as having the same content. Recent studies [13,11] show that
the VM images of different versions of the same Linux distribution generally have a
high proportion of identical data blocks (e.g., about 30% of overlap in adjacent Fedora
distributions [13]). Hence, deduplication can actually enhance the storage utilization
of VM images. On the other hand, to enable deduplication for VM image storage in a
cloud, we need to address several deployment issues:

– Performance of VM operations. Existing studies mainly focus on the effective-
ness of using deduplication to save space for storing VM images, but there remain
open issues regarding the deployment of deduplication for VM image storage. In
particular, it remains uncertain if deduplication degrades the performance of exist-
ing VM operations, such as VM startup.

– Support of general file system operations. To make the management of VM im-
ages more effective, a deduplication solution should allow general file system op-
erations such as data modification and deletion. For example, if an old VM version
is no longer used, then we may want to purge the VM image file from the cloud
for better maintenance. However, current deduplication techniques are mainly de-
signed for backup systems, which require data be immutable and impose a write-
once policy [23] to prevent data from being modified or deleted.

– Compatibility with low-cost commodity settings. Although there have been com-
mercial file systems (e.g., SDFS [20] and ZFS [21]) that support efficient I/O opera-
tions while allowing deduplication, they are mainly designed for enterprise servers
with a large capacity of main memory. Some deduplication systems [8,15] use
flash memory to relieve the main memory requirement of deduplication. To make
deduplication compatible with commodity settings, a deduplication solution should
preserve the I/O performance with reasonable memory footprints and standard
commodity hardware configurations.

In this paper, we present a live deduplication file system called LiveDFS, which enables
deduplication storage of VM image files in an open-source cloud. In particular, we
target the open-source cloud platforms that are deployed in low-cost commodity hard-
ware and operating systems. LiveDFS supports general file system operations, such as
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read, write, delete, while allowing inline deduplication (i.e., on-the-fly deduplication
is applied to data that is to be written to the disk). LiveDFS consists of several design
features that make deduplication efficient and practical.

– Spatial locality. LiveDFS stores only partial deduplication metadata (e.g., finger-
prints) in memory for indexing, but puts the full metadata on disk. To mitigate the
overhead of accessing the metadata on disk, LiveDFS exploits spatial locality by
carefully placing the metadata next to their corresponding data blocks with respect
to the underlying disk layout.

– Prefetching of metadata. LiveDFS prefetches deduplication metadata of the data
blocks in the same block group into the page cache (i.e., the disk cache of Linux).
This further reduces the seek time of updating both metadata and data blocks on
the disk.

– Journaling. LiveDFS supports journaling, which keeps track of file system trans-
actions and enables crash recovery of both data blocks and fingerprints. In addition,
LiveDFS exploits the underlying journaling design to combine block writes in batch
and reduce disk seeks, thereby improving the write performance.

LiveDFS is POSIX-compliant, so its above design features are implemented in such a
way that is compliant with the Linux file system layout. It is implemented as a Linux
kernel-space driver module, which can be loaded to the Linux kernel without the need
of modifying and re-compiling the kernel source code. To justify the practicality of
LiveDFS, we integrate it into an open-source cloud platform based on OpenStack [22].
Thus, LiveDFS serves as a storage layer between cloud computing nodes and the VM
storage backend. We conduct extensive experiments and compare LiveDFS and the
Linux Ext3 file system (Ext3FS). We show that LiveDFS saves at least 40% of stor-
age space for VM images compared to Ext3FS. Given that deduplication introduces
fragmentation [24], we also evaluate the performance overhead of LiveDFS in inserting
and retrieving VM images in a cloud setting. To our knowledge, this is the first work
that addresses the practical deployment of live deduplication for VM image storage in
an open-source cloud.

The remainder of the paper proceeds as follows. In Section 2, we present the de-
sign of LiveDFS as a deduplication-enabled file system. In Section 3, we explain how
LiveDFS is implemented and can be deployed in an open-source cloud based on Open-
Stack. In Section 4, we present the empirical experimental results. In Section 5, we
review the related work in applying deduplication in storage. Finally, in Section 6, we
conclude this paper and present future work.

2 LiveDFS Design

LiveDFS is a file system that implements inline deduplication for VM storage and is
deployed as a storage layer for an open-source cloud. It is designed for commodity
hardware and operating systems. For commodity hardware, we consider the native 32-
bit/64-bit hardware systems with a few gigabytes of memory. Specifically, we seek
to reduce the required memory capacity to reduce the hardware cost. For commodity
operating systems, we consider Linux, on which LiveDFS is developed.



84 C.-H. Ng et al.

We make the following assumptions for LiveDFS design. LiveDFS is deployed in
a single storage partition. It only applies deduplication to the stored data within the
same partition, but not for the same data stored in different partitions. Nevertheless, it
is feasible for a partition to have multiple storage devices, such that deduplication is
applied in the file-system level, while data striping is applied in the storage devices and
is transparent to the file system. In addition, LiveDFS mainly targets for VM image
storage. We do not consider applying deduplication for other types of data objects,
which may not have any content similarities for deduplication (e.g., encrypted files).

2.1 Primitives

We design LiveDFS as a branch of the Linux Ext3 file system (Ext3FS) [6]. LiveDFS
supports general file system I/O operations such as read, write, and delete. It also sup-
ports other standard file system operations for files, directories, and metadata (e.g.,
changing directories, renaming a file, setting file attributes). Figure 1 depicts the file
system layout of LiveDFS, which follows the layout of Ext3FS except that LiveDFS
allows block sharing. In the following, we explain the major primitives of LiveDFS as
a deduplication-enabled file system.

Group 0 Group 1 ...... Group n-1

Inodes Data blocks

Layout of a
partition

Layout of one block group

Layout of an inode
Metadata

Data block pointers

......

Q

Super-
block

Inode
bitmap

Block
bitmap

...

P

Fig. 1. File system layout of LiveDFS, which is similar to the Ext3FS but supports block sharing

Typical storage systems organize data into blocks, which could be of fixed size or
variable size. Most CAS backup systems divide data into variable-size blocks, so as to
exploit different granularities of duplicated contents and achieve a higher deduplication
rate. The merits of using variable-size blocks in backup systems are studied in [28].
Nevertheless, we choose the fixed-size block implementation in LiveDFS with two rea-
sons. First, most commodity CPUs (e.g., Intel x86) support fixed-size memory pages
only. Thus, most mainstream file systems adopt the fixed-size block design to optimize
the use of memory pages. Second, [11] shows that for VM image storage, the dedupli-
cation efficiencies of using fixed-size and variable-size blocks are similar. Hence, we
define a block as a fixed-size data unit thereafter.

Similar to Ext3FS, LiveDFS arranges blocks into block groups (see Figure 1), each
storing the metadata of the blocks within the same group. One advantage of using block
groups is to reduce the distance between the metadata and their corresponding blocks
on disk, thereby saving the disk seek overhead.
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In Ext3FS, each file is allocated an inode, which is a data structure that stores the
metadata of the file. In particular, an inode holds a set of block pointers, which store
the block numbers (or addresses) of the blocks associated with the file. LiveDFS also
exploits the design of an inode and uses block numbers to refer to blocks. In particular,
if two blocks have the same content, then we set their block numbers to be the same
(i.e., both of them point to the same block). This realizes the block-sharing feature of
a deduplication file system. Note that a shared block may be referenced by a single or
different files (or inodes).

To enable inline deduplication, LiveDFS introduces two primitives: fingerprints and
reference counts. LiveDFS identifies each block by a fingerprint, which is a hash of the
block content. If the fingerprints are collision-resistant cryptographic hash values (e.g.,
MD5, SHA-1), then it is practical to assume that two blocks having different contents
will return two different fingerprints [23]. Since the fingerprint size is much smaller
than the block size, we can easily identify duplicate blocks by checking if they have the
same fingerprint. Also, to allow block modification and deletion, LiveDFS associates a
reference count with each block, such that it keeps the number of block pointers that
refer to the block. We increment the reference count of a block if a new block with the
same content is written, and decrement it if a block is deleted.

We now describe how LiveDFS performs file system operations. Since LiveDFS is
built on Ext3FS, most of its file system operations are the same as those of Ext3FS,
except that LiveDFS integrates deduplication into the write operation. LiveDFS imple-
ments copy-on-write at the block level. If we update a block that is shared by multiple
block pointers, then we either allocate a new block from the disk and write the up-
dated content to the disk, or “deduplicate” the updated block with an existing block
that has the same content. Note that the fingerprints and reference counts of the blocks
are updated accordingly. If the reference count is decremented to zero, then LiveDFS
deallocates the block as in Ext3FS.

To preserve the performance of file system operations when enabling deduplication, a
critical issue is how to maintain the fingerprints and reference counts of all data blocks
in a disk partition, such that we can search and update their values efficiently during
deduplication. We elaborate this in Section 2.2.

2.2 Deduplication Design

To enable efficient search of fingerprints during deduplication, one option is to keep all
fingerprints in main memory, but this significantly increases the memory cost. For ex-
ample, if we use a block size of 4KB with 16-byte MD5 fingerprints, then 1TB of data
will require 4GB of fingerprint space. As a result, we use an implementation that is sim-
ilar to approaches in [24,28] to manage the fingerprints. We introduce two components:
a set of fingerprint stores and a fingerprint filter. We keep the full fingerprints in a set of
fingerprint stores, which reside on disk. On the other hand, we use the fingerprint filter,
which resides in main memory, to speed up the search of fingerprints. Specifically, we
differentiate our work from [24,28] by carefully placing fingerprints on disk based on
the file system layout to further reduce the disk seek overhead during deduplication, as
elaborated below.
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Data block to be written
(from VFS layer)

 Found in
FP Filter?

Match with
FP Store?

NEW
BLOCK

Verdict

Yes

No

No

Yes

Memory
Access

Disk
Access

EXISTING
BLOCK

Consequence

Block allocation

FP store update
FP filter update

FP store update
FP filter update

Fig. 2. Every block written to LiveDFS goes through the same decision process

Overview. The main challenge of LiveDFS is about the writing of data blocks. Figure 2
shows how LiveDFS handles that issue. Whenever a data block arrives at LiveDFS (and
we name such a block an incoming block thereafter), its fingerprint is generated. We
use the fingerprint of the incoming block to determine if the incoming block is unique.

The first checkpoint is the fingerprint filter (“FP filter” in Figure 2). The finger-
print filter is a memory-based filter that aims to determine if the incoming block can
be deduplicated. If the incoming block is new to the file system, then it can be directly
written to the disk. The design of the fingerprint filter will be detailed in later discussion.

Recalling that the fingerprint filter does not store any complete fingerprints, so the
next step is to access the corresponding fingerprint store (“FP store” in Figure 2)
on disk in order to confirm if the incoming block can actually be deduplicated. If the
target fingerprint store does not contain the fingerprint of the incoming block, then it
implies that the fingerprint filter gives a false-positive result and that the incoming block
is unique; otherwise, the block is not unique and can be deduplicated.

In the following, we first elaborate the design of a fingerprint store, followed by that
of the fingerprint filter.

Fingerprint store. LiveDFS exploits spatial locality for storing fingerprints with re-
spect to the disk layout of the file system. Our insight is that LiveDFS follows Ext3FS
and organizes blocks into block groups, each keeping the metadata of the blocks within
the same group. In LiveDFS, each block group is allocated a fingerprint store, which
is an array of pairs of fingerprints and reference counts, such that each array entry is
indexed by the block number (i.e., block address) of the respective disk block in the
same block group. Thus, each block group in the disk partition has its corresponding
fingerprint store. Figure 3 shows how LiveDFS deploys a fingerprint store in a block
group. We place the fingerprint store at the front of the data block region in each block
group. When LiveDFS writes a new block, we write the content to the disk and update
the corresponding fingerprint and reference count for the block. A key observation is
that all updates are localized within the same block group, so the disk seek overhead is
minimized.

To quantify the storage overhead of a fingerprint store, we consider the case where
each fingerprint is a 16-byte MD5 hash and each reference count is of 4 bytes. Note
that in Ext3FS, the default block size is 4KB and default block group size is 128MB,
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so there are 32,768 blocks per block group. The fingerprint store will consume 655,360
bytes, or equivalently 160 blocks. This only accounts for 0.49% of the block group size.
Hence, the storage overhead of a fingerprint store is limited.

Fingerprint filter. The fingerprint filter is an in-memory indexing structure that aims
to speed up the search of fingerprints on disk. While there are many possible designs
of indexing techniques (see Section 5), we explore a simple design that suffices for our
requirements and is shown to work well according to our evaluation (see Section 4).

Figure 4 illustrates the design of the fingerprint filter. The fingerprint filter is a two-
level filter. The first-level filter maps the first n prefix bits of a fingerprint called the
index key, while the second-level filter maps the next k bits called the bucket key. We
elaborate how n and k can be chosen in later discussion.

We initialize the fingerprint filter when LiveDFS is first mounted. The mounting
procedure first allocates the index key table, which is an array of 2n entries, each of
which is a memory address that points to the head of a chain of buckets. Then LiveDFS
will read through all fingerprint stores in different block groups, and retrieve the index
key, the bucket key, and the block number associated with each disk block. We construct
a bucket entry for each tuple (bucket key, block number) and store the entry in the
correct bucket according to the index key. If a bucket is full of entries, then we create
a new bucket, so a chain of buckets may be created. We sort the bucket entries in each
bucket by the bucket keys, in order for us to efficiently search for a bucket entry using
binary search. We emphasize that the initialization of the fingerprint filter is only a
one-time process, which is performed when the file system is mounted. We evaluate
the mount time using our experimental testbed (see Section 4). We find that the mount
time is within 3 minutes for a 512GB harddisk partition that is fully filled with data. In
general, the mount time varies linearly with the amount of data, and hence the number
of fingerprints, being stored on disk.

We query the fingerprint filter whenever there is a new block to be written to the
disk. If the fingerprint of the new block matches one of the “n + k”-bit prefixes stored
in the filter, then the filter will return the corresponding block number. Note that there
may be more than one fingerprint sharing the same “n+ k” prefix bits, so the filter may
return more than one block number. To eliminate false positives, LiveDFS will look up
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the corresponding fingerprint store based on each returned block number, and verify if
the new block to be written matches the full fingerprint in the fingerprint store. Note
that LiveDFS updates the fingerprint filter every time a block is written, modified, or
deleted.

Performance impact of parameters. We now elaborate how we set the parameters for
the fingerprint filter, which depends on the index key length n and the bucket key length
k. These parameters in turn determine the trade-offs of different metrics: (i) the total
memory size of the filter, (ii) the false positive rate of each fingerprint filter lookup, and
(iii) the bucket chain length. Instead of deriving the optimal choices of the parameters,
we consider a special setting which performs well in practice based on our experiments
(see Section 4).

In the following, we consider a 1TB partition with of block size 4KB (i.e., 228 blocks
in total). We employ the 16-byte MD5 hash algorithm to produce fingerprints. The
system under our consideration adopts the 32-bit address space. We consider a special
case where n = 19 and k = 24. Note that the following analysis can still apply to other
parameter settings as well, e.g., 64-bit addressing.

We first evaluate the memory size of the fingerprint filter. For each data block, there
is a 7-byte bucket entry, which stores a bucket key of k = 24 bits and a block number of
32 bits. Since there are a maximum of 228 blocks, we need 1.792GB of memory for all
bucket entries. Also, each index key entry is a 32-bit memory address that points to the
head of a bucket chain, so we need 219× 4 = 2MB of memory for all index key entries.
If we take into account internal fragmentation, then the fingerprint filter needs at most
2GB of memory, which is available for today’s commodity configurations.

We emphasize that the memory footprint of LiveDFS is significantly less than those
of ZFS [21] and SDFS [20], which assume 64GB and 8GB of memory per 1TB of data
with block size 4KB, respectively. Although ZFS and SDFS use longer hashes (SHA-
256 and Tiger, respectively) for fingerprints, the reason why they use significantly more
memory is that they load the full fingerprints into memory. On the contrary, LiveDFS
only loads the fingerprint prefixes into memory, and organizes the full fingerprints near
their corresponding data blocks on disk so as to mitigate the disk seek overhead.

We next consider the false positive rate for each fingerprint filter lookup. Recall that
there are 228 data blocks. For a given fingerprint x, the probability ε that there exists
another fingerprint (or data block) that has the same n + k = 43 prefix bits as x is:

1 −
(
1− 2−43

)228−1 ≈ 2−15. That is, on average every one out of 32,678 blocks will
have a fingerprint mapped to more than one block number.

We also evaluate the bucket chain length. If the fingerprint value is uniformly dis-
tributed, then the average number of buckets associated with each index key is 228/219

= 512 (for n = 19). Each bucket entry is of 7 bytes. If each bucket is stored as a memory
page of size 4KB, then it can hold around 585 bucket entries, and the average bucket
length is less than one bucket.

2.3 Prefetching of Fingerprint Store

Whenever LiveDFS writes a block, the fingerprint and the reference count of that block
has to be updated. As a result, LiveDFS has to access the corresponding fingerprint store
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on disk every time LiveDFS is writing a data block. We improve the performance of our
deduplication design by extending the notion of spatial locality for caching fingerprints
in memory. Our key observation is that a VM image file generally consists of a large
stream of data blocks. If a data block is unique and cannot be deduplicated with existing
blocks, then it will be written to the disk following the previously written block. Thus,
the data blocks of the same block group are likely to be accessed at about the same time.

In order to further reduce the number of disk seeks, LiveDFS implements a finger-
print prefetching mechanism. When LiveDFS is about to access the fingerprint store
of a block group, instead of accessing only the target block (which contains the target
fingerprint), LiveDFS prefetches the entire fingerprint store of the corresponding block
group and store it into the page cache, the disk cache of the Linux kernel. Therefore,
subsequent writes in the same block group can directly update the fingerprint store in
the page cache. The I/O scheduler of the Linux kernel will later flush the page cache
into the disk. This further reduces the disk seeks involved. We point out that the con-
sistency of the data content between the page cache and the disk is protected by the
underlying journaling mechanism (see Section 2.4). Note that the idea is also used in
[24,28], except that we apply the idea in accordance with the Linux file system design.

The following calculations show that the overhead of our fingerprint prefetching
mechanism is small. Suppose that LiveDFS uses MD5 hashes as the fingerprints of
data blocks. Then a fingerprint store in a block group consumes 160 blocks (or 640KB
space). Today an ordinary 7200-RPM hard disk typically has a data rate of 100MB/s, so
it will consume only about 6-7ms for prefetching a whole fingerprint store into memory
(i.e., the page cache). This time value is close to the average time of a random disk seek,
which can be around 8-10ms [26].

2.4 Journaling

LiveDFS supports journaling, a feature that keeps track of file system transactions in a
journal so that the file system can be recovered to a stable state when the machine fails,
e.g., power outage. LiveDFS extends the journaling design in Ext3FS. In particular, we
treat every write to a fingerprint store as the file system metadata and have the journal
process modifications to the fingerprints and reference counts.

Figure 5 shows the pseudo-code of how LiveDFS updates a fingerprint store for a
data block P to be written to the file system, while a similar set of procedures are taken
when we delete a data block from the file system. Our goal is to update the fingerprint
and the reference count associated with the block P. First, we obtain the handle that
refers to the journal and perform the updates of metadata (e.g., indirect blocks, inodes)
for P as in Ext3FS (Lines 1-2). If P is a new block that cannot be deduplicated with
any existing disk block, then LiveDFS first loads the corresponding block that stores
P’s fingerprint into memory (Line 4), and notify the journal that the fingerprint block
is about to be updated via the function ext3 journal get write access() (Line 5).
After the fingerprint block is updated, we notify the journal that the modification is fin-
ished via the function ext3 journal dirty metadata() (Lines 6-7). Then, we update
P’s reference count similarly (Lines 9-12). When LiveDFS releases the journal handle
(Line 13), the journal will update the fingerprint store on disk atomically.
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function LiveDFS Fingerprint Store Update Block
Input: data block P to be written to the file system
1: handle = ext3 journal start()
2: Perform metadata writes via the journal handle
3: if P cannot be deduplicated with an existing block then
4: Load a fingerprint block fp into memory
5: ext3 journal get write access(handle, fp)
6: Update fp with the fingerprint of P
7: ext3 journal dirty metadata(handle, fp)
8: end if
9: Load P’s reference count cp into memory

10: ext3 journal get write access(handle, cp)
11: Increment the reference count cp by one
12: ext3 journal dirty metadata(handle, cp)
13: ext3 journal stop(handle)

Fig. 5. Pseudo-code of how LiveDFS updates the fingerprint store through the journaling system

Not only can the journal improve the file system reliability, but it can also enhance
the write performance. The journal defers the disk updates of each write request and
combines multiple disk writes in batch. This reduces the disk seeks and improve the
write performance. We demonstrate this improvement in Section 4.

3 LiveDFS Implementation and Deployment

LiveDFS is a kernel-space file system running atop Linux. We implemented LiveDFS
as a kernel driver module for the Linux kernel 2.6.32, and it can be loaded to the ker-
nel without requiring any modification or recompilation of the kernel source code. The
deduplication logic is implemented by extending the virtual file system (VFS) address
space operations. In particular, we perform fingerprint computation and determine if
a block can be deduplicated in the function writepage() (in Linux source tree:
fs/ext3/inode.c), which is called by a kernel thread and will flush dirty pages
to the disk.

Since LiveDFS is POSIX-compliant, it can be seamlessly integrated into an open-
source cloud platform that runs atop Linux. In this work, we integrate LiveDFS into
OpenStack [22], an open-source cloud platform backed by Rackspace and NASA, such
that LiveDFS serves as a storage layer for hosting VM images with deduplication. We
point out that Eucalyptus [18] has a similar architecture as OpenStack, so we expect
that the deployment of LiveDFS in Eucalyptus follows a similar approach.

OpenStack overview. OpenStack is built on three sub-projects Compute (named Nova),
Object Storage (named Swift), and Image Service (named Glance). Figure 6 shows
a simplified view of an OpenStack cloud, which consists of Nova and Glance only.
Nova defines an architecture that uses several controller services that coordinate the
VM instances running on different Compute nodes. Glance is a VM image management
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system that is responsible for registering, searching, and retrieving VM images. It pro-
vides APIs for accessing a storage backend, which could be Object Storage (Swift),
Amazon S3, or a local server on which Glance is deployed. Note that OpenStack uses
the euca2ools command-line tool provided by Eucalyptus to add and delete VM
images.
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Fig. 6. LiveDFS deployment in an OpenStack cloud

LiveDFS deployment. Figure 6 shows how LiveDFS is deployed in an OpenStack
cloud. LiveDFS serves as a storage layer between Glance and the VM image storage
backend. Administrators can upload VM images through Glance, and the images will
be stored in the LiveDFS partition. When a user wants to start a VM instance, the cloud
controller service of Nova will assign the VM instance to run on one of the Compute
nodes based on the current resource usage. Then the assigned Compute node will fetch
the VM image from Glance, which then retrieves the VM image via LiveDFS.

4 Experiments

In this section, we empirically evaluate our LiveDFS prototype. We first measure the
I/O throughput performance of LiveDFS as a disk-based file system. We then evaluate
the deployment of LiveDFS in OpenStack-based cloud platform. We justify the per-
formance overhead of LiveDFS that we observe. We compare LiveDFS with Ext3FS,
which does not support deduplication.

4.1 I/O Throughput

We measure the file system performance of different I/O operations using synthetic
workload based on LiveDFS and Ext3FS. In LiveDFS, we assume that the index key
length n is 19 bits and the bucket key length k is 24 bits (see Section 2.2). Note that
LiveDFS is built on different design components, including (i) spatial locality, in which
we allocate fingerprint stores in different block groups (see Section 2.2), (ii) prefetch-
ing of a fingerprint store (see Section 2.3), and (iii) journaling (see Section 2.4). We
evaluate different LiveDFS variants that include different combinations of the design
components, as shown in Table 1, to see the performance impact of each component.
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When spatial locality is disabled, we simply place all fingerprint stores at the end of the
disk partition; when prefetching is disabled, we bypass the step of prefetching a finger-
print store into the page cache; when journaling is disabled, we use alternative calls to
directly write fingerprints and reference counts to the fingerprint stores on disk.

Table 1. Different LiveDFS variants evaluated in Section 4.1 (
√

= enabled, × = disabled)

Spatial locality Prefetching Journaling
LiveDFS-J × × √
LiveDFS-S

√ × ×
LiveDFS-SJ

√ × √
LiveDFS-all

√ √ √

Experimental testbed. Our experiments are conducted on a Dell Optiplex 980 machine
with an Intel Core i5 760 CPU at 2.8GHz and 8GB DDR-III RAM. We equip the ma-
chine with two harddisks: a 1TB harddisk of Western Digital WD1002FAEX 7200RPM
SATA for our benchmarking, and a 250GB harddisk for hosting our benchmarking tools
and the operating system. Our operating system is Ubuntu 10.04.2 server 64-bit edition
with Linux kernel 2.6.32.

Evaluation methodology. We use Linux basic system calls read() and write()
to measure the I/O performance. Each experimental result is averaged over 10 runs.
In each run, we use the system call gettimeofday() to obtain the duration of an
operation, and then compute the throughput. At the beginning of each run, we clear the
kernel page cache using the commandecho 3 > /proc/sys/vm/drop caches
so that we can accurately evaluate the performance due to disk accesses.

Experiment A1: Sequential write. We first evaluate the sequential write performance
of LiveDFS by writing a 16GB file with all unique blocks (i.e., all blocks cannot be
deduplicated with others). The file size is larger than the 8GB RAM in our test machine,
so that not all requests are kept in the kernel buffer cache.

Figure 7 shows the throughput of different LiveDFS variants and Ext3FS. First, con-
sidering LiveDFS-J and LiveDFS-SJ, we observe that LiveDFS-SJ has a higher through-
put than LiveDFS-J by 16.1MB/s (or 37%). Thus, spatial locality by itself can improve
the throughput, by putting the fingerprint stores close to their blocks on disk.

We note that LiveDFS-S (without journaling) has the lowest throughput among all
variants. Specifically, LiveDFS-SJ increases the throughput of LiveDFS-S by 34.6MB/s
(or 78.6%). Since journaling combines write requests and flushes them to the disk in
batch (see Section 2.4), journaling can effectively minimize the disk accesses in addition
to providing robustness against system crashes.

We observe that LiveDFS-all further improves the throughput of LiveDFS-SJ via
prefetching (by 13.8MB/s, or 18%). Now, comparing LiveDFS-all and Ext3FS, we ob-
serve that LiveDFS-all is slightly less than Ext3FS’s throughput by 3.7MB/s (or 3.8%),
mainly due to the increase in the block group accesses. Because we introduce a finger-
print store to each block group, LiveDFS has fewer data blocks per block group than
Ext3FS. However, we show that each design component of LiveDFS can reduce disk
accesses and increase the throughput of LiveDFS close to that of Ext3FS.
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Experiment A2: Sequential read. In this experiment, we evaluate the sequential read
performance of LiveDFS by reading the stored 16GB file created in Experiment A1.
Figure 8 shows the results. LiveDFS and Ext3FS. We observe that all LiveDFS variants
have almost the same throughput as Ext3FS, mainly because LiveDFS uses the same
execution path as that of Ext3FS for reading data blocks.

Experiment A3: Sequential duplicated write. In this experiment, we write another
16GB file that has the identical content to the one in Experiment A1. Figure 9 shows the
results. We observe that all LiveDFS variants (except LiveDFS-S without journaling)
significantly boost the throughput of Ext3FS by around 120MB/s. The reason is that
LiveDFS only needs to read the fingerprints of data blocks and update the reference
counts, without re-writing the same data blocks (with larger size) to the disk. We note
that the write-combining feature of journaling plays a significant role in boosting the
throughput of LiveDFS, as LiveDFS-S does not achieve the same improvement.

Experiment A4: Crash recovery with journaling. In this experiment, we consider
how deduplication affects the time needed for a file system to recover from a crash
using journaling. We set the journal commit interval to be five seconds when the file
system is first mounted. We then write a 16GB file with unique blocks sequentially
into LiveDFS, and unplug the power cable in the middle of writing. The file system is
therefore inconsistent. After rebooting the machine, we measure the time needed for our
file system check tool fsck, which is modified from the Ext2FS utility e2fsprogs
to recover the file system.

We observe that LiveDFS ensures the file system correctness using journaling. How-
ever, it generally uses a longer recovery time than Ext3FS. On average (over 10 runs),
LiveDFS uses 14.94s to recover, while Ext3FS uses less than 1s. The main reason is
that LiveDFS needs to ensure that the fingerprints in the fingerprint store match the new
data blocks being written since the last journal commit interval. Such additional finger-
print checks introduce overhead. Since system crashes are infrequent, we expect that
the recovery time is acceptable, as long as the file system correctness is preserved.

4.2 OpenStack Deployment

We now evaluate LiveDFS when it is deployed in an OpenStack-based cloud. Our goal
is to justify the practicality of deploying LiveDFS in a real-life open-source cloud for
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VM image storage with deduplication. Specifically, we aim to confirm that LiveDFS
achieves the expected storage savings as observed in prior studies [13,11], while achiev-
ing reasonable I/O performance of accessing VM images.

System configuration. Our experiments are conducted in an OpenStack cloud platform
consisting of three machines: a Nova cloud controller, a Glance server, and a Compute
node. The Nova cloud controller is equipped with an Intel Core 2 Duo E7400 2.8GHz
CPU, while both the Glance server and the compute node are equipped with an In-
tel Core 2 Quad Q9400 2.66GHz CPU. All machines are equipped with 4GB DDR-II
RAM, as well as two harddisks: a 1TB 7200RPM harddisk for storing VM images and
a 250GB harddisk for hosting the operating system and required software. All machines
use Ubuntu 10.04.2 server 64-bit edition as the operating system. Furthermore, all three
machines are inter-connected by a Gigabit Ethernet switch, so we expect that the net-
work transmission overhead has limited performance impact on our experiments.

All VM images are locally stored in the Glance server. We deploy either LiveDFS or
Ext3FS within the Glance server, which can then access VM images via the deployed
file system using standard Linux file system calls. We also deploy Kernel-based Vir-
tual Machine (KVM) as the default hypervisor in the compute node. By default, we
assume that LiveDFS enables all design components (i.e., spatial locality, prefetching,
and journaling).

Our cloud testbed consists of only one Compute node, assuming that in most situa-
tions there is at most one Compute node that retrieves a VM image at a time. We also
evaluate the scenario when a Compute node retrieves multiple VM images simultane-
ously (see Experiment B3).

Dataset. We use deployable VM images to drive our experiments. We have created 42
VM images in Amazon Machine Image (AMI) format. Table 2 lists all the VM images.
The operating systems of the VM images include ArchLinux, CentOS, Debian, Fedora,
OpenSUSE, and Ubuntu. We prepare images of both x86 and x64 architectures for
each distribution, using the recommended configuration for a basic server. Networked
installation is chosen so as to ensure that all installed software packages are up-to-date.
Each VM image is configured to have size 2GB. Finally, each VM image is created as
a single monolithic flat file.

Table 2. The collection of virtual machine images involved in the experiments

Distribution Version (x86 & x64) Total
ArchLinux 2009.08, 2010.05 4
CentOS 5.5, 5.6 4
Debian 5.0.8, 6.0.1 4
Fedora 11, 12, 13, 14 8
OpenSUSE 11.1, 11.2, 11.3, 11.4 8
Ubuntu 6.06, 8.04, 9.04, 9.10, 10.04, 10.10, 11.04 14
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Fig. 10. Space usage of VM images (excluding zero-filled blocks)

Experiment B1: Storage efficiency. We first validate that LiveDFS can save space for
storing VM images. Note that each VM image typically has a large number of zero-
filed blocks [11]. One main source of zero-filled blocks, according to our created VM
images, is due to the unused space of the VM. To reflect the true saving achieved by
deduplication, we exclude counting the zero-filled blocks in our evaluation.

Figure 10(a) shows the cumulative space usage of storing the VM images using
LiveDFS and Ext3FS. Overall, LiveDFS saves at least 40% of space over Ext3FS (for
non-zero-filled blocks). If we count the zero-filled blocks as well, then LiveDFS still
uses around 21GB of space (as all zero-filled blocks can be denoted by a single block),
while Ext3FS consumes 84GB of space for the 42 2-GB VM images. In this case, we
can even achieve 75% of saving.

Figure 10(b) shows the average space usage of a VM image for each Linux dis-
tribution. The space savings range from 33% to 60%. It shows that different versions
of VM images of the same Linux distribution have a high proportion of identical data
blocks that can be deduplicated. Therefore, our LiveDFS implementation conforms to
the observations that deduplication is effective in improving the storage efficiency of
VM images [13,11]. We do not further investigate the deduplication effectiveness of
VM images, which has been well studied in [13,11].

Experiment B2: Time for inserting VM images. In this experiment, we evaluate the
time needed for inserting VM images into our Glance server. We execute the com-
mands euca-bundle-image, euca-upload-bundle, and euca-register1

to insert the VM images from the cloud controller to the Glance server (over the Giga-
bit Ethernet switch). We repeat the test five times and obtain the average. Our goal is to
measure the practical performance of writing VM images using LiveDFS.

Figure 11(a) shows the average insert time for individual distributions (over five
runs). Overall, LiveDFS consumes less time than Ext3FS in inserting VM images. The
reason is that LiveDFS does not write the blocks that can be deduplicated to the disk,
but instead it only updates the smaller-size reference counts. Figure 11(b) shows the

1 Those euca-* commands come with euca2ools, the command-line tool of Eucalyptus for
VM image management.
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average insert time for all 42 VM images using different LiveDFS variants as defined
in Section 4.1. Although this time the differences among the different LiveDFS vari-
ants are not as significant as seen in Section 4.1, we observe that enabling all design
components (i.e., LiveDFS-all) still gives the least insert time.
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Fig. 11. Average time required for inserting a VM image to the Glance server

Experiment B3: Time for VM startup. We now evaluate the time needed to launch a
single or multiple VM instances. We assume that all VM images have been inserted into
the file system. We then execute the euca-run-instances command in the Nova
cloud controller to start a VM instance in the Compute node, which fetches the corre-
sponding VM image from the Glance server. We measure the time from the command
being issued until the time when the euca-run-instances command invokes the
KVM hypervisor (i.e., when the VM starts running). Our goal is to measure the practical
performance of reading VM images using LiveDFS.

Figure 12(a) shows the time needed to launch a single VM instance for different
distributions in the Compute node. We observe that LiveDFS has lower throughput per-
formance than Ext3FS. The main reason is that deduplication introduces fragmentation
[24]. That is, in deduplication, some blocks of a file may be deduplicated with the blocks
of a different file, so the actual block allocation of a file on disk is no longer in the se-
quential order as seen in the ordinary file system without deduplication. Fragmentation
is an inherent problem in deduplication, as it remains an open issue to be solved [24].
To see how fragmentation affects the practical performance, we note that in LiveDFS,
its increase in VM startup time ranges from 3s to 21s (or 8% to 50%) for a VM image of
size 2GB. Currently, the cloud nodes are connected over a Gigabit Ethernet switch. We
expect that the VM startup penalty will become less significant if we deploy the cloud
in a network with less available bandwidth (e.g., the cloud nodes are connected by mul-
tiple switches that are shared by many users), as the network transmission overhead will
dominate in such a setting.

We now consider the case when we launch multiple VM instances in parallel. In the
Compute node, we issue multiple VM startup commands simultaneously, and measure
the time for all VM instances to start running. Figure 12(b) shows the time required
for starting one to four VM instances in the Compute node. The overhead of LiveDFS
remains consistent (at around 30%), regardless of the number of VM instances being
launched. The observation conforms to that of launching a single VM instance.
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5 Related Work

Existing deduplication techniques are mainly designed for backup systems. On the other
hand, LiveDFS applies deduplication in a different design space and is designed for VM
image storage in a cloud platform. Also, LiveDFS seeks to be POSIX-compliant, so its
implementation details take into account the Linux file system layout and are different
from existing deduplication systems. In this section, we review the related work in
deduplication in more detail.

Backup systems. Venti [23] is the first work of content addressable storage (CAS) for
data backup. Foundation [24] is another CAS system built upon Venti, and improves
Venti with the new compare-by-value mode. It uses the Bloom filter as an in-memory
indexing structure to identify new or existing fingerprints. LiveDFS uses the finger-
print filter as an in-memory indexing structure. However, the fingerprint filter not only
identifies the existence of fingerprints as in the Bloom filter, but it also specifies where
the fingerprint is stored on disk. Data Domain [28] also uses the Bloom filter [4] for
in-memory indexing, and uses locality preserved caching to reduce random I/Os for
duplicated data. Sparse Indexing [14] trades deduplication opportunities for reduced
memory usage in backup systems by only deduplicating data with a few of the most
similar previous copies in different backup streams. Bimodal Content Defined Chunk-
ing [12] reduces the memory overhead of chunk indexing by using chunks with different
granularities in different regions of a backup. Note that the above systems do not con-
sider the scenario where data can be modified or deleted, while LiveDFS addresses this
by associating a reference count with each data block in its deduplication design.

Usage of flash memory. Dedupv1 [15] and ChunkStash [8] use flash memory and solid
state drives (SSDs) to relieve the memory constraints of deduplication. They exploit the
fast random I/O feature of flash memory by putting the fingerprints into the flash rather
than in main memory. They show that they achieve competent I/O performance while
requiring a small memory capacity. On the other hand, LiveDFS targets a commodity
server that is not necessarily equipped with SSDs.
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Scalable storage. Extreme Binning [3], HydraFS [27] and DeDe [7] are scalable stor-
age systems that support data deduplication. Extreme Binning exploits file similarity
rather than chunk locality. HydraFS is a file-system built atop HYDRAstor [9]. DeDe is
a storage system that performs out-of-order deduplication. Their deployment platforms
are based on a distributed environment, while LiveDFS is designed to be deployed on a
single commodity server.

Deduplication-enabled file systems. ZFS by Sun Microsystems[21] and SDFS by
Opendedup [20] are file systems supporting inline deduplication. However, as stated
in Section 2.2, they need a large memory capacity for enabling deduplication, mainly
because they assume that the entire set of fingerprints is loaded into memory. In terms
of deployment, ZFS and SDFS are mainly designed for enterprise-scale systems, while
LiveDFS is designed as a kernel-space file system for commodity servers. Btrfs [5] is an
open-source file system developed by Oracle that supports deduplication. While Btrfs is
a Linux kernel module like LiveDFS, it only supports offline deduplication [19] instead
of inline at the time of this writing.

VM image storage. It has been shown [13,11] that deduplication can significantly save
the storage space for VM images. However, there remain open issues of deploying
deduplication in a VM storage system. Nath et al. [17] evaluate a deployed CAS sys-
tem for storing VM images. They mainly focus on storage efficiency and network load,
but do not evaluate the read/write throughput of accessing VM images. Liguori et al.
[13] deploy a CAS system based on Venti [23] for storing VM images, but its read/write
throughput is limited by the Venti implementation. Lithium [10] is a cloud-based VM
image storage system that aims for fault tolerance, but it does not consider deduplica-
tion. To our knowledge, LiveDFS is the first practical system that deploys deduplication
for VM image storage in a real cloud platform.

6 Conclusions and Future Work

We propose LiveDFS, a live deduplication file-system that is designed for VM image
storage in an open-source cloud with commodity configurations. LiveDFS respects the
file system design layout in Linux and allows general I/O operations such as read, write,
modify, and delete, while enabling inline deduplication. To support inline deduplication,
LiveDFS exploits spatial locality to reduce the disk access overhead for looking up fin-
gerprints that are stored on disk. It also supports journaling for crash recovery. LiveDFS
is implemented as a Linux kernel driver module that can be deployed without the need
of modifying the kernel source. We integrate LiveDFS into a cloud platform based on
OpenStack and evaluate the deployment. We show that LiveDFS saves at least 40% of
storage space for different distributions of VM images, while its performance overhead
in read/write throughput is minimal overall. Our work demonstrates the feasibility of
deploying deduplication into VM image storage in an open-source cloud.

In this work, we mainly focus on deduplication on a single storage partition. Since
a cloud platform is typically a distributed system, we plan to extend LiveDFS in a
distributed setting (e.g., see [16]). One challenging issue is to balance the trade-off
between storage efficiency and fault tolerance. On one hand, deduplication reduces the
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storage space by removing redundant data copies; on the other hand, it sacrifices fault
tolerance with the elimination of redundancy. We pose this issue as future work.

The source code of LiveDFS is published for academic use at: http://ansrlab.
cse.cuhk.edu.hk/software/livedfs.
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Abstract. Enterprise and cloud data centers are comprised of tens of thousands
of servers providing petabytes of storage to a large number of users and applica-
tions. At such a scale, these storage systems face two key challenges: (a) hot-spots
due to the dynamic popularity of stored objects and (b) high reconfiguration costs
of data migration due to bandwidth oversubscription in the data center network.
Existing storage solutions, however, are unsuitable to address these challenges
because of the large number of servers and data objects. This paper describes the
design, implementation, and evaluation of Ursa, which scales to a large number
of storage nodes and objects and aims to minimize latency and bandwidth costs
during system reconfiguration. Toward this goal, Ursa formulates an optimiza-
tion problem that selects a subset of objects from hot-spot servers and performs
topology-aware migration to minimize reconfiguration costs. As exact optimiza-
tion is computationally expensive, we devise scalable approximation techniques
for node selection and efficient divide-and-conquer computation. Our evaluation
shows Ursa achieves cost-effective load balancing while scaling to large systems
and is time-responsive in computing placement decisions, e.g., about two minutes
for 10K nodes and 10M objects.

Keywords: Load balancing, storage, optimization, linear programming.

1 Introduction

This paper describes a scalable data management middleware system Ursa that aims
to improve load balancing for cloud storage services services in the spirit of web email
data stores (e.g., Hotmail or Yahoo! Mail) over utility storage systems (e.g., Amazon
S3 [1] and Windows Azure [2]).

As cloud services continue to grow rapidly, large-scale cloud storage systems are
being built to serve data to billions of users around the globe. The primary goal for
these systems is to provide scalable, good performance, and high-availability data stores
while minimizing operational expenses, particularly the bandwidth cost. However, di-
verse I/O workloads can cause significant data imbalance across servers resulting in
hot-spots [14]. Fig. 1 shows the CPU utilization across clusters in Hotmail. From this
figure, we can observe that I/O workloads are unbalanced over clusters and they are
skewed to a few object partitions resulting in “hot nodes,” causing high delays to end
users. As a result, these services typically shuffle terabytes of data per day to balance
load across clusters [22].

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 101–122, 2011.
c© IFIP International Federation for Information Processing 2011
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Fig. 1. CPU utilization in Hotmail clus-
ters. CPU utilization is highly skewed
to a few object partitions.

The same challenge has been raised and
actively discussed in the context of building
database on clouds [5,6,7,17,20,21]. However, all
these works either do not address dynamic load
reconfiguration or assume the source and target
nodes of dynamic migration are known by an or-
acle. In contrast, we aim at achieving scalable
and dynamic reconfiguration at the storage layer
by identifying cost-optimal source-target pairs.
Toward this goal, we highlight the following two
key challenges for our system:

1. Be scalable to large numbers of nodes and
objects: The system should scale to a large num-
ber of nodes storing data from participating users

and applications. Cloud scale systems today have tens of thousands of nodes and bil-
lions of objects corresponding to petabytes of disk space, and these numbers will in-
crease over time. Similarly, the system should support a broad range of applications
which may track per-user data (e.g., mail folders) or per-object access patterns (e.g.,
video content), or perform analytical processing like MapReduce [8] on large datasets
(e.g., scientific traces and search index generation from crawled web pages).

2. Minimize reconfiguration costs: The system should aim to minimize the reconfig-
uration costs in terms of both bandwidth and latency. As workloads change over time,
load balancing incurs bandwidth overhead to monitor the load of individual objects and
servers to find hot-spots as well as to migrate data to alleviate hot-spots. Similarly, data
movement risks a long reconfiguration time window, typically proportional to the mi-
grated data volume, during which reads may incur a high delay and writes may need
to be blocked to ensure consistency. Finally, reconfigurations may interfere with fore-
ground network traffic risking performance degradation of running applications.

To our knowledge, all prior techniques have aimed to solve these challenges indi-
vidually. To address load imbalance, many techniques perform dynamic placement of
individual data objects [3,25] or distribute objects randomly across the cluster (e.g.,
based on hashing [18]). However, to adaptively re-distribute objects, we need to know
load patterns for billions of objects. Optimizing reconfiguration costs for these patterns
calls for offline solvers [11,16] (e.g., knapsack or linear programming based) to make
migration decisions. However, as such optimization is inherently expensive, these ap-
proaches are suitable at small scale and less effective when systems grow to a large
scale. Meanwhile, approaches trading effectiveness to achieve scalability, for instance,
by using a greedy simulated annealing or an evolutionary algorithm [16], suffer from
high reconfiguration costs; we discuss these approaches in detail in related work.

Our goal is to show that a simple and adaptive framework can significantly re-
duce reconfiguration costs for industry-scale load balancing in cloud storage systems.
While designing Ursa, we keep it implementable with mechanisms in existing storage
systems–meaning our design should avoid complexity, can be evaluated on physical
hardware, and can be deployed to our data centers today.
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Our approach Ursa is designed to address the challenges listed above, using the
following two key ideas:

1. Workload-driven optimization approach: First, to minimize the reconfiguration
costs, Ursa formulates the problem as a workload-aware integer linear programming
(ILP) problem whose goal is to eliminate hot-spots while minimizing the data move-
ment cost. Based on our analysis of production workloads (Section 2.1), Ursa leverages
the fact that the number of hot-spots is small compared to system size (i.e., power law
distribution) and hence optimizes load balancing for only the hot-spots rather than uni-
formly distributing the entire load across all servers.

2. Scalable approximation techniques: Second, to achieve scalability, Ursa applies an
efficient divide-and-conquer technique to optimize for a subset of source/target nodes
based on the workload and network topology. To further reduce migration costs under
high bandwidth oversubscription prevalent in data center networks [13], Ursa migrates
data in a topology-aware manner, e.g., first finds placement within the same rack, then a
neighboring rack, and so on. When a neighboring set of a hot-spot server overlaps with
another, Ursa performs joint data placement of objects from hot-spots in the combined
neighborhood set.

We have developed a prototype of Ursa and evaluated it on traces from Hotmail. Our
evaluation shows that, compared to state-of-the-art heuristics [16], Ursa achieves scal-
able and cost-effective load balancing and is time-responsive in computing placement
decisions (e.g., about two minutes for 10K nodes and 10M objects).

2 Preliminaries

In Section 2.1, we first explain our target application scenarios, based on which we
formally discuss our problem in Section 2.2.

Client

Metadata service (MDS)

Chunk servers

n1 ni nNnj

lookup(object ID)

chunk ID, primary, · · ·

read (chunk ID, size, · · ·)
write (chunk ID, size, data, · · ·)

lease (server ID) heartbeat (server ID)

Servers

Switches
or routers

Fig. 2. Overall architecture; the data center network organized as a spanning tree topology [13]

2.1 Motivation

Our target system model for Ursa is that of a replicated, cluster-based object store sim-
ilar to current systems such as GFS [12] and Azure blob store [2]. The object store
is comprised of tens of thousands of storage nodes, typically commodity PCs, which
provide read/write accesses to data. The nodes are inter-connected in a data center net-
work which is organized as a spanning tree topology [13]. As a result, network distance
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between nodes can vary significantly e.g., two nodes in the same rack or cluster have
higher bandwidth connectivity than those in different ones, which affects migration
costs between nodes. Fig. 2 illustrates the overall architecture.

Data is stored in units of chunks (or partitions). A chunk is of some fixed size, e.g.,
64KB in Google’s Bigtable [4] and 64MB in GFS [12]. Each chunk has l replicas (1
primary and l− 1 secondary replicas) to enable fault tolerance; a typical value of l is 3.
At any time a storage server will be the primary for some of the chunks stored on it. For
fault tolerance, each replica of a chunk is typically placed in a separate fault domain,
e.g., a node or a rack.

All client requests are first sent to a metadata service which maps a data object to its
constituent chunks, and each chunk to its current primary. The metadata service period-
ically polls each server to track availability and uses leases to maintain read/write con-
sistency. A read request is sent by the primary to the local replica. For a write request,
the primary first determines request ordering, then sends the request to all replicas, and
finally acknowledges ‘accept’ to the client when each of these steps is completed.

Load balancing is achieved by uniformly spreading chunks over storage servers and
choosing primaries for each chunk randomly from the available replicas of that chunk.
However, in balancing load under dynamic workloads, these storage systems face sev-
eral challenges described using a case-study of a large cloud email service.

Case-study on Hotmail: Hotmail is a cloud service with millions of users and is
comprised of tens of thousands of nodes storing petabytes of data (e.g., emails and
attachments). In Hotmail, most writes are message writes. When a message arrives, it is
simultaneously written to multiple replicas. Hotmail is read-heavy, which is the source
of disk latency, and its workload has a heavy tailed distribution with large size email
attachments which result in significant disk I/O load.
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Fig. 3. Normalized Hotmail weekly loads

We observed the (normalized) volume of read and write requests for a typical server
for a week, as reported in Fig. 3. First, we observed a significant variation in the request
volume by about 10x. Second, the requests are imbalanced across partitions and corre-
spondingly across storage nodes hosting them. For instance, recall from Fig. 1 that CPU
utilization is highly skewed to a few partitions, which become hot-spots and bottlenecks
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for the entire system. We leverage these observations in designing our load balancing
algorithm by spreading load away from hot-spots and minimizing reconfiguration costs
to migrate data under dynamic load patterns.

2.2 Problem Statement

Based on these observations, we formally define the problem of load balancing. In
particular, we show how to integrate load balancing in a cloud storage system.

We first define some notations to be used in this paper. Let {n1, · · · , nN} be a set of
nodes, where N is the number of nodes and each node ni contains replicas rj ’s of some
partitions. Each replica rj has a workload Lj according to the request on the replica and
each node ni has the sum of loads of all replicas that it contains, i.e., L∗i =

∑
rj∈ni

Lj .
Fig. 4 evaluates the response time for a varying volume of requests in a VM on

Windows Azure. We assume various block sizes, i.e., 8-64MB, as the unit of each read
or write request. We measure the response time of the 99th percentile among 1,000
requests. As expected, we observe from Fig. 4 results that the response time increases
significantly when the request load exceeds a threshold, e.g., more than 10 seconds at
50 reads/sec in read requests and 20 writes/sec in write requests for 32MB block size.
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Fig. 4. Response time over the requests per second (the y-axis is on log scale)

This suggests that a “hot-spot,” swamped with requests, incurs significantly higher
response time and becomes a bottleneck, which motivates us to alleviate such hot-spots.
Formally, hot-spots are defined as a node ni with an aggregate load, e.g., total I/O oper-
ations per second (IOPS) or bytes transferred per second for reads and writes, beyond
some threshold Ci. We can define Ci empirically as illustrated in Fig. 4. Based on the
observation, we define the following load capacity constraint:

Constraint 1 (Load Capacity (C1)) . For every node ni in the storage system, keep
the total load L∗i ≤ Ci.

Meanwhile, to provide fault tolerance, two replicas of the same object should not be
in the same failure domain, e.g., the same node or rack. We use the fault tolerance
constraint for each node as follows:

Constraint 2 (Fault Tolerance (C2)) . Every node ni should contain at most one
replica of a given chunk (or partition).
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To achieve load balancing, our goal is to generate a sequence of operations satisfying
C1 and C2, while optimizing the reconfiguration cost. The two available knobs for data
migration are:

– Swap: This operation simply switches the role of the primary replica of a chunk
with one of the secondary replicas.

– Move: This operation physically migrates the chunk data between two nodes.

For instance, to avoid some nodes being swamped with requests, Hotmail “moves” users
between disk groups to maintain a high full watermark on each disk group, and servers
“swap” primary and secondary roles.

This paper mainly focuses on optimizing moves, as they involve higher migration
costs, which depends on network topology between servers, e.g., the lowest cost to
move data is within the same rack, relatively higher within neighboring racks, and more
far away. To logically visualize this problem in 2D, Fig. 5 emulates bandwidth costs
using an L2-metric, or Euclidean distance, based on inter-node distance (a circle of
radius r denotes a logical partition of nodes, say a rack). In this figure, a smaller distance
between two nodes is more desirable meaning it incurs lower migration cost.

H1

r

Overloaded node (hot spot)
Non-overloaded node

H2

H5

H4

H3

Fig. 5. Logical view of topology-dependent bandwidth costs for hot-spots H1 to H5

To summarize, our load balancing problem can formally be defined as follows:

Definition 1 (Load Balancing). Find the optimal placement P ′ satisfying C1 and C2
from initial placement P by generating a cost-optimal swap and move sequence.

3 Algorithms for Load Balancing

In this section, we describe our optimization problem for load balancing more formally.
Specifically, Section 3.1 formulates our goal and constraints as a linear programming
(LP) problem [15], which is not scalable in our target scenario. Section 3.2 describes a
two-phase approximation algorithm for near-optimal solutions.

While a joint-optimization of combining two available knobs, swap and move oper-
ations, seems attractive, we only consider the move operation for two reasons in this
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formulation. First, the number of decision variables will increase significantly making
the computation prohibitive. Second, from a practical view, operators prefer to invoke
cheap swap operations before they consider expensive data migrations. Thus, prior to
applying the move operations, to cool down our entire system, we can iteratively swap
the primaries in the hottest node and the secondaries in the cold node until no swap
operation is applicable. After that, with respect to the remaining hot nodes, i.e., on the
swapped system, we apply our following strategies with only the move operations.

3.1 Exact Solution: ILP Formulation

LP is a mathematical model, populating “decision variables” with values achieving the
best outcome (lowest migration cost in our problem). There can be multiple optimal
solutions in terms of cost model, but our model is guaranteed to return one of such
solutions. In our problem, decision variables are defined as a binary hyper-matrix Y
representing optimal placement of the replicas. If the k-th replica of the j-th partition is
best to be placed on the i-th node after migration, Yijk will be set to 1, and 0 otherwise.
As decision variables are all integers, our problem is an integer linear programming
(ILP) problem.

Table 1 summarizes all notations. In particular, current placement Aijk can be rep-
resented in the same way as Yijk . With respect to Aijk and Yijk placements, the band-
width cost to move the k-th replica of the j-th partition from the node containing the
replica to the i-th node can be defined. Note that A is a complement representation of
A that converts 0 to 1 and 1 to 0. AijkYijk = 1 means the movement of the k-th replica
of the j-th partition to the i-th node. Our goal is to find Y minimizing the total cost for
such movements, which can be formally stated as an objective function in Eq. (1).

Constraints C1 and C2 discussed in Section 2 can be formally stated as Eq. (2) and
(5) respectively.

minimize
∑

i

∑
j

∑
k

AijkYijkBijk (1)

subject to ∀i :
∑

j

∑
k

YijkLjk ≤ Ci (2)

Table 1. Notations for optimal ILP model

Notation Description
Yijk 1 if k-th replica of j-th partition is on i-th node after move, 0 otherwise
Aijk 1 if k-th replica of j-th partition is on i-th node before move, 0 otherwise

Bijk
Bandwidth cost to move k-th replica of j-th partition from the node containing the
replica into i-th node

Ci Load capacity of i-th node
Ljk Load of k-th replicas of j-th partition
l Number of replicas

Fq Set of nodes with the same fault domain index q
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∀j,∀k :
∑

i

Yijk = 1 (3)

∀j :
∑

i

∑
k

Yijk = l (4)

∀q,∀j :
∑
i∈Fq

∑
k

Yijk ≤ 1 (5)

∀i,∀j, ∀k : Yijk = 0 or 1 (6)

In the above ILP formulation, Eq. (5) can incorporate placement constraints for fault
domains (e.g., a node, rack, or cluster) where replicas of the same partition should be
placed in different fault domains to ensure high availability. Note that our LP model
does not have to keep track of whether a replica is a primary or a secondary. The model
incorporates only move operations because the primary-secondary swaps are already
completed before applying the model.

Our formulation suggests that obtaining an exact solution is not practical, especially in
our target scenario of 10M partitions, 3 replicas, and 10K nodes. Yijk holds 300 billion
variables, which is prohibitive in terms of both computation and memory usage. This
observation motivates us to develop an efficient approximation in the following section.

3.2 Approximation

In this section, we present two complementary approaches for efficient computation:
(1) reducing the number of decision variables and (2) speeding up the computation.

Reducing Number of Decision Variables: Two-Phase Approach. To reduce the num-
ber of decision variables Yijk , representing all possible moves of the k-th replica of the
j-th partition on the i-th node, we decide to restrict the moves (by restricting source and
target nodes) to yield an approximate yet efficient solution, based on two key observa-
tions; we empirically evaluate the efficiency of our approach with respect to the offline
optimal in Section 5.

First, as observed in Section 2, loads are skewed to a few hot-spots, e.g., power law
distribution. This suggests that we can safely localize the source node of a move to
hot-spots. Second, only if we knew the maximal migration cost rmax of a single object
a priori, we could easily eliminate any target node incurring higher costs than rmax

from the model without compromising the optimality. However, as rmax is obtained
after optimization, we start with its lower bound estimation r and iteratively increase
the value by Δr until it converges to rmax, i.e., a linear search, as in ‘phase 2’ described
below. As over-estimating the value incurs high LP computation cost, a binary or an
evolutionary search was not suitable for this purpose.

To reflect these two observations, our two-phase approach consists of (1) selecting a
set of objects to move from all hot-spots, and (2) deciding a set of target nodes to which
the selected objects are to be migrated.

Phase 1: Restricting Source Nodes/Objects
As discussed above, we restrict moves to those from hot-spots (with loads higher than
Ci). From each hot-spot i, we then need to decide which set Si of objects to move in
order to reduce the loads below Ci. There can be various strategies as follows:
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– Highest-load-first: Starting from the object with the highest request load, add ob-
jects to Si in descending order of loads until the load is below the Ci threshold.

– Random: Selecting random objects from node i and adding to Si until the load is
below the Ci threshold.

Between these two strategies, we take the highest-load-first to minimize the number of
objects to move. In Section 5, we show that this approach works well in practice.

Phase 2: Target Node Selection
As discussed above, we can safely restrict our search for destination nodes to those
with a migration cost less than rmax. As this value is unknown, we perform a linear
search starting with a small r, e.g., the cost of migrating into the nodes in the same
rack, and run the ILP model. If a feasible solution exists, we stop searching. Otherwise,
we expand the radius further r + Δr, and resume running the ILP model.

We now discuss how to formulate the ILP model from the revised strategy. Table 2
summarize decision variables and all constants. Based on these, we revise the ILP model
in the previous section as follows:

minimize
∑

i

∑
j

XijBij (7)

subject to ∀j :
∑

i

XijLi −
∑

i′∈Sj

∑
j′

Xi′j′Li′ + L∗j ≤ Cj (8)

∀i :
∑

j∈R(i,r)

Xij = 1 (9)

∀i,∀j /∈ R(i, r) : Xij ≤ 0 (10)

∀p,∀q :
∑

i∈Gp

∑
j∈Fq

Xij ≤ 1 (11)

∀i,∀q :
∑
j∈Fq

Xij ≤ Iiq (12)

∀i,∀j : Xij = 0 or 1 (13)

In this revision, the decision variables are defined as a binary matrix X representing
optimal movements of the replicas. If the i-th object moves to the j-th node, Xij will be

Table 2. Notations for approximate ILP model

Notation Description
Xij 1 if i-th object moves to j-th node, 0 otherwise
Cj Load capacity of j-th node
Bij Bandwidth cost for moving i-th object into j-th node
Sj Set of objects selected to move from j-th node

Li, L∗j Load of i-th object, total load of j-th node
R(i, r) Nodes within radius r from the node i-th object belongs to

Gp Set of selected objects with partition index p to move from the overloaded nodes
Fq Set of nodes with the same fault domain index q

Iiq 0 if q-th domain contains the same partition as i-th object, 1 otherwise
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set to 1, and 0 otherwise. Using this representation, an objective function for minimizing
such movement cost is formally stated in Eq. (7).

Table 2 describes all notations for representing the following constraints–Eq. (8)
represents the capacity constraint for each j-th node. In this constraint, the first two
terms represent the incoming load to the j-th node and outgoing load from the j-th node,
respectively. Eq. (9) and (10) are the constraints for restricting the target nodes within
the search radius r. Eq. (11) and (12) are the constraints to ensure fault tolerance by
preventing objects with the same partition from being placed on the same fault domain
similarly to Eq. (5) in the optimal ILP formulation. In particular, Gp denotes the group
of all object replicas belonging to partition index p in the set of selected objects. Thus,
Eq. (11) imposes a constraint such that candidate objects having the same partition
index cannot be placed on the same fault domain while Eq. (12) imposes a constraint
such that a candidate object cannot be placed on a fault domain which already has a
replica from the same partition. Note that these two constraints are useful when a set of
candidate objects is merged from nodes with overlapping search regions. For a single
node, these constraints hold trivially as at most one copy of a replica partition can be
hosted on the node.

In this formulation, we can significantly reduce the number of decision variables
compared to the previous formulation, because we only consider the selected objects
in hot-spots and constrain the search space within a specific radius. For instance, in
the same scenario of 10M partitions, 3 replicas, and 10K nodes, if the number of the
selected objects in hot-spots is 10K×30 (1% of 3K objects per node on average) and
the number of nodes within a typical rack is 40, the number of variables is about 12M,
which is significantly less than the 300 billion in the previous model.

Speeding-up Computation. We next describe how to speed up the computation using
the following two approaches: (1) Divide-and-Conquer (D&C), and (2) relaxation to
the LP model.

(1) Divide-and-Conquer: We formulate the ILP model to move all selected objects
from the hot-spots to the candidate nodes within a specified cost radius. However, we
observe that the computation for a hot-spot can be separated if the neighborhood defined
by its cost radius does not overlap with that of others. That is, we can divide the given
problem into sub-problems of optimizing moves for “disjoint” groups of hot-spots with
overlaps, and merge the solutions without loss of accuracy, which shows significantly
higher performance empirically. Fig. 5 illustrates the D&C approach for two disjoint
groups of overlapping hot-spots. Unlike running ILP once for all hot-spots, D&C runs
the ILP model independently and in parallel for two grey groups on {H1, H2} and
{H3, H4, H5}.

(2) Relaxation to LP: The ILP model, which requires decision variables to be integers,
is more expensive than LP. We thus relax the model by changing the decision variables
from binary to real numbers between 0 and 1, i.e., by using constraint ∀i, ∀j : 0 ≤
Xij ≤ 1 instead of Eq.(13). However, such relaxation can often return fractional values
between 0 and 1 for some target nodes, e.g., X31 = 0.5, X32 = 0.3, and X33 = 0.2. We
thus use these scores to prioritize the target nodes by picking the one with the highest
score. Meanwhile, if the movement causes violation of the constraints C1 and C2, we
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Algorithm 1. Two-phase approximation: cost optimization for load balancing

1 M ← {}; // Initialize movement set
2 r ← r0; // Initialize search radius
// Merge the objects to move whose search regions are
// overlapped

3 {S′
1, · · · , S′

n′} ← MergeObjects (S1, · · · , Sn, r);
4 for k ← 1 to n′ do

// Find target nodes within r from the nodes
// containing each group k

5 TNk ← FindTargetNodes (k, r);
6 {Xij |∀i ∈ S′

k,∀j ∈ TNk} ← SolveLP (S′
k, TNk, r);

7 if LP solution is feasible then
8 foreach i ∈ S′

k do
9 Let {Xi1, · · · , Xim} be a sorted list s.t. Xij > 0;

10 for j ← 1 to m do
11 if Li + L∗j ≤ Cj then
12 M ← M∪ {(i, j)};
13 break;
14 if ∃S′

k, LP solution is infeasible then r ← r + Δr;
15 if there still exist object(s) to move then goto line 3;

have to bypass it. In this example, we first check whether moving the object id 3 to the
node id 1 (as represented by X31) is feasible to satisfy the constraints. If it is feasible,
we move it. Otherwise, we iteratively check the next movement on X32 with the second
highest score, and so on.

In summary, Algorithm 1 formally explains the optimization. There are three func-
tional modules: (1) MergeObjects, merging the objects to move whose search radii
overlap, (2) FindTargetNodes, finding the target nodes for each overlapping group,
and (3) SolveLP, running the LP model for each overlapping group.

4 Implementation of Ursa on Windows Azure

This section describes our implementation of Ursa by using APIs provided by a real
cloud system Windows Azure for deploying multiple servers in a distributed cloud en-
vironment. Our system consists of three main modules: (1) a resource manager that per-
forms load balancing, (2) a load generator/trace replayer, and (3) a set of storage nodes.
Fig. 6 illustrates the overall architecture. The resource manager periodically collects
load statistics of objects requested to the storage nodes and their location information,
computes load balancing decisions by applying different algorithms such as ILP/LP
models, and finally it generates messages to actuate the data migration operations and
conveys them through a message queue to individual storage nodes. The load generator
outputs storage requests by generating read and write messages for objects in the stor-
age nodes according to Hotmail read/write requests logged. Similarly, the trace replayer
takes as input a log of the read and write requests for running applications (e.g., Hot-
mail) and issues I/O requests as per their temporal patterns. The location information for
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Fig. 6. Overall architecture of Ursa’s prototype implementation on Windows Azure

all objects is maintained in a mapping table corresponding to the MDS lookup table in
Fig. 2, which is used to assign each request message to the corresponding storage node.
The storage nodes receive the requests through their corresponding message queues.
After processing the requests, the storage nodes send request acknowledgements which
are used to compute load statistics for the resource manager. Each storage node handles
both the read/write requests and data migration operations. Alternatively, our architec-
ture can support a separate queue per storage node for data migration operations, similar
to the principle of separating control and data plane in distributed systems. To actuate
data migration between nodes, the source node transfers the corresponding objects to
the destination node over a TCP channel; the mapping table is updated after migration is
completed. For correctness, write requests on objects being migrated are blocked until
the migration operations are completed.

We implement the resource manager as a module running on a local computer, the
load generator as a web role instance, and the storage nodes as worker role instances,
where the web role and the worker role compose the application of Windows Azure.
The web role instance is the interface to pass the migration operations decided by the
resource manager and the request messages generated from the load generator/trace
replayer to the storage nodes. We instantiate the web role as a large VM with 4 CPU
cores, 7 GB memory, and 1,000 GB disk because it interacts with multiple worker
role instances. The worker role instances execute write/read requests on data objects
delivered from their queues, or move their objects to other worker role instances as
specified by the resource manager when hot-spots occur. We instantiate them as small
VMs with 1 CPU core, 1.75 GB memory, and 20 GB disk.

5 Experiments

Section 5.1 validates the effectiveness of our load balancing approach on a simulator
over large-scale datasets up to ten thousand nodes and thirty million objects. Section 5.2
then evaluates our framework on the real system implemented on Windows Azure.
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5.1 Evaluation on Simulator

This section evaluates the effectiveness of the load balancer by synthetically generat-
ing load statistics based on Hotmail traces. We first report our experimental settings
and then validate the effectiveness and the scalability of our approach over synthetic
datasets.

Settings. We synthetically generate several datasets (denoted as the naming convention
of [number of storage nodes]-[number of partitions]) from 0.1K-0.1M to 10K-10M to
closely emulate the statistics aggregated from storage servers in Hotmail clusters. More
specifically, given the parameter pairs X-Y , we generate the dataset to mimic Hotmail
traces by the following procedure:

1. Generate Y partitions where every partition has l = 3 replicas, and assign work-
load values following the power-law distribution into partitions. We assume that the
workload of primaries is two times higher than their secondaries corresponding to
the read to write ratio observed in our case-study workload.

2. Randomly distribute X nodes in two-dimensional Euclidean space. We attempt to
reproduce the bandwidth cost for passing a message between two servers that may
be hosted either on the same rack, neighboring racks, or topologically far apart so
that it is proportional to the Euclidean distance.

3. Randomly distribute all replicas into nodes satisfying constraints such that no node
can include two replicas corresponding to the same partition.

4. Assign load capacities Ci’s to X nodes. In particular, when the total workload of the
node ni is L∗i by all the replicas assigned to ni, the distribution of the ratio L∗i/Ci

over X nodes follows the distribution illustrated in Fig. 1 under the assumption that
the total workload of the node is proportional to the CPU utilization. The nodes with
L∗i/Ci higher than 0.7 are regarded as hot-spots.

We then measure (1) the running time (the placement decision time without the recon-
figuration time for actually passing the messages) and (2) the migration cost (sum of the
distances between two nodes to move objects) and (3) the number of migration opera-
tions. Specifically, we measure the reconfiguration cost as the cost of migrations (and
not swaps), because we apply the same swap optimization strategy for all algorithms,
namely iteratively swapping the primary in the hottest node and the secondary in a cold
node until no swap operation is applicable. In particular, we apply the swap operations
with 90% success probability to emulate a small fraction of out-of-date secondaries.
The swap operations for the out-of-date secondaries may require more expensive cost
than the migration operations to synchronize their state. That is, we regard the swap
operations for such secondaries as the failed operations. As we consider only migra-
tions, all the message sizes are the same and thus the number of migration operations
can also be interpreted as the bandwidth cost, which would be directly proportional to
these numbers. The bandwidth cost is an important metric for reconfiguration costs as
data center networks tend to have high bandwidth oversubscription [13].

We compare our best approach (especially the approximation, denoted as ALP (for
Approximate LP), in Section 3) with a natural baseline called HtoC (for Hottest to
Coldest), which iteratively eliminates hot-spots until no hot-spots exist by moving the
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hottest objects in a hot-spot node into the coldest node. (Note that, though we use a
single machine, ALP can be easily parallelized for each non-overlapping group of the
search regions.) HtoC is a simplified variation of the greedy algorithm suggested by
Kunkle and Schindler [16], as the proposed algorithm “as is” cannot apply to a larger
scale setup because of its complex objective function of minimizing an imbalance. As
another baseline, we adopt a metaheuristic optimization algorithm using a simulated
annealing technique called SA (for Simulated Annealing), similar to an evolutionary
algorithm approach in [16]. SA randomly moves the objects into other nodes to min-
imize the load variance. We note that SA has eight parameters to tune and failing to
optimize these parameters may lead SA to generate excessive migrations. For our eval-
uations, we empirically tune these parameters including setting the maximum number
of migrations as 10K and the maximum running time as 30 minutes.

Results. We first motivate the necessity of migration operations, then evaluate our
approximation techniques to speed up our ILP formulations, and finally compare our
best approach with the baselines.
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Fig. 7. Effect of swap and migration operations

To validate the necessity of the migration operations, we first evaluate the number
of remaining hot-spots after applying only swap operations. Fig. 7 shows such results
over various scales of datasets. Observe from Fig. 7(a) that there are still about one third
of the initial hot-spots even after swaps, and Fig. 7(b) shows the numbers of swap and
migration operations respectively until all hot-spots are eliminated.

Fig. 8 shows the effect of the object selection strategies in our two-phase approach
for reducing the number of decision variables. In particular, we compare two simple
approaches, highest-load-first and random. Fig. 8(a) shows the total cost for migration
operations. Observe that the highest-load-first strategy is much cheaper than the random
in all settings, which is explained by the number of migration operations in Fig. 8(b).
As the workload of objects follows the power-law distribution, the highest-load-first
selects far fewer objects with the highest load than the random. Thus, in all experiments
hereafter, we use the highest-load-first strategy in the first phase.
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Fig. 8. Effect of selecting source objects

Fig. 9 shows the effect of our two speedup techniques suggested in Section 3.2,
divide-and-conquer and relaxation from ILP to LP. We evaluate combinations of these
two techniques (denoted as [NONE or DC]+[ILP or LP]) with respect to the migration
cost and the running time in Fig. 9(a) and (b), respectively. Observe that, while all com-
binations show the same or almost the same cost, DC+LP applying both optimization
techniques shows much shorter running time than the others. We do not plot the results
of NONE+ILP and DC+ILP in 150-150K configuration because their running times
become too large (more than two days).
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Fig. 9. Effect of speeding up computation

Fig. 10 compares the optimal cost computed by the optimal ILP model in Section 3.1
(denoted as OPT) with our best approach ALP, i.e., DC+LP. Observe that ALP shows
a similar cost to OPT in Fig. 10(a) while ALP exhibits a significantly higher scalability
than OPT in the running time of Fig. 10(b). Note that we evaluate small-scale datasets
due to the low scalability of OPT.
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Fig. 10. Performance comparison of ALP with respect to SA and the optimal solution

Fig. 11 shows the effect over large-scale datasets: Fig. 11(a) and (b) show the total
cost and the running time of ALP. Observe that ALP is a clear winner in all settings
except for the running time. In terms of cost, ALP is 80-300 times cheaper than SA and
2-20 times cheaper than HtoC. Meanwhile, the running time of ALP is comparable to
simple heuristics and remains reasonable, i.e., 130 seconds, even in the largest setting
of 10K-10M. Fig. 11(c) shows the effect over the number of migrations (proportional to
the bandwidth cost). ALP and HtoC have the same number of operations, because both
adopt the same method, highest-load-first, for selecting the objects to be migrated from
the hot-spots. Fig. 11(d) shows the standard deviation σ over the loads of storage nodes.
NONE depicts σ before the reconfiguration. SA has the lowest σ at small scale 0.1K-
0.1M according to the goal of minimizing σ. However, as the scale increases, it becomes
less effective. In particular, in 5K-5M and 10K-10M configurations, we observe that,
when ALP and HtoC eliminate hot-spots, they result in slightly lower σ than SA.

5.2 Evaluation on Windows Azure

This section describes the evaluation of our prototype on Windows Azure described in
Section 4. We first report our experimental settings and then discuss the results.

Settings. We simplify some environmental settings for convenience of evaluation.
More specifically, we assume that all objects have the same block size, e.g., 32MB,
and the load generator only generates the write messages on those objects. (When the
read and write requests are blended, we can easily quantify the capacity of the node as
a weighted sum w1·reads/s + w2·writes/s.) Under these assumptions, before executing
the above setup on Azure, we measure the load capacity Ci of the storage node in the
unit of writes/s. We first find a threshold value T writes/s such that, for the storage node,
the response time rapidly increases, and set Ci = 0.7T . We then generate T writes/s
messages for the hot-spots (20% of all the nodes) and 0.4T writes/s messages for the
other nodes. Meanwhile, in this setting, we do not distinguish between primary and
secondary replicas in order to focus on the migration operation incurring significantly
higher cost than the swap operation.

We perform evaluations in the following two scenarios–Random and Controlled.
In Random, we leave Windows Azure to deploy nodes, and as a result, have nodes de-
ployed randomly in the data center network (i.e., similar migration costs between each
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Fig. 11. Comparing (a) the cost, (b) running time, (c) number of migrations, and (d) standard
deviation under different configurations for ALP, HtoC, and SA

source-destination pair). In contrast, in Controlled, we emulate data center scenarios
where we have control over which nodes go to which racks. In these scenarios, migra-
tion costs can vary based on the underlying rack assignment. More specifically, in our
system, the nodes of a data center network form a hierarchical structure of the spanning
tree topology [13]. Thus, as traffic goes up through switches and routers, the oversub-
scription ratio increases rapidly, which means that movement of the data across rack
or cluster causes significant delay compared to the movement within the same rack or
cluster. As Windows Azure does not allow user-specified deployment of VMs to racks,
we emulate arbitrary rack assignment by adding time delays.

We evaluate the effectiveness of our approach over various scales of datasets, e.g., 30-
900 (30 storage nodes and 900 partitions). Note that we assume the number of replicas
is three in all setups. Thus, 30-900 implies that the number of total objects is 2,700.

Running experiments in Windows Azure enables us to measure “elapsed time” which
includes the time for running ALP and the time it takes for the system to stabilize (i.e.,
until the system responds to a request within 1 second). We thus use two metrics in this
section: (1) the elapsed time and (2) the bandwidth cost (measured as the number of
operations as discussed before.)

We then compare our proposed method with HtoC, a winner solution among the
baseline approaches as shown in the experiment on our simulator.
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Fig. 12. Response time over elapsed time

Results. Fig. 12 shows the response time of each request over elapsed time with the
dataset 30-900. We observe that the response time rapidly increases before the load bal-
ancer is called at 60 second point marked as ‘L’ on x-axis. After the call, the response
time starts to be stable passing through the reconfiguration by using two approaches.
We argue Random, where migration costs are more or less the same, is not a favorable
scenario for our proposed system, as a randomly selected node with no computation
and the one selected from our optimization computation would incur similar migration
costs (i.e., little margin for optimization). However, even in this unfavorable setting,
ALP achieves stable state about 30 seconds earlier than HtoC in Fig. 12(a). As ex-
pected, our performance gain is much clearer in Controlled, where migration costs
differ significantly. As shown in (b), ALP is about 140 seconds faster than HtoC.

Fig. 13 presents our results in varying settings of Controlled scenarios, i.e., 10-100,
30-900, and 50-2500. We observe from Fig. 13(a) that the performance gap between
the two approaches increases as the data scale increases, e.g., two times faster in 50-
2500, which suggests the scalability of our approach. Note from Fig. 13(b) that two
approaches have a similar number of migrations because both select the objects to move
from the hot-spots using the highest-load-first.
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6 Related Work

As cloud systems have become popular as cost-efficient and agile computing platforms,
there have been various efforts to efficiently manage them. For instance, pMapper [24]
performs cost-aware server consolidation and dynamic VM placement to minimize
power. Rhizoma [26] leverages constraint logic programming (CLP) to minimize cost
for deploying and managing distributed applications while satisfying their resource re-
quirements and performance goals. However, these approaches do not address load bal-
ancing in cluster storage systems or perform migration in a topology-aware manner.

Meanwhile, while many existing methods for load balancing perform dynamic place-
ment of individual data objects [3,16,25,27], they aim at evenly distributing loads over
all nodes. However, finding load balancing schemes with minimal re-configuration costs
is a variant of the bin-packing or knapsack problem, which is inherently expensive and
solvable offline [11]. As a result, existing solutions cannot scale to cloud-scale systems
with more than ten thousand nodes incurring prohibitive reconfiguration costs. For in-
stance, Kunkle and Schindler [16] tackle this problem by applying a greedy search, an
evolutionary algorithm, and an optimal ILP model. However, these algorithms are de-
ployed and evaluated in a small scale system, e.g., six nodes, and it is non-trivial to
scale these approaches for a larger scale.

In clear contrast, our approach aims to scale up to tens of thousands of nodes by
eliminating hot-spots to minimize the reconfiguration cost. Similarly motivated by the
challenge for scaling down peak loads, Everest [19] proposed to off-load the workload
from overloaded storage nodes to under-utilized ones. A key difference is Everest tar-
gets to flash crowds with bursty peaks. To optimize for workload of this type, Everest
off-loads writes to pre-configured virtual storage nodes temporarily then later reclaims
to original nodes lazily when the peak subsides. Meanwhile, Ursa has a complemen-
tary strength of handling long-term changes in load and making topologically-aware
migration decisions.

Ursa has advantages for read-heavy workloads, such as Hotmail workload studied
in this paper. In Everest, only writes are off-loaded and such write offloading can in-
crease read latency, as a write offloaded to multiple locations with data versioning, i.e.,
N-way offloading, requires the following read request to find the latest write (which
is bottlenecked by the slowest server). Another restrictive assumption of Everest for
Hotmail workloads is that reads to off-loaded writes (recent data) are rare, while such
pattern can be frequently observed in many applications, such as email where a user
immediately checks for incoming mail.

Data migration challenge has been raised in the context of database systems built
on cloud computing environments as well [5,6,7,9,10,17,20,21]. These systems can be
categorized into those using replication strategies [5,17,20,21] or limited dynamic data
migration [6,7,9,10]. However, existing dynamic migration approaches assume some
oracle to determine the source and target nodes of migration and leave the problem of
identifying cost-optimal dynamic reconfiguration as future work, while we identify a
scalable and efficient solution for such reconfiguration.



120 G.-w. You, S.-w. Hwang, and N. Jain

7 Conclusion and Future Work

We have presented a new middleware system Ursa for load balancing. Ursa formu-
lates load balancing as an optimization problem and develops scalable optimization
techniques. Our evaluations using traces from Hotmail are encouraging: Ursa scales to
large systems while reducing reconfiguration cost and can compute placement decisions
within about two minutes for 10K nodes and 10M objects in cloud-scale systems.

As future work, we consider the following issues:
First, regarding interference during reconfiguration, reconfiguration does consume

resources, CPU and bandwidth, that could otherwise be used to serve requests. To con-
trol interference, we can build a mechanism, such as TCP Nice [23] developed for
background data transfer, to automatically tune the right balance between interference
and resource utilization. For workloads with many sudden transient changes, e.g., flash
crowds on the Internet, interference and reconfiguration costs may become significant.
One approach would be to specify a resource budget for reconfigurations to ensure that
interference to applications is within acceptable bounds.

Second, regarding the unit of migration, in this paper, we regard an object as the
unit of migration, but supporting a varying degree of granularity may enable further
optimization. For instance, partitions or chunks may be collected into a group, such
that a single MDS message is sufficient to migrate or swap the whole group. That is,
adopting a coarser unit can reduce the number of MDS operations.

Lastly, regarding trade-offs between reconfiguration cost and speed, our frame-
work does have hidden knobs controlling this trade-off. For instance, in divide-and-
conquer computation, a small initial radius r would incur less computation cost for LP
but may require more rounds of LP computation, while larger value requires a single
but more costly LP computation with possibly high reconfiguration cost. Meanwhile,
divide-and-conquer computation does not compensate accuracy if (1) regions do not
overlap and (2) a region has an infeasible solution. Though divide-and-conquer can still
be used for faster LP computation when these conditions are violated, the process will
identify sub-optimal results. Also, when using the greedy highest-load-first strategy, we
may pick a very hot object that can only be migrated to a cold node far away, whereas
we could pick several relatively less hot objects incurring lower migration cost. A joint
optimization minimizing the overall cost would avoid this case and thus reduce recon-
figuration cost, but may incur higher LP running time.
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Abstract. Modern data center applications are complex distributed systems with
tens or hundreds of interacting software components. An important management
task in data centers is to predict the impact of a certain workload or reconfig-
uration change on the performance of the application. Such predictions require
the design of “what-if” models of the application that take as input hypothetical
changes in the application’s workload or environment and estimate its impact on
performance.

We present Predico, a workload-based what-if analysis system that uses
commonly available monitoring information in large scale systems to enable the
administrators to ask a variety of workload-based “what-if” queries about the sys-
tem. Predico uses a network of queues to analytically model the behavior of large
distributed applications. It automatically generates node-level queueing models
and then uses model composition to build system-wide models. Predico employs
a simple what-if query language and an intelligent query execution algorithm
that employs on-the-fly model construction and a change propagation algorithm
to efficiently answer queries on large scale systems. We have built a prototype
of Predico and have used traces from two large production applications from a
financial institution as well as real-world synthetic applications to evaluate its
what-if modeling framework. Our experimental evaluation validates the accuracy
of Predico’s node-level resource usage, latency and workload-models and then
shows how Predico enables what-if analysis in two different applications.

1 Introduction

Today online server applications have become popular in domains ranging from bank-
ing, finance, e-commerce, and social networking. Such server applications run on data
centers and tend to be complex distributed systems with tens or hundreds of interact-
ing software components running on large server clusters. As an example, consider an
online stock trade processing application of a major financial firm. This application
consists of 471 separate software components that process incoming stock trades at low
latencies. Figure 1 shows another application which disseminates stock prices and mar-
ket news to the terminals of stock traders; this application consists of 8970 components.

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 123–142, 2011.
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The components are depicted as nodes of the graph and process stock data and news
from a multitude of sources, filter, aggregate, and then disseminate updates for each
company to desktops that subscribe to such streams. Such data center applications dif-
fer significantly in scale and complexity when compared to traditional multi-tier web
applications.

Typical data center applications evolve over time as new functionality is added, its
workload volume grows, or its hardware or software is updated. To deal with such
changes, an important management task for administrators is to predict the impact of
any planned (or hypothetical) change on the performance of individual components or
the entire system. This task, which is referred to as what-if analysis, requires the design
of what-if models that take as input a potential change in the application workload or its
settings and predict the impact of that change on application behavior. However, given
the complexity of today’s data center application, manual design of such what-if models
is no longer feasible since data center administrators may not be able to comprehend
the behavior of a complex system of tens of interacting components. Consequently, a
what-if analysis system must be able to automatically derive such models from prior
observations of application’s behavior. Further, the system must be able to scale to
large complex applications with hundreds of interacting components, while allowing
rich what-if analysis efficiently. While a number of modeling techniques have been
proposed for distributed or multi-tier web applications [10,14,17,13,7,12], such models
are not directly targeted for what-if analysis or are not designed to scale to larger data
center applications such as the ones illustrated in Figure 1.

Fig. 1. Stock Price and Market Data Dissemination Application; only a subset of the application
is shown for brevity

In this paper, we present Predico, a what-if analysis system to predict the impact
of workload changes on the behavior of data center applications. Predico makes the
following contributions:

– Modeling of complex data center applications: Predico employs a queuing-theoretic
framework to model large distributed data-center applications. Our modeling frame-
work is based on a network of queues and captures the dependence between the
workload of each component of the application and the corresponding resource uti-
lization, request latency and the outgoing workloads to other components. Predico
uses monitoring data and request logs to estimate the parameters of such a model
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and employs model composition to create larger system-level models for groups of
interacting application components.

– Intelligent query execution: Predico uses a novel change propagation algorithm that
uses these models to execute a what-if query and determine the impact of a work-
load change on other components. This algorithm first computes an influence graph
to determine which application components are impacted by the specified what-
if query and then uses a change propagation technique to propagate the specified
workload change through each component in the influence graph.

– Prototype Implementation: We have implemented a prototype of our Predico what-
if modeling framework. Our prototype incorporates a What-If Query Language
(WIFQL) that can be used by administrators to pose queries. Since our prototype
needs to handle large data center applications with hundreds of interacting com-
ponents, we implement several optimizations to scale the modeling framework to
such large applications. Specifically Predico uses on-the-fly model construction and
employs a cache of previously constructed models to reduce model computation
overhead.

– Evaluation based on real traces and real-world synthetic applications: We con-
duct an experimental evaluation of Predico using traces of two large production
applications from a financial institution as well as realistic synthetic applications.
Our experimental results validate the accuracy of Predico’s modeling framework
in building node-level resource usage, latency and workload models and illustrate
Predico’s ability to enable accurate what-if analysis.

2 Background and Problem Formulation

Our work assumes a large distributed application with N interacting components. We
assume that the application is structured as a directed acyclic graph (DAG), where each
vertex represents a software component and edges capture the interactions (i.e., flow of
requests) between neighboring nodes. For simplicity, we assume that each component
runs on a separate physical (or virtual) machine.1 We assume that the DAG has one or
more source nodes, that serve as entry points for application requests and one or more
sinks, that serve as exits. The flow and processing of requests through such applications
is captured by the DAG structure and is best explained with examples.

As examples of such distributed applications we consider two production financial
applications. The first application is a stock trade processing application at a major fi-
nancial firm; the application consists of 471 nodes and 2073 edges. New stock trade
requests arrive at one of the source nodes and flow through the system and exit from the
sink nodes as “results”. Each intermediate node performs some intermediate process-
ing on the trade request and triggers additional requests at downstream nodes. Nodes
may aggregate incoming stock trades or break down a large stock order into smaller
requests at downstream nodes. Figure 1 shows the structure of a market data dissem-
ination application that disseminates stock prices and news updates for a company to
trading terminals (“desktops”) of stock traders. In this case, news items arrive from a
number of sources and stock prices are obtained from a variety of exchanges, and this

1 This assumption is easily relaxed and we employ it for simplicity of exposition.



126 R. Singh et al.

information is processed, transformed, filtered and/or aggregated and disseminated to
any desktop node that has subscribed to information for a particular company. This ap-
plication has 8970 nodes and 22719 edges and must provide updates at low latency in
order for stock traders to make trades based on the latest market news.

Thus, we assume that requests flow through the DAG, with intermediate processing
at each node; a request may trigger multiple requests at one or more downstream child
nodes, and each node may aggregate requests from upstream parents. As can be seen,
such applications are significantly larger and more complex than traditional multi-tier
web applications.

We assume that the DAG structure for each application is known a priori (there are
automated techniques to derive the DAG structure by observing incoming and outgoing
traffic at each node [8]). We assume that each node in the DAG is a black box—i.e.,
we can observe the incoming and outgoing request streams along its edges and the total
node-level utilization but that we have no knowledge of the internals of the software
component and how it processes each request. This is a reasonable assumption in prac-
tice since IT administrators typically do not have direct knowledge of the application
logic inside a software component, requiring us to treat it as a black box. However, ad-
ministrators have access to request logs that the application components may generate
and can also track OS-level resource utilizations on each node.

We assume that there are R different types of requests in the entire distributed ap-
plication. Each node can receive different types of requests belonging to the R types
and can in turn trigger one or more requests of one of the R types at downstream child
nodes. Given our black box assumption, the precise dependence of what type of out-
puts are generated by what set of inputs is unknown (and must be learned automatically
by correlating request logs at a parent and a child). Similarly, the precise processing
demands imposed by a set of requests are unknown and must also be learned.

Assuming such a data center application, our first problem is to model each appli-
cation component (i.e., node of the DAG) by capturing the dependence between the
incoming workload mix and the request latency, resource utilization, and the outgo-
ing workload. Second, we need to use these node-level models to create system-level
models that capture the behavior of a group of interacting nodes. Third, given such
system-level models, we wish to enable rich workload-based what-if analysis of the
distributed application. Such an analysis should allow administrators to pose what-if
queries to determine the impact of a workload change at a particular node(s) on some
other node(s) of the system. A typical what-if query is assumed to contain two parts:
(i) the “if” part, which specifies the hypothetical workload change, and (ii) the “what”
part, which specifies the nodes where the impact of this change should be computed.
For instance, a volume-based what-if query could ask “what is the impact of doubling
the volume of requests seen by source node i on the incoming workload and CPU uti-
lization seen at some downstream node j?” Queries could also be concerned with the
impact on latency: “what is the impact of doubling the volume of type B requests at
node j on the latency of requests at node i?”

Thus, to design our what-if analysis system, we must address the following three
problems: (i) how should we model the dependence between the incoming workload at a
node and the request latency, node utilization and the outgoing workload to
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Fig. 2. Modeling a data center application using an open network of queues

downstream nodes? (ii) how should we combine node-level models to create system-
level models that capture the aggregate behavior of a group of interacting nodes in the
DAG? (iii) what algorithms should be used to efficiently execute a what-if query using
these models? From an implementation standpoint, we are interested in a fourth ques-
tion as well: (iv) How should our system scale to complex data center applications with
tens or hundreds of components?

3 Modeling a Data Center Application

In this section, we first present a queuing model for a data center application that allows
us to model the utilization and response time of these nodes. We then describe the con-
struction of models to capture the input/output workload dependencies of these nodes.
Finally, we explain how these node-level models are composed to construct system-
wide models.

3.1 Queuing Theoretic Node-Level Models

Consider the DAG of a data center application with k nodes denoted by n1, . . . , nk

and R different type of requests. We model the data center application using an open
network of k queues, one for each node with R classes of requests. We model each
node as a M/G/1/PS queue i.e. the service times are assumed to have an arbitrary
distribution and the service discipline at each node is assumed to be processor sharing
(PS). Requests can arrive at a queue from other queues which are its parents in the
DAG or in the case of source nodes of the DAG from external sources. For analytical
tractability we assume that the distribution of inter-arrival times of requests coming
from outside have a poisson distribution. We denote the arrival rates of requests of class
r at the queue ni from outside by λr

0,i. We assume that different classes of requests
arriving at a queue have different mean service rates. We denote the mean service rate
of requests of class r at node i by μr

i .
Thus the DAG of a data center application is modeled as an open network of queues

as shown in Figure 2. We use the well known queueing theory result called the BCMP
theorem [1] to analyze this network of queues. The BCMP theorem states that for such
queueing networks the utilization, denoted by ρi, of a node ni, is given by :

ρi =
R∑

r=1

ρr
i =

R∑
r=1

λr
i

μr
i

(1)
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Fig. 4. Model Composition

where ρr
i denotes the resource utilization at node ni due to class r requests, λr

i denotes
the arrival rate of requests of type r at node ni and μr

i denotes the service rate of requests
of type r at node ni. This equation models the resource utilization of the node as a
function of the per-class arrival rate and per-class service rates. Similarly, the average
number of requests of type r at node ni under steady-state, denoted by K

r

i , is given by:

K
r

i =
ρr

i

1− ρi
(2)

We can now use Little’s Law [3] to find out the T
r

i , the average response time of requests
of type r at node ni using Equations 1 and 2:

T
r

i =
K

r

i

λr
i

=
1

μr
i (1− ρi)

(3)

This equation models the response time at a node as a function of the total node resource
utilization ρi and the per-class service rate μr

i .
Given a value for the per-class workload, λr

i , at a node we can use Equation 1 to find
out the utilization ρi and then use the computed value ρi to find out the response time
using Equation 3. The per-class service times μi

r is the only unknown in the equations.
Since we assume that each node of the data center application is a black-box we need
to estimate these unknowns from the available information gathered from monitoring
of the node. We assume that request logs at a node contain an entry for each incoming
request containing the timestamp and the request string or type of request and that
the resource utilization of the node is being periodically monitored using a tool like
iostat. Given such logs, multiple values of ρi and λr

i can be collected over time. Since
Equation 1 captures the relationship between these R + 1 variables, the values of the
unknown per-class service rates μr

i can be numerically estimated using a regression
method such as least squares.

3.2 Workload Models

While queueing theory allows us to model the performance metrics of a node, we also
need to capture the relationship between the incoming workload and the outgoing work-
load of a node.

To understand the node-level workload models that Predico needs to build, consider
the node shown in Figure 3. This node n1 has two parent nodes n2 and n3 and three
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child nodes n4, n5 and n6. Let λr
2,1 and λr

3,1 denote the arrival rate of requests of type
r from node n2 and n3 respectively to node n1. Similarly, let λr

1,4, λ
r
1,5 and λr

1,6 denote
the arrival rate of requests of type r at node n4, n5 and n6 respectively from node
n1. Predico needs to build models that capture the workload of each outgoing edge
as functions of workload of the incoming edges. Thus, we seek a function for each
of λr

1,4, λ
r
1,5 and λr

1,6 that expresses them as a function of
−−→
λ2,1 and

−−→
λ3,1 where

−→
λi,j is

short-hand for observed rates of various request types on the edge going from node ni

to nj i.e. (λ1
i,j , λ

2
i,j , · · ·λR

i,j) . Similarly, we seek functions for each of the other request
types:

λw
1,4 = fw

1,4(
−−→
λ2,1,

−−→
λ3,1) , 1 ≤ w ≤ R (4)

We model workload-to-workload dependencies as piecewise linear functions. Although
these dependencies are linear in steady state by the principle of job flow balance [3],
[9], we choose piecewise linear modeling to capture the behavior of caches in servers.
For instance, a node with a cache can initially be sending a large number of requests to
downstream nodes when the cache is empty, but when the cache becomes full, it might
serve requests from its cache instead of sending requests to its downstream nodes. This
changing dependence of outgoing workload on incoming workload can be captured by
two linear functions, one each for when a cache is cold and and when it is hot. To incor-
porate piecewise linear modeling, we replace the linear model shown in Equation 4 with
a piecewise-linear model by dividing the 2R-dimensional space spanned by (

−−→
λ2,1,

−−→
λ3,1)

into n hypercube regions. A linear model is then used to capture the relationship in each
of these regions independently. Thus, we can rewrite Equation 4 as a set of linear func-
tions one for each region :

λw
1,4 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑r=R
r=1

(
Aw,r

1 λr
2,1 + Bw,r

1 λr
3,1

)
if (
−−→
λ2,1,

−−→
λ3,1) ∈ Z1∑r=R

r=1

(
Aw,r

2 λr
2,1 + Bw,r

2 λr
3,1

)
if (
−−→
λ2,1,

−−→
λ3,1) ∈ Z2

. . . . . . . . . . . . . . .∑r=R
r=1

(
Aw,r

n λr
2,1 + Bw,r

n λr
3,1

)
if (
−−→
λ2,1,

−−→
λ3,1) ∈ Zn

(5)

where Zi is the ith hypercube region.
Equation 5 relates the outgoing workload to incoming workload, but to use it for

computing the outgoing workload λw
1,4 for a given value of incoming workload

−−→
λ2,1 and

−−→
λ3,1 we need to first find the number of regions, n, and the regions themselves, Zi. We
then need to find individual linear functions for each region by computing the weights
of the corresponding linear function, Aw,r

1 and Bw,r
1 . We use a regression analysis tech-

nique called multivariate adaptive regression splines (MARS) [6] that automatically fits
piecewise linear functions on data. Predico uses the monitoring data that contains mul-
tiple measurements of the variables

−−→
λ2,1,

−−→
λ3,1 and λw

1,4 to give as training data to MARS
which finds out the different regions and the linear function in each region.

3.3 Model Composition: From Node-Level to System-Level Models

Predico uses node-level models to construct system-wide models using model compo-
sition. Model composition essentially “chains” together multiple node-level models to
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compute the workload, resource utilization and response time of a node as a function of
one or more ancestor nodes. We illustrate the composition algorithm used by Predico
using an example. Consider the sub-graph in Figure 4 that shows a parent node n2,
extending our earlier example in Figure 3. At the node-level, Predico can compute the
outgoing workload going from node n2 to node n1,

−−→
λ2,1, as a set of R piecewise linear

functions, one for each request type :

λw
2,1 = fw

2,1(
−−→
λ8,2,

−−→
λ7,2) , 1 ≤ w ≤ R (6)

Equation 4 gives the outgoing workload going from node n1 to n4 :

λw
1,4 = fw

1,4(
−−→
λ2,1,

−−→
λ3,1) , 1 ≤ w ≤ R (7)

Substituting the value of
−−→
λ2,1 from Equation 6 into Equation 7 we obtain a “composed

model” :

λw
1,4 = fw

1,4(
−−→
f2,1(

−−→
λ8,2,

−−→
λ7,2),

−−→
λ3,1) , 1 ≤ w ≤ R (8)

where
−−→
f2,1(

−−→
λ8,2,

−−→
λ7,2) is shorthand for (f1

2,1(
−−→
λ8,2,

−−→
λ7,2), f2

2,1(
−−→
λ8,2,

−−→
λ7,2) , . . . ,

fR
2,1(

−−→
λ8,2,

−−→
λ7,2)). Doing so enables the outgoing workload sent from node n1 to n4

to be expressed as a function of incoming workload of parent node n2. This process can
be repeated for the outgoing workload going to nodes n5 and n6 from node n1 and can
also be recursively extended to nodes that are further upstream from n2.

Creation of the composed model shown in Equation 8 requires composing the piece-
wise linear function fw

1,4 with each of the R piecewise linear functions fw
2,1, 1 ≤ w ≤ R.

Two piecewise linear functions can be easily composed by composing the individual
linear functions in each corresponding region which leads to another piecewise linear
function. Thus the composed model shown in Equation 8 is again a piecewise linear
function which captures the relation between the outgoing workload of node n1 and the
incoming workload of a parent node n2.

We can now do a similar composition to find the dependence of the resource utiliza-
tion of node n1, denoted by ρ1, and the response time of requests of type r at node
n1, denoted by T

r

1 on the incoming workload of parent node n2 denoted by
−−→
λ8,2,

−−→
λ7,2.

Substituting Equation 6 into the resource utilization equation given by Equation 1 we
get :

ρ1 =
R∑

r=1

ρr
1 =

R∑
r=1

λr
1

μr
1

=
R∑

r=1

λr
3,1 + λr

2,1

μr
1

(9)

=
R∑

r=1

λr
3,1 + f r

2,1(
−−→
λ8,2,

−−→
λ7,2)

μr
1

(10)

which expresses the resource utilization of node n1 as a function of the incoming work-
load of node n2. Similarly, we can substitute from Equation 10 into the response time
Equation 3 to express the response time of request type r at node n1 as a function of
the incoming workload of parent node n2 :
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T
r

1 =
1

μr
1(1− ρ1)

(11)

4 Answering What-if Queries

In this section we describe the three step process used by Predico to answer a given
what-if query. The execution of a what-if query is a three step process comprising of:
1) finding the influence graph of the given query, 2) creating the node-level models of
the nodes in the influence graph using the modeling technique described above and 3)
using the change propagation algorithm to execute the query. We describe the three
steps in greater detail below.

4.1 On-the-Fly Model Construction Using the Influence Graph

Since the number of nodes and edges in the DAG may be large in complex applica-
tions, it is not economical to precompute all possible node-level models and periodi-
cally recompute models that have become invalid due to an actual workload or hardware
change. Instead Predico employs a “just-in-time” policy to compute models on-the-fly
when a query arrives; only those models that are necessary to answer the query are com-
puted. Models from prior queries are cached and reused if they are still valid. Predico
uses the notion of an influence graph to determine which models should be constructed
to answer a query. Given a what-if query, the influence graph is the set of all possible
paths from the nodes in the “if” part of the query to the nodes in the “what” part. Ba-
sically the influence of a workload change will propagate along all paths from the “if”
nodes/edges to the “what” nodes; so the influence graph captures all of the nodes that
must be considered to answer the query and other nodes in the DAG can be ignored.

Upon the arrival of a what-if query, Predico first computes the influence graph by
generating the set of nodes that lie along all paths from the “if” nodes/edges to the
“what” nodes. It then triggers on-demand construction of node-level workload models
for all the nodes in the influence graph and node-level resource utilization and response
time models for the “what” nodes alone. The use of the influence graph to prune the
DAG and the reuse of previously computed models from the model cache enhances the
scalability of the system and reduces computational overheads. The influence graph is
also crucial for efficient query execution, as we will see in the next section.

4.2 Query Execution Using Change Propagation

After creating the node-level models for the nodes of the influence graph, Predico now
needs to “execute” the query. Query execution involves propagating the specified work-
load change through the influence graph, one node at a time, to compute its final impact
on the nodes/edges specified in the “what” part of the query. Once the workload change
has been propagated to the nodes in the “what” part, the node-level models can be used
to answer the query. Change propagation is equivalent to model composition—instead
of directly computing a composed model for the “what” nodes/edges as a function of the
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Input : node-level models and influence graph for a what-if query
Output: value of workload/resource usage at ”what” nodes/edges
for s In ”if” nodes/edges do

nodeQueue ← s
while nodeQueue �= ∅ do

currentNode ← Pop(nodeQueue)
for e In GetIncomingEdges(currentNode) do

if ValueChanged(e) then
GetChangedValue(e)

else
GetUnchangedValue(e)

for o In GetOutgoingEdges(currentNode) do
if o is in the influence graph then

use node-level model of currentNode to find workload value on o
SetValue(o)
ValueChanged(o) = TRUE

for c In GetChildNodes(currentNode) do
if c is in the influence graph then

Push(nodeQueue,c)

Algorithm 1. Change Propagation via the Influence Graph

“if” nodes/edges, the propagation algorithm propagates the specified change through
the influence graph all the way down to the nodes/edges in the “what” part to achieve
the same result.

Predico’s change propagation algorithm is described in Algorithm 1. It takes the
node-level models and the influence graph, and traverses the influence graph in a breadth
first manner. It starts with the nodes/edges in the “if” part and computes the values for
the changed workload and then uses the model to compute its impact on the outgo-
ing workload. This process is referred to as propagating the change from the incoming
edges of a node to its outgoing edges. To illustrate, consider a query that is interested in
estimating the impact of a doubling of the workload for a particular edge. If the original
request rate was 10 req/s, then the new workload will be 20 req/s for that edge. This new
value is used, along with the unchanged request rates for all other edges not impacted
by the change, to compute the outgoing request rates for that node.

The algorithm proceeds in a breadth first fashion through the influence graph, start-
ing with the “if” nodes/edges and computing the outgoing workload for each of the “if”
nodes. The outgoing workload of a node becomes the incoming workload for down-
stream node(s), and the change propagation process repeats, one node at a time, in a
breadth-first fashion, until the change has propagated to all of the “what” nodes/edges.
At this point, the algorithm computes the value of interest at the node by using the
node-level models and terminates.

5 Predico Implementation

This section describes WIFQL, a query language that can be used to pose what-if
queries to Predico and the implementation details of Predico prototype.
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query = what part if part ;
what part = “compute” ( simple compute part | compound compute part );
compound compute part = ( simple compute part “AND”

( simple compute part | compound compute part ));
simple compute part = ( “cpu utilization” | “spare capacity” | “latency” )

“at nodes” node id {, node id } ) |
“workload on” ( edge id {, edge id } );

edge id = “(” node id, node id “)” ;
if part = “if” ( simple change part | compound change part );
compound change part = ( simple change part “AND”

( simple change part | compound change part) )
<EOL>;

simple change part = workload change | hardware change ;
workload change = “workload” { “for request class”

request class id } ( (“at node” node id ) |
(“on edge” edge id ) ) set operator value ;

hardware change = ( “cpu speed” | “memory” | “disk speed” )
set operator value ;

set operator = “*=” | “/=”;

Fig. 5. The grammar for Predico’s What-If
Query Language (WIFQL)

What-If
Analysis
Engine

On-the-fly
modeling
engine

model
cache

Monitoring &
log data

DAGWIFQL
queries

User

Predico Execution Engine

Fig. 6. Predico Architecture

5.1 Posing What-if Queries in Predico

Since the goal of Predico is to enable users to understand the impact of potential work-
load changes on the system behavior, our system supports a simple query language to
enable a rich set of queries to be posed by IT administrators. Any query in our What-If
Query Language (WIFQL) has two parts: a what part and an if part. The if part of the
query describes the hypothetical change, while the what part asks the system to com-
pute the impact of that change on different performance metrics at one or more nodes
in the system. As an example of an WIFQL query, consider

compute workload on edges (n1, n4), (n1, n5), (n1, n6)
cpu utilization at nodes n1, n2
latency at nodes n1, n2
if workload on (n2, n1) *= 2

workload on (n3, n1) *= 0.5

This example query asks the system to compute the impact of a doubling of the work-
load along the edge going from node n2 to n1 and a halving of the workload along the
edge going from node n3 to n1 on the CPU utilization and latency at nodes n1 and n2

and the workload on the edges going from node n1 to nodes n4, n5 and n6.
Figure 5 describes our query language grammar. As shown, the if part allows users to

specify hypothetical changes to the workload or changes to the hardware (e.g., a faster
CPU). The workload changes, which is the focus of this work, can be specified by iden-
tifying one or more edges or nodes in the DAG and indicating a change in volume or a
change in the mix of requests; set operators such as multiply and divide can be used to
specify relative changes to the current workload, rather than absolute values. The what
part specifies the performance metrics of interest at particular nodes or edges; several
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metrics are supported including resource utilizations, workloads, latencies or spare ca-
pacities. As indicated earlier, we assume that the DAG representing the application is
known a priori and is used by queries to refer to particular nodes and edges of interest
and specify workload changes on these nodes or edges.

5.2 Prototype Implementation

We have implemented a prototype of Predico using Python and the R statistical lan-
guage to perform what-if analysis in large data center applications. Figure 6 depicts the
high-level architecture of Predico.

The Predico frontend is implemented using a python implementation of the lex and
yacc parsing tools. It accepts user-posed queries and parses them by using the gram-
mar rules of WIFQL. User-posed queries are then executed by the Predico execution
engine, which comprises of two key components; the on-the-fly modeling engine and
the what-if analysis engine. The on-the-fly modeling engine first computes the influ-
ence graph using a graph API in python and then creates node-level models by using
on-the-fly model construction. The modeling engine retrieves data about the workload
on the incoming and outgoing edges of the node and the total resource utilization of the
node and then invokes an R module for building the node-level models. The R module
uses the MARS function present in the MDA package to build piecewise linear node-
level workload models and the linear regression function to find the per-class service
rates using least squares regression. Next, the what-if analysis engine uses these models
to answer (“execute”) the query via the change propagation algorithm to propagate the
hypothetical workload change through the model and compute its impact on the nodes
of interest to the user. The change propagation algorithm is again implemented by us-
ing the graph API written in python. The what-if analysis engine stores the node-level
models computed by the modeling engine in a model cache that is implemented as three
tables in the MySQL relational database engine; one each for storing the weight vec-
tors used in node-level workload models, the regions of the piecewise-linear model and
the per-class service rates of a node required in the node-level resource utilization and
response-time models.

6 Experimental Evaluation

In this section, we evaluate the performance of Predico by performing experiments on
two applications. We first evaluate the accuracy of the analytical node-level resource
utilization and response-time models and then the piecewise-linear workload models.
We then perform experiments to ascertain the accuracy of system-level models formed
by composition. We then employ Predico to perform case studies where we pose what-
if queries to Predico and compare the predictions with ground truth values observed in
actual experimental data.

6.1 Experimental Setup

We evaluate Predico on two different applications. The first set of applications are from
the financial domain and are being used by the data center of a financial institution. The
second application is a benchmark e-commerce application.



Predico: What-If Analysis in Complex Data Center Applications 135

1. We evaluate our system on traces collected from the two production financial appli-
cations described in Section 2. The traces collected from the stock trade processing
application contain the total number of requests sent out by every component within
every 30 second interval. The traces collected from the market data dissemination
application contain data for the number of bytes sent out from every component on
each of its outgoing edge, within every 30 second interval. Table 1 lists the charac-
teristics of the traces.

Table 1. Characteristics of Production Traces

Application #Nodes #Edges Duration Metric # of Records
Market Data

8970 22719 1 day outgoing bytes 7763764
Dissemintation

Stock Trade
471 2073 4 days outgoing requests 6060952

Processing

2. The second application is the TPC-W benchmark [15] which models an online
bookstore application. We implement the TPC-W application as a 2-node Java
servlet based application consisting of the front-end server (Tomcat) and a back-
end database (MySQL). Notice that this application does not follow our DAG as-
sumption since replies are sent back from the back-end database to the front-end
server. Predico is also able to handle such applications that contain cycles between
neighboring nodes by considering the two edges of the cycle separately. To im-
plement this application we use a testbed comprising of two virtual machines for
performing this experiment. Each virtual machine has a single 2.8 GHz Pentium 4
processor with 1GB memory. We use Tomcat version 5.5.26 and MySQL version
5.1.26 for setting up our TPC-W application. The TPC-W experimental setup al-
lows us to monitor the end-to-end latency and resource utilization values apart from
workload values.

6.2 Accuracy of Node-Level Resource Usage and Latency Models

We model the data center application as an open network of queues that lead to Equa-
tion 1 which captures the node-level resource utilization and Equation 3 which cap-
tures the node-level latency. We validate the accuracy of this queueing model using the
TPCW application running on a two server testbed.

We use the httperf load generation tool to simulate requests arriving from customers
with exponentially distributed inter-arrival times. The TPC-W web application exposes
14 different servlets which a customer visiting the website can invoke. We create a
workload comprising of requests to two of these servlets, the “new products ” and “ex-
ecute search”. We independently vary the arrival rate of requests to both these servlets
from 10 to 100 requests per second with increase of 10 requests per second, thus gen-
erating a total of 100 arrival rate combinations. For each arrival rate combination, we
let the system run for 15 minutes and measure the CPU utilizations at the Tomcat and
MySQL server and the end-to-end latency. We use half of the 100 values for estimating
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Fig. 8. Node-level Latency model Accuracy

the values of the per-class service rates on each of the 2 nodes and then use these values
to predict the per-node resource utilizations and per-node per-class response time for
the other half. The per-node response times are summed up to get the end-to-end la-
tency. We compute the prediction errors by comparing the predictions of the node-level
models with the values observed during the experiments. Figure 7 and Figure 8 shows
the distribution of prediction errors in terms of percentage relative error in predicting
the resource utilization and latency respectively.

By using an open network of queue modeling, we are able to predict node-level CPU
utilization to within 2% of the actual value. The median prediction error for response
time using our modeling approach is less than 10%.

6.3 Accuracy of Node-Level Workload Models

We evaluate the accuracy of using piecewise-linear functions created by using MARS to
model the relationship of the outgoing workload of a node with the incoming workload
of the node. We use the traces collected from the two applications to create these models
and then ascertain the accuracy of these models.

For each of the two applications, we selected each component in turn and extracted
the data for the workload on its incoming edges and outgoing edges. We then use MARS
to estimate a function which expresses the workload on each outgoing edge of a com-
ponent as a piecewise linear function of the workload on all the incoming edges on the
component. We evaluate the accuracy of the piecewise linear model in predicting the
workload on each outgoing edge of this component. Cross-validation was used to mea-
sure the prediction accuracy; we divide the trace data for the selected component into
training windows of 1 hour each and compute a model using MARS for each window
for each outgoing edge. We then use each model to predict the data points outside of the
window it was trained on; the deviations between the predicted and actual values were
measured. We use the root mean square (RMS) error as a metric of error; we divide
the RMS error by the range of actual values to report the results in normalized RMS
error (%). The average normalized RMS error for the models of all the outgoing edges
of a component is taken as the error for that component. We depict the errors for all
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the components of the two applications using CDF curves that show the percentage of
components that have errors below a certain value. Figure 9 shows the errors for the
market data dissemination application while Figure 10 shows the errors for the stock
trade processing application. The curve labeled ”Level-1” errors shows the CDF for the
errors. We describe the concept of levels and the description about the ”Level-2” and
”Level-3” curves later in this section. The CDF curves indicate that the workload-to-
workload models of 70% of the components have errors less than 10% in the case of the
market data dissemination application while models for 80% of the components have
errors less than 15% in the case of the stock trade processing application.

Our experimental results show that piecewise linear modeling provides accurate
models of node-level workload for production data center applications.

6.4 Accuracy of System-Level Models with Increasing Composition Depth

We evaluate the accuracy of system-level models created by composing multiple node-
level models. Composition of multiple node-level models leads to an accumulation of
the error terms. We conduct experiments to measure the increase in error with com-
posing increasing number of node-level models. We again use the traces from the two
financial applications to evaluate the accuracy of system-level models. We reuse the
node-level models of each component built for validating the accuracy of node-level
workload models in the previous section for this experiment.

We select each component and compose its node-level workload model with that of
its ancestor components to express the outgoing workload of this component as a func-
tion of the incoming workload of its ancestors. By using composition repeatedly we
successively construct models expressing workload of a component as a function of its
ancestors at different levels. Level 1 model is built between the outgoing workload of
a component and its incoming workload. Level 2 model is built between the outgoing
workload of a component and the incoming workload of its immediate parents. Simi-
larly level i model is built between the component and its ancestors that are reachable
in (i - 1) edges. We compute the average normalized RMS error of each component by
computing the average normalized RMS error for the models of all the outgoing edges
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Fig. 11. Prediction Errors of composed modeling on different topologies

of the component using cross-validation and then averaging the errors. Figures 9 and 10
show the CDF of normalized RMS errors for each level for the two applications. The
CDF curve drops with increasing levels implying that the errors increase as we predict
the workload of a component using ancestors higher up the component in the graph.
Inspite of the increasing errors with increasing levels, the errors remain tolerable; for
the Market Data Dissemination application even at level 4 the prediction errors for 80%
of the components are less than 20%, while for the Stock Trade Processing at the level
of 3 for 75% of the components the errors are less than 20%.

Our results on using composition to create system-level models on the traces col-
lected from the two production applications reveal that even with increasing composi-
tion depth, the system-level models are effective in predicting workload.

6.5 Accuracy of System-Level Models with Varying Topology

The node-level models can be composed in a number of ways to create a system-level
model depending on the topology of the DAG. We perform experiments to ascertain
the prediction accuracy of composed models under different topologies. For this ex-
periment we select some subgraphs in the DAGs for the two applications. We select
subgraphs that correspond to three topologies-chain, split and join. These topologies
correspond to different ways in which the components can interact with one another
in an application: (i) in the chain topology, each component receives requests from a
single upstream component, (ii) in the split topology, a component can send requests
to multiple downstream components and (iii) in the join topology, a component can
receive requests from multiple upstream components. For each subgraph, we create
node-level models for each component and then use composition to create models to
predict the workload on each outgoing edge of the subgraph. We measure prediction
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Fig. 12. What-If case study on Market Data Dissemination Application

errors in predicting workload of each outgoing edge as a function of incoming work-
load of its ancestors at increasing levels.

Figures 11(a) and 11(b) show the subgraphs that we choose for this experiment.
Figures 11(a) is from the Market Data Dissemination application and Figure 11(b) is
a subgraph from the Stock Trade Processing application. Figure 11(a) illustrates the
chain and split topologies, while figure 11(b) is an example of a join and split topology.
Tables 11(c) and 11(d) show how the errors of the composed models vary as we predict
the workload on various edges/nodes of the graphs. For the subgraphs selected from
the market data dissemination application the prediction errors on all edges are within
5% while for the subgraph selected from the stock trade processing application the
prediction errors are within 13%.

The errors reveal that Predico’s composition based modeling technique performs
well even in case of complex application topologies.

6.6 Workload-Only What-If Analysis Case Study

We create use-case scenarios to illustrate how Predico can be used in practice and evalu-
ate its performance in answering what-if questions which commonly arise in large-scale
applications. In this section, we pose workload-related what-if questions; we choose
subgraphs from the market data dissemination application and the stock trade process-
ing application and use Predico to predict the impact of workload changes on source
nodes at the workload on the other edges of the subgraphs.

We choose one subgraph each from the market data dissemination application and
the stock trade processing application. The first subgraph has 1 source node while the
other subgraph has 3 source nodes.

The topology of the first subgraph is shown in Figure 12(a). On this subgraph we
pose the query: “what happens to the workload on downstream edges of subgraph 1 if
the outgoing workload of the single source node increases by 2 and 2.5 times the current
value”. We examine the application traces and find periods of 1 hour duration each, h1,
h2 and h3, such that the outgoing workload from the source node increases by 2 and
2.5 times the workload in h1 in the hours h2 and h3 respectively. Predico uses the trace
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Fig. 13. What-If case study on Stock Trade Processing Application

from hour h1 and then predicts the workload values in hours h2 and h3. We compare
the ground truth value of the workload seen in the two hours and compare Predico’s
predictions to compute the errors. Figure 12(c) plots the errors on all the downstream
edges in terms of the normalized RMS error for each of the two changes mentioned in
the what-if question.

The topology of the second subgraph is shown in Figure 13(a). On this subgraph we
pose the query: “what happens to the workload on downstream nodes a) if the workload
on the source nodes 143, 19 and 92 becomes 1.12, 1.5 and 1.5 times respectively the
current value b) if the workload on the source nodes 143, 19 and 92 becomes 1.8, 1.65
and 1.65 times respectively the current value times”. We compare Predico’s prediction
with ground truth values observed in the traces to compute the errors. Figure 13(c) plots
the errors for the two queries for the downstream nodes in terms of normalized RMS
error.

The trace collected from the stock trade processing application only contain the re-
quests going out of each node and we assume that these requests are equally distributed
among all its outgoing edges. Similarly, in the case of the market data dissemination
application, the traces contain the bytes sent out on each edge and we assume that the
number of bytes are an approximation of the number of requests. We note that even
under these simplifying assumptions, Predico is able to make predictions with errors
between 8% and 18%.

7 Related Work

A number of recent efforts have focused on building systems for performing what-
if analysis on various distributed systems. The design and implementation of a self-
predicting cluster-based storage system is presented in [13]. The approach, however,
involves intrusive instrumentation of the system that is not feasible in production envi-
ronments. WISE [12] is a system for answering what-if deployment and configuration
questions for content distribution networks (CDN). WISE, however, only answers ques-
tions related to network latency and does not consider the server processing within data
centers.
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Apart from systems that are directly aimed at performing what-if analysis, a number
of modeling techniques have been proposed that predict the performance of the system
and can be employed for answering what-if questions about the system. Most of these
techniques are aimed at multi-tiered systems. A number of these techniques use queu-
ing models to predict the response time and resource utilization of such applications
[16],[2],[5]. Similar to our approach, least squares is used to parameterize the queuing
models in [17]. Similar to our automatic model derivation, the authors of [7] also au-
tomatically derive node-level models to capture relationships between workload; their
technique is based on linear models while we have used a queuing-network modeling
based approach. In [10], nonstationarity in workloads is utilized to derive models for
predicting the resource utilization and response time of an application as a function of
workload volume and workload mix. The modeling approach proposed in [11] creates
“profiles” for the different components of a distributed application to model the resource
demands placed by the components under different workloads on the underlying hard-
ware. IRONModel [14] proposes a modeling architecture for creating robust models.
The models are used for answering what-if questions about the impact of reconfigura-
tions on the response time and throughput of a large storage system. In contrast to these
systems, Predico is aimed at large-scale systems and enables easily modeling arbitrary
distributed applications by joining together individual node-level models. Modellus [4]
also uses composition of models to model data center applications. Modellus, however,
models workload-to-workload interactions only while Predico looks at response time
models as well. Also, Modellus is only a modeling framework, while Predico combines
modeling with a full-scale what-if analysis system.

8 Conclusions

Data center operators often need to ascertain the impact of unseen workload changes
on large distributed applications. Predicting how a certain change in workload will in-
fluence complex data center applications is a challenging problem that needs automa-
tion. In this paper we presented Predico, a system which enables the user to perform
“what-if” analysis on large distributed applications. Predico is non-intrusive and only
uses commonly available monitoring data to construct models and uses a new change
propagation technique to estimate the impact of specified workload changes.

We modeled a large-scale data center application as an open network of queues to
derive resource utilization, latency and workload models. We used traces from two large
production applications from data centers of a major financial institution and data from
synthetic enterprise applications to evaluate the efficacy of Predico’s what-if modeling
framework. Our experimental evaluation validated the accuracy of the node-level re-
source utilization, response time and workload models and then showed how Predico
enables what-if analysis in two different applications.

Acknowledgements. This reseach was supported in part by NSF grants CNS-0855128,
CNS-0916972, CNS-0720616 and OCI-1032765.
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Abstract. To reduce the negative environmental implications (e.g.,
CO2 emission and global warming) caused by the rapidly increasing en-
ergy consumption, many Internet service operators have started taking
various initiatives to operate their cloud-scale data centers with renew-
able energy. Unfortunately, due to the intermittent nature of renewable
energy sources such as wind turbines and solar panels, currently renew-
able energy is often more expensive than brown energy that is produced
with conventional fossil-based fuel. As a result, utilizing renewable energy
may impose a considerable pressure on the sometimes stringent operation
budgets of Internet service operators. Therefore, two key questions faced
by many cloud-service operators are 1) how to dynamically distribute
service requests among data centers in different geographical locations,
based on the local weather conditions, to maximize the use of renewable
energy, and 2) how to do that within their allowed operation budgets.

In this paper, we propose GreenWare, a novel middleware system that
conducts dynamic request dispatching to maximize the percentage of re-
newable energy used to power a network of distributed data centers,
subject to the desired cost budget of the Internet service operator. Our
solution first explicitly models the intermittent generation of renewable
energy, e.g., wind power and solar power, with respect to varying weather
conditions in the geographical location of each data center. We then for-
mulate the core objective of GreenWare as a constrained optimization
problem and propose an efficient request dispatching algorithm based on
linear-fractional programming (LFP). We evaluate GreenWare with real-
world weather, electricity price, and workload traces. Our experimental
results show that GreenWare can significantly increase the use of renew-
able energy in cloud-scale data centers without violating the desired cost
budget, despite the intermittent supplies of renewable energy in different
locations and time-varying electricity prices and workloads.

1 Introduction

Recent years have seen the rapid growth of large and geographically distributed
data centers deployed by Internet service operators to support various services

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 143–164, 2011.
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such as cloud computing. As an effort to deal with the increasingly severe global
energy crisis, reducing the high energy consumption of those cloud-scale data
centers has become a serious challenge. For example, some cloud-service data
centers are termed as mega data centers, because they host hundreds of thou-
sands of servers and can draw tens to hundreds of megawatts of power at peak
[22]. It has also been reported that in a conservative estimation, Google hosts
more than 500,000 servers in its data centers distributed in different locations
and consumes at least 6.3 × 105 MWh in total annually [39]. Therefore, mini-
mizing the energy consumption of cloud-scale data centers has recently received
a lot of research attention (e.g., [20,17,29,13,47,18]).

In addition to high electricity bills, the enormous energy consumption of cloud-
scale data centers can also lead to negative environmental implications (e.g.,
CO2 emission and global warming), due to their large carbon footprints. The
reason is that most of the produced electricity around the world comes from
carbon-intensive approaches, e.g., coal burning [29]. Such energy produced with
conventional fossil-based fuel is commonly referred to as brown energy. There-
fore, to mitigate the negative environmental implications caused by the rapidly
increasing energy consumption, many Internet service operators have started
taking various initiatives to operate their cloud-scale data centers with renew-
able (or green) energy. In contrast to brown energy, green (or clean) energy is
normally generated from renewable energy sources, such as wind turbines and
solar panels, and is thus more environmentally friendly. For example, major In-
ternet service operators, e.g., Google, Microsoft, and Yahoo!, have all started to
increasingly power some of their data centers using renewable energy, and so re-
duce their dependence on brown energy [38,4,43]. Therefore, since data centers in
different geographical locations may have different availabilities of renewable en-
ergy depending on the local weather conditions, it is important for cloud-service
operators to dynamically distribute service requests among different data centers
to maximize the use of renewable energy.

Unfortunately, due to the intermittent nature of renewable energy sources such
as wind and sunlight, currently renewable energy can be often more expensive to
produce than brown energy [2,11]. While some data centers are trying to build
their own wind farms or solar photovoltaic (PV) power plants, due to concerns
such as expensive facility investments and management, many Internet service op-
erators choose to work with professional renewable energy producers and utilize
the green energy integrated into the power grid. For example, Google has recently
purchased 20 years’ worth of wind energy from an Iowa wind farm, which will
be sufficient to power several of its data centers in Oklahoma [12]. Google also
invested $100 million in the Shepherds Flat Wind Farm in Oregon to generate
845 megawatts of green power, which will be sold directly to Southern California
Edison’s power grid. As a result of its higher production costs, renewable energy
coming from the grid can be more expensive than brown energy. For example, the
industrial electricity price for solar energy can be 16.14 cents per KWh in a sunny
climate and 35.51 cents per KWh in a cloudy climate [8]. In contrast, the whole-
sale brown energy price can be around 6 cents per KWh [39]. The Los Angeles
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Department of Water and Power also estimates that the extra cost for green en-
ergy is at least 3 cents per KWh [5]. Therefore, utilizing renewable energy may
impose a considerable pressure on the sometimes stringent operation budgets of
Internet service operators, as the electricity cost of operating data centers has be-
come a significant portion, e.g., 20% or more of the monthly costs of those enter-
prises [22]. Hence, a key dilemma faced by many service operators is how to ex-
ploit renewable energy to the maximum degree that is allowed by their monthly
operating budgets.

In this paper, we propose GreenWare, a novel middleware system that con-
ducts dynamic request dispatching to maximize the percentage of renewable
energy used to power a network of distributed data centers, subject to the de-
sired cost budgets of Internet service operators. We first model the intermittent
generation of renewable energy, i.e., wind power and solar power, with respect to
the varying weather conditions in the geographical location of each data center.
For example, the available wind power generated from wind turbines is modeled
based on the ambient wind speed [35,9], while the available solar power from
solar plants is estimated by modeling the maximum power point on irradiance
(i.e., solar energy per unit area of the solar panel’s face) and temperature [31,41].
Based on the models, we formulate the core objective of GreenWare as a con-
strained optimization problem, in which the constraints capture the Quality of
Service (QoS, e.g., response time) requirements from customers, the intermittent
availabilities of renewable energy in different locations, the peak power limit of
each data center, and the monthly cost budget of the Internet service operator.
We then transfer the optimization problem into a linear-fractional programming
(LFP) formulation for an efficient request dispatching solution with a polynomial
time average complexity.

Specifically, this paper makes the following major contributions:

– We propose a novel GreenWare middleware system in operating geographi-
cally distributed cloud-scale data centers. GreenWare dynamically dispatches
incoming service requests among different data centers, based on the time-
varying electricity prices and availabilities of renewable energy in their geo-
graphical locations, to maximize the use of renewable energy, while enforcing
the monthly budget determined by the Internet service operator.

– We explicitly model renewable energy generation, i.e., wind turbines and so-
lar panels, with respect to the varying weather conditions in the geographical
location of each data center. As a result, our solution can effectively handle
the intermittent supplies of renewable energy.

– We formulate the core objective of GreenWare as a constrained optimization
problem and propose an efficient request dispatching solution based on LFP.

– We evaluate GreenWare with real-world weather, electricity price, and work-
load traces. Our experimental results show that GreenWare can significantly
reduce the dependence of cloud-scale data centers on fossil-fuel-based energy
without violating the desired cost budget, despite the intermittent supplies
of renewable energy and time-varying electricity prices and workloads.
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The rest of the paper is organized as follows. Section 2 introduces the overall
architecture of the proposed GreenWare middleware system. Section 3 presents
the modeling and formulations of GreenWare. Section 4 discusses the simulation
strategy. Section 5 evaluates GreenWare with real-world traces. Section 6 reviews
the related work and Section 7 concludes the paper.

2 GreenWare Architecture

In this section, we provide a high-level description of the proposed GreenWare
system. GreenWare dynamically conducts request dispatching among data cen-
ters in order to maximize the percentage of renewable energy used to power a
network of distributed data centers, based on the time-varying electricity prices
and availabilities of renewable energy in their geographical locations. In the
meantime, GreenWare guarantees the desired QoS for customers and effectively
maintains the electricity bill within a cost budget determined by the Internet
service operators.

In this work, we assume that a network of distributed data centers share a
common cost budget, which can be determined by the Internet service operator
periodically in each budgeting period (e.g., a month). A local optimizer is as-
sumed to be present in each single data center in the network to dynamically
adjust the number of active servers to minimize the power consumption of the
data center, while maintaining a desired level of QoS based on a QoS model
detailed in Section 3.2. We also assume that the short-term weather conditions
(e.g., in one hour) and the configurations of wind turbines and solar panels of
each data center are available. As shown in Figure 1, GreenWare is a centralized
system that manages a data center network for maximizing the use of renewable
energy within the cost budget. While such a centralized architecture is commonly
used in the management of data center networks [29,40,39], GreenWare can be
extended to work in a hierarchical way, which is our future work. Similar to
[13,34,48], we use one month as the budgeting period and one hour as the period
for GreenWare to be invoked and conduct the request dispatching operation.

Fig. 1. Proposed GreenWare system for distributed cloud-scale data center networks
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In every invocation period, GreenWare performs three steps: First, Green-
Ware computes the hourly budget based on the monthly cost budget from the
service operator and the electricity cost already consumed in the previous invo-
cation periods, as well as the observations of the workload’s historical behaviors
in the same hours in the past (e.g., last two weeks) as discussed in Section 4.3.
Second, based on the time-varying electricity prices and availability of renew-
able energy at each data center, with respect to the varying weather conditions
in their geographical location (e.g., irradiance, temperature, and wind speed),
GreenWare runs the optimization algorithm in Section 3 to compute the desired
request dispatching (e.g., the fraction of workload allocated to each data cen-
ter) such that (1) the overall percentage of renewable energy used to power a
network of distributed data centers is maximized within budget constraints; (2)
the total electricity cost is below the budget of the current hour; and (3) the
application-level QoS (e.g., desired response time) for customers is guaranteed.
Third, GreenWare redirects the incoming requests among data centers based
on the determined request dispatching in Step (2), using the dynamic request
routing mechanism already deployed in cloud-scale data center networks. Note
that dynamic request routing has already been implemented by many Internet
service operators to map requests to servers, for the purposes of customer QoS
guarantees and fault-tolerance [39].

3 Design Methodology of GreenWare

In this section, we first present the problem formulation of the optimization ob-
jective of GreenWare. We then introduce the adopted performance and server
power models, as well as the wind power model and solar power model. Fi-
nally, we discuss our request dispatching solution. Note that we focus mainly
on wind power and solar power in this work because there exists meteorological
data [6] for us to simulate their intermittent availabilities in distributed data
centers. GreenWare can be applied to other types of renewable energy, such as
hydro-electric and geothermal, if their corresponding meteorological data is also
available.

3.1 Problem Formulation

We first introduce the following notation. N data centers are operated in a
cloud-scale data-center network. The ith data center consumes pWi kilowatts of
wind energy, pSi kilowatts of solar energy and pBi kilowatts of brown energy,
respectively. The total power consumption pi (i.e., pi = pWi + pSi + pBi) of the
ith data center should not exceed the peak power limit Psi of the data center.
The intermittent availabilities of the renewable energy in the local power market
of the ith data center are denoted as PWi and PSi. In particular, PWi and PSi

are the estimated wind power output from the wind farm and the maximum solar
power output from the solar plant, respectively. The corresponding wind farm
and solar plant are assumed to be the renewable energy sources for the local
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power market of the ith data center. PrWi, PrWi and PrBi are the current
electricity prices of the three types of energy from the power market of the
ith data center, respectively. The whole system has an incoming workload of λ
requests per hour. Our algorithm allocates the ith data center with a workload
of λi requests per hour to maximize the percentage of renewable energy used,
depending on the wind and solar power models based on local weather conditions
(presented in Sections 3.3 and 3.4), within the allocated cost budget Cs. The
average response time of the ith data center is Ri and the corresponding response
time set point is Rsi.

Given a workload of λ requests per hour, the optimization goal is to dy-
namically choose a request dispatching strategy such that the ith data center
is assigned λi requests to maximally use renewable energy to power the data
center network within the cost budget. Specifically, in order to maximize the
overall renewable energy usage of all the N data centers, xi percentage of wind
power and yi percentage of solar power out of the total power consumption pi

by the ith data center will have to be determined. Then, zi percentage of the
total power consumption is supplemented in the form of brown energy. It is clear
that zi = 1 − xi − yi. In summary, the optimization problem can be expressed
as follows.
Problem 1:

Maximize :

N∑
i=1

(pWi + pSi)

N∑
i=1

(pWi + pSi + pBi)
(1)

subject to
N∑

i=1

λi = λ (2)

λi ≥ 0 (3)

Ri ≤ Rsi (4)

0 ≤ pWi ≤ PWi (5)

0 ≤ pSi ≤ PSi (6)

0 ≤ pWi + pSi + pBi ≤ Psi (7)

N∑
i=1

(PrWi · pWi + PrSi · pSi + PrBi · pBi) ≤ Cs (8)



GreenWare: Greening Cloud-Scale Data Centers 149

Specifically, pWi, pSi, pBi, PWi, and PSi (in KW) will be numerically the same
as energy (in KWh) since the invocation period used in this work is assumed to
be one hour. In order to solve the optimization Problem 1, it is important to
model the variables pWi, pSi and pBi as functions of λi, xi and yi. It is clear
that

pWi = xi · pi; pSi = yi · pi; pBi = zi · pi (9)

where xi + yi + zi = 1.
Thus, in the following we first model the power consumption pi and the aver-

age response time Ri with the request distribution rate λi for the ith data center.
We then model the availabilities of wind power and solar power, i.e., PWi and
PSi, respectively, based on the weather condition of the ith data center, e.g., ir-
radiance, temperature, and wind velocity. We discuss an efficient solution design
for Problem 1 in Section 3.5.

3.2 Response Time and Power Models

Queueing theory is widely used to model the performance of a web server [13,14].
In this paper, we use the M/M/n queueing model in queueing theory [40] to
model the response time for a data center. The average response time of the
requests to a web server consists of two portions: (1) the average waiting time
that the requests spend in a queue waiting to be serviced and (2) the service time,
i.e., 1

μ , given the service rate μ of the data center. Specifically, the average waiting
time for a data center with n active servers can be expressed as 1

n·μ−λ ·PQ, where
PQ represents the probability that the incoming requests need to wait in a queue
to be serviced. Furthermore, we assume that all the active servers will likely keep
busy, i.e., running at close to 100% utilization, because a local optimizer running
in each data center minimizes the number of active servers. Hence, without loss
of generality, PQ is assumed to be 1, since all the active servers are assumed to
be running at close to 100% utilization. The same assumption is used in existing
solutions on electricity cost minimization for data centers [40]. Therefore, we
have

Ri =
1
μi

+
1

ni · μi − λi
(10)

where ni is the number of active servers and μi is the average service rate of a
single server, i.e., the number of requests the server is able to process in a unit
time, in the ith data center .

As discussed in Section 2, we assume that a local optimizer runs in every data
center and dynamically adjusts the number of active servers to provide a desired
level of QoS (e.g., response time) with the least number of servers. As a result,
given a request rate of λi and a desired response time Rsi of the ith data center,
the number of desired active servers ni can be derived from equation (10). Thus,
we have pi = ni · spi, where spi is the average power consumption of a single
server in the ith data center. Although the power consumption of a server is
usually a function of the utilization of the server, we assume that spi is constant
because when the local optimizer minimizes the number of active servers, all the
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servers remaining active will likely run close to a 100% utilization. Thus, the
utilization will be approximately the same. It is then clear that a linear server
power model based on the incoming work rate λi for the ith data center can be
derived, i.e., pi = f(λi), where f(λi) is a linear function.

3.3 Wind Power Model

The number of wind turbine installations is rapidly growing worldwide. It is
expected that the US can get 20% of its electricity from wind energy by the year
2030 [25,37]. It has been shown that wind power generated by wind turbines in
a wind farm can be modeled as a function of the actual wind speed [35,9]. For
example, the wind power output pwind by a single wind turbine, with respect to
a wind speed of v, can be approximated as follows

pwind =

⎧⎨
⎩

0 v < vin, v > vout

pr · v−vin

vr−vin
vin < v < vr

pr vr < v < vout

where vr, pr are the rated speed and power of the wind turbine and vin, vout are
cut-in and cut-out wind speeds. Specifically, the cut-in speed is the wind speed
at which the turbine first starts to rotate and generate power, e.g., a typical
value between 3 and 4 meters per second; while the cut-out speed is employed
by the braking system to bring the rotor to a standstill to eliminate the risk of
damaging the turbine rotor due to the continuously rising wind speed, e.g., a
cut-out speed of usually around 25 meters per second.

In the case of a large-scale wind power generation farm, e.g., one consisting of
a large number mw of wind-turbines, the overall wind power output is estimated
as the sum of the power output values sampled at different turbines for simplicity
[21]

PW =
mw∑
k=1

pk
wind

where pk
wind is the power output from the kth wind turbine with respect to the

wind speed v, with t05e assumption that the wind turbines have the same wind
speed in the same wind farm.

3.4 Solar Power Model

The worldwide photovoltaic (PV) power capacity installation grows in a nearly
exponential way, despite their relatively high cost [41]. In this work, we model
the solar power generated by solar plants with respect to the varying weather
conditions, such as irradiance and temperature, based on a single diode equation
[41,36]. In particular, the single diode equation has been widely used to simulate
the available electrical power generated from a single PV panel. Specifically, the
resulting current-voltage characteristic of a PV panel is

i = Iph − Io · (e
v+i·Rs
ns·Vth − 1)− v + i ·Rs

Rsh
(11)
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where Iph is the photo-generated current while Io is the dark saturation current
with respect to the ambient weather pattern. Moreover, the single-diode model
takes into account both the series and parallel (shunt) resistance of the PV panel,
referred to as Rs and Rsh, respectively. Vth is the junction thermal voltage, i.e.,
Vth = k · T/q, where k is Boltzmann’s constant, q is the charge of the electron
and T is the ambient temperature. ns is the number of the solar cells in the PV
panel connected in series, e.g., ns = 72 in BP-MSX 120 panels [1].

To show the solar power output from PV panels with respect to the varying
weather conditions (e.g., irradiance and temperature), equation (11) can then be
transformed as equation (12) by including these two key factors, i.e., irradiance
and temperature [41]. In particular, it has been demonstrated that the dark
saturation current of Io just varies with the ambient temperature T , independent
on the irradiance condition G [41,16]. Furthermore, for a high-quality solar cell,
it typically has a low series resistance Rs but a high parallel resistance Rsh. As
a result, the solar model in this work only takes into considerations the series
resistance (i.e., Rsh = ∞), which is consistent with the prior study [31]. We thus
have the fact that Iph can be approximated by Isc for simplicity, where Isc is the
short-circuit current. In particular, Isc is directly proportional to the irradiance
as well as the ambient temperature. Thus, we have

i(G, T ) = Isc(G, T )− Io(T ) · e
v(G,T )+i(G,T )·Rs

ns·Vth (12)

where Isc(G, T ) = G
G0
·Isc ·(1+ ki

100 ·(T−T0)) and Io(T ) = Isc ·(1+ ki

100 ·(T−T0)) ·

e
−Voc+kv ·(T−T0)

ns·Vth . G0 and T0 are the respective irradiance level and temperature in
Standard Test Conditions (STC), i.e., G0 = 1000W/m2 and T0 = 25oC. Isc, Voc,
kv and ki are the given parameters of short-circuit current, open-circuit voltage,
temperature coefficients of the short-circuit and the open-circuit in STC from
the datasheet of PV panels, respectively.

In particular, the solar power produced by a PV panel with respect to the
varying weather conditions, based on the current-voltage characteristic shown as
equation (11) is the product of the output voltage and current. Namely, psolar =
v(G, T )·i(G, T ). It has been demonstrated that the power output psolar generated
by a PV panel shows a unique maximum value under uniform irradiation and
temperature [31,41]. In order to achieve the maximum efficiency of solar plants,
some researchers have already put efforts in extracting the maximum power point
from solar plants [19,27]. We thus estimate the solar power output by a PV panel
as the maximal power value which can be extracted from the PV panel (referred
to as mpp). Specifically, mpp is achieved with respect to an optimal load rmp and
the corresponding current imp [19], where rmp = Rs + ns·Vth

Isc(G,T )+Io(T )−imp
. Thus,

mpp = i2mp · rmp. The Lambert W -function method is then used to calculate the
maximum power point mpp of the PV panel with respect to the varying weather
conditions. We assume that there are ms PV panels installed in a large-scale
solar plant. Thus, the overall solar power output by the solar plant is estimated
as



152 Y. Zhang, Y. Wang, and X. Wang

PS =
ms∑
k=1

mppk

where mppk is the maximum power point from the kth PV panel with respect
to the irradiance G and temperature T .

3.5 Problem Solution

Based on the analysis above, the optimization Problem 1 is a non-linear pro-
gramming problem with both a non-linear objective function and non-linear con-
straints, with respect to decision variables of λi, xi and yi. However, for a service
operator, it is important to design an efficient solution in order to dynamically
make decisions to green the data centers with acceptable runtime overheads. We
thus transfer the non-linear optimization Problem 1 into a well-studied linear-
fractional programming formulation as in the form of Problem 2, which can
be further transferred into a standard linear programming problem. Specifically,
note that for the equations (9) with respect to pWi, pSi and pBi as discussed
in Section 3.1, we can alternatively assume that among the λi requests serviced
by the ith data center, λW

i , λS
i and λB

i requests are serviced with wind energy,
solar energy and brown energy, respectively. Thus, we can limit the decision
variables for the optimization Problem 1 in (1 - 8) to only workload-related
variables of λW

i , λS
i and λB

i , instead of both workload-related variables (i.e., λi)
and percentage variables (i.e., xi and yi).

Since λi = λW
i + λS

i + λB
i , Problem 1 in (1 - 8) can be further transferred

as follows.
Problem 2:

Maximize :

N∑
i=1

f(λW
i + λS

i )

N∑
i=1

f(λW
i + λS

i + λB
i )

(13)

subject to
N∑

i=1

(λW
i + λS

i + λB
i ) = λ (14)

λW
i ≥ 0 (15)

λS
i ≥ 0 (16)

λB
i ≥ 0 (17)

Ri ≤ Rsi (18)
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0 ≤ f(λW
i ) ≤ PWi (19)

0 ≤ f(λS
i ) ≤ PSi (20)

0 ≤ f(λW
i + λS

i + λB
i ) ≤ Psi (21)

N∑
i=1

(PrWi · f(λW
i ) + PrSi · f(λS

i ) + PrBi · f(λB
i )) ≤ Cs (22)

Specifically, f(λW
i ), f(λS

i ) and f(λB
i ) represent the amount of wind energy, solar

energy and brown energy consumed in the ith data center, respectively. It is clear
that f(λW

i ), f(λS
i ) and f(λB

i ) are linear functions as discussed in Section 3.2.
Problem 2 is thus a specific case of linear-fractional programming problem

with a fractional objective function and linear constraints. In order to solve the
LFP-based optimization Problem 2, we leverage a standard technique discussed
in [24] to transfer the problem in (13 - 22) to a linear programming problem.
The detailed transformation is not shown due to space limitations, but the steps
can be found in [24]. In our system, we implement the proposed GreenWare
middleware system based on the linprog solver in Matlab. In particular, linprog
uses an simplex method, which has been proven to have a low complexity in
practice [7].

4 Simulation Setup

We aim to use realistic parameters in our experimental setup. We design a simu-
lator and use real-world weather data, Web request traces, as well as electricity
price data from utility companies to evaluate the proposed GreenWare system.
As discussed, GreenWare dynamically conducts request dispatching to maxi-
mize the percentage of renewable energy used to power a network of distributed
data centers within the cost budget determined by the Internet service operator.
These evaluations primarily target web server-based applications, which provide
the request-response type of web services. Specifically, the setup simulates an
Internet-scale data center network such as Google’s data centers within the US.

4.1 Datacenter Parameters

In our evaluation, we simulate a large system composed of four geographically
distributed data centers for an Internet service operator (e.g., Google). Accord-
ingly, four different locations are assumed in the simulator, i.e., San Luis Valley
in Colorado, Los Angeles in California, Oak Ridge in Tennessee and Lanai in
Hawaii, which are the locations whose meteorological data are available in [6].

The power consumption profile of each server in the same location is assumed
to be approximately the same, which is usually true when homogeneous servers
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and configurations are used in each data center [40,33]. Specifically, similar to
a related study [32], the server configuration in each location is respectively
assumed to be as follows: Data Center 1 (2.0 GHz AMD Athlon processor),
Data Center 2 (1.2 GHz Intel Pentium 4630 processor), Data Center 3 (2.9
GHz Intel Pentium D950 processor), and Data Center 4 (2.7 GHz AMD Athlon
processor). Their power consumption is assumed to be 88.88, 34.10, 149.19, and
141.28 Watts and their processing capacity coefficients are estimated as 500, 300,
725, and 675 requests per second, respectively.

4.2 Renewable Energy Availability

To emulate the intermittent availabilities of renewable energy in the locations of
different data centers, i.e., wind power and solar power, we use meteorological
data from the Measurement and Instrumentation Data Center (MIDC) [6] of
the National Renewable Energy Laboratory. A variety of meteorological data,
including irradiances, temperature, and wind speed, is covered in those records
from the MIDC. Moreover, prior studies have shown that the data from the
MIDC is sufficiently accurate [31]. In particular, we use meteorological data from
the four stations, e.g., Sun Spot One, Loyola Marymount University Rotating
Shadowband Radiometer, Oak Ridge National Laboratory and La Ola Lanai, since
they have consistent time periods with available meteorological data, beginning
from June 1st, 2010 to June 30th, 2010. We further assume that there are 200
turbines installed in each wind farm and 10,000 solar panels installed in each
solar plant to provide renewable energy to the local power utilities of the 4 data
centers. In particular, BP-MSX 120 panels produced by British Petroleum are
assumed to be used in the solar plants [1].

Specifically, based on the power models discussed in Sections 3.3 and 3.4,
as well as the varying weather conditions obtained from MIDC, the available
renewable energy of all the 4 data centers throughout the entire simulated month
is demonstrated in Figures 2 and 3. In particular, Figure 2 depicts the overall
available wind energy of all the 4 data centers, while Figure 3 shows the overall
available solar energy. As shown in these two figures, the available renewable
energy shows a diurnal pattern. This is due to the fact that the local weather
conditions have a nearly diurnal pattern.

4.3 Real-World Workload Traces

To build our workloads in the simulator, we use a trace of Internet traffic from
Wikipedia.org [45]. In particular, we use this tracefile with 2-month long data,
which contains 10% of user requests that arrived at Wikipedia between October
1st, 2007 and November 30th, 2007. Figure 4 shows the hourly behavior of user
requests in October and November, 2007. As illustrated in the figure, the users’
behavior shows a very clear weekly pattern in visiting the Wikipedia website.
Specifically, we take the 1-month long Wikipedia trace of November as the in-
coming workload in the simulator while using the October trace data to work
as the historical observations of the workload to predict hourly cost budgets.
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Fig. 2. The trace of available wind energy
throughout the entire simulated month
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Fig. 3. The trace of available solar energy
throughout the entire simulated month

To do so, we maintain a history of the request arrival rate seen during each
hour of the week over the past several weeks. We then calculate every averaged
hourly workload weight of the whole week over the past several weeks as the
hourly budget weight in the coming week. Based on experiments, we find that
for this Wikipedia trace, a 2-week long history trace data can provide a reason-
able prediction on hourly cost budgets. Note that more sophisticated prediction
methods, such as [46], can also be integrated into our system.

To make our evaluation more general, we also stress test GreenWare with
another workload trace from the 1998 World Cup game, which includes the
request data of 33 servers from 4 geographical locations. In particular, it records
the incoming requests to all the servers with a granularity of 1 second from April
30th to July 26th, 1998.

4.4 Electricity Price Traces

To simulate the electricity price for the brown energy, we use the price trace
from New York Independent System Operator (NYISO) [10], since they have
complete and accurate price data records. Specifically, we use the Day-Ahead
price data from November 1st, 2007 to November 30th, 2007, which is consistent
with the dates of the Wikipedia traces. We apply the price data from the four
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Fig. 4. Wikipeida workload trace from October 1st, 2007 to November 30th, 2007
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zones, including Capital, Central, Dunwoodie and Genesee to the 4 data centers
in our simulation.

On the other hand, regarding the electricity price of renewable energy, it is
usually true that renewable energy has a higher electricity price compared to
brown energy [2,5], due to the intermittent nature of renewable energy sources
such as wind and sunlight, as well as expensive facility investments and man-
agement. For example, renewable energy costs an additional 1.5 cents per KWh
compared to the regular energy in the power market of Virginia [2]. Further-
more, solar energy is typically much more expensive than wind energy, due to
the relatively high capital expenses [3,11]. Thus, to be more practical, in our sim-
ulation we assume that the wind electricity price is 1.5 cents higher per KWh
than brown energy [2]; while solar energy is 18.0 cents higher per KWh [3].

5 Evaluation Results

In this section, we first introduce two baselines. We then compare the proposed
GreenWare middleware system against the baselines.

5.1 Baselines

In our work, we use two baselines in our experiments, a cost minimization only
policy and a green energy usage maximization only policy, referred to as Min-
Cost and Max-Green, respectively. (1) Min-Cost. Similar to GreenWare, Min-
Cost also tries to minimize the electricity cost by distributing requests among
geographically distributed data centers to leverage the varying electricity prices
in different locations. However, different from GreenWare, Min-Cost is unaware
of renewable energy and thus prefers brown energy in cost minimization. Min-
Cost is similar to the state-of-the-art work [40] in minimizing the electricity
bill in operating data center networks. (2) Max-Green. Similar to GreenWare,
Max-Green tries to maximize the use of renewable energy by distributing more
requests to data centers where more renewable energy is available. However,
Max-Green does so regardless of the cost budget and thus may lead to a high
operation cost for the Internet service operators and sometimes even budget
violations. This scheme is similar to the state-of-the-art work [42] in powering
data centers with renewable energy.

5.2 Impacts of the Monthly Cost Budget

In this experiment, we evaluate the proposed GreenWare middleware with re-
spect to different monthly cost budgets.

Figures 5 and 6 depict how GreenWare works with the Wikipedia workload
under a monthly cost budget of $340K. In particular, these two figures show that
with a sufficient monthly cost budget (e.g., as shown in Figure 5, the allocated
hourly budget is sufficient throughout the entire month), brown energy is used
only in the invocation periods with insufficiently available renewable energy.
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That is, as indicated in Figure 6, only when the available renewable energy
supply is less than the actual renewable energy demand (i.e., a difference lower
than 0), the corresponding renewable energy usage does not reach 100%, e.g.,
the hours of 2, 5, 6, 7 and etc. Note that there are some invocation periods which
have a zero usage of renewable energy, e.g., the hours of 1, 3, 4 and etc. This
is because that there is no available renewable energy at all due to the weather
conditions in those invocation periods. In addition, Figure 5 demonstrates that
the hourly allocated cost budget within one week shows a growing trend. This is
due to the fact that we carry over the unused allocated cost budget from previous
invocation periods to the remaining invocation periods in the same week.
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Fig. 5. Hourly electricity cost by GreenWare with a sufficient monthly cost budget of
$340K, with respect to Nov. 2007 Wikipedia trace
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Fig. 6. Hourly renewable energy usage by GreenWare with a sufficient monthly cost
budget of $340K, with respect to Nov. 2007 Wikipedia trace

We then study GreenWare under a series of different monthly cost budgets.
As shown in Figure 7, with the increase of the monthly cost budget, the monthly
average percentage of renewable energy usage keeps rising and then stays stable.
This is due to the fact that fewer invocation periods are allocated with an in-
sufficient cost budget in the case with a higher monthly cost budget. Therefore,
more renewable energy can be used to power the data center networks. For ex-
ample, with a monthly cost budget of $100K, there are 202 invocation periods
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which have sufficient renewable energy supply but with an insufficient allocated
cost budget; while as low as only 42 invocation periods are allocated with an
insufficient cost budget in the case with a $160K monthly cost budget. As a re-
sult, a higher monthly average percentage of 58.17% of renewable energy usage
is achieved with the monthly cost budget of $160K, compared to a percentage of
45.95% with the monthly budget $100K. Thus, when all the invocation periods
have a sufficient budget due to a sufficient monthly cost budget, e.g., $320K
and $340K, the monthly average renewable energy usage stays stable. This set
of experiments demonstrates that GreenWare can significantly increase the use
of renewable energy in powering the data center network, subject to the desired
cost budget.

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

100K 120K 140K 160K 300K 320K 340K
 0

 50

 100

 150

 200

 250

M
o

n
th

ly
 P

e
rc

e
n

ta
g

e
 

o
u

t 
o

f 
T

o
ta

l 
E

n
e
rg

y
 C

o
n

s
u

m
p

ti
o

n

M
o

n
th

ly
 N

o
. 
o

f 
In

v
o

c
a
ti

o
n

s

Monthly Electricity Cost Budget Level

Average Renewable Energy Usage

Invocations effected by insufficient cost budget

Fig. 7. Average percentage of renewable energy usage by GreenWare with a series of
different monthly cost budgets

5.3 Comparison with Baselines

In this experiment, we compare GreenWare with the two baselines: Min-Cost
and Max-Green.

Figure 8 depicts the cost and brown energy consumption of GreenWare, Max-
Green and Min-Cost, with respect to a given monthly budget, e.g., $100K, for
the Wikipeida workload. The results are normalized against Min-Cost, which
actually indicates the case of only using brown energy in powering data center
networks. Figure 8 shows that although Max-Green (i.e., maximizing the use of
green energy regardless of cost budget) can decrease brown energy consumption
by 58% compared to Min-Cost by utilizing as much renewable energy as pos-
sible. However, due to its unawareness of cost budget, Max-Green results in a
109% cost increase and exceeds the monthly cost budget by 29%. On the other
hand, GreenWare can achieve an as-much-as-42% decrease in brown energy con-
sumption at only a 52% cost increase, compared to Min-Cost. More importantly,
GreenWare successfully controls the electricity bill to stay within the cost budget
for the Internet service operator.

To demonstrate the effectiveness of GreenWare with different workloads, we
also stress test GreenWare using the 1998 World Cup trace. Specifically, we use
the request trace in June as the incoming workload in the simulation, and the
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World Cup trace

May trace as historical data to predict the hourly cost budget. To simulate the
workload of cloud-service data centers, we proportionally increase the request
numbers. Figure 9 shows the experiment results on the comparison between
GreenWare and the two baselines. As demonstrated in the figure, Max-Green
achieves a 42% decrease in brown energy consumption compared to Min-Cost.
However, the electricity bill exceeds the given monthly cost budget (e.g., $100K)
by 31%. On the other hand, GreenWare obtains an as-much-as-21% decrease in
brown energy consumption while successfully controlling the electricity bill to
stay within the monthly cost budget.

5.4 Impacts of Pricing Policies of Renewable Energy

In this experiment, we show that the proposed GreenWare middleware always
prefers the type of renewable energy that has a lower electricity price. Thus, an
efficient cost minimization is guaranteed. Since in our work we just consider two
types of the most popular renewable energy, i.e., wind energy and solar energy,
we assume two different pricing policies: (1) wind energy has a lower electricity
price, as discussed in Section 4.4; and (2) solar energy has a lower price than
wind energy. Note that the current practice is that wind energy is typically less
expensive than solar energy. However, in order to stress test GreenWare, we
assume a lower price for solar energy in (2).

Figures 10 and 11 demonstrate how the usage of different types of renewable
energy varies with different pricing policies as discussed above. Intuitively, the
more expensive renewable energy is taken into use only when the less expensive
type of renewable energy is used up. As shown in Figure 10, with the first pricing
policy (i.e., wind energy price is lower), solar energy is used to power data
centers only after all the supplied wind energy has been used up, as indicated in
the second data center (DC#2). Similarly, with the second pricing policy, wind
energy is used to power data centers only after all the available less expensive
solar energy is consumed, as in all the data centers in Figure 11. Note that
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in Figure 10, Data Centers 1, 3 and 4 begin to use the more expensive solar
energy though there is still some wind energy left. This is because that there are
some invocation periods when the available wind energy is too much to serve
the incoming workload. As a result, some wind energy is left unused and the
unused wind energy cannot be used in the following invocation periods due to
the intermittent feature of the renewable energy.
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6 Related Work

Greening data centers is becoming an increasingly important topic in operating
cloud-scale data center networks for Internet service operators, due to (1) data
centers having become major energy consumers [44] and (2) the global energy cri-
sis and environmental concerns (e.g., global warming) [31]. To our best knowledge,
our study is the first one that proposes to maximally use the renewable energy sup-
plied by the local power utilities for Internet service operators, while being aware
of the time-varying electricity price and enforcing a desired cost budget. Com-
pared with the state of the art, the considerations of various realistic constraints
make GreenWare more practical. We now discuss the related work.

Energy conservation in data centers. Many recent research projects have
tried to minimize the energy consumption of data centers. For example, Chen
et al. [18] and Chase et al. [17] reduce the energy consumption of connection
servers hosting long-lived TCP-connection services and web servers providing
request-response type of services, respectively. Heo et al. [23] have developed
an adaptation graph analysis mechanism to solve the conflicts between inter-
acting adaptive components, e.g., On/Off and dynamic voltage scaling policies
in server farms, to minimize energy consumption. Elnozahy et al. [20] investi-
gate various combinations of dynamic voltage scaling and node on/off policies
to reduce the energy consumption in server farms. Other strategies on reducing
energy consumption of servers are also proposed (e.g., [26,47]).
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Our work differs from these efforts in several ways: (1) none of them try to
use renewable energy to power data center networks; and (2) none of them put
efforts on managing the electricity cost for the Internet service operators.

Managing electricity cost in data centers. A few recent projects have pro-
posed to minimize the electricity bills of data center networks. For example,
Qureshi et al. [39] try to lower the electricity bill by utilizing the varying elec-
tricity prices in different locations of distributed data centers. Rao et al. [40]
consider a multi-electricity-market environment to reduce the electricity bill. In
a recent study, Zhang et al. [48] propose an electricity bill capping algorithm to
minimize the electricity cost within the cost budget for data center networks.
Lin et al. [33] have tried to minimize the energy cost together with delay cost
by rightly sizing data centers. Our work differs significantly from these efforts
in that none of them try to maximize the use of renewable energy in powering
data center networks for the Internet service operators.

Utilizing renewable energy in data centers. This is a relatively new topic
with only few initial studies. Le et al. [29,28] propose to cap the consumption
of brown energy while maintaining service level agreements (SLAs). Liu et al.
[34] investigate how renewable energy can be used to lower the electricity price
of brown energy in a specific power market, i.e., where the brown energy is
dynamically priced in proportion to the total brown energy consumption. Brown
et al. [15] propose a simulation infrastructure to model a data center using
renewable energy sources. In contrast to those studies, GreenWare aims to solve
a related but different problem, i.e., maximizing the use of renewable energy
subject to the cost budget of the Internet service operators. Steward et al. [42]
also try to maximize the use of renewable energy in data centers. However,
their study assumes that Internet service operators have their own wind farms
or solar plants. In contrast, GreenWare considers a different case where the
service operators buy renewable energy from the power grid, which is a more
common case for many data centers because of concerns such as expensive facility
investments and management. In addition, their study does not consider the
extra cost of renewable energy and may lead to budget violations as shown in
the comparisons between GreenWare and Max-Green in Section 5.3. Li et al.
[30] propose a load power tuning scheme for managing intermittent renewable
power in a single data center without considering the costs. In contrast, we focus
on distributing requests among data centers in different locations.

7 Conclusion

Two key questions faced by many cloud-service operators are 1) how to dynam-
ically distribute service requests among data centers in different geographical
locations, based on the local weather conditions, to maximize the use of renew-
able energy, and 2) how to do so within their allowed operation budgets. In this
paper, we have presented GreenWare, a novel middleware system that conducts
dynamic request dispatching to maximize the percentage of renewable energy
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used to power a network of distributed data centers, subject to the desired cost
budget of the Internet service operators. Our solution first explicitly models the
intermittent generation of renewable energy, e.g., wind power and solar power,
with respect to varying weather conditions in the geographical location of each
data center. We then formulate the core objective of GreenWare as a constrained
optimization problem and propose an efficient request dispatching algorithm
based on linear-fractional programming (LFP). We evaluate GreenWare with
real-world weather, electricity price, and workload traces. Our experimental re-
sults show that GreenWare can significantly increase the use of renewable energy
in cloud-scale data centers without violating the desired cost budget, despite the
intermittent supplies of renewable energy in different locations and time-varying
electricity prices and workloads.

Acknowledgments. This work was supported, in part, by NSF under CNS-
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Abstract. Many companies are increasingly using MapReduce for efficient large
scale data processing such as personalized advertising, spam detection, and differ-
ent data mining tasks. Cloud computing offers an attractive option for businesses
to rent a suitable size Hadoop cluster, consume resources as a service, and pay
only for resources that were utilized. One of the open questions in such envi-
ronments is the amount of resources that a user should lease from the service
provider. Often, a user targets specific performance goals and the application
needs to complete data processing by a certain time deadline. However, currently,
the task of estimating required resources to meet application performance goals
is solely the users’ responsibility. In this work, we introduce a novel framework
and technique to address this problem and to offer a new resource sizing and
provisioning service in MapReduce environments. For a MapReduce job that
needs to be completed within a certain time, the job profile is built from the
job past executions or by executing the application on a smaller data set using an
automated profiling tool. Then, by applying scaling rules combined with a fast
and efficient capacity planning model, we generate a set of resource provisioning
options. Moreover, we design a model for estimating the impact of node failures
on a job completion time to evaluate worst case scenarios. We validate the accu-
racy of our models using a set of realistic applications. The predicted completion
times of generated resource provisioning options are within 10% of the measured
times in our 66-node Hadoop cluster.

1 Introduction

Private and public clouds offer a new delivery model with virtually unlimited computing
and storage resources. Many companies are following the new trend of using MapRe-
duce [1] and its open-source implementation Hadoop for large-scale, data intensive
processing and for mining petabytes of unstructured information. However, setting up a
dedicated Hadoop cluster requires a significant capital expenditure that can be difficult
to justify. Cloud computing offers a compelling alternative and allows users to rent re-
sources in a “pay-as-you-go” fashion. A list of supported services by Amazon (Amazon
Web Services) includes MapReduce environments for rent. It is an attractive and cost-
efficient option for many users because acquiring and maintaining complex, large-scale
infrastructures is a difficult and expensive decision. Hence, a typical practice among
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MapReduce users is to develop their applications in-house using a small development
testbed and test it over a small input dataset. They can lease a MapReduce cluster from
the service provider and subsequently execute their MapReduce applications on large
input datasets of interest. Often, the application is a part of a more elaborate business
pipeline, and the MapReduce job has to produce results by a certain time deadline,
i.e., it has to achieve certain performance goals and service level objectives (SLOs).
Thus, a typical performance question in MapReduce environments is “how to estimate
the required resources (number of map and reduce slots) for a job so that it achieves
certain performance goals and completes data processing by a given time?” Currently,
there is no available methodology to easily answer this question, and businesses are
left on their own to struggle with the resource sizing problem: they need to perform
adequate application testing, performance evaluation, capacity planning estimation, and
then request appropriate amount of resources from the service provider.

In this work, we propose a novel framework to solve this problem and offer a new re-
source sizing and provisioning service in MapReduce environments. First, we introduce
an automated profiling tool that extracts a compact job profile from the past application
execution(s) in the production Hadoop cluster. Alternatively, profiling can done by
executing a given application with a smaller input dataset than the original one. The
power of the designed technique is that it offers a compact job profile that is comprised
of performance invariants which are independent of the amount of resources assigned
to the job (i.e., the size of the Hadoop cluster) and the size of the input dataset. The job
profile accurately reflects the application performance characteristics during all phases
of a given job: map, shuffle/sort, and reduce phases. Our automated profiling technique
does not require any modifications or instrumentation of neither the application nor of
the underlying Hadoop execution engine. All this information can be obtained from the
counters at the job master during the job’s execution or alternatively parsed from the
job execution logs written at the job tracker.

For many applications, increasing input dataset while keeping the same number of
reduce tasks leads to an increased amount of data shuffled and processed per reduce
task. Using linear regression, we derive scaling factors for shuffle and reduce phases to
estimate their service times as a function of input data.

We design a MapReduce performance model that predicts the job completion time
based on the job profile, input dataset size, and allocated resources. We enhance the
designed model to evaluate the performance impact of failures on job completion time.
This model helps in evaluating worst case scenarios and deciding on the necessity of
additional resources or program changes as a means of coping with potential failure
scenarios. Finally, we propose a fast and efficient, fully automated capacity planning
procedure for estimating the required resources to meet a given application SLO. The
output of the model is a set of plausible solutions (if such solutions exist for a given
SLO) with a choice of different numbers of map and reduce slots that need to be
allocated for achieving performance goals of this application.

We validate the accuracy of our approach and performance models using a set of
realistic applications. First, we build the application profiles and derive scaling factors
using small input datasets for processing. Then we perform capacity planning and gen-
erate plausible resource provisioning options for achieving a given application SLO for
processing a given (large) dataset. The predicted completion times of these generated
options are within 10% of the measured times in the 66-node Hadoop cluster.
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This paper is organized as follows. Section 2 provides a background on MapRe-
duce. Section 3 introduces our approach towards profiling MapReduce jobs. Section 4
presents a variety of MapReduce performance models and the SLO-based resource
provisioning. The efficiency of our approach and the accuracy of designed models is
evaluated in Section 5. Section 6 describes the related work. Section 7 summarizes the
paper and outlines future directions.

2 MapReduce Background

This section provides an overview of the MapReduce [1] abstraction, execution, schedul-
ing, and failure modes. In the MapReduce model, computation is expressed as two
functions: map and reduce. The map function takes an input pair and produces a list of
intermediate key/value pairs. The intermediate values associated with the same key k2

are grouped together and then passed to the reduce function. The reduce function takes
intermediate key k2 with a list of values and processes them to form a new list of values.

map(k1, v1) → list(k2, v2)
reduce(k2, list(v2)) → list(v3)

MapReduce jobs are distributed and executed across multiple machines: the map stage
is partitioned into map tasks and the reduce stage is partitioned into reduce tasks.

Each map task processes a logical split of input data that generally resides on a
distributed file system. Files are typically divided into uniform sized blocks (default
size is 64 MB, which is a file system parameter) and distributed across the cluster nodes.
The map task reads the data, applies the user-defined map function on each record, and
buffers the resulting output. This data is sorted and partitioned for different reduce tasks,
and written to the local disk of the machine executing the map task. The reduce stage
consists of two phases: shuffle and reduce phase. In the shuffle phase, the reduce tasks
fetch the intermediate data files from the already completed map tasks, thus following
the “pull” model. The intermediate files from all the map tasks are sorted. An external
merge sort is used in case the intermediate data does not fit in memory as follows:
the intermediate data is shuffled, merged in memory, and written to disk. After all the
intermediate data is shuffled, a final pass is made to merge all these sorted files. Thus,
the shuffling and sorting of intermediate is interleaved: we denote this by shuffle/sort or
simply shuffle phase. Finally, in the reduce phase, the sorted intermediate data is passed
to the user-defined reduce function. The output from the reduce function is generally
written back to the distributed file system.

Job scheduling in Hadoop is performed by a master node, which manages a number
of worker nodes in the cluster. Each worker has a fixed number of map slots and reduce
slots, which can run tasks. The number of map and reduce slots is statically configured.
The slaves periodically send heartbeats to the master to report the number of free slots
and the progress of tasks that they are currently running. Based on the availability of
free slots and the scheduling policy, the master assigns map and reduce tasks to slots in
the cluster.

In the real world, user code is buggy, processes crash, and machines fail. MapReduce
is designed to scale to a large number of machines and to yield a graceful perfor-
mance degradation in case of failures. There are three types of failures that can occur.
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First, a map or reduce task can fail because of buggy code or runtime exceptions. The
worker node running the failed task detects task failures and notifies the master. The
master reschedules the execution of the failed task, preferably on a different machine.
Secondly, a worker can fail, e.g., because of OS crash, faulty hard disk, or network
interface failure. The master notices a worker that has not sent any heartbeats for a
specified time interval and removes it from its worker pool for scheduling new tasks.
Any tasks in progress on the failed worker are rescheduled for execution. The master
also reschedules all the completed map tasks on the failed worker that belong to running
jobs, since the intermediate data of these maps may not be accessible to reduce tasks of
these jobs. Finally, the failure of the master is the most serious failure mode. Currently,
Hadoop has no mechanism for dealing with the failure of the job master. This failure
is rare and can be avoided by running multiple masters and using a Paxos consensus
protocol to decide the primary master.

3 Profiling MapReduce Jobs

In this section, we discuss different executions of the same MapReduce job in the
Hadoop cluster as a function of the job’s map and reduce tasks and the allocated map
and reduce slots for executing it. Our goal is to extract a single job profile that uniquely
captures critical performance characteristics of the job execution in different stages. We
introduce a fully automated profiling technique that extracts a compact job profile from
the past application execution(s) in the production Hadoop cluster.

3.1 Job Execution as a Function of Allocated Resources

Let us consider two popular MapReduce applications (described below) and demon-
strate the differences between their job executions and job completion times as a func-
tion of the amount of resources allocated to these jobs.

– The first application is the Sort benchmark [2], which involves the use of identity
map/reduce function: The output of the map and reduce task is the same as its input.
Thus, the entire input of map tasks is shuffled to reduce tasks and then written as
output.

– The second application is WikiTrends application that processes Wikipedia article
traffic logs that were collected (and compressed) every hour. WikiTrends counts the
number of times each article has been visited in the given input dataset, i.e. access
frequency or popularity count of each Wikipedia article over time.

First, we run the Sort benchmark with 8GB input on 64 machines each configured with
a single map and a single reduce slot, i.e., with 64 map and 64 reduce slots overall.
Figure 1 shows the progress of the map and reduce tasks over time (on the x-axis) vs the
64 map slots and 64 reduce slots (on the y-axis). Since we use blocksize of 128MB, we
have 8GB/128MB = 64 input splits. As each split is processed by a different map task,
the job consists of 64 map tasks. This job execution results in a single map and reduce
wave. We split each reduce task into its constituent shuffle/sort and reduce phases. As
seen in the figure, since the shuffle phase starts immediately after the first map task is
completed, the shuffle phase overlaps with the map stage.

Next, we run the Sort benchmark with the same 8GB input dataset on the same
testbed, except this time, we provide it with fewer resources: 16 map slots and 22 reduce
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Fig. 3. Sorting with 16 map and 22 reduce slots

 0

 20

 40

 0  100  200  300  400  500  600

T
as

k 
sl

ot
s

Time (in seconds)

Map (first wave)
Map (second wave)

Map (third wave)
Map (fourth wave)

Map (fifth wave)
Shuffle

Reduce

Fig. 4. WikiTrends with 16 map and 16 reduce slots

slots. As shown in Figure 3, since the number of map tasks is greater than the number of
provided map slots, the map stage proceeds in multiple rounds of slot assignment, viz. 4
waves (�64/16�)1. These waves are not synchronized with each other, and the scheduler
assigns the task to the slot with the earliest finishing time. Similarly, the reduce stage
proceeds in 3 waves (�64/22�).

While the executions of four map waves resemble each other, note the difference
between the first reduce wave and the following two reduce waves in this job execution.
As we mentioned earlier, the shuffle phase of the first reduce wave starts immediately
after the first map task completes. Moreover, this first shuffle phase continues until all
the map tasks are complete, and their intermediate data is copied to the active reduce
tasks. Thus the first shuffle phase overlaps with the entire map stage. After the shuf-
fle/sort phase is done, the reduce computation can be performed and the generated data

1 Note, that for multiple map and reduce waves, there is an extra overhead for starting map
and reduce tasks. In our ongoing work, we design a set of micro-benchmarks to automatically
assess these overheads in different MapReduce environments for incorporating them in the
performance model.
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written back to HDFS. After that, the released reduce slots become available to the next
reduce tasks. As shown in Figure 3, there is a drastic difference between the execution
of the first reduce wave, but the executions of the remaining reduce waves bear a strong
resemblance to each other.

Figures 2 and 4 present our second example with WikiTrends application. In this
example, we process a subset of logs collected during a few days in April, 2011. There
are 71 files in the set that correspond to 71 map tasks and 64 reduce tasks in this
application. First, we execute WikiTrends with 64 map and 64 reduce slots. The job
execution consists of two map waves (�71/64�) and a single reduce wave as shown in
Figure 2. The second map wave processes only 7 map tasks. However, the shuffle phase
of the reduce stage can be completed only when all the map tasks are done, and overlaps
with both preceding map waves. Figure 4 shows the WikiTrends execution with 16 map
and 16 reduce slots. The job execution has 5 map and 4 reduce waves. Again, we can see
a striking difference between the first reduce wave and the remaining 3 reduce waves
(which resemble each other).

As observed from Figures 1- 4, it is difficult to predict the completion time of the
same job when different amount of resources are given to the job. Traditionally, a simple
rule of thumb states [3], that if T is a completion time of a MapReduce job with X map
and Y reduce slots then by using a smaller Hadoop cluster with X/2 map and Y/2
reduce slots the same job will be processed twice as slow, i.e., in 2 ·T . While it is clear,
that the job execution time is a function of allocated resources, the scaling rules are
more complex, and the simple example with WikiTrends shows this. The completion
time of WikiTrends in 64x64 configuration is approx. 200 sec. However, the completion
time of WikiTrends in 16x16 configuration (4 times smaller cluster) is approx. 570 sec,
which is far less than 4 times (naively expected) completion time increase. Evidently,
more elaborate modeling and job profiling techniques are needed to capture the unique
characteristics of MapReduce applications and to predict their completion time.

3.2 Job Performance Invariants as a Job Profile

Our goal is to create a compact job profile comprising of performance invariants that are
independent of the amount of resources assigned to the job over time and that reflects
all phases of a given job: map, shuffle/sort, and reduce phases. Metrics and timing of
different phases, that we use below, can be obtained from the counters at the job master
during the job’s execution or parsed from the logs.

Map Stage: The map stage consists of a number of map tasks. To compactly character-
ize the distribution of the map task durations and other invariant properties, we extract
the following metrics:

(Mmin, Mavg, Mmax, AvgSizeinput
M , SelectivityM), where

– Mmin – the minimum map task duration. Since the shuffle phase starts when the
first map task completes, we use Mmin as an estimate for the beginning of the
shuffle phase.

– Mavg – the average duration of map tasks to summarize the duration of a map wave.
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– Mmax – the maximum duration of the map tasks2. Since the shuffle phase can finish
only when the entire map stage completes, i.e. all the map tasks complete, Mmax

is an estimate for a worst map wave completion time.
– AvgSizeinput

M - the average amount of input data for the map task. We use it to
estimate the number of map tasks to be spawned for processing a new dataset.

– SelectivityM – the ratio of the map output size to the map input size. It is used to
estimate the amount of intermediate data produced by the map stage as input to the
reduce stage.

Reduce Stage: As described earlier, the reduce stage consists of the shuffle/sort and
reduce phases. The shuffle phase begins only after the first map task has completed.
The shuffle phase (of any reduce wave) completes when the entire map stage is com-
plete and all the intermediate data generated by the map tasks has been shuffled to
the reduce tasks and has been sorted. After shuffle/sort completes, the reduce phase is
performed. Thus the profiles of shuffle and reduce phases are represented by the average
and maximum of their tasks durations. In addition, for the reduce phase, we compute the
reduce selectivity, denoted as SelectivityR, which is defined as the ratio of the reduce
output size to its input.

The shuffle phase of the first reduce wave may be significantly different from the
shuffle phase that belongs to the next reduce waves (illustrated in Figure 3, 4). This
happens because the shuffle phase of the first reduce wave overlaps with the entire
map stage and depends on the number of map waves and their durations. Therefore,
we collect two sets of measurements: (Sh1

avg, Sh1
max) for shuffle phase of the first

reduce wave (called, first shuffle) and (Shtyp
avg, Shtyp

max) for shuffle phase of the other
waves (called, typical shuffle). Since we are looking for performance invariants that are
independent of the amount of allocated resources to the job, we characterize shuffle
phase of the first reduce wave in a special way and include only the non-overlapping
portions of the first shuffle in (Sh1

avg and Sh1
max). Thus the job profile in the shuffle

phase is characterized by two pairs of measurements: (Sh1
avg, Sh1

max, Shtyp
avg, Shtyp

max).
The reduce phase begins only after the shuffle phase is complete. The profile of the

reduce phase is represented by the average and maximum of the reduce tasks durations
and the reduce selectivity, denoted as SelectivityR, which is defined as the ratio of the
reduce output size to its input: (Ravg, Rmax, SelectivityR).

The extracted job profile is independent of the scheduler that is used for executing
the jobs: the job profile metrics represent the task durations and the amount of processed
data. The collected job profile is “scheduler-agnostic”.

4 MapReduce Performance Model

In this section, we design a MapReduce performance model that is based on i) the job
profile and ii) the performance bounds of completion time of different job phases. This
model can be used for predicting the job completion time as a function of the input
dataset size and allocated resources.

2 To avoid outliers and improve the robustness of the measured maximum durations, one can
use the mean of a few top values instead of the maximum alone.
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4.1 General Theoretical Bounds

First, we establish the performance bounds for a makespan (completion time) of a given
set of n tasks that is processed by k servers (or by k slots in MapReduce environments).

Let T1, T2, . . . , Tn be the duration of n tasks of a given job. Let k be the number
of slots that can each execute one task at a time. The assignment of tasks to slots is
done using a simple, online, greedy algorithm, i.e., assign each task to the slot with the
earliest finishing time.

Let avg = (
∑n

i=1 Ti)/n and max = maxi {Ti} be the average and maximum
durations of the n tasks respectively.

Makespan Theorem: The makespan of the greedy task assignment is at least n· avg /k
and at most (n− 1) · avg/k + max.

The lower bound is trivial, as the best case is when all n tasks are equally distributed
among the k slots (or the overall amount of work n ·avg is processed as fast as possible
by k slots). Thus, the overall makespan is at least n · avg/k.

For the upper bound, let us consider the worst case scenario, i.e., the longest task
T̂ ∈ {T1, T2, . . . , Tn}with duration max is the last processed task. In this case, the time
elapsed before the final task T̂ is scheduled is at most the following: (

∑n−1
i=1 Ti)/k ≤

(n − 1) · avg/k. Thus, the makespan of the overall assignment is at most (n − 1) ·
avg/k + max. 3 �

These bounds are particularly useful when max � n ·avg/k, i.e., when the duration
of the longest task is small as compared to the total makespan. The difference between
lower and upper bounds represents the range of possible job completion times due to
non-determinism and scheduling.

4.2 Bounds-Based Completion Time Estimates of a MapReduce Job

Let us consider job J with a given profile extracted from the past job executions.
Let J be executed with a new dataset that is partitioned into NJ

M map tasks and NJ
R

reduce tasks. Let SJ
M and SJ

R be the number of map and reduce slots allocated to job J
respectively.

Let Mavg and Mmax be the average and maximum durations of map tasks (defined
by the job J profile). Then, by Makespan Theorem, the lower and upper bounds on the
duration of the entire map stage (denoted as T low

M and T up
M respectively) are estimated

as follows:
T low

M = NJ
M ·Mavg/SJ

M (1)

T up
M = (NJ

M − 1) ·Mavg/SJ
M + Mmax (2)

The reduce stage consists of shuffle (which includes the interleaved sort phase) and
reduce phases. Similarly, Makespan Theorem can be directly applied to compute the
lower and upper bounds of completion times for reduce phase (T low

R , T up
R ) since we

have measurements for average and maximum task durations in the reduce phase, the
numbers of reduce tasks NJ

R and allocated reduce slots SJ
R. 4

3 Similar ideas were explored in the classic papers on scheduling, e.g., to characterize makespan
bounds in [4].

4 For simplicity of explanation, we omit the normalization step of measured durations in job
profile with respect to AvgSizeinput

M and SelectivityM . We will discuss it next in Section 4.3.
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The subtlety lies in estimating the duration of the shuffle phase. We distinguish the
non-overlapping portion of the first shuffle and the task durations in the typical shuffle
(see Section 3 for definitions). The portion of the typical shuffle phase in the remaining
reduce waves is computed as follows:

T low
Sh =

(
NJ

R

SJ
R

− 1
)
· Shtyp

avg (3)

T up
Sh =

(
NJ

R−1

SJ
R

− 1
)
· Shtyp

avg + Shtyp
max (4)

Finally, we can put together the formulae for the lower and upper bounds of the overall
completion time of job J :

T low
J = T low

M + Sh1
avg + T low

Sh + T low
R (5)

T up
J = T up

M + Sh1
max + T up

Sh + T up
R (6)

Note that we can re-write Eq. 5 for T low
J by replacing its parts with more detailed Eq. 1

and Eq. 3 and similar equations for sort and reduce phases as it is shown below:

T low
J = NJ

M ·Mavg

SJ
M

+
NJ

R·(Shtyp
avg+Ravg)

SJ
R

+ Sh1
avg−Shtyp

avg (7)

This presentation allows us to express the estimates for completion time in a simplified
form shown below:

T low
J = Alow

J · NJ
M

SJ
M

+ Blow
J · NJ

R

SJ
R

+ Clow
J , (8)

where Alow
J = Mavg, Blow

J = (Shtyp
avg + Ravg), and Clow

J = Sh1
avg − Shtyp

avg . Eq. 8 pro-
vides an explicit expression of a job completion time as a function of map and reduce
slots allocated to job J for processing its map and reduce tasks, i.e., as a function of
(NJ

M , NJ
R) and (SJ

M , SJ
R). The equation for T up

J can be written similarly.

4.3 Scaling Factors

In the previous section, we showed how to extract the job profile and use it for predicting
job completion time when different amounts of resources are used. When the job is
executed on a larger dataset the number of map tasks and reduce tasks may be scaled
proportionally if the application structure allows it. In some cases, the number of reduce
tasks is statically defined, e.g., 24 hours a day, or the number of categories (topics) in
Wikipedia, etc. When the job is executed on a larger dataset while the number of reduce
tasks is kept constant, the durations of the reduce tasks naturally increase as the size of
the intermediate data processed by each reduce task increases. The duration of the map
tasks is not impacted because this larger dataset is split into a larger number of map
tasks but each map task processes a similar portion of data. The natural attempt might
be to derive a single scaling factor for reduce task duration as a function of the amount
of processed data, and then use it for the shuffle and reduce phase duration scaling as
well. However, this might lead to inaccurate results. The reason is that the shuffle phase
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performs data transfer and its duration is mainly defined by the network performance.
The reduce phase duration is defined by the application specific computation of the
user supplied reduce function and significantly depends on the disk write performance.
Thus, the duration scaling in these phases might be different. Consequently, we derive
two scaling factors for shuffle and reduce phases separately, each one as a function of
the processed dataset size.

Therefore in the staging environment, we perform a set of k experiments (i =
1, 2, ..., k) with a given MapReduce job for processing different size input datasets
(while keeping the number of reduce tasks constant), and collect the job profile mea-
surements. We derive scaling factors with linear regression in the following way. Let
Di be the amount of intermediate data for processing per reduce task. Note that we can
always estimate this amount of intermediate data from the average amount of input data
per map task, the number of job map and reduce tasks, and the selectivity metric in
the job profile. Let Shtyp

i,avg and Ri,avg be the job profile measurements for shuffle and
reduce phases respectively. Then, using linear regression, we solve the following sets
of equations:

CSh
0 + CSh

1 ·Di = Shtyp
i,avg, (i = 1, 2, · · · , k) (9)

CR
0 + CR

1 ·Di = Ri,avg, (i = 1, 2, · · · , k) (10)

Derived scaling factors (CSh
0 , CSh

1 ) for shuffle phase and (CR
0 , CR

1 ) for reduce phase
are incorporated in the job profile. When job J processes an input dataset that leads to
a different amount of intermediate data Dnew per reduce task, its profile is updated as
Shtyp

avg = CSh
0 + CSh

1 · Dnew and Ravg = CR
0 + CR

1 · Dnew. Similar scaling factors
can be derived for maximum durations Shtyp

max and Rmax as well as for the first shuf-
fle phase measurements. The proposed scaling factors support a general MapReduce
performance model where the ratio of map to reduce tasks in the job can vary (or be
changed) for different job executions.

For jobs that are routinely executed in the production cluster on new datasets, scaling
factors may be derived in an on-line fashion by using the same method described above.

4.4 Impact of Failures on the Completion Time Bounds

The performance implications of failures depend on the type of failures (discussed in
Section 2). For example, disk failures are typical, but their performance implications
depend on the amount of data that needs to be reconstructed: for each data block with
a number of copies less than the default replication level, Hadoop will reconstruct
the additional copies. In this work, we consider a worker failure – another typical
type of failure which has direct performance implications for a MapReduce job. If the
failure happens while the job was running, the failed worker might have completed
or in-progress map tasks. All of these map tasks need to be recomputed, since the
intermediate data generated by these tasks might be unavailable to current or future
reduce tasks. The same applies to the reduce tasks which were in progress on the failed
worker: they need to be restarted on a different node. There are reported cases of up
to 50% job completion time increase when a single worker failure happens during the
reduce stage [5]. The application designer might be interested in evaluating worst case
scenarios and deciding on the necessity of additional resources or program changes
(e.g., accepting the partial results) as a means of coping with potential failure scenarios.
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In order to understand the performance impact of a worker failure on job comple-
tion time, we need to consider not only when the failure happened, but also whether
additional resources in the system can be allocated to the job to compensate for the
failed worker. For example, if a worker failure happens in the very beginning of the map
stage and the resources of the failed worker are immediately replenished with additional
ones, then the lower and upper bounds of job completion time remain practically the
same. However, if the failed worker resources are not replenished then the performance
bounds are higher. On the other hand, if a worker failure happens during the job’s last
wave of reduce tasks then all the completed map tasks that reside on the failed node as
well as the reduce tasks that were in-progress on this node have to be re-executed, and
even if the resources of the failed node are immediately replenished there are serious
performance implications of this failure so late during the job execution. The latency
for recomputing the map and reduce tasks of the failed node can not be hidden: this
computation time is explicitly on the critical path of the job execution and is equivalent
of adding entire map and reduce stage latency: Mmax + Shtyp

max + Rmax.
Given the time of failure tf , we need to quantify the failure impact on the job comple-

tion time bounds. Let us consider job J with a given profile, which is partitioned into
NJ

M map tasks and NJ
R reduce tasks. Let the worker failure happen at some point of

time tf . There are two possibilities for the job J execution status at the time of failure,
it is either in the map or the reduce stage. Using the job profile metrics, we can analyze
whether the failure happened during the map or reduce stage. We can do it by estimating
the completion time of the map stage (using low or upper bounds of a completion time,
or its average). For example, if tf ≤ T low

M then the failure happened during the map
stage, otherwise the map stage has been completed and the failure occurred during the
job reduce stage. For both scenarios, we need to approximate the number of map and
reduce tasks yet to be completed.

– Case (1): Let us assume that the job execution is in the map stage at time tf (i.e.,
tf ≤ T low

M ). In order to determine the number of map tasks yet to be processed,
we approximate the number of completed (NJ

Mdone
) and failed (NJ

Mfail
) tasks as

follows:

NJ
Mdone

·Mavg/SJ
M = tf =⇒ NJ

Mdone
= �tf · SJ

M/Mavg�

If there are W worker nodes in the Hadoop cluster for job J processing and one of
them fails, then the number of failed map tasks is:

NJ
Mfail

= �NJ
Mdone

/W �

Thus, the number of map and reduce tasks yet to be processed at time tf (denoted
as NJ

M,tf
and NJ

R,tf
) are determined as follows:

NJ
M,tf

= NJ
M −NJ

Mdone
+ NJ

Mfail
and NJ

R,tf
= NJ

R

– Case (2): Let us now assume that the map stage is complete, and the job execution is
in the reduce stage at time tf , tf ≥ T low

M and all the map tasks NJ
M are completed.

The number of completed reduce tasks NJ
Rdone

at time tf can be evaluated using
Eq. 8:

Blow
J · NJ

Rdone

SJ
R

= tf − Clow
J − Alow

J · NJ
M

SJ
M
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Then the number of failed map and reduce tasks can be approximated as:

NJ
Mfail

= �NJ
M/W � and NJ

Rfail
= �NJ

Rdone
/W �

The remaining map and reduce tasks of job J yet to be processed at time tf are
determined as follows:

NJ
M,tf

= NJ
Mfail

and NJ
R,tf

= NJ
R −NJ

Rdone
+ NJ

Rfail

Let SJ
M,tf

and SJ
R,tf

be the number of map and reduce slots allocated to job J after the
node failure. If the failed resources are not replenished, then the number of map and
reduce slots is correspondingly decreased. The number of map and reduce tasks yet to
be processed are NJ

M,tf
and NJ

R,tf
as shown above. Then the performance bounds on

the processing time of these tasks can be computed using Eq. 5 and Eq. 6 introduced in
Section 4.2. The worker failure is detected only after time δ depending on the value of
the heart beat interval. Hence, the time bounds are also increased by δ.

This model is easily extensible to estimate the impact of multiple failures.

4.5 SLO-Based Resource Provisioning

When users plan the execution of their MapReduce applications, they often have some
service level objectives (SLOs) that the job should complete within time T . In order
to support the job SLOs, we need to be able to answer a complementary performance
question: given a MapReduce job J with input dataset D, how many map and reduce
slots need to be allocated to this job so that it finishes within T ?

We observe a monotonicity property for MapReduce environments. Let job J com-
plete within time T when we allocate some number of map and reduce slots respec-
tively. Clearly, by allocating a higher number of map and reduce slots to a job (i.e.,
M̂ ), one can only decrease the job completion time. In the light of this monotonicity
property, we reformulate the problem as follows. Given a MapReduce job J with input
dataset D identify minimal combinations (SJ

M , SJ
R) of map and reduce slots that can be

allocated to job J so that it finishes within time T ? We consider three design choices
for answering this question:

1) T is targeted as a lower bound of the job completion time. Typically, this leads
to the least amount of resources allocated to the job for finishing within deadline T .
The lower bound corresponds to an ideal computation under allocated resources and is
rarely achievable in real environments.

2) T is targeted as an upper bound of the job completion time. Typically, this leads to
a more aggressive resource allocations and might lead to a job completion time that is
much smaller than T because worst case scenarios are also rare in production settings.

3) Given time T is targeted as the average between lower and upper bounds on job
completion time. This more balanced resource allocation might provide a solution that
enables the job to complete within time T .
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Algorithm 1 finds the minimal combinations of map/reduce slots (SJ
M , SJ

R) for one of
design choices above, e.g., when T is targeted as a lower bound of the job completion
time. The algorithm sweeps through the entire range of map slot allocations and finds
the corresponding values of reduce slots that are needed to complete the job within
time T using a variation of Eq. 8 introduced in Section 4.2. The other cases when T is
targeted as the upper bound and the average bound are handled similarly.

Algorithm 1. Resource Allocation Algorithm

Input:
Job profile of J
(NJ

M , NJ
R) ← Number of map and reduce tasks of J

(SM , SR) ← Total number of map and reduce slots in the cluster
T ← Deadline by which job must be completed

Output: P ← Set of plausible resource allocations (SJ
M , SJ

R)

for SJ
M ← MIN(NJ

M , SM ) to 1 do

Solve the equation Alow
J ·NJ

M

SJ
M

+
Blow

J ·NJ
R

SJ
R

= T − Clow
J for SJ

R

if 0 < SJ
R ≤ SR then

P ← P ∪ (SJ
M , SJ

R)
else

// Job cannot be completed within deadline T
// with the allocated map slots
Break out of the loop

end if
end for

Note, that the complexity of the proposed Algorithm 1 is O(min(NJ
M , Sm)) and

thus linear in the number of map slots.

5 Evaluation

We perform our experiments on 66 HP DL145 GL3 machines. Each machine has four
AMD 2.39MHz cores, 8 GB RAM and two 160GB hard disks (7200rpm SATA). The
machines are set up in two racks. The 1Gb network interfaces of the machines in the
same rack are connected to a Gigabit Procurve 2650 switch. The racks are intercon-
nected using a ProCurve 2900 switch. We use Hadoop 0.20.2 with two machines as
job master and the DFS master. The remaining 64 machines are used as worker nodes,
each configured with a single map and reduce slot. The blocksize of the file system
is set to 64MB and the replication level is set to 3. We disabled speculation in all our
experiments as it did not lead to any significant improvements.

In order to validate our model, we use four representative MapReduce applications:

1. Twitter: This application uses the 25GB twitter dataset created by Kwak et. al. [6]
containing an edge-list of twitter userids. Each edge (i, j) means that user i fol-
lows user j. The Twitter application counts the number of asymmetric links in the
dataset, that is, (i, j) ∈ E, but (j, i) /∈ E.
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2. Sort: The Sort application sorts 64GB of random data generated using random text
writer in GridMix25. It uses identity map and reduce tasks, since the framework
performs the actual sorting.

3. WikiTrends: We use the data from Trending Topics (TT)6: Wikipedia article traffic
logs that were collected (and compressed) every hour in the months of April to
August 2010. Our MapReduce application counts the number of times each article
has been visited according to the given input dataset, which is very similar to the
job that is run periodically by TT.

4. WordCount: It counts the word frequencies in 27 GB of Wikipedia article text
corpus. The map task tokenizes each line into words, while the reduce task counts
the occurrence of each word.

5.1 Performance Invariants

In our first set of experiments, we aim to validate whether the metrics, that we chose for
the inclusion in the job profile, indeed represent performance invariants across different
executions of the job on the same input dataset. To this end, we execute our MapReduce
jobs on the same datasets and the same Hadoop cluster but with a variable number of
map and reduce slots: i) 64 map and 32 reduce slots, ii) 16 map and 16 reduce slots.
The collected job profile metrics are summarized in Table 1. The average input size
for WikiTrends is 59.15MB and 64MB for the other applications. We observe that the
average duration metrics are within 10% of each other. The maximum durations show
slightly higher variance. Each experiment is performed 10 times, and again, collected
metrics exhibit less than 10% variation. From these measurements, we conclude that
job profile indeed accurately captures application behavior characteristics and reflect
the job performance invariants.

Table 1. Job profiles of the four MapReduce applications

Job Map Reduce Map Task duration (s) Map 1st Shuffle (s) Typ. Shuffle (s) Reduce (s) Reduce
slots slots Min Avg Max Selectivity Avg Max Avg Max Avg Max Selectivity

Twitter 64 32 26 30 42 3.24 8 11 37 40 22 44 3.2 × 10−8

16 16 26 29 43 3.24 7 10 37 41 21 41 3.2 × 10−8

Sort 64 32 2 5 16 1.00 7 13 30 50 53 75 1.00
16 16 2 4 14 1.00 8 11 30 51 54 73 1.00

WordCount 64 32 5 34 40 1.31 8 11 24 30 11 14 0.46
16 16 5 34 41 1.31 7 10 23 28 10 14 0.46

WikiTrends 64 32 66 99 120 9.98 13 27 115 142 26 34 0.37
16 16 65 98 121 9.98 14 27 113 144 26 32 0.37

5.2 Scaling Factors

We execute WikiTrends and WordCount applications on gradually increasing datasets
with a fixed number of reduce tasks for each application. Our intent is to measure the
trend of the shuffle and reduce phase durations (average and maximum) and validate
the linear regression approach proposed in Section 4.3. The following table below gives
the details of the experiments and the resulting co-efficients of linear regression, i.e.,
scaling factors of shuffle and reduce phase durations derived for these applications.

5 http://hadoop.apache.org/mapreduce/docs/current/gridmix.html
6 http://trendingtopics.org

http://hadoop.apache.org/mapreduce/docs/current/gridmix.html
http://trendingtopics.org
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Parameters WikiTrends WordCount
Size of input dataset 4.3GB to 70GB 4.3GB to 43GB
Number of map tasks 70 to 1120 70 to 700

Number of reduce tasks 64 64
Number of map, reduce slots 64, 32 64, 32

CSh
0,avg , CSh

1,avg 16.08, 2.44 6.92, 0.66

CSh
0,max, CSh

1,max 10.75, 2.29 11.28, 0.71

CR
0,avg , CR

1,avg 11.45, 0.56 4.09, 0.22
CR

0,max, CR
1,max 7.96, 0.43 7.26, 0.24

Figure 5 shows that the trends are indeed linear for WikiTrends and WordCount.
While we show multiple points in Fig. 5, typically, at least two points are needed for
deriving the scaling factors. The accuracy will improve with accumulated job execution
points. Note that the lines do not pass through the origin and hence the durations are
not directly proportional to the dataset size. We observe similar results for Twitter and
Sort applications but do not include them in the paper due to lack of space.
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Fig. 5. Linear scaling of shuffle and reduce durations for WikiTrends and WordCount

5.3 Performance Bounds of Job Completion Times

In section 4, we designed performance bounds that can be used for estimating the com-
pletion time of MapReduce application with a given job profile. The expectations are
that the job profile can be built using a set of job executions for processing small size
input datasets, and then this job profile can be used for predicting the completion time of
the same application processing a larger input dataset. Therefore, in these experiments,
first, the job profiles are built using the three trials on small datasets (e.g., 4.3, 8.7
and 13.1 GB for WordCount) with different numbers of map and reduce slots. After
that, by applying linear regression to the extracted job profiles from these runs, we
determine the scaling factors for shuffle and reduce phases of our MapReduce jobs. The
derived scaling factors are used to represent the job performance characteristics and to
extrapolate the duration of the shuffle and reduce phases when the same applications
are used for processing larger input datasets with parameters shown in the following
table:
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Parameters Twitter Sort WikiTrends WordCount
# of map tasks 370 1024 168 425

# of reduce tasks 64 64 64 64
# of map slots 64 64 64 64

# of reduce slots 16 32 8 8

Finally, by using the updated job profiles and applying the formulae described in
Section 4, we predict the job completion times.

The results of these experiments are shown in Figure 6. We observe that our model
accurately bounds the measured job completion time, and if we use for prediction the
average of lower and upper bounds (denoted T avg

J ) then the relative error between T avg
J

and the measured job completion time is less than 10% in all cases. The predicted upper
bound on the job completion time T up

J can be used for ensuring SLOs.
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Fig. 6. Comparison of predicted and measured job completion times

The solid fill color within the bars in Figure 6 represent the reduce stage duration,
while the pattern portion reflects the duration of the map stage. For Sort and WordCount,
bounds derived from the profile provide a good estimate for map and reduce stage
durations. For WikiTrends, we observe a higher error in the estimation of the durations,
mostly, due to the difference in processing of the unequal compressed files as inputs.
For Twitter, we observe that even though the predicted minimum and maximum are
farther apart because of the difference in average and maximum durations of it phases,
the average of the two bounds would provide a good estimate of the measured duration.

The power of the proposed approach is that it offers a compact job profile that can
be derived from past executions (while processing smaller dataset) and then used for
completion time prediction of the job on a large input dataset while also using different
amount of resources assigned to the job.

5.4 SLO-Based Resource Provisioning

In this section, we perform experiments to validate the accuracy of the SLO-based
resource provisioning model introduced in Section 4.5. It operates over the following
inputs i) a job profile built in the staging environment using smaller datasets, ii) the
targeted amount of input data for processing, iii) the required job completion time. We
aim to evaluate the accuracy of resource allocations recommended by the model for
completing the job within a given deadline.

Figure 7 shows a variety of plausible solutions (the outcome of the SLO-based
model) for WordCount, WikiTrends and Twitter with a given deadline D= 8, 9, and
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8 minutes respectively. The X and Y axes of the graph show the number of map and
reduce slots respectively that need to be allocated in order to meet the job’s deadline.
Figure 7 presents three curves that correspond to three possible design choices for
computing the required map/reduce slots as discussed in Section 4.5: when the given
time T is targeted as the lower bound, upper bound, or the average of the lower and
upper bounds. As expected, the recommendation based on the upper bound (worst case
scenario) suggests more aggressive resource allocations with a higher number of map
and reduce slots as compared to the resource allocation based on the lower bound.
The difference in resource allocation is influenced by the difference between the lower
and upper bounds. For example, WordCount has very tight bounds which lead to more
similar resource allocations based on them. For Twitter, the difference between the
lower and upper bounds of completion time estimates is wider, which leads to a larger
difference in the resource allocation options.
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Fig. 7. Different allocation curves based on bounds for different deadlines
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Fig. 8. Do we meet deadlines using the bounds?

Next, we perform a set of experiments with the applications on our 66-node Hadoop
cluster. We sample each curve in Figure 7, and execute the applications with recom-
mended allocations of map and reduce slots in our Hadoop cluster to measure the actual
job completion times. Figure 8 summarizes the results of these experiments. If we base
our resource computation on the lower bound of completion time, it corresponds to the
“ideal” scenario. The model based on lower bounds suggests insufficient resource allo-
cations: almost all the job executions with these allocations have missed their deadline.
The closest results are obtained if we use the model that is based on the average of
lower and upper bounds of completion time. However, in many cases, the measured
completion time can exceed a given deadline (by 2-7%). If we base our computation
on the upper bounds of completion time, the model over provisions resources. While
all the job executions meet their deadline, the measured job completion times are lower
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than the target SLO, sometimes by as much as 40%. The resource allocation choice
will depend on the user goals and his requirements on how close to a given SLO the job
completion time should be. The user considerations might also take into account the
service provider charging schema to evaluate the resource allocation alternatives on the
curves shown in Figure 7.

5.5 Prediction of Job Completion Time with Failures

In this section, we validate the model for predicting the job completion time with fail-
ures introduced in Section 4.4. For this experiment, we set the heartbeat interval to 3s. If
a heartbeat is not received in the last 20s, the worker node is assumed to have failed. We
use the WikiTrends application which consists of 720 map and 120 reduce tasks. The
application is allocated 60 map and 60 reduce slots. The WikiTrends execution with
given resources takes t = 1405s to complete under normal circumstances. Figure 9
shows a set of two horizontal lines that correspond to lower and upper bounds of the
job completion time under normal case.

Then, using the model with failures introduced in Section 4.4, we compute the lower
and upper bounds for job completion time when a failure happens at time tf (time is
represented by X-axes). The model considers two different scenarios: when resources of
the failed node are 1) replenished and 2) not replenished. These scenarios are reflected
in Figure 9 (a) and (b) respectively. Figure 9 shows the predicted lower and upper
bounds (using the model with failures) along with the measured job completion time
when the worker process is killed at different points in the course of the job execution.
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Fig. 9. Model with failures: two cases with replenishable resources and non-replenishable failed
resources

The shape of the lines (lower and upper bounds) for job completion time with failures
is quite interesting. While the completion time with failures increases compared to the
regular case, but this increase is practically constant until approximately t = 1200s.
The map stage completes at t = 1220(±10)s. So, the node failure during the map stage
has a relatively mild impact on the overall completion time, especially when the failed
resources are replenished. However, if the failure happens in the reduce stage (especially
towards the end of the job processing) then it has a more significant impact on the
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job completion time even if the failed node resources are replenished. Note that the
measured job completion time with failures stays within predicted bounds, and hence
the designed model can help the user to estimate the worst case scenario.

6 Related Work

Originally, MapReduce (and its open source implementation Hadoop) was designed
for periodically running large batch workloads. With a primary goal of minimizing the
job makespan the simple FIFO scheduler was very efficient and there was no need for
special resource provisioning since the entire cluster resources could be used by the
submitted job. As the number of users sharing the same MapReduce cluster increased,
a new Capacity scheduler [7] was introduced to support more efficient cluster sharing.
Capacity scheduler partitions the resources into pools and provides separate queues and
priorities for each pool. By enabling partitioning of the cluster resources, the users and
system administrators do need to answer an additional question: how much resources do
the time-sensitive jobs require and how to translate these requirements in the capacity
scheduler settings? This question is still open: there are many research efforts discussed
below that aim to design a MapReduce performance model for resource provisioning
and predicting the job completion time.

In order to maintain fairness between different users, the Hadoop Fair Scheduler
(HFS) [8] allocates equal shares to each of the users running the MapReduce jobs.
It also tries to maximize data locality by delaying the scheduling of the task, if no
local data is available. Similar fairness and data locality goals are pursued in Quincy
scheduler [9] proposed for the Dryad environment [10]. However, both HFS and Quincy
do not provide any special support for achieving the application performance goals and
the service level objectives (SLOs). Dynamic proportional share scheduling [11] allows
users to bid for map and reduce slots by adjusting their spending over time. While this
approach allows dynamically controlled resource allocation, it is driven by economic
mechanisms rather than a performance model and/or application profiling.

FLEX [12] extends HFS by proposing a special slot allocation schema that aims to
optimize explicitly some given scheduling metric. FLEX relies on the speedup function
of the job (for map and reduce stages) that produces the job execution time as a function
of the allocated slots. This function aims to represent the application model, but it is not
clear how to derive this function for different applications and for different sizes of input
datasets. FLEX does not provide a technique for job profiling and detailed MapReduce
performance model, but instead uses a set of simplifying assumptions about the job
execution, tasks durations and job progress over time.

Polo et al. [13] introduce an online job completion time estimator which can be
used for adjusting the resource allocations of different jobs. However, their estimator
tracks the progress of the map stage alone and has no information or control over the
reduce stage. Ganapathi et al. [14] use Kernel Canonical Correlation Analysis to predict
the performance of MapReduce workloads. However, they concentrate on Hive queries
and do not attempt to model the actual execution of the MapReduce job. The authors
discover the feature vectors through statistical correlation.

Morton et al. [15] propose ParaTimer for estimating the progress of parallel queries
expressed as Pig scripts [16] that can translate into directed acyclic graphs (DAGs)
of MapReduce jobs. In their earlier work [17], they designed Parallax – a progress
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estimator that aims to predict the completion time of a limited class of Pig queries
that translate into a sequence of MapReduce jobs. In both papers, instead of a detailed
profiling technique that is designed in our work, the authors rely on earlier debug runs
of the same query for estimating throughput of map and reduce stages on the input
data samples provided by the user. The approach is based on precomputing the ex-
pected schedule of all the tasks, and therefore identifying all the pipelines (sequences
of MapReduce jobs) in the query. The approach relies on a simplistic assumption that
map (reduce) tasks of the same job have the same duration.

Phan et al. [18] aim to build an optimal schedule for a set of MapReduce jobs with
given deadlines. The authors investigate different factors that impact job performance
and its completion time such as ratio of slots to core, the number of concurrent jobs,
data placement, etc. MapReduce jobs with a single map and reduce waves are con-
sidered, and the scheduling problem is formulated as a constraint satisfaction problem
(CSP). There are some other simplifications in MapReduce job processing where the
data transfer (shuffle and sort) is considered as a separate (intermediate) phase between
map and reduce tasks while in reality the shuffle phase overlaps significantly with map
stage. All these assumptions and the CSP complexity issues, make it difficult to extend
the proposed approach for a general case.

Originally, Hadoop was designed for homogeneous environments. There has been
recent interest [19] in heterogeneous MapReduce environments. Our approach and the
proposed scaling technique will efficiently work in heterogeneous MapReduce envi-
ronments. In a heterogeneous cluster, the slower nodes would be reflected in the longer
tasks durations, and they all would contribute to the average and maximum task dura-
tions in the job profile. While we do not explicitly consider different types of nodes,
their performance is reflected in the job profile and used in the future prediction.

In our earlier work, we proposed a framework, called ARIA [20], for a Hadoop
deadline-based scheduler which extracts and utilizes the job profiles from the past exe-
cutions. The shortcoming of the earlier work is that it does not have scaling factors to
adjust the extracted profile and lacks the ability for job profiling on smaller datasets.
Our earlier workshop paper [21] proposed the idea of scaling factors. This work builds
on it providing a detailed evaluation and also models the impact of failures.

Much of the recent work also focuses on anomaly detection, stragglers and outliers
control in MapReduce environments [19, 22–24] as well as on optimization and tuning
cluster parameters and testbed configuration [25, 26]. While this work is orthogonal
to our research, the results are important for performance modeling in MapReduce
environments. Providing more reliable, well performing, balanced environment enables
reproducible results, consistent job executions and supports more accurate performance
modeling and predictions.

7 Conclusion

We have designed a novel framework that aims to enrich private and public clouds offer-
ing with an automated SLO-driven resource sizing and provisioning service in MapRe-
duce environments. While there are several companies that offer Hadoop clusters for
rent, they do not provide additional performance services to answer a set of typical
questions: How much resources the user application needs in order to achieve certain
performance goals and complete data processing by a certain deadline. What is the
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impact of failures on job completion time? To answer these questions, we introduced a
novel automated profiling technique for MapReduce applications by building a compact
but representative job profile in a staging environment. The approach allows executing
a given application on the set of small input datasets. Then by applying a special scaling
technique and designed performance models, one can estimate the resources required
for processing a targeted large dataset while meeting given SLOs. We also designed a
performance model for estimating the impact of failures on MapReduce applications.

We validated the accuracy of our approach and designed performance models using
a set of realistic applications in the 66-node Hadoop cluster. The accuracy of the results
depends on resource contention, especially, the network contention in the production
Hadoop cluster. In our testbed, the network was not a bottleneck, and it led to the
accurate prediction for job completion time. Typically, service providers tend to over
provision network resources to avoid undesirable side effects of network contention. At
the same time, it is an interesting modeling question whether such a network contention
factor can be introduced, measured, and incorporated in the proposed performance
models. Another interesting future work is the resource provisioning of more complex
applications (e.g., Pig queries) that are defined as a composition of MapReduce jobs
and meeting SLO requirements for a given set of MapReduce jobs.
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Abstract. We present a resource-aware scheduling technique for
MapReduce multi-job workloads that aims at improving resource uti-
lization across machines while observing completion time goals. Existing
MapReduce schedulers define a static number of slots to represent the
capacity of a cluster, creating a fixed number of execution slots per ma-
chine. This abstraction works for homogeneous workloads, but fails to
capture the different resource requirements of individual jobs in multi-
user environments. Our technique leverages job profiling information to
dynamically adjust the number of slots on each machine, as well as work-
load placement across them, to maximize the resource utilization of the
cluster. In addition, our technique is guided by user-provided completion
time goals for each job. Source code of our prototype is available at [1].

Keywords: MapReduce, scheduling, resource-awareness, performance
management.

1 Introduction

In recent years, the industry and research community have witnessed an ex-
traordinary growth in research and development of data-analytic technologies.
Pivotal to this phenomenon is the adoption of the MapReduce programming
paradigm [2] and its open-source implementation Hadoop [3].

Pioneer implementations of MapReduce [3] have been designed to provide
overall system goals (e.g., job throughput). Thus, support for user-specified goals
and resource utilization management have been left as secondary considerations
at best. We believe that both capabilities are crucial for the further development
and adoption of large-scale data processing. On one hand, more users wish for
ad-hoc processing in order to perform short-term tasks [4]. Furthermore, in a
Cloud environment users pay for resources used. Therefore, providing consistency
between price and the quality of service obtained is key to the business model
of the Cloud. Resource management, on the other hand, is also important as
Cloud providers are motivated by profit and hence require both high levels of
automation and resource utilization while avoiding bottlenecks.
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The main challenge in enabling resource management in Hadoop clusters
stems from the resource model adopted in MapReduce. Hadoop expresses ca-
pacity as a function of the number of tasks that can run concurrently in the
system. To enable this model the concept of typed-‘slot’ was introduced as the
schedulable unit in the system. ‘Slots’ are bound to a particular type of task,
either reduce or map, and one task of the appropriate type is executed in each
slot. The main drawback of this approach is that slots are fungible across jobs:
a task (of the appropriate type) can execute in any slot, regardless of the job
of which that task forms a part. This loose coupling between scheduling and
resource management limits the opportunity to efficiently control the utiliza-
tion of resources in the system. Providing support for user-specified ‘goals’ in
MapReduce clusters is also challenging, due to high variability induced by the
presence of outlier tasks (tasks that take much longer than other tasks) [5–8].
Solutions to mitigate the detrimental impact of such outliers typically rely on
scheduling techniques such as speculative scheduling [9], and killing and restart-
ing of tasks [5]. These approaches, however, may result in wasted resources and
reduced throughput. More importantly, all existing techniques are based on the
typed-slot model and therefore suffer from the aforementioned limitations.

In this work we present RAS [1], a Resource-aware Adaptive Scheduler for
MapReduce capable of improving resource utilization and which is guided by
completion time goals. In addition, RAS addresses the system administration
issue of configuring the number of slots for each machine, which—as we will
demonstrate—has no single, homogeneous, and static solution for a multi-job
MapReduce cluster.

While existing work focuses on the current typed-slot model—wherein the
number of tasks per worker is fixed throughout the lifetime of the cluster, and
slots can host tasks from any job—our approach offers a novel resource-aware
scheduling technique which advances the state of the art in several ways:

– Extends the abstraction of ‘task slot’ to ‘job slot’. A ‘job slot’ is job specific,
and has an associated resource demand profile for map and reduce tasks.

– Leverages resource profiling information to obtain better utilization of re-
sources and improve application performance.

– Adapts to changes in resource demand by dynamically allocating resources
to jobs.

– Seeks to meet soft-deadlines via a utility-based approach.
– Differentiates between map and reduce tasks when making resource-aware

scheduling decisions.

The structure of the paper is as follows. We give an overview of Hadoop in
Section 2. The scheduler’s design and implementation is described in detail
in Section 3. An evaluation of our prototype in a real cluster is is presented
in Section 4. Finally, we discuss related work in Section 5 and conclude in
Section 6.
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2 MapReduce and Hadoop

The execution of a MapReduce job is divided into a Map phase and a Reduce
phase. In the Map phase, the map tasks of the job are run. Each map task
comprises the execution of the job’s map() function as well as some supporting
actions (for example, data sorting). The data output by each map task is written
into a circular memory buffer—when this buffer reaches a threshold, its content
is sorted by key and flushed to a temporary file. These files are then served
via HTTP to machines running reduce tasks. Reduce tasks are divided into
three sub-phases: shuffle, sort and reduce. The shuffle sub-phase is responsible
for copying the map output from the machines hosting maps to the reducer’s
machine. The sort sub-phase sorts the intermediate data by key. Finally, the
reduce sub-phase, which runs the job’s reduce() function, starts after the keys
destined for the particular reducer have been copied and sorted, and the final
result is then written to the distributed file system.

Hadoop [3] is an open source implementation of MapReduce provided by the
Apache Software Foundation. The Hadoop architecture follows the master/slave
paradigm. It consists of a master machine responsible for coordinating the dis-
tribution of work and execution of jobs, and a set of worker machine responsible
for performing work assigned by the master. The master and slaves roles are
performed by the ‘JobTracker’ and ‘TaskTracker’ processes, respectively. The
singleton JobTracker partitions the input data into ‘input splits’ using a split-
ting method defined by the programmer, populates a local task-queue based on
the number of obtained input splits, and distributes work to the TaskTrackers
that in turn process individual splits. Work units are represented by ‘tasks’ in
this framework. There is one map task for every input split generated by the
JobTracker. The number of reduce tasks is defined by the user. Each TaskTracker
controls the execution of the tasks assigned to its hosting machine.

In Hadoop resources are abstracted into typed slots. A slot is bound to a
particular type of task (map or reduce), but is fungible across jobs. The slot
is the schedulable unit, and as such is the finest granularity at which resources
are managed in the system. The number of slots per TaskTracker determines
the maximum number of concurrent tasks that are allowed to run in the worker
machine. Since the number of slots per machine is fixed for the lifetime of the
machine, existing schedulers implement a task-assignment solver. The default
scheduler in Hadoop, for example, implements the FIFO (First-In First-Out)
scheduling strategy. More recently, the Fair Scheduler [9] assigns jobs to ‘pools’,
and then guarantees a certain minimum number of slots to each pool.

3 Resource-Aware Adaptive Scheduler

The driving principles of RAS are resource awareness and continuous job perfor-
mance management. The former is used to decide task placement on TaskTrack-
ers over time, and is the main object of study of this paper. The latter is used to
estimate the number of tasks to be run in parallel for each job in order to meet
some performance objectives, expressed in RAS in the form of completion time
goals, and was extensively evaluated and validated in [6].
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In order to enable this resource awareness, we introduce the concept of ‘job
slot’. A job slot is an execution slot that is bound to a particular job, and a
particular task type (reduce or map) within that job. This is in contrast to
the traditional approach, wherein a slot is bound only to a task type regardless
of the job. In the rest of the paper we will use the terms ‘job slot’ and ‘slot’
interchangeably. This extension allows for a finer-grained resource model for
MapReduce jobs. Additionally, RAS determines the number of job slots, and
their placement in the cluster, dynamically at run-time. This contrasts sharply
with the traditional approach of requiring the system administrator to statically
and homogeneously configure the slot count and type on a cluster. This eases
the configuration burden and improves the behavior of the MapReduce cluster.

Completion time goals are provided by users at job submission time. These
goals are treated as soft deadlines in RAS as opposed to the strict deadlines
familiar in real-time environments: they simply guide workload management.

3.1 Problem Statement

We are given a set of MapReduce jobs J = {1, . . . , J}, and a set of Task-
Trackers T T = {1, . . . , TT}. We use j and tt to index into the sets of jobs
and TaskTrackers, respectively. With each TaskTracker tt we associate a series
of resources, R = {1, . . . , R}. Each resource of TaskTracker tt has an associ-
ated capacity Ωtt,1, . . . , Ωtt,r. In our work we consider disk bandwidth, memory,
and CPU capacities for each TaskTracker. Note that extending the algorithm to
accommodate for other resources, e.g., storage capacity, is straightforward.

A MapReduce job (j) is composed of a set of tasks, already known at submis-
sion time, that can be divided into map tasks and reduce tasks. Each TaskTracker
tt provides to the cluster a set of job-slots in which tasks can run. Each job-slot
is specific for a particular job, and the scheduler will be responsible for deciding
the number of job-slots to create on each TaskTracker for each job in the system.

Each job j can be associated with a completion time goal, T j
goal, the time at

which the job should be completed. When no completion time goal is provided,
the assumption is that the job needs to be completed at the earliest possible
time. Additionally, with each job we associate a resource consumption profile.
The resource usage profile for a job j consists of a set of average resource demands
Dj = {Γj,1, . . . , Γj,r}. Each resource demand consists of a tuple of values. That
is, there is one value associated for each task type and phase (map, reduce in
shuffle phase, and reduce in reduce phase, including the final sort).

We use symbol P to denote a placement matrix of tasks on TaskTrackers,
where cell Pj,tt represents the number of tasks of job j placed on TaskTracker tt.
For simplicity, we analogously define PM and PR, as the placement matrix of
Map and Reduce tasks. Notice that P = PM +PR. Recall that each task running
in a TaskTracker requires a corresponding slot to be created before the task
execution begins, so hereafter we assume that placing a task in a TaskTracker
implies the creation of an execution slot in that TaskTracker.

Based on the parameters described above, the goal of the scheduler presented
in this paper is to determine the best possible placement of tasks across the
TaskTrackers as to maximize resource utilization in the cluster while observing
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the completion time goal for each job. To achieve this objective, the system will
dynamically manage the number of job-slots each TaskTracker will provision for
each job, and will control the execution of their tasks in each job-slot.

3.2 Architecture

Figure 1 illustrates the architecture and operation of RAS. The system consists of
five components: Placement Algorithm, Job Utility Calculator, Task Scheduler,
Job Status Updater and Job Completion Time Estimator.

Fig. 1. System architecture

Most of the logic behind RAS resides in the JobTracker. We consider a scenario
in which jobs are dynamically submitted by users. Each submission includes both
the job’s completion time goal (if one is provided) and its resource consumption
profile. This information is provided via the job configuration XML file. The Job-
Tracker maintains a list of active jobs and a list of TaskTrackers. For each active
job it stores a descriptor that contains the information provided when the job was
submitted, in addition to state information such as number of pending tasks. For
each TaskTracker (TT ) it stores that TaskTracker’s resource capacity (Ωtt).

For any job j in the system, let sj
pend and rj

pend be the number of map and
reduce tasks pending execution, respectively. Upon completion of a task, the
TaskTracker notifies the Job Status Updater, which triggers an update of
sj

pend and rj
pend in the job descriptor. The Job Status Updater also keeps track

of the average task length observed for every job in the system, which is later
used to estimate the completion time for each job.
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The Job Completion Time Estimator estimates the number of map tasks
that should be allocated concurrently (sj

req) to meet the completion time goal of
each job. To perform this calculation it relies on the completion time goal T j

goal,
the number of pending map tasks (sj

pend), and the observed average task length.
Notice that the scenario we focus on is very dynamic, with jobs entering and
leaving the system unpredictably, so the goal of this component is to provide
estimates of sj

req that guide resource allocation. This component leverages the
techniques already described in [6] and therefore we will not provide further
details in this paper.

The core of RAS is the Placement Control loop, which is composed of the
Placement Algorithm and the Job Utility Calculator. They operate in
control cycles of period T , which is of the order of tens of seconds. The output
of their operation is a new placement matrix P that will be active until the next
control cycle is reached (current time + T ). A short control cycle is necessary
to allow the system to react quickly to new job submissions and changes in the
task length observed for running jobs. In each cycle, the Placement Algorithm
component examines the placement of tasks on TaskTrackers and their resource
allocations, evaluates different candidate placement matrices and proposes the
final output placement to be enforced until next control cycle. The Job Utility
Calculator calculates a utility value for an input placement matrix which is then
used by the Placement Algorithm to choose the best placement choice available.

The Task Scheduler is responsible for enforcing the placement decisions,
and for moving the system smoothly between a placement decision made in the
last cycle to a new decision produced in the most recent cycle. The Task Sched-
uler schedules tasks according to the placement decision made by the Placement
Controller. Whenever a task completes, it is the responsibility of the Task Sched-
uler to select a new task to execute in the freed slot, by providing a task of the
appropriate type from the appropriate job to the given TaskTracker.

In the following sections we will concentrate on the problem solved by the
Placement Algorithm component in a single control cycle.

3.3 Performance Model

To measure the performance of a job given a placement matrix, we define a
utility function that combines the number of map and reduce slots allocated to
the job with its completion time goal and job characteristics. Below we provide
a description of this function.

Given placement matrices PM and PR, we can define the number of map
and reduce slots allocated to a job j as sj

alloc =
∑

tt∈T T PM
j,tt and rj

alloc =∑
tt∈T T PR

j,tt correspondingly.
Based on these parameters and the previous definitions of sj

pend and rj
pend, we

define the utility of a job j given a placement P as:

uj(P ) = uM
j (PM ) + uR

j (PR), where P = PM + PR (1)
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where uM
j is a utility function that denotes increasing satisfaction of a job given

a placement of map tasks, and uR
j is a utility function that shows satisfaction of

a job given a placement of reduce tasks. The definition of both functions is:

uM
j (PM ) =

⎧⎪⎨
⎪⎩

sj
alloc−sj

req

sj
pend−sj

req
sj

alloc ≥ sj
req

log(sj
alloc)

log(sj
req)

− 1 sj
alloc < sj

req

(2)

uR
j (PR) =

log(rj
alloc)

log(rj
pend)

− 1 (3)

Notice that in practice a job will never get more tasks allocated to it than it
has remaining: to reflect this in theory we cap the utility at uj(P ) = 1 for those
cases.
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Fig. 2. Shape of the Utility Function when sj
req = 20, sj

pend = 35, and rj
pend = 10

The definition of u differentiates between two cases: (1) the satisfaction of the
job grows logarithmically from −∞ to 0 if the job has fewer map slots allocated
to it than it requires to meet its completion time goal; and (2) the function grows
linearly between 0 and 1, when sj

alloc = sj
pend and thus all pending map tasks

for this job are allocated a slot in the current control cycle. Notice that uM
j is

a monotonically increasing utility function, with values in the range (−∞, 1].
The intuition behind this function is that a job is unsatisfied (uM

j < 0) when the
number of slots allocated to map tasks is less than the minimum number required
to meet the completion time goal of the job. Furthermore, the logarithmic shape
of the function stresses the fact that it is critical for a job to make progress
and therefore at least one slot must be allocated. A job is no longer unsatisfied
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(uM
j = 0) when the allocation equals the requirement (sj

alloc = sj
req), and its

satisfaction is positive (uM
j > 0) and grows linearly when it gets more slots

allocated than required. The maximum satisfaction occurs when all the pending
tasks are allocated within the current control cycle (sj

alloc = sj
pend). The intuition

behind uR
j is that reduce tasks should start at the earliest possible time, so the

shuffle sub-phase of the job (reducers pulling data produced by map tasks) can
be fully pipelined with execution of map tasks. The logarithmic shape of this
function indicates that any placement that does not run all reducers for a running
job is unsatisfactory. The range of this function is [−1, 0] and, therefore, it is
used to subtract satisfaction of a job that, independently of the placement of
map tasks, has unsatisfied demand for reduce tasks. If all the reduce tasks for a
job are allocated, this function gets value 0 and thus, uj(P ) = uM

j (PM ).
Figure 2 shows the generic shape of the utility function for a job that requires

at least 20 map tasks to be allocated concurrently (sj
req = 20) to meet its com-

pletion time goal, has 35 map tasks (sj
pend = 35) pending to be executed, and

has been configured to run 10 reduce tasks (rj
pend = 10), none of which have

been started yet. On the X axis, a variable number of allocated slots for re-
duce tasks (rj

alloc) is shown. On the Y axis, a variable number of allocated slots
for map tasks (sj

alloc) is shown. Finally, the Z axis shows the resulting utility
value.

3.4 Placement Algorithm and Optimization Objective

Given an application placement matrix P , a utility value can be calculated for
each job in the system. The performance of the system can then be measured as
an ordered vector of job utility values, U . The objective of RAS is to find a new
placement P of jobs on TaskTrackers that maximizes the global objective of the
system, U(P ), which is expressed as follows:

max min
j

uj(P ) (4)

min Ωtt,r −
∑
tt

(
∑

j

Pj,tt) ∗ Γj,r (5)

such that

∀tt∀r (
∑

j

Pj,tt) ∗ Γj,r ≤ Ωtt,r (6)

This optimization problem is a variant of the Class Constrained Multiple-
Knapsack Problem. Since this problem is NP-hard, the scheduler adopts a heuris-
tic inspired by [10], and which is outlined in Algorithm 1. The proposed algorithm
consists of two major steps: placing reduce tasks and placing map tasks.
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Algorithm 1. Placement Algorithm run at each Control Cycle
Inputs P M (job,tt): Placement Matrix of Map tasks, P R(job,tt): Placement Matrix of

Reduce tasks, J : List of Jobs in the System, D: Resource demand profile for each
job, TT : List of TaskTrackers in the System
Γj and Ωtt: Resource demand and capacity for each Job each TaskTracker corre-
spondingly, as used by the auxiliary function room for new job slot
{————————— Place Reducers —————————}

1: for job in J do
2: Sort TT in increasing order of overall number of reduce tasks placed (first cri-

teria), and increasing order of number of reducers job placed (second criteria)

3: for tt in TT do
4: if room for new job slot(job, tt) & rjob

pend > 0 then

5: P R(job, tt) = P R(job, tt) + 1
6: end if
7: end for
8: end for

{————————— Place Mappers —————————}
9: for round = 1. . . rounds do

10: for tt in TT do
11: jobin ← min U(jobin, P ), room for new job slot(jobin, tt),
12: jobout ← max U(jobout, P ), P M (jobout, tt) > 0
13: repeat
14: Pold ← P
15: jobout ← max U(jobout, P ), P (jobout, tt) > 0
16: P M (jobout, tt) = P M (jobout, tt) − 1
17: jobin ← min U(jobin, P ), room for new job slot(jobin, tt)
18: until U(jobout, P ) < U(jobin, Pold)
19: P ← Pold

20: repeat
21: jobin ← min U(jobin, P ), room for new job slot(jobin, tt)
22: P M (jobin, tt) = P M (jobin, tt) + 1
23: until � ∃job such that room for new job slot(job, tt)
24: end for
25: end for
26: if map phase of a job is about to complete in this control cycle then
27: switch profile of placed reducers from shuffle to reduce and wait for Task Sched-

uler to drive the transition.
28: end if

Reduce tasks are placed first to allow them to be evenly distributed across
TaskTrackers. By doing this we allow reduce tasks to better multiplex network
resources when pulling intermediate data and also enable better storage usage.
The placement algorithm distributes reduce tasks evenly across TaskTrackers
while avoiding collocating any two reduce tasks. If this is not feasible—due to
the total number of tasks—it then gives preference to avoiding collocating re-
duce tasks from the same job. Recall that in contrast to other existing sched-
ulers, RAS dynamically adjusts the number of map and reduce tasks allocated
per TaskTracker while respecting its resource constraints. Notice also that when
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reduce tasks are placed first, they start running in shuffle phase, so that their
demand of resources is directly proportional to the number of map tasks placed
for the same job. Therefore, in the absence of map tasks for the same job, a
reduce task in shuffle phase only consumes memory. It therefore follows that the
system is unlikely to be fully booked by reduce tasks1.

The second step is placing map tasks. This stage of the algorithm is utility-
driven and seeks to produce a placement matrix that balances satisfaction across
jobs while treating all jobs fairly. This is achieved by maximizing the lowest util-
ity value in the system. This part of the algorithm executes a series of rounds,
each of which tries to improve the lowest utility of the system. In each round,
the algorithm removes allocated tasks from jobs with the highest utility, and
allocates more tasks to the jobs with the lowest utility. For the sake of fair-
ness, a task gets de-allocated only if the utility of its corresponding job remains
higher than the lowest utility of any other job in the system. This results in
increasing the lowest utility value across jobs in every round. The loop stops
after a maximum number of rounds has reached, or until the system utility no
longer improves. This process allows for satisfying the optimization objective
introduced in Equation 4.

Recall that RAS is resource-aware and hence all decisions to remove and place
tasks are made considering the resource constraints and demands in the system.
Furthermore, in order to improve system utilization it greedily places as many
tasks as resources allow. This management technique is novel and allows for
satisfying the optimization objective introduced in Equation 5.

The final step of the algorithm is to identify if any running jobs will complete
their map phase during the current control cycle. This transition is important
because it implies that reduce tasks for those jobs will start the reduce phase.
Therefore, the algorithm has to switch the resource demand profile for the reduce
tasks from ‘shuffle’ to ‘reduce’. Notice that this change could overload some
TaskTrackers in the event that the ‘reduce’ phase of the reduce tasks uses more
resources than the ‘shuffle’ phase. RAS handles this by having the Task Scheduler
drive the placement transition between control cycles, and provides overload
protection to the TaskTrackers.

3.5 Task Scheduler

The Task Scheduler drives transitions between placements while ensuring that
the actual demand of resources for the set of tasks running in a TaskTracker
does not exceed its capacity. The placement algorithm generates new place-
ments, but these are not immediately enforced as they may overload the system
due to tasks still running from the previous control cycle. The Task Scheduler
component takes care of transitioning without overloading any TaskTrackers in
the system by picking jobs to assign to the TaskTracker that do not exceed
its current capacity, sorted by lowest utility first. For instance, a TaskTracker

1 We present our thoughts on how to handle the pathological case wherein the number
of reduce tasks is so large that there is not enough memory for deploying more tasks
in Section 6.
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that is running 2 map tasks of job A may have a different assignment for the
next cycle, say, 4 map tasks of job B. Instead of starting the new tasks right
away while the previous ones are still running, new tasks will only start run-
ning as previous tasks complete and enough resources are freed. Recall that
the scheduler is adaptive as it continuously monitors the progress of jobs and
their average task length, so that any divergence between the placement matrix
produced by the algorithm and the actual placement of tasks enforced by the
Task Scheduler component is noticed and considered in the following control cy-
cle. The Task Scheduler component is responsible for enforcing the optimization
objective shown in Equation 6.

3.6 Job Profiles

The proposed job scheduling technique relies on the use of job profiles contain-
ing information about the resource consumption for each job. Profiling is one
technique that has been successfully used in the past for MapReduce clusters.
Its suitability in these clusters stems from the fact that in most production
environments jobs are ran periodically on data corresponding to different time
windows [4]. Hence, profiles remains fairly stable across runs [8].

Our profiling technique works offline. To build a job profile we run a job in a
sandbox environment with the same characteristics of the production environ-
ment. We run the job in isolation multiple times in the sandbox using different
configurations for the number of map task slots per node (1 map, 2 maps, ...,
up to N). The number of reduce tasks is set to the desired level by the user sub-
mitting the job. In the case of multiple reduce tasks, they execute on different
nodes.

From the multiple configurations, we select that one in which the job com-
pleted fastest, and use that execution to build our profile. We monitor CPU,
I/O and memory usage in each node for this configuration using vmstat. The
reasoning behind this choice is that we want to monitor the execution of a config-
uration in which competition for resources occurs and some system bottlenecks
are hit, but in which severe performance degradation is not yet observed.

Note that obtaining CPU and memory is straight forward for the various
phases. For example, if the bottleneck is CPU (that is to say, the node experi-
ences 100% CPU utilization) and there are 4 map tasks running, each map task
consumes 25% CPU. Profiling I/O in the shuffle phase is less trivial. Each re-
duce task has a set of threads responsible for pulling map outputs (intermediate
data generated by the map tasks): the number of these threads is a configurable
parameter in Hadoop (hereafter parallelCopies). These threads are informed
about the availability and location of a new map output whenever a map task
completes. Consequently, independent of the number of map outputs available,
the reduce tasks will never fetch more than parallelCopies map outputs con-
currently. During profiling we ensure that there are at least parallelCopies
map outputs available for retrieval and we measure the I/O utilization in the re-
duce task while shuffling. It can therefore be seen that our disk I/O measurement
is effectively an upper bound on the I/O utilization of the shuffle phase.
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In RAS we consider jobs that run periodically on data with uniform charac-
teristics but different sizes. Since the map phase processes a single input split of
fixed size and the shuffle phase retrieves parallelCopies map outputs concur-
rently (independently of the input data size) their resource profile remain similar.
Following these observations, the completion time of the map tasks remains the
same while the completion time of the shuffle phase may vary depending on the
progress rate of the map phase. The case of the reduce phase is more compli-
cated. The reducer phase processes all the intermediate data at once and this
one tends to increase (for most jobs we know of) as the input data size increases.
In most of the jobs that we consider we observe that the completion time of the
reduce phase scales linearly. However, this is not always the case. Indeed, if the
job has no reduce function and simply relies on the shuffle phase to sort, we
observe that the completion time scales super-linearly (n.log(n)). Having said
that, our approach can be improved, for example by using historical information.

Profile accuracy plays a role in the performance of RAS. Inaccurate profiles
lead to resource under- or overcommitment. This dependency exists in a slot-
based system too, as it also requires some form of profiling to determine the op-
timal number of slots. The optimal slot number measures a job-specific capacity
of a physical node determined by a bottleneck resource for the job, and it can
be easily converted into an approximate resource profile for the job (by dividing
bottleneck resource capacity by the slot number). Provided with these profiles,
RAS allows jobs with different optimal slot numbers to be co-scheduled, which
is a clear improvement over classical slot-based systems. The profiling technique
used in this paper allows multi-resource profiles to be built, which helps im-
prove utilization when scheduling jobs with different resource bottlenecks. Since
the sandbox-based method of profiling assumes that resource utilization remains
stable among different runs of the same job on different data, it may fail to iden-
tify a correct profile for jobs that do not meet this criterion. For those jobs, an
online profiler or a hybrid solutions with reinforcement learning may be more
appropriate since RAS is able to work with profiles that change dynamically and
allows different profiling technologies to be used for different jobs. While we are
not addressing them in this paper, such techniques have been studied in [11–13].

4 Evaluation

In this section we include results from two experiments that explore the two
objectives of RAS: improving resource utilization in the cluster (Experiment 1)
and meeting jobs’ completion time goals (Experiment 2). In Experiment 1, we
consider resource utilization only, and compare RAS with a state-of-the-art non-
resource-aware Hadoop scheduler. In order to gain insight on how RAS improves
resource utilization, we set a relaxed completion time goal with each job. This
allow us to isolate both objectives and reduce the effect of completion time goals
in the algorithm. In Experiment 2, we consider completion time goals on the
same workload. Thus effectively evaluating all capabilities of RAS.
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4.1 Experimental Environment and Workload

We perform all our experiments on a Hadoop cluster consisting of 22 2-way 64-bit
2.8GHz Intel Xeon machines. Each machine has 2GB of RAM and runs a 2.6.17
Linux kernel. All machines in the cluster are connected via a Gigabit Ethernet
network. The version of Hadoop used is 0.23. The cluster is configured such that
one machine runs the JobTracker, another machine hosts the NameNode, and
the remaining 20 machines each host a DataNode and a TaskTracker.

Table 1. Workload: 3 Applications, 3 Job instances each (Big, Medium, and Small)

Sort Combine Select
Instance Label J1/J8/J9 J2/J6/J7 J3/J4/J5

Input size 90GB/19GB/6GB 5GB/13GB/50GB 10GB/25GB/5GB

Submission time 0s/2,500s/3,750s 100s/600s/1,100s 200s/350s/500s
Length in isolation 2,500s/350s/250s 500s/750s/2,500s 400s/280s/50s

Experiment 1

Completion time 3,113s/3,670s/4,100s 648s/3,406s/4,536s 1,252s/608s/623s

Experiment 2

Completion time 3,018s/3,365s/4,141s 896s/2,589s/4,614s 802s/550s/560s

Completion time goal 3,000s/3,400s/4,250s 850s/2,600s/6,000s 1,250s/1,100s/950s

To evaluate RAS we consider a representative set of applications included in
the Gridmix benchmark, which is part of the Hadoop distribution. These appli-
cations are Sort, Combine and Select. For each application we submit 3 different
instances with different input sizes, for a total of 9 jobs in each experiment. A
summary of the workload can be seen in Table 1, including the label used for
each instance in the experiments, the size of its associated input data set, the
submission time, and the time taken by each job to complete if the entire exper-
imental cluster is dedicated to it. Additionally, we include the actual completion
times observed for each instance in Experiment 1 and 2. Finally, for Experiment
2, we include also the completion time goal associated to each instance.

The resource consumption profiles provided to the scheduler are shown in
Table 2. They were obtained following the description provided in Section 3.6.
The values are the percentage of each TaskTracker’s capacity that is used by a
single execution of the sub-phase in question.

Table 2. Job profiles (shuffle: consumed I/O per map placed, upper bound set by
parallelCopies, the number of threads that pull map output data)

Sort Combine Select

Map/Shuffle/Reduce Map/Shuffle/Reduce Map/Shuffle/Reduce
CPU 30%/-/20% 25%/-/10% 15%/-/10%
I/O 45%/0.15%/50% 10%/0.015%/10% 20%/0.015%/10%

Memory 25%/-/60% 10%/-/25% 10%/-/25%
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4.2 Experiment 1: Execution with Relaxed Completion Time Goals

The goal of this experiment is to evaluate how RAS improves resource utiliza-
tion compared to the Fair Scheduler when completion time goals are so relaxed
that the main optimization objective of the algorithm is to maximize resource
utilization (see Equation 5). To this end we associate with each job instance an
highly relaxed completion time goal. We run the same workload using both the
Fair Scheduler and RAS and compare different aspects of the results.

 4000

 5000

 6000

 7000

 8000

 9000

 1  2  3  4  5  6  7  8

E
la

p
se

d
 j

o
b

 t
im

e 
(s

)

Number of map tasks per tasktracker

Fair
Adaptive

Fig. 3. Experiment 1: Workload makespan with different Fair Scheduler configurations
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Dynamic task concurrency level per TaskTracker. Our first objective
in this experiment is to study how the dynamic management of the level of
task concurrency per-TaskTracker improves workload performance. To this end,
we run the same workload using the Fair Scheduler with different concurrency
level configurations: specifically, we vary the maximum number of map slots per
TaskTracker from 1 to 8, and compare the results with the execution using RAS.
Results are shown in Figure 3. As can be seen, the best static configuration uses
4 concurrent map tasks per TaskTracker (80 concurrent tasks across 20 Task-
Trackers). Configurations that result in low and high concurrency produce worse
makespan due to resources being underutilized and overcommitted, respectively.

We observe that RAS outperforms the Fair Scheduler for all configurations,
showing an improvement that varies between 5% and 100%. Our traces show that
the average task concurrency level in RAS was 3.4 tasks per TaskTracker. Recall
that the best static configuration of per-TaskTracker task concurrency depends
on the workload characteristics. As workloads change over time in real systems,
even higher differences between static and dynamic management would be ob-
served. RAS overcomes this problem by dynamically adapting task concurrency
level based on to the resource usage in the system.

Resource allocation and Resource utilization. Now we look in more detail
at the execution of the workload using RAS as compared to the Fair Scheduler
running a static concurrency level of 4. Figures 4(a) and 4(b) show the task
assignment resulting from both schedulers. For the sake of clarity, we group jobs
corresponding to the same application (Sort, Combine or Select) into different
rows. Each row contains solid and dotted lines, representing the number of run-
ning map and reduce tasks respectively. The submission time for each job is
shown by a (labeled) vertical line, following the convention presented in Table 1.
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Fig. 4. Experiment 1: Workload execution and CPU utilization: (a) and (c) correspond
to Fair Scheduler using 4 slots per TaskTracker; (b) and (d) correspond to RAS using
a variable number slots per TaskTracker
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Combine and Select are configured to run one single reduce task per job since
there is no benefit from running them with more reduce tasks on our testing en-
vironment; the dotted line representing the reduce is at the bottom of the chart.
As it can be observed, RAS does not allocate more concurrent map slots than
the Fair Scheduler during most of the execution. Moreover, the sum of reduce
and map tasks remains lower than the sum of reduce and map tasks allocated by
the Fair Scheduler except for a small time interval (∼ 100s) immediately after
the submission of Job 6 (J6). RAS is able to improve the makespan while main-
taining a lower level of concurrency because it does better at utilizing resources
which ultimately results in better job performance. To get a better insight on
how RAS utilizes resources as compared to the Fair Scheduler we plot the CPU
utilization for both schedulers in Figures 4(c) and 4(d). These figures show the
percentage of CPU time that TaskTrackers spent running tasks (either in system
or user space), and the time that the CPU was waiting. For each metric we show
the mean value for the cluster, and the standard deviation across TaskTrackers.
Wait time represents the time that the CPU remains idle because all threads in
the system are either idle or waiting for I/O operations to complete. Therefore, it
is a measure of resource wastage, as the CPU remains inactive. While wait time
is impossible to avoid entirely, it can be reduced by improving the overlapping
of tasks that stress different resources in the TaskTracker. It is noticeable that
in the case of the Fair Scheduler the CPU spends more time waiting for I/O
operations to complete than RAS. Further, modifying the number of concurrent
slots used by the Fair Scheduler does not improve this result. The reason behind
this observation is key to our work: other schedulers do not consider the re-
source consumption of applications when making task assignment decisions, and
therefore are not able to achieve good overlap between I/O and CPU activity.
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Fig. 5. Experiment 1: Job Utility

Utility guidance. Finally, to illustrate the role of the utility function in RAS,
Figure 5 shows the utility value associated with each job during the execution
of the workload. Since the jobs have extremely lax completion time goals, they
are assigned a utility value above 0 immediately after one task for each job is
placed. As can be seen, the allocation algorithm balances utility values across
jobs for most of the execution time. In some cases, though, a job may get higher
utility than the others: this is explained by the fact that as jobs get closer to
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completion, the same resource allocation results in higher utility. This is seen
in our experiments: for all jobs, the utility increases until all their remaining
tasks are placed. In this experiment we can also see that Job 7 has a very low
utility right after it is launched (1,100s) in contrast with the relatively high
utility of Job 1, even though most resources are actually assigned to Job 7. This
is because while Job 1 has very few remaining tasks, no tasks from Job 7 have
been completed and thus its resource demand estimation is not yet accurate.
This state persists until approximately time 1,650s).

4.3 Experiment 2: Execution with Tight Completion Time Goals

In this experiment we evaluate the behavior of RAS when the applications have
stringent completion time goals. To do this we associate a tight completion time
goal with the workload described for our previous experiment.
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Fig. 6. Experiment 2: Workload execution and Job utility

Figure 6(a) shows the number of concurrent tasks allocated to each job during
the experiment. We use vertical lines and labels to indicate submission times
(labeled J1 to J9) and completion time goals (labeled D1 to D9) for each of the
nine jobs in the workload. To illustrate how RAS manages the tradeoff between
meeting completion time goals and maximizing resource utilization, we look at
the particular case of Job 1 (Sort), Job 7 (Combine) and Job 8 (Sort), submitted
at times J1 (0s), J7 (1,100s) and J8 (2,500s) respectively. In Experiment 1 their
actual completion times were 3,113s, 4,536s and 3,670s, while in Experiment 2
they completed at times 3,018s, 4,614s and 3,365s respectively. Because their
completion time goals in Experiment 2 are 3,000s, 6,000s and 3,400s (a factor
of 1.2X, 1.9X and 2.5X compared to their length observed in isolation), the
algorithm allocates more tasks to Job 1 and Job 8 at the expense of Job 7, which
sees its actual completion time delayed with respect to Experiment 1 but still
makes its more relaxed goal. It is important to remark again that completion time
goals in our scheduler are soft deadlines used to guide the workload management
as opposed to strict deadlines in which missing a deadline is associated with
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strong penalties. Finally, notice that Job 1 and Job 8 would have clearly missed
their goals in Experiment 1: here, however, RAS adaptively moves away from the
optimal placement in terms of resource allocation to adjust the actual completion
times of jobs. Recall that RAS is still able to leverage a resource model while
aiming at meeting deadlines, and still outperforms the best configuration of Fair
Scheduler by 167 seconds, 4,781s compared to 4,614s.

To illustrate how utility is driving placement decisions, we include Figure 6(b),
which shows the utility of the jobs during the workload execution and gives
a better intuition of how the utility function drives the scheduling decisions.
When a job is not expected to reach its completion time goal with the current
placement, its utility value goes negative. For instance, starting from time 2,500s
when J8 is launched and the job still has very few running tasks, the algorithm
places new tasks to J8 at the expense of J7. However, as soon as J8 is running
the right amount of tasks to reach the deadline, around time 3,000s, both jobs
are balanced again and the algorithm assigns more tasks to J7.

5 Related Work

Much work have been done in the space of scheduling for MapReduce. Since
the number of slots in a Hadoop cluster is fixed through out the lifetime of
the cluster, most of the proposed solutions can be reduced to a variant of the
task-assignment or slot-assignment problem. The Capacity Scheduler [14] is a
pluggable scheduler developed by Yahoo! which partition resources into pools
and provides priorities for each pool. Hadoop’s Fair Scheduler [9] allocates equal
shares to each tenant in the cluster. Quincy scheduler [15] proposed for the Dryad
environment [16] also shares similar fairness goals. All these schedulers are built
on top of the slot model and do not support user-level goals.

The performance of MapReduce jobs has attracted much interest in the
Hadoop community. Stragglers, tasks that take an unusually long time to com-
plete, have been shown to be the most common reason why the total time to
execute a job increases [2]. Speculative scheduling has been widely adopted to
counteract the impact of stragglers [2, 9]. Under this scheduling strategy, when
the scheduler detects that a task is taking longer than expected it spawns mul-
tiple instances of the task and takes the results of the first completed instance,
killing the others [9]. In Mantri [5] the effect of stragglers is mitigated via the
‘kill and restart’ of tasks which have been identified as potential stragglers. The
main disadvantage of these techniques is that killing and duplicating tasks re-
sults in wasted resources [5, 9]. In RAS we take a more proactive approach,
in that we prevent stragglers resulting from resource contention. Furthermore,
stragglers caused by skewed data cannot be avoided at run-time [5] by any ex-
isting technique. In RAS the slow-down effect that these stragglers have on the
end-to-end completion time of their corresponding jobs is mitigated by allocating
more resources to the job so that it can still complete in a timely manner.

Recently, there has been increasing interest in user-centric data analytics.
One of the seminal works in this space is [6]. In this work, the authors propose
a scheduling scheme that enables soft-deadline support for MapReduce jobs. It
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differs from RAS in that it does not take into consideration the resources in the
system. Flex [7] is a scheduler proposed as an add-on to the Fair Scheduler to
provide Service-Level-Agreement (SLA) guarantees. More recently, ARIA [8] in-
troduces a novel resource management framework that consists of a job profiler,
a model for MapReduce jobs and a SLO-scheduler based on the Earliest Deadline
First scheduling strategy. Flex and Aria are both slot-based and therefore suffers
from the same limitations we mentioned earlier. One of the first works in consid-
ering resource awareness in MapReduce clusters is [17]. In this work the scheduler
classifies tasks into good and bad tasks depending on the load they impose in
the worker machines. More recently, the Hadoop community has also recognized
the importance of developing a resource-aware scheduling for MapReduce. [18]
outlines the vision behind the Hadoop scheduler of the future. The framework
proposed introduces a resource model consisting of a ‘resource container’ which
is—like our ‘job slot’—fungible across job tasks. We think that our proposed re-
source management techniques can be leveraged within this framework to enable
better resource management.

6 Conclusions

In this paper we have presented the Resource-aware Adaptive Scheduler, RAS,
which introduces a novel resource management and job scheduling scheme for
MapReduce. RAS is capable of improving resource utilization and job perfor-
mance. The cornerstone of our scheduler is a resource model] based on a new
resource abstraction, namely ‘job slot’. This model allows for the formulation of
a placement problem which RAS solves by means of a utility-driven algorithm.
This algorithm in turn provides our scheduler with the adaptability needed to
respond to changing conditions in resource demand and availability.

The presented scheduler relies on existing profiling information based on pre-
vious executions of jobs to make scheduling and placement decisions. Profiling
of MapReduce jobs that run periodically on data with similar characteristics
is an easy task, which has been used by many others in the community in the
past. RAS pioneers a novel technique for scheduling reduce tasks by incorpo-
rating them into the utility function driving the scheduling algorithm. It works
in most circumstances, while in some others it may need to rely on preempting
reduce tasks (not implemented in the current prototype) to release resources
for jobs with higher priority. Managing reduce tasks in this way is not possi-
ble due to limitations in Hadoop and hence it affects all existing schedulers.
In RAS we consider three resource capacities: CPU, memory and I/O. It can
be extended easily to incorporate network infrastructure bandwidth and stor-
age capacity of the TaskTrackers. Nevertheless, network bottlenecks resulting
from poor placement of reduce tasks [5] can not be addressed by RAS without
additional monitoring and prediction capabilities.

Our experiments, in a real cluster driven by representative MapReduce work-
loads, demonstrate the effectiveness of our proposal. To the best of our knowledge



206 J. Polo et al.

RAS is the first scheduling framework to use a new resource model in MapReduce
and leverage resource information to improve the utilization of resources in the
system and meet completion time goals on behalf of users.
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Abstract. An important concern in the design of a publish/subscribe
system is its expressiveness, which is the ability to represent various
types of information in publications and to precisely select information
of interest through subscriptions. We present an enhancement to existing
content-based publish/subscribe systems with support for a 2D spatial
data type and eight associated relational operators, including those to
reveal overlap, containment, touching, and disjointedness between re-
gions of irregular shape. We describe an algorithm for evaluating spa-
tial relations that is founded on a new dynamic discretization method
and region-intersection model. In order to make the data type practical
for large-scale applications, we provide an indexing structure for access-
ing spatial constraints and develop a simplification method for eliminat-
ing redundant constraints. Finally, we present the results of experiments
evaluating the effectiveness and scalability of our approach.

1 Introduction

The data models of existing content-based publish/subscribe systems embody
only the most basic and primitive types: numbers, strings, and dates. This is
true, for example, of the Java Message Service specification (JMS), which is
restricted to the primitive data types of Java.1 In this paper we present an
extended data model supporting 2D spatial objects. The representation of 2D
objects is essential in many problem domains, but perhaps its primary use is
in the representation and processing of geographical information. This type of
information has concrete applications in agriculture, transportation, logistics,
infrastructure management, and more recently various personal applications.

The simplest approach to incorporating 2D spatial objects into a content-
based publish/subscribe system would be to establish some sort of convention
for indicating regions in an x/y coordinate space, such as by giving the locations
of opposite corners of rectangular regions or by giving the center point of a
circular region of some radius. The coordinate space itself might be abstract or
it might be associated with a standard reference model such as longitude and

1 JMS defines an SQL-like selection feature for its content-based subscriptions. How-
ever, this selection feature is practically equivalent to a set (i.e., a disjunction) of
subscriptions based on name-operator-value constraints.

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 208–227, 2011.
c© IFIP International Federation for Information Processing 2011
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latitude. Notice that this simple approach has the benefit of requiring only some
conventional use of the primitive data types and relational operators already
commonly supported by publish/subscribe systems.

The simplest matching problem would be to test whether a point in a space
is contained within a given region. This concept has been explored for so-called
location-based services [1,9,10,16,29], and used in practice to underpin practical
applications such as Facebook Places.2 It has also been explored for use within
the virtual world of games, where game state and actions are bound to a notion
of virtual location [22].

Our goal is to support a richer concept of region and region matching. In
particular, we seek to support regions having irregular, and therefore more re-
alistic boundary shapes, whereas prior work has focused on simple shapes, such
as axis-aligned rectangles [24,27]. Moreover, we seek to support the matching of
regions to other regions, not just points to regions, which implies a much richer
set of potential matching relations, such as overlaps, where two regions share
some interior points but not others, meets, where two regions touch but do not
overlap, and equals, where two regions mutually cover each other.

Consider, for example, an event notification emitted by a severe-weather warn-
ing system that reports a storm affecting a geographical area A with maximum
expected wind speed w and precipitation level p. A facility management com-
pany might be interested in receiving such notifications, but only when A over-
laps with one of the company’s facilities (e.g., a building), and if the wind speed
w and precipitation level p are above certain safety thresholds. In this and sim-
ilar applications, subscriptions would include 2D geographical regions obtained
from, say, a geographical information system (GIS) database, while notification
messages would contain 2D observation overlays, such as weather systems, pol-
lutant concentrations, group/herd movement, and the like. In order to capture
such regions and their relationships within a content-based publish/subscribe
system, a new data type for 2D spatial objects is required.

We derive the new data type from a standard model found in geographical in-
formation systems in which a 2D region is defined as a the space enclosed within
a boundary consisting of line segments. Given two such boundary-delimited re-
gions, the model induces eight binary relations between the regions. The theo-
retical basis for the evaluation of the eight relations is the 4-intersection model
developed in the seminal work of Egenhofer and Franzosa [14] and used in many
spatial database management systems. In this model, each binary relation be-
tween two regions A and B can be evaluated by testing the emptiness of four
intersections between the boundary, interior, and exterior point sets of A and B.

Starting from this abstract model, we develop a concrete representation of
regions based on a discretization of their boundaries, and use the eight basic
binary relations between regions to form the relational operators of the type. We
also derive a small set of concrete conditions that lead to an efficient evaluation
of the relations. The boundary discretization, and the corresponding evaluation
of the spatial relations, are based on a newly formulated variant of the Egenhofer

2 http://www.facebook.com/places/

http://www.facebook.com/places/
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and Franzosa 4-intersection model. We were driven to develop this new model
because the original requires all interior points of a region to be inspected and
conventional discretization methods [17,18] rely on a global grid structure.

The original model and conventional methods were developed for traditional
GIS database applications, where the problem is to compute and store all the spa-
tial relations among large numbers of relatively static regions, and then quickly
process a spatial query against those stored relations [26]. In that context it is
reasonable to incur the considerable computational costs of a global-grid dis-
cretization and a full interior point inspection, since they can be performed in
an off-line preprocessing step. Publish/subscribe systems, by contrast, face the
problem of having to perform an on-line computation to reveal the spatial rela-
tions that exist between previously unseen regions contained in high-rate mes-
sage traffic and large numbers of stored regions representing spatial constraints.
This demands the new approach introduced in this paper in which boundary
discretization is dynamic and point inspections can be significantly reduced.

The ideas presented here provide the theoretical basis for accommodating
2D spatial objects in the basic matching/filtering/forwarding function of pub-
lish/subscribe systems, as well as the routing function of distributed versions
of such systems. In this paper we focus on the matching problem, describing
a specific algorithm, indexing structure, and logical simplification method for
2D spatial constraints, integrated and evaluated within a general content-based
matching algorithm. The indexing structure, which we call the CR-tree, is an
extension of the well-known R-tree developed by Guttman [20]. Our extension
allows the matching algorithm to efficiently evaluate a large set of spatial con-
straints, as we demonstrate experimentally. We also demonstrate the effective-
ness of the spatial-constraint simplification method.

In summary, we make the following contributions: (1) the use of topologi-
cal relations between 2D spatial objects within content-based publish/subscribe
systems; (2) a discretization of a common 2D model that admits to an efficient
representation and use of 2D objects in matching; (3) an indexing structure to
process large numbers of 2D spatial constraints during the matching process;
and (4) a logical simplification method for 2D spatial constraints. We provide
background on general spatial modeling in Section 2, and then define a specific
spatial model, its discretization, and a matching algorithm in Section 3. The
CR-tree index and spatial simplification method are described in Section 4. We
present the results of an experimental evaluation in Section 5.

2 Background

To support 2D objects within a content-based publish/subscribe system, we
must define spatial concepts and models that would lead to efficient and robust
implementations. In particular, we seek a fast matching algorithm capable of
evaluating incoming 2D regions (represented as attribute values in messages)
against potentially large numbers of 2D spatial constraints (contained in sub-
scriptions). In this section, we lay out such definitions and models. Furthermore,
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since we develop the 2D spatial model as an extension of a concrete content-
based matching algorithm, namely the Siena Fast Forwarding algorithm [8], we
also review the algorithm and its existing indexing structures.

2.1 Spatial Concepts and Spatial Modeling

Space is regarded as being composed of an infinite number of points forming a
continuum, the so-called Euclidean model. We represent a region as a polygon.
More specifically:

Definition 1. A region is a simple polygon, that is, the portion of the Euclidean
space delimited by a closed finite sequence of line segments such that any two
adjacent segments share an end point, and no end point belongs to more than
two segments. Furthermore, no point other than an end point is shared by two
segments (i.e., line segments do not intersect).

As a concrete example, consider a message used within an environmental man-
agement system to warn about leaks of dangerous chemicals or other pollut-
ing agents in lakes or oceans. A hypothetical message of this type is shown in
Figure 1. The warning indicates the affected area by specifying a 2D region (at-
tribute “area”). The region is defined by the end points of the line segments that
form its boundary, given as a sequence (only partially shown) of point pairs.

string warning = “hazardous leak”
region area = (23.1, 10.9), (30.3, 27.0), (48.0, 19.0), . . .
int concentration = 172
int hazard = 4

Fig. 1. A message describing a 2D object as the region “area”

Using the region connection calculus introduced by Cohn et al. [12] we can
prove the existence of eight jointly exhaustive and pair-wise disjoint (JEPD)
binary topological relations between 2D regions. This means that any pair of
regions must have a topology that is characterized by one and only one of the
eight relations. The complete set of relations between two regions A and B is
illustrated in Figure 2. The first four relations are symmetric; the remaining
four should be read as A relation B (e.g., A inside B). These qualitative topo-
logical relations between regions define the constraints that can be expressed
in subscriptions that select 2D spatial objects. Since our objective is to iden-
tify all matching constraints for a given region, we must develop an algorithmic
evaluation of these relations.

In order to implement such constraints in subscription predicates, we need to
model the concept of topological relations between regions. Following the analysis
of Egenhofer et al. [13,14,15], if A ⊆ R2 is a region, then there exists a set U ⊆ R2

such that U = (A0 ∪ ∂A ∪ A−), where A0, A−, and ∂A are the interior, exterior,
and boundary sets of A, respectively. Notice that they are mutually disjoint
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Fig. 2. The eight jointly exhaustive and pair-wise disjoint (JEPD) relations between
regions

subsets of U , that is, A0, ∂A, and A− form a partition of U . We refer to U as
the universe. It is then provable that the topological relation between any two
regions A, B ⊆ U can be identified by specifying the nine possible intersections
between their interiors, exteriors, and boundaries (the 9-intersection model),
each of which can be either empty or non-empty. Egenhofer and Franzosa [14]
introduced a model based on only four intersections (the 4-intersection model),
obtained by removing redundant entries from the 9-intersection model. Below is
the list of intersections in the 4-intersection model of Egenhofer and Franzosa.

Intersection 1. Intersection between the boundary of A and the boundary of
B denoted by ∂A ∩ ∂B.

Intersection 2. Intersection between the boundary of A and the interior of B
denoted by ∂A ∩B0.

Intersection 3. Intersection between the interior of A and the boundary of B
denoted by A0 ∩ ∂B.

Intersection 4. Intersection between the interior of A and the interior of B
denoted by A0 ∩B0.

In Section 3 we introduce a discretization of regions, as well as a variation of
this 4-intersection model, that are specifically designed to ensure efficient and
robust evaluation of the JEPD spatial constraints.

2.2 The Siena Fast Forwarding Algorithm

Siena is a popular distributed publish/subscribe system that uses name-value
pairs in published messages and name-operator-value constraints to define sub-
scriptions [7]. Following the terminology used in Siena, a filter is a conjunction
of constraints (that defines a subscription) and a predicate is a disjunction of
filters (representing a set of subscriptions).

The matching algorithm developed within the Siena project, called Siena Fast
Forwarding (SFF) [8], follows the approach of Yan and Garcia-Molina [30] by
using a counting algorithm for predicate matching. In particular, the algorithm
builds a forwarding table consisting of a global index of all the unique constraints
found in a set of predicates, where each predicate is associated with an interface
of a content-based broker/router. Given this constraint index and an input mes-
sage, the matching process amounts to finding the set of interfaces through which
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the message must be forwarded. The algorithm proceeds by evaluating each at-
tribute of the message against the index of constraints, counting the numbers
of matching constraints per filter. When the count reaches the total number
of constraints in a filter associated with a predicate, the algorithm forwards the
message to the interface associated with that predicate. As an example, Figure 3
shows the high-level contents of a forwarding table for a broker/router with two
interfaces, I1 and I2, each associated with a predicate of two filters, f1.1 and
f1.2, and f2.1 and f2.2, respectively. Notice that the message shown in Figure 1
would match f2.2 and, therefore, would be forwarded through interface I2.

I1

f1.1
string stock =“MTK”
int price < 100

f1.2

string stock = “DYS”
int price > 200
bool bubble = true

I2

f2.1
region cloud overlaps (10, 5), (7, 12), . . .
int pressure < 1000

f2.2

string warning = “hazardous leak”
region area disjoint (3, 2), (15, 40), . . .
int concentration > 100
int hazard > 3

Fig. 3. A forwarding table with 2D regions

SFF already implements specific constraint indexes for some basic data types,
including integer, float, Boolean, and string, along with their operators. It also
provides a way to extend the algorithm with more types and operators, and with
type- and operator-specific constraint indexes. We use this extension feature to
plug in our implementations for representing 2D regions, a spatial constraint
index, and the algorithm for evaluating 2D constraints.

3 Spatial Model

The abstract notion of a 2D object is generally defined by a set of points taken
from a continuous space. Therefore, in order to realize a concrete implementation
of this abstract model, we must somehow map these continuous 2D objects
onto a discrete structure amenable to efficient algorithmic processing. The term
discretization refers generally to both the mapping of a continuous object onto
a discrete set and the algorithmic processing of that discrete set. A conventional
approach to the discretization of 2D regions is to construct a discretized universe
using a global grid structure [17,18]. However, this method involves the mapping
of regions onto grid points, which is a surprisingly complex procedure [19,21] that
would introduce unacceptable levels of overhead to a publish/subscribe system.

We follow a completely different approach. The key idea behind this new dis-
cretization is to use a point-region check as the primary building block for the
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evaluation algorithm. In particular, let pointCheck(p, R) be a decision proce-
dure that returns the topological relation between point p and region R as either
in, out, or meet, meaning that p is within the interior, exterior, or boundary of
R, respectively. This pointCheck procedure takes two discrete structures, a
point and a finite set of line segments, and can be implemented efficiently using
a ray-shooting algorithm from a computational-geometry library [5,23]. We use
the procedure to efficiently evaluate the eight JEPD spatial relations through a
variant of the 4-intersection model of Egenhofer and Franzosa.

3.1 A New 4-Intersection Model

The 4-intersection model of Egenhofer and Franzosa reduces the identification
of the topological relations between two regions A and B to the problem of
determining whether each of the four intersections is empty or not. Our general
approach to discretizing each intersection decision is to find a “witness” point
that would indicate that the intersection is not empty. In particular, the first
three of the four intersections can be discretized as follows:

Discretization 1. To decide the emptiness of ∂A ∩ ∂B, find a point p on the
boundary of A that can be tested as a boundary point for B. If such a p is
found, then consider the intersection non-empty; otherwise empty.

Discretization 2. To decide the emptiness of ∂A ∩ B0, find a point p on the
boundary of A that can be tested as an interior point for B. If such a p is
found, then consider the intersection non-empty; otherwise empty.

Discretization 3. To decide the emptiness of A0 ∩ ∂B, find a point p on the
boundary of B that can be tested as an interior point for A. If such a p is
found, then consider the intersection non-empty; otherwise empty.

The fourth intersection in the model of Egenhofer and Franzosa is A0 ∩ B0,
which involves two interior sets whose discretization is prohibitively complex for
achieving fast content-based matching. To overcome this problem we replace the
fourth intersection with the intersection between the boundary set of A and the
exterior set of B. Thus, we define a new 4-intersection model with the new fourth
intersection being ∂A ∩ B−, which admits to an efficient discretization similar
in form to the previous three:

Discretization 4. To decide the emptiness of ∂A ∩ B−, find a point p on the
boundary of A that can be tested as an exterior point for B. If such a p is
found, then consider the intersection non-empty; otherwise empty.

Of course, given this change to the intersection model, we must show that all
eight topological relations between regions can still be decided unambiguously.
We do this in Table 1, which details the precise correspondence between the four
intersections and the topological relations.

We can now proceed to implement the evaluation of the topological relations
as a concrete algorithm. We emphasize that this algorithm is based on a crucial
property of the new 4-intersection model, namely that all its intersections involve
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Table 1. The eight JEPD relations as captured by the new 4-intersection model
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(∂A ∩ ∂B, ∂A ∩ B0, A0 ∩ ∂B, ∂A ∩ B−)

(∅, ∅, ∅, 1) (1, ∅, ∅, 1) (1, 1, 1, 1) (1, ∅, ∅, ∅) (∅, 1, ∅, ∅) (∅, ∅, 1, 1) (1, ∅, 1, 1) (1, 1, ∅, ∅)
∅: empty, 1: non-empty

at least one boundary set ∂X , and either another boundary set ∂Y , an interior set
Y 0, or an exterior set Y −. Having a boundary set ∂X to start with, the algorithm
can proceed first by discretizing ∂X into a finite set of points p ∈ ∂X and then
by checking the relation of each point p with the other region Y (boundary,
interior, or exterior) using the pointCheck(p, Y ) primitive.

3.2 Algorithm

Our method for identifying the topological relation between two regions A and
B, each expressed as a sequence of points, is given as Algorithm 1. The algo-
rithm uses four Boolean variables i1, i2, i3, and i4 that indicate the presence
of “witnesses” for the non-emptiness of each of the four intersections in our 4-
intersection model. The variables are initialized as false and become true as soon
as the algorithm finds one point in the corresponding intersection.

The algorithm can find witness points for the first, second, and fourth in-
tersections (thereby assigning i1, i2, and i4) through a single iteration over the
points of the boundary of the first region ∂A (lines 6–18). In this loop the al-
gorithm considers only some points of the boundary ∂A, effectively discretizing
that boundary. The selection of points is performed by the discretize procedure
sketched on lines 46–49 and discussed in detail in Section 3.3, below.

The loop over the points of ∂A may terminate immediately whenever the
algorithm finds witnesses for intersections 2 and 4, since they unambiguously
identify the overlaps relation. At the end of the loop, the algorithm can identify
the equals, inside, and covered-by relations. Lines 19–25 implement this deci-
sion based on the values of i1, i2, and i4. Notice that some of the conditions
are redundant (e.g., when the algorithm reaches line 19, i2 and i4 cannot both
be true). However, for clarity and ease of verification, we write each condition
explicitly and in the same order as the corresponding relation appears in Table 1.

If none of the immediately identifiable relations hold, the algorithm proceeds
by checking whether the third intersection is empty or not. The algorithm iterates
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Algorithm 1. Topological relation between two regions
1: procedure findRelation(A,B)
2: i1 ← false � witness: i1 ⇒ ∂A ∩ ∂B �= ∅
3: i2 ← false � witness: i2 ⇒ ∂A ∩ B0 �= ∅
4: i3 ← false � witness: i3 ⇒ A0 ∩ ∂B �= ∅
5: i4 ← false � witness: i4 ⇒ ∂A ∩ B− �= ∅
6: for each p ∈ discretize(∂A) do
7: T ← pointCheck(p, B);
8: if T = meet then
9: i1 ← true

10: else if T = in then
11: i2 ← true

12: else if T = out then
13: i4 ← true

14: end if
15: if i2 ∧ i4 then
16: return overlaps � (?, 1, ?, 1)
17: end if
18: end for
19: if i1 ∧ ¬i2 ∧ ¬i4 then
20: return equals � (1, ∅, ?, ∅)
21: else if ¬i1 ∧ i2 ∧ ¬i4 then
22: return inside � (∅, 1, ?, ∅)
23: else if i1 ∧ i2 ∧ ¬i4 then
24: return covered-by � (1, 1, ?, ∅)
25: end if
26: for each p ∈ discretize(∂B) do
27: T ← pointCheck(p, A);
28: if T = in then � A0 ∩ ∂B �= ∅
29: i3 ← true

30: break (goto line 35)
31: else if T = out then � no overlap here, so it must be A0 ∩ ∂B = ∅
32: break (goto line 35)
33: end if
34: end for
35: if ¬i1 ∧ ¬i3 then � no need to check ¬i2 ∧ i4
36: return disjoint � (∅, ∅, ∅, 1)
37: else if i1 ∧ ¬i3 then
38: return meets � (1, ∅, ∅, 1)
39: else if ¬i1 ∧ i3 then
40: return contains � (∅, ∅, 1, 1)
41: else if i1 ∧ i3 then
42: return covers � (1, ∅, 1, 1)
43: end if
44: end procedure
45:
46: procedure discretize(X) � parameter D is the linear point density
47: � ← length of ∂X
48: return �D equally spaced points on ∂X
49: end procedure
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through the points of the boundary ∂B, checking each point against A. As soon
as a point in ∂B is found to be an interior point of A, the algorithm breaks out
of the loop with i3 = true. The algorithm also breaks out of the loop if a point
in ∂B is found to be an exterior point of A, since we know that A and B do
not overlap. Finding one point of ∂B outside of A implies that no points will be
found inside, so the loop terminates with i3 = false .

After the loop, i1 and i3 can be used to identify one of the remaining possible
relations, namely disjoint, meets, contains, or covers (lines 35–43).

3.3 Boundary Discretization

The algorithm tests a finite number of points in a boundary to find a witness
for each intersection. These points are chosen uniformly along the boundary by
the procedure discretize based on a linear point density parameter D. More
specifically, discretize starts with the points that define the boundary (i.e.,
the end points of the line segments that compose the boundary) and then adds
equally spaced points on each segment to reach a total density of D points per
unit of length. Let A be a region defined by n line segments of total length �.
Assuming D ≥ n/�, discretize selects all the n end points of the line segments,
plus another �D−n equally spaced points along ∂A. Of course, the point density
parameter D has a crucial effect on performance and precision. Higher densities
mean higher precision but also potentially higher execution times. The setting
of this parameter is therefore application specific.

Notice that the algorithm is likely to iterate only over the first region boundary
∂A, with a run-time complexity proportional to the length of ∂A. Therefore, one
way to save some time is to evaluate the topological relation between B and A
instead of A and B when the length of ∂B is smaller than the length of ∂A. In this
case, the algorithm must translate the result of the evaluation between B and A
back to the corresponding relation between A and B. This is easily done, since
disjoint, meets, overlaps, and equals are symmetric relations that do not need
translation, and A contains B is equivalent to B inside A, and A covered-by B
is equivalent to B covers A.

Finally, to increase numerical robustness in the algorithm, we introduce a
halo around each point with radius r = d/2, where d is the (shortest) distance
between the point and its adjacent points along the same line segment. This
provides a more robust and qualitatively better result by providing a smoother
transition from disjoint to overlaps via an extended meets region.

3.4 Complexity

In the worst case, Algorithm 1 executes two full loops over the discretized bound-
aries of the input regions. Each loop starts with an invocation of the discretize

procedure, and each iteration of the loop invokes pointCheck. Let n be the total
number of line segments in the boundaries of the two input regions, and let � be
the total length of those boundaries. Then, the complexity of the pointCheck



218 A. Konstantinidis, A. Carzaniga, and A.L. Wolf

algorithm we use is O(n), and with a point density D, the complexity of dis-

cretize is O(�D). Therefore, since there are a total of �D iterations, the overall
complexity of Algorithm 1 is O(n�D).

4 Indexing and Simplification

The algorithm described in Section 3 simply evaluates one spatial constraint at
a time. If we were to incorporate that algorithm as is within a broker/router, the
broker/router would have to process each incoming message using a linear scan
of all spatial constraints in its forwarding table. In this section we present an
indexing structure and simplification method that are designed to avoid linear
scans and reduce the sheer number of spatial constraints that must be checked.

4.1 Spatial Index

The indexing structure presented here is an extension of the well-known Guttman
R-tree index [20]. Many optimized versions and variants of the original R-tree
have been proposed, including the R*-tree [2], TV-tree [25], X-tree [4], and
R+-tree [28]. They are mainly used in computer-aided design, GIS database,
and computer graphics applications, where fast spatial searching is a necessity.

R-trees have also been employed in publish/subscribe systems, but for a com-
pletely different purpose: Rather than representing constraints on 2D spatial
objects, they have been used to represent constraints on values drawn from
primitive data types, such as integers. For example, Bianchi et al. [6] introduce
an R-tree index called the DR-tree to capture the covering relation among sub-
scriptions, such that when a match for a subscription s1 implies a match for a
subscription s2 they can avoid processing s2 if a match is found for s1. Such uses
of R-tree-like indexing structures view the constraints as forming axis-aligned,
rectangular “value spaces” and simply evaluate them for what we would call here
the covers or covered-by relations. Instead, we develop a variant of the R-tree to
represent constraints on true 2D objects of irregular shape, and evaluate them
for a broader set of relations meaningful in the realm of physical space.

Guttman’s R-tree represents complex spatial objects by covering them with
less complex ones. Specifically, the R-tree uses minimum bounding rectangles
(MBRs) to represent n-dimensional objects. R-trees are structurally similar to
other search trees, particularly B-trees. Each node t in an R-tree holds an MBR
Rt that contains or covers all spatial objects stored in t’s subtree. This property
guides the search over the R-tree: The search algorithm starts with a query MBR
Rq and walks the tree by descending into every subtree t whose MBR Rt overlaps
with Rq. The search then returns all visited objects that are contained in Rq.

The spatial index we have developed is based on the original R-tree and uses
MBRs to represent sets of stored objects. However, unlike an R-tree that stores
spatial objects, this index must store constraints on spatial objects. We call such
a structure a constraint R-tree, or CR-tree. A CR-tree extends the algorithms
of the original R-tree to implement a fast search over a potentially large set of
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Table 2. MBR relations for each type of constraint

Constraints MBR relations
disjoint (D) D ∨ M ∨ O ∨ I ∨ cB ∨ Ct ∨ Cv

meets (M) M ∨ O ∨ E ∨ I ∨ cB ∨ Ct ∨ Cv

overlaps (O) O ∨ E ∨ I ∨ cB ∨ Ct ∨ Cv

inside (I) I

contains (Ct) Ct

covered-by (cB) cB ∨ E

covers (Cv) Cv ∨ E

equal (E) E

spatial constraints. In particular, the search takes a query object q representing
a value in a message, and returns all the spatial constraints stored in the CR-tree
that are satisfied by q. A CR-tree stores constraints in its leaves, but is otherwise
structurally identical to an R-tree. Each node t in a CR-tree holds the MBR of
the union of the regions that define all the constraints stored in t’s subtree. In
addition, node t holds a list of all the disjoint constraints stored in t’s subtree.
CR-tree insertion and deletion use the corresponding R-tree algorithms, plus a
simple linked-list maintenance operation to update the list of disjoint constraints.

The CR-tree search algorithm is also based on the R-tree algorithm. It starts
by computing the MBR Rq of the query object q and then walks through the
CR-tree to find potential matching constraints. To decide whether to visit a node
t in the CR-tree, the search algorithm evaluates the topological relation between
the query MBR Rq and the node MBR Rt. If t is an internal node, the search
proceeds as in an R-tree by visiting t whenever Rq intersects Rt. If Rq does not
intersect Rt, then the search algorithm does not visit t, but instead treats all
the disjoint constraints associated with t as having been immediately matched.

If t is a leaf node, then the search algorithm visits t and evaluates the con-
straint stored in t if any one of a set St of specific relations holds between Rq and
Rt. The specific set St associated with node t depends on the spatial constraint
stored in t. For example, if t stores a covers constraint with comparison region
X (bounded by t’s MBR Rt), then a search with query MBR Rq must visit t and
consider that covers constraint if Rq covers Rt or if Rq equals Rt. Notice that
these relations are evaluated between rectangles (i.e., MBRs), and can therefore
be checked in constant time without resorting to Algorithm 1, which is used
only at the point where individual constraints must be evaluated. Table 2 shows
the complete mapping between spatial constraints stored in leaf nodes of the
CR-tree and the corresponding set of MBR relations [11].

Thus, we can view the CR-tree as a means to reduce the set of constraints
that must be thoroughly checked using Algorithm 1. Moreover, the CR-tree does
not simply exclude constraints because they do not match, but also allows us
to immediately decide that some of those constraints do match, again without
resorting to Algorithm 1. In this sense, the CR-tree, unlike the R-tree from which
it is derived, is more than just a traditional search tree, but also a participant
in the evaluation process.
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Another important element of an R-tree is the splitting algorithm, which is
used to split nodes when they become too large due to the insertion of many
objects. In our CR-tree we use the quadratic-cost splitting algorithm [20], which
provides a good balance between simplicity and performance.

4.2 Simplification

Simplification is the process of removing redundant constraints from a forwarding
table. For example, a filter on integer values x �= 0 ∧ x > 10 can be rewritten
simply as x > 10 because x > 10 ⇒ x �= 0 for all x or, in other words, because
x �= 0 “covers” x > 10. We develop a similar form of simplification scheme for
2D spatial constraints. As is commonly done in the publish/subscribe literature,
we first define “covers” and “conflicts” relations between spatial constraints. Let
C1 and C2 be two spatial constraints defined by spatial relation rel1 and region
R1, and relation rel2 and region R2, respectively. We then say that C1 covers C2

iff X rel2 R2 ⇒ X rel1 R1 for all regions X . Similarly, we say that C1 conflicts
with C2 iff ¬(X rel1 R1 ∧X rel2 R2) for all regions X .

As is the case for basic data types, the covers and conflicts relations between
two spatial constraints C1 and C2 can be evaluated efficiently on the basis of
the topological relation between R1 and R2, and can therefore be used to sim-
plify predicates. Let P be a predicate consisting of a disjunction of n filters
f1, f2, . . . , fn, where each filter fi consists of a conjunction of mi constraints
Ci,1, Ci,2, . . . , Ci,mi . Pairwise redundant constraints in a filter, entire filters, and
pairwise redundant filters can now be identified and eliminated through the fol-
lowing simplification rules.

Rule 1. A filter fi can be removed from predicate P if, for any pair of con-
straints Ci,j and Ci,k in fi, Ci,j conflicts with Ci,k. This is because, from
the definition of the conflict relation, fi is always false.

Rule 2. If Ci,j and Ci,k are two constraints in the same filter fi, then Ci,j can
be removed if Ci,j covers Ci,k. This is because, from the definition of the
cover relation, any region that satisfies Ci,k also satisfies Ci,j .

Rule 3. Let fh and fi be two filters in predicate P . We can eliminate filter fi

from P if for all constraints Ch,k in fh there exists a constraint Ci,j in fj

such that Ch,k covers Ci,j . This is because, from the definition of the covers
relation, fi is satisfied by a subset of the messages that satisfy fh. This rule
can also be seen as the definition of a covering relation between filters.

We implement a simplification algorithm based on these rules. The implemen-
tation realizes the covers and conflicts relations for all combinations of spa-
tial relations in the intuitive way. For example, (x covered-by A) conflicts with
(x overlaps B) if (A disjoint B). We discuss the effectiveness of spatial simplifi-
cations as part of the experimental evaluation presented Section 5.

5 Evaluation

We now present an experimental evaluation of the matching performance and
general scalability of the spatial model and its implementation. In particular, we
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ask whether the absolute performance is acceptable and, more importantly, how
the matching time scales with the number of spatial constraints. For this purpose
we use both synthetic workloads and workloads derived from real GIS data. The
synthetic workloads are useful in highlighting the scalability of the matching
algorithm, especially in worst-case configurations, while the GIS workloads show
how the matching algorithm performs in realistic situations.

We also compare the approximate matching of our algorithm against the exact
matching of a polygon-intersection algorithm. Polygon intersection is a binary
decision problem that is unable to distinguish among the specific relations of the
region-connection calculus. In particular, a false result from polygon intersection
indicates either meets or disjoint, while a true result indicates either overlaps,
equals, inside, contains, covers, or covered-by. Despite this shortcoming, it is
important to consider polygon intersection, since it is a well-studied problem
in classical computational geometry having known efficient algorithms [3] and
well-engineered implementations.3 We use it as a performance benchmark.

Synthetic Regions. We generate synthetic regions, serving as spatial con-
straints or message attributes, within a rectangular universe U of size UX by
UY . We initially choose two points within U , uniformly at random, that repre-
sent the minimum bounding rectangle R for the region we generate. We then
select three or four points each on a separate segment on the perimeter of R.
We complete the generation of the region by adding points chosen uniformly
at random in R, up to a total of 20 points, and then order the points to form
the boundary of the region in such a way that the boundary has no intersecting
segments (as per Definition 1 in Section 2.1). Finally, we exclude regions with
an area smaller than 10% of the size of the universe U so as to obtain regions of
similar size and, therefore, a more diverse combination of topological relations.

Implementation. The experiments use an implementation of the spatial model
integrated within the Siena Fast Forwarding (SFF) matching framework4 and
executed with a sequential, single-threaded matching process on an Intel i5 pro-
cessor with 6GB of DDR3 memory. A crucial parameter in the implementation is
the linear point density D. The first set of experiments use a fixed point density
of 2000 points per universe half-length, that is D = 2000/(UX + UY ). Because
we use a square universe (UX = UY ), the chosen point density intuitively can be
seen as a 1000× 1000 pixel image. We experimented with other point densities
and found that the performance varies more or less linearly with the point den-
sity. In the second set of experiments, we study the trade off between accuracy
and performance of the matching algorithm under various point densities.

5.1 Worst-Case Performance and Scalability

In our first experiment we measure the time needed to match an input region
against synthetic workloads of increasingly larger sets of constraints. This exper-
iment is intended to evaluate the performance of Algorithm 1 and the impact of
3 http://www.cgal.org (CGAL: Computational Geometry Algorithms Library).
4 http://www.inf.usi.ch/carzaniga/cbn/forwarding/

http://www.cgal.org
http://www.inf.usi.ch/carzaniga/cbn/forwarding/


222 A. Konstantinidis, A. Carzaniga, and A.L. Wolf

 0

 100

 200

 300

 400

 500

 600

 0  2000  4000  6000  8000  10000

M
at

ch
in

g 
T

im
e 

(m
ill

is
ec

on
ds

)

Total Number of 2D Constraints

CGAL polygon intersection
CR-tree disabled
CR-tree enabled

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  2000  4000  6000  8000  10000

M
at

ch
in

g 
T

im
e 

(m
ill

is
ec

on
ds

)

Total Number of 2D Constraints

25 pred./simplifier disabled
15 pred./simplifier disabled
5 pred./simplifier disabled
25 pred./simplifier enabled
15 pred./simplifier enabled
5 pred./simplifier enabled

(a) (b)

Fig. 4. Performance of the matching algorithm: (a) with and without the CR-tree
constraint index enabled and (b) with and without spatial simplification enabled

the CR-tree index. To do so, we generate workloads consisting of N predicates
(N up to 10000), each composed of a single filter with a single constraint. All
constraints are on the same attribute and all messages contain the same single
attribute associated with a 2D region, so each message carries an input region
that must in principle be evaluated against all N constraints.

Figure 4a shows the performance of Algorithm 1 in isolation and together
with the CR-tree, and in comparison with an exact polygon-intersection algo-
rithm. Each data point represents the average matching time of several input
regions over several sets of the same number of constraints. The variability of the
matching time is minimal (1–2ms), so we do not show this in the plots. The solid
line represents a sequential execution of CGAL’s polygon-intersection algorithm
over a list of all the constraints. The dashed line represents the same sequential
execution of Algorithm 1, while the dotted line represents the use of the CR-tree
index to reduce the number of examined constraints.

With the point density used in this experiment, Algorithm 1 incurs an er-
ror rate of only 0.089% and runs about six times faster than the exact CGAL
polygon-intersection algorithm. Thus, the experiment shows that the approx-
imate algorithm offers a good combination of performance and accuracy. We
repeated this experiment with different point densities and found that the ap-
proximate algorithm is still faster than the exact algorithm with a point density
of 12000 points per universe half-length and a corresponding error rate of only
about 0.015%.

The experiment demonstrates that the absolute matching times are within
reasonable bounds. Notice that it represents an extreme worst-case scenario,
requiring the evaluation of thousands of constraints on the same attribute and
without the possibility of taking shortcuts. The results also show that the CR-tree
is effective in reducing the matching time of a linear scan. This, too, is a worst-
case scenario for the CR-tree, since we use regions that are large with respect to
the universe and, therefore, they do not lend themselves to an effective partition
under disjoint MBRs. In the experiment of Section 5.2 we see that when applied
to realistic GIS workloads the performance is substantially better.
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In a second experiment, shown in Figure 4b, we evaluate the performance
of the constraint index (Algorithm 1 within a CR-tree) in a scenario of more
articulated predicates. In particular, we construct workloads in which a total of
N constraints (N up to 10000) are distributed over 5, 15, and 25 predicates, each
consisting of filters of two constraints. Even though this experiment explores a
more realistic set of predicates, we still focus only on the performance of the
2D spatial components of the matching algorithm. Therefore, as in the first
experiment, we use a single attribute in all constraints and in all messages.

Each line in Figure 4b shows the matching time as a function of the total
number of constraints. We can see that the behavior of the SFF matcher ex-
tended with support for 2D spatial objects is consistent with that of the original
SFF matcher [8], and that the absolute matching times are also reasonable. In
particular, the matching times tend to be flat for larger and larger predicates.
This effect is not due to the 2D spatial constraint index, but rather to the struc-
ture of the SFF algorithm and also to the nature of the matching problem: with
fewer and larger predicates, a message is likely to match at least one filter for
all predicates, thereby cutting short the full evaluation.

The results in Figure 4b also show the effectiveness of the spatial simplifier.
The solid lines show the performance for non-simplified workloads, while the cor-
responding dashed lines show the performance under simplification. Notice that
the simplification method effectively accelerates the flattening of the matching
times. This is because as more filters (and constraints) are added to the same
predicate, more of those filters (and constraints) are likely to become redundant.

5.2 Accuracy and Performance in Realistic Configurations

To evaluate our algorithm in realistic configurations, we derive workloads from
three GIS data sets. The first contains 85550 polygons representing vegetation
in southern California, the second 17048 polygons representing natural features
(parks, forests, woods, water areas, etc.) in the Rhône-Alpes district of France,
and the third 4170 polygons representing buildings in central London.5

Using the process described at the beginning of this section we generate three
different types of input regions for placement into messages, referred to here as
A, B, and C. Type A represents regions that are relatively round and uniform
shapes, such as clouds and storms, having nearly square MBRs and at most
10 boundary points. Type B represents regions of irregular and more complex
shapes, such as the movement of herds and environmental hazards such as forest
fires. These regions exhibit correspondingly less-regular MBRs and between 30
and 50 boundary points. Finally, type C represents narrow and long regions,
described using up to five boundary points, such as the paths taken by aircraft
at high altitudes. The sizes of all three types of regions are chosen randomly to
have an MBR area between 1% and 25% of the universe.

We first study how the point density affects the accuracy of the matching
algorithm. We run the matching algorithm using 100 of each of the three types
5 We obtained the first data set from http://atlas.ca.gov, and the second two from
http://www.openstreetmap.org.

http://atlas.ca.gov
http://www.openstreetmap.org


224 A. Konstantinidis, A. Carzaniga, and A.L. Wolf

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  10  20  30  40In
cr

em
en

ta
l P

re
ci

si
on

 G
ai

ns
 (

%
) Vegetation in Southern California

type A
type B
type C

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  10  20  30  40

Point Density (thousands of additional points)

Natural Features in Rhône−Alpes

type A
type B
type C

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  10  20  30  40

Buildings in Central London

type A
type B
type C

Fig. 5. Incremental precision gain as a function of the point density

of input regions over each of the three GIS-derived sets of spatial constraints. We
vary the point density from 0 to 40000 points per universe half-length. Note that
these are boundary points considered by the matching algorithm in addition to
the points that define the boundary (so, a point density of 0 makes sense). For
each point density D we compare the results of the matching process for density
D with those using density D + 10000, and record the difference between the
two sets of matched predicates.

We plot the results of this analysis in Figure 5. At a high level we can see that
all the curves show very low differences and converge toward an exact match. To
appreciate the meaning of each value, consider an incremental precision gain of
0.02% at density D = 10000. That 0.02% can be interpreted as the probability
of the matching results differing by one predicate (matching in one case and not
matching in the other) at densities D = 10000 and D + 10000 = 20000.

We next evaluate the performance of the matching algorithm. For this ex-
periment we set the point density to D = 10000 (intuitively corresponding to a
5000 × 5000 universe). The experiments are set up according to two scenarios
corresponding to the two sets of experiments presented in Section 5.1. For the
first scenario, we construct a filter with one constraint from each polygon in the
GIS data set, choosing 2D operators uniformly at random, and then we assign
one filter per predicate. With one filter per predicate, this scenario is intended
to stress-test the matching algorithm with and without the CR-tree enabled. In
the more realistic second scenario, we construct 25 predicates by building filters
consisting of two constraints generated from the regions in the GIS data set, and
then simply combine the generated filters into the 25 predicates.

The results are reported in Table 3. The table shows the average matching
times of several input regions, for each input region type, and over the three data
sets. (Variance in matching times is minimal so not shown.) Notice that the re-
sults in both scenarios are consistent with the general qualitative characteristics
of the matching algorithm outlined in the synthetic workload experiments of
Section 5.1. However, in this more realistic case, the absolute performance of
the algorithm is substantially better, with total matching times of fractions of
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Table 3. Average matching times for GIS-derived workloads

Scenario 1 Scenario 2
1 filter per predicate 25 predicates
1 constraint per filter 2 constraints per filter

source number of region CR-tree simplifier
data set constraints type disabled enabled disabled enabled

Vegetation in
southern California

85550
A 1841.00 ms 73.00 ms 67.00 ms 0.18 ms
B 4000.00 ms 89.00 ms 78.00 ms 0.54 ms
C 1512.00 ms 7.00 ms 4.40 ms 0.12 ms

Natural features
in Rhône-Alpes

17048
A 951.00 ms 108.00 ms 59.00 ms 1.40 ms
B 1323.00 ms 93.00 ms 169.00 ms 6.40 ms
C 851.00 ms 7.00 ms 72.00 ms 0.53 ms

Buildings in
central London

4170
A 59.00 ms 1.40 ms 0.95 ms 0.75 ms
B 169.00 ms 6.40 ms 5.00 ms 1.24 ms
C 72.00 ms 0.53 ms 0.32 ms 0.05 ms

milliseconds. This is because regions within the GIS data sets represent real ob-
jects and, therefore, tend to overlap considerably less as well as tend more often
to be mutually disjoint than those of the worst-case synthetic workloads.

6 Conclusions

We have presented an enhancement to existing content-based publish/subscribe
systems with support for a 2D spatial data type and eight associated relational
operators. We described an algorithm for evaluating the spatial relations that
is founded on a dynamic discretization method. In order to make the use of
this new data type practical we developed an indexing structure for spatial
constraints, called the CR-tree, as well as a simplification method for eliminating
redundant spatial constraints. Our experimental evaluation demonstrates the
effectiveness and scalability of our approach when integrated into a state-of-the-
art publish/subscribe matching engine.

In future work we plan to further refine the CR-tree by exploring improved
methods for splitting nodes as the number of constraints grows. The method
we currently use is a generic one developed for the original R-tree spatial-object
index. We suspect that there might be more effective methods, possibly heuristic
in nature, tailored to an index of spatial constraints.
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Abstract. Many distributed applications rely on event correlation. Such
applications, when not built as ad-hoc solutions, typically rely on cen-
tralized correlators or on broker overlay networks. Centralized correlators
constitute performance bottlenecks and single points of failure; straight-
forwardly duplicating them can hamper performance and cause processes
interested in the same correlations to reach different outcomes. The lat-
ter problem can manifest also if broker overlays provide redundant paths
to tolerate broker failures as events do not necessarily reach all processes
via the same path and thus in the same order.

This paper describes FAIDECS, a generic middleware system for fair
decentralized correlation of events multicast among processes: processes
with identical interests reach identical outcomes, and subsumption rela-
tionships among subscriptions are considered for respectively delivered
composite events. Based on a generic subset of FAIDECS’s predicate
language, we introduce properties for composite event deliveries in the
presence of process failures and present novel decentralized algorithms
implementing these properties. Our algorithms are compared under var-
ious workloads to solutions providing equivalent guarantees.

Keywords: event, correlation, fair, reliable, multicast, decentralized.

1 Introduction

The abstraction of application events is useful not only for reasoning about
distributed systems [18], but also for building such systems [5,26].

Events: composition and correlation. Event correlation [8] enables higher-
level reasoning about interactions by supporting the assembly of composite events
from elementary events [20,19]. Traditional uses of correlation include intrusion
detection [17]; network monitoring [16] enables the improvement of resource
usage, e.g., in data centers. More recent application scenarios for correlation in-
clude embedded and pervasive systems [13], and sensor networks [22]. Complex
event processing (CEP) is a computing paradigm based on event correlation,
with applications to business process management and algorithmic trading.
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Challenges for event correlation middleware. Reasoning about event com-
position is, however, involving. Early work in active databases [6] explored syntax
and semantics of correlation, pinpointing options. Consider a sequence of events
e1
1 · e1

2 · e2
1, where ek

l is a the l-th received event (instance) of event type T k. This
sequence can be matched by a “subscription” correlating two event types T1

and T2 as [e1
1, e

2
1] (first received first) or as [e1

2, e
2
1] (most recent first). However,

corresponding systems are centralized and consider events to be unicast.
Many theoretical and practical efforts on event correlation in publish/sub-

scribe systems [5] consider decentralized setups and multicast but focus on ef-
ficiency or the number of aggregations, yielding only best-effort guarantees on
event delivery. Consider an online auction where the bidding price of a product
or advertisement slot is event-driven. If two processes participating in the auc-
tion observe the same events in different orders (e.g., one receives the sequence
above, the second one receiving e2

1 ·e1
2 ·e1

1), then the event correlation middleware
might be unfair to the first process if e2

1 has information that is critical to plac-
ing an optimal bid. Or, consider assembly line surveillance through two monitors
for fault tolerance. If they observe events differently, they might yield contra-
dicting reports or alarms. During decentralized event correlation, one might not
only expect that processes with identical subscriptions deliver identical sets of
events, but also that if the subscription of a first process pi “covers” that of a
second process pj, then pi would deliver anything that pj does. In production
chains, the same complex events triggering alarms can be combined with fur-
ther events for taking actions further down the chain or triggering more specific
alarms. Such subsumption is natural in publish/subscribe systems and even key
to scalability [5]. Of course, correlation-based systems can currently be designed
individually to achieve such properties, e.g., by using proxy processes to merge
and multiplex event streams to replicas to achieve agreement; corresponding so-
lutions are hardly generic though, and can introduce bottlenecks to performance
and dependability.

Contributions. This paper presents FAIDECS (FAI r Decentralized Event
Correlation System – “Fedex”), a middleware system for fair decentralized cor-
relation of events multicast among processes. Our exact contributions are:

– After presenting related work (Section 2) and introducing the system model
and assumptions (Section 3), we present clear and feasible properties for
aggregated deliveries of sets of events based on a concise and generic event
correlation sub-grammar in FAIDECS (Section 4). While in single event
(message) delivery scenarios, several families of properties have been pro-
posed and investigated (e.g., agreed delivery [14], probabilistic delivery [4],
ordering properties [11]), corresponding properties for the better understand-
ing of correlation-based systems and ensuring “logical correctness and in-
tegrity” [21] are namely still lacking. Our properties provide fairness in the
face of failures of processes responsible for merging events: either all or none
of the depending processes cease to receive the desired events, while com-
mon overlays (e.g., [19]) might continue to deliver differing sets of events
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to subsets of interested processes. Our properties also include a notion of
subsumption on correlation patterns.

– We introduce novel pragmatic algorithms implementing our delivery proper-
ties (Section 5). For illustration purposes, we first describe simple algorithms
based on a group broadcast black box. Then we present decentralized solu-
tions implemented in FAIDECS based on a distributed hash-table (DHT),
and present the use of lightweight redundancy mechanisms used for fault
tolerance.

– An implementation of our algorithms in FAIDECS is evaluated under dif-
ferent workloads (Section 6). We quantify the benefits of our decentralized
approach by comparing them with sequencer-based and token-based total
order broadcast protocols providing comparable properties.

We conclude with final remarks in Section 7. Due to space limitations, we refer
to a companion technical report [24] for discussions of alternative properties,
or a formal proof that agreement on composite events requires a total order on
individual events or an equivalent oracle.

2 Related Work

Many early approaches for composite event detection are based on active data-
bases that employ centralized detection of events (e.g., [6]). A composite event
is a pattern of events that a subscriber may be interested in. A composite sub-
scription is a pattern describing the interests of the subscriber.

Event correlation has been vigorously investigated in the context of content-
based publish/subscribe systems. Most such systems rely on a broker network for
routing events to the subscribers (e.g., SIENA [5] and Gryphon [2]). Advertise-
ments are typically used to form routing trees in order to avoid propagating
subscriptions by flooding the broker network. Upon receiving an event e, a bro-
ker determines the subset of parties (subscribers and brokers) with matching
interests, and forwards e to them. Subscription subsumption [5] is used to sum-
marize subscriptions and avoid redundant matching on brokers and redundant
traffic among them. If any event e that matches a first subscription also matches
a second one, then the latter subscription subsumes the former one.

A broker network can be used to gather all publications for the elementary
subscriptions and perform correlation matching. A successful match yields a
composite event which is delivered to interested subscribers, where no guaran-
tees are typically provided on correlation. If the events matching a composite
subscription shared by two subscribers are produced by several publishers, then
unless the subscribers are connected to a same edge broker, they may receive
the events through different routes. This leads to different orders among the
events and consequently to different composite events for the two subscribers.
PADRES [19] performs composite event detection for each subscription at the
first broker that accumulates all the individual subscriptions, providing no global
properties. In the context of Hermes [20], complex event detectors using an inter-
val timestamp model are proposed as a generic extension for existing middleware
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architectures. Hermes uses a DHT to determine rendezvous nodes for publishers
and subscribers; however, this can create single points of failure. The framework
we propose is inspired by Hermes in that our framework uses specific merger
nodes for specific combinations of types, determined by a DHT. However, we
replicate the mergers for availability and connect them such as to ensure agree-
ment, ordering and subsumption on composite events.

Stream processing is a paradigm closely related to event correlation and much
investigated in the last few years. Research around database-backed systems
like Aurora [1] or Borealis [23] has led the path. These systems, however, focus
on correlation over streams of events with respect to single destinations and
do not consider multicasting. Straightforwardly merging two same streams at
two different nodes leads to different outcomes. StreamBase1 is a commercial
offspring of these efforts. Cayuga [8] is a generic correlation engine supporting
correlation across streams and is based on a very expressive language but is
centralized. The Gryphon publish/subscribe systems has similarly added support
for streams [26]. Again, the focus is efficiency, leaving properties unclear.

3 Preliminaries

We assume a system Π of processes, Π={p1, ..., pu} connected pairwise by reli-
able channels [3] offering primitives to send (non-blocking) and receive (receive)
messages. We consider a crash-stop failure model [14], i.e., a faulty process may
stop prematurely and does not recover. We assume the existence of a discrete
global clock to which processes do not have access and that an algorithm run
R consists in a sequence of events on processes. That is, one process performs
an action per clock tick which is either of a (a) protocol action (e.g., receive),
(b) an internal action, or (c) a “no-op”. A process is faulty in a run R if it fails
during R, otherwise correct.

A failure pattern F is a function mapping clock times to processes, where
F (t) gives all the crashed processes at time t. Let crashed(F ) be the set of
all processes ∈ Π that have crashed during R. Thus, for a correct process pi,
pi ∈ correct(F ) where correct(F ) = Π − crashed(F ) [14].

For brevity and clarity, we adopt in the following a more formal notation for
properties than common. Consider, for instance, the well-known problem of Total
Order Broadcast (TOBcast) [14] defined over primitives to-broadcast and to-

deliver, which will be used for comparison later on. We denote to-deliver
i(e)t

as the TO-delivery of a message conveying an event e by process pi at time t,
and similarly, to-broadcast

i(e)t denotes the TO-broadcasting of e by pi at
time t. We elide any of i, t, or e when not germane to the context. We write ∃a
for an action a (e.g., send, to-broadcast) as a shorthand for ∃a ∈ R. The
specification of Uniform TOBcast thus becomes:

TOB-No Duplication: ∃to-deliver
i(e)t ⇒ �to-deliver

i(e)t′ | t′ �= t

TOB-No Creation: ∃to-deliver(e)t ⇒ ∃to-broadcast(e)t′ | t′ < t

1 http://www.streambase.com/.

http://www.streambase.com/
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TOB-Validity: ∃to-broadcast
i(e) ∧ pi ∈ correct(F ) ⇒ ∃to-deliver

i(e)

TOB-Agreement: ∃to-deliver
i(e) ⇒ ∀pj ∈ correct(F )\{pi},∃to-deliver

j(e)

TOB-Total Order: ∃to-deliver
i(e)ti ,to-deliver

i(e′)t′
i
, to-deliver

j(e)tj ,

to-deliver
j(e′)t′

j
⇒ (ti < t′i ⇔ tj < t′j)

4 FAIDECS Model

In this section, we specify composite events in FAIDECS and the properties
achieved for corresponding deliveries (deliver) with respect to individually
generated (multicast) events. In contrast to traditional settings, deliver is
parameterized by a “subscription” Φ and delivers ordered sets of typed mes-
sages representing events.

4.1 Predicate Grammar

Sets of delivered events — relations — represent events aggregated according to
specific subscriptions. Subscriptions are combinations of predicates on events in
disjunctive normal form based on the following grammar (extended BNF):

Disjunction Ψ ::= Φ | Φ ∨ Ψ Operation op ::= < | > | ≤ | ≥ | = | �=
Conjunction Φ ::= ρ | ρ ∧ Φ Predicate ρ ::= T[i].a op v | T[i].a op T[i].a

| T[i] | �
T[i].a denotes an attribute a of the i-th instance of type T (T[i]) and v is a
value. As syntactic sugar, we can allow predicates to refer to just T , which can
be automatically translated to T [1]. We may use this in examples for simplicity.
A type T is characterized by an ordered set of attributes [a1, ..., an], each of
which has a type of its own – typically a scalar type such as Integer or Float.
An event e of type T is an ordered set of values [v1, ..., vn] corresponding to the
respective attributes of T . We assume that types of values in predicates conform
with the types of events (e.g., through static type-checking [9]). T (e) returns the
type of a given event e. It is important to note that we do not introduce a set of
uniquely identified types {T 1, ..., T w} as we do for processes. This keeps notation
more brief in that we can use [T 1, ..., T k] to refer to an arbitrary ordered set of
k types, as opposed to something of the form [Tj1 , ..., Tjk

].
To later simplify properties, we introduce the empty predicate �, which triv-

ially yields true. A predicate that compares a single event attribute to a value or
two event attributes on the same event, i.e., on the same instance of a same type
(e.g., Tk[i].a op Tk[i].a′), is a unary predicate. When two distinct events (two
distinct types or different instances of the same type) are involved, we speak of
binary predicates (Tk[i].a op Tl[j].a′, k �= l∨i �= j). We also allow wildcard pred-
icates of the form T[i] to be specified; such predicates simply specify a desired
type T[i] of events of interest. T[i] implicitly also declares T[k] ∀k ∈ [1..i− 1] if
not already explicitly declared as part of other predicates in the subscription.

We assume, for presentation brevity, a single subscription per process. The dis-
junction representing process pi’s subscription is represented as Ψ (pi).



FAIDECS: Fair Decentralized Event Correlation 233

We also rule out disjunctions with several identical conjunctions. In practice, we
can simply remove all but one copy. By abuse of notation but unambiguously,
we sometimes handle disjunctions (or conjunctions) as sets of conjunctions (or
predicates). We write, for instance, ρl ∈ Φ ⇔ Φ = ρ1 ∧ ... ∧ ρk with l ∈ [1..k].

For the following, consider an example subscription ΨS for an increase in three
successive stock quotes after a quarterly earnings report:
ΨS = StockQuote[0].time > EarningsReport[0].time ∧

StockQuote[1].value > StockQuote[0].value ∧
StockQuote[2].value > StockQuote[1].value

We would probably want to introduce arithmetic operators on values [15] to
express, e.g., that the local publication time of the first stock quote is within
some interval of that of the earnings report. Our grammar can be easily extended
by such deterministic constructs but is intentionally kept simple for presentation
and to illustrate the independence of our algorithms from specific grammars.

4.2 Predicate Types and Evaluation

We assume that a deterministic order ≺ exists within subscriptions based on the
names of event types, attributes, etc., which can be used for re-ordering predi-
cates within and across conjunctions. This ordering can be lexical or based on
priorities on event types and is necessary for even simplest forms of determinism
and agreement. We consider subscriptions to be already ordered accordingly.

The number of events involved in a subscription is given by the number of
its types and corresponding instances. More precisely, the types involved in a
subscription are represented as sequences as they are ordered, and the same type
can be admitted multiple times. Such sequences can be viewed as the signatures
of predicates, defined as follows:

T(Φ ∨ Ψ) = T(Φ) � T(Ψ) T(T[i].a op v) = T(T[i])
T(ρ ∧ Φ) = T(ρ) � T(Φ) T(�) = ∅
T(T1[i].a1 op T2[j].a2) = T(T1[i]) � T(T2[j]) T(T[i]) = [T, ..., T︸ ︷︷ ︸

i×

]

� stands for in-order union of sequences defined below:

∅ � [T, ...] = [T, ...] [T, ...] � ∅ = [T, ...]

[T1, ..., T1︸ ︷︷ ︸
i×

, T ′
1, ...]

� [T2, ..., T2︸ ︷︷ ︸
j×

, T ′
2, ...]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[T1, ..., T1︸ ︷︷ ︸
i×

]⊕ ([T ′
1, ...] � [T2, ..., T2︸ ︷︷ ︸

j×

, T ′
2, ...]) T1 ≺ T2

[T2, ..., T2︸ ︷︷ ︸
j×

]⊕ ([T ′
2, ...] � [T1, ..., T1︸ ︷︷ ︸

i×

, T ′
1, ...]) T2 ≺ T1

[T1, ..., T1︸ ︷︷ ︸
max(i,j)×

]⊕ ([T ′
1, ...] � [T ′

2, ...]) T1 = T2

Above, ⊕ represents simple concatenation. In the previous example, the types
involved are thus [EarningsReport, StockQuote, StockQuote, StockQuote].

Any subscription Ψ thus involves a sequence of event types T(Ψ)=[T1, ..., Tn],
where we can have for i, j ∈ [1..n], i < j such that ∀k ∈ [i..j], Tk = Ti = Tj . That
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is, we can have subsequences of identical types. Such a subsequence represents a
stream of events of the respective type of length j− i+1 (Tk[1], ..., Tk[j− i+1]).

A subscription is correspondingly evaluated for an ordered set of
events [e1, ..., en], where ei is of type T i. The evaluation of a conjunction Φ
on a relation is written as Φ[e1, ..., en]. For evaluation of an attribute a on an
event ei, we write ei.a. Evaluation semantics for predicates are defined as follows:

(Φ ∨ Ψ)[e1, ..., en] = Φ[e1, ..., en] ∨ Ψ[e1, ..., en] (T)[e1, ..., en] = true

(ρ ∧ Φ)[e1, ..., en] = ρ[e1, ..., en] ∧ Φ[e1, ..., en] (�)[e1, ..., en] = true

(T[i].a op v)
[e1, ..., en] =

⎧⎪⎨
⎪⎩

ek+i−1.a op v T (ek) = T ∧ (T (ek−1) �= T

∨ (k − 1) = 0)
false otherwise

(T1[i].a1 op T2[j].a2)
[e1, ..., en] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ek+i−1.a1 op el+j−1.a2 T (ek) = T1 ∧ (T (ek−1) �= T1

∨ (k − 1) = 0) ∧ T (el) = T2

∧ (T (el−1) �= T2 ∨ (l − 1) = 0)
false otherwise

For brevity we may write simply Φ[...] for Φ[...] = true.
A process pi delivers events in response to its subscription Ψ (pi) through

deliver. We consider this primitive to be generically typed, i.e., we write de-

liverΦ([e1, ..., en]) to deliver a relation [e1, ..., en], where ej is of type T j such
that T(Φ)=[T1, ..., Tn]. deliver

i
Φ([e1, ..., en])t denotes a delivery on process pi in

response to Φ at time t, and multicast
i(e)t defines the multicast of an event e

by pi at time t. Again i, t, etc. may be omitted when not germane to the context.

4.3 Properties

We now present properties for composite events in FAIDECS defined over primi-
tives multicast and deliver. From here on, deliver refers to deliver (vs. TO-
deliver for to-deliver), and multicast refers to multicast (vs. TO-broadcast).
See [24] for detailed discussions of alternative properties.

Basic safety properties. The basic safety properties for FAIDECS are MDM-

No Duplication, MDM-No Creation and Admission as shown below:
MDM-No Duplication: ∃deliver

i
Φ([..., e, ...])t ⇒ �deliver

i
Φ([..., e, ...])t′ | t′ �= t

MDM-No Creation: ∃deliverΦ([..., e, ...])t ⇒ ∃multicast(e)t′ | t′ < t

Admission: ∃deliver
i
Φ([e1, ..., en]) | T(Φ) = [T1, ..., Tn] ⇒ Φ ∈ Ψ(pi) ∧ Φ[e1, ..., en] ∧

∀k ∈ [1..n] : T (ek) = Tk

The MDM-No Duplication property implies that a same event is delivered at
most once for a given conjunction, which may be opposed to certain systems that
allow a same event to be correlated multiple times. Our property could easily be
substituted to allow a delivery for every instance of a type in a given conjunction.
We omit this for simplicity of the presented properties and algorithms. MDM-

No Creation is similar to TO-broadcast specifications [14] in that an event
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may only be delivered if multicast. Admission ensures type safety and that all
events in a relation match the subscription.

Liveness. Admission can trivially hold while not delivering anything. We have
to be careful about providing strong delivery properties on individually multicast
events though, as events may depend on others to match a given conjunction.
Nonetheless, we want to rule out bogus implementations which simply discard
all events. We thus propose the following complementary liveness properties:
Conjunction Validity: ∃multicast(ek

l ), k ∈ [1..n], l ∈ [1..∞] ∧ pi ∈ correct(F ) ∧
∃Φ ∈ Ψ(pi) |Φ[e1

l , ..., e
n
l ] ⇒ ∃deliver

i
Φ([...])tj | j ∈ [1..∞]

Event Validity: ∃multicast
i(ex),multicast

k,l(ek
l ), k ∈ [1..n]\x, l ∈ [1..∞]

{pi, pj , pk,l} ⊆ correct(F ) |Φ ∈ Ψ(pj) ∧ T(Φ) = [T1, ..., Tn] ∧ ∀z ∈ [w..y],
Tz = T (ex) ∧ �(T (ex)[x − w + 1].a1 op T[r].a2) ∈ Φ | (T �= T (ex)∨ r �= x−w+1) ∧
Φ[e1

l , ..., e
x−1
l , ex, ex+1

l , ..., en
l ] ⇒ ∃deliver

j
Φ([..., ex, ...])

These two properties handle the two possible cases that can arise. The first prop-
erty deals with dependencies across events and can be paraphrased as follows:
“If for a correct process pi, there is an infinite number of relations of match-
ing events that are successfully multicast, then pi will deliver infinitely many
such relations.” This property is reminiscent of the Finite Losses property
of fair-lossy channels [3]. It allows matching algorithms to discard some events
for practical purposes such as agreement and ordering, yet ensures that when
matching events are continuously multicast, a corresponding process will contin-
uously deliver. From the example presented in Section 4.1, as long as events of
both types are inifinitely published such that infinitely often, three successive,
increasing stock quotes are multicast after an earnings report, there will be an
infinite number of delivered relations.

Event Validity provides a property analogous to validity for single-message
deliveries (e.g., TOBcast): If an event is multicast by a correct process pi, and
its delivery in response to a conjunction on some correct process pj is not con-
ditioned by binary predicates with other event types, then the event must be
delivered by pj if matching events of all other types are continuously multicast.
This latter condition is necessary because the delivery of the event, even in the
absence of binary predicates, requires the existence of other events (by nature of
correlation). The condition also ensures that any unary predicates on the respec-
tive event type are satisfied. Note that in the case of multiple instances of that
type, for each of which there are only unary predicates that match, the property
does not force an event to be delivered more than once as the position of the
event is not fixed in the implied delivery. The example in Section 4.1 does not
present a unary predicate, and thus would not be affected by this property. If
the subscription ΨS were extended to trigger only if the value of the U.S. dollar
is below some value v as in Ψ ′

S = ΨS ∧ USDollar.value < v, then any event
matching this predicate will be delivered with the entire relation given by ΨS .

Note also that none of these properties is impacted by the presence of multiple
instances of a same type in a conjunction. An infinite flow of events of some type
implies a multiple (a finite number) of infinite flows of that type.
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Agreement. The properties so far ensure that as long as matching events are
being multicast, processes will eventually deliver relations. We are, however, in-
terested in stronger properties for these delivered relations, which ensure fairness
for relations delivered across processes. We define Covering Agreement:

Covering Agreement: ∃deliver
i
Φ∧Φ′([e1, ..., en, ...]) | ((T(Φ) = [T1, ..., Tn])∩T(Φ′)) =

∅ ⇒ ∀pj ∈ correct(F )\{pi} | Φ ∈ Ψ(pj) : ∃deliver
j
Φ([e1, ..., en])

Subsumption only allows “extending conjunctions to the right” as determinism
requires some given order for matching. Intuitively, subsumption in the presence
of binary predicates is limited since, when comparing two subscriptions with
same types, an event of a first type might match both subscriptions without
implying that the same holds for a second event.

Note that Covering Agreement is not defined in a symmetric way (with
Φ ∧ Φ′′ ∈ Ψ(pj)), as the presence of a matching set of events for a conjunction
Φ′ does not imply a timely or even eventual occurrence of a matching set for
another sub-relation Φ′′ conjoined by pj with Φ.

Thus, the example subscriptions ΨS , as defined in Section 4.1, and Ψ ′
S , defined

in 4.3, would exhibit the necessary conditions for Covering Agreement. That
is, the common predicates over the EarningsReport and StockQuote types
would yield the same (sub)-relations for ΨS and Ψ ′

S , where Ψ ′
S would deliver

relations containing the above with an additional event of type USDollar.

4.4 Total Order

Intuitively, and as we will illustrate in the following sections, a total order on
individual events can be used to achieve agreement on relations. In fact, it is
necessary to do so (see [24] for a formal proof). On the upside, this can be ex-
ploited to provide corresponding relation-level properties. We define three types
of total order properties below:

Event Total Order: ∃deliver
i
Φ([..., e, ...])ti ,deliver

i
Φ([..., e′, ...])t′

i
,

deliver
j
Φ′([..., e, ...])tj ,deliver

j
Φ′([..., e

′, ...])t′j |T(e) = T(e′) ⇒ (ti < t′i ⇔ tj < t′j)

Conjunction Total Order: ∃deliver
i
Φ∧Φ′([e1, ..., en, ...])ti ,

deliver
i
Φ∧Φ′([e′1, ..., e

′
n, ...])t′

i
,deliver

j
Φ∧Φ′′([e1, ..., en, ...])tj ,

deliver
j
Φ∧Φ′′([e

′
1, ..., e

′
n, ...])t′

j
| ((T(Φ) = [T1, ..., Tn])∩T(Φ′)) = ∅ ∧ (T(Φ)∩T(Φ′′)) =

∅ ⇒ (ti < t′i ⇔ tj < t′j)

Disjunction Total Order: ∃deliver
i
Φ([e1, ..., en])ti ,deliver

i
Φ′([e′1, ..., e

′
m])t′i ,

deliver
j
Φ([e1, ..., en])tj ,deliver

j
Φ′([e

′
1, ..., e

′
m])t′

j
⇒ (ti < t′i ⇔ tj < t′j)

None of the properties includes any of the others. Event Total Order ensures
that there is a total (sub-)order on the events of a same type. Conjunction To-

tal Order ensures that (sub-)relations delivered to identical (sub-)conjunctions
are delivered in a total order. An implementation which never enforces Con-

junction Total Order, i.e., delivers no two same relations on two processes
with identical (sub-)conjunctions, could still ensure Event Total Order. Per-
haps more obvious is that, inversely, Event Total Order does not imply
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Conjunction Total Order. Disjunction Total Order further sets our
model apart from many single-event delivery multicast settings (e.g., traditional
publish/subscribe), where subscriptions are conjunctions, and disjunctions are
viewed as being expressed independently through multiple conjunctions. Our
property strives for total order across relations delivered to distinct conjunc-
tions in a same disjunction.

5 Algorithms

We now present ways to implement the properties proposed in the previous
section. For illustration purposes, we first outline an approach relying straight-
forwardly on a total order across multicast events of all types. Then, we present
novel decentralized algorithms achieving the same properties, leveraging our no-
tion of subscription subsumption.

5.1 Total Order Broadcast Black Box

A straightforward solution for deterministic event correlation across all pro-
cesses is to rely on a Total Order Broadcast “black box,” with primitives to-

broadcast and to-deliver for individual events, ensuring that all correct
processes eventually TO-deliver all TO-broadcast events in the same order. To
multicast an event e of any type, a process simply performs to-broadcast(e);
a to-deliver(e) is handled in a deterministic manner described shortly. Many
implementations exist, tolerating different failure patterns [7].

Conjunctions. For simplicity, we first focus on single conjunctions for the algo-
rithm in Figure 1 before expounding on generic disjunctions. That is, subscrip-
tion Ψ i of process pi consists in a single conjunction Φi. Disjunction Total

Order, in this case, becomes subsumed by Conjunction Total Order.
The algorithm in Figure 1 uses first received matching semantics and pre-

fix+infix disposal. In short, the former means that events are matched on a
process in the order received by that process. The latter implies the following:
Upon a successful match [e1, . . . , en], for each event ei, all events of the same
type received prior to ei are discarded via the garbage collection mechanism
dequeue. These semantics are further elaborated on below.

Each process pi maintains one queue Q per event type in its conjunction
Φ=Ψ (pi). For example, for a conjunction Φ = ρ1∧ρ2 where ρ1 = T1.a1 < T2.a2

and ρ2 = T1.a1 < 20, the subscriber maintains one queue for events of type T 1

and one for events of type T 2. When TO-delivering an event, pi will loop once
by line 20 and first checks whether the type of the event is in pi’s subscription.
If so, pi attempts to enqueue the event. Q[T (e)] ⊕ e denotes the appending
of event e to the queue of type T (e). The enqueue primitive returns true if
the event has been enqueued, which means that it satisfies all unary predicates
on the respective types in the conjunction. Then pi proceeds to matching. Any
single received event may complete up to one relation. If a match [e1, . . . , en]
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Executed by every process pi

1: init
2: Ψ ← Φ1 ∨ . . . ∨ Φo

3: Φl ← ρ1 ∧ . . . ∧ ρm

4: Ql[T] ← ∅
5: To multicast(e):
6: to-broadcast(e)

7: function match ([e′
1, ..., e′

n], Φ, Q)
8: T ← Tn+1 | T(Φ) = [T1, ..., Tn+1, ...]
9: l ← max(j |Q[T] = e1 ⊕ ...⊕ ej ⊕ ...⊕ eh) |

∃k ∈ [1..n] : ej = e′
k

10: for all k = (l + 1)..h do
11: if |T(Φ)| = n + 1 then
12: if Φ[e′

1, ..., e′
n, ek] then

13: return [e′
1, ..., e′

n, ek]
14: else
15: E ← match([e′

1, ..., e′
n, ek], Φ, Q)

16: if E �= ∅ then
17: return E
18: return ∅

19: upon to-deliver(e) do
20: for all Φl ∈ Ψ |T (e) ∈ T(Φl) in order do
21: if enqueue(e, Φl, Ql) then
22: [e1, ..., ek] ← match(∅, Φl, Ql)
23: if k �= 0 then
24: dequeue([e1, ..., ek], Ql)
25: deliverΦl

([e1, ..., ek])

26: function enqueue (e, Φ, Q)
27: win ← max(j | ∃...T (e)[j].a... ∈ Φ)
28: if ∀j = 1..win ((∃ρ = (T (e)[j].a op v) ∈

Φ | ¬ρ[e]) ∨ (∃(ρ = T (e)[j].a op
T (e)[j].a′) ∈ Φ | ¬ρ[e])) then

29: return false
30: else
31: Q[T (e)] ← Q[T (e)] ⊕ e
32: return true

33: procedure dequeue([e1, ..., em], Q)
34: for all Q[T] = ... ⊕ ek ⊕ e ⊕ ..., k ∈ [1..m]

do
35: Q[T] ← e ⊕ ...

Fig. 1. Conjunctions/disjunctions with Total Order Broadcast

is identified, the corresponding events are discarded (dequeue) and for each
event ei, all preceding events of the same type are discarded from the respective
queue for that type. match iterates through the queues deterministically. The
semantics attempt to find the first instance of the first type in Φ for which there
are events of the remaining types with which Φ is satisfied. Among all such
possibilities, the algorithm recursively seeks for a match with the first instance of
the second type in Φ, etc. until a match is found or all possibilities are exhausted.
For multiple instances of a same type, a first instance is recursively matched
with the first follow-up instance in the same queue until the needed number of
instances is found for that type or the queue is exhausted.

Assuming that the underlying TOBcast primitive ensures TOB-No Cre-

ation and TOB-No Duplication (see Section 3), it is easy to see how the algo-
rithm of Figure 1 ensures the corresponding MDM-No Creation and MDM-

No Duplication properties defined in Section 4.3. An event e, matching all
unary predicates of a conjunction Φ, is successfully added to the corresponding
queue Q[T (e)] in enqueue (line 31, Figure 1). The only way in which e can be
removed (and delivered) is together with a matching set of other events fulfilling
Φ (line 23, Figure 1), thus ensuring Admission. If matching sets of such events
are continuously TO-broadcast, then a match will eventually be determined at
line 12 thus ensuring Event Validity. Conjunction Validity holds by a
similar line of reasoning. The first matching, together with prefix+infix dis-
posal, and the independent handling of events of distinct types ensures Event

Total Order. If two processes pi and pj define conjunctions Φ ∧ Φ′ and Φ
respectively, as long as Φ and Φ′ are type-disjoint, then events that match with
Φ are independent of any events that match with Φ′. Thus, if there is a match-
ing relation for pi, there is a subset of the relation for which Φ is true. Since
garbage collection is deterministic and is triggered every time an event of a type
in T(Φ) is TO-delivered and in the same order on pi and pj with respect to those
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deliveries, pi and pj will handle respective events identically, ensuring Cover-

ing Agreement. Similarly, Conjunction Total Order holds as all processes
TO-deliver all relevant events. When pi identifies a match for Φ∧Φ′, with Φ and
Φ′ type-disjoint, pj will have TO-delivered the respective subset of events in Φ
already in the same sub-order and thus delivers the respective sub-relations in
the same order with any events identified for a Φ′′ type-disjoint with Φ.

Disjunctions. When the subscription is a disjunction of several conjunctions, a
process maintains one event queue per event type per conjunction. For example,
for a disjunction Ψ = Φ1 ∨Φ2 where T(Φ1)=T(Φ2)=[T1, T2], a process maintains
two queues for type T 1 and then two queues for type T 2, one each for Φ1 (Q1[T1]
and Q1[T2]) and for Φ2 (Q2[T1] and Q2[T2]).

Figure 1 supports multiple conjunctions in a single disjunction. The primary
distinction is in the response to TO-deliveries. The primitive dispatches events
to conjunctions in order of subscriptions. In contrast to subscriptions of one
conjunction, an event can lead to multiple matches and deliveries.

Because the matching is performed deterministically, as explained previously
for a given conjunction, and all processes enqueue the same sets of events in
the same order, Covering Agreement across any two conjunctions is met for
the same reasons as for single conjunctions. This property would also be met by
any unordered dispatching for multiple conjunctions. The other properties estab-
lished for conjunctions remain valid due to the duplication of events appearing
in distinct conjunctions of a same subscription.

Disjunction Total Order is met as any pi and pj defining two identical
separate conjunctions TO-deliver the respective events (possibly interleaved by
those for other conjunctions in Ψ (pi) and Ψ (pj) respectively) in the same order.
Thus, the correlation for respective relations occurs in the same order.

A simple optimization of the algorithm for subscriptions containing several
conjunctions Φ1,...,Φm with a common event type T , omitted for brevity, consists
in sharing the queue for T across conjunctions. An event in a queue is then tagged
by the index k of a conjunction Φk to indicate that the event has previously been
used in a match and delivered for Φk. Earlier events of that type should then
also be tagged with k. Events with tags {1, ..., m} may then be discarded. Also,
the portrayed matching algorithm performs an exhaustive search and is thus
not efficient; however, it suffices to illustrate the relevant properties and can be
represented concisely. More elaborate and efficient matching algorithms exist,
which offer the same semantics. A common approach consists in storing partial
matches in specialized data-structures to avoid matching a given event multiple
times with same events (cf. [9]). In our implementation of FAIDECS and all
evaluated algorithms, we make use of the Rete [10] matching algorithm.

5.2 FAIDECS Decentralized Ordered Merging

One of the simplest and most popular approaches in practice for Total Order
Broadcast consists in a sequencer, which orders all events. As long as the se-
quencer remains available (e.g., through replication), the properties presented
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T1 Λ T2

T1 Λ T2 Λ T3

T1 Λ T2 Λ T3 Λ ... Λ Tk

T1 T2 T3 Tk

T1 Λ T2 Λ T4

T4
 

 

 

 

 

 

 

 

 

 

Fig. 2. T 1∧...∧T j denotes the conjunc-
tion merger for the respective types
�[T1, ...Tj ] (single instance per type)

Fig. 3. Small-scale FAIDECS merger repli-
cation. Dotted ovals are “logical” mergers;
circles are processes. L denotes the leader.

earlier hold under respective assumptions on failure patterns. A Consensus-based
textbook Total Order Broadcast [14] yields the same properties with much better
fault tolerance (typically a minority of all processes may fail), yet with a higher
overhead. We now present a decentralized solution implementing the same prop-
erties, yet with much better scalability characteristics than both and inherently
better fault-tolerance than a sequencer-based approach. The solution assumes
a distributed hashtable (DHT) or similar mechanism for uniquely identifying a
process for a given “role.” Lightweight replication mechanisms used for fault-
tolerance of such roles are discussed separately thereafter.

Conjunctions. We first describe an algorithm focusing on single conjunctions,
providing the same properties as that of Figure 1. All processes with conjunctions
on a sequence of event types [T1, ..., Tk] send their subscriptions to a same process,
identified as pj=process( [T1, ..., Tk]), responsible for handling all conjunctions
on the involved sequence of types without duplicates2:

 [T1, ..., T1, T2, ...] = [T1]⊕  [T2, ...]

The function process relies on a DHT (e.g., a deterministic lookup facility)
to deterministically identify such responsible processes, called mergers. Lodged
at the root of the thereby created overlay network (see Figure 2) are mergers
responsible for individual event types T 1, T 2, etc. To ensure the properties with
respect to extensions of conjunctions to the right, events undergo an ordered
merge by type where a merger pj=process( [T1, ..., Tk]) gets events of types
T 1, ..., T k from two processes: those identified as process( [T1, ..., Tk−1]) and
process([Tk]). We term processes in the role of subscribers/publishers as clients.

Figure 4 presents the algorithm for merging event types and handling sub-
scriptions corresponding to the merged types. Figure 5 presents the algorithm
2 We could use different mergers but deduplication simplifies the algorithm.
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Executed by every process pi=process(�[T1, ..., Tk])
1: init
2: left ← process([T1, ..., Tk−1])
3: right ← process([Tk])
4: subs[pj ]
5: kids[pj ]
6: initparents()

7: procedure initparents()
8: Ψ ′ ← ∨

Ψ∈kids∪subs Ψ\
{ρ ∈ Ψ |T(ρ) �∈ {[T1], ..., [Tk−1]}}

9: send(con, Ψ ′) to left
10: Ψ ′′ ← ∨

Ψ∈kids∪subs Ψ\
{ρ ∈ Ψ |T(ρ) �= [Tk]}

11: send(con, Ψ ′′) to right

12: upon receive(con, Ψ) from pj do
13: kids[pj ] ← Ψ
14: initparents()

15: upon receive(sub, Φ) from pj do
16: subs[pj ] ← Φ\{ρ ∈ Φ | |T(ρ)| > 1}
17: initparents()

18: upon receive(ev, e) do
19: for all Ψ = kids[pj ] do
20: if ∃l, Φ ∈ Ψ | ∀ρ = T (e)[l]... ∈ Φ : ρ[e]

then
21: send(ev, e) to pj

22: for all Φ = subs[pj ] do
23: if ∃l | ∀ρ = T (e)[l]... ∈ Φ : ρ[e] then
24: send(ev, e) to pj

Fig. 4. Ordered merging for conjunctions: mergers

Executed by every pi. Reuses enqueue, match, dequeue of Figure 1

1: init
2: Ψ ← Φ
3: Φ ← ρ1 ∧ . . . ∧ ρm

4: Q[T] ← ∅
5: send(sub, Φ) to process(T(Φ))

6: To multicast(e):
7: send(ev, e) to process([T (e)])

8: upon receive(ev, e) do
9: if enqueue(e, Φ, Q) then
10: [e1, ..., el] ← match(∅, Φ, Q)
11: if l > 0 then
12: dequeue([e1, ..., el], Q)
13: deliverΦ ([e1, ..., el])

Fig. 5. Ordered merging for conjunctions: clients

for client processes. Unary predicates are propagated from subscribers to merg-
ers (line 16, Figure 4), and from mergers to their ancestor mergers in the form of
disjunctions (lines 8-11) since a potential match (i.e., compliant with any unary
predicates) for any merger or subscriber means a potential match for a parent
merger. Forwarding of events received by mergers from their respective parent
mergers (left) or processes for merged event types (right) happens without in-
terruptions by other events and can be achieved by simple local synchronization.

For simplicity, the algorithm in Figure 5 handles event queues at clients. The
use of shared queues on mergers as described at the end of Section 5.1, could lead
to savings in global memory overhead by avoiding redundancies. In practice, we
have observed that this, however, overburdens mergers, just like a propagation
of complete conjunctions instead of only unary predicates to mergers.

Assuming that all subscribers are connected to mergers which are connected
to each other before events are multicast, the properties described in Section 4.3
are also met by the algorithm in Figures 4 and 5 thanks to the type-ordered
merging of events. Covering Agreement and Conjunction Total Order

are ensured as processes with a common “prefix” in their conjunctions, which is
type-disjoint with any conjoined predicates, will receive the same events for the
prefix and in the same order from the corresponding conjunction merger process.

Disjunctions. For disjunctions, we essentially need to solve Total Order Multi-
cast [12] on the event sequences output by conjunction mergers. Using time-
stamps and extending the conjunction algorithm of Figures 4 and 5, order
of events is established for clients as needed for disjunctions. More precisely,
conjunction mergers following the algorithm of Figure 6 timestamps all received
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Executed by every process pi=process(�[T1, ..., Tk]). Reuses lines 1-11 of Figure 4

18: uponreceive(ev, e) {Rplcs lines 18-24 }
19: for all Ψ = kids[pj ] do
20: if ∃l, Φ ∈ Ψ | ∀ρ = T (e)[l]... ∈ Φ : ρ[e]

then
21: send(ev, e) to pj {end for}

22: time ← current time {cont frm Line 21}
23: for all Φ = subs[pj ] do
24: if ∃l | ∀ρ = T (e)[l]... ∈ Φ : ρ[e] then
25: send(ev, e, time) to pj

Fig. 6. Disjunction-enabled ordered merging for conjunctions: mergers

Executed by every pi. Reuses enqueue, match, dequeue of Figure 1

1: init
2: Ψ ← Φ1 ∨ . . . ∨ Φo

3: Φl ← ρ1 ∧ . . . ∧ ρm

4: Ql[T] ← ∅
5: R ← ∅
6: S[T ] ← 0
7: for all Φl ∈ Ψ do
8: send(sub, Φl) to process(T(Φl))

9: To multicast(e):
10: send(ev, e) to process([T (e)])

11: upon receive(ev, e, ts) do
12: if ts > S[T (e)] then
13: S[T (e)] ← ts
14: R′ ← {〈e′, t′〉 ∈ R | t′ < ts}
15: R′′ ← {〈e′, t′〉 ∈ R | t′ > ts}
16: R ← R′ ∪ {〈e, ts〉} ∪ R′′

17: for all 〈e′, t′〉 ∈ R ordered on t′ |
t′ < minT (S[T ]) do

18: for all Φl in order do
19: if enqueue(e′, Φl, Ql) then
20: R ← R\{〈e′, t′〉}
21: [e1, ..., ek] ← match(∅, Φl, Ql)
22: if k > 0 then
23: dequeue([e1, ..., ek], Ql)
24: deliverΦl

([e1, ..., ek])

Fig. 7. Ordered merging for conjunctions and disjunctions: clients

messages before passing them to clients which do the actual correlation (Fig-
ure 7). There is no need for specialized disjunction mergers, which are thus
omitted here for simplicity. (If using dedicated disjunction mergers, these can be
arbitrarily connected among each other to cover the respective conjunctions.)

If processes send timestamps with events, to achieve order of delivery for
relations, an event is only enqueued (and correspondingly matched) when a
receiving process has received events for all other types in its subscription, and
the timestamp of that event is less than all the other respective timestamps
of other types. As long as all processes which are multicasting events of the
respective types continue to do so, for any receiving process, an event will even-
tually be enqueued after other events with lower timestamps of other types.
This guarantees that all processes receiving the same events over a set of types
will enqueue and thus perform a match on them one by one in the same order.

If there are any processes which multicast events at a slower rate than others,
then the approach may not be as efficient with the requirement that each event
of a type (before being enqueued) must wait for events of every other type
with higher timestamps to be received. To solve this problem for the algorithm
in Figure 7, if an event has not been received in some time interval by a conjunc-
tion merging process, then an “empty” event e⊥ may be sent to all processes in
subs[pj], indicating that pending events of other types may be respectively en-

queued. Depending on the targeted scenarios (e.g., publication rate, topology)
other information such as rates may be used (additionally).

MDM-No Creation and MDM-No Duplication are met as enqueue

and match are only performed on received events, and for a given type, only
events with a higher timestamp than the last event of that type are further
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added to the ordered set R and queue Ql. Since an event is never enqueued
unless its type exists in the process’s subscription, and match is performed over
every received event, Admission holds. As in Section 5.2, Event Validity and
Conjunction Validity are retained here despite the filtering and discarding of
certain events. It is easy to see that the timestamps generated by mergers follow
the observed order of event reception, thus respecting Conjunction Total

Order. Given that events are compared based on timestamps and merged in
order of conjunctions, Disjunction Total Order is also ensured.

Joining. The algorithms presented so far all rely on a consistent set of event
queues across all processes with the same composite subscription if any sub-
scription is issued prior to publications. However, this consistency is violated
when two such related processes subscribe to an event stream at different times
with respect to the multicasting of events. In order to maintain consistency, we
thus employ a simple synchronization algorithm between (a) a joining subscriber
process, (b) the corresponding conjunction merger(s), and (c) one of the exist-
ing subscriber processes with identical conjunctions, if any. This ensures that a
joining process starts with a valid state of the respective queues copied from any
existing subscriber and does not miss any subsequent events from the merger
received also by that existing subscriber after copying the state of its queues.

Fault tolerance. For presentation simplicity, the algorithms described thus far
stipulated single processes returned by function process() as responsible for
given conjunctions, which obviously provides little fault tolerance. In FAIDECS,
process() returns a small fixed number of processes; i.e., the underlying DHT
determines a set of replicas for such merger roles. A membership layer monitors
the merger processes and ensures that their membership is consistent. Figure 3
provides an overview of the replication. A role, or “logical” merger process, is
represented by 3 replicas which are contoured by a dotted line. L represents
a leader process which determines the order between the merged types and
communicates that order (only) to its peers. These receive the actual events
independently as depicted in the figure. When a physical merger process (solid
circles) pi fails, its descendant(s) connect to one of pi’s peers. To ensure that no
events are missed in the meantime, all replicas regularly acknowledge received
and forwarded events to each other; events prior to such acknowledgements are
buffered. If a process lags or fails, its peers will attempt to replace it. Using
majority-based voting, a minority of (suspected) process failures can typically
be tolerated at a time. In addition to benefitting fault tolerance, this small-
scale replication also benefits load distribution, in that down-stream processes,
including subscribers, distribute uniformly over the replicas.

6 Evaluation

To demonstrate the scalability of our decentralized algorithms and explore over-
all performance benefits and tradeoffs, we compare a Java implementation of



244 G.A. Wilkin et al.

FAIDECS to the algorithm of Figure 1 with 3 different JGroups-based3 imple-
mentations for the Total Order Broadcast black box: (1) a sequencer algorithm,
(2) a replicated sequencer (3 replicas) and (3) a token-based algorithm. Figure 10
summarizes our findings. An extended version of this report [25] presents further
descriptions and results.

6.1 Metrics and Experimental Setup

We used two metrics – Throughput: the average number of events delivered per
second by a subscriber, and Latency: the average delay between the multicasting
time of an event and its delivery to a subscriber. The number of subscribers was
increased from 10 to 600, and each subscriber had a randomly generated set of
subscriptions. Each event consisted of 3 integer attributes with values chosen
uniformly at random within [0..1000]. All processes were run on 65 nodes in a
LAN. Each node is equipped with an Intel Xeon 3.2GHz dual-core processor and
2GB RAM, and runs Linux. A maximum of 15 subscriber processes were run on
a single node. The maximum multicast rates varied by setup (e.g., different com-
ponents became the bottleneck, selectivity of subscriptions varied). We tested
scalability of FAIDECS first in terms of conjunctions and then disjunctions.

For conjunctions, we used 3 different distributions of subscriptions, which led
to different workloads for actual routing and filtering of events. In scenarios A
and B, we followed the setup of Figure 8, increasing the maximum number of
conjoined types (and thus the depth) k from 2 to 4. For scenario A, all filtering
occurred at end nodes rather than in mergers through the selectivity of binary
predicates, which differed across conjunctions to achieve the same expected deliv-
ery rates at all subscribers in a respective level. This scenario demonstrated the
limits of the overlay. In scenario B, events were filtered at the mergers through
unary predicates propagated upwards from subscriptions, allowing higher ag-
gregate multicast rates than in scenario A. Scenario C invariably had 4 event
types, and subscriptions were over all 6 possible conjunctions (

(
4
2

)
). This allowed

us to explore the potential of traffic separation. For evaluating scalability with
respect to disjunctions, we used scenario D, which is the merger overlay shown
in Figure 9. The maximum level was also varied (from 2 to 4). Subscribers were
uniformly distributed across all merger processes and throughput/latency values
were averaged for each group of subscribers for a given level.

We expect that the bottleneck in our decentralized algorithms would occur at
the merger process(es) which would merge all involved types, limiting through-
put consistently for all k. All values are normalized with respect to the values
obtained with FAIDECS with 10 subscribers connected to a single merger for 2
types in scenario A, and with respect to the relations with the largest number
of types (independent of the algorithm). Throughput here was approximately
31,400 events/s and latency 150ms. Normalization does not introduce any bias
but makes comparison clear, so that values could be reported independent of
subscriptions, and so that values may be reported for each level independently.

3 http://www.jgroups.org

http://www.jgroups.org
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Level 2

Level 3

Level 4

Level 1

Fig. 8. Setup for conjunctions (sce-
narios A and B)

Fig. 9. Setup for disjunctions (scenario D)

6.2 Conjunctions

Figure 10(a) displays the trend in throughput as the system scales to more
subscribers in scenarios A and B with varying number of event types/levels k
(see Figure 8). FAIDECS scales very well compared to the approaches shown
in Figure 10(b), shown separately for a clear relationship among the three im-
plementations since the values start at nearly 3% (about 950 events/s) and
remained consistent in all scenarios. Note that IP-multicast was turned off in
the test environment which could help throughput for both FAIDECS and the
JGroup implementations. In Figure 10(b), the token-based algorithm starts with
a higher throughput than the sequencer-based one as there were few multicas-
ters competing over the token, but its performance degrades faster due to the
inherent cost of its high fault tolerance. Replication helps performance in both
FAIDECS and the replicated sequencer due to the load balancing of replicas
of a same logical merger process, though less and with an initial cost for the
replicated sequencer. The total throughput remained approximately the same in
scenarios A and B since propagation of events by mergers was the bottleneck.

Figure 10(c) illustrates the scalability and the high throughput of FAIDECS
when subscriber interests are in largely disjoint types, following scenario C.
Thus, FAIDECS scales very well with the addition of an arbitrary number of
types to a system, even with transitive correlation across them as in scenario
C, given enough merger process nodes to support them – the high throughput
(about double that of two types for scenario A) occurs because every merger
only handles relatively few subscribers compared to the other scenarios.

Figure 10(d) reports the latency of our algorithms for scenario A. As ex-
pected, increased depth (conjunctions with increasing number of types) leads to
increased latency. Here the “depth” k is fixed to 4, but latency is reported inde-
pendently at different depths. The observed latency, averaged over all subscribers
within each level, was approximately the same with replicated and non-replicated
mergers.
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Fig. 10. Comparing conjunction/disjunction algorithms to a sequencer based approach

6.3 Disjunctions

Figure 10(e) compares the scalability of FAIDECS with respect to throughput
in scenario D. The 3 curves represent different depths of the hierarchy (between
2 to 4 levels). For each curve, the throughput is averaged at the respective level.
We observe that the impact on throughput is minimal when the disjunctions are
made more complex. As shown in Figure 10(f), the latency for 4 types improves
slightly. This is because disjunctions provide more than one possibility for event
delivery, and the system is no longer throttled by the rate of the slowest upstream
process as with conjunctions.

7 Conclusions

We have presented decentralized algorithms for event correlation implemented
in FAIDECS. Our algorithms provide clear properties, hinging on a novel notion
of subscription subsumption tailored to correlation. The same properties can be
achieved by less specialized solutions such as sequencer-based schemes, yet our
solutions are inherently more scalable and reliable, leading to strong properties
with practical performance; our solutions are also more scalable than peer-based
approaches, e.g., relying on tokens, while still achieving practical fault-tolerance.
We are currently exploring extensions of our algorithms and additional properties
(e.g., causal order).



FAIDECS: Fair Decentralized Event Correlation 247

References
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Abstract. Multimedia streaming when smartphones act as both clients
and servers is difficult. Indeed, multimedia streaming protocols and asso-
ciated data formats supported by today’s smartphones are highly hetero-
geneous. At the same time, multimedia processing is resource consuming
while smartphones are resource-constrained devices. To overcome this
complexity, we present AmbiStream, a lightweight middleware layer so-
lution, which enables applications that run on smartphones to easily
handle multimedia streams. Contrarily to existing multimedia-oriented
middleware that propose a complete stack for multimedia streaming,
our solution leverages the available highly-optimized multimedia soft-
ware stack of the smartphones’ platforms and complements them with
additional, yet resource-efficient, layers to enable interoperability. We
introduce the challenges, present our approach and discuss the experi-
mental results obtained when executing AmbiStream on both Android
and iOS smartphones. Our results show that it is possible to perform
adaptation at run time and still obtain streams with satisfactory quality.

Keywords: multimedia streaming, mobile, smartphone, middleware.

1 Introduction

The present generation of smartphones enables a number of applications that
were not supported by previous generation cellular phones. Particularly, the
greater processing power, better network connectivity and superior display qual-
ity of these devices allow users to consume rich content such as audio and video
streams while moving. Not surprisingly, radios1 and television channels2 today
provide mobile applications that allow access to their live media streams. Even
video rental services3 provide mobile applications that support movie streaming
to smartphones.

1 www.npr.org/services/mobile
2 www.nasa.gov/connect/apps.html
3 itunes.apple.com/us/app/netflix/id363590051

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 249–268, 2011.
c© IFIP International Federation for Information Processing 2011
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All those applications, however, assume a centralized architecture where a
powerful server (or a farm of servers) provide streams to lightweight mobile
devices. Node heterogeneity also remains an issue: most of those applications are
available for a single smartphone platform. Indeed, to support multiple phone
platforms, developers must (i) modify the mobile application to support different
sets of decoders, streaming protocols and data formats and (ii) generate multiple
data streams on the server side to be consumed by each mobile platform. Hence,
when a resourceful server is not available, as in the case of a smartphone to
smartphone streaming scenario, this approach is impractical.

In this paper, we introduce AmbiStream, a middleware-layer solution to enable
multimedia streaming among heterogeneous smartphones. Such a solution can be
beneficial to a large number of applications. Examples of such applications include:

– Streaming a live event directly to other devices reachable on the network;
– Sharing media on the fly between different devices (phone to tablet/TV);
– Voice call applications;
– Distributed processing of a video stream;
– Mixing augmented reality with live remote user interaction for, e.g., a net-

worked game;
– Multimedia-rich collaboration among mobile users;
– Audio/video sharing in crisis situations when infrastructure is unavailable;
– Private communication of multimedia data between peers (without involving

a third party server);

Today, to create such applications, developers must overcome a number of con-
straints. First, smartphones run different mobile operating systems, each sup-
porting a different set of media encoders, decoders and streaming protocols.
Second, communication is performed over wireless networks that are unstable
and that do not support resource reservation, and thus streaming quality is
managed by the protocol without cooperation from the network layer. Finally,
the multimedia streaming software stack of each platform is highly optimized to
deliver high quality audio and video while reducing resource usage.

Existing system support for multimedia streaming is unsuitable to face the
smartphone challenges described above. Indeed, architectures for multimedia
streaming on the Internet such as [10,23] suppose the existence of powerful
servers that can adapt content on behalf of clients, which is infeasible when
the streaming server is a resource-constrained smartphone. Solutions for mul-
timedia streaming on ad hoc networks either do not consider the problem of
content adaptation [2,12,24] or are cross-layered, such as those surveyed in [14].
Cross-layered solutions require cooperation between application layers and net-
working layers, e.g., integration between the video codec and the routing protocol
to optimize streaming quality.

To enable multimedia streaming among heterogeneous devices, two main chal-
lenges must be solved. First, multiple incompatible protocols for multimedia
streaming exist today, and each platform supports one or a small subset of
them. As a result, smartphones must overcome the streaming protocol hetero-
geneity problem to be able to exchange multimedia streams with heterogeneous
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devices. Second, each smartphone platform generates and stores multimedia data
using some specific container format, usually depending on the streaming proto-
cols it supports. These data cannot be directly transmitted through a different
streaming protocol because the media container format is specific to the proto-
col. Smartphones, then, must also adapt the media container format to enable
translation from the native streaming protocol to non-native protocols supported
by other peers.

To address the above challenges, we propose a lightweight middleware layer
that complements existing software stack for multimedia streaming on smart-
phones with components that enable interoperability. The proposed layer defines
an intermediate protocol and the associated container format for multimedia
streaming among heterogeneous nodes. This layer also mediates the native media
container formats and protocols to/from the intermediate streaming protocol.

The remainder of the paper is organized as follows. In the next section we
review existing work on multimedia streaming in mobile environments, as well
as research related to automated protocol adaptation. In Section 3 we detail the
challenges involved in creating a layer to adapt multimedia streams in mobile
heterogeneous environments. Section 4 presents the architecture of AmbiStream
layer and explains how the main components operate: the format adapter, the
protocol translator and the local media server. Section 5 discusses our initial
experimental results on Android and iOS devices, which show that it is possible
to adapt data and protocols at run time and also obtain streams with satisfactory
quality. Finally, in Section 6, we draw our conclusions and discuss future work.

2 Related Work

Many multimedia-oriented middleware have been proposed in the literature. One
of the earliest efforts in this direction was proposed in [9], which provided ap-
plications with mechanisms for late binding based on QoS constraints. The pro-
posed platform was later extended in [8] to leverage CORBA’s mechanisms for
inspection and adaptation and enable applications to adapt the stream quality
based on information obtained by inspecting middleware components. However,
as predicted in [4], the lack of mature multimedia support at the middleware
level led the industry to develop platform-specific solutions to handle multi-
media streaming quality. As a result, today, most existing streaming protocols
integrate mechanisms to adapt video quality to network conditions. Other mid-
dleware solutions have been proposed to provide multimedia streaming services.
Chameleon [11] is a middleware for multimedia streaming in mobile heteroge-
neous environments. It is implemented using pure Java Core APIs in order to be
portable to all Java and JavaME handsets. In Chameleon, servers send streams
with different levels of quality to different multicast groups, so that clients can
select the best quality according to their available resources and also adapt
to changes on resource availability by selecting a multicast group providing a
stream with lower quality. This approach imposes a heavy burden on the server
side, which has to keep multiple streams in parallel regardless of the number of
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clients. Furthermore, Chameleon implements the whole software stack required
for streaming, which has a negative impact on performance.

Fewer works take into account the capabilities of current smartphones and
their impact on mobile multimedia streaming. The evaluation of streaming mech-
anisms in [18] for Android 1.6 and iOS 3.0 tries to identify which design is better
suited for mobile devices. Traditional metrics such as bandwidth overhead, start-
up delay and packet-loss are used to evaluate the quality of multimedia streaming
in various test situations. They observe that high network delays can result in
non-continuous playback when using the HTTP Live protocol from iOS, while
RTP streaming remains unaffected on Android.

Our approach to solve heterogeneity issues and enable multimedia stream-
ing between heterogeneous mobile devices specifically stems from research on
protocol translation and mediation. The work in [21] proposes a framework to
formalize the process of synthesizing connectors that mediate two incompati-
ble protocols, and suggests that data mediation can be solved through ontology
integration. However, it falls short from addressing the specifics of multimedia
streaming protocols, where messages are dependent on time and where message
data must also be adapted during mediation.

Nakazawa et. al. [15] propose a taxonomy of bridging solutions among com-
munications middleware platforms and present uMiddle, a system for universal
interoperability, which supports mediation (entities and protocols are translated
to an intermediate common representation) and is deployed as an infrastructure-
provided service. This design choice is appropriate for bridging communications
middleware, since it requires communication through different transport tech-
nologies that may not be available on all nodes. However, in our scenario, we
want to enable peer-to-peer streaming between smartphones without using an
untrusted third party server. As such, it is desirable that clients and servers are
able to perform mediation independently from the infrastructure.

Another approach for the automatic translation of protocols is z2z [7], which
combines a language for specification of protocols and messages, a compiler that
automatically generates protocol gateways using C code, and a runtime that
executes and manages protocol gateways. Z2z can translate a large number of
protocols, but it does not take into account timing requirements typical from
real-time streaming protocols. In such protocols, state transitions are not defined
by a fixed set of message exchanges but rather by the time deadlines that the
protocol must meet. With regard to message contents, z2z protocol gateways can
adapt messages by rearranging data from an input message to an output message.
This is also not sufficient to overcome the complexity of multimedia streaming
protocols, where timing limits may require that messages are processed and
regenerated when adapting protocols. Z2z evolved to Starlink [6] which enables
protocol translation dynamically at run time, a particularly important feature
in systems where existing protocols are unknown at compile time. Our approach
adopts an intermediate protocol and requires only clients to adapt their native
protocols to the intermediate protocol, which can be done at compile time.
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3 Challenges for Mobile Interoperable Media Streaming

As we mentioned in Section 1, two challenges must be solved to enable peer-to-
peer streaming of multimedia data between heterogeneous smartphones: (a) how
to enable interoperability among incompatible streaming protocols, and (b) how
to adapt media containers to consume multimedia data transmitted through an
incompatible streaming protocol.

Here, we detail the challenges introduced above. Specifically, Section 3.1 re-
views the process of streaming multimedia data from a server to heterogeneous
clients. Then, based on this general schema, Section 3.2 details the challenges
involved when translating multimedia streaming protocols, while Section 3.3 ex-
plains the issues caused by the different media container formats available on
current smartphones.

3.1 The Streaming Process

Streaming to heterogeneous devices is classically done by servers supporting a set
of audio/video codecs, media container formats and streaming protocols,
and comprises three phases: media capture, media transmission and media
presentation. The steps commonly required to stream multimedia between two
devices are depicted in Figure 1 and are detailed below.

Considering the sequence of steps in Fig. 1, media container formats are used
in multiple cases. At Step 1 the demuxing (or demultiplexing) phase refers either
to the unwrapping from a disk container if the media source is a file, or to a
streamable container if it is a media server or a camera. The elementary stream
obtained from Step 1 can be transcoded to a different video/audio compression
format and it is then re-multiplexed to a streamable container format in Step 3.
The format of multiplexing used is dependent on the streaming protocol, since
in most of the cases streaming protocols support a single format.

Media Capture: Media content can originate either from a camera, stored data
or from a remote source via a streaming protocol. The input can be already
wrapped inside a media container (for instance, MPEG-TS or RTP) by the

Streaming media Server Streaming Client

1. Demuxing

3. Multiplexing 4. Streaming protocol 5. Demuxing

6. Decoding

7. Presentation

2. Transcoding

Fig. 1. Multimedia streaming process
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source hardware, so the first (Demuxing) step is optional. Possibly the most im-
portant characteristic of multimedia content is its audio/video encoding. Indeed,
being a highly resource demanding operation, multimedia encoding is subject to
software and hardware optimizations on both personal computers and embedded
devices. The availability of encoders and decoders therefore varies depending on
the mobile operating system, platform and device.

If a client does not support a decoder compatible with the server’s encoder,
the client cannot consume the media. When a server supports multiple encoders,
multimedia data can be re-encoded on a format compatible with the client sup-
ported decoders (Step 2 in Fig. 1), but this process is resource consuming and
can affect performance, especially when streaming live content.
Media Transmission: Since video and audio frames cannot be directly transferred
over an IP network, they are wrapped within media containers that provide the
necessary meta-information to facilitate the decoding and correct presentation
at the receiver (i.e., client) side. The process of wrapping and unwrapping au-
dio/video frames from a media container is also referred to as multiplexing and
demuxing, respectively. This is related to the fact that in some container formats,
frames (or frame fragments) from multiple audio and/or video tracks are inter-
leaved. The media transmission also requires control and signalling. This task is
assured by means of a communication protocol specifically designed to transport
multimedia content. Streaming protocols can be divided in two subgroups:

Real-time streaming protocols are best suited for conversational content such
as video conferences where user interaction with the streamed content is
important.

Video on-demand protocols are designed to offer better scalability and con-
nectivity; are usually based on the higher level Hypertext Transport Protocol
(HTTP) and introduces acceptable delays.

Media Presentation: In order to correctly reproduce an audio/video stream on
a mobile phone, it is required that the platform supports the given streaming
protocol, media container format, the audio/video codecs and the codec profile
used by the encoder. Being a resource consuming activity, multimedia decoding
is usually managed by the mobile platform through hardware decoders or by
efficient native code implementations. To offer a satisfactory multimedia user
experience on resource-constrained devices, mobile platforms provide a default
media player that applications can access through a standard API. This ap-
proach has the advantage of providing a uniform multimedia experience regard-
less of applications. However, it limits the possibilities to improve audio/video
handling in mobile devices since the exposed API is generally limited. For in-
stance, existing decoders used by the player to display multimedia content might
be inaccessible for use or extension by applications.

3.2 Streaming Protocol Heterogeneity

Most smartphone platforms support at least one streaming protocol client.
The most well known protocols used in mobile phones today are: Real Time
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Streaming Protocol (RTSP) [19], Apple HTTP Live Streaming (HLS) [16], Mi-
crosoft Smooth Streaming4 and Adobe HTTP Dynamic Streaming (HDS)5 (pro-
vided that the mobile platform supports Adobe Flash). The most commonly
found on mobile platforms is RTSP, but because it uses UDP as transport pro-
tocol on unprivileged ports it is inappropriate for use in restricted networks such
as 3G and public WiFi hotspots. A standard extension defined in [20] enables
interleaving messages over the TCP control connection, but is not supported by
most implementations. Protocols designed for video-on-demand scenarios, such
as HLS and HDS, are almost equivalent in terms of functionality and concept,
but differ in message formats and media containers.

Table 1. Audio/video decoders supported for streaming on smartphones

Decoder / Platform iOS Android BlackBerry OS Windows Phone 7
H.263 – + + –
H.264 + + + +

MPEG-4 + + + +
AAC-LC, AAC+, eAAC+ + + + +

AMR-NB – + + +
MP3 + + – +

Still, even if the streaming protocols are incompatible by default, the encoded
video and audio elementary streams may be compatible with multiple devices.
For example, HLS uses H.264 codec for video, but the same codec is also largely
used to stream video over RTSP to Android devices. As it can be seen in Table
1, there exists a common set of video and audio decoders available on multiple
mobile phone platforms. In contrast, streaming protocol support is increasingly
heterogeneous on mobile platforms, with the arrival of new proprietary protocols
such as HTTP Live Streaming and Microsoft Smooth Streaming. The currently
supported streaming protocols on mobile phone platforms are presented in Table
2. From both tables, we conclude that multimedia data can be exchanged be-
tween heterogeneous smartphones without the need to perform costly transcod-
ing operations. However, it is still necessary to adapt streaming protocols to
enable streaming between heterogeneous devices.

Table 2. Streaming protocols supported on smartphones

Protocol / Platform iOS Android BlackBerry OS Windows Phone 7
RTSP – + + –

RTSP interleaved – – – –
RTSP - SRTP – – – –

HTTP Live Streaming + + – –
HLS with SSL + – – –

MS Smooth Streaming – – – +
MSS with SSL – – – +

4 http://www.microsoft.com/silverlight/smoothstreaming/
5 http://www.macromediastudio.biz/products/httpdynamicstreaming/

http://www.microsoft.com/silverlight/smoothstreaming/
http://www.macromediastudio.biz/products/httpdynamicstreaming/
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3.3 Media Container Adaptation

The conversion between different media container formats is a critical require-
ment for assuring interoperability between heterogeneous streaming protocols.
Supporting both real-time and video-on-demand protocols makes this task more
complex due to the mismatching of properties of the protocol groups.

Encoded elementary multimedia data is stored on disk using a media con-
tainer format (e.g., 3GPP, MP4, AVI). Such containers are designed to be used
only in random access scenarios and therefore are not suited for streaming over
a network connection. Another type of containers are streamable media contain-
ers (e.g., MPEG-TS, ASF, PIFF). They are designed to be transported over IP
packet networks, provide methods for fragmenting audio and video streams and
may also offer synchronization and recovery mechanisms to cope with network
delays or packet losses. The wrapped media packets can contain multiplexed au-
dio/video tracks (e.g., MPEG-TS, PIFF) or single tracks (e.g., RTP). Depending
on the streaming protocol type (real-time/on-demand), multimedia fragments
differ in size and structure. In general, real-time protocols use lightweight head-
ers and small packet sizes, usually less than the MTU6 in order to reduce the
transfer delay by avoiding packet fragmentation. Video-on-demand protocols reg-
ularly use large video fragments composing 10-30 seconds of audio/video each.
Such formats commonly rely on the ISO base media file format7 structure which
supports storing of multiple interleaved frames inside a single fragment, [5,1].
Larger fragments reduce the need of receiver buffers but also introduce a start-
up delay which is at least equal to the duration of the first fragment.

Real-time streaming protocols are generally designed over the UDP trans-
port protocol because timeliness is much more important than the reliability
offered by TCP. Consequently, simple reliability features, such as sequence num-
bers, sequence identification, synchronization codes, continuity counters, flags
and timestamps are integrated in the media container layer to cope with the
unreliable nature of the transport. Such features are not necessarily found in the
same configuration in all formats. As a result, transforming a real-time stream to
a video-on-demand fragment requires complex buffering and efficient transforma-
tion of real-time data. Such requirements impose strict temporal constraints for
the transformation. It is true that real-time to on-demand protocol translation
is less desirable, but interoperability should still remain possible.

4 AmbiStream Architecture

The aim of the AmbiStream middleware is to allow smartphones supporting dif-
ferent streaming protocols to directly connect to, and receive live multimedia
content from, other smartphones without using an untrusted server for adapta-
tion. AmbiStream consists of a set of portable server and client components as
well as a plug-in interface, designed to reduce the effort of adding support for
6 Maximum transmission unit (less than 1500 bytes for Ethernet).
7 ISO/IEC 14496-12:2008.
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Fig. 2. The AmbiStream middleware architecture

new protocols. The structure of the middleware is presented in Fig. 2, where the
greyed components are not part of AmbiStream, but are elements of the mobile
platform architecture or external components.

Our work extends the approach proposed by Starlink [6] in two directions.
First, our approach enables the translation between real-time and on-demand
streaming protocols, which requires buffering, dropping and combination of mes-
sages to deliver time-sensitive data at the right moment. Second, we support the
translation of container formats, which in the case of multimedia is dependent
on the streaming protocol.

The communication is realised in a client-server mode. The streaming server,
as well as the client, reside entirely on mobile devices. The current server im-
plementation is designed to support a single streaming protocol. This protocol
is translated by the client device to another protocol depending on its native
protocol support. On the server side, a platform specific API interface has to
be designed to access the Camera data stream. On the other hand, File access
for streaming from pre-recorded content can be designed in a portable fashion.
We assume that any input data is already multiplexed in the platform’s native
format (e.g., RIMM proprietary video format for BlackBerry). It is true that
demuxing might not be needed if the platform’s API gives access to elementary
frame buffers. That is why there is an initial demuxing step in Fig. 2. Once
the data is Demuxed (unwrapped) from its container we obtain the elementary
stream tracks (e.g., the audio track) and the necessary meta-data such as sam-
ple sizes and frame durations. Considering that the middleware should enable
applications to stream both in real-time and on-demand, we use RTP [19] as
an intermediate streaming protocol. As a consequence, the middleware trans-
lates from the intermediate protocol to each existing streaming protocol, thus
considerably reducing the total number of bridges required. However, this does
not imply that any of the mobile platforms or devices should support this in-
termediate protocol natively. RTP alone is not sufficient to describe the payload
characteristics such as audio/video encoders, sampling frequency, packet frag-
menting method, and other media information. AmbiStream thus introduces a
negotiation phase where the server sends a XML-formatted description message
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to clients for the middleware to correctly instantiate the client protocol bridge
and the media container format adapter.

The client receives the Media description, and instantiates the appropriate
protocol translator (e.g., P1 or P2 ) and media container adapter. Streaming
protocol translators and media container adapters (e.g., C1 or C2 ) are used
as pluggable components created at compile time. To simplify support for a
large array of protocols, these components are generated automatically from
descriptions of messages and behaviour given in the form of DSL (domain specific
language), as detailed in Section 4.1. The plug-ins could as well be generated at
run-time, but since the required plugin of the platform is known at compile-time
the only use would be to support more legacy devices. Received RTP packets
are Re-composed into elementary streams and, once a sample is complete, they
are passed to the Media container adapter (which is detailed in Section 4.2).
Depending on the adapted protocol, the samples might be buffered at this point.
A Local server is managed by the protocol translator that composes the necessary
control messages for establishing a streaming session.

The adaptation server running on the client device can be also used as a
mediator agent to solve interoperability for streaming enabled legacy devices.
This is done using at least three nodes: a server running AmbiStream, a mediator
also relying on our middleware and a legacy client (i.e., without AmbiStream
or any other additional software installed). The mediator smartphone translates
the server streaming protocol to the one supported by the legacy device.

The AmbiStream architecture enables smartphones to stream multimedia be-
tween each other without involving a third party server, since all the adaptation
is performed on the client side. In terms of privacy, this solution is superior to
other architectures that require the stream to pass through an untrusted server
for adaptation and/or distribution. So, even though data passes through proba-
bly untrusted peers, the authenticity of the stream can still be established using
an efficient security protocol such as TESLA [17]. Even legacy clients, that re-
ceive the streaming from an intermediate node instead of directly from the server
can select a trusted peer based on any trust establishment protocol. The diver-
sity of existing legacy devices such as TVs, tablets, and mobile phones motivate
the use of distributed translation nodes instead of a centralised server.

4.1 Streaming Protocol Translation

Because writing protocol adapters for each existing streaming protocol implies
a high development effort for a large number of platforms, we introduce an au-
tomated protocol translation solution, to enable easier integration of additional
protocols. To achieve this, we base our solution on existing research in the do-
main of automated protocol translation. However, while advanced solutions for
interoperability between heterogeneous protocols exist [7,22,6], streaming proto-
cols tend to be more complex because of the constant data flow, time constraints
and multimedia wrapper formats.

Our approach is inspired by Starlink [6], a run-time solution for protocol inter-
operability. Although run-time adaptation of the media format and protocol is
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more flexible and enables adapting protocols that are unknown at compile-time,
in our case the availability is only subject to the support of mobile platforms,
thus making possible to know in advance the adaptation requirements of each
mobile device. Also, the adaptation only concerns the client-side since, at the
server side we use an intermediate protocol. We thus propose a simpler compile-
time interoperability solution based on Starlink.

Streaming protocols are a mix of control and complex data messages. We
discuss the translation of the control part of streaming protocols below, while
dealing with multimedia data adaptation in Section 4.2. To create a new protocol
translator, the developer must provide a high level description in the form of
two DSL-based models. One describes the format and structure of messages and
the other outlines the protocol states, transitions and the sequence of actions
performed at each protocol state. The model is expressive enough for generating
message parsers and composers for multiple existing streaming protocols. The
model obtained in this form is passed on to a compiler (which is part of the
currently presented solution) that produces multi-language (Java, C and C#)
protocol bridges in the form of plug-ins (e.g., P1 and P2 in Fig. 2) for our
middleware.

An schematic example of a message description for HLS protocol is shown in
Fig. 3. The description is divided in Input and Output to differentiate between
incoming messages that should be parsed into structured data types and outgo-
ing messages that are composed. This distinction is more important with text
protocols, where messages have loose requirements in terms of line order, op-
tional parameters, delimiters, spacing characters and so on. The DSL proposed
here supports protocols that use either binary, text or XML message formats.
To assure a sufficiently expressive message description, we extract the required
fields using value capture patterns defined using Posix regular expressions for
text protocols, XPath for XML and based on field size and location for binary
protocols. The choice of Posix regular expression for text protocols was driven
by its availability on most of the platforms, most notably that it is part of the
GNU C library and is compatible with the regular expressions integrated in Java
standard library (java.util.regex).

Real time protocols do not usually follow a request-response messaging pat-
tern, as implemented by on-demand ones, but rather a one-way pattern. The
problem here is that a protocol translator can not produce a response by calling
the real-time inner protocol. In fact, the translator must buffer the messages
of the real-time protocol and, upon a request of the video-on-demand client,
generate the corresponding message.

4.2 Media Container Format Adaptation

Translating the control part of streaming protocols is not sufficient to distribute
multimedia between incompatible protocols. The format in which audio/video
content is wrapped also differs depending on the protocol. To achieve a complete
solution, the translation between media container formats must also be taken
into account. The most important factors that led to the decision to separate
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<Protocol type="text">
<Input>
<Header name="http_head">

<Var name="Url" type="String"/>
<Rule test="capture_order(Url)">1</Rule>
<Capture var="Method"> [RegEx] </Capture>
<Finish test="empty_line"/>

</Header>

<Message name="GET_IDX">
<Insert>http_head</Insert>
...

</Message>
...

</Input>
<Output>
<Message name="IDX">

<Var name="$TargetDuration" type="Integer"/>
<Line>#EXTM3U</Line>
...

</Message>
...

</Output>
</Protocol>

Fig. 3. DSL describing message formats for the HLS protocol

this part from the protocol translation model are: the much higher complexity of
multimedia packets, the dependence relation between messages (order, timing,
fragmenting), the buffering requirements, and the multiplexer logic required to
interleave multiple media tracks inside one packet/message.

We further divide the media container adaptation in four distinct steps: sam-
ple fragmenting, fragment packaging, multiplexing and final adjustment. The
process of adapting a stream composed of two tracks (one audio and one video)
is presented in Fig. 4. Each of the four phases is defined by the developer using
a DSL to describe multimedia containers, different from the ones used for proto-
col description. Similarly to the generation of protocol translation plug-ins, the
description of the multimedia container adaptation is compiled to be deployed
to designated platforms. To simplify the description, a number of media packet-
related parameters are exposed through the DSL. Parameters include: the length
of the media payload, media encoding, fragmentation flag, sampling frequency,
sequence number, inner frame sequence number and first/last fragment flag. The
components for protocol description and container adaptation are considered to
be independent, thus allowing, for example, a protocol to choose between multi-
ple supported data formats. The Sample Re-composing middleware component
(see Fig. 2) provides real-time input to the container adapter in the form of
elementary stream samples for audio and frames for video.

Because we use a real-time protocol (i.e., RTP) for transporting multimedia
data, the problem of timing should also be taken into account. We thus add
a time-stamp reference to each packet resulting from any of the four phases of
media format adaptation. Fragments of one frame share the same time-stamp in-
formation, while messages composing multiple frames contain the time-stamp of
the first frame and their duration. The time required for a frame to pass through
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Fig. 4. Adapting the media container format

all of the phases required by the format should not exceed the sampling interval
of the content. Failing to assure this property can cause the client to run out of
buffered data, resulting in playback stalls. In order to prevent such behaviour,
frames should be explicitly dropped such that the output of the conversion is
completed at the right time to assure a fluent playback. At this moment, no QoS
related limits of packet drops are considered.

The fragmenting step defines the way large audio or video samples are
divided into smaller segments according to the limits imposed by the streaming
protocol, by the media container or by the network configuration. For example,
in the case of MPEG-TS, the samples are split into fragments which are infe-
rior in size to 184 bytes, such that they can be correctly wrapped inside the
standard 188 byte packets. For RTP, fragmentation follows the standard RTP
Payload Format depending on the codec used (for instance, the one described
in [25]). We note that a simplified description of the packet format is very useful
in the case of RTP, where there are multiple payload formats depending on the
media encoder used. In the case where media content is composed of multiple
tracks (i.e., one video and one audio track), two separate fragmenting units are
used. The number of fragments created from single frames is variable. Each frag-
ment contains a reference to the time-stamp of its originating frame. The time
required for fragmenting one frame should never exceed the sampling interval of
the content.

The packaging stage adds individual packet headers. This transformation
conforms to [19] for RTP packets and [13] for MPEG-TS. Depending on the
protocol, the resulting packets are passed to the multiplexer or sent directly to
the protocol translator.

The multiplexing phase assures time-division multiplexing for a set of given
fragments or frames of multiple data tracks. Depending on the format, the mul-
tiplexing is done at a frame level or at a frame-fragment level. In order to achieve
multiplexing at frame level, phase one of the adaptation should be skipped. This
phase outputs only at a given time or data limit. Such a limit is necessary to
be able to produce media fragments of specified duration or size. The split is al-
ways done at random access points of the stream, such that no reference between
frames is lost.

The final transformation adds extra headers or packets, such that the result-
ing fragment is recognised as valid by standard client protocol implementations.
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Many existing media container formats also contain a number of specific fields
which are particularly hard to model. One example is the MPEG2 Transport
Stream [13], which requires a 32-bit cyclic redundancy check value to be added to
the Program Association Table package. In such a case we offer the possibility to
add function“hooks” inside the DSL media container description. The compiler
uses these to generate function templates, that developers can later implement.

5 Experimental Results

In order to evaluate the presented solution, we have implemented AmbiStream
in Java and Objective-C and used it on Android and iOS. The goal of the exper-
iments presented here is to evaluate the overall performance of the middleware
and the achievable stream quality. The experiments were performed on both
Android and iPhone smartphones.

Table 3. Test smartphones used

Device Samsung GT-I9000 Google Nexus One iPhone 3G
Role Server Client Client

Platform Android 2.2.1 Android 2.3.4 iOS 4.2.1
CPU 1 GHz (S5PC110) 1 GHz (QSD8250) 412 MHz

Memory 512 MB 512 MB 128 MB
Media framework PV OpenCORE Stagefright AV Foundation
Stream support RTSP RTSP/HLS HLS

In both of the experiments presented below, the same set of source media
files was used. The test files have a duration of 210 seconds, are encoded with a
single (H.264-avc video) track, have a CIF frame-size (352 by 288), and a frame-
rate of 30 fps. The test is conducted for 16 different bit-rates between 50kbps
and 1500kbps using the mentioned file format and content. Each set of tests is
repeated at least three times, so each of the metrics presented is characterized
by 168 minutes of video streaming to each client device. In total, more than
16 hours of streaming between smartphones were necessary. The mobile phones
used are mentioned in Table 3. The first two (Samsung GT-I9000 and Google
Nexus One) are used in the first experiment, and all three in the second one.

5.1 Collecting Mobile Device Performance Data

Although RTSP provides out-of-band feedback of stream quality through RTCP,
we have decided not to use this feature to obtain information related to the
quality of service. This is due to the fact that in the case of the media framework
Pocket Video OpenCore (used by Android platform in versions preceding 2.3)
the information provided is not sufficiently precise. For example, the interval
jitter value reported, used to observe the effect of network packet delays, is
usually ten times higher than what we found at network level or on the client
device. Furthermore, on the newer Stagefright media framework the feedback
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always reports no packet loss and inter-arrival jitter equal to zero. Android also
provides an information callback from the media player service. Unfortunately,
this information is limited to a small set of event codes and does not include any
metric.

We have chosen to favour system-wide metrics to more specific ones (i.e.,
metrics of the application process) because we also make use of native system
services and because mobile platforms do not frequently provide equivalent met-
rics. We use as metrics for device performance: the total CPU utilization and the
system-wide used RAM memory. Quality of service metrics considered are the
packet delay variation (also referred to as inter-arrival jitter, described in [19])
and packet loss ratio. The quality metrics are only provided for the case where
the protocol is adapted. The values are obtained at the middleware level and
should indicate the maximum bit-rate achievable while still providing satisfac-
tory quality. The reference test cases, used to compare the overall performance,
make use of system media services directly.

On Android mobile phones, the CPU and memory information is obtained by
accessing the proc filesystem, used as an interface to the operating system kernel
on most Linux based distributions. The logs are stored in the internal memory of
both Android phones. To avoid that the access to the filesystem and data parsing
are influencing the final results, the access to the /proc/stat and /proc/meminfo
is done every five seconds, and the same file-descriptors are reused multiple times
until the end of the test. On the iOS platform, system performance information
was collected using the tools integrated with the development kit.
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Fig. 5. AmbiStream performance on Nexus One (RTSP)

5.2 Translating to RTSP between Android Smartphones

In this first experiment, we show that adaptation from the middleware interme-
diate protocol to RTSP/RTP/UDP is sufficiently efficient to be used in mobile
multimedia-enabled applications. Since in this case the message format used by
the client protocol is equivalent to the middleware transport protocol, the wrap-
ping and unwrapping of messages is simpler than in other cases. Nevertheless,
this client protocol is the only real-time streaming protocol currently available on
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mobile phones, and is thus interesting to analyze the feasibility of streaming real-
time multimedia data through the middleware. Another experiment involving a
more complex media format adaptation is presented at the end of this section.
In this test we use two server implementations: one using the AmbiStream in-
termediate protocol and the other using RTSP. The RTSP server is not part of
the solution but it is used in this experiment to determine the overhead of the
adaptation (on the client-side) with reference to the native RTSP support.
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Fig. 6. Adapted stream quality (RTSP)

In the case of protocol translation to RTSP, the performance of the client
device (realising the content and protocol adaptation) is not badly affected, with
a processing overhead of less than 20% compared to a native RTSP session (see
Fig. 5a). As with all of the experiments conducted, the memory usage remains
constant, or increases slightly because of buffers required for higher data-rates
(Fig. 5b). The fact that our solution uses slightly less memory than the reference
one is due to the way jitter buffers are managed internally by the RTSP client,
most probably being influenced by the different transport protocols (UDP and
TCP). The quality of the stream remains within acceptable limits in terms of
inter-arrival jitter (see Fig. 6a) and packet loss (Fig. 6b), for all the test cases
(from 50 to 1500kbps) considered.

5.3 Translating to HLS between Android and iOS Smartphones

The second experiment consists of translating the intermediate middleware pro-
tocol to HTTP Live Streaming, using two different client platforms: Android
2.3.4 and iOS 4.2.1. The choice of the smartphones is motivated by their native
support of HLS. This way we can reason about the overhead introduced by our
middleware layer with two different devices. Contrary to the first experiment,
this one requires data conversion between RTP and MPEG-TS. MPEG-TS is one
of the most used multimedia formats, most notably for digital television. The
conversion from RTP to MPEG-TS requires a large number of transformations,
thus providing a good impression of achievable on-the-fly conversion limits of
media formats on current generation smartphones.
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Fig. 9. AmbiStream performance on Nexus One (HLS)

Because HLS protocol requires the existence of a cached amount of content
on the server-side before a client can connect (and begin playback), while the
intermediate AmbiStream protocol does not, a 30s start-up delay is introduced
by the middleware layer to allow protocol translation. This aspect restricts the
use of the middleware for real-time applications in this situation. This is not the
case when the device supports a real-time protocol. During this delay period, less
memory and CPU are used. To better evaluate the performance of the devices,
we divide the experiment run in four periods (e.g., as shown in Fig. 7 for CPU
utilisation): (I) the buffering period (only multimedia data adaptation is per-
formed), (II) the media-player start-up (causes a short increase in CPU usage),
(III) the streaming period (both data adaptation and playback are performed)
and (IV) the stream-end (the source has finished streaming, but the playback
is continued until buffer depletion). Thus, only the part (III) of the observation
was used to produce the results presented in Figures 9 and 10.

As expected, the difference in container formats (RTP and MPEG-TS), in-
creases the overhead of AmbiStream. For Android platform, the tests for bit-rates
inferior to 400kbps (in Figures 9a and 9b) were discarded due to the existence
of a minimal caching size, requiring a longer start-up delay. While on the Nexus
One, the overhead introduced does not reach a quality limit for bit-rates below
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Fig. 10. AmbiStream performance on iPhone 3G (HLS)

1500kbps, the iPhone 3G is only able to adapt streams of up to 400kbps. Above
this limit, the packet loss (see Fig. 8) becomes noticeable and the media-player
suffers playback stalls. The results on the iPhone are worse due to the signifi-
cantly lower processing power and memory (see Fig. 3). Nevertheless, according
to the mobile platform providers, a 400kbps video bit-rate is considered to be
medium/high quality for smartphones8 9. Considering the results in Figure 10b,
we see that the memory usage is decreasing (in the case of AmbiStream) for
higher video bit-rates. This behaviour is normal considering the packet loss (see
Figure 8).

6 Conclusions and Future Work

In this paper we have identified the challenges raised by the heterogeneity of the
streaming protocols of existing mobile phone platforms. Further, we have intro-
duced the AmbiStream multimedia-oriented middleware architecture, designed
to enable the multi-platform and multi-protocol interoperability of streaming
services. We have also shown the applicability of the presented solution with an
experiment on two different platforms and two different streaming protocols.

AmbiStream was modelled taking into consideration the architecture of mod-
ern smartphone platforms, such that resource critical operations (e.g., multime-
dia decoding) are managed by each platform internally. We prove that automated
streaming protocol adaptation can be done locally on mobile phone platforms
without sacrificing performance or extensibility. Furthermore, we enable legacy
devices to employ unsupported streaming protocols by using an AmbiStream-
enabled device as mediator intermediary.

We intend to continue this work by extending the current model, taking into
account challenges such as routing over different networks and multi-peer collab-
oration. We will then integrate AmbiStream with iBICOOP [3], a middleware

8 http://developer.apple.com/library/ios/#technotes/tn2224/_index.html
9 http://developer.android.com/guide/appendix/media-formats.html

http://developer.apple.com/library/ios/# technotes/tn2224/_ index.html
http://developer.android.com/guide/appendix/media-formats.html
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designed to enrich the user collaboration and provide seamless access across
different networks and devices. Such an integration will complement the exist-
ing solution with features such as discovery, distributed storage and partnership
management, enabling the development of rich cross-platform and multimedia-
enabled applications. We will also port the solution to Blackberry and Windows
Phone to evaluate the approach on a greater number of mobile platforms.

Acknowledgement. This work is partially supported by the FP7 ICT FET IP
Project CONNECT.
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22. Bissyandé, T.F., Réveillère, L., Bromberg, Y.-D., Lawall, J.L., Muller, G.: Bridging
the Gap between Legacy Services and Web Services. In: Gupta, I., Mascolo, C.
(eds.) Middleware 2010. LNCS, vol. 6452, pp. 273–292. Springer, Heidelberg (2010)

23. Van Lancker, W., Van Deursen, D., Mannens, E., Van de Walle, R.: Implementation
strategies for efficient media fragment retrieval. Multimedia Tools and Applications
(March 2011)

24. Vu, L., Nahrstedt, K., Rimac, I., Hilt, V., Hofmann, M.: ishare: Exploiting oppor-
tunistic ad hoc connections for improving data download of cellular users. In: 2010
IEEE GLOBECOM Workshops (December 2010)

25. Wang, Y.K., Even, R., Kristensen, T., Jesup, R.: RTP Payload Format for H.264
Video. RFC 6184 (Proposed Standard) (May 2011),
http://tools.ietf.org/html/rfc6184

http://www.iso.org/iso/catalogue_detail?csnumber=44169
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
http://tools.ietf.org/html/rfc4082
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc2326
http://tools.ietf.org/html/rfc6184


Virtualizing Stream Processing

Michael Duller1, Jan S. Rellermeyer2, Gustavo Alonso1, and Nesime Tatbul1

1 Systems Group, Department of Computer Science,
ETH Zurich, Zurich, Switzerland

{michael.duller,alonso,tatbul}@inf.ethz.ch
2 IBM Austin Research Laboratory, Austin, TX, U.S.A.

rellermeyer@us.ibm.com

Abstract. Stream processing systems have evolved into established solutions as
standalone engines but they still lack flexibility in terms of large-scale deploy-
ment, integration, extensibility, and interoperability. In the last years, a substan-
tial ecosystem of new applications has emerged that can potentially benefit from
stream processing but introduces different requirements on how stream process-
ing solutions can be integrated, deployed, extended, and federated. To address
these needs, we present an exoengine architecture and the associated ExoP plat-
form. Together, they provide the means for encapsulating components of stream
processing systems as well as automating the data exchange between components
and their distributed deployment. The proposed solution can be used, e.g., to con-
nect heterogeneous streaming engines, replace operators at runtime, and migrate
operators across machines with a negligible overhead.

Keywords: stream processing, federation, virtualization.

1 Introduction

Applications like financial market data processing or network intrusion detection re-
quire processing large volumes of continuously arriving data with high throughput and
low latency. Stream processing supports such applications using a model whereby data
arrives continuously at the stream processing engine (SPE) and triggers the evalua-
tion of queries stored in the SPE. Within the last decade, data stream processing has
gone from a research idea (e.g., Aurora [2], STREAM [20], and TelegraphCQ [9]) to a
widespread solution, with several commercial products already available [27,29,16,4].

Stream processing has proven to be useful for many applications. However, its ap-
plicability is still limited in terms of interoperability and deployment.

Interoperability refers to the integration of heterogeneous SPEs [28]. A common
scenario involves different engines run by different and autonomous entities that must
work together but cannot resort to a homogeneous solution. We have encountered such a
scenario in automatic financial compliance checking, where government authorities val-
idate streams of transactions created by financial institutions. A similar scenario arises
in the supply chain management, where different RFID and bar code technologies, pal-
let and container tracking systems, and book keeping and stock control software need to
be coordinated even across large geographic distances. From these scenarios we derive

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 269–288, 2011.
c© IFIP International Federation for Information Processing 2011
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the requirement to be able to host in a single platform different systems that commu-
nicate through well-defined interfaces, while maintaining the authoritative boundaries
imposed by each organization.

In terms of deployment, there is an increasing need to deploy SPEs flexibly to run
them as virtual entities across a cluster and even across a cloud computing facility.
The scenarios and motivation for this requirement are identical to those for standard
applications and relational databases: elasticity, cost reduction, and fast provisioning.

To address these challenges we explore the possibility of virtualizing any component
of a streaming engine (operators and buffers as well as entire engines) so that they can
be automatically deployed, managed, and composed in a flexible and dynamic manner.
The aim is to build a generic middleware platform that allows to (1) encapsulate ex-
isting engines (either for embedding into applications or for composition); (2) support
combinations of heterogeneous operators; and (3) provide the functionality needed in a
distributed platform (e.g., support for operator migration, replacement, data routing).

Like other virtualization approaches (e.g., machine virtualization like Xen or VM-
Ware, and managed language runtimes for bytecode like Java VMs or the .NET CLR),
the main objective of our approach is to gain flexibility (e.g., location transparency),
ease of management (e.g., push-button deployment of virtual machines), and potential
for optimizations (e.g., replacement of performance-critical code with an optimized ver-
sion at runtime). The architecture proposed is inspired by the concept of the exokernel
for operating systems [12,19]. Like exokernel, it implements as few policies and makes
as few assumptions as possible to support a wide range of different SPEs well.

Middleware has already proven to be useful in providing additional features for data
processing systems like, e.g., TP monitors or message queueing systems for traditional
databases. In fact, several engines have been extended with middleware platforms:
IBM’s System S [17] or Yahoo’s S4 [21]. These systems are built as extensions to one
particular SPE. Our approach is a pure middleware system that is engine-independent.
In that way, we do not impose engine-specific semantics or a processing model, but cater
to dynamic and distributed operation, deployment, and lifecycle management and pro-
vide interoperability between heterogeneous SPEs with potentially different semantics.
From our own work, we have explored semantic aspects of integrating heterogeneous
SPEs in MaxStream [6], and wide-area, stream-based processing of personal informa-
tion in XTream [11], both through middleware-based solutions.

In this paper, we present the design, use, and implementation of ExoP, an architecture
for stream processing. ExoP provides well-defined, extensible interfaces for encapsu-
lating stream processing entities (operators, buffers) and building applications on top
of these. It also supports dynamic composition, dynamic data routing, and component
lifecycle management.

The results presented in the paper validate the potential for the ideas behind ExoP as
they cannot be achieved with any other system we are aware of. For instance, we have
ported two existing, different SPEs into ExoP. One of them is the MXQuery engine [7].
We use the implementation of the Linear Road benchmark [5] with MXQuery to show
that ExoP has a negligible overhead (0.7 %; see Sect. 5.4), and yet, it provides the
flexibility to the implementation that we claim: dynamic and distributed deployment
and component lifecycle management. We show that we can replace at runtime part
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Fig. 1. Exoengine vision

of the system with a native implementation of the operators without interruption in
service (see Sect. 5.5) and that we can turn the originally centralized implementation of
the Linear Road benchmark into a distributed implementation (see Sect. 5.6) to achieve
one order of magnitude improvement in performance; a load factor of 64, which is equal
to the fastest published results [30] of a highly optimized, distributed implementation.
The other engine ported to ExoP is the Stanford STREAM system [20]. In the paper,
we show that we can deploy the engine on our platform, supply queries as part of our
configuration mechanism, and federate STREAM and MXQuery (see Sect. 5.8) with a
minimal development effort (see Sect. 5.7).

2 Exoengine Architecture

Figure 1 illustrates the vision of the exoengine architecture. It virtualizes stream pro-
cessing and thus enables ➊ multiple applications written for different engines/query lan-
guages to exchange data across machine (platform) boundaries; ➋ single applications
to run across multiple machines; and ➌ applications to be migrated to other machines.

2.1 Layers

The exoengine architecture considers stream processing applications at different layers
of abstraction (Figure 2). On top, a high-level abstraction, e.g., a streaming query lan-
guage, presents the interface to the system. This interface is provided by application
builders (see Sect. 4.2). In the example shown, the interface is CQL [20], a language
for continuous queries. Being able to expose arbitrary, high-level interfaces on top of
the system enables reuse of existing applications developed against these interfaces.

The data processing model is the data management view onto the architecture and
captures how data flows and is processed. It is a graph of entities that process data
(“operators” as a first approximation), which we call slets, and entities that buffer and
forward data, which we call channels. Section 2.2 provides more details. The data pro-
cessing model is generic enough to fit different flavors of stream processing (e.g., push
vs. pull driven engines) and thus enables interoperability.

The implementation model is the systems view onto the architecture. It specifies
implementation details of slets and channels (e.g., interfaces) and adds a connector en-
tity, which captures distribution in the model (see Sect. 2.3). The implementation model
grasps elements as individually managed components, wires them using loose coupling,
enables remote operation through connectors, and thus enables flexible deployment.
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Fig. 2. Layers of abstraction

Ultimately, an instantiation of these entities is concretely implemented in some pro-
gramming language. The generic parts of these entities, as well as the platform itself,
are implemented by the platform provider and the specific parts of these entities (e.g.,
operator logic, custom buffer implementation) are either implemented manually as part
of the application implementation or generated by the application (e.g., by a query com-
piler).

2.2 Data Processing Model

The two fundamental building blocks of stream processing are operators, which process
data, and buffers, which forward and buffer data (e.g., to form finite windows over
infinite streaming data). The data processing model of the exoengine architecture thus
considers operators, which we call slets, and buffers, which we call channels. Figure 3
illustrates the model as a mesh of channels (rectangles) and slets (ovals). Slets have
input and output ports, and each port can connect to one channel. In the figure, ports
are implicitly illustrated as the places where arrows enter or leave slets. π-slets process
data and behave like conventional operators. They can have any number of input and
output ports. At the edges of the processing mesh, α-slets adapt data sources and ω-slets
adapt data sinks, providing clean interfaces for exchanging data with the platform. α-
slets have no input ports, they only receive data from external sources. Likewise, ω-slets
have no output ports and only send data to external sinks. Sources and sinks can be any
external device, application, or component that emits or consumes data, respectively.

Data is processed as discrete items (tuples) that flow from the sources on the left
through the application mesh to the sinks on the right. Slets can transform data that ar-
rives at an input port in any way, including dropping it, aggregating it into internal state,
or creating and emitting new data. Channels can be seen as views over the upstream pro-
cessing mesh. Similar to views in traditional databases, they contain the results obtained
by processing source data (data sources in exoengine, data tables in databases) with the
view definition. In databases, the view definition is a query and in the exoengine ar-
chitecture it is the part of the mesh that is connected to the channel’s input. Channel
implementations can persist their contents, resembling materialized views in databases.

Processing can be push- or pull-driven to support all existing systems and to be
able to combine them. Thus, the puristic, basic interfaces for data exchange define two
methods:
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Fig. 3. Data processing model

push(item): push an item to the input of a channel or an slet
pull(): request items from the output of a channel or an slet, return a set of 0. . . n items.

Advanced functionality and optimizations can be implemented as extensions to the in-
terfaces, including channels that provide individual windows for connected slets based
on count, time, or explicit eviction from the buffer by the slet (semantic windows);
sharing multiple windows and the materialized view from the same physical buffer; or
allowing pull requests that are augmented by a query to push selectivity towards data
sources. We use channels that materialize their contents or provide windows to slets for
the Linear Road implementation presented in the evaluation (see Sect. 5).

2.3 Implementation Model

The implementation model captures implementation aspects, which include actual com-
ponent interaction and distributed operation. It is based on service-oriented software de-
sign and the flexible and loose coupling between components, which facilitates dynamic
changes to the processing mesh. It adds an additional type of component, connectors,
as an indirection between slets and channels used to capture distributed operation in
the model. Figure 4 illustrates the implementation model. It depicts all implementation
details from slets emitting items on the left, to input connectors (Conn.), to a chan-
nel, to output connectors, to slets consuming items on the right. Ports, buffers, and the
implementation of slets have been made explicit in the illustration.

Connectors are part of the virtualization strategy to enable distribution. They can be
omitted as an optimization if channel and slet reside on the same instance of the plat-
form. In the distributed case, where a channel residing on one instance of the platform
is accessed by slets residing on another remote instance, remote connectors encapsulate
communication between the instances of the platform. One half of the remote connector
is installed on the platform instance of the channel and the other half is installed on the
remote platform instance, where it represents (proxies) the channel. For every remote
platform instance that accesses the channel, one remote connector is used to serve all
slets on that instance. Section 4.3 with Fig. 6 illustrates distributed operation.

Using connectors as local proxies of channels can also improve performance and
robustness. Smart connectors can, e.g., cache the content of the channel they are repre-
senting, serve requests from their own buffer, and thus reduce latency and save band-
width. Similarly, when the connection between the smart connector and its counterpart
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Fig. 4. Implementation model

on the remote platform is not available, the connector can autonomously work in offline
mode. The wiring of slets to the connector can be left unchanged, because transitions
between online and offline mode happen inside the connector, behind the interfaces.

In Fig. 4, arrows between components are bidirectional as they represent the compo-
nent interaction in terms of service method invocations rather than in terms of data flow.
Ellipses (. . . ) between slets or connectors indicate that any number of instances thereof
can exist and interact with one instance of a connector or channel, respectively. Service
interfaces used in data exchange are depicted using thick bars. To exchange data, com-
ponents call the push(item) method on the InputPort or In services, or the pull() method
on the OutputPort or Out services.

The implementation model separates concerns of processing (slets), storage (chan-
nels), and communication (connectors) into separate entities. This separation facilitates
capturing resource requirements and implementing respective optimizations.

2.4 Component Life Cycle Management

Every component running on top of an exoengine platform also provides a management
service. At runtime, the platform interacts with a component through this service to per-
form common, generic management tasks like monitoring, suspending, and restarting it,
or exchanging individual configuration data. The platform takes care of managing and
persisting component configuration data (e.g., the particular query an engine in an slet
is executing), component state (e.g., the counters of an aggregation operator wrapped
as an individual slet), and applications (e.g., which instances of slets are connected to
which instances of channels and thus form an application).

3 Stream Processing with the Exoengine Platform

One way to use our platform is to implement from scratch fully distributed, heteroge-
neous data streaming applications. This implies writing or synthesizing each operator
and the additional components for our platform. As an example, we are in the process of
implementing a wide-area, peer-to-peer stream processing infrastructure for exchanging
personal data in a streaming manner across collections of devices and locations [11].
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Fig. 5. Wrapping alternatives

3.1 Porting Existing Stream Processing Engines

In addition to implementing applications and their components from scratch, appli-
cations for existing SPEs can be reused by porting these SPEs to our platform. We
distinguish three levels of granularity for porting existing SPEs: individual operators
(“assimilation”), bare stream processing engines (“partial assimilation”), and complete
applications (“encapsulation”).

If a streaming engine has been implemented in a sufficiently structured way, our
platform allows to wrap operators and buffers so that they become explicitly visible
to the platform as slets and channels, respectively. This allows reusing operators and
buffers without changing the semantics of the underlying engine, while opening up all
three possibilities illustrated in Fig. 1. Assimilation is illustrated in Fig. 5 by individual
operators and buffers being wrapped as slets and channels.

It is possible to wrap monolithic engines as an slet and use multiple instances thereof
to compose an application, e.g., consisting of multiple queries. Each query is executed
by one instance of the engine slet. This is the approach we use in the evaluation (Sect. 5)
to wrap existing XQuery [7] and STREAM [20] engine implementations. Partial assim-
ilation reduces the porting effort, while still providing access to intermediate results and
allowing distributed deployment. It opens up all three possibilities illustrated in Fig. 1
but at a coarser granularity (e.g., at the level of individual queries) compared to full
assimilation. In Sect. 5.6 we show the effectiveness of turning a centralized applica-
tion composed of multiple instances of a partially-assimilated XQuery engine into a
distributed application and, thereby, enabling it to handle higher load. Partial assimila-
tion is illustrated in Fig. 5 by the two big, gray slets containing multiple operators and
buffers/internal state, which are not explicitly visible to the exoengine platform.

In encapsulation, we wrap an entire application with all the engines and queries into a
single slet. This allows to take already existing applications and make them available as
a service, in the form of an slet. While limited in flexibility, this approach still facilitates
the runtime management of the application and the combination of its ultimate inputs
and outputs with other applications. Encapsulation is illustrated by the large, dashed
slet in Fig. 5, which encapsulates everything.

3.2 Extensibility

The exoengine model generally matches stream processing applications. The function-
ality provided by the interfaces (push(item) and pull()), however, is only suitable for
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basic data exchange and not sufficient to implement a full-fledged SPE. The interface
between operators and storage/buffer instances in an SPE is typically richer and addi-
tionally supports, e.g., index-based access to data or bulk access to multiple tuples at
once. The exoengine architecture supports any kind of interaction between slets and
channels and thus allows to keep intrinsic implementation details of existing SPEs.

Slet and channel implementations can extend the service interfaces for data exchange
(thick bars in Fig. 4). Thus, they can interact through additional methods as needed,
without losing the property that the platform manages the dynamic binding between
components’ services. Connectors also need to support the methods of the extended ser-
vice interfaces between slets and channels. In the local case, connectors are empty and
simply omitted. In the distributed case, standard remote connectors only need to pass
method calls through. Thus, they are created automatically by the platform by inspect-
ing the extended interfaces of the components using, e.g., reflection. Distribution-aware
implementations of SPEs for the exoengine architecture can provide implementations
of smart connectors for enhanced remote operation.

In addition to extensions of interfaces on the data path, implementations of compo-
nents can also extend their management interfaces to, e.g., allow an optimizer to replace
parts of the processing mesh in a controlled manner (e.g., instruct buffers to pause and
operators to persist internal state) or implement a richer configuration mechanism.

4 Platform Implementation

In this section, we discuss aspects of implementing an exoengine platform conforming
to the data processing and implementation models presented in the previous sections.
We also discuss how to implement applications running on top of it and present our
prototype of an exoengine platform, ExoP. Though we have implemented the aspects
discussed below in our prototype, they are applicable to any platform implementation.

4.1 Component Implementation

Components for the exoengine platform are implemented in a reusable manner, which
allows the use of multiple instances of each component without any side effects (e.g., no
global state, no singletons). Every instance of a component has a unique identifier in the
platform. Every instance of a channel or connector provides one distinct service for its
input and one for its output. Every port of an slet also provides a distinct service for data
exchange. These services implement the basic interfaces defined by the architecture and
potential extensions thereof. In addition, every component implements the respective
management interface (slet, connector, or channel) and potential extensions to it.

An implementation of the exoengine platform provides the generic parts of slets,
connectors, and channels as a library. These generic parts contain the necessary and
recurring glue code that deals with registering a component’s services with the under-
lying service framework, creating and destroying slet ports, exchanging configuration
and state with the exoengine platform, and retrieving the connected components’ input
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(port) and output (port) service objects to invoke methods on them. The developer of
a component concentrates on the component’s actual functionality and writes the com-
ponent against the API of the glue code library—thus generally without having con-
tact with the details of the underlying service-based implementation of the exoengine
platform.

4.2 Application Builders

Applications are created, modified, and removed by application builders. These provide
the programming interface and abstraction to the system, typically through a high-level,
declarative interface like a streaming query language or a graphical user interface.

Application builders register slet and channel implementations with the platform,
instruct the platform to create instances thereof and how to wire them, interact with
these instances through the management interface, and interact with remote platform
instances. The controlling parts of a stream processing system (query compiler, op-
timizer, control API) become application builders. A mesh of slets and channels can
have cycles and it is the responsibility of the application builder to ensure that this does
not cause adverse effects.

Similar to the implementation of components, application builders do not need to
know the details of the underlying service-based implementation of the platform. In-
stead, a management service provided by the platform is in charge of composition and
management of all components in one instance of the platform. It provides methods to,
e.g., create a new instance of a component, wire two components, or change the configu-
ration of a component. As a response to these methods, the management service creates
instances of slets, channels, and connectors; assigns a unique component identifier and
configuration (e.g., the query that a particular slet is executing or whether a channel
should persist data); and registers them under the corresponding service interfaces. The
platform persists the configuration of every component and whether the component is
active. This information is reused when an application or parts of it are restarted (e.g.,
migration). Then, components are recreated, receive the persisted configuration, and are
started automatically, relieving application builders from these tasks.

4.3 Distributed Operation

Application builders access remote platforms through a remoting service provided by
the platform. Similar to the management service, it abstracts from implementation de-
tails and provides high-level methods to connect to known remote platforms, discover
channels of interest in the network vicinity (e.g., using multicast discovery), access
the management service of remote platforms, migrate components between platform
instances, and connect local slets to remote channels or vice versa.

Stateful components must implement methods for (de)serializing their state in order
to enable their stateful migration (memento pattern). The platform calls these methods
and handles the serialized state between suspending and resuming a component.



278 M. Duller et al.

Fig. 6. Distributed operation using connectors

Every instance of the platform maintains one connection to every remote platform
instance. Through this connection, all communication takes place, as is illustrated in
Fig. 6. Remote connectors are provided by the remote operations component of ExoP.
By default, network failures result in the removal of the remote connector service, which
appears like any other dynamic change to the processing mesh. Smart connectors can
override this behavior and remain registered and thus connected.

4.4 Prototype

We have implemented the ideas presented in this paper in ExoP, our prototype of an
exoengine platform. ExoP is implemented as a componentized, service-oriented system
using Java and OSGi. This section presents some of its implementation details.

OSGi. ExoP is based on the OSGi Service Platform [22]. OSGi is a widely used (e.g.,
Eclipse IDE, application servers) framework for module management and service com-
position for Java. Modules are called bundles and explicitly state code dependencies on
other bundles. Bundles can be installed, uninstalled, updated, started, and stopped at
runtime. The OSGi framework handles the dependencies that arise in the process.

Services are implemented as Java classes, which are registered with the OSGi frame-
work’s service registry under one or more interfaces. A service registration can further
be augmented by a set of key/value properties. Service clients can look services up in
the registry, including filters on properties. When fetching a service they receive a direct
Java reference to the object registered as the service. OSGi provides loose coupling and
dynamic service composition within a Java VM. The open source project R-OSGi [25]
extends OSGi to support dynamic service composition across multiple Java VMs.

ExoP is implemented as a set of OSGi bundles and uses R-OSGi as the communica-
tion fabric to interact with remote platforms (see Fig. 6). ExoP is modular and dynamic
itself and a subset of its bundles (e.g., management) can be (un)loaded at runtime.
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Component Implementation. ExoP provides an API that facilitates the implementa-
tion of slets and channels. Using the example of slets, one class of an slet implemen-
tation must implement the interface SletMain, which defines methods that are called at
initialization or state transitions. In Fig. 4, this class is represented as solid black disk.

Multiple instances of the same slet can exist and each is instantiated by creating a
new instance of the class implementing SletMain. During initialization, an object of
type SletUtil is passed to the slet. Through this, slets interact with the platform to create
and destroy ports, and to update configuration and state.

ExoP’s component model for slets, channels, and connectors extends OSGi’s life-
cycle management facilities. The API hides the details of the service-based design and
allows developers to concentrate on the actual logic of the slet. Interactions with the
OSGi platform, like registering services or persisting configuration, is implemented in
ExoP and happens behind the API. For example, when an slet calls the API method to
create an input port, a port object is instantiated, a unique identifier assigned, the object
added to the slet’s list of ports, and eventually registered with the OSGi service registry
under the InputPort service interface and with the identifier as service property.

When an instance of an slet is created, a configuration object for that instance is
created and the configuration is persisted with OSGi’s Configuration Admin service,
resulting in a callback to the particular instance of a Managed Service Factory imple-
mentation. The factory then creates an instance of a generic SletImpl and an instance
of the specific SletMain slet implementation (supplying the instance of SletImpl as Sle-
tUtil), calls initialization and start methods on it, and eventually registers the SletImpl
under the Slet service interface and with a set of service properties (including the unique
Slet instance identifier) with the OSGi service registry. These steps are implemented in
ExoP’s management bundle and hidden behind its ComponentManager service inter-
face.

Component Binding and Interaction. Components are bound to each other (i.e., a
link is created in the mesh) by assigning the unique identifier of the service of the
component with cardinality one to a specific “connected to” property of the service of
the component with a higher cardinality. When a port is connected to a connector, the
connector’s unique identifier is saved in the port’s “connected to” property. Likewise,
for connectors and channels, the channel’s identifier is saved in the connector’s property.

When a component wants to interact with the component(s) it is connected to (i.e.,
call a method on their service interface), it fetches the matching components according
to the specific “connected to” property and unique identifiers. For example, a channel
fetches all connectors that have the channel’s unique identifier in their specific “con-
nected to” properties, while a connector fetches the channel with the unique identifier
that is saved in the connector’s specific property. Even though the setup of the mesh
typically hardly changes, properties need to be matched for every interaction between
components, which is a rather expensive operation. Therefore, we make heavy use of
OSGi’s service tracker, which pro-actively tracks and caches matching components,
similar to a proxy. The details of setting up and persisting component bindings with
unique identifiers, service properties, and service trackers are implemented in ExoP’s
management bundle and hidden behind its WiringController service interface, provid-
ing straightforward methods to connect and disconnect components.
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5 Evaluation

We have ported the MXQuery engine and the Linear Road benchmark (LRB) imple-
mentation presented by Botan et al. [7] to ExoP using partial assimilation (see Sect. 3.1).
The evaluation measures the overhead of the exoengine approach, demonstrates the fea-
tures and benefits gained by porting MXQuery to ExoP (i.e., capability for dynamic
modifications and extensions, distributed operation, federation with different SPEs),
and describes the porting effort.

5.1 The Linear Road Benchmark

The Linear Road benchmark [5] is a well established benchmark for stream processing
systems. It simulates variable tolling based on traffic conditions on a fictitious linear
city, consisting of a number of straight, 100 mile long, parallel highways. The input to
the system increases in rate during a full, three hour run of the benchmark, and consists
of car position reports and requests for toll information and balance reports. The output
of the system consists of accident alerts, tolls, and balance reports. A system running the
Linear Road benchmark must emit an output tuple (e.g., balance report) within at most
five seconds of when the last input tuple that causes the output to be generated (e.g.,
request for balance report) enters the system. The number of concurrent highways (in
units of .5 for separate directions of highways) that a system can cope with constitutes
its load factor L. Due to the coarse granularity of this load factor L, we will fix L
across comparable experiments and examine average tuple latencies a as measure of
performance impact.

5.2 Experiment Setup

Unless noted differently, the experiments were run on a machine with a single Core i5-
750 CPU (quad-core, 2.66 GHz) and 8 GB RAM, running the 64bit version of FreeBSD
8.2 configured to use the CPU’s TSC register as timecounter. We use OpenJDK 6b22
as Java runtime with maximum heap size set to 5 GB.

The numbers presented refer to the toll alerts output of the Linear Road benchmark.
They average 4 repetitions of a full, 3-hour-long run with an input load of L = 5.0.

5.3 Porting MXQuery and Linear Road

Applications for the MXQuery system typically consist of multiple instances of the
MXQuery engine and MXQuery’s storage implementations. Glue code creates and links
them to each other to form the final application. Every instance of the engine executes
one specific XQuery query. A query is compiled into a query graph consisting of multi-
ple operators that potentially have small, internal, implicit state and/or buffers between
each other. The storage instances provide windowing or persistent storage, and serve as
explicit buffers for (intermediate) results between instances of the engine.

The MXQuery engine was wrapped as a π-slet and the storage implementations as
channels. The rich interface between engine and storage, which, for example, allows
for index-based access to data in the storage, remains in use as an extension to the basic
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Fig. 7. Linear Road benchmark implementation on ExoP

interfaces of ports and channels. Furthermore, the code that loads the input file of the
Linear Road benchmark and feeds it to the benchmark as well as the code that writes
the result files was wrapped as α- and ω-slet, respectively. The code that sets up the
Linear Road benchmark by creating instances of all involved components (data loader
and writer, storage, MXQuery engine), assigning queries to the instances of the engine,
and linking these components to each other with custom glue code was turned into an
application builder. The application builder registers the slets (MXQuery, data loader,
data writer) and the channel implementations with ExoP. It then instructs the platform to
create respective instances thereof and to connect them. The queries that each instance
of the engine has to execute as well as input and output file names are passed to the slets
through ExoP’s configuration mechanism. Once the application builder has completed
setting up the Linear Road benchmark implementation in ExoP (as illustrated in Fig. 7),
processing starts. With the exception of the daily expenditures query1, the implemen-
tation is the same as the original one presented by Botan et al. [7] and consists of 9
instances of the MXQuery engine, each processing a different query.

5.4 Overhead of the Exoengine Architecture

Since every additional layer potentially adds overhead to a system, we first measure the
overhead incurred by the modular and dynamic design employed by our platform. Fig-
ure 8 compares the original implementation of the Linear Road benchmark (“Without”)
with the ExoP version (“With”). Both implementations can handle the load well and
the overhead added to the average processing time of tuples is negligible (147.90 ms
vs. 148.92 ms). Table 1 provides additional details about the experiment runs. It counts
output tuples grouped by processing time (bins of 1 second) in the 2nd and 3rd column.

5.5 Replacing an Slet at Runtime

The exoengine architecture encapsulates entities like operators and buffers and uses
loose coupling between them, which enables dynamic changes to the processing mesh.
We demonstrate this feature by replacing the car positions slet in the LRB workflow af-
ter 1 hour of the 3-hour-long run of the benchmark with a native implementation, while

1 We have removed the daily expenditures query from both the original and the ExoP imple-
mentation due to its negligible impact on performance and the effort required to deploy the
historical data.
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Fig. 8. Average tuple latencies [ms]

the benchmark is running. The query executed by the car positions slet filters car posi-
tion reports from the input and forwards them to the upper part of the workflow shown
in Fig. 7. Our native implementation performs the same functionality directly in Java
instead of using the MXQuery engine and can be seamlessly plugged into the process-
ing mesh. Replacing one instance of the MXQuery slet with a native implementation
happens almost instantaneously and without adverse effects to the benchmark, as the
average latencies “With” compared to “Native” in Fig. 8 show. Table 1 again provides
additional details of the corresponding experiment runs in the 3rd and 4th column.

5.6 Distributed Deployment

The encapsulation of entities like operators and buffers behind well-defined interfaces
abstracts from concrete implementations and, thus, allows to transparently introduce
network communication between components. We demonstrate this feature by distribut-
ing the centralized MXQuery engine across multiple machines and scaling the load
factor L of the Linear Road benchmark using data partitioning at the level of highways.

We use 16 cluster nodes on a switched gigabit ethernet. Each node has two Xeon
L5520 CPUs (quad-core, 2.26 GHz) and 24 GB RAM. They run Ubuntu 10.04 64 bit
and Oracle’s JDK 6u22 with maximum heap size set to 5 GB. The maximum possible
load for a single node is L = 4.5. However, applications designed for the exoengine
architecture can easily be transformed into distributed systems by introducing remote
invocations between components running on different machines. For the Linear Road
benchmark, we chose the partitioning depicted by the dashed line in Fig. 7. Every node
handles the traffic of 4.0 highways (upper part of the figure). The toll balance (lower
part of the figure) runs only on one node (the master) and the other nodes (slaves) update
the shared toll store through a transparent remote service invocation, implemented by a
remote connector. We fixed L = 4.0, as this configuration spared enough capacity on
the master node for the shared part of all experiment setups up to 16 nodes.

Figure 9 shows how we scale the aggregate load (left y-axis) linearly with the num-
ber of nodes (x-axis) and the effect on the mean latency of all tuples (right y-axis). For
every node we add we can process another 4.0 highways, resulting in L = 64.0 being
processed on 16 nodes. The overall tuple latency only increases significantly for the
first few added nodes and then flattens out. The impact of the distributed setup on the
latency is twofold. First, updates to the toll store on the master by the slaves are syn-
chronous in the current implementation and, thus, block local processing on the slaves
until the update has completed successfully. The impact of this constant overhead on the
total average tuple latency is proportional to the number of slaves (0, 1

2 , 2
3 , 3

4 , . . . ) and
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Table 1. Tuple count grouped by processing time

Time Without ExoP With ExoP Native after 1h STREAM

[0, 1) s 11 329 044.00 11 333 460.50 11 333 349.00 11 324 352.00
[1, 2) s 52 042.75 48 511.00 48 009.75 53 378.75
[2, 3) s 14 830.25 14 367.75 14 373.00 17 216.75
[3, 4) s 1 755.00 1 332.75 1 940.25 2 724.50
[4, 5] s 0.00 0.00 0.00 0.00
(5,∞) s 0.00 0.00 0.00 0.00

results in the steep increase when adding the first slaves. Second, the load of process-
ing updates to the toll store on the master node increases with every slave added. This
results in slightly increased latency on both the master node’s local traffic processing as
well as responses to slaves’ update requests to the toll store and thus their local traffic
processing as well. The small, steady increase in latencies reflects this effect.

The experiment shows that we can use ExoP to scale out an application that was
based on a centralized engine. We were able to linearly scale up the load of the Linear
Road benchmark implementation on MXQuery with the number of nodes. The com-
munication between nodes happens through ExoP’s communication system, used by
remote connectors which appear to the MXQuery engine slet like a connector to a lo-
cal store. We chose a synchronous and straightforward implementation of the remote
connector to capture all impacts of network communication. Depending on application
semantics, asynchronous remote connectors, with queues, can be used to cut latency.

5.7 Developing with the Exoengine

Since it is not possible to provide universally valid, hard numbers on the effort that is
needed to implement certain functionality in software, we provide at least an inkling of
the overhead and savings when implementing using the exoengine architecture.

The native car positions slet consists of two classes. One class implements SletMain
(see Sect. 4.4 for details) and the other class implements the actual filtering function-
ality. The main class consists of 55 lines of source code, out of which all but 9 lines
have been generated from the SletMain interface. Packaging an slet implementation for
ExoP only requires the addition of one attribute to the manifest of the JAR file.

SletMain of the MXQuery slet consists of 300 lines of code. It uses the original
MXQuery codebase with a set of interfaces and small helper classes, which are again
reused by the data loader and writer slets, the channels, and the native car positions slet.

The overhead of implementing an slet is moderate and limited to implementing the
basic interfaces for management and data exchange. Implementing buffers as channels
follows the same pattern and is equally simple. For the distributed experiment, we only
had to change certain data types of the MXQuery engine to implement the Serializable
interface so that we could ship instances to other machines. The remote invocations
along the boundaries of OSGi services happen transparently with R-OSGi.
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Fig. 9. Scale-out of MXQuery-based LRB implementation on ExoP

The MXQuery and the STREAM engines [20], storage implementations of MX-
Query, data loaders and writers were ported by us and are reusable as a library. Addi-
tional applications for these engines can therefore be deployed right away.

5.8 Heterogeneity

ExoP enables the federation of heterogeneous stream processing entities on a common
platform. We demonstrate this feature by combining MXQuery and STREAM into one
application. Figure 10 illustrates the modified setup. We replaced the sink for the toll
notifications with an slet that converts flat XML fragments into binary relational tu-
ples (X2R). The STREAM engine (SE) processes the toll notifications according to its
assigned query and emits the results to a sink that writes relational tuples to a file (RS).

The two engines used in this setup differ in terms of the query model (XQuery
vs. CQL), data model (XML vs. relational tuples), implementation language (Java vs.
C++), and processing model (purely pull-driven vs. thread-driven, pull-based input and
push-based output). Each engine processes queries in its native format. No query trans-
formation or translation takes place and the strengths of each engine and its specific
query dialect are retained. Data is consumed and emitted by each engine in its native
format as discrete items. Conversion slets, like slet X2R in Fig. 10, convert between
different data formats. They can be built using existing conversion tools and libraries.
Federation of applications written and running on different engines typically happens
at few, well-defined interaction points. Therefore, the effort to deploy conversion slets
or provide custom conversion slets for proprietary data formats is manageable.

We measure the overhead introduced by adding the STREAM engine to the MX-
Query-based benchmark by running this modified setup of the benchmark and sim-
ply passing tuples through the STREAM engine using select * from S as query,
where S corresponds to the TollNotR input channel. Connecting STREAM to the pro-
cessing mesh and passing tuples through it adds only 0.5 % overhead to the average
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Fig. 10. STREAM engine attached to toll notifications

latencies (compare “With” and “STREAM” in Fig. 8) and the benchmark runs well
within limits, as can be seen in the 5th column in Table 1.

The seamless integration of the pull-driven MXQuery engine written in Java with
the pull/push-driven STREAM engine written in C++ demonstrates the suitability of
the architecture for supporting different processing models and the composition of het-
erogeneous engines into new applications.

6 Related Work

The fundamental difference between the research [2,20,9] and commercial products [27,
29, 4, 16] mentioned in the introduction and our exoengine architecture is that it is not
yet another SPE. Rather, it provides a platform for facilitating application development,
deployment, integration, and management of existing or new-to-be-built SPEs.

Related work on distributed SPEs focused on functionalities like load management
(e.g., [1,24]), fault tolerance and high availability (e.g., [1]), integration with sensor net-
works (e.g., [14, 3]), and performance tuning (e.g., [17]). These systems mostly target
fixed cluster-based settings, where the dynamic wide-area architectural requirements
that we consider, such as loose coupling and heterogeneity of components, as well as
flexibility of deployment and reconfiguration, were not considered as equally critical.
Closer to our work, the XFlow Internet-scale distributed stream processing system pro-
poses a loosely-coupled architecture for query deployment and optimization, focusing
on an extensible cost model [23]. XFlow does not provide any abstract programming
models or techniques for building, hosting, or porting various SPE components.

There are a few platforms proposed for facilitating the development of stream-based
applications, such as System S, Auto-Pipe, MaxStream, or PIPES. System S [17] in-
cludes a distributed runtime platform that facilitates dynamic stream processing. The
platform pursues similar goals in terms of deployment as exoengine does but is less ex-
tensible due to its focus on the ecosystem of System S, which includes a language and
run-time framework (SPADE) and a semantic solver (MARIO). In constrast, exoengine
is an independent, pure middleware approach, and as such, is usable for many different
SPEs. Auto-Pipe [8] is a development environment for streaming applications executing
on diverse computing platforms consisting of a hybrid of multicore processors, GPUs,
FPGAs, etc. The authors propose a coordination language X and a compiler that maps
X programs into the native languages of the underlying platforms so that parts of appli-
cations can be run on the platforms that will provide the highest performance for them.
This work focuses on diverse hardware platforms, whereas we focus on diverse SPEs.
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The MaxStream architecture [6], on the other hand, integrates heterogeneous SPEs and
databases behind a common declarative query interface, but without considering the
lower-level virtualization and flexible wide-area deployment issues that our exoengine
architecture tackles. PIPES [18] is a flexible and extensible infrastructure that provides
fundamental building blocks (including runtime components like a scheduler, memory
manager, and query optimizer) to implement a stream processing system for the Contin-
uous Query Language (CQL) and a specific operator algebra. In contrast, the exoengine
approach proposes a generic model and platform to host and execute a variety of dif-
ferent and independent stream processing systems, which are not required to share a
common query language, algebra, implementation language, or runtime components,
but can still share them where appropriate.

The importance of elastic stream processing has also been recognized by related
work recently [26]. This work focuses on elastically scaling the performance of indi-
vidual streaming operators on multicore machines, whereas our work provides a more
general architecture for distribution and a platform that can also serve as basis for elas-
tic stream processing. Yahoo’s S4 [21] provides an architecture and platform for pro-
cessing streaming data similar to MapReduce [10] for stored data, and the similar key
property of a specific, simple processing model that enables automatic parallelization
and deployment on a large number of machines. StreamCloud [15] is a middleware
layer that sits on top of streaming engines and focuses on how to parallelize continuous
queries by splitting them into subqueries and distributing them to nodes. The exoengine
approach provides a platform that hosts different streaming engines and could bene-
fit from StreamCloud by integrating it as application builder. Lastly, in our XTream
project [11], we explore how an exoengine-like platform and stream processing in gen-
eral can facilitate personal information processing and dissemination at global scale.

Publish/subscribe systems also provide mechanisms and an infrastructure to dissem-
inate and filter data from sources to sinks [13]. They decouple senders from receivers
by topics, which can be modeled by channels in our architecture. However, they do not
support sophisticated in-network data processing, distributed operation in a peer-to-peer
manner, access to intermediate results, or in-network storage, as stream processing with
the exoengine does.

7 Discussion and Outlook

In this paper, we have proposed a new architecture for implementing data stream
processing applications by virtualizing components of stream processing systems and
deploying them on a common middleware platform. While being radical in its puris-
tic approach inspired by the exokernel architecture, the non obtrusive nature of the
approach—it does not dictate a specific query language, algebra, operator implementa-
tion, or scheduling model—allows to leverage any existing stream processing system
and its particular strengths. In contrast, yet another concrete implementation of a stream
processing system would require a much more radical reimplementation of existing
applications. The exoengine architecture defines the fundamental elements of stream
processing (slets/operators, channels/buffers) using extensible interfaces to allow rich
interaction between specific slet and channel implementations of a particular system,
while retaining basic data exchange capabilities with other systems.
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Depending on the granularity of the integration of streaming systems with the exo-
engine platform (see Sect. 3.1), the benefits range from the automatic management of
deploying and executing an encapsulated application and its federation with applica-
tions for other engines (through its ultimate inputs and outputs) to the reuse of engines
or individual operator implementations and the ability to replace them with a different
implementation at runtime, as demonstrated in Sect. 5.5. The architecture transparently
provides data transport in a distributed setup and allows to run centralized engines in a
distributed setting, as demonstrated with the scale-out experiment in Sect. 5.6.

Finally, we have provided brief conceptual instructions for building an exoengine
platform using SOA in Sect. 2.3 and discussed concrete implementation aspects as well
as showed a concrete prototype implementation in Sect. 4. The prototype confirms that
the dynamic nature and additional indirections (ports, connectors) can be implemented
efficiently with negligible overhead, as validated in Sect. 5.4.

Future work includes automatic state capturing of slets for migration (currently slets
need to implement serialization and deserialization of internal state to allow migra-
tion); deriving common, generic channels and slets (e.g., round robin distributor) and
providing them as a base library (similar to the platform providing common function-
ality for deploying, running, and managing configuration and state); and extending the
exoengine’s area of application to elastic/cloud computing—the holy grail of dynamic
operation, automated management, and distributed deployment.
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Abstract. Replicated services often rely on a leader to order client re-
quests and broadcast state updates. In this work, we present POLE,
a leader election algorithm that select leaders using application-specific
scores. This flexibility given to the application enables the algorithm to
tailor leader election according to metrics that are relevant in practical
settings and that have been overlooked by existing approaches. Recov-
ery time and request latency are examples of such metrics. To evaluate
POLE, we use ZooKeeper, an open-source replicated service used for
coordinating Web-scale applications. Our evaluation over realistic wide-
area settings shows that application scores can have a significant im-
pact on performance, and that just optimizing the latency of consensus
does not translate into lower latency for clients. An important conclusion
from our results is that obtaining a general strategy that satisfies a wide
range of requirements is difficult, which implies that configurability is
indispensable for practical leader election.

Keywords: leader election, replicated services, fault tolerance,
performance.

1 Introduction

Leader election is a fundamental primitive often used in practical systems, such
as ZooKeeper [12] and Chubby [4], which are stateful middleware services used
for coordination tasks of Web-scale applications. Given the size and extent of
such applications, it is critical to prevent faults from bringing them to a halt, so
both services use replication for masking faults and rely upon a primary server,
i.e., a leader, to propose state updates and to disseminate them using an atomic
broadcast protocol. Consequently, the ability to elect a leader for the replicated
service is critical to ensure progress.

In replicated services like ZooKeeper and Chubby, the leader performs more
work than other servers, since it processes more messages and generates state up-
dates. Many existing leader election algorithms rely on the identifiers of servers
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to select a leader [1,9,11]. While designing ZooKeeper, however, one initial re-
quirement regarding leader election was the ability to elect the server with the
longest history of state updates among a quorum of servers. Such a server only
has to push missing state updates to follower servers instead of pulling missing
updates first. Because servers present comparable performance in data center
deployments, such a leader not only enables faster recovery, but also provides
the same performance while broadcasting as any other server would provide.

Over time, however, we encountered settings in which ZooKeeper servers ei-
ther were running on heterogeneous hardware or presented different connectivity
to other servers and application clients. Deployments spanning multiple data cen-
ters are important examples of such settings, where applications often present
disaster-tolerance requirements. In some deployments, most clients are in one
data center and electing a leader in the data center where most client requests
arrive minimizes the request latency observed by clients. For some applications,
such an optimization can be even more important than optimizing recovery time,
as previously done by ZooKeeper, or the time required to terminate consensus,
as with existing leader election algorithms such as the latency-aware algorithm
of Santos et al. [17].

Although a number of leader election algorithms exist in the literature, there is
no algorithm to our knowledge that can be easily adapted to specific constraints.
This observation led us to reason about how to elect servers with properties
other than the history length, and to use a generic score computed at runtime
to classify servers according to application-specific properties.

In this work we propose an algorithm that takes a generic score as input to or-
der servers during election, and we call it POLE (Performance-Oriented Leader
Election). POLE is configurable, since it provides to an application the ability of
selecting the desired properties of a leader server. To enable configurability, we
implement application-specific scoring functions in an oracle module external to
POLE. Before starting leader election, the local POLE module of a server queries
its oracle to assign itself a score. Oracles compute scores using information ei-
ther collected during regular operation or explicitly measured for estimating
performance. Designing application-specific score oracles is simpler than imple-
menting a new leader election that suits the application needs. Simplicity also
comes from having each server assigning a score only to itself. After querying
the oracle, servers share their scores, encapsulated in election messages, and try
to elect the server with the highest score. POLE simply broadcasts scores and
does not require reaching agreement on the ordering of servers before starting
leader election, as required in the work of Sampaio and Brasileiro [16].

We show the flexibility and simplicity of our approach by implementing score
oracles that optimize important metrics arising from real-world applications and
were not considered by existing leader election algorithms: mean request latency,
the mean time required for clients to complete a request; worst-case request
latency, a metric often used to specific application requirements to the ZooKeeper
service; and recovery time, the time it takes for a new leader to start operating
again after the failure of the previous leader.
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For evaluation, we implemented a prototype using the ZooKeeper code base1

and emulated wide-area systems to investigate the performance of different ap-
plication requirements. The results show that our request latency metrics can
in some cases significantly diverge from consensus latency, which is the metric
optimized by leader election algorithms such as the one of Santos et al. [17].
Depending on the particular setting, selecting an appropriate scoring function
can elect leaders that provide up to 50% lower request latencies than arbitrar-
ily elected leaders, while recovery-oriented oracles can elect leaders that provide
minimal recovery times. Our results show however that obtaining a general strat-
egy that fulfills multiple requirements is difficult.

The following list summarizes our contributions in this paper:

– We present POLE, the first leader election algorithm that is explicitly de-
signed to enable application-specific performance configurability;

– We propose novel leader election oracles optimizing request latency and re-
covery time, metrics that cannot be directly optimized using the leader elec-
tion algorithms proposed in the literature;

– We evaluate these oracles under a set of emulated wide-area settings and
discuss trade-offs that operators deploying POLE might encounter.

Roadmap. The remainder of this work is structured as follows. Section 2 presents
common application metrics and propose scores that approximate these metrics.
Section 3 presents the algorithm and oracles using our scores. POLE and the
oracles are evaluated in Section 4. We discuss further extensions in Section 5 and
related work in Section 6. Finally, we conclude in Section 7.

2 Application Scores

In this section, we present several application-specific scoring functions. A scor-
ing function θ(p) is a function that maps identifiers of servers (ids) to values
called scores. We use the term θ score instead of scoring function θ(p) whenever
the id of server p is clear from the context. Our scoring functions are based on
two important metrics motivated by requirements that real-world applications
impose on coordination services: recovery time and latency of (write) requests
as perceived by clients. In particular, we focus on wide-area network (WAN) de-
ployments, spanning multiple data centers. Such deployments are typical for ap-
plications with disaster-tolerance requirements. POLE, however, supports other
scoring functions not explored in this work such as pre-defined preference lists.
Table 1 summarizes our scoring functions.

2.1 Background: Replicated Coordination Services

A coordination service, such as Chubby and ZooKeeper, enables clients to in-
teract through a shared data tree of simple small files; for instance, ZooKeeper
1 http://zookeeper.apache.org

http://zookeeper.apache.org
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Table 1. Scores for server p

Score Symbol Description

maximum zxid θz length of the local history stored by p
consensus latency θc consensus latency if p becomes leader
request rate θr rate of client requests sent to p
mean request latency θl mean request latency if p becomes leader
worst-case request latency θw worst-case request latency if p becomes leader

by default does not allow files (znodes) larger than 1MB. This data structure
is replicated across servers of an ensemble to ensure availability and durability.
To access the service, clients initiate sessions and manipulate these files through
a file-system-like API. Although simple, this API is powerful enough to create
complex synchronization mechanisms.

Coordination services are designed to be a consistent, reliable component
of larger distributed applications. We consequently assume real deployments
are properly provisioned (the service rarely saturates). Different from Chubby,
ZooKeeper clients can connect to any server and this server processes locally
read requests, thus avoiding the cost of running atomic broadcast. Deployments
of coordination services consist typically of ensembles of 3 to 7 servers, depending
on the application requirements. In deployments of these services, process and
link failures are typically infrequent.

2.2 Request Latency

In wide-area settings, links often have different latencies, and the request latency
perceived by the client application can be adversely affected by slow links. Con-
sider the example with an ensemble of 3 servers deployed in two data centers
D1 and D2 as depicted in Fig. 1a. Let δD be the latency of the links between
any server in D1 and any server in D2. In a wide-area setting, data centers are
geographically separated, so the link latency inside a data center, e.g., between
p1 and p2, is typically much lower than between data centers, e.g., δD.

In leader-based atomic broadcasts protocols, the leader orders client requests,
and in systems like ZooKeeper and Chubby, they also process them generating
state updates that the leader broadcasts to followers (a leader server is also
a follower). Following ZooKeeper terminology, each of these state updates is a
transaction. When a server is elected leader, e.g., server p1, the links can be
represented as in Fig. 1b, where δi denotes the latency of the link between server
p1 and server pi. The leader can only acknowledge a request to the client after
a quorum of servers accepted the respective transaction, by logging it to stable
storage and replying. In this work, we consider a quorum to be a majority of
servers in the set N of all servers of the system, ensuring that every two quorums
have a common server.

The elapsed time between a broadcast by p1 and the receipt of a quorum of
replies is the consensus latency of p1.2 Let server l be a leader (or candidate)
2 For our purposes, atomic broadcast and consensus are equivalent terms.
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and q be the server with slowest link to l in the quorum of servers with the
fastest links to l, i.e., q is the server with the (�|N |/2�+ 1)th slowest link to l.
In the example, l = p1, q = p2, and δq = δ2. The score θc of a server l is its
consensus latency assuming it is the leader, i.e., θc(l) = 2×δq +tdisk, where tdisk

is the time it takes a server to store the transaction in stable storage. Modern
disks have a write cache that improves significantly the performance of writes
to disk, and enables short latency values. With such a buffer on, which is a
typical choice in production, and persisting updates to disk, ZooKeeper is able
to process operation in a few milliseconds including local area network latency.
For our purposes, we can consequently ignore the disk latency. Additionally, we
assume in the following discussion that latency of a link is roughly the same in
both directions and relatively constant despite of spikes.

Electing the server with the fastest links to a quorum minimizes consensus
latency, but not necessarily request latency. With ZooKeeper, as with other
replicated services, the leader does not always directly receive all client requests.
A follower r also receives them on behalf of the leader and forwards them to the
leader l, keeping a session to the client (see Fig. 1c). Once the leader performed
consensus on the transaction, the leader sends an acknowledgment to the follower
that forwarded the request, which in turn sends an acknowledgment to the client.
The request latency is thus the sum of the hop from follower r to l and back plus
the consensus latency of leader l. In the example, if only the consensus latency
is considered, then servers p1 or p2 are the best leaders because they have a fast
link to a quorum, i.e., to themselves and to another server in the same data
center. However, the request latency actually observed by the client also needs
to include the additional communication step from the replica to the leader, so
the “slow” server p3 could be the best leader if most of the requests arrive on
it. Note that we assume clients first connect to replicas in their data centers, so
the latency client-replica is negligible compared to WAN latencies.

We now define scoring functions (scores) that target short request latency.
Let λT be the total request rate of the system. The request rate arriving in data
center Di or on server pi is represented by λi. If not clear from the context, we
explicitly indicate to which one λi refers. The scoring function θr(p) is the mean
request rate received by p from clients, i.e., an approximation of λi.
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The scoring function θc(p) represents the consensus latency provided by p if it
were the leader. The scoring function θl(p) represents the mean request latency
provided by server p if it were the leader, i.e., the consensus latency score θc plus
the round-trip time between p and each follower r weighted by the follower’s θr:

θl(p) = θc(p) +
1

λT

∑
r∈N ′

θr(r) × δr,p (1)

The scoring function θw(p) represents the worst-case request latency provided
by server p if it were the leader, i.e., the consensus latency score θc plus the
round-trip time to the follower r with the greatest δr,p:

θl(p) = θc(p) + 2×max({δr,p|r ∈ N ′}) (2)

In both equations N ′ ⊆ N , N ′ contains no server which is suspected to be
crashed; and, if the server follows a leader l, then l /∈ N ′. The latter restriction
is because the score should represent the performance of the candidate in the case
the leader crashes. Section 3 explains how these scores are used in the election.

2.3 Recovery Time

The second practical metric we use to evaluate a leader is the recovery time, since
it directly influences the down time of a service. For the purposes of this work,
we define recovery time of a replicated service to be the time the new leader
takes to learn from a quorum of followers the chosen transactions it has not
seen, if any, and propagating the transactions to servers that are missing them.
After a quorum is synchronized by persisting transactions to stable storage and
applying to the state, the leader can start processing new transactions.

In ZooKeeper, a transaction encompasses an idempotent state update gen-
erated by executing the client’s request and an increasing transaction identifier
called zxid [12]. The total order enforced by ZooKeeper is consistent with the
zxid order. As in any practical replicated service implementation [4,12], the leader
performs multiple consensus instances in parallel. Because servers do not pro-
ceed in lock-step, and the leader only requires a quorum of servers to guarantee
progress, at any point in time different followers may have accepted a different
number of transactions due to a number of factors. If a server is powered on af-
ter crashing or after being powered off, then its state can be arbitrarily behind.
Resource contention and traffic spikes might also cause a particular server to
lag behind. As a consequence, the amount of transactions a new leader has to
learn to synchronize with other servers on recovery can be arbitrarily large. The
recovery time directly depends on this amount of data and on how fast the links
between leader and followers are. During the time the service is recovering, no
new request is accepted, and consequently, minimizing this amount of time is
critical for availability.

Using the last accepted zxid directly in the election is a sensible approach.
In fact, this is the scoring function ZooKeeper election currently implements;
the last accepted zxid of a server is its θz score. By electing the server with the
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highest θz , the leader does not have to copy missing transactions from other
servers, thus making the time to recover negligible in local-area deployments,
since it is essentially the time the leader takes to learn from a quorum of servers
their last accepted zxid, but no transaction content. The server with the highest
θz is called the fattest server.

3 The POLE Algorithm

POLE achieves configurability by allowing the operator to select on deployment
a score oracle to order the processes 3 in an election round. A score oracle consists
of a function get-score, which implements a scoring function θ(p) that assigns
a score to the process; and a total order relation ≺θ over the set of scores (a
partial order relation is also sound with POLE, but the relations we use in this
work are all total orders). For example, one possibility is to use the θz(p) scoring
function, i.e., to use zxids as scores, and the total order over zxids as the ordering
relation. Figure 2 shows the interaction between the modules of our system.

Our POLE implementation in ZooKeeper breaks the leader election into two
tasks: (unreliable) leader selection and (unreliable) failure detection. POLE, to-
gether with a score oracle, implements the first task, whereas ZooKeeper imple-
ments the second task. Both together implement an Ω leader election oracle [7].
When a ZooKeeper process detects that the current leader crashed, it invokes
POLE. Next, POLE starts an election by invoking the oracle, which in turn
assigns a θ score to the local process. POLE then shares the θ score with the
other processes. In timely runs, where messages are not lost the process with the
highest score, ordered with the ≺θ, becomes the new leader. POLE terminates
by returning to ZooKeeper the id of the selected process.

3.1 Failure Detection

Failure detection is implemented in ZooKeeper because it is a byproduct of its
operation. When a process is elected leader, it opens TCP connections to other
processes. As long as a leader has open connections with a majority of processes,
it remains able to commit the operations it proposes, and progress is guaranteed.
This condition holds as long as the leader has timely links to a quorum, that is,
it is f -connected [15]. If the leader process fails to open enough connections, or
if too many connections are terminated due to faults or asynchrony, the process

3 In this section, we use the term process instead of server to agree with the literature.
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abandons its leadership by closing all its connections and executes POLE to
perform a new election. Similarly, when a process notices that it has disconnected
from the leader, it executes POLE. Our election algorithm only requires leader-
follower failure detection information, so it never requires ZooKeeper to open
more connections than those needed by the atomic broadcast protocol itself.
Processes only accept a connection from the process they believe to be the leader.
Hence, at any given time at most one leader has open connections with a majority
of processes. Consequently, if two processes are leaders simultaneously, eventually
one of them drops leadership.

3.2 Leader Selection Algorithm

We now describe in detail the leader selection algorithm. The pseudo-code is
shown in Alg. 1. We assume messages can be delayed or lost, but not corrupted;
processes can start at different points in time, can crash, and can recover.

The core idea of the algorithm is very simple. Once new-election is called by
ZooKeeper, process i starts the election by requesting its current θ score from
its oracle with get-score. It then invokes start-epoch and broadcasts a propose
message 〈P , epoch, θ, i〉. Epochs are used to identify election instances. Whenever
process i receives a greater proposal tuple from some other process j, it overwrites
its proposal and repeats the broadcast. Proposals are totally ordered with ≺p,
since it encapsulates multiple ordering relations: first ordering by epoch, then by
θ using ≺θ, and finally by id in case breaking ties is necessary. In a timely run,
non-crashed processes eventually converge to the same leader. Note that get-
score receives the current epoch as an argument, since some scoring functions
depend on the epoch, such as the rotating scheme described below.

As in any practical implementation, the algorithm has to return a leader at
some point. If process i received proposals from all processes, then process i
can elect the highest proposal immediately. Due to delayed or lost messages and
process crashes, process i might receive proposals only from a subset of pro-
cesses. In general, leader-based broadcast protocols require at least a quorum
to achieve progress. Therefore, if process i receives proposals from a quorum, it
starts election-timer (Line 1), which terminates the election upon timeout. When-
ever a proposal is delivered, the procedure start-timer? is called to check these
conditions. Upon timeout (Line 2), leader is set to the id of the process with the
highest proposal, and new-election returns (Line 1) to ZooKeeper. The returned
leader might, however, be a crashed process if it crashes after broadcasting its
proposal. In such cases, the failure detection implemented in ZooKeeper will
eventually restart the election by calling new-election.

Because processes can be started at different points in time, and can be tem-
porarily disconnected from each other, a process j can try to start an election
when other processes already follow a leader. When process i believes to know
who the leader is, it replies proposals from process j with a vote (V) message
containing the value of leader (Line 2). If process j receives a quorum of vote
messages (Line 54) indicating the same leader in the same epoch, then process j
starts also believing in its leadership and sets its leader and epoch variables, thus
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Algorithm 1. Selecting a leader in process i

import get-score, ≺θ;1
export new-election;2
constant T;3
timer election-timer, retry-timer;4
init5

leader ← ⊥;6
epoch ← 0;7
proposal-set ← vote-set ← ∅;8
stop election-timer;9

procedure start-epoch10
leader ← ⊥;11
proposal-set ← vote-set ← ∅;12
send 〈P, epoch, proposal〉 to all;13

function new-election14
t ← T;15
epoch ← epoch+1;16
proposal ← (get-score(epoch), i);17
invoke start-epoch;18
while leader = ⊥ do19

start retry-timer;20
while leader = ⊥21

∧ retry-timer < t do nop;22
if leader = ⊥ then23

send 〈P, epoch, proposal〉 to24
all;

t ← t × 2;25

return leader;26

procedure start-timer? argument j27
proposal-set ← proposal-set ∪ {j};28
if |proposal-set| = |N | then29

start election-timer with T + 1;30
else if |proposal-set| > �|N |/2� then31

start election-timer;32

upon receive 〈P, e, p〉 from j do33
if leader �= ⊥ then34

send 〈V, epoch, leader〉 to j;35
return;36

if p ≺p proposal then37
send 〈P, epoch, proposal〉 to j;38

else if e = epoch then39
if proposal ≺p p then40

proposal ← p;41
send 〈P, epoch, proposal〉 to42
all;

else43
epoch ← e;44
proposal ← (get-score(epoch), i);45
if proposal ≺p p then46

proposal ← p;47
invoke start-epoch;48

invoke start-timer? with j;49

upon election-timer > T do50
(θ, l) ← proposal;51
leader ← l;52
stop election-timer;53

upon receive 〈V, e, l〉 from j do54
vote-set ← vote-set ∪ (e, l, j);55
if ∃S ⊆ vote-set :56

∀ (e1, l1, j1), (e2, l2, j2) ∈ S :57
e1 = e2 ∧ l1 = l258
∧ |S| > �|N |/2�59
∧ (∃ (e4, l4, j4) ∈ S : j4 = l1) then60

epoch ← e1;61
leader ← l1;62
stop election-timer;63

else64
invoke start-timer? with j;65

guaranteeing leader stability [1]. Line 2 checks if the leader replied with a vote
message as well, what is important to avoid reelecting a crashed leader.

Whenever the election does not converge, e.g., too many messages were lost
and no quorum sent proposals to process i, a second timeout (retry-timer) is
triggered and process i repeats its broadcasts (Line 1), exponentially backing off
on each retry. Note that the timeliness implied by waiting for a quorum is not
the minimal to enable atomic broadcasts [2,15]. Nevertheless, we have not yet
observed the need for weaker timeliness assumptions.

3.3 Oracles

An oracle is the implementation of a scoring function and an ordering rela-
tion over set of scores. We implemented one oracle for each scoring function in
Sec. 2. With history oracle, POLE elects the process with the highest θz. With
request oracle, it elects the process that receives the largest volume of requests.
With consensus oracle, it elects the process with the shortest consensus latency.
With latency oracle, the process with the lowest mean request latency. And with
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worst-case oracle, it elects the process with the lowest worst-case request latency.
For comparison purposes, we also implemented an application-unaware oracle
which represents a rotating leader selection based on the process identifier, a
typical approach of existing protocols. The leader of the current epoch (also
called round’s leader) assigns itself a score of 1, while all other processes assign
themselves a score of 0. Note that differently from traditional rotating elections,
our oracle uses the same message pattern as any POLE election (broadcasts).

Different scores require different information to be acquired and transmitted
between the processes. The θz and θr scores are already built into ZooKeeper and
can be easily accessed by an oracle by querying the right components. To com-
pute them, no information has to be transmitted between processes. In contrast,
θl and θw require communication. The election module in ZooKeeper builds a
clique graph encompassing all processes. These connections are encapsulated in a
component called ConnectionManager, which implements links between the pro-
cesses exclusively for the election. This component can be used by any oracle to
transmit oracle messages if needed.

To compute θc, θl, and θw, each process i keeps a vector RTTi with the
mean round-trip times between i and all other processes. It sends “ping-pong”
heartbeats to all nodes periodically via the ConnectionManager. Once a process
crashes, it does not respond to heartbeats and is removed from RTTi. The heart-
beat period can be configured on a per deployment basis. Fairly long periods such
as 100ms to 1s are sufficient in most cases (we use the default value of 1s). To
calculate θc or θw, let RTT i be RTTi sorted in ascending order of values. The
score θc(i) is the (�|N |/2�+1)th value of RTT i, and θw(i) is θc(i) plus the highest
value in RTT i (see Eq. 2). Note that we exclude the current leader from RTTi

because the scores are needed once the leader becomes faulty.
Finally, to compute θl, each process i needs to additionally keep a vector Fi

with the value of θr(j) for all j ∈ Π . The sum of all elements in Fi approximates
λT . The values of the scoring function θr(j) are transmitted in the heartbeat
messages via the ConnectionManager. The final value is calculated by weighting
RTTi with the frequencies in Fi as in Eq. 1.

4 Experimental Evaluation

In this section, we evaluate the oracles described in Sec. 3.3. For readability, we
often say an oracle provides low request latency instead of saying the server
elected with this oracle provides low request latency.

4.1 Experimental Setup and Methodology

We performed all of our experiments on a cluster of 10 workstations. Each of
them has 2 quad-core 2.0 GHz Xeon processors, 8 GB of RAM, a Gigabit Ether-
net interface, and a 7200 RPM disk attached via SATA2. The running operating
system is Debian GNU/Linux 5.0 with kernel version 2.6.26.
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Table 2. End-to-end latency examples

source target mean rtt (ms) sd (ms)

slac caltech 9.88 0.10
tud cern 20.75 0.11
slac fnal 53.26 0.14
caltech fnal 77.06 0.26
slac cern 172.47 0.69
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Fig. 3. Achievable bandwidth

Implementation and Workload Generator. POLE and the oracles were imple-
mented using ZooKeeper version 3.3.0. Our clients were implemented in Python
using the asynchronous ZooKeeper API. They only perform write requests be-
cause, as explained previously, only these requests exercise the underlying con-
sensus protocol. We use request sizes of 1 kB as in the work of Hunt [12].

We always start either a client or a server (i.e., ZooKeeper server) per machine.
We assume clients connect to the server with which they have the lowest round-
trip time. Thus, we ignore the hop between client and server as in Fig. 1c.

Wide-area Setting Emulation. ZooKeeper ensembles are typically deployed in
controlled environments. Consequently, instead of using testbeds such as Plan-
etLab,4 we emulate a set of specific wide-area deployments using Netem, a net-
work emulator available in the standard Linux kernel.5 The deployments we
define below use real round-trip times shown in Table 2, where the names refer
to the following end-points: California Institute of Technology (caltech.edu),
European Organization for Nuclear Research (cern.ch), Fermilab (fnal.gov),
Stanford Linear Accelerator Center (slac.stanford.edu), and Technische Uni-
versität Dresden (tud, tu-dresden.de). All the round-trip values are aggrega-
tions of one month of data (November 2010) taken from the PingER project 6

except the values from tud to cern, which were performed by the authors (900
ping samples on the 2nd March 2011).

We use a Pareto distribution with mean given by the mean round-trip times
in the table, and jitter of 2% of the mean. We use 2% jitter instead of the stan-
dard deviation to simplify the experiment setup. Figure 3 shows the achievable
bandwidth using TCP and UDP for the given round-trip times measured in our
cluster with Iperf.7 Not shown in the figure is the bandwidth with round-trip
time set to 0, which is about 940 Mbits/s as well. Note that, when the round-trip
time is set to 0, the actual round-trip time is about 100 μs. In our experiments,
we use round-trip times up to 77.06ms, as higher round-trip times restrict the
bandwidth excessively.

4 http://www.planet-lab.org
5 http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
6 http://www-iepm.slac.stanford.edu/pinger
7 http://iperf.sourceforge.net

caltech.edu
cern.ch
fnal.gov
slac.stanford.edu
tu-dresden.de
http://www.planet-lab.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www-iepm.slac.stanford.edu/pinger
http://iperf.sourceforge.net
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Fig. 4. Throughput and request latency with leader crash in two data centers

The communication between ZooKeeper servers uses TCP; consequently, we
use only delay and jitter as emulation parameters because in TCP packet loss
and reordering are perceived as jitter assuming the connections do not drop.
The bandwidth of links can be limited by the emulator as well. Independent of
emulator limits, note that TCP inherently limits the achievable bandwidth (see
Fig. 3). To simplify our setup, we rely only on the protocol-limited bandwidth.
Although TCP can use more bandwidth with non-standard optimizations such as
Jumbo frames, we focus on typical installations of both hardware and software.

Experiments. In the following, each experiment represents an emulated WAN
deployment in two or three data centers. Two data centers (Fig. 4a) enables
clients close to a remote data center to perform read requests with lower latency.
Three data centers (Fig. 5) allows one data center to crash without affecting the
availability of the service given that there is no data center with a quorum of
servers. We assign λ and δ parameters to these topologies, where λi is the mean
request rate (req/s) arriving at data center Di (distributed uniformly at random
across the servers in Di); and δ is the link latency between any two servers in
two different data centers. We use the mean round-trip times in Table 2 to set
δ, where 2 · δ = rtt. Whenever appropriate, instead of giving δ parameters, we
let the data centers be the end-points from Table 2, e.g., slac, caltech, tud.

The experiments are executed for 120 seconds and always have as initial leader
p5. The settings were selected such that the leader p5 is always initially the best
leader. After 60 seconds, p5 is killed. Measurements showing lines with no dots
are single runs over time. Dots and bars represent mean aggregations over 5 runs.
Latency aggregations refer to the steady state starting 10 seconds after the new
leader is elected, i.e., the last 50 seconds of a run. Recovery time aggregations
refer to the interval from the time the new leader recognizes itself as such, up to
when it processes the first request.

4.2 Request Latency and Random Request Distributions

We initially evaluate our oracles considering request latency when the request
distribution arriving on each data center is arbitrary or unpredictable. In
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particular, we evaluate oracles that are unaware of request distribution: history,
rotating, worst-case, and consensus oracles. We divide our results in two data
centers and three data center deployments.

Two Data Centers. We show that in deployments of two data centers, when the
atomic broadcast has to cross the slow link (δ in Fig. 4a), any oracle provides
the same mean request latency after the crash of the initial leader p5. Let D1

and D2 be respectively tud and cern, i.e., 2 · δ = 20.75ms. Because we evaluate
oracles using latency, we use a low request rate (λT ) of 1000 req/s (8Mbits/s). A
low request rate does not overload the system, and consequently correct servers
are synchronized when the leader crashes. The recovery time in such cases is
roughly the same independent of which server is elected as leader. Requests
arrive randomly on both data centers: λ1 = λ2 = λT

2 = 500 req/s.
Figure 4b shows the request latency on each data center before and after the

crash of p5 for two oracles: rotating and history. Because servers have the same
θz (they are synchronized), history elects the server with highest id, i.e., server
p4. The rotating oracle elects the server with the next id modulo the number of
servers, i.e., server p1. Server p4 is in the same data center as the crashed leader,
while p3 in another. Note that the form of the spike at 60 s depends rather on
the run than on the oracle. With both oracles, the mean request latency over all
requests is initially around 10ms and after the crash around 30ms. This is so
because there is a complete quorum in the data center of the leader p5 before the
crash, but not after. The new leader – despite of its location – has to send every
transaction over the slow link to form a quorum. Therefore, any oracle elects an
equally fast leader, and all servers can be considered to be the fastest.

Three Data Centers. We show that in three data center deployments (1) history
fails to elect the fastest leader, and (2) worst-case can elect faster leaders than
consensus with respect to mean request latency. To that end, we assign to the
data centers D1, D2, and D3 in Fig. 5 the end-points slac, caltech, and fnal in
different combinations (see Table 3). These end-points have the following round-
trip times: 9.88ms for slac-caltech, 53.26ms for slac-fnal, and 77.06ms for caltech-
fnal. Let λ1 = λ2 = λ3 = λT

3 = 333.33 req/s.
Figure 6 shows the results for the deployments described in Table 3. Each

group of bars corresponds to experiments with different leaders (indicated below
the figure) which are reported together with the data center in which they are

p4 p5

p2 p3p1

δ1

δ2

δ3

D1

D2D3

λ1

λ2λ3

Fig. 5. Topology of 3 data centers

Table 3. End-to-end latency examples

Deployment D1 D2 D3

1 caltech slac fnal
2 slac caltech fnal
3 slac fnal caltech
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located. Leaders provide different request latencies for requests arriving on the
different data centers. For example, in Deployment 1, when server p4 is elected,
requests arriving on D1, D2, and D3 are complete in roughly 12ms, 22ms, and
92ms, respectively. The numbers over the bars represent the consensus latency
of the leader (approximated by θc, see Sec. 2.2), while the dashed lines represent
the mean request latency (approximated by θl), both rounded for readability.
Leader p4 in Deployment 1 has the consensus latency and mean request latency
of about 12ms and 42ms, respectively.

Due to how the server ids are assigned, history elects server p4 in all deploy-
ments, while rotating elects p1. By exchanging the location of p1 and p4, history
and rotating behave in opposite ways. Therefore, no guarantees can be given on
the performance of servers elected with them.

The worst-case oracle elects p3 in Deployment 1 and p4 in Deployment 2,
minimizing both worst-case (highest bar of each leader) and mean request latency
(dashed line). In contrast, consensus might elect either p3 or p4 depending on
fluctuations of the consensus latency. In these deployments, worst-case might
provide 20% lower mean request latency than consensus (33 versus 42ms).

4.3 Request Latency and Uneven Request Distributions

We evaluate the request latency we obtain with our oracles when the request
distribution arriving on each data center is uneven. In particular, we compare
the performance of oracles that are aware of the request distribution (request and
latency) with the remaining ones: history, rotating, worst-case, and consensus. We
divide again our results in two data centers and three data center deployments.

Two Data Centers. We show that in two data centers request and latency oracles
succeed to elect the fastest leader, while the remaining oracles do not. Figure 7a
shows the same settings of the previous experiment in two data centers except
that λ1 = (1 − p) · λT and λ2 = p · λT . The y-axis represents the mean request
latency after the crash with values p. Because after the crash all servers have
the same θz and θc, history and consensus elect p4. Similarly, worst-case (not
depicted) calculates roughly the same θw for all servers (about 43ms in Fig. 4b),
and, therefore, elects the server with highest id, i.e., p4. The rotating oracle
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Fig. 7. Mean and worst-case request latency for different relations p

elects server p1. In contrast, request and latency oracles elect the fastest leader for
different relations p. In this example, the latency with them is half of the latency
provided with the other oracles when requests arrive only on one data center. To
understand the reason, suppose p = 0. If p1 is the leader, all requests arriving on
D1 have to travel only once over slow link. If p4 is the leader, all requests are first
sent to the leader, then atomic broadcast is performed, and finally a confirmation
is sent back (see Fig. 1c). As long as we are only concerned with mean request
latency, and requests are unevenly distributed among the data centers, request
and latency elect the fastest leader in two data center deployments.

Three Data Centers. In three data center deployments, the request oracle does
not elect the server with the shortest mean request latency. We give a simple
counter example. Consider the experiments in Fig. 6. Assume all requests arrive
at D3, i.e., λ3 = λT , and λ1 = λ2 = 0. In Deployment 1, the fastest leader is
server p1, while in Deployment 2, server p4. The request oracle elects however in
both cases server p1 because its θr is the highest.

We next discuss some insights on Deployments 1 and 3 from above except
that the request distributions are now uneven. In Deployment 1, λ1 = 1−p

2 λT ,
λ2 = 1−p

2 λT , and λ3 = p · λT . And, in Deployment 3, λ1 = 1−p
2 λT , λ2 = p · λT ,

and λ3 = 1−p
2 λT . Figures 7b and 7c respectively show the mean request latency

and the worst-case request latency. We can observe that:

1. Oracles that are unaware of request distribution elect arbitrarily slow lead-
ers. Consider Deployment 1 with p = 0 (Fig. 7b). The rotating oracle provides
mean request latencies more than 7 times higher than latency (125.8ms ver-
sus 16.5ms). Consider Deployment 3 with p = 1. The consensus oracle has
mean request latency of 111.3ms, while the latency 57.4ms.

2. The consensus oracle also fails to elect the server with the shortest worst-
case request latency (Fig. 7c). In Deployment 1, the consensus oracle provides
worst-case request latency about 20ms higher than the worst-case oracle.
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Fig. 8. Recovery time varying snapshot size using history and rotating oracles

3. worst-case provides 10ms worse mean latency than latency (66.6ms versus
57.4ms) in Deployment 1, and more than 50ms worse in Deployment 3.

4. Finally, latency does not provide minimal worst-case request latency when p
increases in both deployments, being from 30 to 60ms worse than worst-case.

4.4 Recovery Time

Electing a leader that provides the minimal recovery time in a LAN deployment
is the default election oracle in ZooKeeper. The history oracle elects the fattest
leader to avoid transferring state from followers to the leader (see Sec. 2.3). We
start experimenting whether the history oracle provides the same property in
WAN deployments and then we consider using the latency oracle for that end.
History Oracle. We show that the fattest leader provides the minimal recovery
time with two data centers, but not necessarily with three. Figure 8a shows
the recovery time for 4 deployments with 2 data centers (Fig. 4a) and different
round-trip times (2 · δ). We force p1 to be outdated when the leader crashes, so
that, becoming leader or follower, server p1 has to first receive a snapshot of the
current state from another server. To outdate a server, we kill the server and
restart it when the leader is about to crash. The size of snapshots is application
dependent; we used from about 0 up to 250MB. The history oracle elects server
p4, and the rotating oracle elects server p1. A round-trip time of 0 ms is equivalent
to a LAN deployment, where all servers are in the same data center. When the
outdated server p1 is elected, the recovery time directly depends on the size of
the snapshot to be transferred. By partitioning the servers in two data centers,
the recovery time when electing p1 is “amplified” with the increasing round-trip
time, while is minimal when electing p4.

The history oracle does not provides the minimal recovery time in 3 data
centers. Figure 8b shows such deployment of the 3 data centers (Fig. 5) with the
following parameters: 2 ·δ1 = 77.06ms, 2 ·δ2 = 20.75ms, and 2 ·δ3 = 9.88ms. We
force both servers in data center D2 to be outdated with respect to the leader.
After leader p5 crashes, servers p1 and p4 have the same θz and need to bring
at least another server in sync to start processing requests. Because the latency
between D1 and D2 is shorter compared to the one between D3 and D2, server
p1 presents a shorter recovery compared to p4.
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Latency Oracle. It is easy to see that oracles such as latency cannot minimize
the recovery time because it is guided by the request distribution. Consider the
previous experiment with 3 data centers. Assume λ1 = λT , and λ2 = λ3 = 0.
The fastest is server p4, while server p1 provides minimal recovery time.

5 Extensions

We now briefly discuss some aspects not addressed in the paper: combination
of scoring functions, how to perform the first election, and how to cope with
workload changes and score miscalculations.
Co-optimizing Multiple Metrics. In our experiments, we considered oracles op-
timizing a single metric. Co-optimizing several oracles is not always trivial. For
example, we have shown that worst-case cannot optimize the mean request la-
tency, while latency cannot optimize the recovery time. However, a simple way
to achieve co-optimization is the following. The application defines a priority
order θ1, . . . , θn among the scores of interest. Each server corresponds to a vec-
tor of scores in which we can easily identify an ordering function. To enable the
comparison of vectors, it is possible to define equivalence ranges for some scores,
such that all servers whose score is in the same class are considered equally good.

Consider the example where an application wants to elect a leader that opti-
mizes the mean latency and, as a secondary goal, that minimizes recovery time.
The application can combine θz(p) and a modified θ′l(p), which truncates θl(p)
in latency classes: 10ms, 20ms, etc. An oracle implementing such a combination
of scoring functions can elect the server in the lowest latency class θ′l(p) and with
the highest θz(p), i.e., the fattest among the fastest leaders.
Initial Election and Resignation. All experiments we performed already started
with a leader, which later on crashed. For the first election, the get-score function
simply blocks until enough information is collected to generate a score.

An application may also want to include resignations, which happen when
the actual leader is not the actual best leader. There is a number of reasons
for this to happen. For example, when a crashed server recovers and rejoins the
ensemble, it might be a better leader than the actual leader is. Another reason
can be that some score, as for example the request distribution, may change over
time making the actual leader a worse leader than some follower.

POLE can also easily be extended to consider resignations as follows: The
leader periodically sends messages to other servers querying their actual θ scores.
Based on some threshold, the leader decides if some servers has a better score
than itself, and resigns its leadership. In contrast to “after-crash” scores, as we
have presented, “before-resignation” scores have to include the actual leader in
RTTi and Fi vectors because it is supposed to be alive during the next election.

6 Related Work

Consensus is the primitive underlying the atomic broadcast protocol [5]. To solve
consensus, it is necessary and sufficient to elect a leader [5,7]. The problem of
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leader election has been broadly investigated from many viewpoints, from min-
imizing the synchrony and reliability requirements imposed on links [2,15], to
optimizing the Quality of Service of failure detection [8], to electing the leader
that can minimize the latency of solving consensus [17]. The ZooKeeper atomic
broadcast protocol (Zab) implements a variant of the atomic broadcast primitive
called primary order atomic broadcast [13]. Similar to many consensus implemen-
tations, Zab uses a leader to suggest a total order of transactions.

Most leader election algorithms are, however, oblivious to the application
needs and elect a leader based on its id, e.g., the highest id in the alive-set
of each process [9], or the next id when incrementing a counter [1,5]. In fact,
leader election has been proposed as a service for multiple applications at the
same time [9,18]. In this work, we have shown that the service approach is not
sufficient when applications use different criteria to select a leader.

Selecting leaders based on performance has been previously proposed by Singh
and Kurose [19,20]. They do not present the distributed algorithm to spread
votes, but focus on different voting schemes taken from social sciences to elect
the best leader when some votes might be wrong (e.g., indicate a bad leader).
Furthermore, they assume that processes that vote do not crash, and that mes-
sages cannot be lost.

Santos et al. [17] presented a rotating leader election that finds an optimal
leader after a series of intermediate elections. In systems like ZooKeeper, this
solution can be very costly because each reelection incurs additional recovery
costs, even when servers have the same history, e.g., snapshot reading, connection
establishment, and the first phase of the consensus protocol. Furthermore, their
approach focuses exclusively on consensus latency. As we have shown, it is often
more important to minimize other metrics such as the request latency.

Sampaio and Brasileiro [16] propose a configurable solution for id-based elec-
tions by using a process-ordering oracle. This additional component changes the
a priori order of processes at run-time based on application metrics (but the
authors only evaluate consensus latency). Nevertheless, their solution is not of
great practical interest because it requires the processes to use each consensus
instance to agree on the a priori process ordering of the next consensus instance.
Paxos [6,14] and ZooKeeper’s atomic broadcast [13], however, promote the si-
multaneous execution of instances of consensus to achieve high performance in
replicated services; Instead of electing leaders based on an previously agreed-
upon order, POLE enables processes to locally assign scores to themselves and
share their scores. Computing scores accurately is therefore critical for selecting
an appropriate leader, and score deviations introduced, for example, due to sam-
pling may lead to different processes being selected. Such deviations, however,
do not preclude liveness.

The idea of broadcasting ids and electing the process with the highest one is
the core of the Bully algorithm, which was proposed by Garcia-Molina [11] in the
context of synchronous systems. Bully and its partially-synchronous counterpart,
the Invitation algorithm [11], do not enable configurability and target generic
master-worker applications. In contrast, POLE has been specifically designed
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for replicated systems, and it provides mechanisms such as electing a process
only once there is a quorum of processes running. Using scores as opposed to
identifiers is also a key difference.

The separation of concerns between failure detection and consensus has been
proposed previously by Chandra and Toueg [5]. While being conceptually fun-
damental, this strict separation of concerns does not necessarily result in more
efficient implementations. Using application-level failure detection information,
we can avoid sending failure detection messages when a stable leader exists [10].
Note that although some scoring function might require additional messages to
calculate their θ scores, that is not the concern of the election algorithm itself.

Bakr and Keidar study the running time of a “communication round” of
distributed algorithms using TCP over the Internet [3]. The chain replica-leader-
quorum in this work relates to their secondary leader communication pattern.

7 Conclusion

In replicated services, leaders have a great impact on metrics of interest to client
applications, such as recovery time and mean request latency. In this work,
we have presented POLE, a general and flexible leader election algorithm for
practical replicated systems. POLE uses an application-defined scoring function
to assign scores to servers when selecting a leader. A variant of POLE that
uses zxids as scores has been deployed as part of ZooKeeper, and in this work
we have proposed additional scoring functions that satisfy different application
requirements. Our goal, however, was not to explore exhaustively the space of
oracles, but instead to argue for the importance of providing such flexibility to
applications deployed in heterogeneous settings, such as the ones encompassing
multiple data centers.

Our experimental results illustrate trade-offs that designers face when de-
signing oracles for POLE. When client requests are unevenly distributed, the
consensus oracle described in the literature performs poorly compared to mean
and worst-case request latencies. There are a few available options when deploy-
ing POLE. For minimizing the worst-case request latency, the worst-case oracle
can be used. A simple request oracle can minimize the mean request latency for
settings with two data centers. With three data centers, a more complex oracle
such as the latency oracle is however necessary. Leaders elected with these oracles
can be at least 50% faster compared to arbitrarily elected ones. In contrast, al-
though history is able to minimize recovery time in two data centers, none of the
presented oracles can minimize it in three data centers. The design of a generic
recovery-time oracle is still an open problem; in general exploring further the
space of oracles is subject of future work.
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Abstract. In-memory NoSQL transactional data grids are emerging as an at-
tractive alternative to conventional relational distributed databases. In these plat-
forms, replication plays a role of paramount importance, as it represents the key
mechanism to ensure data durability. In this work we focus on Atomic Broadcast
(AB) based certification replication schemes, which have recently emerged as a
much more scalable alternative to classical replication protocols based on active
replication or atomic commit protocols. We first show that, among the existing
AB-based certification protocols, no “one-fits-all” solution exists that achieves
optimal performance in presence of heterogeneous workloads. Next, we present
PolyCert, a polymorphic certification protocol that allows for the concurrent co-
existence of different certification protocols, relying on machine-learning tech-
niques to determine the optimal certification scheme on a per transaction basis.
We design and evaluate two alternative oracles, based on parameter-free machine
learning techniques that rely both on off-line and on-line training approaches.
Our experimental results demonstrate the effectiveness of the proposed approach,
highlighting that PolyCert is capable of achieving a performance extremely close
to that of an optimal non-adaptive certification protocol in presence of non hetero-
geneous workloads, and significantly outperform any non-adaptive protocol when
used with realistic, complex applications that generate heterogeneous workloads.

Keywords: Transactional systems, replication, autonomic computing, machine
learning, atomic broadcast.

1 Introduction

In-memory NoSQL transactional data grids are emerging as an attractive alternative
to conventional relational distributed databases. By employing alternative data models,
such as plain key/value stores, and relying on replication rather than on persistence to
stable storage to ensure data durability, in-memory transactional data grids have shown
to achieve higher performance, scalability, and elasticity when compared to classical
SQL-based database management systems [32,28].
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Replication clearly plays a role of paramount importance in these in-memory data
platforms, as it represents the key mechanism to ensure data durability in face of un-
avoidable node failures. Unsurprisingly, replication algorithms employed in these in-
memory platforms take inspiration from the vast literature on replication of transac-
tional systems (traditionally, database systems [24,18,23], but also, more recently, trans-
actional memory systems [8,7]).

Among the plethora of transactional replication mechanisms published in literature,
over the last years, a wide body of research has highlighted that schemes based on
Atomic Broadcast (AB) and certification [24,18,23] tend to outperform classic eager
replication schemes based on distributed locking and atomic commit, which suffer from
large communication overheads and are prone to thrashing due to distributed deadlocks
[12]. Conversely, certification based schemes avoid any onerous replica coordination
during the execution phase, running transactions locally in an optimistic fashion. The
consistency of replicas (typically, 1-copy serializability [3]) is ensured at commit- time,
via a distributed certification phase that uses a single AB to enforce agreement on a com-
mon transaction serialization order, avoiding distributed deadlocks, and providing non-
blocking guarantees in the presence of failures. Furthermore, unlike active-replication
approaches that require the full execution of update transactions at all replicas [30],
only one replica executes an update transaction, whereas the remaining replicas are
only required to validate the transaction and to apply the resulting updates. This allows
to achieve high scalability levels even in the presence of write-dominated workloads, as
long as the transaction conflict rate remains moderate [24].

In the design space of 1-copy serializable certification replication protocols, which
represents the focus of this work, a decision that can have a dramatic impact on the
actual efficiency and robustness of the system is related to how to address the trade-
off between the size of the messages sent via the AB primitive and the number of
communication steps required during the transaction commit phase. Depending on how
this trade-off is addressed, existing certification-based replication algorithms can be
classified into three main categories:

– Solutions that disseminate the whole transaction’s read-set to all replicas, called
Non-voting schemes, allow each replica to certify transactions locally, by sending
both the read-set and write-set via an AB primitive. This makes these protocols
optimal in terms of communication steps, but also makes them prone to generate
very large messages and to overload the Group Communication System.

– Voting schemes, which avoid broadcasting the read-set of transactions by sending
(via AB) only the write-set, thus drastically reducing the network bandwidth con-
sumption. On the other hand, they incur into the costs of an additional coordination
phase along the critical path of the transaction commit , which can hamper signifi-
cantly performance.

– Approaches relying on the space efficient encoding of Bloom Filters [4] to im-
plement a variant of the non-voting certification mechanism, called Bloom Filter
Certification (BFC) [8] . Unlike voting mechanisms, BFC determines the outcome
of transactions using a single AB, generating smaller messages when compared to
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non-voting protocols. The probabilistic nature of the Bloom filter encoding, how-
ever, induces false positives in the certification phase, increasing the transaction
abort rate.

The above protocols are designed to ensure optimal performance in different workload
scenarios and, as we will show in the following, they can exhibit up to 10x differences
in terms of maximum throughput. Our goal is to alleviate the developers/administrators
from the hard and time-consuming task of profiling the application and selecting the
most suitable replication protocol for each deployment. Furthermore, a static config-
uration may lead to largely suboptimal configurations in presence of heterogeneous
workloads. In these contexts, the employment of a single, statically chosen, replication
mechanism, optimized for a specific workload type, will lead to suboptimal perfor-
mance when processing the transactions that have different characteristics.

The solution presented in this work, which we named Polymorphic Self-Optimizing
Certification (PolyCert), supports the simultaneous use of the three aforementioned
classes of protocols, and relies on machine-learning techniques to determine, on a per
transaction basis, the certification strategy to be adopted. PolyCert relies on a modular
design, which encapsulates the logic associated with the on-line choice of the replica-
tion strategy into a generic oracle. We design and evaluate two alternative mechanisms
to implement this oracle, based on two different parameter-free statistical learning tech-
niques.

– An off-line technique based on regression decision trees [26], that requires a pre-
liminary, computational intensive, feature selection and training phase, but that was
shown (in our previous work [9]) to achieve high accuracy in forecasting the perfor-
mance of Atomic Broadcast algorithms in presence of heterogeneous workloads.

– An on-line reinforcement learning technique, that uses an innovative, parameter-
free variant of a very lightweight, but theoretically optimal solution [2] to face
the exploration versus exploitation dilemma, i.e. the search for a balance between
exploring the environment to find profitable actions while taking the empirically
best action as often as possible.

Via an extensive experimental evaluation, based on a fully fledged system prototype
and a range of heterogeneous benchmarks, we assess the effectiveness of the proposed
approaches in terms of performance benefits and learning time. We show that PolyC-
ert can achieve a significant speed-up with respect to static solutions and enhance the
robustness of the system to unexpected fluctuations of the workload.

The remainder of the paper is structured as follows. Section 2 reports the results of
a performance evaluation study highlighting the relevance of the addressed problem.
The system architecture is presented in Section 3. Section 4 describes the functioning
of PolyCert and the mechanisms employed to determine at run-time which certifica-
tion strategy to use. The results of the experimental evaluation study are reported in
Section 5. Related work is analysed in Section 6. Section 7 concludes the paper.

2 Motivations

As already mentioned in the Introduction section, existing certification-based solutions
can be classified into three main categories:
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– Non-Voting Certification (NVC): These solutions [24,7,23] disseminate the whole
read-set and write-set using the AB service, allowing every replica to determine,
upon delivery of the corresponding message, the outcome (commit/abort) of the
transaction, by running the certification procedure locally. These schemes are opti-
mal in terms of communication steps, delivering excellent performance when used
in workloads characterized by small transaction read-sets. On the other hand, they
exhibit very poor performance in presence of transactions reading a significant
number of data items. Even worse, in these scenarios, the large network traffic gen-
erated by this protocol can saturate and disrupt the proper functioning of the Group
Communication Service, leading to network partitions and false failure suspicions.

– Voting Certification (VC): These solutions [17] disseminate exclusively via AB
the transaction write-set, thus avoiding the issues incurred in by Non-voting schemes
with large transaction read-sets. On the down side, the transaction can only be cer-
tified at the site in which it was originated. This implies the need for an additional
communication phase, executed using a Uniform Reliable Broadcast (URB) [14] (a
lighter communication primitive when compared to AB), which is triggered by the
replica where the transaction was originated in order to inform the remaining repli-
cas of the final outcome of the transaction. This extra communication phase, which
requires at least two communication steps, has a negative impact on the latency of
the commit phase, which represents by far the dominating cost for small transac-
tions. By introducing additional latency in the critical path of the commit phase,
which needs to be run sequentially for conflicting transactions, these schemes can
adversely affect the maximum throughput achievable by the platform [29].

– Bloom Filter Certication (BFC): An alternative approach, denoted as Bloom Fil-
ter Certification (BFC) [8], consists in encoding the read-set of the transaction in a
Bloom filter [4], a space-efficient data structure that allows compressing the mes-
sages disseminated via the AB service, while still allowing every replica in the
system to deterministically certify the transactions. Unlike Voting schemes, BFC
avoids additional communication steps during the commit phase. In terms of gen-
erated network traffic, even though BFC generates larger messages than voting pro-
tocols, it typically reduces significantly the size of the messages exchanged via the
AB service when compared to non-voting schemes. On the down side, BFC can
suffer from false positives due to the probabilistic nature of Bloom filter-based en-
coding, which ultimately leads to an additional rate of aborted transactions.

From the above discussion, the performance of each of these three alternative certifi-
cation mechanisms is strongly dependent on the actual distribution of the size of the
read-sets generated by the transactional application. Unfortunately, realistic transac-
tional applications can exhibit very heterogeneous workloads encompassing read-sets
whose sizes range from less than ten to hundreds of thousands of objects. We have ex-
perimentally observed this phenomena, as illustrated in Figure 1, which depicts the dis-
tribution of the read-set size for a widely used benchmarking application for in-memory
transactional systems (in particular Transactional Memories), namely the STMBench7
[13] benchmark.

In Figure 2 we show the results of a sensitivity analysis aimed at assessing the ac-
tual impact of the read-set size distribution on the performance of the three certification
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Fig. 1. Distribution of transaction read-set size in the STMBench7 Benchmark

schemes described above. The results were obtained using a simple synthetic bench-
mark adapted from the Bank Benchmark originally used in [8]. This benchmark sim-
ulates the concurrent transfer of funds from different bank accounts (modelled as a
simple array of doubles), and was altered to vary the number of items read within a
transaction in the range [1,100’000]. Further, to focus only on the effects due to varia-
tions of the read-set size, which represents the goal of this sensitivity analysis, we con-
figured the benchmark to never generate conflicts among transactions. The only aborts
experienced in the system are therefore those determined by false positives with the
BFC scheme (which was configured to have an additional abort-rate of 1%, as in [8]).
These results were obtained running on a cluster of eight nodes, each one equipped with
two Intel Quad-Core XEON at 2.0 GHz, 8 GB of RAM, running Linux 2.6.32-26-server
and interconnected via a private Gigabit Ethernet (which represents the reference exper-
imental platform used in the remainder of the paper). The in-memory transactional data
grid and the certification protocols were implemented in JAVA. The system uses two
main components: i) a state of the art Software Transactional Memory (STM), namely
JVSTM [6], used to manage local concurrency, and ii) a replicated key/value store, used
to maintain associations between unique object identifiers and object instances. Further
details on the system architecture will be provided in Section 3.

Our experimental results highlight that no-one-fits-all solution exists that maximizes
the throughput across all the considered workloads. On the contrary, NVC provides
the best performance in the scenario with small read-sets, BFC in the scenario with
1000 items in the read-set, and VC is by far the best performing protocol with large
read-sets. Further, the relative difference in the performance between the best and worst
performing protocol for each scenario ranges from a factor 2.5x (BFC vs VC, read-set
size equal to 1000) to 10x (VC vs NVC, read-set size equal to 100’000).
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Fig. 2. Throughput of three certification strategies with different read-set sizes

3 System Architecture

The system architecture is depicted in the diagram shown in Figure 3. At the topmost
layer, it exposes the API of an object-oriented STM, which is however fully replicated
across a number of distributed nodes. The API provided to applications is a transpar-
ent extension of JVSTM’s API, a state-of-the-art STM relying on an efficient Multi
Version Concurrency Control (MVCC) algorithm [3]; a strong advantage of JVSTM
is that read-only transactions are never required to block. The JVSTM programming
paradigm requires that the programmer encapsulates any shared mutable state within
VBoxes, which are then managed by JVSTM’s MVCC to ensure transactional atomic-
ity and isolation. This allows separating the transactional and non-transactional state of
the application, ensuring strong atomicity [19] at no additional costs. We modularly ex-
tended JVSTM by augmenting it with what we have named a Polymorphic Replication
Manager (PRM).

The PRM is in charge of triggering the execution of a certification protocol for each
of the locally executed transactions, and to participate in the certification of transactions
that have been executed at remote nodes. A unique feature of PRM, with regard to exist-
ing replication managers, is that it is able to determine, for each locally executing trans-
action, which certification algorithm is more appropriate, given the characterization of
the transaction. The logic for determining the certification scheme is encapsulated by
the abstraction of a Replication Protocol Selector Oracle (RPSO), whose interface ex-
ports two main functionalities:

– Given a local transaction, it selects the most appropriate certification protocol to be
executed by the PRM. In Section 4.1 we will present and evaluate two performance
forecasting methods which are based on alternative machine learning techniques.
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Fig. 3. Architectural Overview (Single Node Perspective)

– Collecting historical data about the execution of past transaction, to improve the
selection process. For this, it exports an interface that allows the PRM to register
the following information: i) the commit time experienced by a transaction, and ii)
the certification protocol that it used. This allows the RPSO to gather, store and
analyse (either on-line or off-line) statistical data on the distribution of the commit
time of transactions.

The PRM also interacts with two other components, the Group Communication System
(GCS) and a local Key Value Store (KVS).

The GCS, Appia [21] in our implementation, provides a number of communication
abstractions required by the PRM: view synchronous membership, AB and URB [14].

Finally, the Key Value Store is a weak hash map, used to maintain the mapping
between application level transactified objects (namely, containing JVSTM VBoxes)
and replica-wide unique object identifiers, which are generated automatically by our
framework upon creation of a new transactional object. More in detail, an entry of the
key/value store contains the unique object identifier, as its key, and a weak reference
to the local transactional object as its value. This information is used by the PRM,
upon reception of a commit request for a remote transaction T , to retrieve in the local
JVSTM instance the objects that were read/updated by T during its remote execution.
The usage of a weak hash map ensures that the Java garbage collector is not prevented
from discarding the object referenced by a hash map entry whenever all application
level references to the object have been removed, thus avoiding any interference with
the local JVM garbage collection mechanism.

4 The PolyCert Replication Protocol

PolyCert is designed to allow the simultaneous use of all the three AB-based certifica-
tion protocols introduced before, namely NVC, BFC and VC. Specifically, at commit
time (when the size of the transaction read-set and write-set is already known), the PRM
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invokes the RPSO to determine which certification protocol to use in order to finalize
the transaction’s execution. This clearly implies that concurrent transactions may use
different protocols, which need to coexist without endangering the correctness of the
system. The three protocols lend themselves quite naturally to coexist, given that all of
them rely on a first common phase during which they establish, via the AB primitive,
the global serialization order for a committing transaction (even though each protocol
piggybacks different information). Naturally, certification messages need to be tagged
with a label that specifies which of the protocols is being used for each transaction.

Upon delivery of an AB message, the PRM performs the following steps:

– The message is inserted in a queue containing the transactions to be certified.
– If the transaction is being certified using NVC or BFC, no further processing is

done until the message reaches the head of the queue.
– If the transaction is being certified using VC, and the node was the originator of the

transaction, the following procedure is executed immediately. Upon the enqueuing
of a transaction, say T , if and only if T does not conflict with any of the transactions
already present in the certification queue (i.e. the read-set of T does not intersect
with the write-sets of the transactions already present in queue), T is immediately
validated, by verifying whether the snapshot that it read is still fresh, the URB con-
voying the decision outcome is triggered. This optimization, originally proposed in
[29], allows to overlap the URB dissemination phases of (non-conflicting) transac-
tions with the time spent by transactions in the certification queue, reducing the risk
of convoy effects which are otherwise known (and confirmed by our experience) to
significantly hamper performance of VC schemes.

Subsequently, messages are removed from the head of the queue one by one and the
corresponding transactions validated in a sequential manner. More specifically:

– If the message that is extracted from the head of the queue corresponds to a transac-
tion that is being certified using NVC or BFC, each node applies locally the corre-
sponding certification algorithm. Essentially, it verifies if the read-set accessed by
the transaction is still valid, and commits or aborts the transaction accordingly.

– If the message that is extracted from the head of the queue corresponds to a trans-
action that is being certified using VC, the node checks if a vote has already been
received or not. If a vote has been received and the decision was to commit the
transaction, the write set is applied. Otherwise, if the vote has been received and
the decision was to abort the transaction, the write-set is discarded (actually, the
transaction can be immediately removed from the queue as soon as an abort vote
is received). On the other hand, if a vote has not been received and the transaction
is remote, the certification is suspended until the corresponding vote is received.
Finally, if a vote has not been received and the transaction is local, the node val-
idates the transaction as described above, and issues the vote (this corresponds to
the scenarios where the optimization described before cannot be applied).

As a final remark, note that, since all replicas deliver the certification messages in the
same order due to the use of the AB primitive, and decide deterministically which certi-
fication protocol to use, consistency is guaranteed even in presence of concurrent trans-
actions being processed using different certification schemes.
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4.1 Replication Protocol Selection Oracle

As already mentioned, the Replication Protocol Selector Oracle abstraction (RPSO) is
a convenient form of encapsulating different performance forecasting techniques. In
this paper, we present two implementations of the RPSO, using two different machine
learning techniques, namely a regressor based on decision trees [26], and a reinforce-
ment learning technique, namely UCB [2], as described below.

Oracle based on regressor decision trees. In order to forecast the time necessary
for committing a transaction with each of the three considered certification strategies,
we start by forecasting the size, mp, of the AB message that would be generated by
each of the certification protocols p ∈ {NV C, BFC, V C}. This corresponds to the
number of bytes required to transmit the transaction read-set and write-set with NVC,
the transaction write-set with VC, and the write-set and the Bloom filter based encoding
of the transaction read-set with BFC.

Next, we forecast the time for marshalling and validating a transaction with each of
the considered certification schemes. To this end, we maintain, for each certification
strategy, a moving average of the average marshalling time per byte, denoted as T m

p ,
and of the validation time, denoted as T v

p , for all p ∈ {NV C, BFC, V C}. Further, for
BFC, we maintain moving averages of the time required to build a Bloom filter that en-
codes the read-set (normalized by the read-set’s size), denoted as T BF . Finally, for VC,
we maintain also the moving averages of the self-delivery latency of the URB convoy-
ing the vote from the transaction’s initiator, denoted as T URB . Note that the choice of
measuring self-delivery latencies allows us to avoid distributed clock-synchronization
mechanisms, which in our preliminary experiments revealed not to be sufficiently ac-
curate for our purposes.

Using the metrics above, the commit latency Tp for a transaction using certification
protocol p is then forecast as follows:

TNV C = T m
NV C ·mNV C + T v

NV C + T AB(mNV C) (1)

TBFC = T m
NV C ·mBFC + T v

V C + T BFC · rsSize + T AB(mBFC) (2)

TV C = T m
V C ·mV C + T v

V C + T AB(mV C) + T URB (3)

where T AB(m) is the forecast latency for self-delivering a message of size m using
the AB primitive. To this end, we exploit our recent results in [9], where we presented
and evaluated a series of (off-line) machine learning techniques to forecast AB’s perfor-
mance, including neural-networks [16] and support vector machines [31]. In the light
of the results achieved in [9], we integrated in our system a regression technique relying
on the Cubist c© [25] decision-tree regression algorithm, which proved to be the most
accurate and robust predictor among those evaluated.

Analogously to classic decision tree based classifiers, such as C4.5 and ID3 [26],
Cubist c© builds decision trees choosing the branching attribute such that the resulting
split maximizes the normalized information gain (namely the difference in entropy).
However, unlike C4.5 and ID3, which contain an element in a finite discrete domain (i.e.
the predicted class) as leafs of the decision tree, Cubist c© places a multivariate linear
model at each leaf, which we use to predict the AB self-delivery latency (expressed in
microseconds).
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Table 1. List of metrics (features) collected by the Monitoring Layer

Metric Description
freeMem Free memory in the Java Virtual Machine
tLGC The time since the last garbage collection
pLGC % of time since the last GC cycle w.r.t. the time

between the last 2 GC cycles
undelivMsgs #TO Broadcast msgs and not yet self-delivered
bytesUpx #Bytes received over a x msec. time window
bytesDownx #Bytes sent over a x msec. time window
TOBUpx #TOB deliver events over a x msec. time window
TOBDownx #TOB broadcast events over a x msec. time window
totCPUx % total CPU utilization over a x msec. time window
esCPUx % CPU utilization by ES thread over a x msec. time window
TCPqueue Outgoing messages queued at the Transport Layer

In order to generate the training data for the decision tree regressor we ran the syn-
thetic benchmark described in Section 2, for each of the three considered certification
protocols, varying every 3 minutes the read-set size of the generated transactions in the
set {10,100, 1’000, 100’000}. Overall the training data set gathered by each replica is
constituted, on average, by approximatively 25’000 samples, reporting the self-delivery
latency for each AB message along with the message size, and a total of 53 different
metrics (i.e. context information), also referred to as features, including averages on
multiple time scales and time series of a plethora of metrics (listed in Table 1) con-
cerning the utilization of various system resources (CPU, RAM and Network). The
choice of this synthetic benchmark to generate the training data set has the following
rationale: since this benchmark generates transactions with very heterogeneous read-set
sizes, it allows gathering a good a-priori knowledge on the performance of a wide range
of possible workload scenarios that the system may face when running more complex,
realistic applications.

To minimize the effects of overfitting, which are likely to occur given the high di-
mensionality of the feature space, we run a greedy feature selection algorithm (Forward
Selection [15]) aimed at discarding loosely correlated features and boosting the predic-
tor’s accuracy. Feature selection is by far the most time consuming phase of the off-line
training, taking on average 45 minutes (per replica) when run on a PC equipped with In-
tel Core 2 CPU with a 2.2GHz clock-rate and 2GB of RAM. On the other hand, feature
selection allows to achieve a significant improvement in the accuracy of the predictions,
as highlighted by the results shown in Table 2, which report the correlation factor and
mean absolute error using 10-fold cross-validation before and after performing feature
selection.

Oracle based on the UCB online learner. The second implementation of the Oracle
Layer employs an on-line learning technique. Therefore, it does not require an a-priori
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Table 2. Prediction accuracy of the decision tree regressor before and after feature selection

Metric Before FS After FS
Relative Absolute Error 0.81 0.30
Correlation Coefficient 0.17 0.76

computational intensive off-line training. Instead, it relies on a lightweight reinforce-
ment learning (RL) technique that updates the knowledge of the oracle as the system is
running.

This oracle relies on a customized, self-tuning version of a state of the art RL algo-
rithm, called UCB (Upper Confidence Bounds), which solves (in a theoretically optimal
manner) a classical on-line learning problem, known in literature as the multi-armed
bandit [27]. In this problem, a gambling agent is faced with a bandit (a slot machine)
with k arms, each associated with an unknown reward distribution. The gambler itera-
tively plays one arm per round and observes the associated reward, adapting its strat-
egy in order to maximize the average reward. Formally, each arm i of the bandit, for
0 ≤ i ≤ k, is associated with a sequence of random variables Xi,n representing the
reward of the arm i, where n is the number of times the lever has been used. The goal
of the agent is to learn which arm i maximizes the criterion:

μi =
∞∑

n=1

1
n

Xi,n

that is, achieves maximum average reward. To this purpose, the learning algorithm
needs to try different arms in order to estimate their average reward. On the other hand,
each suboptimal choice of an arm i costs, on average, μ∗ − μi, where μ∗ is the average
obtained by the optimal lever. Several algorithms have been studied that minimize the
regret, defined as

μ∗n− μi

K∑
i=1

E[Ti(n)]

where Ti(n) is the number of times arm i has been chosen. Building on the idea of
confidence bounds, the UCB algorithm creates an overestimation of the reward of each
possible decision, and lowers it as more samples are drawn. Implementing the principle
of optimism in the face of uncertainty, the algorithm picks the option with the highest
current bound. Interestingly, this allows UCB to achieve a logarithmic bound on the
regret value not only asymptotically, but also for any finite sequence of trials [2].

More in detail, UCB assumes that rewards are distributed in the [0,1] interval, and
associates each arm with a value:

μi = xi +

√
2
logn

ni
(4)

where xi is the current estimated reward for arm i, n is the number of the current trial,
ni is the number of times the level i has been tried. The right-hand part of the sum in
Eq. 4 is an upper confidence bound that decreases as more information on each option is
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Fig. 4. Commit latency as a function of the read-set size

acquired. By choosing, at any time, the option with maximum μi, the algorithm searches
for the option with the highest reward, while minimizing the regret along the way.

In order to apply the UCB technique to our problem, we had two face two main
issues, which we discuss in the following paragraphs.

State space discretization. As we have illustrated in Section 2, the performance of cer-
tification depends on the workload characterization. Thus, using a single UCB instance,
having as arms the three alternative protocols for all possible scenarios is clearly not a
viable solution. This observation raises the problem of discretizing the workload state
space into a set of distinct, representative, classes of workload scenarios. This allows,
in fact, to associate a different instance of a UCB learner with each discretized interval
of the workload’s parameter space, and to train each instance to choose among the 3
considered protocols under specific workload conditions.

The discretization process involves a delicate trade-off: a finer (i.e. denser) dis-
cretization can lead, eventually, to more accurate predictions across the entire state
space, but requires the training of a larger number of UCB instances, which can lead
to a considerable increase of the learning time. In order to determine an appropriate
discretization strategy, we analysed the average commit latency of each of the three
protocols as a function of the read-set size using the synthetic benchmark introduced in
Section 2. The results, reported in the log-log plot of Figure 4, highlight that, for NVC
and BFC, the read-set size and commit latency exhibit a heavy-tail relationship. At the
light of this observation, we opted to use the read-set size as the reference variable to
discriminate different workload situations,and we discretized it using exponentially in-
creasing intervals, where each sampling interval is defined by the range [10i, 10i + 1]
with i ∈ {1 . . . 6}). This choice allowed us to partition the state space into a small num-
ber of intervals, thus reducing learning time, while associating each discretized interval
with fluctuations of approximately the same relative amplitude in the commit latency,
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even for the case of the NVC, whose commit latency is the most sensible to variations
of the read-set size.

Definition of the reward function. UCB is based on the assumption that rewards are
distributed in the [0,1] interval, whereas, as we have seen in Figure 4, the commit laten-
cies are distributed over a very large domain. This required defining a mapping function,
denoted as R(t), taking as input a commit latency, t, and outputting a value (the reward)
distributed in the [0,1] interval. In order to preserve the relative distance among sam-
ples before and after applying the mapping function we employed the following linear
transformation:

R(t) =
maxLatency −min{maxLatency, t}

maxLatency

which relies on the parameter maxLatency, defining a threshold for the commit la-
tency, above which the reward is mapped to the value 0. Based on our preliminary
experiments, we observed that the correct definition of the maxLatency parameter
value has a fundamental impact on the effectiveness of UCB: excessively low or high
values would in fact lead to saturating the reward function, preventing UCB to distin-
guish sensibly the performance of the various protocols. Also, the manual tuning of this
parameter is an extremely time-consuming task, given that the setting of maxLatency
was found to depend strongly on the characteristics of the user level application. For
instance, we noted that, when testing this approach with the STMBench7 benchmark,
we had to increase the value of maxLatency by a factor approximately 27x larger than
when using the synthetic benchmark described in Section 2.

This led us to define a self-tuning mechanism to define the value of the maxLatency
parameter. This mechanism is based on the observation that the (average) commit la-
tency when using VC is i) largely unaffected by the read-set size (given that it does not
disseminate the read-set), and ii) lower than that of both NVC and BFC for sizes of the
read-set larger than some threshold (this threshold being unknown and dependant on
the application and deployment scenario). In other words, VC’s commit latency repre-
sents a consistent upper bound for NVC’s and BFC’s commit latencies below a given
read-set’s size threshold, in which the two protocols typically exhibit alternate perfor-
mances. On the other hand, it represents a lower bound for NVC’s and BFC’s commit
latency for high read-set’s size, a scenario in which it is actually unnecessary to be able
to accurately predict their performance, given that VC outperforms them significantly.

This makes the VC’s average commit latency, denoted as TV C , a good reference
point for UCB’s maxLatency parameter value. This insight led us to define the fol-
lowing rule:

maxLatency = TV C · (1 + σ(TV C))

where σ(TV C) denotes the standard deviation (more precisely the squared root of the
sampling variance) of TV C . In order to instantiate this formula, upon boot-strapping of
the system, we execute transactions using the VC scheme until the following stopping
condition is reached:

σ(TV C) < 2 · TV C
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which in our experiments typically implied a few tens of transactions (and that was
however upper bounded to 100 transactions to ensure robustness in the presence of
highly disperse sampling data). To minimize the impact of this (typically quite short)
bootstrapping phase on the learning time, we provide the observed sampling data to the
corresponding UCB’s instances also during this phase (in which UCB’s instances are
not being queried to choose the replication protocol), thus allowing them to gather sta-
tistical information concerning the reward of the arm associated with the VC protocol.

A further optimization that we designed in order to minimize learning time is to have
the replicas periodically exchange and merge the locally gathered statistical information
concerning the reward distributions of UCB’s arms. This allows the replicas to mutually
benefit from the statistical knowledge that they have gathered so far, narrowing the
upper confidence bounds of the UCB’s instances and accelerating their convergence.
To minimize the overhead, we piggyback periodically (e.g. each 10 seconds in our
experiments) the state of the 6 UCB’s instances maintained at each replica (encoded by
the tuple < xi, ni, n > for each of its three arms i ∈ {NV C, BFC, V C}, and globally
accounting to around 100 bytes) to the AB messages generated by the PRM. As soon
as updated statistical information from a different replica is received, the information
concerning the local UCB instances is updated by setting, for each arm i:

– the value of xi to the average of the local and remote values of xi, weighted pro-
portionally to the number of times i was played locally and remotely, namely:

xi = wloc
i xi + wrem

i xrem
i , where wloc

i = ni

ni+nrem
i

and wrem
i = 1− wloc

i

– the value of ni and n to the sum of their, respectively, local and remote values,
namely ni = ni + nrem

i and n = n + nrem.

5 Experimental Evaluation

In this section we report the results of an experimental study aimed at assessing the
performance gains achievable by PolyCert, and the adequacy of the proposed machine-
learning based self-optimizing mechanisms.

We start by considering the synthetic benchmark already used in Section 2 that,
thanks to its simplicity and predictability, allows us to analyse the performance of
PolyCert in precisely identifiable workload scenarios. We then evaluate a widely used
benchmark for Transactional Memories, namely STMBench7, already mentioned in
Section 2. STMBench7 is a complex benchmark that features a number of operations
with different levels of complexity over an object-graph with millions of objects, gener-
ating a very intense and heterogeneous workload for the GCS. All the throughput results
reported in the following were obtained averaging over a number of runs sufficient to
ensure that the width of the 90% confidence intervals for the throughput was less than
10% of the corresponding average value.

The bar plot in Figure 5 reports the normalized throughput (with respect to the op-
timal non-adaptive workload) for each of the workloads generated by the Bank bench-
mark, including the versions of PolyCert when employing the oracles based on regressor
decision trees and UCB (respectively dubbed as DT and DistUCB in the plot). These
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Fig. 5. Normalized throughput of the adaptive and non-adaptive protocols (Bank benchmark)

experiments were run by switching the workload every three minutes, thus the reported
performance incorporates also data gathered during the initial phases during which we
bootstrap the statistical information of UCB.

Our experimental data shows that the on-line learning oracle using UCB (with the op-
timization for periodically exchanging statistical information among replicas enabled)
achieves a performance very close to the corresponding optimal protocol for each sce-
nario, namely on average around 5% less than the optimal solution and in the worst
case, the scenario where the transaction’s read-set size is set equal to 1, less than 10%
from the optimum. In this scenario, UCB alternates between BFC and NVC, whose
performances are quite close (differing by around 15%); in several runs some replicas
eventually converged towards the choice of BFC. In all the remaining scenarios, after a
short bootstrapping phase, the replicas converged consistently towards the choice of the
optimal certification protocols, which explains why they achieved performance almost
indistinguishable from those of an optimally tuned non-adaptive protocol.

On the other hand, the performance achieved by the oracle based on regressor deci-
sion trees was significantly worse. When using DT, the performance of PolyCert was
approximately 25% worse than that of the corresponding optimal non-adaptive scheme
(across the three workloads). Note that, DT was still able to outperform the second best
non-adaptive protocol (but not the optimal choice). A main source of inefficiency in the
implementation of the DT oracle is the following: it relies on the Java Native Interface
(JNI) to query the decision tree-based model generated by Cubist, implemented in C.
The overheads due to JNI are negligible in the scenario with read-set size equal to 100K,
whose transactions have a local execution time in the order of a few tens of millisec-
onds. On the other hand, JNI’s overheads have a negative impact on performance in the
scenarios with smaller read-set sizes, in which transactions have a local execution time
on the order of just a few tens of microseconds. The performance of DT is lower in the
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Fig. 6. Normalized throughput of UCB and DistUCB over a three minute run (Bank benchmark)

scenario with a read-set size of 1000, as in this case the DT oracle had a lower accuracy
in forecasting the AB self-delivery time, and erroneously biased its decisions towards
the voting protocol (which is chosen in approximately 30% of the cases on average).

In Figure 6 we contrast the performance of the UCB oracle (again in terms of nor-
malized throughput vs the optimal non-adaptive protocol), over a three minute run, with
and without enabling the optimization of exchanging periodically (each 10 seconds)
statistical information among replicas to improve learning. The data clearly shows the
effectiveness of this optimization, with speed-ups larger than 25% due to the fastest
convergence towards the optimal non-adaptive solution. Figure 7 provides more de-
tailed insights on the speed of convergence of UCB and DistUCB versus the optimal
solution, reporting the average throughput over 10 seconds time windows, achieved by
the two protocols. The plots clearly highlight the positive effects, in terms of learning
time reduction, due to the exchange of statistical information occurring, in particular,
at the time instants 10, 20 and 30 (seconds), that nearly halves the time required to
converge to the optimal choice.

Finally, we assess the performance of PolyCert with STMBench7, plotting the corre-
sponding results in Figure 8. The benchmark was configured to use the write-dominated
workload with long traversals, which generates approximately 90% of update transac-
tions, thus allowing us to focus on the performance of the transactions that require the
activation of a commit-time certification phase. As shown in Figure 1, around 5% of
transactions (namely the so-called long traversal transactions) in this benchmark have
read-set sizes larger than 500K items. As a consequence, when using either NVC or
BFC, this benchmark generates a very high traffic volume that, in all our runs, even-
tually determined the saturation and the collapse of the GCS. This is the reason why
in Figure 8 we only report the throughput of VC, DT, UCB and DistUCB (normalized
with respect to the throughput of the optimal non-adaptive protocol, namely VC). In this
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Fig. 7. Evolution of throughput over time with UCB and DistUCB (Bank benchmark - 100K
read-set size scenario)

scenario, the adaptive protocols clearly outperform the non-adaptive VC scheme, thanks
to their ability to use the more efficient NVC and BFC protocols to handle transactions
with smaller read-set’s size. The speed-up of PolyCert when using the three alternative
oracles ranges from 25% to 35%, with the best performance also in this case achieved
by DistUCB.

Overall, our experimental data demonstrated the effectiveness and viability of
the proposed self-tuning polymorphic replication technique. The reported results
highlight in particular the efficiency of the DistUCB oracle, which, not needing any
time-consuming off-line training phases, and being totally parameter-free, results as ex-
tremely convenient for deployment in real-life practical scenarios. Interestingly, PolyC-
ert does not only provide benefits in terms of performance, but also in terms of ro-
bustness, avoiding to saturate the GCS in presence of transactions with extremely large
read-sets, a main source of instability for BFC and, in particular, NVC.

6 Related Work

Our work is clearly related to the vast literature on replication of transactional sys-
tems, and in particular to the more recent works relying on AB to achieve a replica-
wide agreement on the transaction serialization order [18,24,17,23]. All these protocols
adopt a single static strategy, unlike PolyCert which, not only allows for the simultane-
ous coexistence of multiple certification strategies, but autonomically determines, on a
per-transaction basis, the most adequate replication protocol to employ using machine-
learning techniques.

Machine learning techniques have already been used to predict the performance of
computer systems in several contexts. These include works aiming at forecasting the
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Fig. 8. Normalized throughput of the adaptive and VC protocols. NVC and BFC not reported as
they caused the collapse of the GCS layer. (STMBench7 benchmark).

throughput of TCP flows [22] and Pub-Sub systems [11], solutions aimed at automati-
cally classifying traffic based on semi-supervised learning techniques [10], at automa-
tizing the allocation of resources in cloud-computing infrastructures [33], or generating
software aging models to be used in the context of rejuvenation frameworks [1]. Also,
as noted in the text, the regressor decision tree oracle exploits our previous results in the
area of machine-learning performance prediction of AB protocols, recently published
in [9].

Our work is clearly related to the body of research on autonomic computing, and in
particular to the field of self-optimizing databases. In this context, several approaches
have been proposed based on the idea to automatically analyse the incoming workload,
e.g. [20], to automatically identify the optimal database physical design or self-tune
some of the DBMS inner management schemes, e.g. [5]. However, none of these ap-
proaches investigated the issues related to autonomically adapt the replication scheme.
We argue that this is mainly due to the fact that current DBMSs, because of the high
complexity of their architecture, lack the flexibility required to dynamically adapt such
low level mechanisms.

7 Conclusions

Replication is of uttermost importance for in-memory NoSQL data platforms, which
are emerging as an attractive alternative to conventional relational distributed databases.
However, since the parameter space defining the workload of transactional applications
is extremely wide, it is extremely challenging to devise universal transactional replica-
tion solutions capable of guaranteeing optimal performance in any possible scenario. In
this paper we proposed, to the best of our knowledge for the first time in literature, a
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self-tuning adaptive scheme, which we named PolyCert, that allows for the simultane-
ous coexistence of multiple AB-based certification schemes. PolyCert uses parameter-
free machine learning techniques to determine the optimal replication strategy to use on
a per-transaction basis. The self-tuning strategy of PolyCert allows to achieve signifi-
cant speed-ups when compared with non-adaptive certification protocols. Furthermore,
it also improves the robustness of the replicated data platform, avoiding to saturate the
GCS in the presence of transactions with extremely large read-sets, a main source of
instability for several certification protocols.
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Abstract. Caching is an important technique in scaling storage for high-traffic
web applications. Usually, building caching mechanisms involves significant ef-
fort from the application developer to maintain and invalidate data in the cache.
In this work we present CacheGenie, a caching middleware which makes it easy
for web application developers to use caching mechanisms in their applications.
CacheGenie provides high-level caching abstractions for common query patterns
in web applications based on Object-Relational Mapping (ORM) frameworks. Us-
ing these abstractions, the developer does not have to worry about managing the
cache (e.g., insertion and deletion) or maintaining consistency (e.g., invalidation
or updates) when writing application code.

We design and implement CacheGenie in the popular Django web applica-
tion framework, with PostgreSQL as the database backend and memcached as
the caching layer. To automatically invalidate or update cached data, we use trig-
gers inside the database. CacheGenie requires no modifications to PostgreSQL or
memcached. To evaluate our prototype, we port several Pinax web applications to
use our caching abstractions. Our results show that it takes little effort for appli-
cation developers to use CacheGenie, and that CacheGenie improves throughput
by 2–2.5× for read-mostly workloads in Pinax.

1 Introduction

Developers of popular web applications often struggle with scaling their application to
handle many users, even if the application has access to many server machines. For
stateless servers (such as HTTP front-ends or application servers), it is easy to spread
the overall load across many machines. However, it is more difficult to add database
servers, since partitioning the data over multiple machines is non-trivial, and executing
queries across multiple machines can be expensive in itself. Database replication solves
this problem well in read extensive workloads, but does not work well in write-heavy
loads such as social networks, which we concentrate on in this work. Web application
developers typically solve this problem by adding caching middleware in front of the
database to cache the results of time-consuming queries, such as queries that span multi-
ple servers, complicated aggregate queries, or small but frequent queries. Thus, caching
forms an important part of storage systems of many web applications today; for exam-
ple, many websites use memcached [8] as a distributed in-memory caching system.

However, popular caching solutions such as memcached offer only a key-value inter-
face, and leave the application developer responsible for explicitly managing the cache.
Most importantly, the developer must manually maintain cache consistency by invali-
dating cached data when the database changes. This has several disadvantages. First, de-
velopers have to write a significant amount of code to manage the application’s caching
� Google
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layer. Second, this code is typically spread all over the application, making the appli-
cation difficult to extend and maintain. It is also a common source of programming
errors; for example, a recent outage of Facebook was caused by an error in application
code that tried to keep memcached and MySQL consistent [13]. Finally, the developers
of each application independently build these caching mechanisms and cannot re-use
other developers’ work, due to the lack of common high-level caching abstractions.

This work aims to address these issues with CacheGenie, a system that provides
higher level caching abstractions for automatic cache management in web applications.
These abstractions provide a declarative way of caching, where the developers only
specify what they want to cache and the desired consistency requirements, and the un-
derlying system takes care of maintaining the cache.

The first goal of CacheGenie is to relieve programmers of the burden of cache man-
agement. CacheGenie does three things to achieve this. First, it generates database
queries based on object specifications from the developer; these queries are used to
get the result from the underlying database, which is then cached. Second, whenever
possible, CacheGenie transparently uses the cached object instead of executing the
query on the database. Finally, whenever underlying data a cached object depends on
is changed, it transparently invalidates or updates the cached object. This is done by
executing database triggers when the underlying data changes.

The second goal of CacheGenie is to avoid making any modifications to the database
or cache, and to use existing primitives present in modern databases (i.e., triggers) in
order to ensure cache consistency. This makes it easy for developers to start using
CacheGenie and to reuse existing components.

The third and final goal of CacheGenie is to minimize the performance overhead
of maintaining a consistent cache. Any database-cache synchronization approach will
incur a combination of two overheads: updating/invalidating the cache in response to
database writes and sending read requests to the database if lookups in the cache fail. In
CacheGenie, we minimize the first overhead by incrementally updating the cache from
within the database, since the database has all the information regarding which keys
to update and how. The second overhead is minimized through the use of an update
approach where, once data is fetched into the cache, it is kept fresh by propagating
incremental updates from the database (unless evicted due to lack of space). In contrast,
in an invalidation approach, data is removed from the cache due to writes to database
and must be completely re-fetched from the database. In our experiments we show that
in CacheGenie, the overhead of maintaining a consistent cache is less than 30% (versus
an approach in which no effort is made to synchronize the cache and database).

Our implementation of CacheGenie is done in the context of Object-Relational Map-
ping (ORM) systems. In recent years, ORM systems like Hibernate [12] (for Java),
Django [7] (for Python), Rails [11] (for Ruby) and others have become popular for
web application development. ORM systems allow applications to access the database
through (persisted) programming language objects, and provide access to common
database operations, like key lookups, joins, and aggregates through methods on those
objects. ORM systems help programmers avoid both the “impedance mismatch” of
translating database results into language objects, and the need for directly writing
SQL. Because most accesses to the database in an ORM are through a small number of
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interfaces, we focused on supporting these interfaces. While CacheGenie does not cache
non-ORM operations, all updates to the database (through ORM and otherwise) are
propagated to the cache through database triggers, ensuring cache consistency. Our cur-
rent implementation of CacheGenie propagates updates to the cache non-transactionally
(i.e., readers can see dirty data, but not stale data), and serializes all writes through the
database to avoid write-write conflicts.1 CacheGenie provides caching abstractions for
common query patterns generated by the ORM.

We have implemented a prototype of CacheGenie for Django, PostgreSQL, and
memcached. To evaluate CacheGenie, we ported several applications from Pinax [26]
(a suite of social networking applications coded for Django) to use CacheGenie. Our
changes required modifying only 20 lines of code; CacheGenie automatically gener-
ated 1720 lines of trigger code to manage the cache. Our experiments show that using
CacheGenie’s caching abstractions leads to a 2–2.5× throughput improvement com-
pared to a system with no cache.

This paper makes four contributions. First, we describe CacheGenie, a novel and
practical system for automatic cache management in ORMs, which works with an un-
modified database and memcached. Second, we introduce new caching abstractions
that help programmers declare the data they wish to cache. Third, we use a trigger-
based approach to keep the cache synchronized with the database. Finally, we evaluate
CacheGenie on a real-world web application and show the benefits of incremental up-
dates and invalidations using our approach.

The rest of this paper is organized as follows: §2 gives a background of current
caching strategies and discusses some important related work in this area. §3 explains
the concept of caching abstractions, how we support them, and discusses the consistency
guarantees offered by CacheGenie. §4 describes our implementation using Django,
Postgres and memcached. §5 discusses our experience with porting Pinax applications
to use CacheGenie, and describes our experimental results. Finally, §6 concludes.

2 Background and Related Work

Web applications employ several caching strategies to improve their performance and
reduce the load on the underlying data store. These strategies can be divided into two
main categories: application caching and database caching.

The first category refers to application-level caching of entire HTML pages, page
fragments or computed results. This scenario is illustrated by Figure 1a. In this scenario,
the web application is responsible for cache management, and typically uses a key-value
store, such as memcached, as the cache. Cache management includes (i) choosing the
granularity of cache objects, (ii) translating between database queries and cache objects,
so that they can be stored in a key-value store, and (iii) maintaining cache consistency.

With application-level caching, the cache and the underlying database are not aware
of each other, and cache management is the application developer’s burden. The advan-
tage of application-level caching is that it allows for caching at a granularity best suited
to the application. The disadvantage is that application developers have to manually
implement cache management themselves via three possible options. The first option

1 We include a description of how to extend CacheGenie with full serializability in §3.3.
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(a) Application caching (b) Database caching (c) CacheGenie

Fig. 1. Different approaches to caching in web applications

is to expire cached data after a certain interval of time. Although this mechanism is
easy to use, it is insufficient for highly dynamic websites, and coming up with the right
expiration time is often difficult. The second option is manual invalidation, where the
programmer has to keep track of all possible writes to the underlying database and de-
termine which updates could affect what data in the cache. This can be cumbersome
and error-prone. The third option is a write-through cache. In this case, every time
the programmer writes code to update data in the database, she must also write code to
update the cache. Since the data in the cache is not invalidated but updated in place, this
can increase the number of cache hits. However, sometimes the application might not
have enough information to determine which entries from the cache should be updated;
this might lead to additional queries to the database, making the updates slower.

The second category, database caching, is illustrated in Figure 1b. In this model,
a middleware layer caches partial or full data from the database near the application
servers to reduce the load on the database server. In some cases, the cached data can be
partial rows returned from the database against which further queries are executed [1,
3, 18, 20]. In this case, the middleware layer is responsible for deciding what to cache,
how to satisfy the application requests based on what is in the cache, and maintaining
cache consistency with the underlying data. Though this model frees the developer from
managing the cache, it can result in sub-optimal caching behavior since cached objects
are typically database rows and not application-level objects.

A simple version of database caching is to cache results of exact queries, and re-
turn the same results for identical future queries, as in GlobeCBC [25]. To maintain
cache consistency, template-based invalidation schemes are typically used (templates
are used because the problem of determining whether two queries touch the same data is
hard [14]). Update queries are executed at the database server, and when a cache server
stores the results of a query, it subscribes to receive invalidations based on conflicting
query templates. There are two limitations with this model. First, the programmer must
specify a priori all pairs of conflicting query and update templates; this can be time-
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consuming and error-prone. Second, if one update can potentially affect another query,
all cached results belonging to the corresponding query template are invalidated. This
can lead to poor cache hit ratios, and thereby increase server load.

None of the above approaches fully solve the problem of caching in web applications.
CacheGenie combines the best parts of these approaches into a system that is most ben-
eficial for the programmer. CacheGenie provides high-level caching abstractions that
programmers can use without making substantial changes to the application, database
system, or caching layer. CacheGenie caches query results and automatically stores and
updates those results, as opposed to providing a key-value store that the programmer
must manually manage. The caching abstractions determine the granularity of caching,
and automate translation between the data in the cached objects and the data stored in
the underlying database. Unlike a template-based system, CacheGenie only invalidates
cached data that is affected by writes to the database (see §3.2). This leads to fewer
invalidations and higher cache hit ratios. The high-level architecture of CacheGenie
is illustrated in Figure 1c. CacheGenie operates as a layer underneath the application,
modifying the queries issued by the ORM system to the database, redirecting them to
the cache when possible.

There are several other systems that provide automatic cache management. Labrini-
dis et al. [17] present a survey of the state-of-the-art in caching and materialization in
web application databases. Cache invalidation as a strategy to maintain strong cache con-
sistency has been explored in numerous prior works [19, 21]. Challenger [5] proposed
using a dependency graph between cached objects and underlying data to regenerate or
invalidate relevant HTML pages or fragments in the cache. However, the query work-
load that they consider was mostly reads, with few writes; a higher write fraction in an
invalidation based system will lead to poor cache-hit ratio. Degenaro et al. [6] explored a
similar approach in the context of generic query result caching. Ferdinand [9] provides a
disk-based cache of query results, which uses a publish-subscribe model to achieve con-
sistency in a scalable distributed manner. Using a pub-sub model in CacheGenie could
improve scalability of propagating cache updates. A key difference between CacheGe-
nie and these systems is that CacheGenie updates cached data in-place.

Several systems leverage snapshot isolation for caching. TxCache [24] provides a
transactional cache, and ensures that any data seen within a transaction, whether it
comes from the cache or the database, reflects a slightly stale but consistent database
snapshot. TxCache lets programmers designate specific functions as cacheable; it auto-
matically caches their results, and invalidates the cached data as the underlying database
changes. Unlike TxCache, CacheGenie performs in-place updates instead of invalida-
tion, but can cache and update only pre-determined functions (caching abstractions)
instead of arbitrary functions. CacheGenie also relaxes transactional guarantees to al-
low the application to access fresh data, as many web applications do not require or use
strong transactional guarantees. SI-cache [22, 23] similarly extends snapshot isolation
to caching in J2EE applications. The key difference in CacheGenie, in addition to the
above, is that CacheGenie maintains a single logical cache across many cache servers.
In SI-cache, each application server maintains its own cache, and if many servers cache
the same data, the total effective cache capacity is greatly reduced.
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TimesTen [27] allows for caching partial tables from the database in their in-memory
store, providing a SQL-like syntax to the developer to specify which partial tables to
cache. It allows for updates to flow from backend database to the cache using database
triggers. However, the updates flow to the cache only periodically (the period of refresh
specified by the application) and hence the application might see stale data. This is un-
like CacheGenie, which ensures synchronous propagation of updates. Further, TimesTen
caches raw table fragments, and hence requires extra computation at query time. Auto-
WebCache [4] uses aspect-oriented techniques to implement a caching middleware for
dynamic content for J2EE server-side applications. Unlike CacheGenie, AutoWebCache
caches entire web pages, and uses template-based invalidation for cache consistency.

There has been a lot of work exploring materialized views in databases and algo-
rithms to incrementally update them. Materialized views are also useful in pre-computing
and thus providing fast access to complex query results. The problem of incremental
view maintenance is similar to the problem of maintaining up-to-date cached query
results. However, unlike materialized views in the database, CacheGenie is geared to-
wards maintaining views in a more distributed scenario. Moreover, CacheGenie scales
better because it transfers the load from the database to a distributed cache. CacheGe-
nie employs techniques similar to view maintenance [10] and materialization of entire
web pages [16], except that in CacheGenie, “materialization” happens in a third caching
layer, and CacheGenie caches more granular data than whole web pages.

A recent system called TAO by Facebook works in a way similar to ours, by letting
programmers think in terms of high-level abstractions rather than SQL, and automati-
cally managing the cache for them. An important difference however is that they per-
form write-through caching, whereas we propagate the updates through the database.
CacheMoney [15] is a library for Ruby on Rails [11], which enables write-through and
read-through caching to memcached; unlike CacheGenie, it does not support joins.

Table 1 summarizes the relation of CacheGenie to several representative systems.

Table 1. Comparison of CacheGenie with representative related systems

System
Cache Source code Stale Cache

granularity modifications data coherence
memcached Arbitrary Every read Yes None
memcached Arbitrary Every read + write No Manual invalidation
TxCache Functions None Yes (SI) Invalidation / timeout
TimesTen Partial DB Tables None Yes Incremental update-in-place
GlobeCBC SQL queries None No Template-based inv.
AutoWebCache Entire webpage None No Template-based inv.
CacheGenie Caching abstractions None No Incremental update-in-place

3 Design

In this section, we describe the programmer’s interface to CacheGenie’s caching ab-
stractions and then describe how they are implemented internally using triggers.
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3.1 Caching Abstractions

Rather than trying to provide a generic query caching interface, CacheGenie’s goal
is to cache common query patterns generated by ORMs like Django. The workloads
may also have infrequent queries that are not handled by the patterns CacheGenie sup-
ports (e.g., because Django allows applications to directly write SQL queries). However,
to improve performance, it typically suffices to improve these commonly occurring
queries, and CacheGenie’s approach does not require that all queries be mediated by
the caching layer. Working within these frameworks also ensures that the programmer
does not have to change the programming model she is using.

ORM-based web applications generate database queries using objects (such as an
object representing an entire table, called models in Django) and functions (such as fil-
tering objects based on the certain clauses). The programmer issues queries by calling
functions on objects; the ORM framework issues SQL queries to the database in re-
sponse to these function calls. CacheGenie provides caching abstractions called cache
classes for common query patterns generated by the ORM. Each query pattern is rep-
resented by one cache class. To cache data pertaining to different entities but following
the same pattern, the programmer defines multiple instances of the corresponding cache
class, and each instance is called a cached object. Once a cached object is defined, the
programmer can simply use existing object code, and CacheGenie takes care of fetching
the right data from the cache.

We explain the concept of cache classes with an example from the social network-
ing domain. Imagine that a developer wants to fetch the profile data of users in the
application. To get this data from the database in Django, the developer would write
the following code (assuming models for User, which contains administrative infor-
mation about users, and Profile, which contains detailed information entered by the
user, have already been created. The Profile is related to model User by the user id
field):

profile = Profile.objects.get(user_id=42)

To cache this data in Django, the developer has to manually put/get the profile data into
the cache wherever needed in the application, and manually invalidate the cached data
wherever profile of a user is modified, using statements such as the following:

from django.core.cache import cache
cache.set('profile:42', user_profile, 30) # Cache user 42 's profile, 30s expiry
cache.get('profile:42') # Get data from cache
cache.delete('profile:42') # Invalidate cached copy

In CacheGenie, this query falls under the FeatureQuery cache class (described below).
To cache this data, the developer only needs to add a cached object definition once:

cached_user_profile = cacheable(cache_class_type = 'FeatureQuery',
main_model = 'Profile', # Main Model to cache
where_fields = ['user_id'], # Indexing column
update_strategy = 'update-in-place', # optional arguments
use_transparently = True) # optional arguments

Once this definition is made, CacheGenie automatically and transparently manages pro-
file data in cache. The application code to access the cached data remains exactly same
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as before (i.e., it is the same as getting the object from the database), and the devel-
oper does not have to write any additional code to manage the cache. As we do not
provide strict transactional consistency in CacheGenie (see §3.3), the programmer can
set use transparently to false for objects which might need such guarantees. In that
case, CacheGenie will not transparently fetch the cached data. The programmer can
manually call evaluate on the returned cached object cached user profile with
the id of the desired user to get the cached data manually:

profile = Profile.objects.get(user_id=42) # get from cache or db
profile = cached_user_profile.evaluate(user_id=42) # explicit cache lookup

CacheGenie supports the following cache classes:

1. Feature Query involves reading some or all features associated with an entity. In
relational database terms, it means reading a (partial or full) row from a table satisfying
some clause—typically one or more WHERE clauses. For example, in a social networking
application which stores profile information in a single table, the query to get the profile
information of a user, identified by a user id, is a Feature Query. Since these queries
make up a large percentage of many workloads, caching them is often beneficial.

2. Link Query involves traversing relationships between entities. In relational
database terms, these queries involve traversing foreign key relationships between dif-
ferent tables. Since they involve joins, Link Queries are typically slow; caching fre-
quently executed Link Queries is often beneficial. An example of a frequent join query
in a social networking app is to look up information about the interest groups to which
a user belongs. This query involves a join between the groups membership table and
the groups table. To create an instance of the LinkQuery cache class, the application
must specify the chain of relationships to be followed.

3. Count Query caches the count of rows matching some predicate. A typical web
application’s page displays many types of counts, for example, a user’s Facebook page
displays counts of her friends, messages in the inbox, unread notifications and pending
friend requests. Count queries are good candidates for caching, as they take up little
memory in cache but can be slow to execute in the database.

4. Top-K Query caches the top K elements matching some predicate. In database
terms, a top-K query involves sorting a table (or a join result) and returning the top
K elements. Top-K queries are often expensive, and their results should be cached
when possible. One important property of Top-K queries is that the cached results can
be incrementally updated as updates happen to the database, and don’t need to be re-
computed from scratch, and CacheGenie exploits this property. An example of a Top-K
query is fetching latest 20 status updates of a user’s friends. Additional parameters for
a Top-K query are the sort column, the order of sorting, and the value K .

In addition to class specific parameters, the programmer can also specify the cache con-
sistency strategy, which can be (i) invalidate the cached object, or (ii) update it in-place
(default). Since cache objects are defined based on existing queries in the application, it
should be possible to derive these definitions automatically from the application, either
by looking at SQL queries generated, or analyzing the ORM queries. The developer
would still be able to choose the characteristics such as cache consistency requirements.
We would like to explore this in future work.
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Although CacheGenie implements cache classes for only a few query patterns, it is
easy to extend the same concepts to other types of queries. Note, however, that cache
classes correspond to queries common to multiple applications, and hence are reusable.
Each developer does not have to write their cache classes, unless they want to cache a
query pattern very specific to their application. To give an idea of what it takes to write
a new cache class, we list here the functions it must perform:

1. Query generation uses the models and fields in the cached object to derive the
underlying query template to get that object from the database. Note that we cache the
raw results of queries and not Django model objects constructed from them.

2. Trigger generation involves determining which database tables and operations
need triggers to keep the cached object consistent with the database. It also includes
generation of the necessary code for the triggers, as described in §3.2.

3. Query evaluation involves fetching the appropriate data from the cache and trans-
forming the returned value into the form required by the Django application, when the
application requests it. If the key is not present in the cache, the cache class must query
the database with the query generated during the generation step, add the result to cache,
and return the appropriate transformed values to the application.

As an example, the definition of LinkQuery Class is as follows, with each function
executing one task from the above.

class LinkQuery(CacheClass):
def __init__(self, *args, **kwargs): # Initialize, Implement Step 1.
def get_trigger_info(self): # Implements Step 2.
def evaluate(self, *args, **kwargs): # Implements Step 3.
def make_key(self, *args, **kwargs): # Returns the corresponding key.

3.2 Database Triggers

Writes in CacheGenie are sent directly to the database, where it uses database triggers to
automatically sync the cached data with these changes. In CacheGenie, for each cached
object, there are three triggers—for insertion, deletion and update—generated on each
of the tables underlying the cached object. These triggers are automatically generated
from the cached object specifications. The programmer does not need to manually write
the triggers, or specify a priori the cached objects that may be affected by each write
query. When fired, the trigger code determines which cached entries, if any, can be
affected by the modified data. It then modifies or invalidates these entries appropriately.

If the programmer chooses to invalidate cached objects, the trigger code invalidates
only those entries of the cached object which are affected by this change. For example,
imagine that the profile information of users with user id 42 and 43 is currently in the
cache. A query that updates the profile information of user 42 causes only the cached
entry for user 42 to be invalidated, and the cached entry for user 43 remains unchanged.
Note that this is different from template-based cache consistency mechanisms, which
invalidate both the user profiles since they both match the same template.

Invalidation makes the trigger code simple, but invalidating frequently used items
can lead to a poor cache-hit ratio. A better solution may be to update the cached data
in response to the update. In this approach, the trigger code determines which entries in
the cache could be affected by the data change in the table, figures out how to update
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the cached data incrementally, and finally updates the relevant cached objects. Contin-
uing with the previous example, if an UPDATE query updates the profile information of
user 42, the cached entry for user 42 is updated with the new profile information and is
available to any future request from the application. The problem of figuring out how
to update a cached object is similar to the problem of incrementally updating a materi-
alized view. This problem has been previously studied, and is hard to solve in general.
However, because CacheGenie supports a few fixed types of query patterns, it becomes
less computationally intensive compared to solving it for a general view. View mainte-
nance techniques [10] can be applied to incrementally update cached objects other than
the ones supported by CacheGenie.

The generated trigger operates in four steps. First, the trigger gets the modified rows
from the database as input. Second, based on the modified rows (depending on the
cached object for which this trigger is responsible), it figures out which keys in the
cache can be affected by these rows. Third, if the cache consistency strategy is to update
the cache, it queries the cache for the affected keys and calculates new values for them.
Fourth, again depending on the cache strategy, it either deletes the affected keys from
the cache or updates them in place with the new computed values.

To illustrate how triggers are generated in more detail, we provide a detailed example
of how a trigger for a Top-K Query cache class is generated. To cache a TopKQuery
object, CacheGenie caches an ordered list of results in memcached for the underlying
query. The list contains K elements, as specified by the programmer when defining the
cached object, plus a few more, to allow for incremental deletes. Consider the example
of a Facebook-like social networking application where each user has a wallwhere any
friend can post a note for this user. Let the wall table schema be:

wall (post_id int, user_id int, content text, sender_id int, date_posted date)

Suppose the developer wants to create a Top-K cached object for the latest 20 posts on
a user’s wall. The cached object definition that the developer writes for this would be:

latest_wall_posts = cacheable(cache_class_type = 'TopKQuery',
main_model = 'Wall', where_fields = ['user_id'],
sort_field = 'date_posted', sort_order = 'descending', k = 20)

For this cached object, CacheGenie automatically generates three triggers on the wall
table (one each for INSERT, DELETE and UPDATE). When a new post gets inserted
into the table, the corresponding trigger runs and gets the new post as input. From
this inserted row, CacheGenie’s trigger finds the user id whose wall the post be-
longs to (say, 42), and then determines the key in the cache that will be affected, say
LatestWallPostsOfUser:42 (we use this key prefix for the sake of illustration; in
practice a system-generated unique prefix is used). Next, assuming the update strategy,
CacheGenie’s trigger queries memcached for this key. If not present, the trigger quits.
Otherwise, it finds the correct position of the new post in the cached list of posts ac-
cording to date posted and modifies the list accordingly. Finally, it puts the key back
in the cache with the new modified value. The actual generated Python code for this
trigger is:

cache = memcache.Client(['host:port'])
table = 'wall'
key_column = 'user_id'
sort_column = 'date_posted'
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new_row = trigger_data['new']
cache_key = 'LatestWallPostsOfUser:' + new_row[key_column]
(cached_rows, cas_token) = cache.gets(cache_key)

if cached_rows is not None: # if present, update
new_sort_val = new_row[sort_column]
insert_pos = 0
for row in cached_rows:
if new_sort_val > row[sort_column]:
break

insert_pos += 1
if insert_pos < len(cached_rows): # update
cached_rows.remove(len(cached_rows) - 1)
cached_rows.insert(insert_pos, new_row)
cache.cas(cache_key, cached_rows, cas_token)
# not shown is retry when CAS fails

The trigger for DELETE similarly determines whether the deleted row exists in the list,
and if so, deletes it. For top-K queries, CacheGenie fetches a few additional rows be-
yond the top K to support deletes without immediate re-computation. When this reserve
is exhausted, CacheGenie have to recompute the entire list for caching. UPDATE triggers
simply update the corresponding post if it finds it in the cached list.

More details of how triggers for other cache classes are automatically generated are
left out for the sake of brevity. Next, we discuss the consistency guarantees offered by
CacheGenie and contrast it with those provided by existing caching systems.

3.3 Consistency Guarantees

We have already described the basic mechanisms provided in CacheGenie to enable
cache consistency. In this section we discuss the consistency guarantees CacheGenie
provides with these mechanisms. First, CacheGenie performs atomic cache invalida-
tions/updates for any single database write. Second, CacheGenie provides immediate
visibility of a transaction’s own updates. All cached keys affected by a write query are
updated as a part of that statement, and hence the user sees the effects of her own writes
immediately after the query is executed. This is a highly desirable property even for
web applications since users expect to see their own updates immediately.

Currently, CacheGenie does not extend database transactions to the caching layer,
because there were few conflicts in our workload (we have omitted the experiment which
measures this for lack of space). The implication of this is that a transaction may read
the results of an uncommitted update of another transaction from the cache (because
writes are still done in the database, write-write conflicts are prevented). Another reason
we chose not to add transactional support to the cache is that doing so would require
changes to memcached, which we tried to avoid. We note that other database caches, like
DBCache [3] and DBProxy [1] also provide relaxed transactional semantics; similarly,
the application caching systems we know of also provide a weak consistency model.

However, for completeness, we describe a method for supporting full transactional
consistency in CacheGenie. The key observation is that the database cannot determine
whether a pair of concurrent transactions conflict because it does not see all the read op-
erations. Thus, CacheGenie would track the readers and writers of keys in memcached
and block transactions from completing their reads/writes to memcached according to
the rules of two-phase locking.
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In our design, when a transaction begins, the application and database decide on
a transaction id, tid. Whenever a database trigger issues any updates/invalidations to
memcached as a part of a transaction, it includes tid. For each key k, memcachedwould
keep track of readersk (a list of the tids of all uncommitted transactions that read k),
and writerk (the id of the uncommitted writer of k, if any). Note that a database write to
a row r can affect multiple keys in the cache, and a given key k may be a cached result
corresponding to many rows in the database, so the keys associated with these readers
and writers do not have an exact correspondence with rows in the database.

When using invalidations, we need to keep the readers and writers for invalidated
keys, even if the keys themselves have been removed from the cache. Similarly, when a
transaction T does a lookup of a key k, we need to add T to readersk, even if k has not
yet been added to the cache.

Our modified memcached blocks reads and writes if they conflict. Thus, a transaction
T reading key k will be blocked if (writerk �= None∧writerk �= T ), and a transaction T
writing key k will be blocked if (writerk �= None∧writerk �= T∧readersk−{T } �= {}).

When Django is ready to commit a read/write transaction T , it sends a commit mes-
sage to the database. If T commits at the database, CacheGenie removes T from the
readers and writers of all keys in memcached, and allows any transaction blocked on
one of those keys to resume executing, by adding itself to the appropriate readers and
writers (latches must be used to prevent concurrent modifications of a given readers or
writers list). If T aborts, CacheGenie has to remove T from the readers list of all keys it
read, and remove all keys it wrote from the cache (so that subsequent reads will go to the
database). For read-only transactions, Django does not need to contact the database for
either aborts or commits, because read-set tracking is done entirely in the cache. Django
can issue single-statement (autocommit) transactions for read queries that are not sat-
isfied by the cache; if Django later needs to perform a write as a part of one of these
transactions, these initial reads will not affect correctness of the serialization protocol.

Note that deadlocks can occur in the above protocol; because keys can be distributed
across several memcached servers, we propose using timeout-based deadlock detection
(as in most distributed databases). When a deadlock occurs, Django will need to abort
one of the transactions on the database server, using the above abort scheme. Note that
we cannot abort a transaction that is in the process of committing at the database server.
One concern with the performance of this approach is the overhead of tracking each
read/write operation by memcached. However, we think it would be insignificant as
compared to (a) network latency, and (b) actual operation as size of tid is much smaller
than the actual key/value size. Database overhead is also minimal as it only needs to
maintain a list of memcached servers it contacted for each transaction.

Although we haven’t implemented this full-consistency approach, we do provide a
simple mechanism for the programmer to opt for a strict consistency on a case-by-case
basis, if she so desires. If the programmer is aware that some cached object needs strict
consistency in certain scenarios, she can opt out of automatic fetching from cache for that
particular cached object. Then the programmer manually uses the cached object when
she requires weak consistency and does not use it in case she requires strict consistency.
The query in the latter case goes directly to the database and fetches the fresh results.
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4 Implementation

We implemented a prototype of CacheGenie by extending the popular Django web ap-
plication framework for Python. One advantage of using Django is that there are several
open-source web applications implemented on top of Django, which we can use to test
CacheGenie’s performance and usability. In particular, we use Pinax, which is a suite
of reusable Django applications geared towards online social networking.

Applications in Django interact with the database via models. A Django model is a
description of the data in the database, represented as Python code. A programmer de-
fines her data schema in the form of models and Django creates corresponding tables in
the database. Further, Django automatically provides a high-level Python API to retrieve
objects from the database using functions on model objects, such as filter and limit.
Django also provides ways to define many-to-one, many-to-many and one-to-one rela-
tionships between database tables, using model attributes referring to other models.

We implemented the cache classes described in §3.1 as special classes in Django. A
programmer can cache frequently accessed queries that fit our abstractions by defining
instances (called cached objects) of the appropriate cache class. The cache class per-
forms three functions—(i) it uses the models and fields in the cached object to derive
the underlying query template to get that object from the database, (ii) it generates and
installs the associated triggers on the database, and (iii) it intercepts regular Django
queries to return cached results transparently, if present, and otherwise populates the
cache with the desired data from the database. Our prototype supports invalidation,
update-in-place, and expiry intervals for cache consistency.

We use unmodified memcached for caching. The default least-recently used (LRU)
eviction policy works well for a web application workload. However, keys get bumped
to the front of LRU when touched by the triggers, even though they are not really being
“used” by the application. One can modify memcached to support a modified LRU
policy where certain actions can be specified not to affect LRU.

For the database, we use unmodified Postgres, which is supported by Django natively.
We exploit Postgres triggers (written in Python) to manage the cache on writes to the
database. Note that even though we picked Django, memcached, and Postgres for our
prototype implementation, it should be easy to apply our design to other web application
frameworks, caches, and databases.

5 Evaluation

The first aspect of our evaluation is ease of use. To evaluate CacheGenie’s ease of use,
we ported Pinax, a reusable suite of Django applications geared towards online social
networking, to use CacheGenie. Our results show that CacheGenie’s abstractions re-
quire few changes to existing applications (changing about 20 lines of code for Pinax).

The second aspect of our evaluation is performance. For this, we compare three sys-
tems: (i) NoCache—a system with no caching, where all requests are being served from
the database, (ii) Invalidate—CacheGenie prototype in which cache consistency is
maintained by invalidating cached data when necessary, and (iii) Update—CacheGenie
prototype in which consistency is maintained by updating cached data in-place. We eval-
uate performance using the Pinax applications ported to CacheGenie. Although it would
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be instructive to compare CacheGenie with other automated cache management
approaches, our system is inherently tied to the ORM model, whereas most of the previ-
ous systems are not, making a direct comparison difficult.

We ran several experiments to evaluate CacheGenie’s performance. The results of
these experiments show that using CacheGenie improves request throughput by a factor
of 2–2.5 over NoCache for a mixed read-write workload. We also see that the Update
scenario has up to 25% throughput improvement over Invalidate. Increasing the per-
centage of reads in the workload improves caching benefits of CacheGenie: for a read-
only workload, CacheGenie improves throughput by a factor of 8.

We also performed microbenchmarks to understand the performance characteris-
tics of CacheGenie. These microbenchmarks show that using memcached instead of
a database can improve throughput by a factor of 10 to 150 for simple queries. Further,
a database trigger can induce overhead ranging from 3% to 400%.

The rest of this section describes these experiments in more detail.

5.1 Experimental Setup

Pinax is an open-source platform for rapidly developing websites and is built on top of
Django. We modified Pinax to use CacheGenie, and focused on three applications from
the social networking component of Pinax—profiles, friends and bookmarks. We deal
with only four particular actions by the user: (i) LookupBM: lookup a list of her own
bookmarks, (ii) LookupFBM: lookup a list of bookmarks created by her friends, (iii)
CreateBM: add a new bookmark, and (iv) AcceptFR: accept a friend invitation from
another user.

We created cached objects for the frequent and/or expensive queries involved in load-
ing the pages corresponding to these actions. For instance, we added cached objects for
getting a list of a user’s bookmarks, a count of saved instances of a unique bookmark,
a list of bookmarks of a user’s friends and so on. Once these cached objects have been
defined, the application code automatically obtains the corresponding cached data.

For performance evaluation, as illustrated in Figure 1c, our experimental setup com-
prises of three main components: (i) the application layer (web clients, web server, and
application), (ii) the cache layer, and (iii) the database layer. Since the aim of our eval-
uation is to measure the performance of the cache and database (the data backend), we
have combined the web clients, web server and application server into a single entity
called the ‘application layer’, which simulates a realistic social-network style workload
and generates the corresponding queries to the data backends.

Our experimental workload consists of users logging into the site, performing the
four actions (Page Load) described above according to some distribution and logging
out. The default ratio of these actions in our workload is 〈LookupBM : LookupFBM :
CreateBM : AcceptFR〉 = 〈50 : 30 : 10 : 10〉. We can also look at it as the ratio of
read pages (LookupBM + LookupFBM) to write pages (CreateBM + AcceptFR). The
default ratio is then 80% reads and 20% writes. We believe that this ratio is a good
approximation of the workload of a social networking type application where users
read content most of the time and only sometimes create content (Benevenuto et al [2]
found that browsing activities comprised of about 92% of all requests). Note that 20%



A Trigger-Based Middleware Cache for ORMs 343

writes does not mean 20% of queries are write queries, but only reflects the percentage
of write pages. In practice, as in real web application workloads, a write page also has
several read queries in addition to write queries.

The set of actions from a user’s login until her logout is referred to as one Session.
We refer to each action/page as a Page Load. Further, any request for data issued by
the client to either the database or the cache is referred to as a Query. For most of
the experiments each client runs through 100 sessions. The distribution of users across
sessions is according to a zipf distribution with the zipf parameter set to 2.0 (as in
Benevenuto et al [2]). Each session in turn comprises of 10 page loads, in the ratio
specified above. Each page load consists of a variable number of queries, depending on
the application’s logic, which averages about 80.

For the final measurements, we only replay the queries generated during actual work-
load runs. As such, we need only one client machine to saturate our database. The
client machine is an Intel Core i7 950 with 12 GB of RAM running Ubuntu 9.10. We
use Python 2.6, Django 1.2 and Pinax development version 0.9a1. The client machine,
database machine, and the memcachedmachine communicate via Gigabit ethernet. The
database machine is an Intel Xeon CPU 3.06 GHz with 2 GB of RAM, running Debian
Squeeze with Postgres 8.3. The database is initialized with 1 million users and their pro-
files, 1000 unique bookmarks with a random number of bookmark instances (between 1
and 20) per user. Further, each user has 1–50 friends to begin with, and 1–100 pending
friendship invitations. The total database size is about 10 GB. The tables are indexed
and clustered appropriately. The caching layer consists of memcached 1.4.5 running on
a Intel Pentium 2.80 GHz with 1 GB of RAM. The size of the cache depended on the
experiment, but for most experiments it was 512 MB. Note that this is only an upper
limit on the amount of memory it can use, if needed.

5.2 Programmer Effort

As described in §3.1, the programmer needs to add a cached object definition for each
query pattern instance she wants CacheGenie to cache for her. To port the Pinax applica-
tions described earlier in this section, we added 14 cached objects. Adding each cached
object is just a call to the function cacheablewith the correct parameters.

Once the cached object has been created, caching is automatically enabled for corre-
sponding queries. In the absence of CacheGenie, the programmer has to manually write
code to get and put data in the cache wherever a query is being made. In our sample
application, we counted 22 explicit locations in the application code where such mod-
ifications are necessary. However, there are many more instances where the query is
being made implicitly, such as from the Django framework. In such cases, the program-
mer will have to modify the internals of Django in order to cache these queries. We
believe developers may find this undesirable.

To manage cache invalidations and updates, CacheGenie automatically generates
triggers corresponding to the defined cached objects. For the 14 cached objects, CacheGe-
nie generates 48 triggers, comprising of about 1720 lines of Python code. Without
CacheGenie, the programmer will have to manually invalidate any cached data that
might be affected by any write query to the database, and without an automatic cache
management scheme, the programmer will have to write about the same number of lines
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of code as our generated triggers, i.e. 1720 lines of code. Large applications may have
many more cached objects and hence many more lines of code for cache management.

5.3 Microbenchmarks

We used microbenchmarks to quantify performance characteristics of the cache, database
and database triggers. We ran a variety of experiments on a small database (fits in RAM)
and a similarly sized memcached instance to measure the time cost of database vs. cache
lookup queries, and the time cost of running a trigger.

For database vs. cache lookups, we found that simple B+Tree lookup on the database
takes 10–25× longer on the database, suggesting there is significant benefit in caching.

We also looked at the time to run a database trigger as a part of an INSERT oper-
ation, relative to the cost to perform a plain INSERT. We found that a plain INSERT
takes about 6.3 ms, while an INSERT with a no-op trigger takes about 6.5 ms. Opening
a remote memcached connection, however, doubles the INSERT latency to about 11.9
ms. Each memcached operation done from within the trigger takes an additional 0.2 ms,
which is the same amount of time taken by a normal client to perform a memcached
operation. Hence, the main overhead in triggers comes from opening remote connec-
tions; if we could reuse the connection for subsequent triggers, it would make the write
operations much faster. Exploring this is a part of future work.

5.4 Social Networking Workload

In this section, we describe our performance experiments with the Pinax applications,
present these results, and discuss our conclusions from these experiments. Each exper-
iment has the following parameters: number of clients, number of sessions for each
client, workload ratio, zipf parameter, and cache size. The default values for these pa-
rameters are 15 clients, 100 sessions, 20% write pages, 2.0, and 512 MB respectively.
In each experiment, we measure throughput and latency, and compute averages for the
time intervals during which all the clients were simultaneously running. We also warm
up the system by running 40 parallel clients for 100 sessions before the start of each
experiment.

Experiment 1: Throughput and Latency Measurement. In this experiment, we com-
pare the three caching strategies—NoCache, Invalidate and Update—in terms of the
maximum load they can support. The results in Figure 2 show the page load throughput
and page load latency as the number of parallel clients increases.

From Figure 2a we can see that CacheGenie systems—Invalidate and Update
provide a 2–2.5× throughput improvement over the NoCache system. This improve-
ment is due to a significant number of queries being satisfied from the cache, thereby
reducing the load on the database. Note that the advantage we get from our system
is much less than the throughput benefit that memcached has over a database in our
microbenchmarks. This is because we do not cache all types of queries; the uncached
queries access the database and make it the bottleneck.

In all three systems, the database is the bottleneck and limits the overall throughput
of the system. In the NoCache case, the CPU of the database machine is saturated,
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Fig. 2. Experiment 1—Performance against varying clients

while in the two cached cases, disk I/O is the bottleneck. This is because queries hitting
the database in NoCache are repeated, and hence a significant amount of time in the
database is spent computing query results for in-memory data. For the cached cases,
the bulk of the queries are either writes or not repeated (since the system caches most
of the repeated queries). Hence, the database becomes bottlenecked by disk. This also
explains why the throughput in cached cases drops after a certain point.

Note that the throughput is greater in the Update case than in the Invalidate case.
On one hand, updating leads to slower writes, because triggers have to do more com-
putation. On the other hand, updates lead to faster reads, because there are more cache
hits. Figure 2a illustrates that the overhead of recomputing from the database after in-
validation is more than the overhead of updating the relevant cached entries.

Table 2. Average latency by page type in
Experiment 1 (with 15 clients)

Page Type Update Inval. NoCache

Login 0.29 s 0.34 s 0.11 s
Logout 0.10 s 0.11 s 0.05 s
LookupBM 0.05 s 0.05 s 0.22 s
LookupFBM 0.06 s 0.16 s 1.25 s
CreateBM 0.55 s 0.53 s 0.09 s
AcceptFR 1.03 s 1.24 s 1.01 s

From Figure 2b we see that Update has
the least latency of all the three scenar-
ios, followed by Invalidate and NoCache.
Also, the latency in all three cases rises
more steeply as we increase the number of
clients beyond 15, corroborating the fact that
throughput drops slightly after this point. Ta-
ble 2 shows the average latency for various
types of page loads for the three systems in
this experiment. The increased latency of Cre-
ateBM and AcceptFR is due to the overhead
of updating the cache during writes to the database. In effect, the update operations
become slower in order to ensure that subsequent reads are faster.

For all of the following experiments, in order to achieve the maximum throughput
for all systems, we run 15 parallel clients, unless otherwise specified.

Experiment 2: Effect of Varying Workload. In this experiment, we vary the ratio of
read pages to write pages in the workload, and measure how it affects the performance
of the three caching strategies. The default ratio, as mentioned before, is 80% read pages
and 20% write pages. The results of these experiments are shown in Figure 3a.
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Fig. 3. Throughput results for Experiments 2, 3, and 4

From the figure, we see that for a workload with 0% reads, caching does not provide
any benefit. In fact, it makes the performance slightly worse. This is because database
writes are slower in the cached system due to the overhead of triggers. As the percentage
of reads in the workload increases, however, the performance of cached cases improves.
In the extreme case of 100% reads, the cached case throughput is about 8× the through-
put of NoCache. Also note that the workload variation does not significantly affect
NoCache since it is already CPU bound because of reads, which hit the database buffer
pool. However, workload variation affects the cached cases, since they are disk-bound,
and the disk is accessed less as the number of writes goes down.

The gap in throughput between Update and Invalidate increases as the number
of reads increases from 0% because as the fraction of reads increases, the advantage
of better cache hit ratio overcomes the disadvantage of slower triggers in Update. The
gap reduces when we have 100% reads because nothing in the cache is being invalidated
or updated, and so both cases are equivalent. From this experiment, we conclude that
caching shows much more benefit in a read-heavy workload than a write heavy one.

Experiment 3: Effect of Varying User Distribution. The formula for zipf distribution
is p(x) = x−a

ζ(a) where ζ is the Reimann zeta function and a is the zipfian parameter. In
our experiments, p(x) is the probability that a user has x number of sessions, i.e. logs
in x number of times. p(x) is high for low values of x and low for high values of x.
In other words, most users log in infrequently, and a few users log in frequently. Also,
a low value of the zipfian parameter a means the workload is more skewed whereas a
high value means that users login with a more uniform distribution.

The value of zipf parameter affects both performance of the database and the cache.
In the cache, if there are certain users who login frequently, then the data accessed
by them remains fresh in the cache and the infrequent users’ data gets evicted. This
means that, over a period of time, frequent users will find most of their data in cache,
and hence the number of cache hits goes up, improving the system’s performance. It
also means we need a cache big enough to hold only the frequent user’s data, which is
much smaller than the total number of users in the system. It matters for the database
performance as well, but only within short intervals, since the buffer pool of database
gets churned much faster than the cache. Thus, database performance improves when
users log in repeatedly in a short time span.
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In this experiment we vary the parameter a of the zipf distribution and see how it
affects the performance of the three systems. Figure 3b shows the results from this ex-
periment. From the graph, we can see the cached cases have a 1.5× higher throughput
with a = 1.2 as compared to a = 2.0. The NoCache case, however, fails to show any
improvement with changing values of a. The performance benefit in the cached cases
comes from the database, which is disk-bound. With a lower zipf value, the database is
hit with more repeated queries and reduces disk activity, thereby improving the perfor-
mance for those cases. However, the NoCache case is already CPU-bound, and since
Postgres does not have a query result cache, it still has to compute the results for the
repeated queries from cached pages in the buffer pool.

Experiment 4: Effect of Varying Cache Size. In all our experiments so far, the cache
was big enough (512 MB) and there were no evictions. This means the only misses in
the cache would be for keys which have never been put in the cache in the first place,
or which have been invalidated. In a realistic system we may not have a cache that is
big enough to hold everything that can ever be cached. The purpose of this experiment
is to analyze the performance effect of evictions due to a smaller cache (in the cached
cases).

The results from this experiment are shown in Figure 3c. The graph shows that the
throughput of Update plateaus at about 192 MB, whereas for Invalidate it does so
at about 128 MB. This is because Update never invalidates the data in cache, and thus
requires more space. We can see that even with only 64 MB of cache space, Update
and Invalidate have at least twice the throughput than NoCache. In practice the cache
size needed depends on frequency of users and the distribution of workload.

Another important result of our experiments is that using spare memory as a cache
is much more efficient than using that memory in the database. To validate this, we ran
memcached on same machine as the database, so that for the cached cases, the database
has less memory. The throughput of Update in this experiment was 64 requests/s (down
from 75), and the throughput of Invalidate was 48 requests/s (down from 62). This
performance is still better than NoCache whose throughput was 30 requests/s.

Experiment 5: Measuring Trigger Overhead. In §5.3, we measured the overhead of
triggers in a simple database with simple insert statements. That established the lower-
bound that triggers impose on an unloaded database. In this experiment, we measure the
impact of triggers on the throughput of CacheGenie for the social networking workload.

An ideal system will be one in which the cache is updated for “free”, incurring no
overhead to propagate writes from the database to the cache. In such a system, the cache
always has fresh data, making reads fast, and writes are done at the maximum rate the
database can support. The throughput of such a system will be the upper bound on
what we could possibly achieve in CacheGenie. To estimate the performance of such a
system, we re-ran query traces from our social networking workload with the default
parameters and with the triggers removed from the tables in the database. In this way, we
make the same queries to the database and memcached as in experiment 1, but without
any cache consistency overhead. Since the triggers are off, the cache is not updated (or
invalidated). Even though this means that the read queries to cache will return incorrect
data, it gives us a correct estimate of the performance of the ideal system.
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From this experiment, we measured the throughput for the ideal Update system
trace to be 104 requests/s (up from 75) and for the ideal Invalidate system to be 80
requests/s (up from 62). In other words, adding triggers brings down the throughput
by 22–28% for a fully loaded database. We believe that this overhead is reasonable. In
the future, we plan to explore various trigger optimizations to minimize this overhead.
One is to combine various triggers on a single table into one single trigger to avoid
trigger launching overhead. Second, triggers written in C could be potentially faster
than Python triggers. Third, we can reuse connections to memcached between various
triggers.

6 Conclusion

We presented CacheGenie, a system that provides high-level caching abstractions for
web applications. CacheGenie’s semantic caching abstractions allow it to maintain cache
consistency for an unmodified SQL database and cache system, by using auto-generated
SQL triggers to update caches. Our prototype of CacheGenie for Django works with
Postgres and memcached, and improves throughput of Pinax applications by a factor
of 2 to 2.5. Modifying Pinax to take advantage of CacheGenie required changing only
20 lines of code, instead of requiring programmers having to manually maintain cache
consistency at every database update.
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Abstract. For large distributed applications, security and performance
are two requirements often difficult to satisfy together. Addressing them
separately leads more often to fast systems with security holes, rather
than secure systems with poor performance. For instance, caching data
needed for security decisions can lead to security violations when the
data changes faster than the cache can refresh it. Retrieving such fresh
data without caching it impacts performance. In this paper, we analyze
a subproblem: how to dynamically configure a distributed authoriza-
tion system when both security and performance requirements change.
We examine data caching, retrieval and correlation, and propose a run-
time management tool that, with external input, finds and enacts the
customizations that satisfy both security and performance needs. Pre-
liminary results show it takes around two seconds to find customization
solutions in a setting with over one thousand authorization components.

Keywords: configuration, policy, enforcement, middleware, cache.

1 Introduction

Systems like Facebook, with hundreds of millions of users that add 100 million
new photos every day, have data centres of at least thousands of servers [17,20].
Similarly, eBay uses over 10000 Java application servers [23]. Such large ap-
plications need an infrastructure that can adapt to its usage constraints, since
performance is a must for business. Performance usually refers to the number
of user requests (e.g., clicked links on a web page) serviced per time unit. For
Facebook, for instance, it has been stated that if website latency is reduced
by 600ms, the user click-rate improves by more than 5%[24]. To achieve per-
formance, Twitter, Google and eBay are using caching (page caching for user
pages, local caching for scripts), replication, and data partitioning.

Application providers want security and privacy requirements to be satisfied.
Application policies focus on user authentication and authorization, and data
privacy. The problem of satisfying all these needs, i.e., policy enforcement, be-
comes complex in a distributed system with multiple constraints and multiple

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 350–369, 2011.
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users. When user data, profiles and action histories are spread across several
domains, it is difficult to make this data available safely and consistently across
the system. Maintaining this data is essential for correct security decisions, but
is complicated by different domains introducing specific data access patterns.

Caching can impair policy enforcement. Commonly, user certificates, autho-
rization decisions or user sessions are cached so that they are quickly retrieved.
But when this data changes faster than it is cached, the decision of authenti-
cating or authorizing may no longer be correct, in which case revenue or human
lives can be at stake. For instance, on eBay when a buyer wants to bid on an
item that is advertised by a seller, there can be a policy on the seller’s side that
would reject receiving bids when the buyer has a history of bad payment. If at
one moment in time the customer’s history is clean, by the time the bid request
gets to the seller’s side it will be accepted since it relies on a cached value of the
payment history that is clean; this decision might not be true, in fact, if there
is one bad payment reported before the cache is refreshed.

Attribute retrieval can also affect policy enforcement. Attributes refer to all
data needed for authorization decisions (e.g. user profile, history, system state,
user state). Retrieval can be done directly or using a mediator, in which case it
runs the risk of staleness. Also, if attributes are semantically related, their re-
trieval should be the same way (we call it correlation). Attributes are not always
retrieved directly, for two reasons: (1) it is costly to retrieve them every time,
and (2) the data is private. For instance, eBay has multiple security domains
(i.e., groups of providers with similar policies); to authorize a buyer operation in
domain A, the eBay system needs to check the buyer history of bad payments
with any seller for the current month, and buyer history is maintained in domain
B. If domain B gives the freshest buyer history to domain A just for computing
the bad payment events, all non-payment data would be disclosed.

When security enforcement and performance collide, such vulnerabilities occur
in different systems tuned for performance. The Common Vulnerabilities and Ex-
posures database [21] reveals numerous entries related to cache and configuration
management. For instance, OpenSSL suffers from race conditions when caching
is enabled or when access rights for cache modification are wrong (CVE-2010-
4180, CVE-2010-3864, CVE-2008-7270). Similar problems of access restrictions
to cached content are with IBM’s DB2 or IBM’s FileNet Content Manager (CVE-
2010-3475, CVE-2009-1953), as well as ISC’s BIND (CVE-2010-0290, CVE-2010-
0218). Exploiting such issues is reported to lead to buffer overflows, downgrade
to unwanted ciphers, cache poisoning, data leakages, or even bypassing authen-
tication or authorization. Protocol implementations like OpenSSL and BIND, or
servers like IBM’s and RSA Access Manager, are examples of technologies that
need to scale fast, but cannot scale fast and safely.

We argue that the techniques to improve a distributed application’s perfor-
mance must be tailored to the application’s security needs. In our view, caching,
retrieval and correlation of enforcement attributes require a management layer
that intersects both the application and its deployment environment. To our
knowledge, these aspects have not yet been approached in security enforcement.
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To bridge this gap, we suggest a method and framework for adjusting at runtime
the security subsystem configurations, i.e., the ways to connect components and
tune connection parameters. This adjustment requires to find ways to connect se-
curity components so that their connections satisfy a set of constraints, specified
by domain experts or administrators (e.g., eBay security architects or security
domain administrators) and included as annotations in the XACML security
policy. The system configuration that allows for both security and performance
needs is dynamic. Constraints can change because tolerance to performance over-
heads or inaccurate enforcement decisions can vary; security domains can vary
in dimension; network topology can change. Since varying runtime constraints
imply re-evaluation rounds, we want to automate the reconfiguration of the au-
thorization subsystem. Thus, our contributions are:

1. We show the need to consider security and performance restrictions together,
rather than separately. We focus on attribute retrieval, caching, and corre-
lation. To our knowledge, we are the first to look at caching from the per-
spective of the impact of stale attributes over the authorization verdict in
the policy enforcement process.

2. We present a method to dynamically compute the correct configurations of
policy enforcement services, by transforming system constraints into a logic
formula solved with a constraint solver.

3. We suggest the first middleware tool to perform adaptive system reconfigu-
ration on security constraints. Having split computation in two phases, pre-
liminary results show that the heavier computation phase takes 2.5 seconds
to compute a solution for over 1000 authorization components.

The paper is structured as follows. After an overview of the standard enforce-
ment model (Section 2.1) and an illustrative example (Section 2.2), Section 3
overviews properties of enforcement attributes. Section 4 describes our approach
and proposed architecture, while Sections 5 and 6 describe our prototype in more
details. Related work is presented in Section 7 and Section 8 concludes.

2 Background and Example

To be able to evaluate the configuration of the authorization system and how
it can be adjusted, this section first describes the reference model in policy
enforcement, and then presents an example that we find illustrative for our case.

2.1 The Reference Enforcement Model

The eXtensible Access Control Markup Language (XACML)1 is the de facto
reference in authorization languages and architectures. XACML has been widely
adopted in industry, examples ranging from IBM’s Tivoli Security Manager [13],
to Oracle, JBoss and Axiomatics [3]. XACML has been an OASIS standard

1 http://www.oasis-open.org/committees/xacml/

http://www.oasis-open.org/committees/xacml/
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since 2003, and apart from the XML-based language specification, it proposes an
authorization processing model based on the terminology of IETF’s RFC31982.
Fig. 1 shows the three main components (greyed out) that we consider:

Policy Decision Point (PDP) is the entity that makes the authorization de-
cision, based on the evaluation of the applicable policies;

Policy Enforcement Point (PEP) performs two functions: makes decision re-
quests, and enforces (implements) the authorization decision of the PDP;

Policy Information Point (PIP) is the entity that acts like a source of at-
tribute values to the PDP that makes the decisions.

Access 
Requester PEP Obligations 

Service

Resource

PIP EnvironmentSubjects

PAP PDP Context 
Handler

Fig. 1. The XACML reference architecture

There are two variations of the XACML model, shown in Fig.3: the attribute
push model, where the PEP collects the attributes offered by the PIPs and sends
them to the PDP, and the attribute pull model, when the PDP collects all relevant
attributes in order to make a decision. The pull model has a minimal load on
the client and PEP and is designed for cases when the authorization process
is entirely performed on the PDP; the push model, conversely, allows for more
flexibility to the client and the PEP needs to ensure all required data reaches
the PDP. In practice (e.g., PERMIS [5]), a hybrid model is used, whereby some
attributes are pushed and some are pulled. To our knowledge, no distinction has
been made as to when to pull and when to push an attribute.

There have been efforts to augment the XACML reference architecture: Hig-
gins3 proposes a new authorization architecture for managing online identity. A
similar identity management variation was proposed by Djordjevic et al. [7], sug-
gesting a common governance layer that incorporates the PEP but also manages
interactions with an identity broker. Overall, such meta-models still keep the
original XACML architecture. Thus, using the XACML reference as our model
suffices to support a claim of general applicability.

2.2 Illustrative Example

A security subsystem is the ensemble of components that perform authentica-
tion or authorization enforcement – a set of PIPs, PEPs, and PDPs. We follow
2 http://tools.ietf.org/html/rfc3198
3 http://www.eclipse.org/higgins/

http://tools.ietf.org/html/rfc3198
http://www.eclipse.org/higgins/
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PEP1 PEP2

PDP1 PDP2IDENTITY 
ASSERTION

BUYER DOMAIN SELLER DOMAIN

PEP3PDP3ITEM 
DOMAIN

LAST BID VALUE

ITEM STATUS

BUYER SELLER 

BUYER HISTORY

SELLER RATING

Fig. 2. Cross-domain authorization for a Buyer in BuyerDomain to bid in SellerDo-
main, with item information from ItemDomain. The greyed boxes are the bid autho-
rization attributes: identity assertion, history, seller rating, item status and bid value.

some architectural points from eBay [16], whereby the security subsystem is di-
vided into security domains (i.e., groups of components under similar security
policies). User credentials, profile and state are spread across different domains;
access patterns to such data can vary, and domains need to authenticate to other
domains when user data is retrieved. We target policies whose evaluation require
scattered security data, e.g. the policy (P1)“an authenticated buyer is allowed to
make a bid on available items from a seller only if the buyer’s history shows no
delayed payment for the last month”. The buyer history for the current month,
seller’s available items on sale, identity tokens, and sellers’ ratings – this data is
kept at various locations where it may change at runtime, with an impact over
allowing or disallowing further user actions (e.g., bids). If buyer attributes are
not updated correctly or if fresh values are not retrieved in time, buyers will
be blocked from certain sellers, or buyers will buy items that they should not
normally access. Fig. 2 shows a multi-domain system where in order for a buyer
in domain Buyer Domain to be allowed to bid to a Seller in the Seller Domain,
its request must pass through the security subsystem of Buyer Domain, gather
some data from Item Domain, and pass through the security subsystem of Seller
Domain, which in its turn can also require item data from Item Domain.

For us, the problem of attribute management as shown above can be solved by
finding a tradeoff between security correctness and performance requirements.
This observation is confirmed by Randy Shoup, distinguished architect at eBay,
who admits that an efficient caching system aims to “maximise cache hit ra-
tio within storage constraints, requirements for availability, and tolerance for
staleness. It turns out that this balance can be surprisingly difficult to strike.
Once struck, our experience has shown that it is also quite likely to change over
time” [22]. In this paper, we propose a framework to compute and recompute
such balance at runtime and adapt the security subsystem accordingly: we do
not want to change the entities of the security subsystem, but the connections
between them that involve retrieval and caching of security attributes.
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3 Attribute Configuration

Attributes are application-level assets, and have value in the enforcement process
(that is aware of application semantics). In eBay, buyer history, item status and
seller rating are attributes; in Shibboleth [14], the LDAP class eduPerson defines
name, surname, affiliation, principal name, targetId as usual identity attributes.

How to obtain attributes is specified by configuration (meta)data. For instance
in Shibboleth, identity and service providers publish information about them-
selves: descriptors of provision, authentication authority and attribute authority,
etc. Such metadata influences the enforcement process, and can cover:

– visibility (e.g., is the assertion server reachable? is the last bid value public?),
– location or origin restrictions (e.g., for EU buyers use EU server data),
– access pattern of security subsystem to contact third-party (e.g., if the item

data can be encrypted, can be backed up or logged),
– connection parameters (e.g., how often should buyer history data be cached

or refreshed? who should retrieve it?).

Our point is that this configuration level, including attribute metadata, comple-
ments the enforcement process and can influence it. We examine three aspects:
(1) push/pull models for attribute retrieval, (2) caching of attributes, and (3)
attributes to be handled in the same way (coined ‘correlation’).

3.1 Attribute Retrieval

In our eBay example in Fig. 2, attribute push from PEP1 to PDP2 means that
some attributes – ‘identity assertion’ , ‘buyer history’ and item information from
Item Domain – are pushed to the Seller Domain and then to PDP2, which will
make the final access decision. The ‘buyer history’, ‘last bid value’ and ‘item
status’ can also be pulled by PDP2 at the moment when it needs such data.

From the point of view of performance, both attribute push and attribute
pull can be problematic. In the attribute pull case, an excessive load on PDP2
can make it less responsive for other buyer requests. Performance is linked with
security: low PDP2 performance can be made into a Denial of Service attack by
saturating PDP2 with requests that require intensive background work. The case
of all attributes being retrieved by PEP1 and given to PDP2 is also delicate: for
example, if PEP1 knows that PDP2 requires the number of delayed payments
of the buyer, it means that PEP1 will do the computation instead of PDP2;
this scheme can put too much load on PEP1, that can have a negative effect on
PEP1’s fast interception of further events.

From the point of view of trust and intrusiveness, the push scheme is prob-
lematic. In Fig. 2, PDP2 must trust what PEP1 computed as the highest cus-
tomer rating this month, and this potentially sensitive data would need to travel
between PEP1 and PDP2. This decision bears several risks, of which: PEP1
might compute the wrong rating value; the decision might be delayed; if the rule
changes from “any delayed payments”, to “under five”, then PEP1’s logic should
be updated. The security subsystem should decide if exporting the computation
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of the delayed payment count to PEP1 costs more than the privacy of such local
data to Buyer Domain. In either case, PEP1 and the communication channel
should be trusted not to tamper with the data, and the policy should be fixed.

To determine when to use the push or the pull scheme, we have analysed a
number of possible policy enforcement configurations and several existing sce-
narios and their solutions – PERMIS [4,5], Shibboleth [14], and Axiomatics [3].
In particular, PERMIS looks at role-based authorization in multiple Grid do-
mains. There are two kinds of regulations on subject credentials in PERMIS:
policies on what credentials can be attached to the authorization request leav-
ing from Buyer Domain (policies enforced by PDP1 in Fig. 2) and can reach
Seller Domain; and policies on what credentials can be trusted by Seller Domain
as the destination of an authorization request from Buyer Domain. Validating
a buyer credential in Seller Domain – done by PDP2 – involves a chain of trust
among issuers that have different rights to issue attributes for different sets of
subjects. On a similar note, Shibboleth [14] enforces attribute release policies
whereby once a user has successfully authenticated to a remote website, certain
user attributes can be provided on demand via back-channels by requesting Web
sites while other attributes cannot. These examples confirm that user or system
attributes are sensitive, and should not always be pushed to the PDP.

PDP

PEP
1

4

PIP1..n

PIPn+1..m 2

PDP

PEP

1 4

PIP1..n

PIPn+1..m 2

3
3

(A) (B)

Push scheme Pull scheme

stateless attributes state attributes
environment attributes behaviour history
not sensitive user data sensitive user data
request details obligations
destination details domain decisions
stateless context stateful context

Fig. 3. Diagrams A and B show the classic attribute push and pull models. The table
to the right shows how different attributes fit the push or pull scheme better.

Based on the security considerations above, we separate the applicability of
the push and pull schemes based on types of attributes (see Fig. 3, right). The
push scheme is more appropriate for those attributes that can be safely collected
by the PEP or can only be retrieved by the PEP rather than the PDP (e.g., mes-
sage annotations whose semantics is known by the PEP: IP address of a buyer
and payment server, description of a token service, location and country of a
certificate server). A similar treatment may be for attributes unlikely to change
frequently: user identity, group membership, security clearances or roles, authen-
tication tokens, or any constant data about system resources or the environment
that the PEP can retrieve easily. Conversely, the PDP directly interacts with
PIPs when it needs specific application logic and related state (e.g., customer
rating, payment obligations), history of a user (e.g., bidding history of a user),
or data that only the PDP is allowed to access (e.g., highest bid).
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3.2 Attribute Caching

Caching in policy enforcement can be of three types: of (1) attributes, (2) de-
cision, and (3) policy [25]. The PDP may cache policies that change little in
terms of content, but caching attributes with different change rates is difficult.
For instance, bid history, while expected to change a lot, can be constant if the
user does not bid; conversely, feedback rating, while expected to change slowly,
can change fast for a seller who does not ship items to buyers over a period of
time. For similar reasons, the PDP or the PEP might maintain a cache of the
decisions already made. Unlike attributes, that tend to change values the most
frequently, decisions and policies are more static. We hereafter focus on attribute
caching, but our framework can apply to decision and policy caches too.

Table 1. Different caching concerns in enforcement

Scheme What to cache Where to cache How to invalidate

Attribute caching attributes PEP or PDP time limit
Decision caching policy decisions PDP explicit
Policy caching entire policy PEP explicit

Since cached attributes are attributes too, the push and pull scheme applies
to caches as well as to attribute retrieving. New values of the attributes needed
to make a policy decision can be either (1) pushed to the entity that needs them,
be it the PEP or the PDP, or (2) pulled by the same entity that needs them.
There are two cases that combine both caching and attribute retrieving issues:

1. push to PEP cache, push to PDP : a PEP pushes attributes to the PDP,
and whenever an attribute is updated, the PEP cache is notified and up-
dated. The scheme relies on an external entity to notify the PEP of attribute
changes. Inaccurate notifications can compromise decision correctness.

2. pull to PEP cache, push to PDP : a PEP that pushes attributes to the PDP,
and periodically queries attributes for fresh values (pull). This case does not
use a third-party but puts more load on the PEP. Also, the PEP should have
poll times that depend on the change rate of the attributes to be cached.

The cases when the PDP pulls attributes by itself and stores them are similar in
that cached values need to be refreshed at a rate decided either by a (trusted)
third-party or at the rate at which the PDP can query the data sources. From
this last point of view – the polling rate of the PDP – cache management has the
notion of cache invalidation policy, whereby the cached values have a validity
time; when they become invalid, the manager will retrieve fresh copies. Table 1
shows how to invalidate caches depending on what security aspect is cached.
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3.3 Attribute Correlation

In an interview with Gunnar Peterson (IEEE Security & Privacy Journal on
Building Security), Gerry Gebel (president of Axiomatics Americas) pointed
out that there can be different freshness values for related attributes [10]. The
example given is that of a user with multiple roles in an organisation; whenever
the user requests access to a system resource, the PDP needs to retrieve the
current role of the user; some of the user’s roles may have been cached (in
the PDP, PEP or PIP) hence there might be different freshness values to be
maintained for several role attributes. In our eBay scenario in Fig. 2, it can be
that more than one item attribute changes from the moment a buyer reads it,
and before the last bid. In order for the security subsystem to allow the buyer to
bid, it must gather buyer information, item restrictions, and item information.
If at this stage, the system can access the freshest bid value, but not the freshest
item status flag, then the buyer could still be allowed to bid on a sold item.

We generalise such examples to the idea that correlated attribute need a
common refresh rate for all the attributes in the group (e.g., all role attributes
from an LDAP server, username and password attributes, source IP and port
attributes, role and mutually exclusive role list, etc). Some attribute correlations
are application-dependent (e.g., mutually exclusive roles, like bidder and item
provider for the same item), others are application-independent (e.g., username
and password for single sign-on). Hence, bundling attributes that should be used
together is a must when enforcement decisions need to be accurate. With PEPs
or PDPs likely to use overlapping attribute sets to enforce a cross-domain policy,
synchronization over common attributes is essential for attribute consistency.

Having a control over the attributes used in policy enforcement implies the
need for a management layer that we call ‘configuration layer’. We continue by
describing our solution to the issues above.

4 Approach and Proposed Architecture

We consider the setting of a distributed application on top of which there is a
security subsystem in charge of enacting several security policies. This subsys-
tem consists of multiple PEPs, PIPs and PDPs. In the state of the art so far,
the connections between these components are fixed once a policy is deployed.
In our view, they should change at runtime, since this way the system can adapt
to varying security or performance constraints. How often these changes are
incorporated into the security subsystem depends on which of security or per-
formance is paramount, and on the disruption incurred when actually changing
the connections among security components.

We will use the term wiring for enabling a configuration on the concrete
infrastructure (realizing the connections among PIPs, PEPs and PDPs in or-
der to support the attribute management features explained above). We want
to rewire the different authorization components with hints from the applica-
tion domain and knowledge of the enforced policies. We see such hints supplied
with the XACML policy, since it is likely that the policy writer, aware of some
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Fig. 4. The architecture of our solution

application domain details, can formulate requirements for the treatment of at-
tributes. We also assume that security components have standard features: a
cache storage space (hence also cache size and cache refresh policies), permis-
sions over enforcement attributes, or other properties (domain, location, etc).

The architecture of our solution is presented in Fig. 4. Instead of having a set
of hardwired connections between the PEPs, PIPs and PDP, we suggest a con-
figuration layer on top of the SOA infrastructure. This layer enables the dynamic
rewiring according to varying runtime conditions of the application. Responsible
of this task is a Configuration Controller (CC) consisting of four components: a
Policy Annotation Interpreter (PAI), an Attribute Update Manager (AUM), a
Constraint Solver (CS) and a Rewiring Manager (RM).

The Policy Annotation Interpreter (PAI) extracts the policy annotations
relevant for the configuration of the security subsystem.

The Attribute Update Manager (AUM) monitors the value changes of
security attributes and notifies or directly propagates the new values to PEPs
and PDPs or to their respective caches. This component also manages attribute
synchronization and consistency. It should be connected to all PIPs needed to
enforce a policy. The purpose of the AUM is to propagate attribute changes to
the security subsystem. The environment, user properties or security relevant
state might change at runtime, so the security subsystem needs to be notified.

The Constraint Solver (CS) is the component that finds solutions to satisfy
the connection constraints of PEPs, PIPs and PDPs. Such constraints cover
attribute retrieval, caching and correlation, and are specified in the security
policy. The CS processes the policy, searches the solution space, and selects the
configurations of the security subsystem that do not violate the constraints.

The Rewiring Manager (RM) enacts the solutions found by the CS. The
RM resides at the middleware layer and is dependent on the communication
infrastructure (in this case, a SOA infrastructure). How this infrastructure is
rewired is not within the scope of this paper, and was addressed before [12].

With this approach in mind, we continue by examining types of runtime con-
straints, how they can be specified, and how the CS can handle them. There
are several assumptions for our running system: first, all PIPs are considered
to provide fresh information to the other security components. Then, PEPs can
cache PIP data, and PDPs can cache enforcement decisions and policies.
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4.1 Annotating XACML Policies

For the eBay authorization policy that requires attributes ‘user token’ and ‘user
feedback rating’, our approach is qualitative: if there are multiple providers of
user tokens, or if the rating attribute has to be fresh, our aim is to ensure such
quality considerations are respected. This additional data (where an attribute
can be retrieved from, if it can be stale or pushable) belongs in the authorization
policy. The reason is that the policy writer usually has the correct idea over
attribute usage and invalidation with respect to the correctness of the policy
decision; the policy writer knows if the user token does not change a lot so that
it can be pushed to the PDP, or if the buyer/seller feedback rating is critical
and volatile so should not be cached.

<xs:element name="AttrProps" type="att-xacml:AttrPropsType"/>

<xs:complexType name="AttrPropsType">

<xs:attribute name="AttrId" type="xs:anyURI" use="required">

<xs:sequence>

<xs:element ref="att-xacml:Providers" minOccurs="1" maxOccurs="unbounded">

<xs:element name="AttrNotCached" minOccurs="0" maxOccurs="unbounded">

<xs:element name="AttrCacheable" minOccurs="0" maxOccurs="unbounded">

<xs:element name="AttrPushable" minOccurs="0" maxOccurs="unbounded">

<xs:element ref="att-xacml:CorrelAttr" minOccurs="0" maxOccurs="unbounded">

</xs:sequence>

</xs:complexType>

Fig. 5. Attribute meta-data elements in the att-xacml schema

The XACML 3.0 syntax does not natively support attributes about subject,
environment or resource attributes. We suggest to enrich the default XACML
syntax with annotations specific to the following aspects: (1) what PIP/PEP
provides an attribute, (2,3) if an attribute can be cached and where, (4) if an
attribute is pushable or pullable and where, (5) the correlation among different
attributes. Until a XACML profile bridges this gap, a solution to this problem
is to specify attribute metadata as an element in an enhanced schema we call
att-xacml and part of which is shown in Fig. 5. The AttrPropsType type con-
sists of the properties of attributes that we are interested in: attribute-id, and
a series of elements to indicate on what PEPs or PDPs they can be pushed,
cached or not cached, what PIPs provide them, and correlated attributes. We
assume that these features, attached to each attribute in a policy, are interpreted
by an extension of the XACML engine. The PAI processes the semantics of these
attributes for the CS.

4.2 Satisfying Configuration Constraints

The restrictions on attributes that were specified in a XACML-friendly syntax
in Section 4.1 will reach the Constraint Solver (CS). The CS has to match these
constraints against its runtime view over the authorization subsystem, which we
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Fig. 6. Model for configuration and rewiring in our approach

call runtime topology. The result is a number of solutions that satisfy all con-
straints; we call these solutions configuration solutions, or configurations. If the
CS finds no solution, then the constraints are not satisfiable and the security
subsystem remains unchanged. The CS is shown in Fig. 6. Satisfying configura-
tion constraints is complicated by the existence of different and interdependent
constraint types. It is not in the scope of this paper to analyse the impact of
each of these constraints over the resulting configurations. Yet, for now, we ac-
knowledge that reconfiguration depends on how often and what triggers the CS
to re-evaluate its previously found configurations and issue new ones. Here we
see two possibilities: the re-evaluation can be per policy, or per policy subpart.
In the first case, the trigger of the reconfiguration is a new policy version, and
the changes required for the new configuration might be scarce and far apart in
the topology. In the second case, the trigger of a reconfiguration is a change in
the runtime topology that relates to an attribute provider or consumer referred
to by a security policy; here, the reconfiguration changes are likely to be closer
together in the topology. It is hard to say which one happens more often, since
this is application dependent. A tradeoff must be made between a system that
reconfigures itself either too frequently, or never.

4.3 (Re)Wiring

Rewiring of PEPs, PDPs, and PIPs refers to changing the connections among
these components. These connections are established at the SOA middleware
level, that enables component intercommunication. In our previous work [11],
we envisioned the Enterprise Service Bus (ESB) as the manager of the security
subsystem. The main reason is that, by design, the ESB controls the deployed se-
curity components and their connections; when runtime conditions change (e.g.,
components appear or disappear, security policies are updated), the ESB can
modify message routing on the fly (e.g., validate credentials before they reach
an authorization server), trigger attribute queries (e.g., check the feedback rat-
ing attribute every minute and not every hour) or change attribute propagation
to security domains (e.g., what entities are entitled to receive bid product up-
dates). In particular, the dynamic authorization middleware in [12] applies the
dynamic dispatch system of an ESB to enable run-time rewiring of authorization
components across services. Each authorization component (PEP, PDP, PIP and
PAP) is enriched with an authorization composition contract, and a single ad-
ministration point allows the wiring and rewiring of authorization components.
Using lifecycle and dependency management, the architecture guarantees that
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authorization wirings are consistent (i.e., all required and provided contract in-
terfaces match), and that they remain consistent as the rewiring happens. Since
rewiring was addressed before, here we focus on the constraint solving problem.

5 Configuration Prototype

From the components shown in Fig. 6, we concentrated on the constraint solver
component. While aspects about the RM and the AUM have been approached
in previous work, runtime constraint solving is the most challenging aspect of
our solution. We assume the CS receives runtime data about the components
of the security subsystem, and attribute constraints from the deployed policies
(Section 3), and produces configuration solutions that satisfy the constraints.
We have prototyped the constraint solving in Java with the SAT4J4 SAT solver.

5.1 Constraint Solving with a SAT Solver

We used a SAT solver because we wanted to obtain configuration solutions for
a wide range and number of constraints (Section 5.2 explains why it is difficult
to do this without a SAT solver). Given a propositional formula in conjunc-
tive normal form (CNF) describing both the problem and its constraints, a SAT
solver is designed to find an assignment of the propositional variables that satisfy
the formula. The solver can also address partial maximum (PMAX) SAT prob-
lems: given a set of clauses S (a ‘maximization set’), find assignments that max-
imise the number of satisfied clauses in S. This approach naturally maps to the
configuration problem that administrators are faced with. For a security-aware
application, satisfying all security constraints is paramount, while performance
constraints should be maximized if possible. The reciprocal is treated similarly.

Fig. 7 shows two ways to use a SAT solver in our problem: in the first case, an
encoded input is fed to the solver to find a valid configuration. If some part of the
input changes at runtime, the whole input will be encoded again, and the solver
will recompute all solutions from scratch. This method requires a massive effort
to re-encode the entire problem, even if only a small part of it has changed. We
employed an alternative incremental approach. The SAT solver receives an initial
set of clauses, and if a subset of these clauses change at runtime, its internal
mechanisms recompute only the subpart of the problem that has changed. A
maximisation set can be provided in both cases. Next, we describe the encoding,
offline and runtime input in our approach.

Offline Input. The administrator sets up the general settings. The set PIPs of
all possible PIPs, the set PEPs of PEPs, and the set PDPs of PDPs, say which
attributes can be provided by each component. Specifically, for each pip ∈ PIPs,
pep ∈ PEPs, and pdp ∈ PDPs, the following data is provided:

– provide(pip, a) iff PIP pip can provide attribute a;
– provide(pep, a) iff PEP pep can provide attribute a;

4 http://www.sat4j.org/

http://www.sat4j.org/
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– needs(pdp, a) iff PDP pdp needs attribute a;
– pull(a, pdp) iff PDP pdp needs attribute a directly from some PIP;
– correlation(pdp) iff PDP pdp either pulls or pushes all attributes;
– not cacheable(a, pdp) iff PDP pdp needs freshness for attribute a;
– cached(a, pep) iff PEP pep can tolerate a stale attribute a.

These predicates become propositional variables for the solver, along with:

– arch(pdp, pip, a) means that a is pulled directly by pdp from pip.
– arch(pdp, pep, a) means that a is pushed from pep to pdp.
– arch(pep, pip, a) means that a is pushed from pip to pep.

The solver assigns the truth values to the arch() variables; these give the active
connections of each component, and each set of assignments is a configuration.

We also use the notation PIPsa ⊂ PIPs (and PEPsa ⊂ PEPs) as the set
of PIPs (PEPs) such that provide(pip, a) (provide(pep, a), resp.). Similarly,
PDPsa ⊂ PIPs is the set of PDPs such that needs(pdp, a) is true. In the
attribute retrieval model, we consider the following formulae:

pull(a, pdp) ≡
∨
{arch(pdp, pip, a)|pip ∈ PIPsa}

push(a, pdp) ≡
∨
{arch(pdp, pep, a)|pep ∈ PEPsa}

saying that an attribute a is pulled by (pushed to) the PDP pdp if and only if
there is an arch between pdp and a PIP pip (PEP pep, resp.). Thus, if the pdp
asks for a, and pull(a, pdp) is true, then a must be retrieved directly from a pip.

We use the notation ⊕{v1, v2, . . . } meaning that exactly one of v1, v2, . . . is
true, and #{v1, v2, . . . } meaning that at most one of v1, v2, . . . is true. Encoding
the possible paths and constraints means a conjunction of the following formulae:

– For each a required by pdp, exactly one connection must exist between pdp
and either a PIP providing a or a PEP providing a. This is expressed by the
following formula, for each needs(pdp, a) in the Offline Input:

needs(pdp, a) ⊃ ⊕
{
arch(pdp, x, a)|x ∈ PIPsa ∪ PEPsa

}
(1)

Moreover, in case there is an arch between pdp and pep, providing a, then
there must be also a connection between pep and a pip providing a (for-
mula (2)). Otherwise (formula (3)) no arch between pep and pip providing a
is necessary. For each needs(pdp, a) and pep ∈ PEPsa:
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arch(pdp, pep, a) ⊃ ⊕
{
arch(pep, pip, a)|pip ∈ PIPsa

}
(2)

¬ arch(pdp, pep, a) ⊃
∧{

¬ arch(pep, pip, a)|pip ∈ PIPsa

}
(3)

– If a pip does not provide a then no connection providing a can exist between
pip and other components. For each provide(pip, a) in the Offline Input:

¬ provide(pip, a) ⊃
∧{

¬ arch(pdp, pip, a)|pdp ∈ PDPsa

}
¬ provide(pip, a) ⊃

∧{
¬ arch(pep, pip, a)|pep ∈ PEPsa

}
Similarly for the PEPs: for each provide(pep, a) in the Offline Input:

¬ provide(pep, a) ⊃
∧{

¬ arch(pdp, pep, a)|pdp ∈ PDPsa

}
¬ provide(pep, a) ⊃

∧{
¬ arch(pep, pip, a)|pip ∈ PIPsa

}
– To show the advantage of this approach, we consider another constraint: we

suppose that each component can provide (e.g. for performance reasons) an
attribute only to a finite number of components (in this case, one). To model
that, for each provide(pip, a) in the Offline Input, we consider the following:

provide(pip, a) ⊃ #
{
(arch(pdp, pip, a)|pdp ∈ PDPsa

}
(4)

provide(pip, a) ⊃ #
{
arch(pep, pip, a)|pep ∈ PEPsa

}
(5)

Formula (4) (same for (5)) says that if pip provides a then there must be at
most one connection between pip and the PDPs (PEPs, resp.) requesting a.
It is similar for the PEPs, so for each provide(pep, a) in the Offline Input:

provide(pep, a) ⊃ #
{
arch(pdp, pep, a)|pdp ∈ PDPsa

}
provide(pep, a) ⊃ #

{
arch(pep, pip, a)|pip ∈ PIPsa

}
– Without data showing that PDPs cache attributes, we considered only PEPs

to do that. This choice does not limit generality. We had to encode the
constraint: if pdp asks for a, and not cacheable(a, pdp) is true, then a cannot
be retrieved from a pep that cached a. So for each not cacheable(a, pdp) in
the Offline Input, we have the conjunction:

not cacheable(a, pdp) ⊃∧ {
¬(cached(a, pep) ∧ arch(pdp, pep, a))|pep ∈ PEPsa

}
– The attribute correlation constraint can be described as follows: if pdp has

correlated attributes, then all its attributes must be either pulled or pushed.
For each needs(pdp, a) in the Offline Input, this can be modeled as follows:

correlation(pdp) ⊃ (pull(pdp) ∨ push(pdp))

where: pull(pdp) ≡
∧
{pull(a, pdp)}, and push(pdp) ≡

∧
{push(a, pdp)}
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Notice that by defining PMAX-SAT problems it is also possible to impose
constraints like: if possible, preference should be given to attribute provisioning
via indirect paths, i.e., from PIP to PEP to PDP, over direct paths, i.e., from
PIP to PDP. This can be obtained by maximising the number of truth values
for the variables corresponding to the arches from PEPs to PDPs.

In satisfiability problems, coding the at-most-one operator # is often prob-
lematic. If there are n > 1 variables, an improved SAT encoding of #{v1, . . . , vn}
is the logarithmic bitwise encoding in [9]. This operator’s CNF encoding requires
�log2(n− 1)� auxiliary variables and n�log2(n− 1)� clauses. With this encoding,
the CNF formula corresponding to (1) has a complexity (in terms of number of
clauses) of O(|PDPs| ·Na pdp · (Npips a + Npeps a) · log2(Npips a + Npeps a), where
Na pdp is the average number of attributes requested by each PDP, and Npips a

(Npeps a) is the average number of PIPs (PEPs, resp.) providing a specific at-
tribute. These constraints generate a large number of clauses. This is why the
encoding is computed offline and fed to the solver “on stand-by mode”.

Runtime Input. The offline input abstracts a global view of the scenario. The
runtime input specifies a current scenario, indicating the security components
currently being used, their current set of attributes provided/needed, and any
other current constraints. The runtime input is an instantiation of the offline
input. For instance, if the Offline Input file contains provide(pip1, a1) and
provide(pip2, a2), but in the current scenario pip1 is not available, then the
Runtime Input will contain the following assignment: provide(pip1, a1) = false.

5.2 Constraint Solving without a SAT Solver

For independent constraints over components, an algorithm to choose configura-
tion solutions may be faster than the SAT solver. Such an algorithm can perform
a graph traversal to select the first PIP or PEP that satisfies the requirements
of a PDP and some boolean constraints. Graph traversal works best in scenar-
ios where existing connections have no impact on choosing further connections;
yet it may become problematic when the graph is dynamic and local connec-
tions change global state, that in turn changes other local connections. This can
happen, for example, when bandwidth restrictions limit the number of possible
connections of a component; or when a user cannot re-rate a seller until the next
time they win the auction. Designing such an algorithm is not easy, since it is
tightly bound to the constraints: whenever constraints appear or disappear, the
algorithm needs to be rewritten. With a SAT solver, the set of constraints can
vary without influencing the process of producing a solution, but performance
might suffer. Still, it is worth to design such a generic algorithm as future work.

6 Evaluation and Discussion

The performance of our prototype depends on several aspects: the size and se-
mantics of the offline input file, the size and semantics of the runtime input, and
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the internal performance of the SAT solver. Since each SAT solver uses a differ-
ent solving technique, the performance of our prototype depends on the choice
of solver. Apart from this dependency, we considered that the most relevant as-
pect to test is the encoding of the offline input, that need be recomputed several
times along the lifetime of an application. This recomputing can be triggered
by components that appear or disappear, or by changes in what components
provide or require. The runtime input, on the other hand, is only a (moderately
small) subset of the maximal offline one, and its impact over the solution finding
time depends on the SAT technique used by each individual solver.

Therefore, we wanted to measure the offline CNF generation and the con-
straint solving time for a number of configuration topologies, while keeping the
runtime input minimal. To obtain different offline inputs, there were several
parameters to vary: the number of authorization components, the number of
attributes and constraints on attributes, the distribution of attributes per au-
thorization component. In choosing which of these parameters to vary and which
to keep constant, we considered that the number of attributes is fixed in each
scenario, since the administrator should know beforehand the attributes required
for all security decisions in a particular application. Hence, we generated over
100 offline input files to describe topologies with varying numbers of PIPs, PDPs,
and PEPs, with a fixed number of attributes provided/needed by each. In or-
der to assign attributes to each component, we implemented an algorithm for
unbiased random selection as described by Knuth [18, Sec.3.4.2].

To test our Java encoding against the SAT4J solver with the aims described
above, we configured the JVM to run with 500 to 1000MB of memory, and we
used JRE1.5.0. We ran each of the input files against a minimal runtime con-
figuration file of one constraint, with the following parameter changes: 25, 50,
75 PDPs; 50, 100, 250, 500, 750 PIPs; 25, 50, 75, 100, 150, 200, 250 PEPs.
The number of attributes was constant to 100, with 3 attributes per compo-
nent in all cases. We measured the time (in milliseconds as per the Java call
System.currentT imeMillis()) for the static CNF generation, as well as the time
it takes SAT4J to compute the first solution from the already generated encod-
ing (the solve time). The results for 50 PDPs can be seen in Fig. 8; those for
25 and 75 PDPs are similar. The figures show a linear increase in the offline
CNF generation in the number of authorization components (Fig. 8, right) with
a similar linear increase in solve time (Fig. 8, left).

These preliminary results are very encouraging in that the time taken to
compute the constraints from the offline input is very short for a moderate
application size (e.g., about 2.5 seconds for 750 PIPs, 250 PEPs and 50 or 75
PDPs), and also that they grow linearly with the number of components, for a
fixed number of attributes. Even though satisfiability is generally known to be
an NP-complete problem (and on a general case, it can be expected to obtain an
exponential growth in problem complexity and hence performance), the linear
relation that we have obtained is justified in that we are using a generic tool to
solve a particular instance of a satisfiability problem.
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Fig. 8. The time to solve our constraint problem with 50PDPs, and varying numbers
of PEPs and PIPs (left) and the time to generate the offline CNF clauses (right)

7 Related Work

Some policy configuration features come with commercial products: Tivoli Ac-
cess Manager [13], Axiomatics Policy Server [3], Layer 7 Policy Manager [19],
Shibboleth [14] and Globus Toolkit 4 [1]. Tivoli provides central management
and enforcement of data security policies across multiple PEPs, with partial pol-
icy replication and decision caching. Axiomatics offers central administration of
policies, and can manage multiple PDP instances. Shibboleth focuses on fed-
erated identity management, allows for session caching and attribute backup,
but does not consider attribute freshness. Globus considers resource and pol-
icy replication. All these products address different policy management aspects
differently, and never consider together cache consistency, synchronisation and
security guarantees. The users of these products cannot change such features
from a single console, and hence cannot understand how one impacts another.

Two previous works are particularly relevant to our approach. First, Colombo
et al. [6] observe that attribute updates may invalidate PDP’s policy decisions.
The work only focuses on XACML’s expressive limitations, does not consider
system reconfigurations and is not supported by any implementation. Second,
the work of Goovaerts et al. [12] focuses on matching of provisions in the au-
thorization infrastructure. The aim is to make the system that enforces a policy
seamless and scalable when those components that provide security attributes
change or disappear. They do not discuss how attribute provisioning impacts
the correctness of the enforcement process.

Several other works are related to ours. Policy management is also tackled in
Ponder [8] but aspects such as caching consistency and synchronisation are not
considered. PERMIS [5] proposes an enforcement model for the Grid that uses
centralised context data stores and PDP hierarchies with visibility restrictions
over attributes provided across domains. Like us, Ioannidis [15] separates policy
enforcement from its management, suggests a multi-layer architecture to enforce
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locally some part of a global policy, but does not discuss consistency of policy
data at different locations and propagation of updates. The thesis of Wei [25] is
the first to look at PDP latency in large distributed applications for role based
access control. He does authorization recycling by caching previous decisions, but
does not consider cache staleness. Atluri and Gal [2] offer a formal framework
for access control based on changeable data, but the main difference is that their
work is on changing the authorization process rather than configuring security
components to manage such data appropriately.

8 Conclusions and Future Work

Our work is the first to consider the impact of properties about authorization
components and their connections, over the correctness of the enforcement pro-
cess. We believe that performance tuning uncovers security flaws in distributed
applications and we concentrate on security attribute management. Our man-
agement solution can help administrators in two ways: it can generate system
configurations where a set of security constraints need always be satisfied (along
with maximising performance constraints), or can check an existing configuration
of the system against a given set of (security or performance) constraints. The
configuration solutions can be recomputed at runtime and preliminary results
show an overhead of a few seconds for a system with one thousand components.
To our knowledge, this is the first tool to perform a fully verified authorization
system reconfiguration for a setting whose security constraints would otherwise
be impossible to verify manually.
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Abstract. Application-level multi-tenancy is an architectural design
principle for Software-as-a-Service applications to enable the hosting of
multiple customers (or tenants) by a single application instance. Despite
the operational cost and maintenance benefits of application-level multi-
tenancy, the current middleware component models for multi-tenant ap-
plication design are inflexible with respect to providing different software
variations to different customers.

In this paper we show that this limitation can be solved by a multi-
tenancy support layer that combines dependency injection with middle-
ware support for tenant data isolation. Dependency injection enables
injecting different software variations on a per tenant basis, while dedi-
cated middleware support facilitates the separation of data and config-
uration metadata between tenants. We implemented a prototype on top
of Google App Engine and we evaluated by means of a case study that
the improved flexibility of our approach has little impact on operational
costs and upfront application engineering costs.

Keywords: Multi-tenancy, Dependency injection, Software-as-a-Service,
Google App Engine.

1 Introduction

Context. An important trend in the landscape of service-oriented software has
been the rise of the “Software-as-a-Service” (SaaS) delivery model [31] where
software applications are created and sold as highly configurable web services. A
well-known SaaS provider delivers for instance a Customer Relationship Manage-
ment (CRM) application [28] as a configurable service to a variety of customers
that each have their specific preferences and required configurations.

SaaS applications differ from traditional application service provisioning (ASP)
in the sense that economies of scale play a much more important role. A tradi-
tional application service provider typically manages one dedicated application
instance per customer. In contrast, SaaS providers typically adopt a multi-tenant
architecture [7], meaning that a shared application instance hosts multiple cus-
tomers, which are called tenants. The primary benefit of this approach is that
the operational costs can be significantly reduced : (i) hardware and software re-
sources can be more cost-efficiently divided and multiplexed across customers,
and (ii) the overall maintenance effort is seriously simplified because upgrading
the application software can be performed for all tenants at once.

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 370–389, 2011.
c© IFIP International Federation for Information Processing 2011
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Problem. Application-level multi-tenancy comes however also with a number
of disadvantages. More specifically, in this paper we focus on two challenges
when implementing multi-tenancy at the application level. First application en-
gineering complexity is increased. The engineering of multi-tenant application
software is more complex than traditional single-tenant applications that are
deployed per individual tenant. The primary cause is that the application de-
veloper should take measures to ensure isolation between different tenants with
respect to the application configuration and data of each tenant [15]. Moreover,
a tenant-specific management facility needs to be created such that application
configuration management per tenant is separated from the core application
management by the SaaS provider.

Secondly, in order to meet the unique requirements of the different tenants,
the application must be highly configurable and customizable. The current state
of practice in SaaS development is that configuration [7,15] is preferred over
customization which is considered too complex [30]. Configuration usually sup-
ports variance through setting pre-defined parameters for the data model, user
interface and business rules of the application. Customization on the other hand
involves software variations in the core of the SaaS application in order to address
tenant-specific requirements that cannot be solved by means of configuration.
Compared with configuration, customization is currently a much more costly ap-
proach for SaaS vendors because it introduces an additional layer of application
engineering complexity and additional maintenance overhead.

Approach & Contribution. This paper presents a software development and
execution platform1 for building and deploying customizable multi-tenant appli-
cations, narrowing down the gap between configuration and customization. More
specifically, we present a multi-tenant middleware layer on top of Platform-as-
a-Service (PaaS) platforms that (i) supports improved customization flexibility,
(ii) preserves the operational cost benefits of the application-level multi-tenancy
principle, and (iii) frees the application developer from a lot of initial application
engineering costs for multi-tenancy.

We implement our middleware layer on top of Google App Engine (GAE) [13].
We extend the Guice dependency injection framework [14] with support for
tenant-specific activation of software variations and use the scalable and high-
performance datastore of GAE for storing and isolating tenant-specific applica-
tion metadata. We evaluate the feasibility of our middleware layer by comparing
a standard single-tenant and multi-tenant application with a flexible version
that is developed using our middleware layer. This shows that the impact of our
middleware layer on operational costs and additional application engineering
complexity is minimal.

Structure of the Paper. The remainder of this paper is structured as follows.
Section 2 introduces the case study and motivates the need for a middleware
that supports true application-level multi-tenancy with improved customization

1 Other aspects of SaaS applications such as SLA management, metering and billing
are out of the scope of this paper.
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flexibility. Subsequently, Section 3 presents the architecture of our middleware
layer and its implementation on top of Google App Engine. Section 4 presents
the evaluation of our middleware architecture in the three dimensions of cus-
tomization flexibility, operational costs, and initial engineering costs. Section 5
elaborates on related work and Section 6 concludes the paper.

2 Problem Elaboration and Motivation

This section first explores the design space of multi-tenant applications and po-
sitions our intended middleware architecture in this space. Subsequently our
work is motivated by means of an application case. Finally, the main require-
ments for our middleware layer are derived from a customization scenario in this
application case.

2.1 Multi-tenancy Architectural Strategies

Multi-tenancy aims to maximize resource sharing among customers of a SaaS ap-
plication and to reduce operational costs. However different architectural strate-
gies can be applied to achieve multi-tenancy. As shown in Fig. 1, multi-tenancy
can be realized at the application level, middleware level or virtualized infras-
tructure level. Each approach makes a different trade-off between (i) minimiz-
ing operational costs (including infrastructural resources as well as maintenance
cost), (ii) minimizing upfront application (re-)engineering costs, and (iii) maxi-
mizing flexibility to meet different customer requirements.

Fig. 1. Different architectural approaches to achieve multi-tenancy
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As stated in the introduction, application-level multi-tenancy maximizes the
level of resource sharing but is also the least flexible choice with additional engi-
neering overhead. At the other end of the spectrum, virtualization technology can
be used to run multiple operating system partitions with dedicated application
and middleware instances for each tenant on shared servers. The advantage of
this approach is its increased flexibility and low upfront application engineering
cost. However, fewer tenants can be hosted on a single server and maintaining
separate application instances per tenant also has a much higher cost than with
application-level multi-tenancy.

Middleware-level multi-tenancy [5,2] uses a separate middleware platform that
is able to host multiple tenants on top of a shared operating system, which may
be either placed on a physical or virtualized hardware. In this way, the initial
engineering complexity for multi-tenancy is shifted from the application level
to a reusable middleware layer that also offers basic support for isolation of
tenants. However, the component and deployment model of these middleware
architectures still require that a separate application instance is deployed for
each tenant which again implies a higher maintenance cost.

Our proposal is to create middleware support for building true multi-tenant
applications with the flexibility to adapt to tenant-specific requirements. Be-
cause all tenants are served by the same instance of the application, this means
that there is need for tenant-specific software variability in the application
components. We assume that such multi-tenant application components do not
maintain tenant-specific state, but that all tenant-specific state is stored in a
(separate) database. To ensure scalability when user load increases, a pool of
identical application instances with our middleware layer have to be created.
Existing PaaS platforms already take care of this scalability requirement in a
transparent way. For example, Google App Engine automatically scales up (and
down) by creating extra instances as the load increases. We therefore propose to
incept our middleware layer as an extension for PaaS platforms.

2.2 Motivating Example

Consider the example of a SaaS provider for on-line hotel booking (see Fig. 2).
The SaaS provider offers a highly configurable web service that travel agencies
can use for booking hotels and flights on behalf of their customers. Travel agen-
cies play in this example the role of tenant whereas employees and customers
of a travel agency are considered the users that belong to a tenant. Employees
are offered a customized user interface and customers of the travel agency can
login to check the status of the travel items through a URL with a custom-made
domain-name that corresponds with the travel agency. A special ‘tenant admin-
istrator’ role is assigned to someone who is responsible for configuring the SaaS
application, setting up the application data and monitoring the overall service.
This role can be played by an internal or external client of the SaaS provider
or even resellers who are an intermediate business proxy. In the context of this
simple example, the tenant administrator belongs to the ICT staff of a travel
agency company.
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Fig. 2. SaaS application for on-line hotel booking

2.3 Requirements Derived from a Customization Scenario

Suppose that a particular travel agency wants to be able to offer price reductions
to their returning customers. As such, the on-line hotel booking application
should be extended with an additional service for managing customer profiles
and a service for calculating price reductions. We assume that SaaS providers
employ a business model where the base application is offered to tenants at
no or low cost, but tenants incur an additional price for additional services.
Based on this simple scenario, we can derive requirements with respect to core
development, service customization and runtime support.

With respect to development, the application development team of the SaaS
provider should be offered a simple way to manage the different tenant-specific
variations as separate units of deployment that can be selectively bound to
the core architecture of the application. Moreover, the overall ‘multi-tenancy
concern’ should be well separated from the application layer.

With respect to customization, tenant administrators should be offered a con-
figuration facility to select what software variations should be enabled for them
(e.g. the price reduction service). In addition, this facility should also allow to
specify specific configuration parameters (e.g. business rules for the price reduc-
tion service). This configuration data should be stored in the datastore of the
SaaS provider in an isolated way under a specific tenant ID.

The runtime support of the middleware layer must provide support for inject-
ing software variations on a per tenant basis. When a user (either customer or
employee) logs in, the tenant to which the user belongs should be determined.
Based on the acquired tenant ID, the multi-tenant middleware should then ac-
tivate the appropriate software components to process the requests of the user.
Another key requirement of the execution platform is that the tenant-specific
software variations should be applied in an isolated way without affecting the
service behavior that is delivered to other tenants.

3 Middleware Support for Tenant-Specific Customization

This section presents the overall architecture of our middleware layer to support
tenant-specific customization of SaaS applications. The component model of our
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middleware layer targets multi-tier applications and structures the application
into a core architecture with declared variability points for multi-tenant soft-
ware variations. Building on top of this component model, the middleware layer
consists of a support layer for tenant administrators and run-time support for
injecting software variations on a per tenant basis.

In this paper we focus on the customization of component-based multi-tier
applications, rather than business processes (e.g. BPEL). The latter requires a
different approach where software variations are deployed as separate services,
and per tenant a separate business process is responsible for the coarse-grained
composition of the appropriate services. In the context of component-based ap-
plications, dependency injection (DI) [11] is a common composition mechanism.
With standard DI however, separate object hierarchies are maintained per tenant
in a shared address space which increases heap memory storage and supports
only static binding of software variations. Therefore, we prefer a composition
mechanism that allows in situ run-time rebinding of variations. This requires an
extension to the DI mechanism.

This section is structured as follows. We first propose an extension to the multi-
tier componentmodel tomake it tenant-aware.Nextwedescribe in depth the archi-
tecture of our multi-tenancy support layer. Finally, the prototype implementation
of this middleware layer on top of Google App Engine [13] is presented.

3.1 Tenant-Aware Component Model

To cope with the different and varying tenant requirements, we apply a feature-
based approach. Software variations are then expressed in terms of features. A
feature is a distinctive functionality, service, quality or characteristic of a soft-
ware system or systems in a domain [17]. Ideally these features are modular
software units that can be easily composed into the base application. As illus-
trated in Fig. 3, variation points are specified in the base application, repre-
senting the locations where features should be composed. A feature can have
several alternative implementations (e.g. I1 and I2 in the figure). Based on the
tenant-specific configuration, one of the feature implementations is bound to the
variation points across the different tiers.

Fig. 3. Illustration of the feature-based approach
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Our extension to the component model supports the application developers
of the SaaS provider to develop features as software modules. For each feature
different implementations can be registered. A feature implementation consists
of a set of software components (possibly at different tiers) and specifies how
these components are bound to the base application. The concept of features is
necessary to enable the SaaS provider to easily ensure the consistency of software
variations across the different tiers of the SaaS application.

In addition, the developers need to be able to tag the locations in the base
application where tenant-specific variation is allowed. To annotate these varia-
tion points, we introduce a new annotation: @MultiTenant. Listing 1 shows the
annotation of a field with the price calculation service interface. This variation
point initiates customization of the on-line hotel booking application based on
the currently applicable tenant-specific configuration, for example price calcula-
tion with price reduction. Because a variation point can be bound by different
features, the annotation has an optional parameter specifying the feature it be-
longs to. This enables developers to limit the variation point to a specific feature.

Listing 1. Annotation of a variation point for price calculations

. . .
@MultiTenant
private IP r i c eCa l cu l a to rS t ra t e gy pr i c eCa l cu l a to rS t ra t e gy ;

. . .

3.2 Architecture of the Multi-tenancy Support Layer

The architecture of our middleware layer supporting flexible multi-tenant appli-
cations is presented in Fig. 4. This support layer consists of a flexible middleware
extension framework to manage features, specify tenant-specific configurations
and to dynamically activate the required variations on a per tenant basis via
dependency injection. This approach relies on a multi-tenancy enablement layer,
offering basic multi-tenancy support and facilitating the separation of data and
configuration metadata. Our multi-tenancy support layer serves as an exten-
sion to middleware platforms, but especially to Platform-as-a-Service (PaaS)
solutions. Possibly such a PaaS already offers built-in support for tenant data
isolation.

Multi-tenancy Enablement Layer. The base for application-level multi-
tenancy is isolation between the different tenants, such as isolation of data,
performance and faults. To achieve tenant-specific customization the main re-
quirement is isolation of data, more specifically configuration metadata. With the
default single-tenant approach, the configuration of an application is specified in
a global configuration file. In a multi-tenant context a global configuration file
results in a uniform application for all tenants, preventing tenant-specific cus-
tomization. Any change to the configuration would affect all tenants. Therefore
tenant-specific configurations have to be stored separately and applied within
the scope of a tenant, instead of globally.
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Fig. 4. Overview of the multi-tenancy support layer

To achieve tenant data isolation three main components are required: (i) the
tenant context containing the information of the tenant linked to the current
request (via a unique tenant ID), (ii) tenant-specific authentication to identify
the tenant, and (iii) multi-tenant data storage. Incoming requests are filtered to
retrieve the tenant ID (e.g. based on the request URL) and to set the current
tenant context. Multi-tenant data storage can be obtained by applying filters
that intercept the calls to the storage API and inject the tenant ID from the
associated tenant context. In addition, comparable interceptors are necessary
for the caching service (distributed in-memory storage). This allows to rapidly
retrieve tenant-specific configurations, without large I/O performance overhead.

Flexible Middleware Extension Framework. The flexible middleware ex-
tension layer provides the following functionality:

1. a feature management facility providing an API to manage the variability of
the application and the available feature implementations,

2. a configuration management facility to manage the default and tenant-specific
configurations,

3. a feature injector to dynamically inject the required software variations con-
forming the tenant-specific configurations.

Feature Management. The FeatureManagermanages the set of available features
and their different implementations. A Feature specifies at least the following
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information: a unique identifier (e.g. feature name) and description for the fea-
ture, and the set of registered implementations for that feature.

A FeatureImpl contains the description of the feature implementation, a set
of bindings, and a reference to the configuration interface of this implementation.
Each Binding specifies the mapping from a variation point to a specific software
component. This metadata about the features is globally accessible by both
the SaaS provider and the tenants, and therefore should not be isolated. The
FeatureManager offers a development API to enable the SaaS provider to create
and register features and feature implementations, while the tenants are able to
inspect the different features via the tenant configuration interface.

Configuration Management. Since a feature can have multiple implementations,
each tenant can specify its preference for a specific feature implementation via
the tenant configuration interface. Such a Configuration description defines the
mapping from a feature to a specific feature implementation, more specifically
from a feature ID to a FeatureImpl. The different tenant-specific configurations
are then managed by the ConfigurationManager. In contrast to the feature
descriptions, the tenant-specific configurations are stored on a per tenant basis.

Furthermore, the SaaS provider has to specify a configuration containing for
each feature the mapping to a default feature implementation. If a tenant does
not specify his tenant-specific configuration, this default configuration will be
automatically selected.

Tenant-aware Feature Injection. Based on the features registered in the Feature-
Manager and the default as well as tenant-specific configurations, our multi-
tenancy support layer has to activate the appropriate feature implementations
when required. To achieve this we apply the dependency injection (DI) pat-
tern [11]. Instead of instantiating the feature implementations directly in the
application, the flow of control is inverted: the life cycle management of feature
implementations is controlled by a dependency injector or provider. This injector
binds dependencies in the application to an implementation file. Such a binding
is traditionally but not necessarily a mapping between a type (generally an in-
terface or abstract class) and an implementation type (a class or component).
This concept of a binding between a dependency and an implementation corre-
sponds to our Binding between a variation point and a software component, as
specified in the FeatureImpls. As a result, in the above ConfigurationManager
a tenant-specific configuration corresponds to a specific configuration of the DI
framework.

For each variation point in the application the tenant-aware FeatureInjec-
tor decides at runtime which implementation needs to be used, based on the
configuration that applies. First, the FeatureInjector intercepts the requests to
a dependency and consults the ConfigurationManager. The latter queries the
multi-tenant data storage using the tenant ID to retrieve the tenant-specific con-
figuration. Subsequently, the right binding is obtained from the Configuration,
specifying the mapping between the variation point and a specific software com-
ponent. This software component is instantiated and injected in the application
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to further handle the request. If the appropriate binding is not available in the
tenant-specific configuration, the default configuration is used. In case the feature
ID parameter was given, the search to the appropriate binding can be narrowed
down to the bindings of a specific feature implementation.

Finally the injected instance is stored in the cache in an isolated way using
the tenant ID. For the following requests by this tenant that involve the same
variation point, the FeatureInjector queries the cache. Using this tenant-aware
caching service enables us to support flexible multi-tenant customization of a
shared instance without the associated performance overhead.

3.3 Implementation

We implemented a prototype of our multi-tenancy support layer on top of Google
App Engine (GAE) [13] (SDK 1.5.0), using the Java programming language and
the Guice dependency injection framework [14] (v3.0). Google App Engine is a
PaaS plaform to build and host traditional web applications developed with Java
Servlets and Java Server Pages (JSP). GAE has built-in support for tenant data
isolation via the Namespaces API. A separate namespace is assigned to each
tenant. We only had to implement a TenantFilter to map incoming requests
to a specific namespace and to configure that all requests have to go through
this filter. For caching we use the Memcache service.

We chose Guice as DI framework because it is type-safe and compatible with
GAE. However, it does not support the execution of tenant-specific injections:
all dependencies are set globally. Any modification would affect all tenants. This
is a general problem with dependency injection because it does not support
activation scopes.

To solve this issue, we added an extra level of indirection. Instead of injecting
features, we inject a Provider for that feature. This way the servlets have a de-
pendency to a provider of a feature instead of to the feature itself. This generic
FeatureProvider decides based on the tenant-specific configuration which fea-
ture implementation should be selected. However, the customizations that can
be performed this way are limited to switching between implementations of an
interface or abstract class.

4 Evaluation

The evaluation of our approach consists of several measurements of the opera-
tional and reengineering costs for our multi-tenancy support layer. In particular
we want to measure the overhead introduced by the multi-tenancy support layer.
We compare the results of our multi-tenancy support layer with a multi-instance,
single-tenant approach and the default multi-tenant solution without flexibility.

We first describe the general methodology we applied. Next, a general cost
model for the operational and reengineering costs of SaaS applications is speci-
fied. Finally we present the measurements we performed and compare the results
with our cost model.
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4.1 Methodology

In this evaluation we measure and compare the operational and engineering costs
between a default and flexible single-tenant version, a default multi-tenant version
(without flexibility), and a multi-tenant version using our multi-tenancy support
layer.For thesemeasurementsweuse thehotel booking applicationdescribed in the
case study. The source code of these four versions including our multi-tenancy sup-
port layer, is available on http://distrinet.cs.kuleuven.be/projects/CUSTOMSS.

To determine the operational costs the diferent versions of the application are
deployed on top of Google App Engine (SDK 1.5.0), using the high replication
datastore (default option). In the case of the single-tenant application, we deploy
a separate application for each tenant, while both multi-tenant versions only
need one application each. Each tenant is represented by 200 users who each
execute a booking scenario. This booking scenario consists of 10 requests to the
application: first several requests to search for hotels with free rooms in a given
period, then creating a tentative booking in one hotel and finally the confirmation
of the booking. The different users of one tenant execute the booking scenario
sequentially, while the tenants run concurrently. Notice that it is not our goal to
create a representative load for this application, but to compare the operational
costs of the different versions under the same load. We retrieve the information
about the execution cost via the GAE Administration Console. It provides a
dashboard displaying the resource usage by the application. The focus of this
comparison is on the relative differences between the execution costs, since the
absolute numbers depend on the current (global) load on the GAE platform.

The reengineering costs are compared based on the quantity of source code
used to develop the case study application for the different versions. We make
a distinction between Java code, JSP pages (for the user interface), and config-
uration files (XML). The number of source lines of code are determined using
David A. Wheeler’s ‘SLOCCount’ application.

4.2 Cost Model

The goal of the cost model is to define the metrics for our measurements, and
to represent our hypothesis about the operational and reengineering costs asso-
ciated with single-tenant and multi-tenant applications. In addition, it enables
us to analyze the impact of customization flexibility on these costs.

Operational Costs. The operational cost can be subdivided in (i) the applica-
tion’s execution cost (resource usage), (ii) the costs to maintain the application
such as performing upgrades, and (iii) the administration cost, i.e. the cost to
provision a new customer (tenant) with an application.

Execution Cost. We use CPU time, memory and storage usage as the main exe-
cution cost drivers. Another important resource is network bandwidth. However,
the introduction of multi-tenancy has no effect on the required bandwidth.

Let t be the number of tenants, u the number of active users per tenant, and
Cpu(t, u), Mem(t, u) and Sto(t, u) the total usage of respectively CPU, memory
and storage. Then, in the case of a single-tenant application (ST),

h


A Middleware Layer for Flexible and Cost-Efficient Multi-tenant Applications 381

CpuST (t, u) = t ∗ fCpuST (u)
MemST (t, u) = t ∗ (M0 + fMemST (u))

StoST (t, u) = t ∗ (S0 + fStoST (u))
(1)

where fCpuST (u), fMemST (u) and fStoST (u) are functions of u, representing the
usage of CPU, memory and storage by one single-tenant application instance.
M0 and S0 are constants for the memory and storage usage by an idle instance.

In the multi-tenant case (MT) we introduce an extra parameter i, i.e. the
number of identical multi-tenant instances managed by a load balancer (see
SaaS maturity level 4 in [7]). Then,

CpuMT (t, u, i) = t ∗ (fCpuST (u) + fCpuMT (u))
MemMT (t, u, i) = i ∗M0 + t ∗ fMemST (u) + fMemMT (t)

StoMT (t, u, i) = S0 + t ∗ fStoST (u) + fStoMT (t)
(2)

where fCpuMT (u) is a function of u, representing the additional CPU neces-
sary for tenant-specific authentication and isolation of the incoming requests.
fMemMT (t) and fStoMT (t) are functions of t for the additional memory and
storage required to store (global) data about the tenants, for instance the ten-
ant’s name and address.

Since the number of multi-tenant instances is limited compared to the number
of tenants and the additional amount of memory and storage for multi-tenancy
support is relatively small compared to the shared amount of memory and stor-
age (M0 and S0), this results in:

i � t

fMemMT (t) � (t− i) ∗M0

fStoMT (t) � t ∗ S0

(3)

Thus from Equations (1), (2) and (3), we can compare the execution costs of the
single-tenant and multi-tenant versions:

CpuST (t, u) < CpuMT (t, u, i)
MemST (t, u) > MemMT (t, u, i)

StoST (t, u) > StoMT (t, u, i)
(4)

As a result a multi-tenant application consumes less storage and memory than a
single-tenant application, but requires more CPU. However, the latter is limited
to authenticating the tenant and ensuring isolation.

Maintenance Cost. The maintenance cost largely consists of the cost to develop
and deploy upgrades to the application. Let f be the upgrade frequency, i the
number of instances to upgrade, and Upg(f, i) the total upgrade cost, then:

UpgST (f, t) = fDevST (f) + t ∗ fDepST (f)
UpgMT (f, i) = fDevST (f) + i ∗ fDepST (f)

(5)



382 S. Walraven, E. Truyen, and W. Joosen

where fDevST (f) and fDepST (f) are functions of f, representing the development
and deployment cost of one single-tenant application instance. The number of
single-tenant instances equals the number of tenants t. Often there is only one
multi-tenant application instance that is automatically cloned to spread the
load over multiple identical instances, resulting in i being equal to 1. Besides
the application, the multi-tenancy support should also be upgraded, but since
this is part of the middleware it should not be taken into account here.

Administration Cost. For the SaaS provider the administration cost consists of
two constant costs: (i) creating and configuring a new application instance (A0),
and (ii) provisioning a new tenant with an application (T0), for instance by
registering the tenant ID in the application and providing a URL to access the
application. Let t be the number of tenants, then:

AdmST (t) = t ∗ (A0 + T0)
AdmMT (t) = A0 + t ∗ T0

(6)

Reengineering Costs. When migrating an application to the cloud, reengi-
neering is required to make use of the available cloud services, for example stor-
age. In addition, making an application multi-tenant results in an additional
reengineering cost. The latter is the difference in reengineering costs between
a single-tenant and a multi-tenant application, and is dependent on the mid-
dleware platform that is used. For example, when an API for multi-tenancy is
provided, this reengineering cost stays limited. Without this support, additional
development is required to provide tenant-specific authentication and to ensure
isolation between the different tenants.

Impact of Flexibility. Our multi-tenancy support layer provides multi-tenant
SaaS applications with the flexibility to adapt to the different and varying re-
quirements of the tenants. However, this also has an effect on the operational
and reengineering costs.

Operational Costs. The tenant-specific configuration of single-tenant applications
can be set at deployment time. Therefore the effect of tenant-specific variations
have a negligible effect on the execution cost of single-tenant applications. Only
the base storage S0 will increase with the core application and its features. In the
case of the flexible multi-tenant application, CPU usage fCpuMT (u) (see Eq. (2))
will increase because the tenant-specific configuration should be retrieved and
activated by the FeatureInjector. Further, additional memory (fMemMT (t))
and storage (fStoMT (t)) is required to store this tenant-specific configuration
and the different feature implementations. Though, these differences are not in
such quantity that they will affect Eq. (4).

The impact of adding flexibility on the maintenance cost will be especially
noticeable in the upgrade frequency f, because the features also have to be main-
tained. Since the tenant-specific configuration of a single-tenant application is
set at deployment time, changes to this configuration will require additional work
for the SaaS provider (C0). We add an extra parameter c, the (average) number
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of tenant-specific configuration changes which cannot be done by the tenant.
Tenants of a multi-tenant application can set their tenant-specific configuration
themselves. This results in no maintenance overhead for the SaaS provider.

UpgST (f, t, c) = t ∗ (fUpgST (f) + c ∗ C0) (7)

For the administration cost, flexibility only affects the initial configuration of the
application (A0 in Eq. (6)) for both versions. In the single-tenant case this con-
sists of setting the tenant-specific configuration, while the SaaS provider needs
to specify the default configuration for the multi-tenant application.

Reengineering Costs. To add the necessary flexibility, multi-tenant applications
require development support for the application developers, support to retrieve
and activate the tenant-specific configurations when needed, and a configuration
interface to let tenants specify their configuration based on the set of available
features. Our multi-tenancy support layer provides this support: multi-tenant
applications only have to interact with it. This still results in additional but
limited reengineering cost, for example to define the variation points, register
the features and specify the default configuration. In a single-tenant application
additional reengineering is only needed to facilitate the instantiation of a tenant-
specific configuration.

Providing tenants with the flexibility to customize the application, also re-
quires the development of the different software variations. However, this is part
of the core application development cost and therefore is not taken into account
as reengineering cost.

4.3 Measurements

We focus on the execution cost of running the different versions on top of Google
App Engine, and the reengineering cost. Since the maintenance and administra-
tion costs are hard to measure, we refer to our cost model for more details.

Execution cost. To determine the execution cost we run the four different versions
of our case study application on top of GAE: a single-tenant version, a multi-
tenant version, a single-tenant version with variability, and a multi-tenant version
using our multi-tenancy support layer. However, we noticed that there is no
difference in execution cost between the two single-tenant versions, since all
variability is hard-coded. Therefore we only show the results of the default single-
tenant version. Furthermore, the storage cost is not measured. Because the case
study is not a data intensive application, data usage is too limited to make any
conclusions about the storage cost.

In Fig. 5 we present the evolution of the average CPU usage with an increas-
ing number of tenants. The CPU usage by the single-tenant version is linearly
proportional to the number of tenants, as in Eq. (1). We also notice that the
CPU usage by both multi-tenant versions is also rather linear, but lower than
the single-tenant application, which differs with our cost model (see Eq. (2)).
However, our cost model represents the usage of CPU by the application, while
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Fig. 5. Overview of the CPU usage by the different versions

on GAE the CPU time for the runtime environment is included. This is an addi-
tional cost per application and therefore has more influence on the single-tenant
version. We can conclude that the multi-tenant versions require less CPU time
than the single-tenant application, and that our multi-tenancy support layer
shows limited overhead compared to the default multi-tenant version.

Fig. 6. Overview of the number of instances used by the different versions

The total memory usage cannot be measured precisely, because several other
factors despite the application binaries add or reduce memory consumption: a
rising number of requests triggers an increase in memory because a new instance
(i.e. process required to handle the incoming requests) is started to provide
better load balancing, and once the requests decline, instances become idle and
are removed to release memory (M0 in Eq. (1) and (2) is 0). Therefore, we use the
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average number of instances to represent the maximal possible memory usage.
Figure 6 shows the evolution of the average number of application instances when
increasing the number of tenants. As can be seen, the difference between the
single-tenant and multi-tenant versions is significant. The number of instances
for both multi-tenant versions increases only slightly with the number of tenants.

Reengineering cost. Table 1 shows the quantity of source code used to develop the
case study application. The engineering cost to develop multi-tenancy support
is not taken into account, because this is part of the middleware. The differences
in lines of source code between the single-tenant and multi-tenant versions is the
reengineering cost required to let the application use the multi-tenancy support.

Table 1. Overview of the source lines of code (sloc) of the different versions

Java JSP XML (config)

Default single-tenant 915 514 131

Default multi-tenant 915 514 139

Flexible single-tenant 1016 514 131

Flexible multi-tenant 1090 514 74

In the default multi-tenant version without flexibility, the developer only has
to write 8 extra lines of configuration compared to the single-tenant version. This
is to specify that the TenantFilter should be used, which uses the Namespaces
API of Google App Engine to ensure data isolation.

When using our multi-tenancy support layer, the difference with the flexible
single-tenant application is bigger. However, the majority of these 74 extra lines
of Java code are required to use Guice, and not to use our layer. Moreover,
the use of Guice resulted in a decrease of configuration lines. Furthermore, in
the flexible single-tenant version the configuration is hardcoded and not user
friendly. Making this more accessible for the developers to configure will result
in more reengineering cost. Finally, we can conclude that adding flexibility to
multi-tenant applications by means of our multi-tenancy support layer requires a
limited reengineering cost. This cost consists of creating and registering features
and their feature implementations, and defining the default configuration.

5 Related Work

Related work can be divided into three domains: a) middleware support for
developing multi-tenant applications, b) work on customization of multi-tenant
SaaS applications, and c) adaptive middleware.

Middleware Support for Multi-tenancy. Multi-tenancy is a key enabler to de-
liver SaaS applications with high cost effectiveness. The current state of the art
especially focuses on approaches to support isolation in multi-tenant software ap-
plications [15,5]. For instance, Guo et al. [15] discuss design and implementation
principles for application-level multi-tenancy, exploring different approaches to
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achieve better isolation of security, performance, availability and administration
among tenants.

Only a few Platform-as-a-Service (PaaS) solutions offer support to build multi-
tenant applications. Google App Engine (GAE) [13] facilitates the development
of multi-tenant applications via the Namespaces API. Application data is par-
titioned across tenants by specifying a unique namespace string for each ten-
ant (the tenant ID). These namespaces are supported by several GAE services,
such as the datastore and the caching service, enabling tenant data isolation
in a transparent way. The Namespaces API is also supported by GAE’s open-
source implementation AppScale [6]. Other PaaS platforms supporting tenant
data isolation are Apprenda SaaSGrid [1] and GigaSpaces SaaS-Enablement
platform [12]. None of these platforms directly support tenant-specific customiza-
tions and therefore do not offer the same flexibility as our solution. Note that
these platforms can also be used as underpinning PaaS for our approach.

In the traditional middleware space JSR 342, the Java EE 7 Specification [9],
aims to enhance the suitability of the Java EE platform for cloud environments,
including support for multi-tenancy. A descriptor for application metadata will
enable developers to describe certain cloud-related characteristics of applications,
for example by tagging them as multi-tenant or by specifying the sharing of
resources. This extension of the component model with cloud-specific application
metadata focuses on persistence and security. Our multi-tenancy support layer,
however, offers a way to annotate points of tenant-specific variation, increasing
the flexibility of multi-tenant applications, and thus is complementary.
Customization of Multi-tenant SaaS Applications. Although tenant-specific cus-
tomizations are an important requirement [7,30,3], it is not trival to adapt the
business logic and data to the requirements of the different tenants [15], espe-
cially in Java or .NET, the programming languages commonly used for enterprise
applications.

Bezemer et al. [3] applied their multi-tenancy reengineering pattern to enable
multi-tenancy in software services. This pattern requires three additional compo-
nents: a multi-tenant database, tenant-specific authentication and configuration.
Configuration is however limited to the look-and-feel and workflows.

In [21] variability modeling techniques from software product line engineering
(SPLE) [25] are applied to support the management of variability in service-
oriented SaaS applications. Application templates describe the variability via
variability descriptors. Our work focuses on the realization of tenant-specific
customizations in SaaS applications, which is not covered by this work.

Existing approaches for dynamic customization of multi-tenant SaaS applica-
tions utilize dynamic interpreted languages [28,22]. However, we focus on cus-
tomization of enterprise multi-tier applications, which are commonly written
in statically typed languages such as Java or C#. In this context, a dynamic
software adaptation approach such as dynamic aspect weaving or dynamic com-
ponent reconfiguration is preferred.

Adaptive Middleware. The state of the art in adaptive middleware [4,18,8,20,26]
has mostly focused on adapting applications to one usage context at a time. This
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means that application software is adapted by replacing an old configuration to a
new configuration. In other words, the existing configuration interfaces of adap-
tive middleware are inherently oriented towards the dimension of the application
owner or end user, but have no good ways of managing software variations on
behalf of tenants. Adaptive middleware techniques include reflection and aspect-
oriented development. The following paragraphs more closely relate our work to
these two techniques.

Reflective middleware platforms, such as DynamicTAO [19] and OpenORB [8],
provide a configuration interface to inspect and adapt the structure of applica-
tions and middleware at runtime. However, these adaptations are based on a
global configuration and result in the replacement of components, thus affecting
all tenants. They do not allow adaptations scoped to a specific tenant.

Aspect-oriented frameworks such as JAC [24], JBoss AOP [16] and Spring
AOP [29], have improved the modularization and customization capabilities of
middleware platforms and applications. By means of a declarative configuration
application-specific or user-specific extensions can be weaved in where necessary.
Currently also dynamic and distributed aspect weaving are supported [24,20,27],
including in a reliable and atomic manner [23,32]. These AO-techniques are
therefore suitable for usage in a multi-tenant context. Lasagne is an aspect-
oriented middleware [33] that supports concurrent, co-existing configurations
of the same application instance. This approach is however limited to tradi-
tional client-server architectures and does not support customization of multi-
tenant software. Still, aspect-oriented software development (AOSD) [10] looks
a promising alternative for dependency injection to support tenant-specific in-
jections of crosscutting feature implementations.

6 Conclusion

This paper presented a reusable middleware layer on top of an existing PaaS
platform to support customizable multi-tenant applications while maintaining
the operational cost benefits of true application-level multi-tenancy. We have
implemented a prototype on top of Google App Engine and extended the Guice
dependency injection framework to achieve activation of software variations on
a per tenant basis. This prototype shows improved flexibility with a minimal
impact on operational costs for the SaaS provider.

Dependency injection proved to be useful to support the customization of
multi-tenant applications. However, adding new features requires the introduc-
tion of new variations points in the core application. In addition, for each varia-
tion point only one software variation can be injected at a time. This complicates
more advanced customizations, such as feature combinations. In this respect,
AOSD is a more powerful alternative which we will investigate in the future.

A future research challenge with respect to application-level multi-tenancy is
adding support for tenant-specific monitoring and ensuring performance isolation
between different tenants. When performing our measurements we experienced
that GAE lacks performance isolation between the different tenants. Especially
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when a number of tenants heavily uses the shared application, this results in a
denial of service for the end users of certain tenants. Additional support from the
operating system and middleware layers is needed to ensure this performance iso-
lation. Furthermore, tenant-specific monitoring enables SaaS providers to better
check and guarantee the necessary SLAs.
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Abstract. Interoperability remains a significant challenge in today’s
distributed systems; it is necessary to quickly compose and connect (of-
ten at runtime) previously developed and deployed systems in order to
build more complex systems of systems. However, such systems are char-
acterized by heterogeneity at both the application and middleware-level,
where application differences are seen in terms of incompatible inter-
face signatures and data content, and at the middleware level in terms
of heterogeneous communication protocols. Consider a Flickr client im-
plemented upon the XML-RPC protocol being composed with Picasa’s
Service; here, the Flickr and Picasa APIs differ significantly, and the
underlying communication protocols are different. A number of ad-hoc
solutions exist to resolve differences at either distinct level, e.g., data
translation technologies, service choreography tools, or protocol bridges;
however, we argue that middleware solutions to interoperability should
support developers in addressing these challenges using a unified frame-
work. For this purpose we present the Starlink framework, which allows
an interoperability solution to be specified using domain specific lan-
guages that are then used to generate the necessary executable software
to enable runtime interoperability. We demonstrate the effectiveness of
Starlink using an application case-study and show that it successfully
resolves combined application and middleware heterogeneity.

Keywords: Application, Middleware, Interoperability, Evolution, Do-
main Specific Languages, Automata.

1 Introduction

Nowadays, complex distributed systems are composed from systems that are
developed independently of one another (including legacy systems). This com-
position occurs either statically, or at runtime as in the case of spontaneous
interactions between mobile and pervasive systems. However, existing systems
are highly heterogeneous in their interaction methods making such composition
challenging.
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Applications and systems are developed using a multitude of incompatible
middleware abstractions and protocols. For example, remote procedure call pro-
tocols such as SOAP and IIOP differ in message content, message format, and
addressing meaning that they cannot directly interoperate. The range of incom-
patible protocols drastically limits interoperability, and thus the practical benefit
of systems composition. Protocol standardization should address this issue but
has been demonstrably ineffective in practice. Indeed, new competing protocols
are frequently introduced to cope with the emergence of new application do-
mains (e.g. sensors, ad-hoc networks, Grid Computing, Cloud Computing, etc.),
whereas standardization is slow to complete in comparison.

Interoperability is the ability of one or more systems to exchange and under-
stand each other’s data. However, there can be significant mismatches between
the interfaces of various systems that provide similar application functionalities,
making interoperation impossible. Indeed, developers often implement similar
application functionalities in different ways, resulting in incompatible operation
signatures and data types. In addition, the behavior of the interfaces may also
differ, e.g. a single operation in one case may correspond to a sequence of oper-
ations in another.

Existing solutions to these interoperability challenges have generally made
assumptions about one another, e.g. that the application is fixed and the proto-
col heterogeneity must be resolved, or the protocol is common and application
differences must be addressed. The former is the view of middleware-based so-
lutions such as protocol bridges [1], Enterprise Service Buses, and interoperable
middleware [3] [7] [16]. However, none of these solutions work when there is a
difference in application functionalities. For example, in a protocol bridge even
a simple difference in the operation name breaks the solution. Service Chore-
ography and Workflow execution languages and tools underpinned by Business
Processing Execution Language (BPEL) offer methods to overcome application
differences but commonly assume an underlying service platform and description
language, e.g. SOAP and WSDL. As a consequence, these approaches are not
fit for purpose when applications rely on different middleware. Overall, there is
no consistent view of how to tackle problems where both application and mid-
dleware heterogeneity is encountered in combination. This leads to the use of
solutions involving ad-hoc integration of a number of different technologies.

Due to the potential differences in both middleware protocols and application
behavior, a single universal bridge can not be developed to address the hetero-
geneity issue. Instead, a mediated solution is required in each specific case. Many
protocol and application specific mediators are thus required to cover the broad
solution space. Nevertheless, such a mediator needs to be dynamically generated
to manage the runtime composition of services, because developing this mediator
for each particular case can be a challenge for many application programmers.
To address this issue, we argue that a domain-specific modelling approach can
be used for describing application and protocol specificities.
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This paper proposes the following contributions towards reaching this goal:

– Application and protocol models. We use automata to model application be-
haviour where a transition represents the application action and associated
input and output data. Similarly, we use automata to model middleware
protocols where a transition represents either a sent or received message.

– Application-Middleware Mediators. A merged automaton models the merge
of two application automata, i.e., this states how the application states
from one system are merged with the states of the other heterogeneous sys-
tem. This mediator model is then used to generate a concrete application-
middleware mediator that binds application transitions to physical middle-
ware protocol messages.

– An Interoperability Framework. We have implemented a middleware frame-
work to support the generation and execution of mediators. The Starlink
Framework [2] interprets a concrete merged automaton to enable dynamic
interoperability at both the application and protocol level. In previous work
we have described how Starlink is used to achieve middleware protocol inter-
operability; here we expand on the approach to achieve combined application
and middleware interoperability.

The remainder of the paper is structured as follows. Section 2 presents a moti-
vating case study to highlight the interoperability challenges. In Section 3, we
introduce the application and protocol models. Subsequently, in Section 4 we
describe how the interoperability framework realizes and executes these models.
Our case-study based evaluation is presented in Section 5 and an analysis of
related work is provided in Section 6. Finally, we draw conclusions in Section 7.

2 Motivation: Flickr and Picasa Case Study

To highlight the problem of combined application and middleware heterogeneity
we examine the Flickr and Picasa API services, highlight the interoperability
challenges and then identify the requirements to overcome them.

2.1 Observing Application and Middleware Heterogeneity

Flickr and Picasa are both Web based services that provide similar application
functionality. They allow client applications to view, search, add, edit and delete
photographs. In addition, they both allow comments to be added to individual
photos or sets of photographs. Although they offer similar services, clients of both
can not be composed with the services of the other. In practice, interoperability
between the two is hindered due to the heterogeneity at both the application
level and at the protocol level.

Application Heterogeneity. The APIs of Flickr1 and Picassa2 are large and
complex (Flickr has over 100 operations available); hence we concentrate on a
1 http://www.flickr.com/services/api/
2 http://code.google.com/apis/picasaweb/

http://www.flickr.com/services/api/
http://code.google.com/apis/picasaweb/
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flickr.photos.search(api_key, tags, text, per_page, page, ...)
flickr.photos.getInfo(api_key, photo_id)
flickr.photos.comments.getList(api_key, photo_id, min_comment_date, max_comment_date)
flickr.photos.comments.addComment(api_key, photo_id, comment_text)

PicasaBaseURL - https://picasaweb.google.com/data/feed/api
photos.search(q, max-results) [GET PicasaBaseURL/all?q=tree&max-results=3]
getComments(kind) [GET PhotoURL?kind=comment]
addComment(entry) [POST PhotoURL, <entry> </entry>]

Fig. 1. Highlighting the Flickr and Picasa APIs

small subset of the behavior available. Fig. 1 illustrates how the APIs of Flickr
and Picasa offer a set of operations for performing similar application require-
ments; namely, performing a keyword search on publicly searchable photos, list-
ing the comments that have been added to a particular photo result and then
finally adding a comment to that same photograph. From these APIs it is clear
that application heterogeneity exists in the following two distinct ways:

1. The interface signatures contain sets of operations that differ in operation
name, and the types of input and output data of the operation. Consider
the operation to perform a general keyword search of public photographs.
The Flickr API provides the search operation with a number of parame-
ters including the optional text parameter for the keyword and page and
per page parameters to restrict the returned results; alternatively, Picassa
provides a search operation with input parameters: q for the keyword and
max-results to restrict the results (n.b. the GET syntax is also shown).

2. The application behavior is captured in different behavior sequences. The
Flickr search operation returns a set of identifiers. The getInfo operation
should then be called to obtain more information about the photo, including
the URL of the jpeg. Alternatively, the Picasa search operation returns the
information about the photograph directly in the search results.

Middleware Heterogeneity. The Flickr and Picassa APIs also differ in the
protocols they use to access the services. Picassa provides only a RESTful imple-
mentation atop HTTP with the Google Data API as an associated data model,
whereas Flickr relies either on REST, SOAP, or XML-RPC. A Flickr client (e.g.
a smartphone application) implemented using either SOAP or XML-RPC cannot
interoperate with Picasa due to the protocol heterogeneity.

2.2 Interoperability Requirements

Heterogeneous systems that have been developed independent to one another
can not interoperate. To address this issue, mediators need to be created and
deployed in the network, so as to provide dynamic composition of existing sys-
tems. However, the development of such mediators must consider the following
factors:
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– The extreme heterogeneity in applications and middleware suggests ad-hoc,
manually coded solutions will lead to significant development costs and con-
sumption of computational resources due to the continuous redevelopment
of equivalent solutions.

– When a new middleware protocol emerges, the API of a service may be
migrated to it. Therefore, both existing clients and interoperability mediators
for this service would no longer operate correctly.

– Similarly, when a new version of an API is released, any changes to the syntax
or behavior of the API may mean that the existing clients or interoperability
mediators that rely on this API no longer function.

As a consequence, to overcome the combined application and middleware hetero-
geneity, we propose two key requirements. First, mediators that act as interop-
erability enablers must be automatically generated and dynamically deployed.
Second, middleware protocol migration and API evolutions must be handled
with minimal development effort. In [21], Vinoski argues that interoperability
is a mapping problem and that diversity and heterogeneity should be embraced
rather than attempt to homogenize distributed systems. Therefore, developers
should be supported in creating these mappings. Hence, in this paper we first
propose a high-level, model-based specification of the application differences (in-
dependent of any middleware protocol); we subsequently propose that this be
used to generate the concrete mediator by binding the solution to particular
protocol-to-protocol use cases. For example, an application model of the differ-
ences between Flickr and Picasa generates an XML-RPC to REST application-
specific mediator or a SOAP to REST application-specific mediator.

3 Models

Modern software development trends imply that developers implement applica-
tions through the use of reusable API operations, that, in a distributed envi-
ronment, are remotely invoked through the use of an underlying middleware.
For instance, Flickr, Picasa, Bing and/or Google maps API define a set of re-
mote operations that can be invoked with different kind of middleware. The way
operations are combined together by developers to perform a particular task
depends on particular constraints related to the APIs used, and consequently
defines an API usage protocol. Inherently, applications performing similar func-
tionalities (i.e. semantically equivalent) but implemented with different APIs,
behave differently, and thus have a different API usage protocol. Providing in-
teroperability among applications based on heterogeneous APIs requires first to
capture formally their respective APIs usage protocol in order to reason about
their behavior.

3.1 APIs Usage Protocol

An API usage protocol S defines sequences of ordered operation invocations.
Signatures of invoked operations are expressed in terms of input and/or output
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Fig. 2. Flickr and Picasa usage protocol APIs

messages, more precisely in terms of messages exchanged (as developers of Web
Services are used to). Syntactical description of message data fields, including
their data types are formalized through the use of abstract messages. An abstract
message consists of a set of fields, either primitive or structured [2]. The former
is composed of: (i) a label naming the field, (ii) a type describing the type
of the data content, (iii) a length defining the length in bits of the field, and
(iv) the value, i.e., the content of the field. A structured field is composed of
multiple primitive fields. Hence, we abstract an operation invocation request,
noted rvalue operation(arg1...argn), as two abstract messages. First, an abstract
message named operation that is sent and which is composed of a set of n fields
such as field1 = arg1, ..., f ieldn = argn. Second, an abstract message named
rvalue that is received. We note msg � field the operation that selects the field
field from the abstract message msg.

As a result, a sequence of operation invocations S describing an API usage
protocol is formalized as an automatonAS with edges labeled with abstract mes-
sages sent or received according to the signature of remote operations invoked.
More formally, AS is defined as a 6-tuple such as AS = (Q, M, q0, F, Act,→)
with Q a finite set of states, M a finite set of both incoming or outgoing ab-
stract messages, q0 ∈ Q the starting state and F ⊂ Q a set of accepting states.
Act = {?, !} defines two kinds of actions: ! to invoke a remote operation and ?
to receive a reply from a previously invoked remote operation.

Hence, the transition relation, noted →⊆ Q × Act × M × Q, can be either
an invoke-transition or a receive-transition. The former is noted s1

!operation−−−−−−−→ s2

for (s1, !, operation, s2) ∈→ and indicates the next state to which the automa-
ton passes as soon as the operation operation is invoked. The latter has the
following form s1

?rvalue−−−−−→ s2 for (s1, ?, rvalue, s2) ∈→ and changes the state of
the automaton from s1 to s2 once the invocation reply rvalue is received. As a
result, AS acts as a call graph of invoked operations and specifies the order in
which they should be invoked.

For instance, Fig. 2 demonstrates the Picasa and Flickr API usage protocols
that developers might follow to implement either a Picasa or a Flickr application
with similar functionalities.
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3.2 API Usage Protocol Mismatches

From an application perspective, two applications, A1 and A2, which follow
respectively an API usage protocol AS1, and an API usage protocol AS2, may
interact seamlessly with each other if and only if there is a way to intertwine their
respective API usage protocols. Performing this kind of merging assumes to re-
solve different kinds of mismatches. As we express operation invocations in terms
of messages exchanged, we can leverage on guidelines of possible mismatches that
have already been identified for developing Web services adapters [13] and apply
them to API usage protocol mismatches. For instance, the comparison of two
API usage protocols such as AFlickr and APicasa, depicted in Fig. 2, enables us
to point out the different mismatches that occur:

Ordering mismatch. When applications invoke similar remote operations in a
different order, an ordering mismatch may occur. For instance, according to
APicasa, a Flickr developer should invoke a getPhotoUrl operation right after
a photoSearch. However, the getPhotoUrl operation is called, in fact, later in
the call graph.

Extra or missing message mismatch. If one application invokes a remote opera-
tion that another application never invokes, there is an extra or missing message
mismatch. For instance, a Picasa developer does not invoke any operations sim-
ilar to the Flickr operation getInfo, which is specific to the Flickr API.

One-to-many mismatch. An API can perform a particular task with only one
remote operation, whereas another API may require several operations to do a
similar task. For instance, obtaining a photo URL requires only one search oper-
ation using Picasa, whereas it requires two operations (i.e. search and getInfo)
with Flickr.

In the context of an API usage protocol, the aforementioned mismatches emerge
as soon as there are mismatches among operations at their signature level. As
a result, there is not always a one-to-one mapping between messages. Note that
resolving API usage protocol heterogeneity is theoretically similar to resolving
heterogeneity at the protocol layer but acts on messages that abstract opera-
tion invocations instead of network messages. So resolving operation signatures
mismatches leads us to reason about semantic equivalence among the abstract
messages exchanged. To this end, we extend our model with a semantic equiva-
lence operator ∼= that acts on messages, abstracting operations, as defined below.

Definition 1. Let −→m a sequence of abstract messages. Further, !m or ?m de-
notes a message to be sent or received, and !si.m or ?si.m denotes a message
sent or received in a specific state si.

Definition 2. Let ∼= a semantic equivalence operator such that n ∼= −→m is true
if and only if for every mandatory field of n, noted Mfields(n), there exists a
semantically equivalent field in one message of the sequence −→m. So n ∼= −→m if
and only if ∀n � field ∈Mfields(n), ∃m ∈ −→m = 〈m1 . . . mn〉 such as n � field |=
m � field.
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3.3 k-Colored Automata: Intertwining API Usage Protocol

Informally, application A1 may interact with application A2 if the following
conditions are satisfied: (i) their respective API usage protocols AS1 and AS2

share a sufficient number of similar operations that enables them to have a
successful sequence of operations to reach their respective final state, (ii) the
identified semantically equivalent can be intertwined together,i.e. invoked in an
alternate order when required. In other terms, invoked operations, i.e. request
messages, from A1 must be sequentially translated into a semantically equivalent
request message followed by a corresponding reply message from A2. Based on
the previous introduced definition, we extend the model with a history and an
intertwining operator to formally define the aforementioned constraints.

Definition 3. Let I(AS) the set of initial states and END(AS) the set of final
states of AS . The set of all states of AS is States(AS) = I(AS) ∪ END(AS).
Further, let Msg (AS) the set of all messages and T (AS) the set of all transitions
of AS .

Definition 4. Let ⇒ the history operator defined such as ⇒⊆ States(AS) ×
Act×−→m×States(AS) with Act = {!, ?} and −→m = {mi, ..., mk, ..., mn} ∈ Msg(AS)

with (i, k, n) ∈ {1, .., n}. Thus, s1
!−→m=⇒ s2 (resp. s1

?−→m==⇒ s2) gives the sequence of
abstract messages sent (resp. received) from the state s1 to s2.

Definition 5. Let � the intertwining operator such as !si.method1

�!sj .method2 is true iff
∃s0 ∈ I(AS1).∃si ∈ States(AS1).∃sj ∈ States(AS2).
∃method1 ∈ Msg(AS1).∃method2 ∈Msg(AS2)|
((?method1

∼=?method2) ∨ (?method2
∼= (s0

?−→m==⇒ si, ?method1)) ∧
!sj .method2

∼= (s0
?−→m==⇒ si, s0

!−→m=⇒ si)
Reciprocally, ?si.method1 �?sj .method2 is true iff !si .method1 �!sj .method2.

Thus, if AS1 has a sequence of n intertwined operations with AS2, it means that
there exists n transitions, named γ-transitions, that go back and forth between
AS1 and AS2 without sending or receiving messages but applying successful
data transformation on semantically equivalent messages as described in Sec-
tion 4. As a result, the resulting automaton is said to be a k-colored automaton.
The k color enables one to identify states that belong to either AS1 or AS2

as depicted in Fig. 3. Further, states linked by a γ−transition are represented
by bicolored nodes such as nodes ❶, ❷, ❸, ❹,❺, ❻. For instance, at node ❶,
Flickr photoSearch invocation can be intertwined with the corresponding Picasa
photoSearch as !flickr.photoSearch ∼=!picasa.photoSearch, and a γ−transition
is taken to move from the Flickr API usage protocol to the Picasa one through
some translations on data fields as messages are semantically equivalent.
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Definition 6. A k-colored automaton is an automaton with all its states colored
by a color k. Thus an automaton AS colored by a color k is noted ASk where
States(ASk) = {sk

0 , ..., sk
i , ..., sk

n}.

Definition 7. An application A1 may interact with an application A2 iff their
colored API usage protocol A1

S1 and A2
S2 are mergeable, and noted A1

S1

⊕
A2

S2,
such that ∃Seq = {..., (s1

x, s2
y), ...} ⊆ States(A1

S1) × States(A2
S2)with(x, y) ∈

{1, ..., n} ∧ ∃(!m1, !m2) ⊂ Msg(A1
S1) × Msg(A2

S2) | {!sx.m1 �!sy.m2}
∧

∃(si, sj) ⊂ END(A1
S1) × END(A2

S2) with (i, j) ∈ {1, ..., n} | si, sj ∈ END
(A1

S1

⊕
A2

S2).

Note that all invocation operations from AS1 can not be always intertwined
with the ones of AS2, but it does not hinder necessarily the interoperation.
Hence, it is required to consider that it is possible to get two different kinds
of k-colored automaton: strongly or weakly merged. The former case still arises
even if some invocation operations from AS1 are not intertwined, however their
corresponding replies must be semantically equivalent to replies received from
AS2. Otherwise, if this condition is not satisfied the k-colored automaton is said
to be weakly merged. For instance, in Fig. 3, the Flickr operation getInfo has
no equivalent in the Picasa API, however, its reply is semantically equivalent to
the Picasa photoSearch reply previously received. The flickr getInfo operation
can be invoked (i.e through the send and receive of flickr.getInfo) without both
being interleaved and hindering the interoperation. The depicted automaton is
still strongly merged.

Definition 8. The resulting A1
S1

⊕
A2

S2 is a k-colored automaton, with k =
{1, 2}, defined as a 7−tuple (Q, M, q0, F, Act,→,

γ−→, P,∼=) where Q =
⋃

k=1...2

States(Ak
Sk), M =

⋃
k=1...2Msg(Ak

Sk), q0 a starting state ∈ I(A1
S1), F =⋃

k=1...2 END(Ak
Sk), P = {λ} a set of data transformations on messages se-

mantically equivalent according to the ∼= relation, and →=
⋃

k=1...2 T (Ak
Sk).

Finally,
γ−→⊆ States(A1

S1)×P ×States(A2
S2) are γ−transitions that occur when

sent (or received messages) from States(A1
S1) can be interleaved with the ones

from States(A2
S2) according to the � operator. γ−transitions take the form

si
γ({λ})−−−−→ sj. The operator ∼= is defined as previously.

Note that a data transformation λi ∈ {λ} is a function λi : field1 × ...× fieldn

that performs a data transformation and may require as arguments some fields
extracted from previously received messages.

4 Applying the Starlink Framework

Starlink is a runtime middleware framework which provides an engine to dynam-
ically interpret and execute middleware models. The key design principles are
based upon the knowledge that middleware technologies are built upon message-
based solutions, i.e., middleware protocols consist of sending to and receiving
messages from a network. We have previously documented how the framework [2]
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Fig. 3. Merged Flickr and Picasa usage protocol API

can be used to dynamically generate direct protocol bridges (i.e. connecting mid-
dleware protocols of similar types, such as service discovery and RPC). We now
describe how it can be used more broadly to develop and deploy application-
middleware mediators. We first describe the models used by Starlink and then
how they are executed. Subsequently, we describe how the application models
introduced in Section 3 are used to generate the Starlink executable models.

4.1 Starlink Models

In this section we introduce the core models that are interpreted by Starlink.
Firstly, how protocol message sequences are specified. Secondly, how message
format is defined. Thirdly, how message translation logic is described.

Message Sequences. The behavior of a protocol is traditionally described by
an automaton where transitions represent message exchanges. However, proto-
cols vary in their interaction with the network, in terms of the transport pro-
tocol used, whether requests are sent by unicast or by multicast, and whether
responses are received synchronously or asynchronously. Starlink uses the pre-
viously introduced k-colored automata to capture the properties of a protocol
by a color k and ensure that the messages are executed using the appropriate
network services [2]. Fig. 4(a) illustrates the k-colored automaton for general
IIOP client behaviour, i.e. a GIOP request message is sent synchronously to an
IIOP server and on the same connection it receives the GIOP reply message.
Fig. 4(b) illustrates SOAP client behaviour.

Message Format and Content. A network message is organized as a sequence
of text lines, or of bits, for a binary protocol, containing both fixed elements and
elements specific to a given message. Extracting values from a message represented
as a sequence of text or binary characters is unwieldy, and creatingmessages is even
more complex, because the element values may become available at different times,
making it difficult to predict the message size and layout. Hence, we have proposed
a domain specific language approach to describe messages such that the required
message parsers and composers can be generated automatically.
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Fig. 4. Examples of concrete k-colored automata

<Message:GIOPRequest>
<Rule:MessageType=0>
<RequestID:32><Response:8>
... <ObjectKeyLength:32><ObjectKey:ObjectKeyLength>
... <OperationLength:32><Operation:OperationLength>
... <align:64><ParameterArray:eof>
<End:Message>

<Message:GIOPReply>
<Rule:MessageType=1>
<RequestID:32><ReplyStatus:32><ContextListLength:32>
...<align:64><ParameterArray:eof>
<End:Message>

Fig. 5. MDL specification of the GIOP message format

The Starlink framework is flexible to allow different types of language to be
used to specify message formats; each language can be termed a Message De-
scription Language (MDL). This flexibility better supports the parsing and com-
posing of a wide range of protocols. For example, specialised languages for binary
messages, text messages and XML messages can be plugged into the framework.
From an MDL specification, Starlink dynamically generates parsers that trans-
form network messages to the abstract message representation. Reciprocally, the
generated composers do the reverse. An example of MDL specification for GIOP
messages is presented in Fig. 5. Detailed discussion of the language is left from
here, and further information is available in [2].

Message Translations. When several protocols need to interoperate, it is nec-
essary to express the relation among them and to describe the message trans-
lation logic (MTL), which defines how to translate messages from one proto-
col to another. Translation logic is used to describe the translation of data
and behaviour where messages are semantically equivalent, i.e. the messages
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perform similar operations. This logic is executed at the bi-colored states of a
colored automata and typically consists of field transformation where a field in
the message to be composed is assigned a value from a received field (there
will typically be a transformation function as part of this assignment). One key
operator of the MTL language is the assignment operation.

4.2 The Starlink Framework: Dynamically Interpreting Middleware
Models

As illustrated in Fig. 6, the Starlink framework interprets the previously de-
scribed middleware models at runtime in order to support the necessary middle-
ware behaviour on demand.

Application 
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Fig. 6. Architecture of the Starlink framework

The network engine sends and receives physical messages (i.e. data packets) to
and from the network. A transition in the k-colored automata attaches network
semantics to describe the requirements of the network. The network engine then
provides the services to meet these requirements, which could include different
types of transport or multicast behaviour. The current implementation of the
network engine provides traditional TCP and UDP services for infrastructure
networks. However, the architecture is configurable so that if Starlink were to be
deployed in more heterogeneous environments, e.g. ad-hoc networks, this network
engine could be replaced with configurable services for ad-hoc routing [18].

The message parsers read the contents of a network packet and parse them
into the AbstractMessage representation such that the data can be manipulated
during the mediation process. For example, if a HTTP message is received a
HTTP parser reads all the fields of the header and body. Correspondingly, mes-
sage composers construct the data packet for a particular protocol message,
e.g. constructing the content for a HTTP GET message. Importantly, the mes-
sage composers and parsers are generic reusable software elements that interpret
high-level specifications of message content. The Message Description Language
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(MDL) specification (as described previously) specializes these generic compo-
nents at runtime to create a specific protocol parser or composer.

The automata engine executes the behaviour of the merged automata, i.e. it
controls the sequence of sending, receiving, parsing, composing and translation
of messages. In Starlink, there a three types of states: i) a receiving state waits
to receive a message and will only follow a matching receive transition when a
matching message is received; ii) a sending state sends a message described in
the single transition; iii) a no-action state is a translation state that translates
data from the fields on one or more of the prior messages into the message to be
constructed.

4.3 Generating and Executing Application-Middleware Automata

API usage protocol automata are specified independent from particular middle-
ware. We now describe how these are bound to a specific protocol to create a
Starlink executable k-colored automaton specific to the API implementation.

As described in Section 3 the API usage protocol automaton defines the ap-
plication actions in terms of sending actions (invocation) and receiving actions
(reply response). These transitions contain the action label and the abstract
message that includes the input or output data values. Actions correspond to
distributed interactions. However, they cannot be executed because they do not
relate to a specific communication protocol. Indeed, the labels and data are only
made concrete using protocol messages. Therefore, the API usage automaton
must be bound to a concrete protocol automaton in order to be executed. We
term the resulting model an application-middleware automaton. To better illus-
trate this procedure, Fig. 7 shows how a simple API usage protocol automaton is
bound to two heterogeneous middleware protocols, namely IIOP and SOAP. The
client application performs an addition operation (Add) from a remote service.
For this, it sends an Add action, followed by the reception of the Add action
response. The input values consist of the x and y integer parameters to be
added. The output value is the returned integer parameter z.

To bind to a particular protocol we require: i) the k-colored automaton of the
middleware protocol (e.g. Fig. 4(a)), ii) the MDL specification of that protocol’s
messages (e.g. Fig. 5) and iii) the set of rules that describe how a particular
protocol (e.g. GIOP) is bound to the application automata concepts (i.e. the
action labels, and the parameters). The rules to bind applications to SOAP in
one case and IIOP in the other are illustrated in Fig. 7. IIOP and SOAP are both
RPC protocols and hence the actions correspond to the request and response
messages of each protocol, as seen by the corresponding k-colored sequence. The
action label then binds to specific fields within the message described by MDL:
the operation field of the GIOP Request message, and the methodname field of
the SOAP request envelope. Similarly, the request action parameters (the x and
y integers) relate to the first two parameters in the ParameterArray field of the
GIOP Request message. The return value parameter (the z integer value) relates
to the first parameter of the GIOP reply ParameterArray.
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Fig. 7. Binding to concrete application-middleware automata

Starlink is then able to execute the application-middleware automaton in or-
der to concretely achieve the application behaviour. At receiving states, the au-
tomata engine waits for middleware messages of a particular type (e.g. a SOAP
Reply) and also with a particular action label (e.g. add). Subsequently, at send
states the middleware message (e.g. SOAP request) is constructed placing the ap-
propriate application labels and input values in the identified fields as described
by the protocol binding rules.

4.4 Generating and Executing the Intertwining API Usage Protocol
Automata

A similar binding process is carried out to generate the concrete version of an in-
tertwining API Usage Protocol Automaton, i.e., where two heterogeneous appli-
cations are merged. For transitions, the bindings are identical to those explained
in section 4.3; the difference occurs at the bi-colored states where MTL rules
must be executed to translate application data from a parsed message into the
composed message. In this situation we must generate the concrete MTL rules
relating to the MTL definitions in the Intertwining automaton.

To illustrate this procedure we continue with the simple addition example. In
this case the SOAP service provides an add operation with an int Plus(int,
int) signature whereas the IIOP client interface signature is int Add(int,
int). Hence, the application difference is in the operation name. Fig. 8 shows how
the merged application automaton is bound to the concrete merged automaton.
On the left side of the figure is the specified application merge, with the bi-colored
states representing the translation of parameters between actions. On the right
side is the concrete merged k-colored automaton, where the action transitions
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Fig. 8. Construct a concrete merged application automaton

are bound to specific middleware protocols (the operation name difference is
overcome by this, after an Add action is received a Plus action is sent). Note,
the application translations are bound to the specific MTL translations based
upon the binding rules specified in Section 4.3.

5 Evaluation

To evaluate our approach for overcoming combined application and middleware
heterogeneity, we use a case-study based methodology. That is, we apply Star-
link to particular use cases and observe the extent to which interoperability
is achieved. For this purpose we consider the application scenario described in
Section 2. This application performs search and display of public photographs
and requires interoperation between independently developed XML-RPC and
SOAP Flickr clients and the Picasa Rest implemented API. We hypothesize the
following:

1. The Starlink models can specify the application differences between Flickr
and Picasa independent of SOAP, XML-RPC and HTTP messages.

2. Concrete models for both the XML-RPC and SOAP use cases can be suc-
cessfully generated, deployed and executed to achieve the required interop-
erability with the Picasa API.

3. The use of high-level specifications simplifies the development of mediators
and resolves evolution problems.

5.1 Flickr-Picasa Case-Study

In this case study we develop and deploy two mediators: a Flickr-Picasa mediator
for XML-RPC to Rest, and a Flickr-Picasa mediator for SOAP to Rest. In the
first instance we specify the application automata describing the API usage of
both the client and service, as shown Fig. 2. Although automata are written
using the XML-based Starlink language for k-colored automata, we use visual
representations for clarity. Subsequently, we specified: i) the intertwined API
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usage automaton as shown in Fig. 3, ii) the SOAP protocol models consisting
of the MDL and the k-colored protocol automaton, iii) the XML-RPC models,
and iv) the Rest models.

The next step consists of generating the application-middleware mediators by
binding the single intertwined automaton to the two particular use cases. We
now present in the remainder of this section the results of this binding. For sake
of clarity, we only describe subsets of it to highlight key results.

S1 S2 S3 S4 S5 S6 S7

!XML-RPC MethodCall
(flickr.photos.search, text)

POST /xml-rpc HTTP/1.1
Content-Type: text/xml
...
<methodCall>
<methodName>flickr.phot
os.search</methodName>
 <struct><params>
  <param>
    <value>tree</value>
  </param>
 </params></struct>
</methodCall>

GET /data/feed/api/
all?q=tree HTTP/1.1

!HTTP GET(all, q)

HTTP/1.1 200 OK
...
<title>Search 
Results</title>
<entry>
 <id>..</id>
 <title> .. </title>
 <content type='image/
jpeg'src='http:..>
...

HTTP/1.1 200 OK
...
<methodResponse>
<params><param>
<value><string>
<Photos><Photo id>
..</Photo id></Photos>
</string></value>
</param></params>
</methodResponse>

?HTTP OK(all, entry[])
?XML-RPC MethodResponse
(flickr.photos.search, Photos)

S3.HTTPGet � Parameter1 = S2.MethodCall � Params.param1

SetHost(https://picasaweb.google.com)

For all <entry>
    <Photos><photo> = new Photo(S5.HTTPOK � Body.entryN )

    cache(Photo,S5.HTTPOK �Body.enrtyN )
S6.MethodResponse � Params.param =< Photos >

Fig. 9. XML-RPC to Rest binding for Search operation

An extract of the binding of the intertwined Flickr and Picasa search opera-
tions to an ‘XML-RPC to Rest’ concrete mediator is shown in Fig. 9. It illustrates
how the XML-RPC Flickr message is parsed to extract the application informa-
tion from transition S1 to S2 (e.g. the action label flickr.photos.search and
the data parameter labelled text). The MTL for S2 to S3 then describes how
the fields are translated before constructing the HTTP message to perform a
Picasa search. The subsequent translation of the responses, from state S5 to S6,
highlights a case where further functionality is required. The values that must
be returned to the Flickr search operation is a list of Flickr photo identifiers
in the format <photo id id=’1111’ owner=’1111111@NO1’>. To handle this
mapping, the bridge creates a cache of dummy identifiers for each photo result
returned in the Picasa action response (the <entry><id> value from the XML
data). The MTL provides a keyword operation cache that caches data values
for arbitrary data identifiers.

An example of operation mismatch in the intertwined automaton is illustrated
in Fig. 10. Indeed, when the Flickr client sends a getInfo action request, there
is no corresponding operation in Picasa because the required action result data
has already been received in Picasa’s search response. Hence, when the getInfo
XML-RPC message is received at S8 then a data translation is performed:



406 Y.-D. Bromberg et al.

!XML-RPC MethodCall
(flickr.photos.getInfo, photo_id)

S7

S8

S9

?XML-RPC MethodResponse
(flickr.photos.getInfo, <photo>)

Entry = getCache(S8.MethodCall � Params.param1)
Photo.title = Entry.title
Photo.urls.url = Entry.Content
...
S8.MethodResponse � Params.param1 = Photo

Fig. 10. MTL translation for Flickr-Picasa mismatch behaviour

the photo id parameter is used to extract the Picasa <entry> value from the
cache using the getcache MTL keyword. The Flickr <photo> structure is then
filled using the corresponding tags from the Picasa <entry> structure.

The binding of the intertwined Flickr and Picasa comment operations to a
‘SOAP to Rest’ concrete mediator is similar to the XML-RPC binding and uses
the rules provided in section 4. In this case, the generated MTL and k-colored
automata refer to SOAP message content rather than XML-RPC.

Finally, we hand developed two test standalone client applications in SOAP
and XML-RPC that searched and displayed photographs from the Flickr API.
We then deployed Starlink in the network and loaded the concrete models. When
executed, both clients were able to search and view photographs from the Picasa
API. For our experiments, we deployed a simple proxy to redirect the Flickr
requests (originally directed to the Flickr servers) to the local Starlink mediator.

5.2 Analysis

The automaton that specifies the application model contains no reference to a
concrete protocol, message format or network semantics. As a consequence, it is
seen that the first hypothesis that application behaviour can be modelled inde-
pendent of middleware is successfully achieved. The generated concrete media-
tors, when deployed in the network, successfully parse and compose middleware
messages and bridge the heterogeneous application behaviour in both the XML-
RPC and SOAP case. Hence, the hypothesis that such code can be generated for
multiple specific protocols is shown to be true. Finally, it can be argued that the
definition of a single application model simplifies the development of interoper-
ability solutions. There is no need to hand code each use case, and it is similarly
straightforward to handle API migrations or changes using only the models.

6 Related Work

Middleware solutions to interoperability generally focus on bridging the gap be-
tween the various middleware technologies involved. These assume a common
application standard, i.e., that applications wishing to interoperate use the same
interface defined in the same language (e.g. Interface Description Language (IDL)
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or Web Services Description Language (WSDL)). In this situation the interoper-
ability gap is between heterogeneous middleware protocols. Protocol bridges [1],
Enterprise Service Buses [12,11], and Interoperability Frameworks e.g. WSIF [6],
uMiddle [16], OSDA [15], and UIC [19] are well known solutions to this prob-
lem. However, because they do not consider heterogeneity at the application-level
they are not suited to the composition of complex systems-of-systems; where in-
dependently developed applications are composed dynamically it is unlikely that
the application interface has been agreed in advance.

Several technologies are available to manage the differences between appli-
cation service interfaces in terms of operation and message sequences. As an
example, Web Services orchestration and choreography methods [17] provide
languages such as Web Services-Choreography Description Language (WS-CDL)
and Business Process Execution Language (BPEL) to handle such translations.
These languages are similar to Starlink in that they provide high-level constructs
to mediate behaviour sequences and also perform data translations. However,
they assume an underlying platform (e.g. Web Services) and focus on choreog-
raphy rather than on direct interoperability. As a consequence, differences in
underlying protocols cannot be handled. Furthermore, they cannot manage the
differences in interface languages. For example, BPEL cannot be used to gener-
ate a solution to make a CORBA IDL-based client interoperate with a SOAP
WSDL-based service.

Model Driven Architecture (MDA) [8] proposes a similar methodology to Star-
link, which indeed is inspired by the modelling ideas put forward by MDA. Ap-
plication systems are specified using an abstract model, called the Process Inde-
pendent Model (PIM). The PIM is deployed atop middleware based platforms
described by the Platform Specific Model (PSM). Bridges are then deployed
where there are exchanges between different PSMs to ensure that the platform
heterogeneity is resolved. However, MDA is characterised by ad-hoc solutions
with limited support for the generation of bridges between the platform models.

Formal specifications have been proposed to generate mediators between het-
erogeneous systems. Yellin and Strom [22] describe a method to enhance appli-
cation interfaces with sequencing constraints in addition to rules that describe
how the application data can be bridged. This information is then used to gen-
erate the code of the software adapters. Similarly, [14] describes a discrete event
systems method for describing a converter between disparate protocols. While
closely related to our formal models of protocol and translation, our approach
further investigates the concrete realities of application differences based upon
heterogeneous middleware paradigms and message formats.

Currently Starlink developers construct the merged automata; however, emerg-
ing solutions have investigated how to generate the mediator automatically. [20]
models protocols as labelled transition systems (LTS) and presents an algorithm
to identify the merge of the two; however at present it considers only message
sequence differences not data heterogeneity. Similarly, work in the CONTESSA
project [9] presents a reflective approach to compose heterogneous protocol-
based services. This utilises semantic models of the transitions between the
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configurations of the protocols and services. While this doesn’t cover the com-
plete interoperability mappings that Starlink proposes it does offer important
insights into how reasoning and composition can be performed automatically at
runtime.

7 Conclusions

In this paper we have shown that the interoperability problem is characterised
by differences in both application APIs and middleware protocols. Existing so-
lutions have focused on one of these dimension while making assumptions about
the common nature of the other. In complex and dynamic systems such assump-
tions are invalid, and new approaches are required to consider application and
middleware together. For this purpose, we have presented Starlink3–a framework
to model applications and protocols such that the code to interoperate can be
generated. Specifically, this consists of application and application-middleware
mediator models (specified using automata and domain specific languages) that
are interpreted at runtime. We have performed evaluation of Starlink using a
case study involving heterogeneous web-based services (i.e. photo sharing). Pre-
liminary results show that Starlink can successfully address the interoperability
challenges, and simplify the task of connecting disparate systems.

Starlink requires the developer to write models, however given the scale of
heterogeneous applications and protocols automated generation of these models
is the ultimate goal. Hence, it is necessary to reason about the individual ap-
plication and protocol models and generate the merged automata between. To
underpin this reasoning we believe that additional semantic models can be used
to infer the translation logic and we are investigating the use of ontologies [5]
and their associated tools. For full automation, machine learning is required and
hence we are also investigating learning techniques to understand and model the
behaviour of the individual protocols. For example, dynamic binary analysis ap-
proaches have been used to identify the field structure of network messages [4]
and learning algorithms have been utilised to learn the interaction behaviour of
application and middleware protocols [10].
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Abstract. Interoperability is a fundamental problem in distributed systems, and 
an increasingly difficult problem given the level of heterogeneity and 
dynamism exhibited by contemporary systems. While progress has been made, 
we argue that complexity is now at a level such that existing approaches are 
inadequate and that a major re-think is required to identify principles and 
associated techniques to achieve this central property of distributed systems. In 
this paper, we postulate that emergent middleware is the right way forward; 
emergent middleware is a dynamically generated distributed system 
infrastructure for the current operating environment and context. In particular, 
we focus on the key role of ontologies in supporting this process and in 
providing underlying meaning and associated reasoning capabilities to allow the 
right run-time choices to be made. The paper presents the CONNECT middleware 
architecture as an example of emergent middleware and highlights the role of 
ontologies as a cross-cutting concern throughout this architecture. Two 
experiments are described as initial evidence of the potential role of ontologies 
in middleware. Important remaining challenges are also documented. 

Keywords: interoperability, ontologies, emergent middleware, system-of- systems. 

1 Introduction 

Interoperability is a fundamental property in distributed systems, referring to the 
ability for two or more systems, potentially developed by different manufacturers, to 
work together, including the ability to exchange and interpret action requests and 
associated data sets. Indeed, interoperability is absolutely foundational—without a 
solution to interoperability, distributed systems become impossible to develop and 
evolve. In the first generation of distributed systems, interoperability was relatively 
straightforward to achieve. Such systems were small-scale, fairly homogenous in 
terms of languages, operating system platforms and hardware architectures, and also 
under the control of a single organisation and associated administration team. This 
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was of course unsustainable and very quickly distributed systems expanded in terms 
of scale, level of heterogeneity and complexity of administrative control, leading to 
the Internet-scale distributed systems that we are familiar with today. A number of 
interoperability solutions emerged both in terms of proposed standards for 
interoperability and solutions to bridging between standards. Distributed systems 
have, however, continued to evolve, and we particularly note two important trends: 

1. The level of heterogeneity has increased dramatically in recent years with 
developments such as ubiquitous computing potentially coupled with enhanced 
modes of interaction (for example using ad hoc networking), mobile computing 
where an increasing range of mobile devices provide a window on to greater 
distributed system services, and cloud computing where complex distributed 
system services are offered in the greater Internet. We refer to this as extreme 
heterogeneity, whereby the levels of heterogeneity significantly exceed the 
previous generation of distributed systems in terms of the size and capabilities of 
end system devices, the operating systems used by different devices, the style of 
communication protocols employed to provide network-level interoperability, the 
languages and indeed programming paradigms utilized, and so on. Some observers 
refer to such systems as Systems of Systems [1], and this certainly captures rather 
elegantly the complexity of the resultant system structures. 

2. The level of dynamism in such systems has also increased significantly, partly as a 
result of the trends noted above, for example the increasing mobility involved in 
distributed systems has led to the need to support spontaneous interoperation 
whereby devices interoperate with services that are discovered in a given location, 
coupled with solutions that need to be intrinsically context-aware (including of 
course location-aware access to services). The level of dynamism is also affected 
by the need for more adaptive and/ or autonomic approaches, again stemming from 
the complexity of modern distributed systems. 

The end result is that it is very difficult to achieve interoperability in such complex 
distributed systems. Indeed, we can say that distributed systems are in crisis with no 
principled solutions to interoperability for such complex and dynamic distributed 
systems structures. Note that we can go further in this analysis and not just consider the 
ability to interoperate but also the quality of service of interoperability solutions in terms 
of a range of non-functional properties, for example related to security or dependability. 
This is a very valid dimension to consider but is beyond the scope of this paper (we 
return to this in the final section, and in particular our statements on future work). 

It is interesting to note the definition of interoperability from Tanenbaum [2]: 

“The extent by which two implementations of systems or components from different 
manufacturers can co-exist and work together by merely relying on each other’s 
services as specified by a common standard” 

This definition emphasizes the role of a global, or at least common, standard and, 
while this offers one solution to interoperability, it is not a realistic option for the 
complex distributed systems of today. For example, competitive pressures have 
inevitably led to competing standards emerging in the marketplace. Where standards 
have reached a level of acceptance, for example with web services, it is recognized by 
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the community that they may be problematic for certain operating environments, for 
example, ubiquitous systems. In addition, any given standard can very quickly 
become a legacy system as time elapses and requirements evolve. 

We argue that with the above pressures we need a fundamental re-think of 
distributed systems. In particular, we advocate a solution whereby the necessary 
middleware to achieve interoperability is not a static entity but rather is generated 
dynamically as required by the current context. We refer to this as emergent 
middleware. Furthermore, we investigate the key role of ontologies in supporting this 
process and, in particular, in providing the ability to interpret meaning and associated 
reasoning capabilities in generating emergent middleware. Ontologies have already 
been studied in the context of distributed systems, most prominently in the semantic 
web community, offering a means of interpreting the meaning of data or associated 
services as they are dynamically encountered in the World-Wide Web. This however 
limits the scope of ontologies to support the top-level access to data and services. We 
are interested in a more comprehensive role for ontologies in supporting meaning and 
reasoning in the distributed systems substrate which supports and enables access to 
such services, i.e., in the middleware itself, offering a cross-cutting approach where 
ontologies provide support to fundamental distributed systems engineering elements. 

This paper focuses exclusively on the role of ontologies in supporting the concept 
of emergent middleware (further discussion of the broader area of emergent 
middleware can be found in [3]). More specifically, the aims of the paper are: 

1. To investigate previous work on interoperability in the middleware community and 
in the semantic web community with a view to seeking a unification between these 
(to date) largely distinct areas of research; 

2. To understand both the role and scope of ontologies in supporting key middleware 
functions, particularly related to emergent middleware solutions; 

3. To investigate more generally the role of ontologies within a general architecture 
for emergent middleware. 

The paper is structured as follows. Section 2 examines the interoperability-related 
challenges associated with complex distributed systems and the associated responses 
both from the middleware and the semantic web community. Section 3 moves into the 
solution space, presenting the key components of an emergent middleware approach, 
before charting the role of ontologies within this approach. Section 4 presents two 
experiments, which together provide evidence of the key role ontologies can play in 
different levels of a middleware architecture. Finally, Section 5 contains an overall 
analysis and reflections over the experience of working with ontologies in emergent 
middleware, including the identification of key areas of future work related to this area.  

2 The Interoperability Problem Space: Challenges and 
Responses  

The problem space for interoperability must consider the differences of: i) 
applications, and ii) middleware protocols. In both cases, there will typically be 
differences in data and behaviour: 
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• Application data differs in terms of format and meaning, e.g., the data value of a 
price parameter can be defined in an object or XML document. It can also 
mean different things, e.g., the price is in Pounds versus Euros. 

• Depending upon application interfaces, the behaviour may be significantly 
different, e.g., multiple operations of one interface performing the same 
functionality of a single operation of another. 

• Middleware protocols providing the same communication abstraction may differ 
in the data format and type model, e.g., different RPC protocols capture data and 
types using different methods and formats. 

• There now exists a broad range of communication abstractions (e.g., publish-
subscribe, tuple spaces, message-orientation, group communication) offered by 
middleware protocols; these exhibit significant behavioural differences. 

We now examine the responses to these challenges from two distinct communities 
(the middleware and the semantic web communities) and investigate the extent to 
which comprehensive application and middleware interoperability has been achieved.   

2.1 Response from the Middleware Community  

The first responses by the middleware community to address interoperability problems 
proposed standards-based approaches, i.e., common protocols and interface description 
languages. CORBA, DCOM, and web services are effective examples of this approach. 
However, as previously described, such solutions are not suited to today’s highly 
complex distributed systems that exhibit extreme heterogeneity and dynamic behaviour. 
The second set of responses then looked at the challenges of heterogeneous middleware 
protocols interoperating with one another. One example of this, software bridge, acts as a 
one-to-one mapping between domains; taking messages from a client in one format and 
then marshalling this to the format of the server middleware. As examples, the OMG 
created the DCOM/CORBA Inter-working Specification [6]. OrbixCOMet is an 
implementation of the DCOM-CORBA bridge, while SOAP2CORBA1 bridges SOAP 
and CORBA middleware. Further, Model Driven Architecture advocates the generation 
of such bridges to underpin deployed interoperable solutions. However, developing 
bridges is a resource intensive, time-consuming task, which for universal interoperability 
would be required for every protocol pair. 

Alternatively, intermediary-based solutions take the ideas of software bridges 
further; rather than a one-to-one mapping, the protocol or data is translated to an 
intermediary representation at the source and then translated to the legacy format at 
the destination. Enterprise Service Buses (ESB), INDISS [8], uMiddle [9] and SeDIM 
[10] are examples that follow this philosophy, and these allow differences of both 
behaviour and data to be overcome. However, this approach suffers from the greatest 
common divisor problem, i.e., between two protocols the intermediary is where their 
behaviour matches, they cannot interoperate beyond this defined subset. As the 
number of protocols grows, this common divisor then becomes smaller, such that only 
limited interoperability is possible. 

                                                           
1 http://soap2corba.sourceforge.net/  
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A radically different response involved substitution solutions (e.g., ReMMoC [11] 
and WSIF [12]); rather than bridging, these embrace the philosophy of speaking the 
peer’s language. That is, they substitute the communication middleware to be the 
same as the peer or server they wish to use. A local abstraction maps the behaviour 
onto the substituted middleware. This approach allows interoperation among different 
abstractions and protocols. However, as with software bridges this is particularly 
resource consuming; every potential (and future) middleware must be developed such 
that it can be substituted. Further, it is generally limited to client-side interoperability 
with heterogeneous servers. 

The limitation of all the above responses is that they ignore the heterogeneity of the 
application, assuming that there are no differences, due to the adoption of a common 
interface. In complex systems, this is clearly not the case. 

2.2 Response from the Semantic Web Community 

The semantic web community’s responses to the interoperability problem are based 
upon the principles of reasoning about and understanding how different systems can 
work together. Their key contribution is ontologies. An ontology is defined as a logic 
theory, and more precisely as a tuple <A, L, P>, where A is a set of axioms, L is a 
language in which to express these axioms, and P is a proof theory, that supports the 
automatic derivation of consequences from the axioms. In turn, the proof theory P 
allows us to derive consequences, which extract relations that have never been stated 
explicitly, but that are implicit in the description of the systems. Ultimately, the proof 
theory allows recognition of the deeper “semantic” similarity between structures that 
are syntactically very different.  

The work in semantic web services demonstrates how ontologies can be used to 
address interoperability problems at the application level. Specifically, ontologies have 
been used during discovery to express the capabilities of services, as well as the requests 
for capabilities; in this case, the proof theory recognizes whether a given capability fits a 
given request.  A number of semantic middleware technologies provide this ability, e.g., 
the Task Computing project [13], and the Integrated Global Pervasive Computing 
Framework [14]. One important solution, EASY [15], implements efficient, semantic 
discovery and matching to foster interoperability in pervasive networking environments. 
Further, ontologies have been used during composition to address the problem of 
application data interoperability, as well as the problem of recognizing whether the 
conditions for executing the service indeed hold. The limitation of these responses lies 
in the assumption of a specific middleware, namely web services. There is a need to 
represent heterogeneous middleware and networking environments, which is almost 
completely absent in the semantic web services work. 

Ontologies introduce a new meta-level, which can produce its own interoperability 
problems.  Heterogeneous ontologies push the interoperation problem one level up.  
The computational complexity of the proof theories, which is often beyond 
exponential, makes ontologies resource expensive. Finally, there is a problem of 
generating the ontologies. The problems listed here are fundamental problems with 
which the semantic web at large is grappling, and fortunately a number of partial 
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solutions exist that mitigate these problems. For example, ontology matching can be 
used to address the problem of different ontologies, and smart and efficient inference 
engines are now available. As a result, ontologies may be used effectively to 
automatically address many interoperability problems.  

2.3 Summary  

It is clear that semantic technologies and interoperability middleware have mostly 
been developed in isolation by distinct communities. The middleware community 
made assumptions of common application interfaces and focused on middleware 
behaviour and data heterogeneity. The semantic web community made the opposite 
assumption, that there was a common middleware, and the solutions focused on 
differences in application behaviour and data. 

In our view, semantic technologies and interoperability middleware must be 
comprehensively combined to enable emergent middleware, that is, on-the-fly 
generation of the middleware that allows networked systems to coordinate to achieve 
a given goal. Semantic technologies bring the necessary means to rigorously and 
systematically formalize, analyze and reason about the behaviour of digital systems. 
Semantic web service technologies have further highlighted the key role of process 
mediation in an Internet-scale open network environment where business processes 
get composed out of services developed by a multitude of independent stakeholders. 
Then, in a complementary way, interoperability middleware solutions hint towards an 
architecture of emergent middleware that mediates interaction among networked 
systems that semantically match while possibly behaviourally mismatching, from the 
application down to the network layer.  

3 The Solution Space  

The realisation of emergent middleware faces significant challenges, which we are in 
particular investigating as part of the CONNECT project [3]: i) discovering what is 
there in terms of application and middleware behaviour and data, ii) enhancing this 
information using learning techniques, and iii) reasoning upon the required mediation 
and synthesizing the resulting software to enable interoperability between 
heterogeneous networked systems. In this section, we first introduce the architecture 
of the generated emergent middleware, and then we present the ontology-based 
models of the networked systems used by Enablers, i.e., active software entities that 
collaborate to realise the emergent middleware. Finally, we describe the architecture 
of Enablers that need to be deployed in the network toward allowing networked 
systems to interact seamlessly. 

3.1 Architecture of Emergent Middleware  

Building upon previous interoperability middleware solutions [8, 10, 16], the 
architecture of the emergent middleware (as shown in Fig. 1) decomposes into: (i) 
message interoperability that is dedicated to the interpretation of messages 
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from/toward networked systems (listeners parse messages and actuators compose 
messages) and (ii) behavioural interoperability that mediates the interaction protocols 
run by the communicating networked systems by translating messages from one 
protocol to the other, from the application down to the middleware and further to the 
network layer.  

However, interoperability can only be achieved based on the unambiguous 
specification of networked systems’ behaviour, while not assuming any a priori 
design-time knowledge about the given systems. This is where the key role of 
semantic technologies, i.e., ontologies, comes into play. As discussed in the next 
section, ontological concepts are employed to characterise the semantics of exchanged 
messages, from the application down to the network layer, and thus allow the analysis 
of and reasoning about the external actions performed by systems. This is a major step 
in the realization of interoperability, since it allows the mediation of interaction 
protocols at all layers, provided their respective functionalities semantically match.  

 

 

Fig. 1. The emergent middleware architecture 

3.2 Ontology-Based Networked System Model  

The networked system model builds upon semantic technologies and especially 
semantic web services ontologies [17]. Fig. 2 depicts key elements of the system 
model with ontologies cross-cutting these elements. The model decomposes into:  

• The Affordances (aka capabilities in OWL-S2) provide a macroscopic view of 
networked system features. An affordance is specified using ontology concepts 
defining the semantics of its functionality and of the associated inputs and 
outputs. Essentially, the affordance describes the high-level roles a networked 
system plays, e.g., ’prints a document’. This allows semantically equivalent 
action-relationships/interactions with another networked system to be matched; in 
short, they are doing the same thing. Then, provided the matching of affordances 
that are respectively required and provided by two networked systems, it should 
be possible to synthesize an emergent middleware that allows the networked 
systems to coordinate toward the realization of the affordance despite possible 
mismatches in the messages they exchange and even their behaviour. In practice, 

                                                           
2 http://www.w3.org/Submission/OWL-S/ 
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networked systems do not advertise affordances but rather interfaces, as 
discussed below. Nevertheless, recent advances on learning techniques, 
combining solutions to the cohesion of system interfaces [18] and semantic 
knowledge inference [19], provide base ground that can be exploited to support 
the automated inference of affordances from interfaces, although this remains 
area for future work. 

• The Interface provides a refined or microscopic view of the system by specifying 
finer actions or methods that can be performed by/on the networked system, and 
used to implement its affordances. Each networked system is associated with a 
unique interface. However, there exist many interface definition languages and 
actually as many languages as middleware solutions. Nevertheless, existing 
languages may easily be translated into a common IDL so as to allow the 
matchmaking of interfaces [20]. Still, a major requirement and challenge are for 
interfaces to be annotated with ontology concepts so that the semantics of 
embedded actions can be reasoned upon. While this is already promoted by web 
services standards (e.g., SA-WSDL3), it still remains an exception for 
middleware solutions at large. Here too, research on advanced learning 
techniques can lead to automated solutions to the semantic annotation of syntactic 
interfaces [22]. 

• The Behaviour describes how the actions of the interface are co-ordinated to 
achieve a system's affordance, and in particular how these are related to the 
underlying middleware functions. The language used to specify the behaviour of 
networked systems revolves around process algebra enriched with ontology 
knowledge, so as to allow reasoning about their behavioural matching based on 
the semantics of their actions, and subsequently support the generation of the 
emergent middleware. Such behaviour description has been acknowledged as a 
fundamental element of system composition in open networks in the context of 
the Web4. However, in the vast majority of cases, networked systems do not 
advertise their behaviour. On the positive side, different techniques have emerged 
to learn the interaction behaviour of systems, either reactively or proactively [23, 
24, 33]. Still, major research challenges remain in the area, as provided 
techniques need to be made more efficient as well as be improved, considering, 
e.g., the handling of data and non-functional properties.  
 

Interface
Networked 

System

Affordance Behaviour

Functionality Input Output

0..n0..n1

1

0..n

1

 

Fig. 2. The networked system model 

                                                           
3 http://www.w3.org/TR/sawsdl/  
4 www.w3.org/TR/wscl10/ 



418 G.S. Blair et al. 

3.3 Enablers for Emergent Middleware  

The realization of emergent middleware is supported by cooperating core Enablers as 
depicted in Fig. 3. 

 

 

Fig. 3. The architecture of the emergent middleware Enablers 

The Discovery Enabler receives both the advertisement messages and lookup 
request messages that are sent within the network environment by the networked 
systems. The enabler obtains this input by listening on known multicast addresses 
(used by legacy discovery protocols), as common in interoperable service discovery 
[25]. These messages are then processed; information from the legacy messages is 
extracted. At this stage, the networked system model includes at least the interface 
description, which can be used to infer the ontology concepts associated to the 
affordance in the case they are not specified. The semantic matching of affordances is 
then performed to determine whether two networked systems are candidates to have 
an emergent middleware generated between them. The semantic matching of 
affordances is based on the subsumption relationship possibly holding between 
concepts of the compared affordances [26]; briefly, the functionality of a required 
affordance matches a provided one if the former is subsumed by the latter. Other 
semantic relations such as sequence [29] or part-whole5 can also be beneficial to 
concept matching. On a match, the process of emergent middleware generation is 
started; the current networked system model is sent to the Learning Enabler, which 
adds more semantic knowledge to it. On completion of the model, the Discovery 
Enabler sends this to the Synthesis Enabler. 

More specifically, the Learning Enabler attaches semantic annotations to the 
interface, and uses active learning algorithms to dynamically determine the interaction 
behaviour associated to an affordance. Interaction behaviour learning is built upon the 

                                                           
5 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ 
 index.html 
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LearnLib tool [27], and employs methods based on monitoring and model-based 
testing of the networked systems. It takes the semantic annotations of the interface as 
input, and returns the system’s behaviour description.  

The role of the Synthesis Enabler is to take the completed networked system models 
of two systems and then synthesize the emergent middleware that enables the networked 
systems to coordinate on a given affordance. The emergent middleware specifically 
implements the needed mediation between the protocols run by the systems to realize 
the affordance, which are abstractly characterized by the behavioural description. The 
synthesis of the mediator results from the automated behavioural matching of the two 
protocols based on the ontological semantics of their actions. In few words, the mediator 
defines the possible sequences of actions that serve translating semantic actions of one 
protocol to semantic actions of the other. Obviously, many approaches to behavioural 
matching and related protocol mediation may be applied considering the state of the art 
in the area [30, 31]. Basically, the solution to automated protocol mediation shall allow 
for efficient mediator synthesis, while at the same time enabling interoperability beyond 
current interoperability middleware solutions. In particular, protocol mediation shall 
span all the targeted protocol layers, dealing with the semantics of both application and 
middleware actions [28], as illustrated in the next section. An approach that is 
particularly promising and that we are investigating lies in ontology-based model 
checking [32]; this exploits the power of both ontologies to systematically reason about 
the semantics of actions and model checking to systematically reason about the 
compatibility of protocols. Still, the more flexible is the compatibility check, the more 
complex is the reasoning process. The challenge is then to find the appropriate tradeoffs 
so as to foster interoperability in open networks in a computationally tractable way.   

Finally, the emergent middleware is deployed, with the resultant connector following 
the architecture as depicted in Fig. 1, with listeners and actuators providing message 
interoperability and the synthesized mediator dealing with behavioural differences and 
translating the message content between heterogeneous message fields. Note the 
listeners and actuators are automatically generated using the Starlink framework6. 

While this section has focused on the core Enablers toward the generation of 
emergent middleware, additional enablers are necessary to cope with the uncertainty 
associated with emergent middleware. Indeed, the learning phase is a continuous 
process where the knowledge about networked systems is being enriched over time, 
which implies that emergent middleware possibly needs to adapt as the knowledge 
evolves. Furthermore, it is important that emergent middleware respects the quality 
requirements of networked systems regarding their interactions, which requires 
appropriate dependability and security enablers.  

The development, from the supporting theory to concrete prototype 
implementation, of such enablers is currently ongoing as part of the CONNECT EU 
project7. Despite the tremendous challenges that are raised in unifying and combining 
the principles of semantic technologies and interoperability middleware to enable 
emergent middleware, we have been developing experimental enablers to validate this 
vision. Our initial experiences with the use of ontologies within this broad solution 

                                                           
6 http://starlink.sourceforge.net/ 
7 http://connect-forever.eu/ 
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space are sketched in the next section; these further highlight the important role 
ontologies have to play in realising our vision of emergent middleware. 

4 Experiments 

To provide initial insight into the benefits of using ontologies to support 
interoperability, we now present two experiments that show how semantic 
technologies can underpin the automatic generation of emergent middleware. The first 
experiment examines the use of ontologies to address data and behavioural 
heterogeneity at both application and middleware layers. The second experiment 
demonstrates how ontologies are used to perform automated matching of message 
fields to support interoperability at the network layer. 

4.1 Reasoning about Interoperability at Application and Middleware Layers  

This experiment illustrates the role of ontologies in handling heterogeneity both at 
application and middleware layers. For this purpose, we consider two travel agency 
systems that have heterogeneous application interfaces and are implemented using 
heterogeneous middleware protocols (one is implemented using SOAP and the other 
with HTTP REST). We use application-specific and middleware ontologies to reason 
about the matching of both application and middleware behaviour. 

The travel agencies example. The first networked system, called EUTravelAgency, 
is developed as an RPC-SOAP web service. Thus, data is transmitted using SOAP 
request and response envelopes transported using HTTP Post messages. The service 
allows users to perform the following operations concurrently: 

• Selecting a flight. The client must specify a destination, a departure and a return 
date. The service returns a list of eligible flights.  

• Selecting a hotel. The client indicates the check-in and check-out dates. The 
service returns a list of rooms. 

• Selecting a car to rent. The user indicates the period of rental and their preferred 
model of car. The service then proposes a list of cars. 

• Making a reservation. Once the user has chosen a flight and/or a hotel room 
and/or a car, they confirm their reservation. The service returns an 
acknowledgment.  

The interface signature for EUTravelAgency (abstracted from WSDL 2.0) is given 
below, where we provide only the ontology concepts associated with the syntactic 
terms embedded in the interface: 

SelectFlight({destination, departureDate, returnDate}, flightList) 

SelectHotel({checkIndate, checkOutdate, pref}, roomList) 

SelectCar({dateFrom, dateTo, model}, carList) 

MakeReservation({flightID, roomID, carID}, Ack) 

The second system is called USTravelAgency and allows users to perform the 
following two operations: 
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• Finding a trip. The client specifies a destination, departure and return date. The 
service finds a list of “packages” including a flight and hotel room and car. 

• Making a reservation. The user selects a trip package and confirms it. The service 
acknowledges the reception of the selection. 

The interface signature, although giving only embedded ontology concepts, is 
abstracted as follows: 
 

FindTrip({destination,departureDate,returnDate,needCar},flightList) 

ConfirmTrip(tripID,Ack) 

 
The USTravelAgency service is implemented as a REST web service over the HTTP 
protocol. The findTrip operation is performed as a HTTP Get and the confirmTrip 
operation is performed using a HTTP Post as shown below (the outputs of both 
service operations are formatted using JSON8): 

 

GET http://ustravelagency.com/rest/tripervice/findTrip/{destination}/ 

{departureDate}/{returnDate}/{needCar} 

POST http://ustravelagency.com/rest/tripervice/confirmTrip/{tripID} 

 

A client of the EUTravelAgency cannot interact with the USTravelAgency, and 
similarly a client developed for the USTravelAgency cannot communicate with the 
EUTravelAgency due to the aforementioned heterogeneity dimensions: 

• Application data. The EUTravelAgency refers to the Flight, Hotel and Car 
concepts, whereas the USTravelAgency makes use only of the Trip concept. 
Additionally, the EUTravelAgency specifies the departure and the return dates 
using Greenwich Mean Time (GMT), while the USTravelAgency uses Pacific 
Standard Time (PST) to describe them. 

• Application behaviour. In the EUTravelAgency implementation, users can 
independently select a flight, a room and a car, whereas in the USTravelAgency 
implementation all of them are selected through a package. 

• Middleware data format. The data exchanged in the EUTravelAgency 
implementation are encapsulated in a SOAP message, while the input data of the 
USTravelAgency are passed through a URL and the output data are formatted 
using JSON. 

• Middleware behaviour: REST and RPC-SOAP are different architectural styles 
and induce heterogeneous control and communication models.  

The travel agency ontology. The first step of the experiment of interoperability 
between EUTravelAgency and USTravelAgency was to create the domain-specific 
ontology associated with the travel agency scenario (Fig. 4 illustrates an excerpt of 
this ontology). The ontology shows the relations holding among the various concepts 
defined in the interfaces of the two travel agencies. Note that the application-specific 

                                                           
8 http://www.json.org/ 
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ontology not only describes the semantics and relationships related to data but also the 
semantics of the operations performed on data, such as FindTrip, SelectFlight, 
SelectHotel, and SelectCar.  

In the general case, the application ontology is not defined by the application 
developers but by domain experts, to reflect shared knowledge about a specific 
domain. Many ontologies have been developed for specific domains, e.g., Sinica 
BOW9 (Bilingual Ontological Wordnet) for English-Chinese integration. In addition, 
work on ontology alignment enables dealing with possible usage of distinct ontologies 
in the modelling of different networked systems from the same domain, as illustrated 
by the W3C Linking Open Data project10. 

 

Fig. 4. The travel agency ontology 

Dealing with application-level heterogeneity. The travel agency ontology indicates 
how the Flight, Hotel and Car concepts are related to the Trip concept, including their 
individual attributes. Moreover, we can also use standard ontologies for translation, 
e.g., OWL-Time11 can be used to resolve the time difference between GMT and PST. 

Solving the application data mismatches is not sufficient. We also need to 
coordinate the actions of the networked systems in order to make them interoperate. 
Ontologies help establishing the correspondence between actions. As illustrated in 
Fig. 4, FindTrip is defined as equivalent to the composition of the three operations 
SelectFlight, SelectHotel, and SelectCar. A mediator that ensures the coordination 
between the above operations can then be synthesized based on the semantic 
(subsumption) relations between them and the behaviour of the two networked 
systems. Moreover, since the SelectFlight, SelectHotel, and SelectCar can be 
executed concurrently, we need to check all possible executions. Therefore, we rely 
on model checking further extended with ontology reasoning capabilities, in order to 
exhaustively explore all the state space and systematically guarantee the correctness 
of the synthesized mapping rules. As illustrated in Fig. 5, the mediator translates the 

                                                           
9  http://BOW.sinica.edu.tw/ 
10 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/ 
  LinkingOpenData 
11 http://www.w3.org/TR/owl-time/ 
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FindTrip action to the concurrent execution of the SelectFlight, SelectHotel and 
SelectCar actions, and the MakeReservation action to the ConfirmTrip action. This 
translation is further refined according to the underlying middleware of each 
networked system as illustrated next. 

Dealing with middleware-level heterogeneity. To reason about the behavioural 
matching of middleware, we have defined a middleware ontology that identifies 
where sequences of protocol messages execute similar functionality. For example, the 
request-response message sequence of CORBA is clearly equivalent to that of SOAP. 
Yet, there may be cases where the relationship is semantically deeper, e.g., 
subscription in a publish-subscribe protocol may be equivalent to a RPC invocation 
(but only when they are performing similar application behaviour) [28].  

In the travel agency scenario, the operations are implemented atop SOAP and 
HTTP REST. The ontology specifies SOAP as a request followed by a synchronous 
response. Similarly, REST is specified as four alternative synchronous message sends 
and responses (Get, Post, Put, Delete). The ontology defines that a SOAP operation in 
the general case is semantically equivalent to all four REST behaviours. Therefore, to 
reason about interoperability, the application matching must be considered in tandem. 
For example, in the FindTrip operation case, the protocol mediation is from SOAP to 
Get, whereas in the ConfirmTrip case the protocol mediation is from SOAP to Post. 

Mediator)
USTravelAgency)Client)

EUTravelAgency)

 

Fig. 5. Behavioural specification of the two travel agencies and the mediator 

Another fundamental difference at the middleware level is in the heterogeneity of 
messages, i.e., the complexity of the translation of SOAP data content to REST data 
content while message formats are different. We investigate the use of ontologies to 
reason about this important problem in the second experiment. 
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4.2 Reasoning about Interoperability at the Network Layer  

Devising solutions at the application and middleware level to enable any two systems to 
interoperate does not suffice if they cannot properly exchange network messages. It is 
imperative to understand and reason about the heterogeneous message formats of 
protocols in such a way that message-level interoperability can be achieved on a broader 
scale. We need systematic ways to dynamically capture the underlying differences of 
network packets to then generate the mapping between them. Ontologies provide the 
methodology to identify these semantic similarities and differences in order to 
automatically identify the translation between messages. 

This experiment focuses on using ontologies to map between heterogeneous 
Vehicular Ad Hoc Network (VANET) protocols; this domain was chosen because the 
protocol behaviour is common (i.e., routing of messages to a destination), but there is 
a high-level of heterogeneity at the packet level. A number of VANET protocols exist 
that fall into different routing strategies: broadcast, position-based forwarding, 
trajectory-based forwarding, restricted directional flooding, content-based forwarding, 
cluster-based forwarding, and opportunistic forwarding. Hence, these exhibit highly 
heterogeneous message formats owing to the vast array of routing strategies.  

 

Fig. 6. Packet formats of BBR and Broadcomm packets 

Interoperability between BBR and Broadcom. The BBR protocol [34] is a 
broadcast routing protocol that keeps track of neighbouring nodes and broadcasts the 
packet at a set rate. The node, lying on the border of the transmission range, is 
designated to forward the packet further away in the network. This is determined by 
the number of common neighbours this node has with the source node. This value is 
represented as a CommonNeighbourNo field in the packet. Fig. 6 shows the format of 
BBR and Broadcomm packets. Broadcomm [35] is a position-based routing protocol, 
which keeps track of nodes through their geographical locations. This protocol 
divides the network into clusters and allocates one node in each cluster to be the 
cluster head. The latter is responsible to forward messages to the cluster members and 
forward them to the nearest neighbour found outside the cluster. We can say that the 
behaviour of Broadcomm matches with that of BBR to a certain degree in the sense 
that both designate a node to disseminate messages further into the network. But both 
differ in the way their messages are formulated, especially with the use of 
geographical coordinates in one protocol and not in the other. 

Applying Ontologies. Given the differences in their message formats, any sort of 
interoperation does not seem to be valid if Broadcomm and BBR try to interoperate. 
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However, if we can interpret both message formats and deduce their meaning, it is 
possible to find a basis for comparison. As a result, we create a vehicular ontology for 
the various routing strategies used in VANETs together with a definition of known 
packet formats. The main idea is to use this ontology to classify packet formats under 
the appropriate routing scheme and deduce how to enable this packet to interoperate 
with another packet, i.e., construct the mappings that are part of the synthesized 
mediator in the emergent middleware architecture. The presence of a reasoner engine 
enables us to infer the meaning of a packet (as we discover middleware knowledge of 
the networked system). As a result, the packet gets classified under the most 
appropriate routing strategy. This classification is an important step as it helps to 
establish a ground for comparison between packets belonging to different routing 
categories. Part of the inferred ontology is displayed in Fig. 7, where the BBR packet 
(BBRPacket) is ranked under IdentifiedPacket and MFRBroadcastPacket classes. The 
requirements for MFRBroadcastPacket are the fields: CommonNeighbourNo and 
NeighbourList. Since these fields form part of BBRPacket, the reasoner is able to 
classify the latter under MFRBroadcastPacket. The IdentifiedPacket class denotes 
that the packet contains known fields. In this way, incoming packets can be classified 
by the ontology and be compared with existing packet formats. For example, assume 
the incoming packet to be Broadcomm and the existing packet to be BBR.  

 

Fig. 7. Inferred Vehicular Ontology 

Field Matching. Once both packets are classified, they can be compared to each other 
through an intuitive mechanism embedded in the ontology, which is the use of SWRL 
rules and SQWRL12 query rules. These mechanisms add further reasoning to the 
classification process to enable field matching. As an example, the following SQWRL 
rule retrieves the fields from BBR and Broadcomm packets and tries to find the 
differences between them. To do so, it creates a collection of the fields of each packet 
using the SQWRL makeBag function and identifies the differences with the SQWRL 
difference function. The SQWRL clause is introduced within the SWRL rule by a 
separator character °. The SQWRL clause handles construction and manipulation 
operators required to execute SQWRL-based rules. As can be seen in the example 
below, the ° separator character enables a SWRL rule to include a SQWRL query. 

                                                           
12  http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab and 
   …/wiki.pl?SQWRL 
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BBRPacket(?b) ∧ hasFields(?b, ?f) ∧ Broadcomm(?p) ∧ hasFields(?p, ?pf) ˚ 
sqwrl:makeBag(?bag, ?f) ∧ sqwrl:makeBag(?bagt, ?pf) ˚ sqwrl:difference(?diff, ?bagt, ?bag) ∧ 
sqwrl:element(?e, ?diff)  sqwrl:selectDistinct(?p, ?e) 

 

The result of this query gives the fields required for BBR to function as Broadcomm 
and vice versa; the fields lacking in BBR would be LocationCoordinates, 
TargetRoute and ClusterHead. Moreover, further classification is also possible 
through the use of SWRL rules to reason about the data types of the fields. As an 
example, suppose we have a field x in BBR packet of type <int> and a corresponding 
field y in Broadcomm of type <String>. In this case, we can make use of a SWRL rule 
to suggest a mapping between these two fields: 
 

hasFields(BBR, ?x) ^ hasType(?x, <int>) ^ hasFields(Broadcomm, ?y) ^ hasType(?y,<String>) 
swrlb:MapIntToString(?x, ?y) 

 
The OWL language enhanced with the use of SWRL and SQWRL enables 
comparison of two packets. The ontology can hence interpret the packet formats 
through matching and suggest a possible mapping between them. For example, the 
ontology can suggest that BBR lacks geographical coordinates in order to operate as 
Broadcomm. This information is fundamental in determining how to enable mapping 
between these two different types of packets. This is in itself a step forward towards 
interoperability between different network packets; however, further research is 
required into how ontologies can be used to generally identify mapping solutions that 
resolve the differences between packets. Further details about the use of ontologies 
within the domain of message-level heterogeneity are presented in [7]. 

5 Overall Reflections  

Interoperability remains a fundamental problem for distributed systems due to the 
increasing level of heterogeneity and dynamism of the networking environment. In 
this paper, we have argued for a new approach to interoperability, i.e., emergent 
middleware that is synthesized on the fly according to the behaviour of the associated 
networked systems. A central element of our approach is the use of ontologies in the 
middleware design so that middleware may dynamically emerge based on semantic 
knowledge about the environment. Hence, while interoperability in the past has been 
about making concessions, e.g., pre-defined standards and design decisions, emergent 
middleware builds on the ability of machines to themselves reason about and tackle 
the heterogeneity they encounter. Further, acknowledging that interoperability is, as 
with many features of distributed systems, an end-to-end problem [5], emergent 
middleware emphasizes that interoperability can only be achieved through a 
coordinated approach involving application, middleware and network levels.   

This paper has introduced the core elements of the emergent middleware vision, 
i.e., ontologies and related Enablers to reason about and implement interoperability on 
the fly. The architecture of Enablers outlined in Section 3 has provided a view of how 
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emergent middleware can be realised, where associated technologies becoming 
available through the CONNECT project. This architecture illustrates the important 
roles of discovery, learning and synthesis in achieving our goals. The most notable 
feature of the architecture is that ontologies have a cross-cutting role. The 
experimental work reported in Section 4 has further illustrated the central role of 
ontologies in supporting meaning and reasoning in distributed systems, not just at the 
application level but also in the underlying distributed systems substrate, for 
achieving interoperability in the highly heterogeneous and dynamic style of today’s 
distributed systems. However, despite the latest advances in Enablers for emergent 
middleware, significant challenges remain ahead as discussed below. 

While emergent middleware relieves the burden of interoperability from the 
middleware designers and developers, and fosters future-proof interoperability, its 
general applicability is dependent upon the effectiveness of the supporting Enablers. 
The latest results of CONNECT are encouraging in that they introduce base building 
blocks for the Enablers, spanning automated support for discovery, learning and 
synthesis. Small-scale experiments further demonstrate that Enablers may adequately 
be combined. Still, applicability to real-scale experiments is area for future work. 

Realizing the central role of ontologies to allow machines to tackle interoperability 
across time raises the issue of how large, comprehensive ontologies may be deployed 
for interoperability in practice. At first sight, this basically depends on the 
development of supporting ontologies by domain experts and hence on the 
requirements of a given domain in terms of interoperability. For instance, it is 
expected that the Internet of Things will lead to major ontology development. Another 
consideration is the cost of processing large ontologies and, more specifically, the 
efficacy of semantic tools, which keep improving over time given research in the area. 
There is also considerable potential for core research on ontologies concerning the 
role of fuzziness in supporting richer forms of reasoning [21], the possibility of 
learning new ontological information and merging it with existing information as it 
becomes available, and also dealing with heterogeneity in the ontologies themselves. 

We have so far concentrated on the synthesis of mediators from scratch, while the 
construction of mediators by composing existing ones would enable more efficient 
synthesis and support self-adaptive emergent middleware. Ongoing CONNECT 
research on an algebra for mediators will provide us the required foundations [4]. 

The inherent openness and probability of failure in emergent middleware solutions 
raise important challenges. If the solution is to be deployed at Internet scale, then it 
must be reliably able to produce correct mediators and also be secure against 
malicious threats. Hence, dependability is a central research question; this has to 
overcome the partial knowledge about systems as well as security concerns arising. A 
related concern is that of dealing with interoperability between fault tolerant systems 
and in general with the heterogeneity of non-functional properties across systems. 
Dedicated solutions are being investigated within CONNECT.  

Furthermore, failing to generate emergent middleware in a specific context is not 
only dependent on the reliability of our solution, but also, most importantly in the 
open target environments, on the degree of incompatibility between candidate 
systems. For example, semantic matching may indicate that the semantic distance 
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between the application features of two systems is too great to be bridged. Precisely 
evaluating the limitations of our approach in producing a result is an area of future 
work; we are already studying aspects of this important issue within CONNECT.      

Another interesting research direction for emergent middleware is that of involving 
end-users in the synthesis process to inform the automated approach. For example, 
end-users can assist semantic matching where ontology heterogeneity may lead 
automated reasoning to ambiguous results. This raises various challenges, including 
how to provide user-friendly interfaces to the emergent middleware internals.  

In summary, this paper has argued that, given the increasing complexity of 
contemporary distributed systems, both in terms of increasing heterogeneity and 
dynamism, there is a need for a fundamental rethink of approaches to even the most 
basic of problems, that is, interoperability. We advocate a new approach to 
middleware, that of emergent middleware. This paper has looked at one key aspect of 
emergent middleware, namely, the role of ontologies in supporting core underlying 
middleware functions related to achieving interoperability. This leads to a fascinating 
set of research challenges both in terms of understanding a given deployment 
environment and also dynamically creating appropriate connectivity solutions. We 
hope this paper has given a flavour of the potential of this approach and also some 
real experimental evidence that the approach can work in selected aspects of 
distributed systems. As a final comment, while CONNECT is addressing a number of 
the ongoing challenges, this is a vast and largely unchartered territory and we invite 
other researchers to join in the quest for suitable solutions for emergent middleware. 
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Abstract. Reprogrammable hardware like Field-Programmable Gate
Arrays (FPGAs) is becoming increasingly powerful and affordable. Mod-
ern FPGA chips can be reprogrammed at runtime and with low latency
which makes them attractive to be used as a dynamic resource in sys-
tems. For instance, on mobile devices FPGAs can help to accelerate the
performance of critical tasks and at the same time increase the energy-
efficiency of the device. The integration of FPGA resources into commod-
ity software, however, is a highly involved task. On the one hand, there
is an impedance mismatch between the hardware description languages
in which FPGAs are programmed and the high-level languages in which
many mobile applications are nowadays developed. On the other hand,
the FPGA is a limited and shared resource and as such requires explicit
resource management. In this paper, we present the Juggle middleware
which leverages the ideas of modularity and service-orientation to facil-
itate a seamless exchange of hardware and software implementations at
runtime. Juggle is built around the well-established OSGi standard for
software modules in Java and extends it with support for services imple-
mented in reprogrammable hardware, thereby leveraging the same level
of management for both worlds. We show that hardware-accelerated ser-
vices implemented with Juggle can help to increase the performance of
applications and reduce power consumption on mobile devices without
requiring any changes to existing program code.

Keywords: OSGi, FPGA, Hardware Acceleration.

1 Introduction

The increasing degree of dynamism in modern systems design and the result-
ing need for more flexible software becomes particularly apparent in mobile de-
vices. Traditionally, mobile devices implement much of their performance-critical
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functionality in ASICs, application-specific integrated circuits with a fixed im-
plementation. Once manufactured and implemented in a mobile device the ASIC
cannot be changed, e.g., for extending the functionality of the device or for ap-
plying critical updates. FPGAs (field-programmable gate array), in contrast,
are known for their reconfiguration support and their ability to change the im-
plementation of their functionality. With the technological advances in FPGAs,
partially reconfigurable chips have been developed which can alter parts of their
fabric at runtime.

An example of a mobile device that already makes use of reprogrammable
hardware for on-demand acceleration is the Sony Playstation Portable and its
Virtual Mobile Engine [15]. The main challenge, however, is the integration of
FPGAs into applications. Whereas FPGAs are programmed in low-level hard-
ware description languages like VHDL [6] or Verilog [7], the application software
on mobile devices is often developed in high-productivity languages like Java,
JavaScript, or Objective C. Bridging the gap between these two worlds is far away
from being trivial, especially designing the communication interfaces between ap-
plications and FPGAs and effectively managing both the reprogrammable hard-
ware and the software side of applications. Furthermore, in practice the design
of the device mandates specific patterns of interaction.

Mobile phones, for instance, are naturally constrained in the way humans can
interact with them due to their form factor. For a systems design, however, this
means that most of the time a mobile phone is used for exactly one interactive
(foreground) task whereas the remaining tasks are running in the background
and have a lower priority. For example, when the user receives a phone call, the
web browser functionality of the device becomes secondary. Ideally, a system
could exploit this interaction pattern by using the reconfigurable hardware for
always accelerating the interactive task. In the example of the phone call, this
would be the audio encoding and decoding. Since the hardware is reconfigurable,
the system can keep the invariant of accelerating the most critical interactive
task even when the user switches from one application to another.

Implementing such systems requires the developer to overcome the impedance
mismatch between hardware and software and an active handling of the inher-
ent dynamism of the problem, which typically results in ad-hoc solutions. The
contribution of this paper is the approach of creating an equivalence between
software and hardware functionality by treating both as modules—running on
and being managed by a common middleware platform. In order to do so, several
concrete challenges need be solved:

– handling and managing both software and hardware modules where the latter
are the different binary images (bitstreams) used to reconfigure the FPGA
hardware.

– the ability to substitute one implementation of a functionality with another,
e.g., a software module with an accelerating hardware module and back.

– making decisions when to do substitutions, given that the hardware resource
is constrained so that typically not all tasks can run in hardware at the same
time.
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We provide a solution to these challenges with our implementation, Juggle, which
takes advantage of the widely-used OSGi [12] standard for dealing with the life-
cycle of software modules and extends it with support for functionality imple-
mented in reconfigurable hardware. In contrast to approaches like, e.g., Liquid
Metal [2], Juggle does not attempt to apply a unified design strategy for hard-
ware and software in the small but instead focuses on the composition and
interaction in the large. Juggle then takes care of the co-existence of software
and hardware implementations and provides a unified model of communication
through loosely-coupled services. Based on application-dependent policies, the
system can thus dynamically switch between hardware and software implemen-
tation to accelerate most critical tasks without interrupting the system. As we
show in the paper, the latency for switching is low enough to allow for dynamic
replacement while the achieved acceleration for the evaluated use case of an en-
cryption service reaches a factor of 20. The amount of energy consumed can be
reduced by more than 97% compared to the same encryption done in Java and
59% when comparing to an implementation in C.

2 Background

Reprogrammable hardware like Field-Programmable Gate Arrays (FPGAs) is
increasingly becoming powerful and affordable which makes them attractive to
be used as a dynamic resource in systems. The following sections provide back-
ground information about FPGAs and their reconfiguration and discusses OSGi
for managing software modules in Java.

2.1 Field-Programmable Gate Arrays (FPGAs)

Traditional integrated circuits are the result of a manufacturing process; once
they are manufactured they cannot be altered any more. FPGAs, in contrast, are
integrated circuits with the ability to be reconfigured after manufacturing either
by the designer itself or the customer. This advantage especially comes into effect
when the implemented functionality undergoes changes—one-time changes as in
product line customization or continuous changes as through periodic upgrades.

Internally, an FPGA is structured into three main parts: a set of configuration
logic blocks (CLB), a programmable interconnection network between the blocks,
and a set of input and output cells around the device. The actual implementation
of a configuration logic block (or basic block) can vary and depends on the
concrete FPGA chip used.

Juggle has been prototyped on a Virtex-II Pro chip, which consists of groups
of four slices, each containing two actual basic blocks. A basic block consists of a
lookup table (LUT) with 4 inputs and an output, a set of multiplexers, arithmetic
logic and a storage element. The LUT is a group of memory cells which contain
all the possible results of a given function for a given set of input values. It
can therefore implement arbitrary mappings between input and output ports.
Altering the content of a LUT through a configuration consequently changes the
behavior of the basic block.
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Fig. 1. Virtex-II Pro chip layout

The FPGA chip is a 2-dimensional array with the CLB as the smallest element.
The precise layout of the FPGA structure such as the arrangement of the logic
blocks and the interconnection paradigm of the logic blocks is vendor-dependent.
Figure 1 shows a schematic picture of the Virtex-II Pro FPGA. The interconnect
fabric is generally a network of vertical and horizontal wires arranged in a mesh
topology. At the intersection points are programmable multiplexers facilitating
the routing inside the FPGA fabric. Around the periphery of the FPGA chip are
the I/O components used for communication with off-chip components. Those
I/O components are programmable just like the CLBs and can use as input,
output, or bidirectional gates.

The programming of an FPGA typically starts with a design of the required
functionality in a hardware description language like VHDL or Verilog. This
design can be considered as an abstract description without taking a particu-
lar technology into account. It operates on the register transfer level (RTL), a
behavioral description in terms of signal flows between hardware registers. The
mapping to a concrete technology is the task of an electronic design automation
(EDA) tool, which synthesizes a netlist from the HDL code. This netlist now
describes concrete gates and could be implemented in actual hardware. However,
netlists only describe instances of gates, ports, and the wiring in between but not
a concrete topology. It is the task of a place-and-route tool to create an instance
of the template-like netlist which resembles a concrete layout of a digital circuit.
In the case of an FPGA, it represents a configuration of the FPGA fabric that
implements the designed functionality.

2.2 Reconfiguration

The data to configure an FPGA is called a bitstream. Bitstreams can be down-
loaded to the device via several configuration ports, e.g., a JTAG interface or a
USB cable. This has the effect that the LUTs and the routing fabric of the FPGA
is changed and hence the behavior is altered. Full reconfiguration—the process
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of rewriting the complete design of the FPGA chip—requires a reconfiguration-
time linear to the size of the bitstream to write. In addition, the entire chip is
inoperable during the reconfiguration and running processes are interrupted.

Many chips therefore support the rewriting of only a part of the fabric. Specific
regions on the chip are marked as reconfigurable and can at runtime be reconfig-
ures through a partial bitstream while the remainder of the fabric can continue
to operate. In order to support partial reconfiguration in a design, the FPGA
fabric is partitioned in into a static region holding the functionality critical for
the running of the system—e.g., the bus systems—and one or more regions that
are partially reconfigurable (PRRs).

Functional tasks (reconfigurable modules or PRMs) can be mapped into indi-
vidual PRRs (space multiplexing). If the tasks are mutually independent, they
can also be mapped into the same PRMs (time multiplexing) to reduce the
required FPGA real estate but at the same time introducing reconfiguration la-
tency into the system. However, partial reconfiguration does not automatically
mean that the board continues operation during reconfiguration. Depending on
the hardware it can be the case that the reconfiguration requires the board to
be in an inactive state. The ability of a chip to be reconfigured during runtime
without interruption of the system is called dynamic partial reconfiguration.

One example of such a chip is the Xilinx Virtex-II Pro which was used to
prototype Juggle. A complete discussion of the prototype system follows in Sec-
tion 5. Partial reconfiguration requires the designer of a system to explicitly
mark areas of the chip as reconfigurable. The place-and-route software has to
take care that no signal lines are crossing these areas so that dynamic reconfig-
uration becomes possible. Otherwise the static part of the chip could encounter
malfunctions during reconfiguration or even be short-circuit.

2.3 OSGi

In the domain of software modules, OSGi is a widely used middleware sys-
tem for running and managing dynamic modules in Java. Historically, OSGi
has its origins in embedded systems and mobile devices. Due to its flexibility
and agility, it has recently been widely adopted in the latest generation of Java
enterprise application servers. OSGi describes a runtime system that sits atop
the Java virtual machine and provides primitives for controlling the life-cycle
of software modules. At runtime, new modules can be installed and modules
no longer needed can be completely removed from the system. Furthermore,
OSGi supports consistent updates of modules. The unit of modularity in OSGi
is the Bundle. From a technical perspective, a bundle is nothing but an ordi-
nary JAR file—a compressed filesystem with a manifest as commonly used in
Java—but enriched with additional meta-data. Most importantly, bundles have
to declare their dependencies explicitly. The default case in OSGi is that bundles
do not share any code but run in complete isolation. Sharing is possible when
corresponding Java packages contained in a bundle are declared to get exported
and consequently are imported by another bundle. This indeed creates a tight
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coupling between bundles since the importing bundle cannot be resolved without
an exporter already installed.

Orthogonal to the module layer, OSGi provides applications with a service
layer to facilitate a loose coupling among components. Every bundle can register
any Java object with the runtime system under one or more service interfaces.
The OSGi runtime maintains a central service registry through which bundles
can search for services. Consuming bundles are typically only tightly coupled
to the service interface but no longer to the service implementation with all
its transitive dependencies. When a service is acquired by a bundle, it gets the
actual Java service object so that no further overhead other than the initial
interaction with the runtime can be observed.

An important difference between traditional application design and the OSGi
world is the handling of dynamism. Whereas usually software is assumed to be
a static and unchangeable unit, in OSGi a module should never make assump-
tions about the permanent availability of any other module or service. An operator
could at any time unload a module or stop it, which causes the removal of all reg-
istered services. Hence, OSGi bundles typically register listeners to get informed
about changes in the topology and react accordingly. As a further consequence,
OSGi bundles are usually written with a high degree of locality so that exchanging
one service implementation with another can often be done seamlessly.

3 Management and Substitution of Modules

Introducing an FPGA into a mobile or embedded system enables applications to
implement parts of their performance-critical functionality in hardware. These
hardware modules are physically handled as bitstream files. Reprogramming the
device requires the writing of a bitstream to a reconfiguration device embedded
into the system. The first step in making FPGAs easier to use in applications
is to provide management of the bitstreams of the same quality as for software
modules. In a system like OSGi, this gives both the application itself and an ex-
ternal operator the possibility to explicitly control the composition of an appli-
cation and the life-cycle of the individual components. However, this alone does
not solve the integration problem. Whereas software modules can be seamlessly
used in the programming languages (e.g., in OSGi through package imports),
FPGAs constitute hardware components and have much more low-level com-
munication interfaces like memory-mapped I/O ports, registers, or interrupts.
In order to preserve the full flexibility of modularity, the interfaces between a
software and the corresponding hardware module have the be uniform. In prac-
tice, this means that the representation of the FPGA requires the co-design of a
device driver in software which embeds it into the host programming language.

3.1 Hardware-Accelerated Services

A hardware module in the first place consists of a partial bitstream designed to
configure the core functionality of the service into a partial configuration region
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of the FPGA. The bitstream is embedded into the OSGi bundle as a file. Once
this bitstream is applied to the FPGA, the hardware is ready to be used but still
not accessible from Java. The virtual machine approach prevents Java code from
accessing the underlying physical machine. Hence, the device driver is typically
coded in C and makes use of the Java Native Interface (JNI) to bridge between
Java and the hardware. From the point of view of the Java OSGi application, the
device driver is represented through a Java class in which all critical methods
map to JNI native code methods.

When loaded, the JNI code initializes by mapping the hardware addresses
into the virtual memory of the JVM process as well as registering handlers
for interrupts or initializing DMA. For each service method, there is a piece
of code turning the service call into one or more interactions with the FPGA.
Usually, this involves a mangling of the arguments and selective stores and loads
of portions of the arguments into memory, waiting for a result to become available
and then preparing the return value for caller. Even though writing the driver is
still a challenge that requires a skilled programmer, most of this can be done in a
more declarative way that takes full advantage of having a clear specification of
the hardware interface on the one hand and the high-level service interface on the
other. For instance, the driver code could be generated from the domain-specific
language (like, e.g., in Devil [9]).

The pair of driver and bitstream is the foundation for the hardware service
and dual to the Java software service implementation of the same service. When
the hardware service implements the same interface it can replace the latter
on demand. There might, however, be cases in which a certain consumer of
a service should get accelerated by a hardware implementation while others
should continue to run against a software implementation. Such a pattern of
interaction is far away from being trivial to implement in OSGi since in general
the application chooses the service and not the service the application.

In order to still support for such use cases we introduce Co-Modules, which
are modules providing both a software and hardware implementation of the ser-
vice at the same time. Such modules can register a common proxy service as
an indirection in between the service exposed to applications and the back-end
implementation. As a result, co-modules can seamlessly switch between either
of the two implementations (if the hardware resource is available) and provide
seamless dynamic acceleration. If the service is implemented as an OSGi Service-
Factory, it can even selectively accelerate the service only for certain consumers
and serve requests from other bundles through the software implementation.
Figure 2 shows a structural overview of both a hardware module (a module
containing only a hardware implementation of a service) and a co-module.

3.2 The FPGA Bundle Extender

The basic unit of modularity in OSGi is the bundle. Even though there are very
few requirements for a bundle to participate in an OSGi application, in practice
there is a small piece of code in the bundle which interacts with the runtime
and registers or consumes services. This code is specific to OSGi whereas most
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Fig. 2. Structure of hardware-accelerated OSGi services

of the remaining bundle code is standard Java. For some applications, however,
this OSGi-specific code is a liability. For instance, considering a web application
server based on OSGi, every web application is preferably a bundle and registers
its servlets as services. In traditional Java EE, however, web applications are
packaged in WAR files, which are JAR files with a set of specific XML config-
uration files. The requirement to write the boilerplate code so that the servlets
are discovered from the web.xml file and registered as services so that the server
engine becomes aware of their existence is a burden for the adaption of the OSGi
model for web applications. The solution to the problem is the extender pattern.

In the extender pattern, there is a singleton entity—called extender—in the
system that listens for newly installed bundles. Whenever a new bundle is in-
stalled, it scans the content of the bundle for the existence of a specific configu-
ration file. If such file is present, the extender interprets this file and extends the
bundle by, for instance, registering services on behalf of the bundle. Thereby, in
principle plain WAR files can be used within an OSGi deployment; the extender
takes care of integrating the content of the file into the application server.

For Juggle, a similar approach is taken. An FPGA extender listens for new
bundles containing a configuration file for hardware-accelerated services and then
registers the service on behalf of the bundle. Listing 3 shows an example of a con-
figuration file. Each bundle can contain arbitrarily many hardware-accelerated
services. As for traditional OSGi services, properties can be attached to the ser-
vice on which clients can filter their requests. Instead of selecting either the Java
or the FPGA-based service, the FPGA extender generates a service proxy from
the service interface. The purpose of the proxy is to provide the system with an
interception point located between the caller and the service. This enables the
system to seamlessly switch between a software service and a hardware service
as well as tracing service invocations to derive performance information.

4 Juggling Software and Hardware-Accelerated Services

Not only is the FPGA a singleton entity in the system, the resources of the
FPGA in terms of logic gates are also limited and permit—depending on the
complexity of the service—just one or a small number of hardware-accelerated
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<?xml version=” 1.0 ”?>
<co−module xmlns=” h t tp : // f l ow s g i . i n f . ethz . ch/comodules ”>

<acce l e ra ted −s e r v i c e s>
<acce l e ra ted −s e r v i c e i n t e r f a c e=”math . AddService ”>

<java−s e r v i c e>math . MathAddImpl</ java−s e r v i c e>
<fpga−s e r v i c e>

<d r i v e r>math . MathAddDriver</ d r i v e r>
<bitst ream>opb p r r 0 add e r pa r t i a l . b i t</ b it st ream>

</ fpga−s e r v i c e>
<s e r v i c e−p r op e r t i e s>

<entry key=” v e r s i on ” value=” 1 . 0 . 0 ”/>
<entry key=” foo ” value=”bar”/>

</ s e r v i c e−p r op e r t i e s>
</ acce l e ra ted −s e r v i c e>

</ acce l e ra ted −s e r v i c e s>
</co−module>

Listing 3. Juggle service descriptor example

services to co-exist at any given time. It is hence inevitable to make resource
scheduling decisions and set priorities. For this purpose, Juggle continuously
traces service invocations and assembles statistical data to make decisions which
services can run in software and which can profit from hardware acceleration.

Deciding which service of a single application to swap into hardware is a policy
decision and can thus be best made by the application itself. On an OSGi runtime
and particularly on mobile devices, however, it is not unusual to run multiple
applications simultaneously. Deciding in favor of a specific application hence
requires coordination. However, global knowledge about the setup is against the
principle of modularity; a module should only reason locally and not require
knowledge about other modules installed on the same system beyond declared
or loosely-coupled dependencies.

Juggle deliberately avoids implementing policies and instead expects the plat-
form to implement a controller defining the criteria to be used for reconfigura-
tion. For instance, such a policy could be that the application currently running
in the foreground and having the focus of the user is prioritized over the back-
ground applications. Which service to prioritize could therefore be determined
by the window manager, which is by definition an entity with full knowledge
of all modules currently using its services. What the system has to provide is
access to the basic collected performance data of each service, such as invocation
frequency, average duration of the invocations, etc. and a simple imperative com-
mand interface to turn a software into a hardware-accelerated service and vice
versa. This command interface consists of a single primitive: the juggle opera-
tion. As arguments, the juggle operation takes the service id of a service to turn
into a hardware-accelerated service as well as the ids of previously hardware-
accelerated service to turn back into software services.
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4.1 Reprogramming the FPGA

When the controller has issued a juggle operation, the system first does a sanity
check, e.g., if the freed slots are adjacent and if the reclaimed FPGA space is
sufficient to accommodate the new service. If the check passes, the hardware
can be reprogrammed. The Xilinx FPGAs are able to perform a glitchless dy-
namic reconfiguration. This means, if a resource on the chip—despite being in
the reconfigured ares—is not affected by the reconfiguration it can be accessed
without interruption. There can, however, be problems in the design phase of
hardware service implementations. If the place-and-route tool does not have to
meet any communication constraints between two hardware services the signal
will much likely cross the boundaries of the partial reconfiguration area where
the best timing can be achieved. The routing can be different for every hardware
service implementation.

The solution is the usage of bus macros [3] which can be seen as fixed data
paths for signals going between PRRs. Bus macros serve the purpose of a socket
where the corresponding hardware service can be plugged into the system. Hence,
they provide the means of locking the routing between hardware services and the
static part, making the modules pin compatible with the base design. In addition
to locking the routing path, bus macros also serve as switches to enable and
disable the transmission of signals. The signal propagation has to be disabled
during reconfiguration, and enabled after, to avoid bus congestion or even a
corruption of the bus during the reconfiguration process.

In the Juggle design, the bus macros for PRRs are encapsulated into their
own IP core (a reusable unit in the hardware design process), the socket bridge.
In our prototype system, the socket bridge is controlled over the Device Control
Register (DCR) bus. This bus bypasses the standard memory bus and bus con-
troller for low latency and implements a daisy-chain architecture propagating the
signals to all attached cores. The communication between the runtime system
and this IP core happens through a kernel-driver in the operating system. In our
prototype system, we use Linux and have developed a driver which registers a
character device to accept control words for opening or closing the socket bridge.
When reading from the character device, the current status of the bridge can be
retrieved. Since character devices in Linux are represented through ordinary file
descriptors, the Java VM can access them as random access files.

The actual reconfiguration happens through the internal configuration access
port (ICAP) interface. The ICAP device is supported under Linux by a driver
in the patched Xilinx kernel and can therefore also be accessed from Java. The
system has to open the socket bridge for the RPP, retrieve the partial bitstream
from the bundle, write it to the /dev/icap character device, and close the socket
bridge again. Subsequently, the JNI driver for the hardware service is loaded. If
the service is hardware only, the driver is now registered as an OSGi service under
the designated service interfaces. For co-modules, there is already an existing
service proxy which needs to be altered to redirect calls to the JNI driver and
hence to the hardware service. In order to perform juggling from the software
to the hardware service in a consistent manner, all pending service method calls
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that are still accessing the software implementation will run to completion in
software whereas all newly method calls use the hardware. This is consistent with
the behavior of dynamic code modifications in the JVM like the RedefineClasses
function in the Java Virtual Machine Tool Interface (JVMTI) which is frequently
used in runtime debugging tools or for runtime aspect-oriented programming
(AOP) support.

5 Juggle Prototype System

Our prototype system uses the Xilinx XUPV2P development board [19] contain-
ing a Virtex-II Pro FPGA with a total number of 30,816 programmable logic
cells. In addition, the FPGA chip contains two embedded PowerPC 450 cores
running up to 300 MHz. The cores can have an instruction and data cache with
up to 16 KB each and a MMU. Xilinx provides a patched Linux kernel tree that
runs on the PowerPC cores.

The system boots off a flash device containing the system ACE file which
initially configures the PPC cores as well as programming the static parts of
the FPGA required to connect the PPC cores to the peripheral hardware. The
PowerPC405 program counter is set to the starting address of the Linux kernel
also contained in the ACE file. During and after the boot process the kernel can
use the flash card as a secondary storage device for its root file system.

Fig. 4. Base design of the prototype system

Figure 4 shows a block diagram of the base system design used for the proto-
type system. A single PowerPC core is attached to a Processor Local Bus (PLB)
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which is part of the IBM CoreConnect Bus Architecture specification [4] and in
this system serves as a communication backbone. An Ethernet connector, a serial
port, and the compact flash connector for the card holding the system ACE file
are attached to this bus through their controller logic cores. In addition, there
is a bridge which connects to a second bus, the On-Chip Peripheral Bus (OPB).
Even though this bus type is deprecated in recent versions of the Xilinx tools,
the Virtex-II Pro internal configuration access port (ICAP) is only capable of
communicating through the OPB. Later versions of Virtex chips feature ICAP
devices that can be directly attached to the PLB. Our prototype contains only
a single PRR, for the proof of concept, which is attached to the OPB through a
socket bridge. This has the consequence that only a single hardware-accelerated
service can run at any time.

The figure shows the logical structure of the base system. Physically, the PR
region of the system has been placed at the right edge of the chip. The reason
is that the entire memory bank is connected to the left side of the chip so that
choosing the right side for the PRR keeps the the number of static routes crossing
the module boundaries low. As a consequence, the RP region can cover almost
the full height of the device except for four rows of IOB and IOI at the top and
bottom. The width of the PR region spans 8 CLBs, leading to a total size of
almost 16% of the FPGA fabric (Table 1):

Table 1. Physical resources of the FPGA chip and the PRR

Slice Mult Ram16 TBUF

Entire FPGA 13696 136 136 6848
PRR 2240 (16.35%) 20 (14.7%) 20 (14.70%) 6848 (16.35%)

The prototype runs the PowerPC core at 300 MHz and features 256 MB
of external DDR SDRAM. As an operating system, it uses the patched Xilinx
Linux kernel based on version 2.6.35 and a Java virtual machine (three different
VMs have been successfully tested). After the system has booted, about 190
MB remain available for user-space programs such as the JVM and Juggle. Due
to the constrained resources, Juggle relies on an updated version of the highly
optimized Concierge [13] OSGi technology implementation. The OSGi frame-
work is enhanced with support for hardware-accelerated OSGi bundles through
an FPGA extender. The prototype system does not feature an autonomic con-
troller for juggling software and hardware implementations of services. Instead,
it registers an extension service for the Concierge shell so that the juggling can
be triggered on demand by the user of the system.

6 Evaluation

The use case for evaluating Juggle is an application that requires encryption.
This can, e.g., be the encryption of data on the internal storage of the device
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or a secure protocol which encrypts the data before transmission. Normally the
encryption functionality would either be implemented in software or, if perfor-
mance critical, in hardware as an ASIC. Security, however, is one of the areas
that require a constant update of the technology used due to bugs in imple-
mentations and exploits through weaknesses in the algorithms. For instance,
if the mobile device was shipped with an ASIC accelerating the encryption of
data with the Data Encryption Standard [10] (DES), the de-facto standard until
2004, it would be obsolete by now since with todays possibilities the DES encryp-
tion cannot be considered secure. If, however, the encryption is implemented as a
hardware-accelerated service, the device becomes much more flexible and future-
proof. First, the encryption algorithm can be exchanged at any time, e.g., with a
Triple-DES encryption [11], even at runtime. Second, encryption can selectively
run hardware-accelerated, e.g., when the performance of the interactive process
is limited by the encryption of data. An example would be a user decrypting
an larger email message. When the user switches the foreground task, e.g., to
the music player, the audio decoding becomes the hardware-accelerated service
and any encryption happening in the background runs through the software
implementation of Triple-DES.

6.1 DES and Triple-DES as Hardware-Accelerated Services

A DES and a Triple-DES encryption service have been implemented as hardware-
accelerated OSGi services for Juggle. Both services are implemented in software—
using either the Java Cryptography Extension (JCE) provider shipped with the
VM or the BouncyCastle [16] Java library—and in hardware in the form of a
partial bitstream for the PR region in the base system. Listing 5 shows the com-
mon service interface of both DES and Triple-DES so that one can be easily
exchanged with the other.

public interface Encrypt ionServ i ce {
void loadKey (byte [ ] key ) ;
int encrypt ( ByteBuf fer data , int s i z e ) ;
int decrypt ( ByteBuf fer data , int s i z e ) ;

}

Listing 5. Interface of the EncryptionService

The bitstreams for hardware-accelerated services for a given PRR have the
identical size (≈145 kB in case of our prototype system) since the entire PRR
is reconfigured in either case. In practice, tools for partial reconfiguration like
Xilinx PlanAhead create compressed bitstreams so that there can be slight vari-
ations in the size depending on the complexity of a design. Table 2 shows
a detailed resource consumption of the two hardware implementations when
programmed into the FPGA. As reference points we have added two simple



444 J.S. Rellermeyer and R. Küpfer

hardware-accelerated services we used during the development of the system, an
adder service and a multiplication service, which both take two Java primitive
type integers as input and return the result of the arithmetic operation as a
Java integer. The Triple-DES implementation in fact contains three instances of
DES and hence consumes about three times more chip real-estate than the DES
implementation. Both hardware-accelerated services leave enough space so that
potentially other services could run in parallel if the base system was designed
to support this.

Table 2. Physical resources used by different hardware-accelerated services

PRR add mul DES Triple-DES

LUT 4480 90 (2.01%) 58 (1.29%) 1081 (24.13%) 3008 (67.14%)
Flipflop 4480 176 (3.93%) 144 (3.21%) 513 (11.45%) 1527 (34.08%)
Slice 2240 108 (4.82%) 88 (3.93%) 660 (29.46%) 1835 (81.92%)
Mult 20 0 1 (5.00%) 0 0

Since the reconfigurable area is always entirely overwritten, the reconfigura-
tion time is solely a function of the target service and not of the service previously
located in the PRR. Hence, the time depends on the number of elements to be
reconfigured. Table 3 shows the exact sizes of the example bitstreams and the
reconfiguration times. The static full bitstream used to boot the system is given
as a reference point in terms of bitstream size but it indeed cannot be used for
reconfiguration. The reconfiguration time for our examples varies between 11.2
and 24.9 milliseconds. Values reported in the literature indicate that in general
the reconfiguration time of the Virtex-II Pro is between 10 and 35 milliseconds.
There is an additional overhead involved in switching the socket bridge, which
adds on average about three milliseconds. In total, the time to juggle a ser-
vice is hence between 15 and 30 milliseconds for our examples. This indicates
that an on-demand reconfiguration is feasible given the latency requirements of
applications typically found on mobile devices.

The time to create the initial hardware service is in range of 100 milliseconds
for our DES and Triple-DES example and includes the time to create the service
proxy and the time to load the JNI driver for the hardware. Loading either of the

Table 3. Size of the bitstream and reconfiguration time

bitstream size in bytes reconfiguration time

static full.bit 1448817 (100%) —

add 123249 (8.50%) 11.159 msec
mul 128222 (8.85%) 24.896 msec
des 149087 (10.29%) 13.441 msec
tdes 149088 (10.29%) 13.374 msec
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two encryption bundles, which are implemented as co-bundles and also register
a software service, takes less than a second. The startup time of Juggle, which
includes the startup time of the Java virtual machine, Concierge with the basic
bundles, and the load time of the FPGA extender bundle, is on average 6 seconds
in the prototype setup.

6.2 Acceleration through Juggle

Dynamic juggling of software and hardware services has shown to be feasible for
a large class of applications. What remains to be shown is that hardware ser-
vices have in fact a significant potential for speeding-up Java programs. For this
purpose, we have evaluated different ways of performing TripleDES encryption
on our prototype board using different Java virtual machines.

For the PowerPC architecture, there is no implementation of the original Sun
Java HotSpot Virtual Machine. However, since the sources were released to the
open source community, the IcedTea project [5] has implemented a portable
version of the OpenJDK which is largely free of assembly code (IcedTea Zero)
and has been successfully ported to the PowerPC and other architectures. The
main caveat of the IcedTea Zero VM is that it is purely interpreting and does not
feature just-in-time compilation. Hence, the performance of applications running
on the IcedTea Zero VM is significantly lower than on a JIT-enabled virtual
machine. For comparison, we have taken a version of the IcedTea VM enhanced
with the Cacao [8] just-in-time compiler. Both versions are based on the same
Java 6 version 1.8.2 build 18 of IcedTea. The Zero VM is version 14.0-b16, the
Cacao JIT corresponds to the released version 0.99.4. The third virtual machine
used is the IBM J9 VM for PowerPC. This virtual machine has JIT and is
typically used in production servers of the PSeries but also runs on the PPC
405. The version used is J2RE 1.6.0 IBM J9 2.4 build pxp3260-20071123 01.

As a first reference point, we have measured the performance of different
Java TripleDES implementations on the three virtual machines running on our
evaluation prototype system. In general, cryptography for Java applications is
supported through the Java Cryptography Extensions, an API for data encryp-
tion, authentication, and key management. All three virtual machines used in
the experiments ship with a JCE provider. The providers of the two IcedTea
flavors are identical while the IBM implementation is based upon a different
code-base. For further comparison, we have used the open-source JCE provider
BouncyCastle [16] in its latest version 1.38 for Java 6. This library can uniformly
run on all three virtual machines.

The experimental setup for this and all following experiments is the encryp-
tion of a buffer filled with random bytes, using TripleDES with the same fixed
key. The size of the buffer is varied in the experiments to get an impression of the
overall performance characteristics of the corresponding implementations. Fig-
ure 6 summarizes the experimental results for the various Java implementations.
As a baseline of comparison, the graph additionally shows the performance of a
C program using the Triple-DES implementation from Eric Young’s libdes.
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Fig. 6. Performance of Triple-DES encryption in Java

The first conclusion to be drawn from the results is that the interpreting
VM has a significantly lower performance than the other two VMs. This can be
expected since cryptography is computation-intensive and can hence profit to a
large extent from just-in-time compilation. The IBM VM performs better with
its own JCE provider whereas on Cacao BouncyCastle performs better than the
built-in OpenJDK provider. Overall, however, even this implementation is still
almost a factor of three slower than the C implementation, which is surprising
given its JIT but it is possibly constrained by the available systems resources.

The next experiment compares the performance of the two software implemen-
tations (IBM J9 JCE and C+libdes) with the performance of a hardware-
accelerated Juggle service running on the different VMs. The hardware-accelerated
service consists of a Java interface, a JNI driver, and the correspondingTriple-DES
logic in the FPGA.

The JNI driver exchanges data with Java through ByteBuffers and shuffles
data to the FPGA TDES core by writing to software registers. Triple-DES is
a block cypher. For the encryption of each block (of 8 bytes), the JNI driver
writes the data into two 32 bit registers of the TDES core and then alters a
status register to indicate that the data is ready and the requested operation is
an encryption. When the core has encrypted the data, it sets the status register
to a success value. The JNI driver busy-waits on the content of the status register
and then reads back the encrypted result from two 32 bit registers. This design
has been mainly chosen for simplicity, more sophisticated implementations might
further improve the performance of the hardware. The TDES core runs with the
bus clock speed, which is 100 MHz in the prototype system and therefore a factor
of three lower than the CPU clock.

Figure 7 shows the measured results and, as a baseline, the performance of a C
implementation using the same FPGA TDES core for acceleration. Hardware-
accelerated encryption in Java can provide a performance equal to using the
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Fig. 7. Performance of Triple-DES encryption through a hardware-accelerated service

FPGA directly from C since the static overhead becomes irrelevant for realistic
buffer sizes. When encrypting buffer of at least 64 bytes size, a Juggle hardware
service accelerates the encryption by a factor of almost 20 compared to the best
Java software service. Furthermore, when accelerating the performance-critical
code through hardware implementations, the interpreting VM can reach almost
the performance of a JIT-enabled VM. This is an interesting design option for
highly resource-constrained systems that cannot afford the memory and storage
footprint of a just-in-time compiling VM.

6.3 Power Consumption

Besides performance, power consumption is a major issue for mobile and battery-
powered embedded devices. Therefore, we evaluated the power consumption of
three different implementations of TDES by using a wattmeter introduced be-
tween the power supply of the prototype board and the power outlet. Hence,
the values measured determine the consumption in the primary circuit and cor-
respond to the de-facto consumption observed by an operator of the device. For
benchmarking, we used the TDES encryption of a buffer of 1024 bytes in 30
runs of loops of 1000 encryptions and measured the power consumption for the
OpenJDK IcedTea VM with the Cacao JIT and the JCE encryption provider,
for the C implementation using the libdes library, and for the same OpenJDK
IcedTea/Cacao VM but using the FPGA for the encryption. Figure 8 shows
the results for the three different implementations. The power consumption of
the board in the idle state is 8.75 W, illustrated by the dashed horizontal line.
The two Java implementations have a peak consumption in the first six seconds,
which is the time that the JVM takes to start. After this startup time, the soft-
ware implementation has a relatively stable power consumption of 9.1 W whereas
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Fig. 8. Power consumption of the different TDES implementations

the FPGA-based implementation uses only 8.9 W. The C implementation has a
constant consumption of 9.1 W.

Integrating the power consumption over the runtime of the test run gives
the total energy required for performing the encryption task. The pure Java
implementation, which has a total runtime of 346 seconds (the figure does not
show the entire runtime for Java/JCE), consumes 3151 Joule. With the C imple-
mentation, the device consumes a total of 199.6 Joule, only slightly more than
6% of the energy for Java/JCE, mainly due to the significantly lower runtime.
When accelerated through Juggle, however, the encryption can be performed in
Java using only 81.7 Joule, which is about 41% of the energy spent with the C
implementation.

7 Related Work

Juggle is not the first attempt to interface between a high level language like
Java and reconfigurable hardware. JBits [1] is a set of Java libraries that can
read bitstreams either generated by the toolchains or from a currently running
FPGA device. It provides an API to modify a configuration bitstream and use
it to reprogram the device. Unfortunately, JBits provides little abstraction over
a hardware description language. Hence, it is highly platform-dependent and
requires the using application to explicitly deal with low-level details such as the
routing.

Liquid Metal [2] features the Lime language which is based on Java but ex-
tended with a special and more restricted type system amenable to bit-level
analysis. Lime can be compiled both into Verilog and successively into FPGA
bitstreams as well as to Java byte-code. The target domain of Liquid Metal is
similar to Juggle as both systems target devices with both a conventional CPU
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and an FPGA as an additional resource for dynamic acceleration. The major
difference is the level on which the systems operate. Liquid Metal attempts to
create a unified language for both the software and the hardware design. Jug-
gle in turn focuses on the integration of the two worlds through composition of
modules.

A different approach has been taken with JOP [14], a Java optimized processor
implemented on top of an FPGA. The motivation of JOP is to enable the use of
high-level productivity languages like Java for programming FPGA chips. The
authors point out that the programming languages usually used on top of systems
on a chip like C and Assembler provide poor abstractions to the programmer. The
result of this consideration is a JVM implemented as a processor on an FPGA.
The original Java byte-code is translated by the processor into an address in the
own microcode format of the FPGA-driven JVM.

Ullmann et al. [17] present a complete approach to a module based architec-
ture for automotive control devices. Todays automobile classes contains up to
100 control devices which quickly obsolete and decreases the product life cy-
cle from 5 to 2 years. The adaptivity of reconfigurable devices can increase the
product life cycle while reducing the cost and risk for development and later
maintenance.

A high-level approach for using the Xilinx FPGA reconfiguration is explained
in the work of Williams et.al. [18]. They present a modular platform for RSoC
called Egret designed around the idea that complex systems can and should be
designed by composition. The specification of an assembled hardware module
stack is given to a software tool that constructs the appropriate FPGA configu-
ration, as well as software infrastructure such as device drivers.

8 Summary and Discussion

Juggle shows that a modular and loosely-coupled approach to integrating
software and reprogrammable hardware facilitates a flexible and dynamic co-
existence between software and hardware services. Applying the same manage-
ment facilities to both worlds simplifies the development of such systems and at
the same time gives the maintainer the opportunity to alter the setup even at
runtime. OSGi is extensible enough to be used for this purpose and the extender
pattern avoids large parts of the boilerplate code required for registering services.
The latency of reprogramming reconfigurable areas is low enough to seamlessly
switch between the software and hardware and accelerate the most critical tasks
at any time. Due to the common interface that Juggle applies to both software
and hardware services, the substitutability principle of modularity ensures that
existing applications do not need to be modified for Juggle. Hence, their per-
formance can gradually be improved through introducing hardware services. In
practice, the degree of acceleration can be significant, as shown with TripleDES
where we reached a speedup of 20 despite the unoptimized hardware design.
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Abstract. Contemporary middleware offers powerful abstractions to
construct distributed software systems. However, when inspecting the
software at run-time, these abstractions are no longer visible. While in-
spection, monitoring and management are increasingly important in our
always-online world, they are often only possible in terms of the lower-
level abstraction of the underlying platform. Due to the complexity of
current programming languages and middleware, this low-level informa-
tion is too complex to handle or understand.

This paper presents a run-time inspection system based on dynamic
model transformation capabilities that extends run-time entities with
higher-level abstract views, in order to enable inspection in terms of
the original and most relevant abstractions. Our solution is lightweight
in terms of performance overhead and agile in the sense that it can
selectively (and on-demand) generate these high-level views.

Our prototype implementation has been applied to inspect distributed
applications using RMI. In this case study, we inspect the distributed
RMI system using our integrated overview over the collection of dis-
tributed objects that interact using remote method invocation.

1 Introduction

Run-time analysis and run-time inspection of software is required at various
stages of the software engineering life cycle: from the early prototyping phases,
over the debugging phases that are inherently present when preparing for re-
lease, to the deployment phases when the software is exploited in a produc-
tion environment where profiling and monitoring are important for management
purposes.

Many distributed software systems, for example based on the service oriented
computing paradigm, or built using web service technology cause major and
ineffective efforts to enable dynamic and run-time analysis. In such systems,
the operational code is the result of composing and translating many build-
ing blocks, developed using different technologies at different abstraction layers.
For example, in contemporary distributed systems, applications are represented
at different layers of abstractions, ranging from business process management
(BPM) support such as the Business Process Execution Language (BPEL [10])
over web services and enterprise component models, to plain object oriented
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artifacts and possibly native code. The run-time application typically consists
of byte code and data structures that cannot be used to observe higher level
abstractions that the BPM developer, system operator or web service integrator
might understand. In summary, the run-time representation of such a program
is a complex synthetic structure that is not suitable for run-time monitoring by
the system operator and that is foreign even to the original developer.

This trend is further evolving due to the versatile modeling and program-
ming languages that can be combined in a single system. Meanwhile platforms
and operating environments (cloud based systems, Internet of things etc) tend to
become more heterogeneous. The need for run-time inspection and dynamic pro-
gram analysis increases rapidly. Various stakeholders (developers, operators etc.)
should be capable of building dynamic program analysis features that represent
the abstraction and concepts that match their understanding of the software.

To enable inspection of such complex composed systems, we present an
approach to run-time inspection, based on dynamic model transformation ca-
pabilities to extend run-time artifacts with higher-level abstract views, in or-
der to enable inspection in terms of the relevant abstractions. Our solution is
lightweight in terms of performance overhead and agile in the sense that it can
selectively (and on- demand) generate these high-level views. We combine model
transformation and reflective technology to enable a declarative specification of
the relation between abstractions. This declarative specification is automatically
converted into a mirror-based inspection system that reconstructs representa-
tions of higher-level abstractions [1].

The core element of our approach is a generator that is capable of convert-
ing the declarative specification of relationships between views on a system (at
various abstraction levels) into an actual system that consumes information
from lower-level reflective interfaces and implements the higher-level interface.
We have developed a prototype implementation of such a system that is capa-
ble of translating the relationship between programming models into mirroring
systems.

Our generator is validated in a middleware case-study. The generated inspec-
tion system automatically collects information from multiple machines, to offer
a view on a collection of distributed objects that interact using remote method
invocation (RMI hereafter). To enable intuitive inspection, distribution is made
transparent, enabling navigation through remote relations with the same ease
as local relations. Also distributed stack traces, that span multiple VMs, are
represented as if they are local.

The remainder of this paper is structured as follows. The next section elab-
orates on the problem of inspection of middleware based applications. Section
three discusses the requirements for middleware inspection. Section four gives
a detailed overview of our solution. In section five, we validate our solution
with four inspection cases and evaluate the performance overhead. Section six
describes the related work and section seven concludes.
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2 Problem Illustration

Application developers and integrators use middleware as development plat-
form and abstraction layer. They use the advanced functionality provided by
the middleware, but they are unaware of its inner workings. Middlewares and
programming languages offer powerful abstractions, that allow programmers to
focus on functionality while making abstraction of technical complexity.

However, when a middleware based software system is deployed, the mid-
dleware abstractions are no longer visible. The middleware and the application
are composed together into a single synthetic system. The abstractions pro-
vided by the middleware are are no longer visible in the run-time structure.
When inspecting the run-time structure, the programmer is faced with its full
complexity.

When performing detailed inspections, with a monitoring or debugging tool,
the developer or operator is faced with information in terms of the language
abstraction. The middleware is no longer an abstraction layer, but a complex
synthetic structure. The application is no longer represented in terms of middle-
ware abstractions, but entangled in a complex low-level system.

For distributed middleware, the situation is further complicated by distri-
bution. The run-time structure is not only hard to understand, but it is also
scattered over different machines. When the middleware is capable of automatic
deployment, without human interaction, it is not even known up-front which in-
formation is located where. Only the middleware itself knows where the various
components have been deployed.

As an example, we will look at remote method invocations in Java. RMI cre-
ates a notion of distributed objects and distributed threads. While this is a very
basic middleware feature, its run-time structure is already hard to understand
without tool support. A distributed object consists of a stub and a proxy. The
stub listens on a network port for remote calls. When it receives a remote call,
it passes them on to an actual local object. A proxy acts as a local object, but
sends all calls it receives over the network to its stub. To support remote invoca-
tions, proxy objects are passed on between the different hosts. When a method
is invoked on a proxy, the stub on the remote host is contacted and a thread
is created on the remote side of the call. This thread receives the request and
invokes the correct local method. The caller thread is blocked until the remote
call is complete. As such RMI creates many threads, on different machines. What
looks like a single thread of execution to a programmer is actually a collection
of many different threads on different machines.

In the current state of the art, several tools exist to examine the state of
RMI applications. Tools such as JMX for example can provide general overview
information, such as the number of threads, memory usage and garbage col-
lector information. A Java debugger can be used for detailed inspection of the
individual nodes.

However, there is currently no tool capable of presenting a detailed overview.
When an RMI application exhibits undesired behavior, there is no convenient
way to inspect it. Current tools don’t support distributed objects or distributed
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logical threads of execution through the various machines. In practice it would
require manually decoding all stack traces on all machines, to find the various
local threads that make up the distributed stack trace. Conversely, there is no
convenient way to find a stub for a specific proxy.

Fig. 1. example of an RMI stack trace

Consider Figure 1. On the right is the conceptual overview: a client performs
a remote call to a server. On the left we see the view current tools can offer:
on each virtual machine, there is a number of threads. Even when the correct
pair of threads is isolated, the view is still polluted with synthetic code. In this
case, each of the stack traces contains only one line of actual application code.
Furthermore, the information of where the call comes from and where it goes to
is not apparent from these synthetic stack traces.

3 Requirements and Approach

When inspecting middleware based applications, the abstraction offered by the
middleware should be maintained. For RMI in particular, this means that remote
objects and logical distributed threads should be visible.

However, it is also important to acknowledge that openness to inspection is
not the core functionality of middleware. Inspection tools should not place a
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burden on the normal structure and operations of the middleware. As such,
the inspection tools should not overly influence the middleware’s core design or
operations.

As such we propose three requirements:

1. Information should be extracted from existing sources. By reusing existing
sources of inspection information, we make sure the middleware’s execution
structure can be optimized for concerns other then inspection. It enables cre-
ation of inspection tools for middlewares that are already in production. No
extensive instrumentation or modification is required to support inspection.

2. What is to be inspected should be specified independent of how it should be in-
spected. Middleware experts are not necessarily inspection experts. As such,
a middleware expert should be capable of conveying his knowledge about
the middleware abstractions without being concerned with the technicalities
of distributed inspection. When a middleware expert writes an independent
specification of the abstractions, he has the freedom of expressing all facts
he knows, without having to think about the efficiency of the resulting in-
spection tool.

3. Lazy inspection should be supported. Inspection should interfere with nor-
mal operations as little as possible. Inspection tools should support precise
scoping, in which only the required information is extracted. Detailed in-
spection often focuses on a specific part of the system and explores from
there outwards. To support such a restricted focus, the system should sup-
port dynamic, on-demand inspection. It should only inspect the part of the
system that is requested by the user.

To fulfill these requirements we propose the use of model transformations to
build abstract views on top of existing inspection tools. Model transformations
enable declarative specification of the relation between the existing inspection in-
terfaces and the desired inspection interfaces in a declarative and natural way. In
our solution, these specifications can be automatically converted to middleware
components that support dynamic inspection.

As such, our approach for presenting the run-time state leverages on a declar-
ative specification of the transformation that restores the middleware abstrac-
tions. This specification is purely declarative and free of technical details about
run-time inspection. It describes how the run-time structure, that can be ob-
served through existing inspection interfaces, relates to the conceptual structure,
that we want to observe. The declarative specification is automatically converted
into an implementation of the high-level reflective interface as a component that
consumes a lower-level reflective interface and provides a high-level reflective
interface.

Our approach can be divided into four steps.

1. Modeling: the existing inspection interfaces and the desired high-level in-
spection interface are represented by models. For the low-level interface this
is usually a trivial conversion of the existing interface into a textual model.
Modeling the desired high-level interface requires some design efforts, as they
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define which information should be presented to operators or developers. For
more information about the design of such interfaces, we refer to Bracha et
al [1].

2. Intermodeling: the relations between the low-level source models and the
high-level target model are specified as a model-to-model transformation.
This requires a very precise understanding of the run-time structure of the
middleware. However, it requires no special knowledge about reflective sys-
tems.

3. Generation: the model-to-model transformation is automatically converted
into an inspection component that consumes low-level inspection information
and produces the higher level information.

4. Deployment: the generated component is connected to the actual system.

In the intermodeling phase, a model-to-model transformation language is used
to relate the existing structure to the desired structure. Generic model trans-
formation systems exist in the form of rule engines and model-to-model trans-
formers [19,21,4,19,11]. However, both types of systems have no support for lazy
execution. These existing systems fundamentally assume that the entire system
must be transformed at once. These systems apply an eager strategy, that makes
lazy evaluation impossible. Due to the size of the run-time state of software sys-
tems, this eager strategy is too slow to support effective reflective transforma-
tions. As such, we base the syntax and semantics of our transformation on the
existing QVT-r language[19], but provide an alternate, lazy execution strategy.
We named this QVT-r dialect dynamic QVT-r or QVT-dr.

4 Detailed Solution

This section explains the technical details of our solution. First the declarative
description of model-to-model transformations is presented. Then, we describe
how such a declarative specification can be converted to an executable form.
Finally, we discuss the advantages of this approach.

4.1 Declarative Specification of Model to Model Transformations

In general, a model-to-model transformation expresses the relations between a
source model and a target model. The model transformation defines how entities
in the source model are related to entities in the target model and vice versa (See
Figure 2). For our approach, the source model is an existing inspection system.
The source meta-model is the interface of this inspection system. In analogy, the
target model is the inspection infrastructure we wish to provide. Its interface
is described by the target meta-model. The transformation definition describes
the relation between the two interfaces, while the transformation engine is the
component we generate, which implements the target model by consuming the
source model.
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Fig. 2. Overview of model to model transformations. Based on [4]

Meta-modeling. More concretely, for RMI, the source meta-model is the Java De-
bugging Interface, JDI [27,1]. It contains entities such as classes, objects, threads
and stack frames. Each of these entities has properties. Classes for example have
a name, instances and a reference to their virtual machine. The source model
is an instance of JDI, that connects to an actual running Java virtual machine
(JVM). It provides instances of the types defined in the meta-model, which rep-
resent the actual classes and the actual objects present in that JVM. The target
meta-model is the remote java debugging interface (RJDI), which contains all
entities present in JDI, but also all RMI abstractions, such as stubs, proxies
and distributed logical threads. Like in the source-meta model, the entities have
properties. Proxies for example have an associated stub, instances and a refer-
ence to their virtual machine. The target model is provided by our generated
inspection component: it implements the RJDI interface, based on the JDI in-
terface. The model transformation itself defines how the RJDI interface can be
implemented.

Model Transformations. A declarative model transformation describes all rela-
tions between elements in the source and target model. Any QVT-(d)r trans-
formation consists of a set of relations, where each relation models the relation
between two specific entities. A relation defines the conditions an entity in the
source model must fulfill to be transformed into a specific entity in the tar-
get model. Listing 1.1 shows the relation between Java (JDI) classes and RMI
(RJDI) proxy-types.

To relate both entities, all their properties are bound to a set of shared vari-
ables. All variables bound in the target model can be derived from the variables
bound in the source model. The relation also defines a set of preconditions to
which the source entity must comply. These preconditions are demarcated with
the keyword ����. When an entity of the correct type is found in the source
model for which all preconditions hold, we say the relation holds.

If the relation holds, the target model must contain the target entity. Further-
more, the relation can also define a set of post-conditions (demarcated with the
keyword �����). If the relation holds, all post-conditions must hold.

As such, Listing 1.1 defines a single relation, relating two entities. It states
that if an entity of type ClassType exists in Java (JDI), and it has $Proxy in
its name and its superclass has as name java.lang.reflect.Proxy, then this
entity corresponds to an RmiProxyType in RMI (RJDI), which belongs to the
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1 �����	
� ObjectReferenceTypeToProxyType{

2 �
��	� JDI in:ClassType {

3 instances = instI;

4 };

5 �
��	� RJDI out:RmiProxyType {

6 instances = instO;

7 // other properties omitted

8 };

9 ����{

10 VmtoVm(in.virtualMachine ,out.virtualMachine );

11 in.name.contains("$Proxy");

12 in.superclass .name = "java.lang.reflect.Proxy";

13 // more complex preconditions omitted

14 }

15 �����{

16 ObjectReferenceToProxy(instI ,instO);

17 // additional post -conditions omitted

18 }

19 }

Listing 1.1. Concrete example of a model transformation relating RMI-proxies to
their Java equivalents

corresponding virtual machine. The instances of the RmiProxyType can be derived
through the ObjectReferenceToProxy relation.

In this example, we omitted the more complex pre- and post-conditions that
are used to extract more information from the middleware, such as how to find
the stub associated with this proxy. These parts of the pattern are analogous to
what is already presented, but require a more intimate knowledge of the internals
of RMI.

Using this approach, a description of the run-time structure of the most im-
portant RMI concepts is created. Stubs and proxies can be found based on these
patterns both on the heap and on the stack. They are transformed into a repre-
sentation that hides their internal complexity but exposes their internal state.

4.2 Dynamic Execution of Declarative Model Transformations

Such declarative model transformations are not directly executable. The next
section describes how the declarative specifications can be converted to an ex-
ecutable form. It describes the internal mechanism of the generator that trans-
forms the declarative specification to an inspection component that dynamically
and lazily transforms low-level information.

The model transformation defines how information flows between the source
and target model. As such, the main task of the generator is to infer an imple-
mentation for all operations of the target model, based on the operations in the
source model, in such a way that lazy evaluation is supported. The generator is
based on a four step process.
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1. Parsing. The model transformation definition and related meta-models are
compiled into a data-flow graph and type-checked. The data-flow graph di-
rectly represents all relations defined in the transformation definition.

2. Inference of the control flow. Directions are added to the flow of infor-
mation. Given the fact that the input node is known and the characteristics
of all other nodes, a sat solver is used to compute all valid flows of informa-
tion through the model. If multiple alternatives exist, a heuristic is used to
choose the most optimal.

3. Model partitioning. The graph is partitioned into three parts: a part
containing all preconditions, a part containing all postconditions and a part
containing the rest.

4. Code generation. Based on the partitioned information flow graph, code
is generated.

The remainder of this section provides more information about these steps.

Parsing and Checking. The declarative model transformation definition is
parsed into an abstract semantic graph (ASG). The ASG is a typed and labeled
graph (e.g. Figure 3), representing the structure of the source meta-model, target
meta-model and the transformation between them. First we discuss the general
structure of the ASG and then illustrate it based on the ASG segment in Figure 3.

In general, for each relation (such as the one in Listing 1.1), each entity
presented in it becomes a pattern node in the ASG. Each pattern node is also
bound to a node in the source or the target meta model that indicates its type.
All relations between pattern nodes become edges in the ASG. The type of the
edge indicates the type of the relation. Entities bound to a variable have their
pattern node bound to a variable node.

For example, consider figure 3. It represents the following part of Listing 1.1:

in:ClassType {virtualMachine =temp1 ,instances =instances }.

The variable temp1 is implicit in Listing 1.1. In this pattern, the variable in is
bound to a pattern node of type ClassType. This node is indicated with a bold
border. The type ClassType has three operations: virtualMachine, instances and
name, with as types respectively VirtualMachine, ObjectReference and String.
The pattern binds the operations virtualMachine and instances to pattern nodes
that are bound to the named variables temp1 and instances.

Inference of the Control Flow. To support the generation of an implementa-
tion, the direction of the information flow through the pattern must be inferred.
When considering individual statements, information can flow in either direction.
For example: in Listing 1.1 line 3 and 6 are identical statements but informa-
tion flows through them in the opposite direction. Line 3 assigns the value of
in.instances to the variable instI while line 6 provides a result for the operation
out.instances through the value of instO.

As such, the information flowing through any node depends on the flow
through any other node in the same relation. To derive a valid information
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Fig. 3. Part of the ASG

flow, the flow analysis adds a direction to each edge, indicating the flow of in-
formation. The analysis is based on a model that defines when a node in the
pattern has sufficient information flowing in to calculate all other edges.

While information flow is best explained in terms of graphs, it is more con-
venient to use a SAT solver to efficiently derive an optimal information flow.
Therefore the ASG model is translated into logic predicates. Each edge becomes
a boolean variable indicating the flow of information. Each node becomes a list
of predicates, defining when the node has sufficient incoming edges to calculate
all other edges.

For example, take the pattern from Figure 3. The bold node is defined if ei-
ther 1) information is flowing in from the variable in (i.e. the entity is defined
elsewhere) or 2) all it’s operations (virtualMachine, name and instances) are de-
fined (i.e. a complete definition of the entity is present and it can be constructed
here). However, in this case the operation name is not bound in the pattern. As
such the overall logical predicate becomes (false∧B ∧C)∨A, when we assume
true means the edge is incoming. As a consequence A must be true and the
corresponding edge must be incoming. The bold node thus receives information
from the variable in.

For this simple example pattern, there is only one possible information flow
(A is incoming). However, in general, each node can have multiple solutions.
This require a more global analysis process, taking into account all nodes in the
relation. By converting all nodes and edges into predicates, a SAT solver can be
used to derive all valid information flows through the relation. A search heuristic
can then be used to select one solution.

Model Partitioning. In the information flow graph, some nodes in the pattern
have more incoming edges then strictly required. We call these nodes overcon-
strained. For example, on line 11, in.superclass.name is defined because the
variable in is defined. It is also defined because it is bound to a constant. When
information flow is overconstrained, pattern matching may fail on that node. i.e.
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If both sources of information produce a different value, the relation doesn’t hold.
Any overconstrained node forms a condition that must be checked to determine
if the relation holds or not.

For code generation, overconstrained nodes must be identified. Therefore, the
ASG is partitioned. First it is divided into conditional nodes and non-conditional
nodes. Conditional nodes are either overconstrained or they directly depend on
an operation that may fail, such as a call to another relation. The conditional
nodes are then partitioned again into nodes that have been marked as assertions
and others.

In this way, there are three partitions: the guard nodes (conditions that are
not assertions), the assertion nodes and the non-conditional nodes. The guard
nodes are all the nodes that must be checked to see if the pattern matches. These
nodes (and all nodes providing information to them) must always be evaluated
eagerly (and thus not lazy).

The assertion nodes can be discarded, as the assertion should always hold.
However, they can also be passed to the code generator, to produce more robust
code, that checks all (or some) assertions.

Code Generation. In the implementation (see Listing 1.2) each relation be-
comes a method, that takes as an argument a source-model entity. When the
method is called, all conditions in the guard partition are checked. If all con-
ditions hold, the relation holds. Then an object of the desired target type is
constructed. Each method of this object corresponds to an operation in the tar-
get model. Each operation contains the part of the pattern that provides the
operation according to the inferred control flow. In practice, most operations
use other patterns to create other target-model entities. As such, when a first
target-model entity has been created, the rest of the target model can be ex-
plored using its operations. Each operation will lazily collect entities from the
underlying inspection interface, as required by the patterns.

4.3 Discussion

Our approach enables automatic generation of an inspection component out of a
declarative specification. Apart from the earlier mentioned requirements, it has
two important advantages:

1. Overdetermined specifications don’t result in a slower system. When a model
transformation defines many ways of deriving any given operation, this
doesn’t make the execution of the pattern less efficient. The generator can
choose any sufficient implementation, while discarding redundant informa-
tion. At the other hand, the generator can also be configured to check all
assertions. As such, the generator can create either more robust or more
efficient code, without any manual rewriting.

2. Different tools can reuse the same transformation. As in any compiler, the use
of a central intermediate representation decouples three roles: language user,
optimization writer and back-end developer. The important consequence is
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rmi.RmiProxyType objectReferenceTypeToProxyType(jdi.ClassType in){
rmi.VirtualMachine temp1 = vmToVm(in. virtualMachine);
��(temp1 == ����) ������ ����;
��(!in.name().contains ("$Proxy")) ������ ����;
��(!in.superclass().name().equals("java.lang.reflect .Proxy"))
������ ����;

// more complex guards omitted
������ ��	 ObjectReferenceTypeToProxyType(in,temp1 );

}

���� ObjectReferenceTypeToProxyType �������� rmi.RmiProxyType{
������� jdi.ClassType in;
������� rmi.VirtualMachine virtualMachine;
������� List <rmi.ObjectReference > instances;

ObjectReferenceTypeToProxyType(jdi.ClassType in,
rmi.VirtualMachine virtualMachine){

����.in = in;
����.virtualMachine = virtualMachine;

}

�����
 rmi.VirtualMachine virtualMachine(){
������ virtualMachine;

}

�����
 List <rmi.ObjectReference > instances(){
��(instances != ����)

������ instances;
instances = ObjectReferenceTypeToProxyType(in.instances());
������ instances;

}
// other properties omitted

}

Listing 1.2. Implementation of the pattern in Listing 1.1 without assertions

that replacing the back-end stages yields a different type of inspection in-
frastructure. Inspection can be used in-program (reflective), but also for
debugging or even post-mortem debugging (debugging of systems that have
already crashed). Each of these styles requires a very different tool, but
suffers from the same abstraction gap. If tools are required to support N
languages and M styles, it is no longer necessary to build M*N tools, but N
specifications and M back-ends. By decoupling the back-end and front-end
the complexity of the problem has been reduced from multiplicative to ad-
ditive. Furthermore, as any component is reused more often, it will mature
faster.

5 Evaluation

To validate the use of such a high level inspection tool, we use an example
application and compare inspecting it with existing tools against our solution.
First, a number of use cases are discussed, then we evaluate the performance
overhead of our solution.

The application is a work scheduling server. Jobs, consisting of several tasks
are queued on the server. The server then schedules the tasks on worker nodes.
The server also passes a callback remote object to the worker, by which the
worker can report its progress. When a worker node has completed its task, it
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signals the server through the callback. The server then schedules the next task
in the job on a worker.

On the application, we test four inspection scenarios.

1. A control flow problem: when a worker signals a task is done, the next
task is scheduled from within that thread. This causes all tasks in the job to
be in the same logical thread of execution. The logical thread starts from the
server, then goes to the first worker node and then back to the server, then
back to the next worker and so on. This means that each job consumes 2n+1
threads, with n the number of tasks in the job. This has two side effects: the
server and worker consume a massive amount of threads and network sockets
and, when one worker node fails, all jobs that used this worker before crash
on completion.

2. An information flow problem: when a worker receives a monitor callback,
it exports the callback. When a job is done, it returns the callback to the
server. The server then hands this callback to the next worker. Conceptually,
this is the same callback-reference. However, because the callback has been
exported on the worker, all calls to the remote object are routed over the
worker node. This makes message propagation slow and very sensitive to
failure of worker nodes.

3. A deployment problem: a worker node has been deployed to a wrong host.
This causes two worker nodes to share the same virtual machine. At applica-
tion level the workers look different. RMI makes abstraction of distribution,
so the server doesn’t know they are on the same host.

4. The cost of inspection: different work scheduling servers are working for
different organizations. They share the same infrastructure, but for security
reasons, different servers should never share a worker node. Regular audits
must ensure this.

The control flow problem has no apparent symptoms, until a worker node is
taken out of the schedule and powered down. After some time, jobs start to
fail unexpectedly. When connecting a local debugger to the server and browsing
through all threads present, we find that many threads have a similar structure.
On closer examination, we find that they share the segment depicted in Listing
1.3. On the worker nodes, a similar stack trace is found (Listing 1.4). A very
experienced RMI developer may conclude from this information that the control
flow is going back and forth between client and server. This conclusion is however
far from obvious.

When using our generated inspection tool we can investigate the distributed
logical stack trace from one of the jobs (Listing 1.5). This immediately shows that
the distributed stack trace spans many different nodes. The individual frames
can be inspected to trace this control flow and learn to understand what causes
this behavior.

Similar to the first problem, the second problem has no apparent symptoms,
until a worker node is taken out of service. However, in this case the local stack
trace provide no clues. In the previous example, the long stack traces had a
long lifetime. This made sure many abnormal stack traces were present on any
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... (8 more frames)

RemoteObjectInvocationHandler.invoke()

$Proxy1.run()

MonitorImpl .runOn()

MonitorImpl .done ()

GeneratedMethodAccessor5.invoke()

DelegatingMethodAccessorImpl.invoke()

Method.invoke()

UnicastServerRef .dispatch ()

... (13 more frames)

Listing 1.3. Server side stack trace caused by the control flow problem

... (8 more frames)

RemoteObjectInvocationHandler.invoke()

$Proxy2.done ()

Client.run()

NativeMethodAccessorImpl.invoke0()

... (13 more frames)

Listing 1.4. Client side stack trace caused by the control flow problem

machine, making it easy to find them. However, in this case they are very short
lived. When inspecting any local node, one is unlikely to find any abnormal
stack traces. Also, these stack traces contain no application code. Placing break
points in the application doesn’t help in finding abnormal stack traces. Without
appropriate tools, the only possibility of finding the root cause is source code
analysis.

With our tool, when plotting all remote objects present in the system, it is
immediately clear that most worker nodes are not directly referring to the server,
but referring to other worker nodes (Figure 4). This can only be caused by a
reexport of the remote reference on the worker nodes.

vm3 Client.run()

vm3 STUB 192.168.150.32:38175 57769 -7666749065146411512

vm1 PROXY 192.168.150.32:38175 57769 -7666749065146411512

vm1 MonitorImpl .runOn()

vm1 MonitorImpl .done ()

vm1 STUB 192.168.150.31:39728 36651 -2921635400086109349

vm2 PROXY 192.168.150.33:39728 36651 -2921635400086109349

vm2 Client.run()

vm2 STUB 192.168.150.33:60307 52965 -2670173772187310440

vm1 PROXY 192.168.150.33:60307 52965 -2670173772187310440

vm1 MonitorImpl .runOn()

vm1 MonitorImpl .run()

vm1 MonitorImpl .run()

Listing 1.5. Stack trace of failing application
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Fig. 4. Remote objects with information flow problem

The third bug has no immediately apparent symptoms. When looking at the
load on the different hosts, it will be clear that one host is less heavily loaded.
When looking at the performance of all hosts, two hosts will be underperforming.
Putting these two facts together one may conclude that a node has been deployed
on the wrong host.

When plotting the remote objects with our inspection component (Figure 5),
it is immediately clear the server references two workers on the same host. It is
also clear on which host the nodes are deployed.

Fig. 5. Remote objects with deployment problem

The fourth problem is not a bug as such. It is an auditing requirement. When
using ordinary inspection techniques, it is not cost efficient for an auditor to reg-
ularly dump the state of the application and start digging through in the hope of
finding an irregularity in the communications pattern. Currently, two alternate
solutions exist. The first solution would be to physically separate both infrastruc-
tures. This is more expensive, due to a lack of resource sharing. Alternatively, the
server could be adapted to maintain an explicit list of hosts on which its workers
are located. However, as RMI is location transparent, this would preclude the
use of RMI. When using our inspection component, the physical placement and
relation between hosts can be audited easily, as shown in the previous example.
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To evaluate the performance overhead, we set up the following worst case
scenario: worker nodes with a CPU intensive workload were subjected to contin-
uous monitoring. Our set up consisted of one server with three worker nodes – all
Pentium III single core machines. The inspection server continuously searched
for all proxies and stubs on all machines and retrieved all their attributes. Once
all information was retrieved, the cache was cleared and the search restarted.
With all nodes executing CPU intensive tasks, the performance overhead was
34% compared to the case with no inspection. When the worker nodes were given
less CPU intensive tasks, the performance overhead dropped under 1%.

6 Related Work

This work is founded in the reflection and model driven development (MDD)
communities. The related work around MDD has already been briefly highlighted
in Section 4. In this section, we highlight some influential work from the field
of reflection and compare our approach to existing inspection approaches for
monitoring, debugging and reverse engineering.

Reflection. Reflection is the ability of software systems to reason about and act
on themselves. It encompasses inspection, but also self-modification and meta-
programming. Our approach is inspired on the design principles for reflective
systems, defined by Bracha et al [1]. These principles define that a reflective
system should have ontological correspondence to the system it reflects on and
that reflective systems should encapsulate their implementation.

Ontological correspondence means that the reflective interface should be struc-
tured according to the abstractions of the system it reflects on. This is also one of
our key requirements for middleware inspection: all the middleware abstractions
should be maintained when inspecting distributed software systems.

We also choose for strong encapsulation of the implementation. Our approach
requires no modification of the underlying middleware and puts no constraints
on the middleware’s execution structure. The implementation of the inspection
component is the model transformation, which is declarative and completely sep-
arated from the middleware. However, if the middleware has no interface or fixed
internal structure, the inspection component may break when the middleware
evolves. As such our approach doesn’t require a stable interface, but it is more
stable when a stable interface exists.

Reflective middleware systems [14,31,3] have the capability of reflecting on
the middleware structure itself. This reflection goes beyond inspection and sup-
ports run-time adaptation of the middleware. In such middleware, the reflective
infrastructure is always present. This adds a constant overhead to the execu-
tion. Reflective middleware systems can serve as sources of information for our
approach. They can be used in the way we used JDI in this paper.

Monitoring. Monitoring systems keep track of a limited set of inspection tar-
gets over a long period of time. Monitoring consists of two main activities: in-
formation extraction and information aggregation.
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The most common way of extracting information is built-in monitoring. The
system is modified by hand to emit events that signal important changes [26].
The advantage of this approach is its simplicity, while the disadvantage is that
the monitoring system always incurs an overhead – as it is part of the system. It
can not evolve independently or be adapted at run-time. As such, this approach
is used to expose small volumes of high-level information. When the middleware
actively supports the emitting of events, such as in Google’s Dapper [24], the
event streams of different hosts can be put together to create a distributed trace.
The information extracted from such monitoring probes can also be aggregated.
For statistical aggregation of monitoring data, collection systems are already
widely deployed [7,34].

A second way of extracting monitoring information is instrumentation. In-
strumentation systems automatically modify a program so that it emits events.
This enables dynamic fine-tuning of the monitoring and its associated overhead.
However, dynamic deployment of monitoring probes is a technically complex op-
eration, that requires support of the underlying platform. For many languages
instrumentation support exists [8,18,20].

An advanced proponent of the instrumentation approach is described in [17].
This monitoring system dynamically instruments code ahead of the flow of con-
trol. It has properties comparable to our approach. Monitoring components are
developed separately and deployed on demand. Also the performance overhead
seems to be comparable. The major difference is that our system only supports
structural inspection while Mirgorodskiy et al. only support event based inspec-
tion. As such, their system is capable of tracing change very efficiently, but
incapable of inspecting state that doesn’t change. Our system has the inverse
properties: it can inspect existing state in great detail, but is incapable of per-
ceiving rapid change. However, in the future we aim to integrate events into our
model transformation approach.

Persistent query systems are another possible form of information aggregation.
A query system is a reflective component that allows external systems to query
its own state. A persistent query system is a query system capable of keeping the
results of its queries up-to-date when the underlying system changes. It provides
a form of continuous reporting [22,13,29].

Debugging. Debugging means searching for and remedying of software faults
[35]. Interactive inspection is an important component of debugging, but not the
only one. It also encompasses methodology, tools for automatic and semiauto-
matic detection, prevention and removal of faults as well as edit-and-continue
technology. [23,35,8,33,32,12,25]

The current generation of inspection tools for debugging consists of two cate-
gories: debuggers for languages with a custom VM and debuggers for compiled
languages. Debuggers for languages with a custom VM or languages with a
strong reflective system provide debugging facilities by exposing their internal
data structures. This provides a view of the running program in terms of the
abstractions supported by the VM. Without need for transformations, the VM
natively supports all abstractions.
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For compiled languages, transformations are always required. The state-of-
practice for such languages is to write the required transformations by hand.
This lack of a disciplined approach – combined with the inherent complexity of
pattern matching code – limits the capabilities of current debuggers. GDB [9],
for example, is still unable to decode the heap of C programs. However, recently,
efforts are being made to isolate the pattern matching into separate modules, to
enable heap decoding [15].

For middleware few debuggers exist. One notable exception is a distributed
debugger constructed by Mega and Kon [16]. It offers support for distributed
logic threads, similar to our approach. As most debuggers, its transformation
components have been built by hand, supporting both structural and event based
inspection.

For a more elaborate explanation about the design trade-offs for the construc-
tion of higher level debuggers, we refer to [16,5].

Reverse Engineering. Reverse engineering (RE) tools enable dynamic re-
building of software abstractions. RE tools rely on advanced visualization [6] and
combined static and dynamic analysis [28,30,2]. From a modeling perspective,
reverse engineering mostly uses containment relations. For example, instructions
are grouped into blocks, blocks into methods, methods into classes. Currently,
most RE tools use an event based approach for dynamic analysis. However, our
generator makes state transformation components easier to build and may enable
RE systems to incorporate them.

7 Conclusion

We presented an approach enabling inspection of middleware with full support
for all abstractions offered by the middleware, that requires no modification of
the middleware itself and is capable of limiting its overhead by dynamic, on-
demand transformation.

Our generator technology can be used to construct detailed inspection systems
for middleware. It decouples the role of middleware expert and inspection expert,
to support modular development of inspection tools. Middleware experts can
express their knowledge in a declarative way. This declarative specification is
automatically converted into a usable and efficient inspection component. The
generator is capable of automatically removing redundant information from the
specification and can switch between generating either more robust or more
efficient inspection components.

We have demonstrated the advantage of maintaining the middleware abstrac-
tion when inspecting in four use cases. We also showed that the overhead of the
inspection system is acceptable, even in a worst case scenario.

In the future, we will focus on automatic generation of more complex inspec-
tion tools. We aim to add support for events in our generic inspection approach to
detect run-time changes and act upon them. We will also integrate our approach
into an IDE to enable broader, user-driven evaluation. Further validation and



A Generic Solution for Agile Run-Time Inspection Middleware 469

evaluation of our approach in a broader monitoring and run-time management
context will also provide more metrics about the effectiveness of lazy execution
and the use of overdetermined specifications.
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28. Systä, T., Koskimies, K., Müller, H.: Shimba—an environment for reverse engi-
neering java software systems. Software: Practice and Experience 31(4), 371–394
(2001)

29. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Transactions on Computer Systems (TOCS) 21(2), 164–206 (2003)

30. Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D., Isaak,
J.: Visualizing dynamic software system information through high-level models.
ACM SIGPLAN Notices 33(10), 271–283 (1998)

31. Wangham, M.S., Lung, L.C., Westphall, C.M., Fraga, J.S.: Integrating ssl to the
jacoweb security framework: project and implementation. In: Proc of IEEE/IFIP
Intl. Symp. on Integrated Network Management, pp. 779–792 (2001)

32. Weiser, M.: Program slicing. In: ICSE 1981, pp. 439–449 (1981)
33. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)
34. Zanikolas, S., Sakellariou, R.: A taxonomy of grid monitoring systems. Future

Gener. Comput. Syst. 21(1), 163–188 (2005)
35. Zeller, A.: Why programs fail: a guide to systematic debugging. Morgan Kaufmann

(2009)

http://www.omg.org/spec/QVT/1.0/
http://download.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://www.jboss.org/drools/documentation.html
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/


A Comparison of Secure Multi-Tenancy Architectures
for Filesystem Storage Clouds

Anil Kurmus1, Moitrayee Gupta2,�, Roman Pletka1,
Christian Cachin1, and Robert Haas1

1 IBM Research - Zurich
{kur,rap,cca,rha}@zurich.ibm.com

2 Department of Computer Science and Engineering, UCSD
m5gupta@cs.ucsd.edu

Abstract. A filesystem-level storage cloud offers network-filesystem access to
multiple customers at low cost over the Internet. In this paper, we investigate
two alternative architectures for achieving multi-tenancy securely and efficiently
in such storage cloud services. They isolate customers in virtual machines at
the hypervisor level and through mandatory access-control checks in one shared
operating-system kernel, respectively. We compare and discuss the practical se-
curity guarantees of these architectures. We have implemented both approaches
and compare them using performance measurements we obtained.

1 Introduction

Storage cloud services allow the sharing of storage infrastructure among multiple cus-
tomers and hence significantly reduce costs. Typically, such services provide object or
filesystem access over a network to the shared distributed infrastructure. To support mul-
tiple customers or tenants concurrently, the network-filesystem-access services must be
properly isolated with minimal performance impact.

We consider here a filesystem storage cloud as a public cloud storage service used by
customers to mount their own filesystems remotely through well-established network
filesystem protocols such as NFS and the Common Internet Filesystem (CIFS, also
known as SMB). Such a service constitutes a highly scalable, performant, and reliable
enterprise network-attached storage (NAS) accessible over the Internet that provides
services to multiple tenants.

In general, a cloud service can be run at any of the following increasing levels of
multi-tenancy:

– Hardware level: server hardware, OS, and application dedicated per client.
– Hypervisor level: share server hardware, and use virtualization to host dedicated

OS and application per client.
– OS level: share server hardware and OS, and run a dedicated application per client.
– Application level: share server hardware, OS, and application server among clients.
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Intuitively, the higher the level of multi-tenancy, the easier it seems to achieve a resource-
efficient design and implementation; at the same time, though, it gets harder (conceptu-
ally and in terms of development effort) to securely isolate the clients from each other.

In this paper, we investigate a hypervisor-level and an OS-level multi-tenant filesys-
tem storage cloud architecture, and compare them in terms of performance and secu-
rity. The hypervisor-level multi-tenancy approach is based on hardware virtualization
(with para-virtualized drivers for improved networking performance). We refer to this
architecture as the virtualization-based multi-tenancy (VMT) architecture. The OS-level
multi-tenancy approach uses mandatory access control (MAC) in the Linux kernel and
is capable of isolating customer-dedicated user-space services on the same OS. Such an
architecture may also leverage, for instance, OS-level virtualization technologies such
as OpenVZ or Linux Containers (LXC). We refer to this architecture as the operating-
system-based multi-tenancy (OSMT) architecture in the remainder of this paper.

We have implemented both approaches on real hardware in the IBM Scale-out NAS
(SONAS) [1] and the IBM General Parallel Filesystem (GPFS) [2] technologies. We
used open-source components such as KVM [3] with virtio networking for virtualization
and SELinux (http://selinuxproject.org/) for MAC.

Section 3 describes the architecture of a filesystem storage cloud and introduces
the two designs. Section 4 defines an adversary model and discusses the security of
both architectures according to this model. Section 5 presents the implementation and
benchmark results. Related work is discussed in Section 6.

2 Background

One can distinguish the following categories of general-purpose storage clouds (ignor-
ing storage clouds that provide database-like structures on content):

– Block storage clouds, with a block-level interface, i.e., an interface that allows the
writing and reading of fixed-sized blocks. Examples of such clouds include Amazon
EBS.

– Object storage clouds, composed of buckets (or containers) that contain objects
(or blobs). These objects are referred to by a key (or name). The API is usually
very simple: typically a REST API with create and remove operations on buckets
and put, get, delete, and list operations on objects. Example of such storage clouds
include Amazon S3, Rackspace Cloudfiles, and Azure Storage Blobs.

– Filesystem storage clouds, with a full-fledged filesystem interface, therefore re-
ferred to also as “cloud NAS.” Examples of such clouds include Nirvanix Cloud-
NAS, Azure Drive, and IBM Scale-Out Network Attached Storage (SONAS).

Application-level multi-tenancy is sometimes also referred to as native multi-tenancy.
Some authors consider it the cleanest way to isolate multiple tenants [4]. However,
achieving multi-tenancy securely is very challenging and therefore not common for
filesystem storage clouds. The reasons lie in the complex nature of this task: unlike
other types of storage clouds, filesystem storage clouds possess complex APIs that have
evolved over time, which leads to large attack surfaces. The vulnerability track record
of these applications seems to confirm this intuition. CIFS servers were vulnerable

http://selinuxproject.org/
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to various buffer-overflows (e.g., CVE-2010-3069, CVE-2010-2063, CVE-2007-2446,
CVE-2003-0085, CVE-2002-1318, see http://cve.mitre.org/), format string
vulnerability leading to arbitrary code execution (CVE-2009-1886), directory traversals
(CVE-2010-0926, CVE-2001-1162), while NFS servers were also vulnerable to similar
classic vulnerabilities as well as more specific ones such as filehandle vulnerabilities [5].
Moreover, adding multi-tenancy support into these server applications would require
significant development (e.g., in order to distinguish between different authentication
servers for specific filesystem exports) which will most likely result in new vulnerabil-
ities. We discuss in Sections 3 and 4 architectures with lower levels of multi-tenancy.
They effectively restrict the impact of arbitrary code execution vulnerabilities to the
realm of a single tenant: by definition, this cannot be achieved with application-level
multi-tenancy.

This paper targets the IBM SONAS [1] platform, which evolved from the IBM Scale-
Out File Services (SoFS) [6]. IBM SONAS provides a highly scalable network-attached
storage service, and therefore serves as a typical example of a filesystem storage cloud.
IBM SONAS currently contains support for hardware-level multi-tenancy according to
the architectures discussed in this work. Adding a higher-level of multi-tenancy is an
important step to reduce the cost of a cloud-service provider.

3 System Description

Section 3.1 gives an overview of the general architecture of a filesystem storage cloud.
Section 3.2 describes the MAC policies which are used in both architectures. Sec-
tions 3.3 and 3.4 introduce the two alternatives, detailing the internals of the interface
nodes, the key element of the filesystem storage cloud architecture.

3.1 General Description

Figure 1 depicts the general architecture of a filesystem storage cloud that consists of
the following elements:

Fig. 1. General architecture of a filesystem storage cloud

http://cve.mitre.org/
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– Customers and users: A customer is an entity (e.g., a company) that uses at least
one network file system. A customer can have multiple individual users. We as-
sume that multiple customers connect to the filesystem storage cloud and that each
customer has a separate set of users. Data is separated between users from distinct
customers, and user IDs are in a separate namespace for each customer. Hence
two distinct customers may allocate the same user ID without any conflict on the
interface nodes or in the storage back-end.

– Interface nodes and cluster: An interface node is a system running filer services
such as NFS or CIFS daemons. Interface nodes administratively and physically
belong to the cloud service provider and serve multiple customers. A customer
connects to the filesystem storage cloud through the interface nodes and mounts its
filesystems over the Internet. Multiple interface nodes together form an interface
cluster, and one interface node may serve multiple customers. A customer connects
only to nodes in one interface cluster.

– Shared back-end storage: The shared back-end storage provides block-level stor-
age for user data. It is accessible from the interface clusters over a network us-
ing a distributed filesystem such as GPFS [2]. It is designed to be reliable, highly
available, and performant. We assume that no security mechanism exists within the
distributed filesystem to authenticate and authorize nodes of the cluster internally.

– Customer boarding, unboarding, and configuration: Typically, interface nodes
must be created, configured, started, stopped, or removed when customers are
boarded (added to the service) or unboarded (removed from the service). This is per-
formed by administration nodes not shown here, which register customer accounts
and configure filesystems. Ideally, boarding and unboarding should consume a min-
imal amount of system resources and time.

As an example, a customer registers a filesystem with a given size from the filesystem
storage cloud provider, and then configures machines on the customer site that mount
this filesystem. The users of the customer can then use the cloud filesystem similar to how
they use a local filesystem. Customers connect to the interface cluster via a dedicated
physical wide-area network link or via a dedicated VPN over the Internet, ideally with
low latency. The cloud provider may limit the maximal bandwidth on a customer link.

To ensure high availability and high throughput, a customer accesses the storage
cloud through the clustered interface nodes. Interface nodes have to perform synchro-
nization tasks within their cluster and with the back-end storage, generating additional
traffic. An interface node has three network interfaces: one to the customer, one to other
nodes in the cluster, and one to the back-end storage.

Dimensioning. The size of a filesystem storage cloud is determined by the following
parameters, which are derived from service-level agreements and from the (expected or
observed) load in the system: the number of customers c assigned to an interface cluster,
the number of interface nodes n in a cluster (due to synchronization overhead, this
incurs a trade-off between higher availability and better performance), and the number
of clusters m attached to the same storage back-end.

Customer and user authentication. Describing customer authentication would exceed
the scope of this work; in practice, it can be delegated to the customer’s VPN endpoint
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in the premises of the service-cloud provider. The authentication of users from a given
customer also requires that customers provide a directory service that will serve authen-
tication requests made by users. Such a directory service can be physically located on
the customer’s premises and under its administration or as separate service in the cloud.
In either case, users authenticate to an interface node, which in turn relays such requests
to the authentication service of the customer.

3.2 Mandatory Access Control Policies

We use mandatory access control on the filer services. In case of their compromise,
MAC provides a first layer of defense on both architectures. For practical reasons, we
have used SELinux. Other popular choices include grsecurity RBAC [7] or TOMOYO.
These MAC systems limit the privileges of the filer services to those required, effec-
tively creating a sandbox environment, by enforcing policies that are essentially a list
of permitted operations (e.g., open certain files, bind certain ports, fork, . . . ).

As an example, the policies on the interface nodes basically permit the filer services
to perform the following operations: bind on their listening port and accept connec-
tions, perform all filesystem operations on the customer’s data directory (which resides
on a distributed filesystem), append to the filer log files, and read the relevant service
configuration files.

The protection provided by these policies can be defeated in two ways. One possibil-
ity is if the attacker manages to execute arbitrary code in kernel context (e.g., through a
local kernel exploit), in which case it is trivial to disable any protections provided by the
kernel, including MAC. The second possibility is by exploiting a hole in the SELinux
policy, which would be the case, for example, if a filer service were authorized to load
a kernel module.

An important example of the benefit of these policies is the restriction of accessible
network interfaces to the customer and intra-cluster network interfaces only. Another
example is the impossibility for processes running in the security context of the filer
services to write to files they can execute, or to use mmap() and mprotect() to get
around this restriction. In practice, this means, for example, that an attacker making use
of a remote exploit on a filer service cannot just obtain a shell and download and execute
a local kernel exploit: the attacker would have to find a way to execute the latter exploit
directly within the first exploit, which, depending on the specifics of the vulnerabilities
and memory protection features, can be impossible.

Note that, because of the way MAC policies are specified — that is, by white-listing
the permitted operations — these examples (network interface access denied, no read
and execute permission) are a consequence of the policy and do not have to be explicitly
specified, which encourages policies to be built according to the least privilege principle.

3.3 VMT Architecture

We now introduce the first architecture, called the virtualization-based multi-tenancy
(VMT) architecture. It is based on KVM as a hypervisor and implements multi-tenancy
by running multiple virtual interface nodes as guests on the hardware of one physical
interface node. Such a filesystem storage cloud has a fixed number of physical interface
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(a) VMT architecture (b) OSMT architecture

Fig. 2. Two architectures for multi-tenancy, shown for one interface cluster of each architecture

nodes in every cluster, with each interface node running one guest for each customer.
All guests that belong to the same customer form an interface-node cluster, which main-
tains the distributed filesystem with the data of the customer (labeled GPFS cluster
in Figure 2(a), as explained below). Each virtual machine (VM) runs one instance of
the required filer-service daemons, exporting the filesystems through the CIFS or NFS
protocols, and has three separate network interfaces.

In terms of isolation, MAC can be applied at two levels in this architecture. The
first level is inside a guest, for protecting filer services exposed to the external attackers,
using the exact same policies as in the OSMT architecture1 described below. The second
level is on the host, with the idea of sandboxing guests (i.e., QEMU processes running
on the host, in the case of KVM) by using multi-category security. Policies at this level
do not depend on what is running inside the guests, therefore they can be applied to
many virtualization scenarios. Such policies already exist and are implemented by sVirt
(see http://selinuxproject.org/page/SVirt).

Figure 2(a) shows one of m clusters according to the VMT architecture, in which
the distributed filesystem is GPFS and the daemons in each virtual machine are smbd
(the Samba daemon, for CIFS) and ctdbd (the clustered trivial database daemon, used
to synchronize meta-data among cluster nodes). They work together to export customer
data using the CIFS protocol. The customers are also shown and connect only to their
dedicated VM on each interface node. In terms of the dimension parameters from Fig-
ure 1, for every one of the m interface clusters, there are c GPFS clusters, each corre-
sponding to a GPFS filesystem, and c ·n guest virtual machines (n per customer) in this
architecture.

1 Except for the use of the multi-category security functionality (see Section 3.4): categories are
not required in the VMT architecture as only one customer resides in each guest.

http://selinuxproject.org/page/SVirt
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When a new customer is boarded, it is assigned to a cluster and a configuration script
automatically starts additional guests for that customer on all the physical interface
nodes within this cluster. Furthermore, a new GPFS filesystem and cluster are created
for the customer on the new virtual guests. Customer data can then be copied to the
filesystem and accessed by users.

3.4 OSMT Architecture

The second architecture, called the operating-system-based multi-tenancy (OSMT) ar-
chitecture, is based on a lightweight separation of OS resources by the kernel. OS-level
virtualization of this form can be achieved using containers, such as LXC, OpenVZ or
Zap pods [8] for Linux, jails [9] for FreeBSD, and zones [10] for Solaris. Containers
do not virtualize the underlying hardware, and thus cannot run multiple different OSes,
but create new isolated namespaces for some OS resources such as filesystems, net-
work interfaces, and processes. Processes running within a container are isolated from
processes within other containers, thus they seem to be running in a separate OS. All
processes share the same kernel, hence, one cannot encapsulate applications that rely
on kernel threads in containers (such as the kernel NFS daemon).

In our implementation, isolation is performed using SELinux multi-category-security
(MCS) policies [11] for shielding the processes that serve a particular customer from all
others. It is then sufficient to write a single policy for each filer service that applies for
all customers by simply adjusting the category of each filer service and other related
components inside a container (e.g., configuration files, customer data). This ensures
that no two distinct customers can access each other’s resources (because they belong
to different categories). In comparison to the VMT architecture, the policies in the guest
that contain the filer services, and the policies in the host that isolate the customers are
now combined into a single policy which achieves the same goals.

In addition, a change-root (chroot) environment is installed, whose only purpose is
to simplify the configuration of the isolated services and the file labeling for SELinux.
We refer to such a customer isolation domain as a container in the remainder of this
work. A container dedicated to one customer on an interface node consists of a chroot
directory in the root filesystem of the interface node, which contains all files required to
access the filesystem for that customer. All required daemons accessed by the customer
run within the container. Because of the chroot environment, the default path names,
all configuration files, the logfile locations, and so on, are all the same or found at the
same locations for every customer; this is implemented through read-only mount binds,
without having to copy files or create hard links. This approach makes our container-
based setup amenable to automatic maintenance through existing software distribution
and packaging tools.

This form of isolation does not provide new namespaces for some critical kernel
resources (process identifiers are global, for instance); it does not allow a limitation of
memory and CPU usage either. However, it causes a smaller overhead for isolation than
hypervisor-based virtualization does.

Figure 2(b) shows an interface cluster following the OSMT architecture, in which the
distributed filesystem is GPFS, shared by all containers within a cluster. Each container
runs a single instance of each of the smbd and ctdbd daemons, accessed only by the
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corresponding customer. In the terms of the dimension parameters from Figure 1, for
every one of the m interface clusters, there exists one GPFS filesystem (only one per
cluster), n kernels (each kernel is shared by c customers), and c · n containers (n per
customer).

Customer boarding is done by a script that creates an additional container on ev-
ery interface node in the cluster, and a data directory for that customer in the shared
distributed filesystem of the interface cluster. The daemons running inside the new con-
tainers must be configured to export the customer’s data directory using the protocols
selected. No changes have to be made to the configuration of the distributed filesystem
on the interface nodes.

4 Security Comparison

In this section, we discuss the differences between the VMT architecture and the OSMT
architecture from a security viewpoint. Because we aim to compare the two approaches,
we only briefly touch on those security aspects that are equal for the two architectures.
This concerns, for instance, user authentication, attacks from one user of a customer
against other users of the same customer, and attacks by the service provider (“insider
attacks” from its administrators). These aspects generally depend on the network filesys-
tem and the user-authentication method chosen, as well as their implementations. They
critically affect the security of the overall solution, but are not considered further here.

4.1 Security Model

We consider only attacks by a malicious customer, i.e., attacks mounted from a user
assigned to one customer against the service provider or against other customers. In
accordance with the traditional goals of information security, we can distinguish three
types of attacks: those compromising the confidentiality, the integrity, or the availability
of the service and/or of data from other customers.

Below we group attacks in two categories. First we discuss denial-of-service (DoS)
attacks targeting service availability in Section 4.3. Second, we subsume threats against
the confidentiality and integrity of data under unauthorized data access and discuss
them in Section 4.4.

We assume that the cloud service provider is trusted by the customers. We also
disregard customer-side cryptographic protection methods, such as filesystem encryp-
tion [12] and data-integrity protection [13]. These techniques would not only secure the
customer’s data against attacks from the provider but also protect its data from other
customers. Such solutions can be implemented by the customer transparently to the ser-
vice provider and generally come with their own cost (such as key management or the
need for local trusted storage).

4.2 Comparison Method

An adversary may compromise a component of the system or the whole system with a
certain likelihood, which depends on the vulnerability of the component and on proper-
ties of the adversary such as its determination, its skills, the resources it invests in an
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attack and so on. This likelihood is influenced by many factors, and we refrain from
assigning numerical values or probabilities to it, as it cannot be evaluated with any
reasonable accuracy [14, Chap. 3–4].

Instead we group all attacks into three sets according to the likelihood that an attack is
feasible with methods known today or the likelihood of discovering an exploitable vul-
nerability that immediately enables the attack. We roughly estimate the relative severity
of attacks and vulnerabilities according to criteria widely accepted by computer emer-
gency readiness teams (CERTs), such as previous exploits or their attack surfaces. Our
three likelihood classes are described by the terms unlikely, somewhat likely and likely.

In Section 4.4 we model data compromise in the filesystem storage cloud through
graphical attack trees [15]. They describe how an attacker can reach its goal over various
paths; the graphs allow a visual comparison of the security of the architectures.

More precisely, an attack tree is a directed graph, whose nodes correspond to states
of the system. The initial state is shown in white (meaning that the attacker obtains
an account on the storage cloud) and the exit node is colored black (meaning that the
attacker gained unauthorized access to another customer’s data). A state designates a
component of the system (as described in the architecture) together with an indication
of the security violation the attacker could have achieved or of how the attacker could
have reached this state.

An edge corresponds to an attack that could be exploited by an attacker to advance
the state of compromise of the system. The intermediate nodes are shown in various
shades of gray, roughly corresponding to the severity of the compromise. Every attack
is labeled by a likelihood (unlikely, somewhat likely, or likely), represented by the type
of arrow used.

4.3 Denial-of-Service Attacks

Server crashes. An attacker can exploit software bugs causing various components of
an interface node to crash, such as the filer services (e.g., the NFS or CIFS daemon)
or the OS kernel serving the customer. Such crashes are relatively easy to detect and
the service provider can recover from them easily by restarting the component. Usually
such an attack can also be attributed to a specific customer because the service provider
maintains billing information of the customer; hence the offending customer can easily
be banned from the system.

Both architectures involve running dedicated copies of the filer services for each
customer. Therefore, crashing a filer service only affects the customer itself. Although
the attack may appear likely in our terminology, we consider it not to be a threat because
of the external recovery methods available.

Note that non-malicious faults or random crashes of components are not a concern
because all components are replicated inside an interface cluster, which means that the
service as a whole remains available. Crashes due to malicious attacks, on the other
hand, will affect all nodes in a cluster as the attacker can repeat its attack.

Furthermore, any server crash has to be carried out remotely and therefore mainly
affects the network stack. It appears much easier for a local user to crash a server, in
contrast. For this, the attacker must previously obtain the privilege to execute code on
the interface node, most likely through an exploit in one of the filer services. However,
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when attackers have obtained a local account on an interface node, they can cause much
more severe problems than simply causing a crash (Section 4.4). Therefore we consider
a locally mounted DoS attack as an acceptable threat.

In the VMT architecture, a kernel crash that occurs only inside the virtual machine
dedicated to the customer does not affect other customers, which run in other guests —
at least according to the generally accepted view of virtual-machine security. However,
the effects on other guests depend on the kind of the DoS attack. A network attack
that exploits a vulnerability in the upper part of the network stack (e.g., UDP) most
likely only crashes the targeted guest. But an attack on lower-layer components of the
hypervisor (e.g., network interface driver), which run in the host, can crash the host and
all guests at once. Moreover, additional vulnerabilities may be introduced through the
hypervisor itself.

In the OSMT architecture, an attacker may crash the OS kernel (through a vulnera-
bility in the network interface driver or a bug in the network stack), which results in the
crash of the entire interface node and disables also the service to all other customers.
Thus, the class of DoS attacks targeted against the OS kernel has a greater effect than
in the VMT architecture.

Resource exhaustion. An attacker can try to submit many filesystem requests to ex-
haust some resource, such as the network between the customers and the interface nodes,
the network between interface nodes and the resource cluster, or the available CPU and
memory resources on the interface nodes. Network-resource exhaustion attacks affect
both our designs in the same way (and more generally, are a common problem in most
Internet services); therefore, we do not consider them further and discuss only the ex-
haustion of host resources.

In the VMT architecture, hypervisors can impose a memory bound on a guest OS and
limit the number of CPUs that a guest can use. For example, a six-CPU interface node
may be shared by six customers in our setup. Limiting every guest to two CPUs means
that the interface node still tolerates two malicious customers that utilize all computa-
tion power of their dedicated guests, but continues to serve the other four customers
with two CPUs.

The impact of a resource-exhaustion attack with a container setup in the OSMT ar-
chitecture depends on the container technology used and its configuration.

In our study, we use a container technology (SELinux and chroot environment) that
cannot restrict the CPU used or the memory consumed by a particular customer. Given
proper dimensioning of the available CPU and memory resources with respect to the
expected maximal load per customer, however, a fair resource scheduler alone can be
sufficient to render such attacks harmless.

With more advanced container technology, such as LXC (based on the recent cgroup
process grouping feature of the Linux kernel), it is possible to impose fine-grained re-
strictions on these resources, analogously to a hypervisor. For instance, the number of
CPUs attributed to a customer and the maximally used CPU percentage can be limited
for every customer.



A Comparison of Secure Multi-Tenancy Architectures 481

4.4 Unauthorized Data Access

We describe here the attack graphs in Figures 3 and 4 as explained in Section 4.2. Some
attacks are common and apply to both architectures; they are described first. We then
present specific attacks against the VMT and OSMT architectures. Each attack graph
includes all attacks relevant for the architecture.

Common attacks. Filer service compromise. Various memory corruption vulnerabil-
ities (such as buffer overflows, string format vulnerabilities, double frees) are notori-
ous for allowing attackers to execute arbitrary code with the privileges of the filer
service. However, protection measures such as address space layout randomization,
non-executable pages, position-independent executables, and stack canaries, can ren-
der many attacks impossible without additional vulnerabilities (e.g., information leaks).
This is especially true for remote attacks, in which the attacker has very little informa-
tion (e.g., no access to /proc/pid/) and less control over memory contents (e.g., no
possibility of attacker-supplied environment variables) than for local attacks. For these
reasons, we categorize these attacks as “somewhat likely.”

Complementing the aforementioned attacks that permit arbitrary code execution,
confused deputy attacks [16] form a weaker class of attacks. In such an attack, the
attacker lures the target application into performing an operation unauthorized to the
attacker without obtaining arbitrary code execution. Directory traversal, whereby an
attacker tricks the filer service into serving files from a directory that should not be
accessible, is a famous example of such attacks in the context of storage services (e.g.,
CVE-2010-0926, CVE-2001-1162 for CIFS). Clearly, such attacks leverage the priv-
ileges of the target process: a process that has restricted privileges is not vulnerable.
Therefore, they form a weaker class of attacks: preventing unauthorized data access
to an attacker who has compromised the filer service through arbitrary code execution
also prevents these attacks. Furthermore, confused deputy attacks are very unlikely to
serve as a stepping stone for a second attack (e.g., accessing the internal network in-
terface), which would be required to access another tenant’s data in both architectures
here. Consequently, we do not consider confused deputy attacks any further.

Kernel compromise. We distinguish between remote and local kernel attacks. The rea-
soning in the previous paragraph concerning the lack of information and memory con-
trol is essentially also valid for remote kernel exploits. However, for the kernel, the
attack surface is much more restricted: typically network drivers and protocols, and usu-
ally under restrictive conditions (e.g., LAN access). Recently, Wi-Fi drivers have been
found to be vulnerable (CVE-2008-4395), as well as the SCTP protocol (CVE-2009-
0065) both of which would not be used in the context of a filesystem storage cloud. For
these reasons, we categorize these attacks as “unlikely.” In contrast to remote exploits,
we categorize local kernel exploits as “somewhat likely” given the information advan-
tage (e.g., /proc/kallsysms) and capabilities of a local attacker (e.g., mapping a
fixed memory location). Many recently discovered local kernel vulnerabilities confirm
this view.

SELinux bypass. The protection provided by SELinux can be bypassed in two ways.
One of them is by leveraging a mistake in the security policy written for the
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Fig. 3. Attack graph for the VMT architecture

application: if the policy is too permissive, the attacker can find ways to get around
some restrictions. An example of such a policy vulnerability was found in sVirt [17]:
an excessively permissive rule in the policy allowed an attacker in the hypervisor con-
text to write directly to the physical drive, which the attacker can leverage in many
ways to elevate his privileges. The second option for bypassing SELinux is by leverag-
ing a SELinux implementation bug in the kernel. An example of such a vulnerability
is the bypass of NULL pointer dereference protections. The Linux kernel performs
checks when performing mmap() to prevent a user from mapping addresses lower
than mmap min addr (which is required for exploiting kernel NULL pointer derefer-
ences vulnerabilities). SELinux also implemented such a protection (with the additional
possibility of allowing such an operation for some trusted applications).
However, the SELinux access control decision in the kernel would basically override
the mmap min addr check, weakening the security of the default kernel (CVE-2009-
2695). For these reasons, we categorize these attacks as “somewhat likely.”

Attacks against the VMT architecture. VM escapes. Although virtual machines are
often marketed as the ultimate security isolation tool, it has been shown [18,19] that
many existing hypervisors contain vulnerabilities that can be exploited to escape from
a guest machine to the host. We assume these attacks are “somewhat likely”.

Filer service compromise: NFS daemon and SELinux. Apart from the helper daemons,
which represent a small part of the overall code (e.g., rpc.mountd, rpc.statd,
portmapd), most of the nfsd code is in kernel-space. This means it is not possible
to restrict the privileges of this code with a MAC mechanism in the sense that a vul-
nerability in this code might directly lead to arbitrary code execution in kernel mode.
The authors of [20] tried to implement such a protection within the kernel but this ap-
proach cannot guarantee sufficient isolation of kernel code simply because an attacker
with ring 0 privileges can disable SELinux. We categorize this attack as “somewhat
likely.”

Attacks against the OSMT architecture. Container escapes. As mentioned in 3.4,
we have implemented what we refer to as containers using a chroot environment. As
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Fig. 4. Attack graph for the OSMT architecture

is widely known, a chroot environment does not effectively prevent an attacker from
escaping from the environment and provides limited isolation. For completeness, we
include a container-protection layer which corresponds to the chroot environment (with-
out SELinux) in Figure 4, and marked it as “likely” to be defeated. However, contain-
ers such as LXC do implement better containment using the cgroups feature of Linux.
While these technologies have a clean and simple design, it is still likely that some vul-
nerabilities allowing escapes can be found, especially because they are very recent (one
such current concern regards containers mounting a /proc pseudo-filesystem).

4.5 Conclusion

A high-level comparison of Figures 3 and 4 shows that the VMT architecture has many
more layers and could lead to the conclusion that the VMT approach provides better
security. However, we also have to take into account the various attacks: most notably,
it is possible that an attacker uses the internal network interface effectively for customer
data access, and that this network interface is accessible from within the guest VMs
(which is required, because the distributed filesystem service runs in the guest). The
possibility of this attack renders other layers of protection due to VM isolation much
less useful in the VMT architecture.

In other words, a likely chain of compromises that can occur for each scenario is

– for VMT:
1. attacker compromises filer service, obtaining local unprivileged access,2

2. attacker exploits a local kernel privilege escalation vulnerability that can be
exploited within the MAC security context of the filer service,

3. attacker accesses files of a customer through the distributed filesystem (as-
suming no authentication or authorization of nodes and no access control on
blocks).

– for OSMT:
1. attacker compromises filer service, obtaining local unprivileged access,
2. attacker exploits a local kernel privilege escalation vulnerability that can be

exploited within the MAC security context of the filer service,

2 In the case of a kernel NFS daemon, it is possible that the attacker directly obtains ring 0
privileges and can therefore skip the next step, however this is less likely.
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3. attacker accesses files of a local co-tenant, or through the distributed filesystem
for other customers.

Although it is expected that hypervisor-level multi-tenancy can, in general, be a better
security design than OS-level multi-tenancy, we have seen in this section that in the
case of a filesystem storage cloud and under our assumptions (i.e., that in a distributed
filesystem, each individual node is trusted), no solution was clearly more secure than
the other. Both solutions could be used to achieve an acceptable level of security.

5 Performance and Scalability Evaluation

In this section, we present a performance evaluation comparing the VMT and OSMT
architectures for given customer workloads. Our experimental filesystem storage cloud
setup is based on the IBM SONAS [1] product, on which we implemented the two
multi-tenant architectures in the interface nodes, using the same physical infrastructure.
We ran the benchmarks on both setups using the same customer workload based on
the CIFS protocol, and measured various system metrics. Besides measuring the perfor-
mance of the two architectures, the evaluation allows us to compare the scalability of
the architectures.

In this section, we use the term client to refer to a single user belonging to a customer
(each customer has one user, and we refer to it as client).

5.1 Experimental Setup

We experiment with two storage back-end configurations in our benchmark.

1. RAM-disks directly on the interface node. This allows us to observe the perfor-
mance of the systems in the absence of bottlenecks due to physical disk-access
limitations, which is useful for analyzing the scalability of the interface node itself.

2. Actual disk-based storage, in the form of a direct-attached DS3200 storage subsys-
tem, which allows us to evaluate performance in a realistic setup.

The experimental setup consists of two interface nodes forming a two-node GPFS clus-
ter, and one client node. All network connections are 1 GbE links. To measure the
performance of a single interface node, we connect the client node to only one of the in-
terface nodes. Thus, all client traffic goes to a single interface node over a single 1 GbE
link. Although the second interface node receives no direct client traffic, it is included
in the benchmark setup to have a realistic 2-node GPFS cluster setup.

Figure 5 shows the setup and the server configurations. All servers run RHEL Server
5.5 with kernel version 2.6.18-194. The IBM SONAS version used on the interface
nodes is 1.5.3-20. On the DS3200 storage subsystem, we use a single 5+1 RAID5 array
with a total capacity of 2 TB using 15k RPM SAS drives. The storage subsystem is
attached to only one of the interface nodes — the same node that is connected to the
client.
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Fig. 5. Experimental setup Fig. 6. Setup of containers in an interface node

In the VMT setup, we use KVM and libvirt [21] to create and manage virtual ma-
chines on the interface nodes. Each interface node has one virtual machine for each
customer, and all the virtual machines belonging to a specific customer across all the in-
terface nodes are clustered together, with a single filesystem containing that customer’s
data. Each virtual machine has two virtual Ethernet interfaces assigned, which are
bridged to the corresponding interfaces on the host; one interface is used for GPFS-
cluster synchronization traffic, and the other for client traffic. In the RAM-disk configu-
ration, the total RAM-disk allocation on each interface node is evenly divided between
all the virtual machines running on that node. Each virtual machine uses a single RAM-
disk for the creation of the distributed filesystem. We make sure that the total physical
memory allocation in the VMT setup is exactly the same as in the OSMT setup. In the
disk-based configuration, the 2 TB SAS array is evenly divided into partitions, which
are then exposed to the virtual machines as raw devices through virtio interfaces. Each
virtual machine uses the raw device for the creation of the distributed filesystem.

The OSMT setup on the two interface nodes consists of dedicated “chroot directo-
ries” for each container in the root filesystems of the interface nodes. Each container is
assigned two aliased Ethernet interfaces: one for GPFS-cluster synchronization traffic
and the other for client traffic. All the network interfaces assigned to the containers are
created as aliases of the host interfaces. We use aliases to simulate an environment in
which each customer has a dedicated secure access channel to the interface cluster. In
an actual customer environment, this secure channel would take the form of a VPN. Fig-
ure 6 shows the OSMT setup for a single interface node. The interface node shown here
is part of a GPFS cluster. The GPFS filesystem extends to the other interface nodes that
are part of the same cluster. For the RAM-disk configuration, a single RAM disk is used
on each interface node and a single GPFS filesystem is created using the RAM disks
from both interface nodes. This filesystem is used by all the containers, with specific
data directories allotted to each customer. For the disk-based configuration, the entire
disk array is used to create a single filesystem, which is then used in the same way as in
the RAM-disk setup.
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5.2 Tools Used in the Benchmarks

The standard fileserver benchmark used widely to evaluate the performance of Win-
dows fileservers is Netbench. However, Netbench runs only on the Windows platform
and requires substantial hardware for a complete benchmark setup. Under Linux, the
Samba software suite provides two tools that can be used to benchmark SMB servers us-
ing Netbench-style I/O traffic, namely dbench and smbtorture BENCH-NBENCH. Both
tools read a loadfile provided as input to perform the corresponding I/O operations
against the fileserver being benchmarked. The dbench tool can be run against both NFS
and SMB fileservers, the smbtorture tool is specific to SMB fileservers. We used the
smbtorture BENCH-NBENCH tool because it offers more control over various aspects
of the benchmark runs than the dbench tool, and also because our benchmark focuses
solely on client access using the CIFS protocol.

The loadfile used in our benchmark consisted mainly of file creation operations,
4 KiB reads, 64 KiB writes, and some metadata queries.

To collect system metrics from the interface and client nodes during the execution of
the benchmark, we used the System Activity Report (SAR) tool from the Red Hat sysstat
package. The SAR tool collects, reports and saves system activity information, such as
CPU and memory usage, load, network and disk usage, by reading the kernel counters
at specified intervals.

5.3 Benchmark Procedure

We collected and analyzed the following system metrics on the interface nodes (in the
case of the VMT architecture, metrics were collected on the host):

1. CPU usage: We used the %idle values reported by SAR to compute the %used
values in each interval.

2. System load: We used the one-minute system load averages reported by SAR. Note
that on Linux systems, the load values reported also take into account processes
that are blocked waiting on disk I/O.

3. Memory usage: We recorded the memory usage both with and without buffers. In
both cases, we excluded the cached memory. In the VMT setups, we also excluded
the cached memory on the virtual machines running on that host.

In addition to these system metrics, we also recorded the throughput and loadfile exe-
cution time reported by smbtorture on the clients. We performed 10 iterations for each
benchmark run — caches were preconditioned by 2 dry runs. We then computed 95%
confidence intervals using the t-distribution for each metric measured.

5.4 Results

The graphs in this section show the variation of a particular system metric on both the
VMT and the OSMT architecture. For each architecture, we show the variation of the
metric on the RAM-disk-based setup as well as the disk-based setup. Note that each
customer is simulated with a single user (one client).
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Fig. 7. Benchmark results

Figure 7(a) shows the variation of CPU usage as a function of the number of cus-
tomers. The overall CPU usage is much lower in the OSMT architecture, for both the
RAM-disk and the disk setup. In the OSMT architecture, the CPU usage is significantly
lower when we use disk storage and flattens above 5 customers because more cycles are
spent waiting on disk I/O than in the RAM-disk-based setup. Hence, the performance
of the disks dominates the overall throughput. For the VMT architecture, however, the
CPU usage is about the same in both setups and therefore starts impacting the overall
throughput when the number of customers is higher. For 10 customers, this culminates
in a difference of about 77% in CPU usage between the two architectures when disk
storage is used.

The variation of memory usage with the number of customers is shown in Figure 7(b).
In the OSMT architecture, the memory usage remains relatively constant irrespective of
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the number of customers. In the VMT architecture, however, the memory usage grows
almost linearly with the number of customers. We explain the less-than-2% discrepancy
in the increase between the disk- and RAM-disk-based OSMT setup by the varying
buffer size requirements with respect to the latency of the medium: in the disk setup,
access time is slower and the buffers reach their maximum size already for a single
customer. For 10 customers, there is a difference of about 45% in the memory usage of
the two architectures when disk storage is used.

Figures 7(c) and 7(d) show the variation of throughput and loadfile execution time.
As expected, the loadfile execution times are the lowest on the RAM-disk setups. The
throughput reported by smbtorture is also higher on the RAM-disk setups.

Independently of the type of disks used, the VMT architecture clearly gets an addi-
tional penalty from the higher CPU load of the system which results in lower throughput
and higher loadfile execution time than the OSMT architecture.

Figure 7(e) shows the variation of system load with the number of customers. In
both architectures, the system load is higher when disk storage is used because of all
the cycles spent waiting on disk I/O. The system load has a much higher variance in the
VMT architecture. We speculate that this is because of variations in the amounts of disk
activity required to maintain the state of the virtual images on disk during the different
benchmark runs, which resulted in a large variation in the measured load values.

Figure 7(f) shows system load as a function of the throughput. Generally, the lower
the load and the higher the throughput, the better the scalability. Clearly, throughput
scales better with system load in the RAM-disk setup than in the disk-based setup.
Throughput scales best in the OSMT architecture using RAM disks. In the VMT archi-
tecture, the wide variation in system load in the disk-based setup results in a relatively
steep curve, whereas the curve is flatter for the RAM-disk setup. Overall it can be seen
that the OSMT architecture scales better than the VMT architecture.

6 Related Work

Although the designs of some free or open-source object storage cloud solutions [22,23]
are available, to the best of our knowledge no commercial cloud-storage provider has
publicly documented its internal architecture. In this work, we analyze for the first time,
how the technology applied for obtaining multi-tenancy impacts the security of the
customer data.

In this section we discuss alternative techniques that can be leveraged to obtain sim-
ilar security goals as the architectures analyzed in this work. Because we target this
study at production environments, our two architectures are restricted to tools that have
achieved a certain maturity and stability. Some of the isolation techniques mentioned in
this section are too recent and do not yet satisfy these conditions.

Micro-kernels [24] and virtual-machine monitors are comparable to some extent [25].
In terms of security isolation, Hohmuth et al. [26] argue that the trusted computing base
(TCB) is usually smaller with micro-kernels than with hypervisors. In particular, the
authors suggest that extending virtualized systems with micro-kernel-like features, such
as inter-process communication, can reduce the overall TCB. Although we do not use
the TCB terminology to capture better the advantages of a layered security design, we
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believe their main argument also applies to some extent in the context of this work. For
instance, in the VMT architecture, isolating the distributed filesystem3 from the guests
running the filer services and establishing a stable and secure way of accessing the
filesystem (e.g., paravirtualizing the distributed filesystem) would significantly improve
the security of this architecture. To the best of our knowledge, the most mature existing
technology for KVM that is close to realizing this goal is VirtFS [27].

Better isolation of the filer services and the distributed filesystem can also be achieved
by improving the security of the Linux kernel, especially in the OSMT architecture. Us-
ing virtual machine introspection (VMI), Christodorescu et al. [28] present an architec-
ture for kernel code integrity and memory protection of critical read-only sections (e.g.
jump tables) to prevent most kernel-based rootkits with minimal overhead and without
source code analysis. With source code analysis, Petroni and Hicks [29] prevent rootk-
its by ensuring control-flow integrity of the guest kernel at the hypervisor and therefore
also prevent all control-flow redirection based attacks for the Linux kernel, which rep-
resents a significant security improvement.

Another approach to enhance the security of the kernel is grsecurity PaX [7], which
provides a series of patches that mitigate the exploitation of some Linux kernel vul-
nerabilities with low performance overhead. In particular, it provides base address ran-
domization for the kernel stack, prevents most user-space pointer dereferences by using
segmentation, and prevents various information leaks which can be critical for success-
ful exploitation of vulnerabilities. Other grsecurity patches also feature protection for
the exploitation of user-space vulnerabilities.

7 Conclusion

We have presented in this work two alternatives for implementing a multi-tenant filesys-
tem storage cloud, with one architecture isolating different tenants through containers
in the OS and the other isolating the tenants through virtual machines in the hypervi-
sor. Neither architecture offers strictly “better” security than the other one; rather, we
view both as viable options for implementing multi-tenancy. We have observed that the
overhead of the VMT architecture, due to the additional isolation layers, is significantly
higher than that of the OSMT architecture as soon as multiple tenants (and not even a
large number) access the same infrastructure. We conclude that, under cost constraints
for a filesystem storage cloud, the OSMT architecture is a more attractive choice.
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Abstract. Web applications in many domains such as healthcare and
finance must process sensitive data, while complying with legal policies
regarding the release of different classes of data to different parties. Cur-
rently, software bugs may lead to irreversible disclosure of confidential
data in multi-tier web applications. An open challenge is how developers
can guarantee these web applications only ever release sensitive data to
authorised users without costly, recurring security audits.

Our solution is to provide a trusted middleware that acts as a “safety
net” to event-based enterprise web applications by preventing harmful
data disclosure before it happens. We describe the design and imple-
mentation of SafeWeb, a Ruby-based middleware that associates data
with security labels and transparently tracks their propagation at differ-
ent granularities across a multi-tier web architecture with storage and
complex event processing. For efficiency, maintainability and ease-of-use,
SafeWeb exploits the dynamic features of the Ruby programming lan-
guage to achieve label propagation and data flow enforcement. We evalu-
ate SafeWeb by reporting our experience of implementing a web-based
cancer treatment application and deploying it as part of the UK National
Health Service (NHS).

1 Introduction

Enterprise web applications in areas such as healthcare, financial processing and
government services must selectively expose sensitive data to authorised sets of
web users. For example, a cancer researcher may want to query a centralised
patient database over the web for anonymised health records of patients that
have a given type of cancer. The costs of inadvertently disclosing confidential
data to the wrong users due to implementation errors in web applications are
high—hospitals and medical practitioners in the UK are legally liable for unau-
thorised disclosure of patient data without prior consent. Due to new legisla-
tion introduced in 2010, organisations can be fined up to �500,000 for security
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breaches [25]. In this paper, we address how to implement secure enterprise web
applications that are guaranteed to comply with data protection policy.

Enforcing a data protection policy end-to-end, i.e. , across an entire multi-tier
web application, is challenging. An implementation error in any tier of a web
application may result in unauthorised data disclosure. Developers may intro-
duce software bugs inadvertently or based on misunderstandings of requirements.
Achieving correctness is even more challenging for web applications that process
different types of data from multiple domains, such as hospitals, laboratories
and insurance providers, each with their own security requirements.

Current best practices include manual source code auditing for new applica-
tions, which is error-prone and costly. Tools for static analysis such as Pixy [10]
validate that the implementation satisfies given invariants. Their use, however,
requires expert knowledge to formalise invariants and they cannot handle large
distributed web applications due to these applications’ size and complexity.

We make two assumptions: (1) In terms of the threat model, we assume that
the external environment is hostile, but that application code is not explicitly
malicious, even if threats might be caused by bugs in the implementation. (2) We
assume that stakeholders are willing to accept some performance overhead—in
terms of request throughput and latency—for increased security.

Our solution is to propose a middleware that implements a “safety net” by
providing a data-centric security approach that integrates well with multi-tier
web applications. Our middleware is based on two key ideas: It decouples the
processing of confidential data from the handling of web requests. In addition, it
tracks data as it flows through the web application in order to ensure its confi-
dentiality and integrity. This means that implementation bugs in the web request
handling logic cannot cause any unauthorised confidential data to be disclosed.
By tracking data propagation by means of security labels, the middleware per-
forms automatic and appropriate compliance checks at the boundaries between
application components without relying on developer support. This reduces the
effort required for security audits.

We demonstrate the practicality of this approach by describing SafeWeb,
a Ruby-based middleware that enforces data flow policy across web applica-
tions. SafeWeb consists of an event-processing backend that processes data
asynchronously from a confidential data store according to application-specific
business logic. Events are associated with security labels, which are tracked by
SafeWeb as they propagate between event processing components. This mecha-
nism is implemented efficiently through isolation of processing components using
Ruby’s safe levels. A separate web frontend serves processed event data in re-
sponse to web requests while maintaining security labels at the variable level
using Ruby’s meta-programming features. Before sending data to web users,
SafeWeb validates the associated security labels against user privileges, thus
preventing violations of the data protection policy.

SafeWeb is designed to integrate well with existing security practices
at an organisational, architectural and infrastructure level. From an organisa-
tional viewpoint we complement existing security practices, such as network
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partitioning through firewalls and security code auditing, without requiring sig-
nificant changes. At the infrastructure level, SafeWeb can easily be applied
to production environments. In contrast with classical label-based approaches,
we avoid complex changes in the language runtime. We are able to provide
tracking purely at the middleware level through careful exploitation of Ruby’s
meta-programming and security features.

We evaluate SafeWeb in a real-world healthcare environment by developing
MDT web portal, a web application that provides information about ongoing
cancer treatment of patients to teams of medical practitioners at hospitals. We
discuss the deployment of this application using SafeWeb as part of ECRIC—
an organisation within the UK National Health Service (NHS) that collects rel-
evant patient-sensitive oncological data. We show that SafeWeb can guarantee
that medical records are only exposed to authorised users—even with imple-
mentation bugs in the processing logic of the MDT web portal application. It
integrates well with existing information systems and introduces only minimal
overheads in terms of application development effort and performance.

In summary, the main contributions of the paper are: (1) a middleware for
securing web applications that uses event processing to decouple queries from
sensitive data; (2) an application of information flow control techniques across all
tiers of a web application to prevent non-compliant disclosure of sensitive data
to users and an efficient implementation of data tracking using Ruby language
mechanisms; (3) an evaluation of this approach in a healthcare environment
using a realistic web application for supporting cancer treatment at hospitals.

In �2 we provide background on the security requirements of web applications
dealing with confidential data. Then, we present a general data-centric security
mechanism addressing these requirements, explaining why existing technologies
cannot be applied in production environments (�3). The SafeWeb middleware
is described in �4, focusing on the different components of its architecture. We
evaluate our approach in �5 through an implementation of a web application
using SafeWeb, describing its security properties and providing a performance
analysis. In �6, we discuss related work, and we draw conclusions in �7.

2 Data Confidentiality in Enterprise Web Applications

Organisations in the public and private sector collect, process and analyse per-
sonal data to improve the quality of the services that they offer. Due to the
sensitivity of personal data, maintaining its confidentiality is crucial. As a con-
sequence, it is necessary to verify that applications are not vulnerable to compro-
mise from external attacks and that confidential data is handled in compliance
with the policies set by organisations.

Current best practices to maintain data confidentiality in applications are
costly, error-prone and time consuming: organisations adopt a series of security
measures including risk assessments, internal security code reviews and external
security consultations. These measures are intertwined with project develop-
ment to the point that development of new services is limited. For example,
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healthcare organisations struggle to develop new medical applications that have
the potential to improve patient care quickly and cost-effectively.

Middleware can be used to reduce the cost of development and deployment of
new applications by moving security auditing effort from applications to reusable
middleware components. In this paper, we describe a middleware that can in-
crease the trust placed in applications that process and provide access to confiden-
tial data by placing applications within a “safety net” that, within the constraints
of a production environment, protects data from compromise and accidental dis-
closure. The goal is to satisfy the following two security requirements—both of
which are discussed in the context of a healthcare example in the next section:

S1 Access to confidential data by external users should be static and one-way;
it should not be possible from the outside to change which confidential data
items are exported from an internal network to the public Internet, or to
alter existing data stored within the internal network.

S2 Confidential data should be protected end-to-end; implementation errors in
an application should not result in the disclosure of confidential data and
violations of the specific security policy for that application.

2.1 Case Study: A Cancer Registration System

In this work, we consider the following real-world case study. The Eastern Can-
cer Registry and Information Centre (ECRIC) is part of the UK National Health
Service (NHS). ECRIC aims to produce a comprehensive picture of cancer cases
in the East of England. It receives patient data from many sources including
so-called Multidisciplinary Teams (MDTs), hospital Patient Administration Sys-
tems (PAS), pathology laboratories and the Office of National Statistics (ONS).

ECRIC’s software infrastructure has recently been chosen as the national can-
cer registry platform for England. Most of its software systems are implemented
in the Ruby programming language for ease of development and due to existing
developer expertise. The main cancer registration database, hosted in a secure
private network, holds structured information about patients, tumours, and as-
sociated treatments. Data are imported into the main database from different
sources and processed with the help of the domain knowledge of staff. ECRIC
staff can also operate off-site by using an external web application server that
has been extensively audited for security.

Based on discussions with ECRIC, we identified a new application that they
would like to offer: an MDT web portal that provides relevant data that can
support the operation of MDTs at hospitals. MDTs treating oncological pa-
tients currently provide reports to ECRIC about their patients through secure
email and paper forms. ECRIC wants to feed back both summary and detailed
patient information to MDTs, letting them compare data quality with their peers
and explore the underlying data to discover the cause of any discrepancies. At
present, resolving discrepancies is laborious, because staff at ECRIC have to
manually extract and release the relevant records for each MDT. In summary,
the MDT web portal should satisfy the following functional requirements:
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F1 Doctors and MDT co-ordinators that are members of an MDT can log into
the MDT portal using a web browser and consult the details of patients
treated by that MDT, with the option of providing feedback (handled ex-
ternally, e.g. via secure NHS email).

F2 Doctors and MDT co-ordinators can consult various metrics about their pa-
tients, e.g. the level of completeness of the provided information or projected
survival statistics of patients under treatment.

F3 MDT co-ordinators can put those metrics into context by comparing them
with each MDT’s average in the same region or with regional aggregates.

The security policy for the MDT web portal is as follows:

P1 Details about patients can be consulted only by members of the MDT that
treats them. MDT-level aggregates can be consulted by all MDTs in the
same region. Regional-level aggregates can be seen by all MDTs.

A design of the MDT web portal as a standard web application using the main
ECRIC database would not be acceptable. The MDT web portal requires inter-
active access to patient-level data, in violation of security requirement S1—an
implementation bug could compromise the integrity and the confidentiality of
the whole ECRIC database. Furthermore, errors in the MDT web portal could
violate its security policy, conflicting with S2.

Enforcing the MDT security policy P1 with a traditional web application
architecture is challenging. The MDT web portal has a data flow path for confi-
dential data that involves multiple components at different layers: data must be
extracted from the ECRIC database, processed in an application-specific way,
and finally presented by a web front-end. Any component in the layers involved
could cause unauthorised data disclosure. The security policy is difficult to en-
force through a composition of local mechanisms because it is an end-to-end
property. The large amount of source code that needs to be trusted increases the
risk of defects and incurs a high code review effort.

In addition, the mechanisms used to protect from policy violations must op-
erate at a fine data granularity. For example, the application must distinguish
between confidential information at the level of single patients treated by an
MDT and access to aggregated data at MDT or regional level.

In summary, we need a security mechanism that (a) is able to enforce end-
to-end data flow guarantees, reducing the amount of trusted source code, and
(b) allows for fine-grained, data-centric protection of confidential information. In
the next section, we describe how controlling the propagation of security-labelled
data through the application, at the middleware level, can achieve this.

3 Controlling Data Propagation

Traditional access control models achieve security by restricting access to re-
sources : a principal, such as a user who owns data, can delegate to other prin-
cipals a subset of operations. In such a model, it is easy to control information
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release but difficult to control its propagation. Once a user has delegated the priv-
ilege to read data to another user, information cannot be protected anymore—
e.g. the second user can write the data to a public Internet site. Thus, under a
traditional (discretionary) access control model, secure data processing means
that processors must be trusted—a data processor authorised to read confiden-
tial patient data must not disclose it to unauthorised parties.

The problem of unauthorised data disclosure is addressed by information flow
control (IFC), a mandatory access control model originally developed for mil-
itary systems [1,6]. IFC protects the propagation of data. We can model an
IFC system as a set of inputs, outputs and processing components. An input
component, acting on behalf of a principal, can attach a tamper-resistant se-
curity label to the data—e.g. a label can be used to protect the confidentiality
of a patient medical report. The security labels can then be used to track the
propagation of data through the system and middleware can enforce end-to-end
restrictions on the permitted data flow. For example, if a component producing
patient records labels every record, labels can prevent a mailing component from
including records in emails, independently of the processing.

IFC systems can guarantee that security labels are preserved by controlling
all data flow paths between components. When labelled data is copied or trans-
formed by a component, the IFC system maintains the labels. When labelled
data is processed or combined with data with different labels, the resulting la-
bels are a composition of the previous labels, i.e. the system preserves all the
data flow restrictions of the original labels. To achieve this, IFC systems require
components to be “sandboxed,” i.e. isolated from one another and from the ex-
ternal environment. Components can only communicate through primitives that
are under the control of the IFC system.

To output data protected by a label, a component must have a declassification
privilege [11]. This enables the component to remove the label from the data and
use these data without restriction. The original owner of the data can restrict the
data flow of, for example, a patient record by assigning declassification privileges
only to components acting on behalf of treating doctors.

Labels can also be used to protect data integrity, which is the dual of con-
fidentiality. The creator of an integrity label delegates to other components an
endorsement privilege to add this label to data. Components can then trust only
data that is “guaranteed” by this integrity label.

3.1 Applying Information Flow Control

IFC is a good fit for developing secure web applications because it can detect and
contain the effect of application bugs which could otherwise violate a security
policy (cf. security requirement S2 ). Note that we assume that application code
is not intentionally malicious; this problem can be tackled by organisational safe-
guards such as only allowing trusted developers to develop applications. Instead,
we focus on protection from unintentional software bugs.

We describe how IFC achieves our security goals in the context of the MDT
web portal application from �2.1. Consider the security policy P1 for the MDT
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application. After creating a label for each patient, a component can (i) attach
the label to each patient’s data as it enters the system and (ii) assign the declas-
sification privilege over the label only to components that execute on behalf of
MDT principals treating the patient. Based on IFC enforcement, this guarantees
that each patient record can only be accessed by the correct MDT, independently
of the processing that happens between these two endpoints.

In the more complex case of MDT-level aggregate measures, which should be
visible only to MDTs in the same region, label tracking is overly conservative
because aggregates are considered as sensitive as the data of all involved patients,
preventing access by any MDT. Therefore a component trusted with patient data
must (i) remove all patient labels from aggregate data, (ii) relabel the aggregate
data with an MDT-specific label and (iii) assign a declassification privilege over
the MDT label to all MDTs in the region. The same mechanism can be used for
regional-level aggregates by defining regional-level labels.

In summary, the security policy of the MDT application can be enforced by
applying these three kinds of labels with corresponding privileges. Any compo-
nent that is not policy compliant due to implementation errors cannot violate
the MDT security policy. For example, a component for computing statistical
aggregates would be constrained in terms of the data that it can disclose publicly.
Even if its implementation is too large and complex to be audited, a software bug
in, say, its logging function, which might otherwise reveal confidential patient
data in externally accessible log files, would be prevented by IFC enforcement.

3.2 Practical Information Flow Control for Web Applications

In practice, applying a strong security model such as IFC to web applications
is challenging. For IFC to be used, it must have low impact on developers and
thus integrate with familiar architectures, programming models and languages.

Recently, researchers have proposed IFC techniques to improve the security of
applications. Jif [12] extends the Java type system to include labels and checks
them statically. DIFCA-J [31] rewrites Java bytecode to propagate labels in JVM
operations. Trishul [13] and Laminar [19] modify the JVM to track labels. DE-
FCon [11] isolates threads allowing communication only through labelled data.

All of these systems adopt a “strict” tracking model that is invasive to the pro-
grammer and the system architecture. IFC tracking in these systems strives to
avoid false negatives, as a single false negative if exploited could compromise the
security of the whole platform. However, this strict application of IFC leads to
false positives that require applications to be restructured to remove ambiguity
in data flow tracking. Strict IFC also requires complex implementations: mature,
industrial-strength implementations of IFC systems are currently lacking. Adop-
tion of research prototypes in a production environment is undesirable because
they are difficult to verify, requiring expert knowledge of JVMs, runtime libraries
and bytecode rewriting techniques. Maintenance is also problematic when new
versions are released by upstream developers.

In contrast, our IFC tracking approach is inspired by Resin [30], which only
targets source code that does not actively try to evade data tracking. It is thus
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possible to reduce the number of false positives, accepting a few false negatives
which are unlikely to be exercised by non-malicious code. IFC is thus used as
a safety net to catch implementation bugs, instead of acting as the primary
method of security policy enforcement. This approach integrates well with cur-
rent security practices adopted by organisations.

Our work differs from Resin in two key aspects. (1) We target enterprise
web applications instead of stand-alone applications built directly on a specific
database. In enterprise settings, it is important to support messaging services
in the backend with an appropriate information processing model. To the best
of our knowledge, we are the first to integrate IFC with two different processing
models at different granularities (cf. �4)—a proactive event-based model in the
backend with data tracking at the event level and a reactive web language model
in the frontend with tracking at the variable level. (2) We manage to support
IFC in the middleware without significant changes to the language runtime.
By using the Ruby language support for meta-programming and its powerful
security primitives, we avoid changes to the Ruby interpreter, leading to an IFC
implementation that is easy to understand, verify and maintain.

4 SAFEWEB Middleware Design

In this section, we describe SafeWeb, a Ruby-based middleware that separates
the processing of confidential data from presentation aspects, while enforcing
data flow constraints throughout the application. As shown in Figure 1, Safe-

Web consists of two parts: an event processing backend (left), which realises
the application logic, and a web frontend (right), which handles users’ requests
based on processing results. Application logic in SafeWeb is implemented in
an event-based fashion through one or more processing units (i.e. application
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components), which produce and/or consume events. This architecture largely
decouples the processing of confidential data from the handling of web requests
[29] and creates a unidirectional data flow from the backend to the frontend, in
compliance with security requirement S1.

The event processing backend hosts the application logic for processing con-
fidential data. Events are created from confidential data retrieved from a data
source (illustrated as the Main Database in the figure) and labelled appropri-
ately. Event Processing Units act as generators, filters or processors of events
and exchange labelled events through an IFC-aware Event Broker. Units are
constrained in their operation by the Event Processing Engine, which acts as a
run-time environment for application components. Its IFC Jail controls commu-
nication of units with the environment and preserves labels during event commu-
nication. Privileges for units over specific labels are configured through a data
flow Policy. Result events are stored with appropriate labels in an Application
Database after processing.

The web frontend serves synchronous web requests from users by accessing
the application database. State that is specific to a given web session is stored
in a separate Web Database to isolate it from application data. Labels from
the application database are propagated in the web application by SafeWeb’s
runtime Taint Tracking library and are checked when generating responses. As a
result, security labels are associated with data throughout the processing pipeline
and checked at boundaries between components with respect to the application
policy, thus satisfying requirement S2.

4.1 Events with Security Labels

Event processing units communicate through events. Data models for events can
vary widely [7]. For ease-of-use, we adopt one of the simplest yet popular choices:
events in SafeWeb consist of a set of key-value attribute pairs and an optional
data payload. The keys, values and the body are untyped strings.

SafeWeb associates a set of security labels with each event. There are two
types of labels, confidentiality labels and integrity labels. Confidentiality labels
prevent sensitive data from escaping a given system boundary, whereas integrity
labels are used to prevent low-integrity data from entering parts of an applica-
tion. Confidentiality labels are “sticky”—once they are associated with an event,
all events that are derived from that event will also contain those labels. In con-
trast, integrity labels are “fragile”—they are applied to an event only if all the
events that this event was derived from also contain the same integrity labels.

Labels are represented as URIs. For example, label:conf:ecric.org.uk/
patient/33812769 could be used as a confidentiality label to protect the data of
a specific patient, while label:int:ecric.org.uk/mdt could act as the integrity
label for all data contained within the whole MDT application. In the MDT ap-
plication, an event processing unit periodically reads unlabelled patient records
from the main ECRIC database and produces events which are labelled accord-
ing to the encountered patient ID. This operation does not require privileges—
it is always possible to add extra confidentiality labels to events. MDT-level
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aggregates, such as survival statistics or measures of information completeness
(cf. �2.1), are labelled with a confidentiality label specific to that MDT.

Label enforcement is managed using associated privileges. Two types of privi-
leges are used for confidentiality labels. The clearance privilege is used to access
information protected by a confidentiality label. The privilege to make labelled
information public by removing the label is referred to as declassification. Anal-
ogous privileges for integrity labels exist: clearance to low integrity and endorse-
ment. To simplify presentation, we consider only confidentiality labels and the
associated privileges in the rest of the paper.

Privilege assignment and checking is performed in SafeWeb by the event
processing engine and the web frontend. Privileges associated with labels are
assigned directly to units (in the backend) and requests (in the frontend) through
a policy specification file. For more complex policies with dynamic privileges, a
label manager could delegate privileges to units at runtime.

4.2 Event Broker

Units communicate by publishing events and by subscribing to events that they
are interested in. To dispatch events among units, SafeWeb uses an event broker
that matches subscriptions with published events. To support fine-grained data
processing, SafeWeb uses a topic-based subscription language with optional
content filtering on event attributes within a topic [7].

The event broker filters events according to their security labels. This is used
to restrict the set of events that units can receive: for an event to be delivered to
a subscriber, the set of its confidentiality labels must be a subset of those labels
for which the subscriber possesses clearance privileges.

The event broker uses a modified version of the Streaming Text Oriented
Message Protocol (STOMP) [23]—a simple, extensible, HTTP-inspired message
protocol. It is language- and platform-agnostic and an open-source implementa-
tion [24] exists for Ruby. In STOMP, each request consists of a command, such as
CONNECT, SEND or SUBSCRIBE, a set of optional headers and an optional body. A
destination header is used to match subscriptions with publications by topic.
An optional SQL-92 selector header specifies content-based subscriptions.

The implementation of our IFC-aware event broker is based on the STOMP
implementation but has been extended with SSL support at the transport layer.
At the dispatching layer, we have changed the matching semantics to respect
labels, which are encoded as event headers with special semantics in SEND and
SUBSCRIBEmessages. In addition, subscriptions include unique identifiers to sim-
plify the handling of subscriptions issued by different units. The client side of
the STOMP implementation uses the event-based EventMachine I/O library [8].

4.3 Event Processing Engine

The event processing engine in SafeWeb provides a framework to support and
control unit execution. Its key functions are (1) control of unit execution by
checking and tracking security labels, (2) assignment of privileges to units and
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1 subscribe �/patient report�, �type=cancer� do |event|
2 list = get �patient list�
3 list push event[:patient id]
4 set �patient list�, list
5 end
6 subscribe �/next day� do |event|
7 list = get �patient list�
8 publish �/daily report�, list, :remove => �LABELS,
9 :add => [�label:conf:ecric.org.uk/patient list�]

10 end

Listing 1. Example unit

(3) restriction of access to the environment. An event processing unit is realised
as one or more classes that implement the business logic of the application.
The engine configures, instantiates and runs units and provides communication
facilities using the event broker.

Listing 1 shows a unit that computes a daily list of patients with processed re-
ports. The unit registers subscriptions for events published on the topics
patient report (line 1) and next day (line 6). When a subscription is issued by
a unit, the engine reads the set of labels from the unit’s policy file for which the
unit has clearance privileges. The engine then issues a subscription request to
the broker with this set of labels; this set is used to check that a matching event
can be processed by the unit. To support stateful units, the engine provides a
unit-specific key-value store with labels associated with keys. It can be used for
reading (lines 2 and 7) or storing (line 4) values, thus allowing different callbacks
to communicate by exchanging state between them.

The engine prevents units from inadvertently disclosing confidential data be-
cause it controls the labelled events that they publish and isolates them from
the external environment. We describe the two mechanisms for this in turn.
Label tracking. To ensure correct labelling, the engine associates a set of labels
with the execution of a callback. This set, accessible to units as �LABELS, is
initialised to the set of labels of the event being processed. When an event is
published, the engine attaches all labels in �LABELS to the event. With each
publish call, the unit can specify a set of labels to add or remove from the
published event (lines 8 and 9), although removal is only permitted when the
unit has the appropriate declassification privilege.

As values in the key-value store are labelled on a per-key basis, when a value
is read from the store, �LABELS is updated to reflect its confidentiality—all the
labels associated with the value’s key are added to �LABELS. When writing to the
store, all confidentiality labels in �LABELS are saved as the key’s confidentiality,
optionally adding and removing labels analogous to the publish call.

By maintaining labels from the received events to the published ones, and
by labelling all datapaths through the shared key-store appropriately, confiden-
tiality labels are preserved. However, unit callbacks could access other forms of
unlabelled shared state, which would ignore label protection. In addition, they
could bypass the event broker and use external APIs for console, disk or net-
work I/O, thus disregarding labels completely. To prevent this, the engine must
execute unit callbacks in isolation.
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Isolation. The goals of isolation are twofold: to prevent the use of I/O operations
and to prevent access to variables outside of the callback local scope, i.e. , global
variables, instance variables and local variables of enclosing scopes.

To isolate units from I/O and access to global variables, we use Ruby’s safe
levels. They restrict the execution mode of Ruby code and provide different kinds
of isolated environments. �SAFE is a thread-local global variable that controls
the current safe level. When set to safe level 4, it creates the most restrictive
environment with the following irreversible effects on the current thread: (i) no
access to I/O operations, (ii) all new objects are marked with a flag called “taint”
and (iii) no write access to any object that is not tainted.

In Figure 2, we show how safe levels are used to achieve callback isolation.
The engine executes units in a new thread, after setting �SAFE=4 to prevent the
unit’s initialisation code (step 1) from performing I/O operations. Units register
callbacks (step 2) that execute when events arrive. When the STOMP client
library that interacts with the event broker receives a matching event, it creates
a new thread, sets �SAFE=4 and executes the callback (step 3). The callback code
cannot perform I/O or store events in global variables. It can only store events
in the unit’s key-value store that is tainted explicitly during unit allocation.

Isolation in safe level 4 still allows a callback to access variables of its en-
closing scopes. To prevent this, we duplicate these variables when the callback is
registered by using the meta-programming features of the Rubinius runtime [20].

Some units, however, need access to APIs that perform I/O, e.g. units that
import and export events between the event engine and databases. To support
this, the engine allows privileged units to execute without isolation at �SAFE=0
and, thus, access I/O facilities. This effectively allows them to declassify any
received event. To limit the power of privileged units, the engine prevents them
from receiving events with certain labels by withholding their clearance privilege.

4.4 Web Frontend

The web frontend of SafeWeb presents results from the backend to users and
enforces IFC without requiring changes to web applications. Web developers
could be not fully aware of the policy requirements of the data that they present
or, more often, they may introduce implementation bugs leading to unintended
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data disclosure. In the web frontend, SafeWeb’s taint tracking library labels all
data to reflect the confidentiality of the principals that the data correspond to.
When an application that is not policy compliant attempts to return incorrect
data to the client, the operation can be aborted, preventing data disclosure.

The web frontend has a traditional, database-driven architecture: a client is-
sues an HTTP request, the request is served by the application server using the
application database, and the HTTP response returns the result to the client.
Since the application server handles requests from all users, it must have access
to the data that any user may receive, i.e. all sensitive data in the applica-
tion database. As a consequence, the web application would have to be trusted
to remove all labels associated with data. Clearly, this would violate security
requirement S2 because any implementation error in the web application could
result in inadvertent disclosure of data that should be visible only to a particular
group of users, such as a given MDT.

To achieve the end-to-end security requirement, SafeWeb tracks data at a
different granularity in the web frontend than in the event-processing backend.
Instead of labels being attached to events, they are associated with individual
variables. For example, when a variable n stores a patient name, n will carry a
label that conveys the confidentiality of the patient name.

Labels are checked by SafeWeb when the web application returns an HTTP
response to a client. For example, before the content of variable n is sent to a
client, the client’s privileges are validated to be a superset of the confidentiality
labels associated with n. As described next, this is sufficient to provide end-to-
end confidentiality guarantees without requiring a new application architecture,
which would be challenging to adopt in a production environment [15].

Figure 3 shows the operation of SafeWeb’s taint tracking library for Ruby.
In step 1, an HTTP request arrives at the server. The request is authenticated
and the confidentiality privileges of the associated user are retrieved from the
web database. In step 2, the application queries the application database for the
data needed to serve the request. SafeWeb’s taint tracking library transpar-
ently adds the labels produced by units in the backend to the data fetched from
the application database. In step 3, the application produces a response by car-
rying out application-specific processing of the data. SafeWeb’s taint tracking
library alters Ruby program statements and library methods to propagate labels
correctly; e.g. , when two strings are concatenated, the resulting string receives
both operands’ labels. In step 4, before sending the response to the user, the
response’s label is compared to the user’s privileges from step 1—unless the user
has the required privileges, the operation is aborted.

SafeWeb implements variable taint-tracking in Ruby using labels as follows.
Its taint-tracking library redefines Ruby’s String and Numeric subclasses (1) to
store labels within each instance and (2) to propagate labels correctly across
method invocations. For example, SafeWeb’s taint tracking library should
propagate labels upon string concatenation. For this, it declares a new con-
catenation method in the String class called nconcat(). The taint tracking
library then aliases the existing “+” method to call nconcat() and propagate
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labels. From then onwards, the runtime transparently invokes the redefined “+”
method when two strings are concatenated. Since we only support non-malicious
code (�3.2), these changes are enough to effect label propagation.

The implementation exploits a standard meta-programming feature of Ruby
and Ruby’s pure object-oriented foundations. Ruby classes are open, all oper-
ators are defined as methods, and method definitions can change at any time.
Implementing a similar taint-tracking library in other popular web languages,
such as Java [4] or PHP [30], would require more extensive changes to the lan-
guage runtime, making maintenance difficult in a production environment.

SafeWeb supports Ruby web applications running on the Rubinius run-
time [20] and using the Sinatra web framework [22]. We use Rubinius due to its
ability to manipulate the regular expression variables (�~, �1, etc.) directly. This
is necessary to add taint tracking to Ruby’s regular expression methods. Sinatra
is used for its well-defined interception points of HTTP requests and responses.
This allows SafeWeb’s taint tracking library to intercept all communication to
and from the client and attach label checks or fetch user privileges.

We do not introduce explicit features to prevent traditional Cross-Site Script-
ing (XSS) or SQL injection (SQLI) attacks. Ruby objects support a taint
method that marks a given object as originating from the user. The Ruby run-
time stores this information per object and propagates it when strings are pro-
cessed, similar to our label propagation. In the context of web applications, this
mechanism can be used to ensure that every string is sanitised before being used
in a sensitive operation, such as an HTML response or an SQL query.

5 Evaluation

The goals of our experimental evaluation are to explore the effectiveness of the
SafeWeb middleware in preventing unauthorised data disclosure and to mea-
sure its performance overhead. We evaluate its security properties as part of the
prototype implementation of the MDT web portal application.

5.1 Case Study: MDT Web Portal Application

As shown in Figure 4, the MDT web portal application uses three units: (a) A
data producer obtains data from the main ECRIC database, leveraging the ex-
isting ECRIC framework for data access. It reads fields from different tables,
labels them appropriately according to MDT and patient ID and publishes them
as events to the event broker. For the sake of simplicity, we use only MDT-level
labels as these are sufficient to satisfy our security requirements. (b) A data ag-
gregator continuously collects all events related to individual cancer cases and
combines their data. It produces aggregated records required by the MDT web
application to satisfy functional requirements F1–F3. Implementation errors will
not disclose data because of the isolation mechanism of SafeWeb. (c) Finally,
a data storage unit, which has declassification privileges for all MDTs, handles
data persistence. It stores processed records with their security labels in the
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Fig. 4. Deployment of the MDT web portal application using SafeWeb within
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CouchDB application database. Security features of SafeWeb (i.e. IFC and
strong isolation) allow the application to satisfy the security policy P1.

The Sinatra-based web frontend of the application uses CouchRest [5] to access
CouchDB, and ERB for embedding Ruby in web pages. SafeWeb’s taint track-
ing library enforces authentication centrally by adding hooks to all defined Sina-
tra rules. User accounts and their label privileges are stored in the web database.
Currently, the web frontend uses HTTP basic authentication and TLS. We plan
to add support for authentication using NHS smartcards in the future.

Deployment. Figure 4 shows how ECRIC’s network is separated into three
zones: an Intranet, a demilitarised zone (DMZ ) and the NHS-wide N3 network.
The Intranet is a restricted zone separated from the DMZ by a firewall, which
permits only unidirectional connections to the DMZ. Core ECRIC infrastructure
such as the main database is accessible only from within the Intranet.

The MDT web portal application is deployed within ECRIC as follows. The
event broker (1) acts as a secure event bus for event processing units and is
deployed within the ECRIC internal network. The units belonging to the appli-
cation execute as part of the event processing engine (2). The MDT application
uses a CouchDB application database (3) which contains the result data from
the event-processing backend and provides result data to the web frontend (4).
Because ECRIC’s firewall only permits connections from the Intranet to the
DMZ, we run two instances of the application database: in the Intranet (3) and
in the DMZ (5). The application database is replicated periodically between the
two instances using CouchDB push replication. The DMZ instance is read-only
in order to prevent modifications by the web frontend, thus satisfying require-
ment S1. Data specific to the web frontend, e.g. session and usage data, is stored
separately in a local web database (6) using the SQLite database engine.
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1 require �sinatra�
2 require �safeweb−tracking�
3 get �/records/:mid� do
4 content type :json
5 return nil if !check privileges(params[:mid])
6 r = Records.by mid(:key => params[:mid])
7 process r
8 r.to json
9 end

Listing 2. Example of a rule in the web
frontend of the MDT web portal

1 def check privileges id
2 m = Measurement.find(id)
3 @is admin or Privileges.count(
4 :conditions => {
5 :u id => User.find by name(@username).id,
6 :hospital => m.hospital id,
7 :clinic => m.type
8 }) > 0
9 end

Listing 3. An access control check used
by the MDT web portal

5.2 Security Properties

Given the lack of third-party SafeWeb applications, we assess the security prop-
erties of SafeWeb by analysing its effectiveness in defending against known
types of implementation errors. We inspected the Common Vulnerabilities and
Exposures (CVE) database for vulnerabilities classified as “Information Dis-
closure”, “Access Control” or “Design Error” and organised them into generic
subcategories that share the same underlying cause. We then inject similar vul-
nerabilities to our MDT application and observe if SafeWeb can prevent them.

Omitted Access Checks. The most common problem that leads to information
disclosure (e.g. , CVE reports 2011-0701, 2010-2353 and 2010-0752) is the omis-
sion of access control checks. To emulate this, we remove the MDT privilege
check from the patient filtering routine that normally precedes the filtering of
patient details (Listing 2, line 5). Without SafeWeb’s taint tracking library
(line 2), sensitive information disclosure occurs in line 8. However, when the
taint tracking library is included and an MDT requests data they are not al-
lowed to see, the library correctly taints the JSON string (line 8) and displays
an error message.

Errors in Access Checks. Even when an access control check is present, it may
not specify the correct security policy and may result in information disclosure.
Often, these errors involve specially constructed input and do not manifest them-
selves under normal operation, making them hard to discover (e.g. , CVE reports
2011-0449, 2010-3092 and 2010-4403). To introduce such a problem, we modify
the user lookup operation (listing 3, line 5) to ignore the case of the username.
This may lead to two MDTs sharing privileges. To test this, we create two MDTs
with usernames mdt1 and MDT1 but with different privileges. SafeWeb’s taint
tracking library, when included, successfully prevents access of the second MDT
to all the patient details that only the first MDT should see.

Inappropriate Access Checks. Security policies are often complicated and devel-
opers may not fully understand them. This category of vulnerabilities covers
correctly applied checks that do not enforce the intended policy (e.g. , CVE
reports 2010-4775 and 2009-2431). To emulate such issues, we remove the check
for clinic equality from check privileges (Listing 3, line 7). This effectively
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enables any MDT to see the data of all the patients in the same hospital. Again,
the error does not result in information disclosure: SafeWeb’s taint tracking
library detects the taint of the output, generates an error and prevents access.

Design Errors. The last category captures vulnerabilities due to design errors in
the application’s business logic (e.g. , CVE reports 2011-0899 and 2010-3933).
Such errors involve the application processing sensitive data in unexpected ways
that lead to data disclosure. To emulate this, we modify the data aggregator
unit to ignore the hospital of origin when matching events. As a result, the unit
generates records that mix data of different MDTs. SafeWeb’s event processing
backend allows access to these events but requires that the output records have
labels of all relevant MDTs. Thus, when the frontend attempts to display these
records, access is prevented because no MDT has the necessary privileges.

Trusted Codebase. SafeWeb enforces security policies but it does not elim-
inate trusted code: (1) SafeWeb’s taint tracking library must be trusted to
correctly authenticate users, associate privileges with their requests, propagate
labels and check the labels of each response. (2) The event backend must iso-
late non-privileged units and label their output. (3) Privileged units must label
events that they publish or store in the application database correctly. (4) The
policy file that specifies user privileges in the web frontend and unit privileges in
the event backend, as well as the scripts that edit it, must be audited for errors.

A code audit is still required, but it can focus on the SafeWeb implementa-
tion and only includes a small application-specific part. SafeWeb’s taint track-
ing library consists of 1943 LOC and the event processing engine has 1908 LOC.
After this trusted codebase has been audited once, data confidentiality only de-
pends on the correctness of a small part of each application. For the MDT web
portal, the code that has to be audited involves the two privileged units in the
backend (138 LOC) and the code that assigns privileges to new MDTs in the
frontend (142 LOC). The confidentiality of patient data does not depend on the
other 2841 LOC of the MDT application—no further security audit is required.

5.3 Performance Overhead

In this section, we measure the performance overhead of SafeWeb in terms of
latency and throughput. All measurements are taken on an AMD Opteron 6136
2.4GHz system with 16 GiB of RAM running Ubuntu 10.04. The 95% confidence
interval for each value we report extends to each side at most 5% of the value.

For the web front-end, we measure the page generation time of the MDT ap-
plication’s front page with and without SafeWeb’s taint tracking library. We
issued 1000 requests and measured the time required to render the response.
With SafeWeb’s taint tracking library, the page generation time increases by
14% from 158 ms to 180 ms. For the back-end, we measure the average latency of
individual events from the data producer to the data storage unit during the pro-
cessing of 1000 events. With SafeWeb’s isolation and label checks, the latency
to process a single event increases by 15% from 73 ms to 84 ms. Overall, this is
an acceptable overhead for a web application with strong security requirements.
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Figure 5 shows a break-down of the overall latency when SafeWeb is enabled.
In the front-end, HTTP basic authentication takes 87 ms to which privilege
fetching adds 3 ms; processing of the ERB template takes 63 ms, to which label
propagation adds 17 ms. “Other” includes operations like network transmission
and database access. For the back-end, processing an event takes 51 ms plus
20 ms for serialisation, to which SafeWeb adds 13 ms for label management
including label (de)serialisation and checking.

SafeWeb provides ample throughput for the low event rates of the MDT por-
tal. We employ a synthetic benchmark with two units, an event producer and
an event consumer, to measure the throughput reduction that SafeWeb incurs.
We measured the end-to-end event throughput between the two units by having
the producer publishing events at the maximum sustainable rate while confirm-
ing that the memory consumption remained stable. We sampled the throughput
once per second for 1000 seconds. With label tracking active, event throughput
decreased (−17%) from 4455 events/second to 3817 events/second. Due to the
language isolation support in Ruby, the decrease in performance is minimal and
comparable to approaches that rely on low-level runtime modifications [30].

6 Related Work

The most common security problems in web applications arise from the handling
of untrusted user data in the application’s output. This leads to problems such as
XSS and SQL injection attacks. Web application frameworks protect against such
vulnerabilities (e.g. XSS, CSRF) [26]. Applications developed with SafeWeb

can still benefit from this (e.g. RailsXSS [18], Rack::Csrf [17]) to avoid traditional
exploits that often disclose data by hijacking user accounts. In addition, Safe-

Web improves these frameworks to prevent sensitive data disclosure.
Such data disclosure is often caused by insufficient authorisation, missing ac-

cess control checks or by errors in application semantics. Potential solutions
include static analysis [9,10], symbolic execution [3] and runtime taint track-
ing [4,28,14,16,30]. Static analysis tools for dynamic web languages often have
high false positive rates [9] or do not support all language features [10]. Sym-
bolic execution explores all possible execution paths of a web application and
can prove absence of certain errors [3]. However, devising assertions for symbolic



A Middleware for Securing Ruby-Based Web Applications 509

execution is a manual task and involves many of the shortcomings of manual se-
curity audits. In contrast, our approach requires minimal developer involvement.

At runtime, access control can be enforced transparently on each opera-
tion [21,2] or when sensitive events are received [27]. Nevertheless, if the ap-
plication has to process sensitive data, errors in the application logic may still
convey sensitive information. Taint tracking systems transparently track sensi-
tive data and protect against inadvertent disclosure despite application errors.
They have been provided, amongst others, for Java [4], C [28,14], PHP [16,30]
and Ruby [2]. Simple approaches use one bit taint per string for injection at-
tack protection [16]. In contrast, SafeWeb’s taint tracking library attaches full
security labels to each variable, offering end-to-end guarantees about sensitive
data disclosure. Resin [30] uses pointers to user-defined policy objects, such as
IFC labels; however, it requires extensive language runtime modifications.

7 Conclusion

We have designed and implemented SafeWeb, a middleware for creating secure,
event-based enterprise web applications. It provides strong end-to-end security
guarantees, while integrating with existing web development practices. We have
demonstrated SafeWeb as part of a web application for assisting cancer treat-
ment practices within the UK National Health Service (NHS).

The strict data security requirements across multiple interacting organisations
provided us with a set of real design constraints. The sensitivity of healthcare
data required careful consideration of the parts of the middleware that push and
pull data. The back-end requirements suited an event-driven design, whereas the
front-end is a typical web application. We showed that information flow control
can be applied to both the event-processing back-end and the web front-end as
part of a middleware. This gives security assurances regarding data disclosure
and minimises organisations’ code audits.

In future work, we plan to explore how SafeWeb could become the basis
for wider deployment of healthcare applications at the national level. Scaling
up will involve creating separate, independent regional instances of SafeWeb,
which can interact with each other in a secure fashion. In addition, we want to
investigate the use of SafeWeb for other classes of web applications.
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