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Chapter 9 
Applied Fuzzy Systems 

Data processing not only in physics and engineering, but also in medicine, biology, 
sociology, economics, sport, art, and military affairs, amounts to the different state-
ments of identification problems. Fuzzy logic is mistakenly perceived by many spe-
cialists in mathematical simulation as a mean of only approximate decisions making 
in medicine, economics, art, sport and other different from physics and engineering 
humanitarian domains, where the high level of accuracy is not required. Therefore, 
one of the main goals of the authors is to show that it is possible to reach the accu-
racy of modeling, which does not yield to strict quantitative correlations, by tuning 
fuzzy knowledge bases. Only objects with discrete outputs for the direct inference 
and discrete inputs for the inverse inference were considered in the previous chap-
ters. Such a problem corresponds to the problem of automatic classification arising 
in particular from medical and technical diagnosis. The main idea which the authors 
strive to render is that while tuning the fuzzy knowledge base it is possible to identi-
fy nonlinear dependencies with the necessary precision. 

The use of the fuzzy expert information about the nonlinear object allows us to 
decrease the volume of experimental researches that gives the significant advan-
tage in comparison with the known methods of identification with the growth of 
the number of the input variables of the object. Besides that, the fuzzy knowledge 
base easily interprets the structure of the object, while it is not always possible at 
the use of known methods. 

Numerous examples considered in this chapter testify to wide possibilities of the 
intellectual technologies of modeling in the different domains of human activity.  

9.1   Dynamic System Control 

A dynamic system is traditionally considered as one quantitative description of 
which can be given by the language of differential or other equations [1]. Classical 
automatic control theory suggests that such equations can be constructed from the 
laws of physics, mechanics, thermodynamics, and electromagnetism [2]. Con-
struction of dynamic equations requires a deep understanding of the processes and 
needs good physico-mathematical training [3]. On the other hand, a person can 
control a complicated object without compiling or solving any equations. We re-
call for example how easily a driver parks an automobile. Even a novice sitting for 
the first time in the driver seat can control an automobile by executing the verbal 
commands from his instructor sitting next to him. 
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A unique feature of man is his capacity to learn and to evaluate the observed 
parameters in natural language: low velocity, large distance, and so on. Fuzzy set 
theory makes it possible to formalize natural language statements. Here we show 
that one can adjust a fuzzy knowledge base and use it to control a dynamic object 
no less effectively than with classical control theory. This section is written on the 
basis of work [4].  

9.1.1   Control Object 

We consider an inverted pendulum (Fig. 9.1), i. е., a rod fixed on a trolley that can 
oscillate in the longitudinal vertical plane. 

The task of the control system is to maintain the inverted pendulum in the ver-
tical position by displacing the trolley. A more ordinary form of this task is to 
maintain a rod on a finger in the vertical position. In [2] it has been shown that this 
is the class of problems in simulating the motion of a rocket, a supersonic aircraft, 
or a set of barges pushed by a tug, all of which are objects in which the centre of 
mass does not coincide with the point of application of the force.  
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Fig. 9.1. Inverted pendulum 

Before we consider the differential equations describing the motion of the pendu-
lum, we note that the rod or the finger is kept vertical by applying simple rules:  

 

If the angle of deviation from the vertical is large, one needs rapid movement in 
the same direction; 

If the angle of deviation is small, one makes a small movement in the same direction; 
If the angle of deviation is zero, no movement is made. 
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9.1.2   Classical Control Model 

Following [5], we introduce the following symbols in Fig. 9.1: l – pendulum 
length, m  – pendulum mass, M  – trolley mass, g  – acceleration due to gravity, 

u  –control for supply to trolley, xf  and yf  – horizontal and vertical components 

of the forces acting on the pendulum, θ  – the angular deviation of the pendulum 
from vertical, and I  – the second moment of the pendulum in the plane of oscilla-

tion, which for a rectilinear thin rod is given by 
2

3
mlI = . 

The equation of motion for an inverted pendulum as a control object may be 
written as follows [5]: 

turning moment about the point G 
  

cos sinx yI f l f lθ θ θ= +  ; 
  

displacement of the projection of G on the y axis 
 

2

2

2( cos ) ( sin cos )d
y dt

f mg m l mlθ θ θ θ θ− = = − +  ;  
 

displacement of the projection of G on the x axis 
 

2

2

2( sin ) ( cos sin )d
x dt

f m x l mx mlθ θ θ θ θ= − = − −  ;  
 

and displacement of the trolley parallel to the x axis 

xu f Mx− =  ,  
in which θ  is the rate of change in angle θ , θ  is the angular acceleration of the 
pendulum, and x  is the acceleration of the trolley along the x axis. 

A linear approximation is used for these equations subject to the condition that 

θ  varies over a fairly narrow range ( cos 1θ ≈ , sinθ θ≈ , 0θθ ≈ , 2 0θ ≈ ), 
which gives us the differential equation of motion as: 

3 ( ) 3
(4 ) (4 )
g M m u

M m l M m lθ θ+
+ += +     .                          (9.1) 

 

To maintain the pendulum vertical with an ordinary control system with feed-
back, we represent the control variable as: 

 

u αθ βθ= +   ,                                   (9.2) 
 

which corresponds to a proportional-differential regulator having proportionality 
coefficients α  and β . 

To provide stability, we take the coefficients as: 
 

10α = −  , 2β = − , 
which gives negative values for the roots 

 

1 2.98λ = −   ,  2 16.99λ = −  
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in the characteristic equation 
 

3 ( ) 332
(4 ) (4 ) 0g M m

M m l M m l
αβλ λ + +

+ +− − = , 

 
corresponding to (9.1). 

To keep it vertical, we can thus use the control input  
 

10 2u θ θ= − −                                                      (9.3) 
 

in which the equation for the stable motion is: 
 

6 3 ( ) 30

(4 ) (4 )

g M m

M m l M m l
θ θ θ+ −= − +

+ +
.                              (9.4) 

 

Table 9.1 gives the behaviour of θ (in rad) and θ (rad/sec) from (9.4) with 
various initial conditions: 1γ , 2γ  and 3γ . In solving equation (9.4) we have used 

the following parameter values: 
 

0.035m = kg, 0.5M = kg, 30l =  cm, 9.8g =  m/seс2 . 
 

In what follows, Table 9.1 will be used as the training set for adjusting the 
fuzzy control model. 

Table 9.1. Behavior of an inverted pendulum under regulator control 

1γ  2γ  3γ  
t  θ  θ  θ θ  θ θ  

0.0 0.175 0.0000 0.105 0.0000 0.035 0.0000 
0.1 0.150 -0.3523 0.090 -0.2114 0.030 -0.0705 
0.2 0.115 -0.3261 0.069 -0.1957 0.023 -0.0652 
0.3 0.086 -0.2540 0.052 -0.1524 0.017 -0.0508 
0.4 0.064 -0.1908 0.039 -0.1145 0.013 -0.0382 
0.5 0.048 -0.1421 0.029 -0.0852 0.010 -0.0284 
0.6 0.035 -0.1056 0.021 -0.0633 0.007 -0.0211 
0.7 0.026 -0.0784 0.016 -0.0470 0.005 -0.0157 
0.8 0.020 -0.0582 0.012 -0.0349 0.004 -0.0116 
0.9 0.015 -0.0432 0.009 -0.0259 0.003 -0.0086 
1.0 0.011 -0.0321 0.006 -0.0193 0.002 -0.0064 
1.1 0.008 -0.0238 0.005 -0.0143 0.002 -0.0048 
1.2 0.006 -0.0177 0.004 -0.0106 0.001 -0.0035 
1.3 0.004 -0.0131 0.003 -0.0079 0.001 -0.0026 
1.4 0.003 -0.0098 0.002 -0.0059 0.001 -0.0020 
1.5 0.002 -0.0072 0.001 -0.0043 0.000 -0.0014 
1.6 0.002 -0.0054 0.001 -0.0032 0.000 -0.0011 
1.7 0.001 -0.0040 0.001 -0.0024 0.000 -0.0008 
1.8 0.001 -0.0030 0.001 -0.0018 0.000 -0.0006 
1.9 0.001 -0.0022 0.000 -0.0013 0.000 -0.0004 
2.0 0.001 -0.0016 0.000 -0.0010 0.000 -0.0003 
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9.1.3   Fuzzy Control Model 

The dependence of the control u  on the variables θ  and θ  is represented as a 
knowledge base formed from 25 expert rules as follows: 

 

IF iAθ =  AND iBθ = , THEN ju C= , 1,5i = , 1,7j = . 
 

These rules form a 5 5× matrix: 

 
              Rate of change, θ   

  hN N Z P hP  
 hN vhN vhN hN N Z  

Deviation N vhN hN N Z P  
angle, Z hN N Z P hP (9.5) 

θ  P N Z P hP vhP  
 hP Z P hP vhP vhP  

 

where variables θ  and θ  are evaluated by means of five terms: 

1 1A B=  = high negative (hN), 2 2A B=  = negative (N), 3 3A B=  = zero (Z), 

4 4A B=  = positive (P), 5 5A B=  = high positive (hP). 

and variable u  is evaluated by means of seven terms: 

1C  - very high negative (vhN), 2C  - high negative (hN), 3C  - negative (N),        4C  

- zero (Z), 5C  - positive (P), 6C - high positive (hP), 7C  - very high positive (vhP). 

As the training set for tuning the control model (9.5), we use the Table 9.1 data 
and equation (9.3). The task of adjustment consists in selecting parameters for the 

membership functions in the terms iA and iB  ( 1,5i = ) and rule weights in (9.5) 

such as to produce the minimum discrepancy between the theoretical equations 
(knowledge base (9.5)) on the one hand and the experimental equations (Table 9.1 
and formula (9.3)) on the other.  

The adjustment is performed by the method described in Section 3. The ob-
tained membership functions are presented in Fig. 9.2. The weights of the fuzzy 
rules after adjustment correspond to the elements in the following matrix: 

 
  Rate of change, θ  

  hN N Z P hP 

 hN 0.9837 0.3490 0.7902 0.8841 0.9015 
Deviation N 0.3490 0.9111 0.3901 0.7509 0.2199 

angle, Z 0.7902 0.3901 0.7981 0.6381 0.5594 
θ  P 0.8841 0.7509 0.6381 0.3690 0.5114 

 hP 0.9015 0.2199 0.5594 0.5114 0.8708 
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Fig. 9.3 compares the behaviour of θ  for the classical model and the fuzzy model 
with various initial conditions ( 1γ , 2γ , 3γ ); after the fuzzy control system is adjusted, it 

provides the same results as a traditional proportional-differential regulator. 
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Fig. 9.2. Membership functions for fuzzy levels of variables θ  and θ  evaluation 
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Fig. 9.3. Comparison of fuzzy and classical control systems after tuning 

9.1.4   Connection with Lyapunov’s Functions 

It is shown here, that Lyapunov’s functions known in stability theory can be used 
to synthesize fuzzy rules for control of a dynamic system. 

The second or direct Lyapunov’s method [3] allows us to study the stability of 
solutions of the nonlinear differential equations without solving these equations. 
The stability criterion was developed by Lyapunov on the basis of the following 
simple physical conception of equilibrium position: equilibrium position of the 
system is asymptotically stable, if all the trajectories of the process, beginning 
fairly near from the equilibrium point, stretch in such a way, that a properly de-
fined “energetic” function is converged to the minimum, where position of the 
local minimum of energy corresponds to this point of equilibrium. 

Let us consider the application of this criterion relative to the generalized 
nonlinear equation: 

 

( )x f x=  ,  0(0)x x=   ,                                            (9.6) 

where x  is the vector of the system condition. 
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We assume, that (0) 0f =  and function  f is continuous in the neighbourhood 

of the origin of coordinates. 
 

Definition of Lyapunov’s function. Function ( )V x  is called Lyapunov’s func-

tion (an energetic function) of system (9.6), if: 
 

1) (0) 0V =  , 

2) ( ) 0V x >  for all 0x ≠  in the neighbourhood of the origin of coordinates, 

3) 
( )

0
V x

t

∂ <
∂

 along the trajectory of system (9.6). 

 

The main result, obtained by Lyapunov, was formulated as the theorem of stability. 
 

Lyapunov’s Theorem of Stability. The equilibrium position 0x =  of system 
(9.6) is asymptotically stable, if Lyapunov’s function ( )V x of the system exists. 

We stress that Lyapunov’s method requires derivation of the system dynamics 
equations. We are interested in the case with a lack of such equations. 

Let us consider the inverted pendulum (Fig. 9.1) in the assumption, that only 
the following a priori information is known: 

 

а) the system condition is defined by the coordinates 1x θ=  and 2x θ= ; 

b) 2x  is proportional to control u, i.е., if u increases (decreases), then 2x  in-

creases (decreases). 
 

To apply Lyapunov’s  theorem to the inverted pendulum, the following func-
tion is selected as a Lyapunov’s function candidate: 

 

2 2
1 2 1 2

1
( , ) ( )

2
V x x x x= +  .                                        (9.7) 

 

If (0,0) 0V =  and 1 2( , ) 0V x x >  then to assign 1 2( , )V x x  as a Lyapunov’s func-

tion, it is necessary to provide the condition: 
 

1 2
1 1 2 2 1 2 2 2

( , )
0

V x x
x x x x x x x x

t

∂ = + = + <
∂

.                      (9.8) 

 

A fuzzy knowledge base about control 1 2( , )u u x x= can be formulated as the 

condition of inequality (9.8) implementation. We consider three cases: 
 

IF 1x  and 2x  have the opposite signs, then 1 2 0x x <  and inequality (9.8) will be 

implemented for 2 2 0x x = . 

IF 1x  and 2x  are positive, then (9.8) will be implemented for 2 1x x< − . 

IF 1x  and 2x  are negative, then (9.8) will be implemented for 2 1x x> − . 
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Using the above mentioned reasoning and priori information relative to the fact 
that 2x  is proportional to u, we obtain four fuzzy rules for stable control the in-

verted pendulum: 
 

IF 1x  positive AND 2x  negative,  THEN u zero, 

IF 1x  negative AND 2x  positive,  THEN u zero, 

IF 1x  positive AND 2x  positive,   THEN u high negative, 

IF 1x  negative AND 2x  negative, THEN u high positive. 
 

Adjustment of this knowledge base consists of the selection of membership 
functions for the corresponding terms. 

The essential differences between the classical and fuzzy control systems are 
given in Table 9.2. 

Table 9.2. Control System Comparison 

System type Advantages Disadvantages 

Classical 
 

If there is a model that adequately 
describes the dynamics, one can 
operate without adjusting it 

Difficult to derive differential 
equations adequately describing 
the dynamics in the presence of 
nonlinear perturbations 

Fuzzy 

Differential equations not  
necessary, and dynamic model is 
readily written in terms of  
linguistic rules 

 
Requires linguistic model  
adjustment 

9.2   Inventory Control   

Minimization of the inventory storage cost in enterprises and trade firms stocks in-
cluding raw materials, stuffs, supplies, spare parts and products, is the most impor-
tant problem of management. It is accepted that the theory of inventory control re-
lates to operations research [6]. The models of this theory [7, 8] are built according 
to the classical scheme of mathematical programming: goal function is minimizing 
storage cost; controllable variables are time moments needed to order (or distribute) 
corresponding quantity of the needed stocks. Construction of such models requires 
definite assumptions, for example, of orders flows, time distribution laws and others. 
Therefore, complex optimization models may produce solutions that are quite in-
adequate to the real situation. 

On the other hand, experienced managers very often make effective administra-
tive decisions on the common sense and practical reasoning level. Therefore, the 
approach based on fuzzy logic can be considered as a good alternative to the clas-
sical inventory control models. This approach elaborated in works [9 – 12] re-
quires neither complex mathematical models construction nor search for optimal 
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solutions on the basis of such models. It is based on a simple comparison of the 
demand for the stock of the given item at the actual time moment with the quantity 
of the stock available in the warehouse. Dependent upon this, inventory action is 
formed consisting of increasing or decreasing corresponding stocks and materials.  

“Quality” of a control fuzzy model strongly depends on the “quality” of fuzzy 
rules and “quality” of membership functions describing fuzzy terms. The more 
successfully the fuzzy rules and membership functions are selected, the more ade-
quate the control action will be. However, no one can guarantee that the result of 
fuzzy logical inference will coincide with the correct (i.e. the most rational) con-
trol. Therefore, the problem of the adequate fuzzy rules and membership functions 
construction should be considered as the most actual one while developing control 
systems on fuzzy logic.  

In this chapter it is suggested to build the fuzzy model of stocks and materials 
control on the grounds of the general method of nonlinear dependencies identifica-
tion by means of fuzzy knowledge bases [13]. The proposed method is special due 
to the tuning stage of the fuzzy inventory control model using “demand - supply” 
training data. Owing to this tuning stage it is possible to select such fuzzy rules 
weights and such membership functions forms which provide maximal proximity 
of the results of fuzzy logical inference to the correct managerial decisions.    

To substantiate for the expediency to use this fuzzy approach relative to inven-
tory control, we resort to help of analogy with the classical problem of a dynamic 
system (turned-over pendulum) control which can be successfully solved using 
fuzzy logic [4].  

9.2.1   Analogy with Turned-Over Pendulum 

The approach to inventory control suggested here is similar to turned-over pendu-
lum control with the aim of retaining it in a vertical position by pushing the cart to 
the left or to the right (Fig. 9.4). A rather habitual version of such a problem is 
demonstrated by vertically retaining a stick on the finger. The simplest rules for 
the problem solution can be represented in the following way: 

 
IF the angle of deflection of the stick from the vertical position is big, 
THEN the finger should quickly move in the same direction to keep the stick up; 
IF the angle of deflection of the stick from the vertical position is small, 
THEN the finger should  slowly move in the same direction to keep the stick up; 
IF the angle of deflection of the stick is equal to zero, 
THEN the finger should stay motionless. 
 
Keeping the speed of the car constant by the driver takes place in analogy to it; 

if the speedometer needle drops down, then the driver presses the accelerator 
down; if the speedometer needle goes up, then the driver reduces the speed. It is 
known that experienced driver retains some given speed (for example, 90 
km/hour) in spite of the quickly changing nonlinear road relief.   
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Fig. 9.4. Control system of the turned-over pendulum 

Returning to the inventory control system it is not difficult to understand that 
the actions of the manager must be similar to the actions of the car driver regulat-
ing of the vehicle’s speed.  

9.2.2  Method of Identification 

The method of nonlinear objects identification by fuzzy knowledge bases [14] 
serves as the theoretical basis for the definition of the dependency between control 
actions and the current state of the control system. The method is based on the 
principle of fuzzy knowledge bases two-stage tuning. According to this principle 
the construction of the “inputs – output” object model can be performed in two 
stages which, in analogy with classical methods [15], can be considered as stages 
of structural and parametrical identification.  

The first stage is traditional for fuzzy expert systems [16]. Formation and rough 
tuning of the object model by knowledge base construction using available expert 
information is accomplished at this stage. The higher the professional skill level of 
an expert, the higher the adequacy of the built fuzzy model at the rough tuning 
stage will be. However, as was mentioned in the introduction, no one can guaran-
tee the coincidence of the results of fuzzy logic inference (theory) and correct 
practical decisions (experiment). Therefore, the second stage is needed, at which 
fine tuning of the model is done by way of training it using experimental data.  

The essence of the fine tuning stage consists in finding such fuzzy IF-THEN 
rules weights and such fuzzy terms membership functions parameters which 
minimize the difference between desired (experimental) and model (theoretical) 
behaviour of the object. Fine tuning stage is formulated as nonlinear optimization 
problem which can be effectively solved by some combination of genetic algo-
rithms and neural networks [14].  
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9.2.3   Fuzzy Model of Control  

Let us present the inventory control system in the form of the object with two in-
puts ( 1( )x t , 2 ( )x t )  and single output ( ( )y t  ), where: 
 

1( )x t  is demand, i.e. the number of units of the stocks of the given brand, 

which is needed at time moment t; 

2 ( )x t  is stock quantity-on-hand,  i.e. the number of units of the stocks of the 

given brand, which is available in the warehouse at moment  t; 
( )y t  is an inventory action at moment  t, consisting in increasing – decreasing 

the stocks of the given brand. 
 

System state parameters 1( )x t , 2 ( )x t  and inventory action ( )y t  are considered 

as linguistic variables [17], which are estimated with the help of verbal terms on 
five and seven levels: 

 
falling (F)     
decreased (D)
steady (S)   
increased (I)

rising up (R)

)(1 tx =

    

minimal (M)
low (L)
adequately sufficient (A)
high (H)
excessive (E)

)(2 tx =

 
 

1d  – to decrease the stock sharply 

2d – to decrease the stock moderately 

3d  – to decrease the stock minimally 

4d – do nothing 

5d  – to increase the stock minimally 

6d  – to increase the stock moderately 

7d – to increase the stock sharply 

 
Let us note that term “adequately sufficient” in variable 2 ( )x t  estimation depicts 

the rational quantity of the stock on the common sense level, and does not pretend to 
be contained within the mathematically strong concept of optimality which envis-
ages the presence of goal function, controllable variables and area of constraints. 

Functional dependency 

1 2( ) ( ( ), ( ))y t f x t x t=                                      (9.9) 
 

is defined by the table presented in Fig. 9.5. 
This table is defined in an expert manner and depicts the complete sorting out 

of the (5 5 25)× =  terms combinations in the triplets 1 2( ), ( ), ( )x t x t y t . 

y(t)=
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Grouping these triplets by inventory actions types, we shall form a fuzzy knowl-
edge base, presented in Table. 9.3. 

This fuzzy knowledge base defines a fuzzy model of the object in the form of 
the following rules, e.g.: 

IF demand is falling AND stock is excessive, OR demand is falling AND stock is high, 
OR demand is decreased AND stock is excessive,      
THEN it is necessary to decrease the stock sharply. 
 

)(2 tx  

E 1d  1d  2d  3d  4d  

H 1d  2d  3d  4d  5d  

A 2d  3d  4d  5d  6d  

L 3d  4d  5d  6d  7d  

M 4d  5d  6d  7d  7d  

 F D S I R )(1 tx  
 

Fig. 9.5. Dependency between state parameters and inventory actions 

Fuzzy logical equations correspond to the fuzzy knowledge base (Table 9.3). They 
establish the connection between membership functions of the variables in correlation 
(9.9). Let ( )j uμ  be membership function of variable u to term j. Let us go on from the 

fuzzy knowledge base (Table 9.3) to the system of fuzzy logical equations: 
 

1
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )d F E F H D Eу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅ ; 

2
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )d F A D H S Eу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅ ; 

3
1 2 1 2( ) ( ) ( ) ( ) ( )d F L D Aу х х х хμ μ μ μ μ= ⋅ ∨ ⋅ ∨ 1 2 1 2( ) ( ) ( ) ( );S H I Eх х х хμ μ μ μ⋅ ∨ ⋅  

4
1 2 1 2( ) ( ) ( ) ( ) ( )d F M D Lу х х х хμ μ μ μ μ= ⋅ ∨ ⋅  

1 2 1 2( ) ( ) ( ) ( )S A I Hх х х хμ μ μ μ∨ ⋅ ∨ ⋅ 1 2( ) ( );R Eх хμ μ∨ ⋅     
5

1 2 1 2( ) ( ) ( ) ( ) ( )d D M S Lу х х х хμ μ μ μ μ= ⋅ ∨ ⋅ 1 2 1 2( ) ( ) ( ) ( );I A R Hх х х хμ μ μ μ∨ ⋅ ∨ ⋅  
6

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( );d S M I L R Aу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅  
7

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ),d I M R M R Lу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅                     (9.10) 

where  ( •  ) is operation AND (min); ∨  is operation OR (max). 
The algorithm of decision making on the basis of fuzzy logical equations con-

sists of the following: 
 

1o. To fix the demand 1( )x t  and stock quantity-on-hand 2 ( )x t  values at the 

time moment t=t0. 
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Table 9.3. Fuzzy knowledge base 

IF THEN 

Demand  1( )x t  Stock  quantity-on-hand  2 ( )x t  Inventory action  у(t) 

F 
F 
D 

E 
H 
E 

1d  

F 
D 
S 

A 
H 
E 

2d  

F 
D 
S 
I 

L 
A 
H 
E 

3d  

F 
D 
S 
I 
R 

M 
L 
A 
H 
E 

4d  

D 
S 
I 
R 

M 
L 
A 
H 

5d  

S 
I 
R 

M 
L 
A 

6d  

I 
R 
R 

M 
M 
L 

7d  

  
2o.To define the membership degrees of 1( )x t  and 2 ( )x t  values to the corre-

sponding terms with the help of membership functions. 

3o. To calculate the membership degree of the inventory action ( )y t  at the time t = 

t0  to each of the 1 2 7, ,...,d d d  decisions classes with the help of fuzzy logical equations.  

4o. The term with maximal membership function, obtained at step 3o should be 

considered as inventory action ( )y t  at the time t=t0. For obtaining the quantitative 
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( )y t value at the time t=t0 it is necessary to perform the “defuzzification” opera-

tion, i.e. to go on from the fuzzy term to a crisp number. According to [14] this 

operation can be performed as follows. Range [ ,y y ] of the variable ( )y t  change 

is divided into 7 classes: 

( )y t ∈[ ,y y ] = [

1

1,
d

y y )∪ [
2

1 2,
d

y y )∪…∪[
7

6 ,
d

y y ] . 

The crisp value of the inventory action ( )y t  at the time t=t0   is defined by formula: 

71 2

71 2

1 6( ) ( ) ... ( )
( ) .

( ) ( ) ... ( )

dd d

dd d

y y y y y y
y t

y y y

μ μ μ
μ μ μ

+ + +
=

+ + +
                            (9.11) 

9.2.4   Fuzzy Model Tuning 

Relations (9.10), (9.11) define the functional dependency (9.9) in the following form 

1 2 1 1 2 2( ) ( ( ), ( ), , , , , )y t F x t x t= W B C B C , 

where 1 2 25( , ,..., )w w w=W  is the vector of weights in the fuzzy knowledge base 

(Table 9.3); 

1 1 1 1 1 1( , , , , )vD D St I vIb b b b b=B , 2 2 2 2 2 2( , , , , )vL L S B vBb b b b b=B  are the vectors of centers 

for variables 1( )x t  and 2 ( )x t  membership functions to the corresponding terms; 

1 1 1 1 1 1( , , , , )vD D St I vIc c c c c=C , 2 2 2 2 2 2( , , , , )vL L S B vBc c c c c=C  are the vectors of concen-

tration parameters for variables 1( )x t  and 2 ( )x t  membership functions to the cor-

responding terms; 
F is the operator of “inputs – output” connection corresponding to formulae 

(9.10), (9.11). 
It is assumed that some training data sample in the form of M pairs of experi-

mental data can be obtained on the ground of successful decisions about inventory 
control   

 

1 2ˆ ˆ ˆ( ), ( ), ( )x t x t y t , 1,t M= , 
 

where 1 2ˆ ˆ( ), ( )x t x t  are the inventory control system state parameters at time mo-

ment t, ˆ( )y t  is the inventory action at time moment t. 

The essence of the inventory control model tuning consists of such membership 
functions parameters (b-, c-) and fuzzy rules weights (w-) finding, which provide 
for the minimum distance between theoretical and experimental data: 

2

1 2 1 1 2 2 , ,
1

ˆ ˆ ˆ[ ( ( ), ( ), , , , , ) ( )] min ,
i i

M

t

F x t x t y t
=

− =∑
W B C

W B C B C  1, 2i = .        (9.12) 

It is expedient to solve the nonlinear optimization problem (9.12) by a combina-
tion of the genetic algorithm and gradient methods. 
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9.2.5   Example of Fuzzy Model Tuning 

Fuzzy model of inventory control was constructed for the district food-store 
house, selling some definite kind of agricultural production (buckwheat). The 
ranges of the input and output variables change consisted of: 

 

1 ( )x t ∈[0, 200]*102  kg;  2 ( )x t ∈ [70, 170]*102  kg;  ( )y t ∈[-100, 100]*102  kg. 
 

Inventory control at the enterprise is done once per day. Therefore [1...365]t ∈  

days. The triplets demand 1( )x t , stock quantity-on-hand 2 ( )x t , inventory ac-

tion ( )y t  values, corresponding to the experienced manager actions, for which 

the demand for the produce was satisfied while the permissible produce inventory 
level in store was minimal where taken as training data sample. Training data 
sample is presented in Fig. 9.6,a-c in the form of the dynamics of the input and 
output variables change on time t according to 2001 year data. For example, at 
moments 120t =  and 230t =  the control consisted of stock quantity-on-hand 
increasing by 25*102 kg and reducing by 15*102 kg, respectively. Thus the pro-
duce remainder in store after control ( )tε = 2 ( )x t + ( )y t – 1( )x t   consists of  

2*102 kg and 53*102  kg, respectively. These values do not exceed the permissible 
inventory level, which is equal to 70*102 kg. The dynamics of the produce re-
mainder after control ( )tε change, presented in Fig. 9.6,d is indicative of the con-

trol stability, i.e. of the tendency of index ( )tε  approaching a zero value. Mem-

bership functions of fuzzy terms for variables 1( )x t  and 2 ( )x t , and also their pa-

rameters (b- , c-) before and after training are presented in Fig. 9.7, 9.8 and Tables 
9.4, 9.5 respectively. Rules weights included in the fuzzy knowledge base before 
and after training are presented in Table 9.6.  

Table 9.6. Rules weights before (after) training 

2 ( )x t  

E 1 (0.954) 1 (0.755) 1 (0.999) 1 (0.967) 1 (0.578)

H 1 (0.986) 1 (0.711) 1 (0.897) 1 (0.679) 1 (0.953)

A 1 (0.695) 1 (0.538) 1 (0.854) 1 (0.968) 1 (0.680)

L 1 (0.842) 1 (0.943) 1 (0.799) 1 (0.869) 1 (0.947)

M 1 (0.857) 1 (0.851) 1 (0.859) 1 (0.995) 1 (0.867)

 F D S I R 

1 ( )x t  
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Comparison of model and reference control before and after fuzzy model training is 
presented in Fig. 9.9 and 9.10. Comparison of the produce remainder ( )tε  value in 

store after control before and after fuzzy model training is shown in Fig. 9.11 and 9.12. 
The proposed approach can find application in the automated management sys-

tems of enterprises and trade firms. Further development of this approach can be 
done in the direction of creating adaptive inventory control models, which are 
tuned with the acquisition of new experimental data about successful decisions. 
Besides that with the help of supplementary fuzzy knowledge bases factors influ-
encing the demand and quantity-on-hand values (seasonal prevalence, purchase 
and selling praises, delivery cost, plant-supplier power and others) can be taken 
into account.    

Table 9.4. Membership functions parameters of variable 1( )x t  fuzzy terms before (after) 

training 

Linguistic assessments  
of 1( )x t  variable 

Parameter 

b c  
falling (F) 0  (1.95) 70  (44.11) 

decreased (D) 50  (30.54) 70  (42.85) 

steady (S) 100  (105.77) 70  (35.68) 

increased (I) 150  (170.04) 70  (40.12) 

rising up (R) 200  (199.43) 70  (47.55) 

 

Table 9.5. Membership functions parameters of variable 2 ( )x t  fuzzy terms before (after) 

training 

Linguistic assessments   
of 2x (t) variable 

Parameter 

b c  
minimal (M) 70  (75.46) 35  (18.76) 

low (L) 95  (85.12) 35  (22.12) 

adequately sufficient (A) 120  (125.15) 35  (16.75) 

high (H) 145  (157.99) 35  (14.54) 

excessive (E) 170  (168.63) 35  (12.69) 
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a)

b)

c)

d)  
Fig. 9.6. Training data а) change of the demand for the produce in 2001 b) stock quantity-
on-hand change in 2001 c) inventory action in 2001 d) change of the produce remainder in 
store after control in 2001  
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Fig. 9.7. Fuzzy terms membership functions before training 
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Fig. 9.8. Fuzzy terms membership functions after training 
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Fig. 9.9. Inventory action generated by fuzzy model before training  
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Fig. 9.10. Inventory action generated by fuzzy model after training  
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Fig. 9.11. Produce remainder in store after control before fuzzy model training  
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Fig. 9.12. Produce remainder in store after control after fuzzy model training  

9.3   Prediction of Football Games Results 

The possibilities of the method of non-linear dependencies identification by fuzzy 
IF-THEN rules [14] are illustrated by an example of the problem of forecasting 
the results of football games, which is a typical representative of complex fore-
casting problems that require adaptive model tuning.  

Football is a most popular sport attracting hundreds of millions of fans. Predic-
tion of football matches results arouses interest from two points of view: the first 
one is demonstration of the power of different mathematical methods [18, 19], the 
second one is the desire of earning money by predicting beforehand any winning 
result. Models and PC–programs of sport prediction are already being developed 
for many years (see, for example, http://dmiwww.cs.tut.fi/riku). Most of them use 
stochastic methods of uncertainty description: regressive and autoregressive 
analysis [20 – 22], Bayessian approach in combination with Markov chains and 
the Monte-Carlo method [23 – 26]. The specific features of these models are: suf-
ficiently great complexity, a lot of assumptions, and the need for a great number of 
statistical data. Besides that, the models cannot always be easily interpreted. Some 
several years passed before some models using neural networks for the results of 
football games prediction appeared [27 – 29]. They can be considered as universal 
approximators of non-linear dependencies trained by experimental data. These 
models also need a lot of statistical data and do not allow us to define the physical 
meaning of the weights between neurons after training. 

 



278 Chapter 9 Applied Fuzzy Systems 

 

In the practice of prediction making the football experts and fans usually make 
good decisions using simple reasoning on the common sense level, for example:   
 

IF         team  1T   constantly won in previous matches 

AND    team  2T  constantly lost in previous matches 

AND    in previous matches between teams  1T  and  2T   team  1T   won,  

THEN  win of team 1T  should be expected.  
 

Such expressions can be considered as concentration of accumulated experts’ 
experiences and can be formalized using fuzzy logic. That is why it is quite natu-
ral to apply such expressions as a support for building a model of prediction.  

The process of modeling has two phases. In the first phase we define the fuzzy 
model structure, which connects the football game result to be found with the re-
sults of previous games for both teams. The second phase consists of fuzzy model 
tuning, i.e., of finding optimal parameters using tournament tables data. For tuning 
we use a combination of a genetic algorithm and a neural network. The genetic 
algorithm provides a rough finding of the area of global minimum of distance be-
tween model and experimental results. We use the neural approach for the fine 
model parameters tuning and for their adaptive correction while new experimental 
data is appearing. 

9.3.1   The Structure of the Model 
The aim of modeling is to calculate the result of match between teams 1T  and 2T  , 

which is characterized as the difference of scored and lost goals y . We assume 

that [ , ] [ 5,5]y y y∈ = − .
 
For prediction model building we will define the value 

of y on the following five levels:  
 

1d  is a big loss (BL), 5, 4, 3y = − − − ;    

2d  is a small loss (SL),  2, 1y = − − ;  

3d  is a draw ( D), y=0;  

4d  is a small win (SW),  y = 1, 2;  

5d  is a big win (BW),  3, 4,5y = . 

Let us suppose that the football game result  (y) is influenced by the following 
factors:  

1 2 5, ,...,x x x  are the results of  five previous games for team 1T ;  

6 7 10, ,...,x x x  are the results of  five previous games for team 2T ;  

11x , 12x  are the results of two previous games between teams 1T  and 2T . 

It is obvious, that values of factors 1 2 12, ,...,x x x  are changing in the range from –5 

to 5. 
The hierarchical interconnection between output variable y and input variables 

1 2 12, ,...,x x x  is represented as a tree shown in Fig. 9.13.  
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Fig. 9.13. Structure of the Prediction Model 

This tree is equal to the system of correlations 

3 1 2 11 12( , , , )y f z z x x= ,                                            (9.13)               

1 1 1 2 5( , ,..., )z f x x x= ,                                               (9.14)  

           2 2 6 7 10( , ,..., )z f x x x= ,                                              (9.15) 

where 1z  ( 2z ) is the football game prediction for team 1T  ( 2T ) based on the previ-

ous results  1 2 5, ,...,x x x  ( 6 7 10, ,...,x x x ).  

The variables 1 2 12, ,...,x x x , as well as 1z  ( 2z ) will be considered as linguistic 

variables [17], which can be evaluated using above mentioned fuzzy terms: BL, 
SL, D, SW and BW. 

To describe the correlations (9.13) - (9.15) we shall use the expert matrices of 
knowledge (Tables 9.7, 9.8). These matrices correspond to fuzzy IF-THEN rules 
received on the common sense and practical reasoning level. An example of one 
of these rules for Table 9.7 is given below:  
 

IF     ( 11x =BW)    AND   ( 12x =BW)   AND   ( 1z =BW)  AND   ( 2z =BL) 

OR   ( 11x =SW)    AND   ( 12x =BW)   AND   ( 1z =SW)   AND   ( 2z =D) 

OR   ( 11x =BW)   AND   ( 12x =D)     AND   ( 1z =BW)   AND    ( 2z =SL) 

THEN   y = 5d . 
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Table 9.7. Knowledge about correlations (9.14) and (9.15) 

x1(x6) x2(x7) x3(x8) x4(x9) x5(x10) z1(z2) 
BL 
BW 
SW 

BL 
SL 
BL 

BL 
BL 
SL 

BL 
SL 
SL 

BL 
BW 
SW 

BL 

SL 
D 

SW 

SL 
SL 
D 

SL 
SL 
SL 

SL 
D 
SL 

SL 
D 

SW 
SL 

D 
SL 
D 

D 
SW 
D 

D 
SW 
SW 

D 
D 

SW 

D 
SL 
D 

D 

SW 
D 
SL 

SW 
BW 
SW 

SW 
BW 
SW 

SW 
SW 
BW 

SW 
D 
SL 

SW 

BW 
SL 
BL 

BW 
BW 
SW 

BW 
SW 
BW 

BW 
BW 
SW 

BW 
SL 
BL 

BW 

Table 9.8. Knowledge about correlation (9.13) 

11x  12x  1z  2z  y  

BL 
BW 
SW 

BL 
D 
BL 

BL 
BL 
SL 

BW 
D 
SL 

1d  

SW 
D 

SW 

SL 
SL 
D 

D 
SL 
SL 

SL 
D 
SL 2d  

D 
SL 
SL 

D 
SW 
D 

D 
SW 
SW 

D 
D 

SW 3d  

SL 
D 
SL 

SW 
BW 
SW 

SW 
BW 
SW 

BW 
SW 
BW 

4d  

BW 
SW 
BW 

BW 
BW 
D 

BW 
SW 
BW 

BL 
D 
SL 

5d  

9.3.2   Fuzzy Model of Prediction 

Using the generalized fuzzy approximator [14] and the tree of evidence 
(Fig. 9.13), the prediction model can be described in the following form: 

1 2 12 1 1 1 2 2 2 3 3 3( , ,..., , , , , , , , , , )yy F x x x= W B C W B C W B C ,             (9.16) 

where yF   is the operator of inputs-output connection, corresponding to correla-

tions  (9.13) – (9.15), 
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11 13 51 53
1 1 1 1 1(( ,..., ),..., ( ,..., ))w w w w=W , 11 13 51 53

2 2 2 2 2(( ,..., ),..., ( ,..., ))w w w w=W , 

11 13 51 53
3 3 3 3 3(( ,..., ),..., ( ,..., ))w w w w=W  are the vectors of rules weights in the correla-

tions  (9.13), (9.14), (9.15), respectively; 

1 1 5 1 5 1 5 1 5 1 5( , , , , )BL SL D SW BWb b b b b− − − − −=B  , 2 6 10 6 10 6 10 6 10 6 10( , , , , )BL SL D SW BWb b b b b− − − − −=B  , 

3 11,12 11,12 11,12 11,12 11,12( , , , , )BL SL D SW BWb b b b b=B  are the vectors of centres for variables 

1 2 5, ,...,x x x , 6 7 10, ,...,x x x  and 11 12,x x  membership functions to terms BL, SL,…, 

BW; 

1 1 5 1 5 1 5 1 5 1 5( , , , , )BL SL D SW BWc c c c c− − − − −=C , 2 6 10 6 10 6 10 6 10 6 10( , , , , )BL SL D SW BWc c c c c− − − − −=C ,  

3 11,12 11,12 11,12 11,12 11,12( , , , , )BL SL D SW BWc c c c c=C  are the vectors of  concentration parameters for 

variables  1 2 5, ,...,x x x , 6 7 10, ,...,x x x  and 11 12,x x  membership functions to terms  

BL, SL,…, BW . 

In model (9.16) we assume that for all of variables 1 2 5, ,...,x x x  fuzzy terms BL, 

SL,…, BW  have  the same membership functions. Same assumption we made for 
variables 6 7 10, ,...,x x x  and variables 11 12,x x  (See. Fig. 9.14).  

9.3.3   Genetic and Neuro Tuning 

The reasonable results of simulation can be reached by fuzzy rules tuning using 
tournament tables data. Training data in the form of M pairs of experimental data 
assumed to be obtained with use of tournament tables   

ˆ ˆ,l lyX , 1,l M= , 

where 1 2 5 6 7 10 11 12
ˆ {( , ,... ), ( , ,... ), ( , ) }l l l l l l l l

l x x x x x x x x=X  are the previous matches 

results for teams T1 and T2 in the experiment number l ,  

ˆly  is the game result between teams T1 and T2 in experiment number l . 

The essence of the prediction model tuning consists of such membership func-
tions parameters (b-, c-) and fuzzy rules weights (w-) finding, which provide for 
the minimum distance between theoretical and experimental results: 

 

2
1 2 12 , ,

1

ˆ ˆ ˆ ˆ( ( , ,..., , , , ) ) min ,
i i i

M
l l l

y i i i l
l

F x x x y
=

− =∑
W B C

W B C     1,2,3i = . 

 

To solve this non-linear optimization problem we propose a genetic algorithm 
and neural network combination. The genetic algorithm provides for a rough off-
line finding of the area of global minimum, while the neural network is used for 
on-line improvement of unknown parameters values. 
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For the fuzzy model tuning we used the results from tournament tables of the 
Finland Football Championship characterized by a minimal number of sensations. 
Our training data included results of 1056 matches for the last 8 years from 1994 
to 2001. The results of the fuzzy model tuning are given in Tables 9.9 – 9.12 and 
in Fig. 9.14. 

 

Table 9.9. Fuzzy rules 
weights in correlation (9.13) 

Genetic   
algorithm 

Neuro- 
fuzzy 

network 
1.0 
1.0 
1.0 

0.989 
1.000 
1.000 

0.8 
0.5 
0.8 

0.902 
0.561 
0.505 

0.6 
1.0 
0.5 

0.580 
0.613 
0.948 

1.0 
0.9 
0.6 

0.793 
0.868 
0.510 

0.6 
0.5 
0.5 

0.752 
0.500 
0.500 

 

 Table 9.10. Fuzzy rules 
weights in correlation (9.14) 

Genetic   
algorithm 

Neuro-
fuzzy 

network
0.7 
0.9 
0.7 

0.926 
0.900 
0.700 

0.9 
0.7 
1.0 

0.954 
0.700 
1.000 

0.9 
1.0 
0.6 

0.900 
1.000 
0.600 

1.0 
0.7 
1.0 

1.000 
0.700 
1.000 

0.8 
0.5 
0.6 

0.990 
0.500 
0.600 

 

 Table 9.11. Fuzzy rules 
weights in correlation (9.15) 

Genetic   
algorithm 

Neuro- 
fuzzy 

network 
0.7 
0.8 
1.0 

0.713 
0.782 
0.996 

0.5 
0.5 
0.5 

0.500 
0.541 
0.500 

0.5 
0.5 
0.6 

0.500 
0.522 
0.814 

1.0 
0.6 
1.0 

0.903 
0.503 
0.677 

1.0 
0.5 
1.0 

0.515 
0.514 
0.999 

 

Table 9.12. b- and c- parameters of membership functions after tuning 

Terms 

Genetic Algorithm Neuro-Fuzzy Network  

1 2 5, ,...,x x x  6 7 10, ,...,x x x 11x , 12x  1 2 5, ,...,x x x 6 7 10, ,...,x x x 11x , 12x  

b- c- b- c- b- c- b- c- b- c- b- c- 

BL -4.160 9 -5.153 9 -5.037 3 -4.244 7.772 -4.524 9.303 -4.306 1.593 

SL -2.503 1 -2.212 5 -3.405 1 -1.468 0.911 -1.450 5.467 -2.563 0.555 

D -0.817 1 0.487 7 0.807 1 -0.331 0.434 0.488 7.000 0.050 0.399 

SW 2.471 3 2.781 9 2.749 7 1.790 1.300 2.781 9.000 2.750 7.000 

BW 4.069 5 5.749 9 5.238 3 3.000 4.511 5.750 9.000 3.992 1.234 
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Fig. 9.14. Membership functions after tuning    

To test the prediction model we used the results of 350 matches from 1991 to 
1993. The fragment of testing data and prediction results are shown in Table 9.13, 
where: 

1T  , 2T   are teams’ names, 

ŷ , d̂  are real (experimental) results, 

Gy , Gd  are results of prediction after genetic tuning of the fuzzy model, 

Ny , Nd  are results of prediction after neural tuning of the fuzzy model. 

Symbol * shows no coincidences of theoretical and experimental results. 
 
The efficiency characteristics of fuzzy model tuning algorithms for the testing 

data are shown in Table. 9.14.  

Table 9.14. Tuning algorithms efficiency characteristics 

Efficiency characteristics  Genetic Tuning Neural Tuning 
Tuning Time  52 min 7 min 

Number of iterations 25000 5000 

Probability 
of correct  
prediction  

for different  
decisions 

1d  – big loss 30 / 35 = 0.857 32 / 35 =0.914 

2d  – small loss 64 / 84 = 0.762 70 / 84 = 0.833 

3d  – draw 38 / 49 = 0.775 43 / 49 = 0.877 

4d  – small win 97 / 126 = 0.770 106 / 126 = 0.841 

5d  – big win 49 / 56 = 0.875 53 / 56 = 0.946 

 
 

Table 9.14 shows, that the best prediction results we can receive for the marginal 
decision classes (the loss and win with big score 1d  and 5d ), and the worst results of 

prediction we can receive for the small loss and small win ( 2d  and 4d ). 

The future improvement of fuzzy prediction model can be done by taking into 
account some additional factors in fuzzy rules such as: the game on host/guest 
field, number of injured players, different psychological effects.  
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Table 9.13. Fragment of the prediction results 
  

№ T1 T2 Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Score ŷ  d̂  yG dG yN dN 
1 Kuusysi Reipas 1991 2 1 2 0 1 -1 0 1 -2 -3 2 1 2-0 2 d4 1 d4 1 d4 
2 Ilves PPT 1991 1 3 -1 1 0 0 2 -1 -2 0 0 0 2-1 1 d4 0 d3* 0 d3* 
3 Haka Jaro 1991 -1 2 0 -1 1 1 0 -2 -1 -2 -1 1 1-1 0 d3 0 d3 0 d3 
4 MP OTP 1991 3 1 2 0 2 -1 -2 1 -2 -3 1 3 4-0 4 d5 3 d5 3 d5 
5 KuPS HJK 1991 -1 -3 -4 1 -3 1 0 2 0 0 -2 0 1-3 -2 d2 -1 d2 -1 d2 
6 TPS RoPS 1991 3 1 2 -2 0 2 0 1 -1 1 0 -1 1-0 1 d4 0 d3* 0 d3* 
7 PPT Jaro 1991 0 -5 -1 0 1 1 2 -2 -1 1 1 -3 0-1 -1 d2 -1 d2 -1 d2 
8 Haka Reipas 1991 2 -1 3 1 4 2 -2 0 -1 0 -1 2 3-0 3 d5 2 d4* 2 d4* 
9 OTP Kuusysi 1991 -1 -2 -3 -2 0 1 3 4 -1 2 -2 -1 1-4 -3 d1 -3 d1 -3 d1 

10 HJK  TPS 1991 1 1 1 0 2 0 1 -1 2 -3 0 2 2-0 2 d4 2 d4 2 d4 
11 MyPa Jaro 1992 -3 1 2 1 0 2 1 -2 -1 0 -2 0 0-0 0 d3 0 d3 0 d3 
12 Jazz Ilves 1992 2 2 1 -1 0 3 4 -1 0 1 1 -1 2-1 1 d4 0 d3* 1 d4 
13 Haka RoPS 1992 -2 -2 0 1 1 -1 1 1 1 0 1 3 1-1 0 d3 1 d4* 1 d4* 
14 HJK  Oulu 1992 2 3 0 0 1 0 -5 1 -2 -1 -1 2 4-0 4 d5 2 d4* 3 d5 
15 MP Kuusysi 1992 0 1 -2 -1 -1 3 1 2 0 1 0 -2 0-3 -3 d1 -3 d1 -3 d1 
16 KuPS HJK 1992 -2 -1 -3 1 -2 4 2 1 2 1 -2 -3 0-5 -5 d1 -4 d1 -4 d1 
17 Kuusysi MP 1992 0 -1 3 2 -1 -3 2 -1 -2 0 1 0 3-1 2 d4 1 d4 1 d4 
18 TPS Haka 1992 -1 2 3 -1 -2 0 -1 0 3 1 -1 1 2-2 0 d3 0 d3 0 d3 
19 RoPS MyPa 1992 -2 -1 2 0 -1 1 -1 1 1 -2 1 -1 1-2 -1 d2 0 d3* 0 d3* 
20 Jazz Ilves 1992 -2 1 -3 5 -1 1 1 -2 0 -1 2 0 1-0 1 d4 1 d4 1 d4 
21 TPS Jaro 1992 -2 -1 2 -1 -3 1 0 2 -1 3 1 -2 0-2 -2 d2 -1 d2 -1 d2 
22 Haka MyPa 1992 1 1 -1 0 1 0 3 2 1 -1 -1 -3 0-1 -1 d2 -2 d2 -2 d2 
23 HJK  RoPS 1992 1 2 0 -1 1 -1 2 2 -1 1 0 0 2-1 1 d4 0 d3* 0 d3* 
24 MP Kuusysi 1992 1 -1 -2 -3 1 1 -1 -2 2 3 -2 1 0-2 -2 d2 -1 d2 -1 d2 
25 Ilves Kups 1992 3 0 -2 2 -2 1 1 -1 0 -2 1 0 1-0 1 d4 1 d4 1 d4 
26 Haka HJK 1992 0 -2 -1 -1 0 2 3 -1 0 3 -1 -2 0-3 -3 d1 -3 d1 -3 d1 
27 Jaro MyPa 1992 -1 -1 1 2 1 -3 1 2 1 0 1 1 1-1 0 d3 1 d4* 0 d3 
28 RoPS TPS 1992 -1 1 -1 1 4 -5 -2 3 -1 -2 5 1 2-0 2 d4 2 d4 1 d4 
29 MP Ilves 1992 1 2 -1 1 0 0 1 0 0 -1 1 -2 2-3 -1 d2 -1 d2 -1 d2 
30 Kuusysi KuPS 1992 2 2 0 3 1 -1 -1 1 -3 0 2 3 4-1 3 d5 3 d5 3 d5 
31 Jazz MP 1993 2 2 2 0 3 -2 -1 0 -1 -3 4 3 5-0 5 d5 4 d5 4 d5 
32 Kuusysi TPS 1993 1 -1 0 -1 1 -2 2 0 -1 1 0 1 0-0 0 d3 0 d3 0 d3 
33 MyPa RoPS 1993 -1 -1 2 2 3 2 -1 1 2 -2 3 -1 2-0 2 d4 1 d4 1 d4 
34 Haka HJK 1993 -3 -1 -2 1 0 1 4 1 2 0 -1 -2 1-3 -2 d2 -1 d2 -1 d2 
35 Jaro Ilves 1993 2 0 -1 0 -1 -2 -1 -2 2 1 2 0 2-1 1 d4 1 d4 1 d4 
36 Ilves HJK 1993 1 -2 -1 -1 1 3 1 2 0 1 -1 -1 0-2 -2 d2 -1 d2 -1 d2 
37 Jazz Jaro 1993 2 1 0 1 5 -1 -2 -2 1 -1 2 1 3-0 3 d5 2 d4* 2 d4* 
38 MyPa MP 1993 1 3 1 -1 1 -1 0 2 -1 1 1 0 1-0 1 d4 1 d4 1 d4 
39 Kuusysi Haka 1993 -1 -2 1 1 2 -1 -3 1 -5 2 3 -1 3-1 2 d4 1 d4 1 d4 
40 TPS RoPS 1993 -1 1 -2 1 2 1 2 -1 1 -2 1 1 1-0 1 d4 1 d4 1 d4 
41 MP HJK 1993 -1 -1 0 2 -1 2 3 1 -1 1 -2 1 1-2 -1 d2 0 d3* 0 d3* 
42 Kuusysi Jaro 1993 2 2 -2 1 2 0 -1 2 -2 0 1 2 2-1 1 d4 1 d4 1 d4 
43 Jazz Haka 1993 2 3 2 -1 1 -1 -3 -4 -2 0 2 2 4-0 4 d5 3 d5 3 d5 
44 FinnPa MyPa 1993 -1 1 -2 -1 2 1 -2 -1 1 0 -1 -1 1-2 -1 d2 -1 d2 -1 d2 
45 TPS Ilves 1993 2 1 2 1 -1 2 2 -2 1 -3 0 2 2-0 2 d4 1 d4 1 d4 
46 RoPS Jazz 1993 -1 -1 2 -2 -1 4 1 5 0 2 1 -3 2-5 -3 d1 -3 d1 -3 d1 
47 MyPa Ilves 1993 5 0 2 1 1 -3 -1 -2 1 -2 3 0 5-1 4 d5 3 d5 3 d5 
48 TPV Kuusysi 1993 -2 -1 0 1 0 -1 0 2 -1 0 0 1 0-0 0 d3 0 d3 0 d3 
49 RoPS HJK 1993 -1 -1 1 -2 0 3 1 -2 1 1 -2 1 0-2 -2 d2 0 d3* -1 d2 
50 TPS Jaro 1993 -1 -1 1 2 2 -2 -1 1 -2 1 3 1 1-0 1 d4 1 d4 1 d4  
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9.4   Identification of Car Wheels Adhesion Factor with a Road 
Surface 

The task of car wheels adhesion factor (AF) evaluation with a road surface arises 
with an execution of a technical expert’s examination during an investigation of 
traffic accidents (TA). The objectivity of decision making relative to guilt or inno-
cence of the driver who caused the TA depends on the precision of the AF defini-
tion (for example, run over a pedestrian). The existing technique [30, 31] allows 
determining of only some range of possible AF values depending upon a series of 
the influencing factors. Therefore, its final evaluation is determined by the auto 
engineering expert, subjectively taking into account the additional factors and 
conditions which are not involved in this technique.  

Decision making relative to the cause of the accident is very sensitive to the 
value of AF: the subjective choice of the lower or upper value of AF can decide 
the fate of the accident participants. 

The purpose of this research, the results of which are presented in this chapter, 
is to develop a mathematical model of AF evaluation taking into account all ac-
cessible information about the influencing factors, and at the expense of the AF 
magnitude improvement to raise a solution’s objectivity.  

This section is based on materials of [32]. 

9.4.1   Technique of Identification 

The model of AF evaluation was developed on the basis of fuzzy rule-based 
methodology of identification described in [14]. The model was created in two 
stages: first – structural identification; second – parametrical identification. At the 
first stage the structure of the AF dependence upon the influencing factors was 
built by expert IF-THEN rules. At the second stage we selected such parameters of 
membership functions and such weights of fuzzy rules which allow us to minimize 
the difference between model and experimental results. 

9.4.2   Structural Identification 

The structure of the suggested model is shown in Fig. 9.15 in the form of a tree, 
whose trailing tops are the factors influencing AF.  

The characteristic of the model consists of the fact that it takes into account 
both of the traditional factors, which are generalized by the integrated index Q , 
and additionally entered factors: S , H , P , N , V . All the influencing factors 
shown in Table 9.15 are considered as linguistic variables given using the appro-
priate universal sets and are estimated by fuzzy terms. 
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Fig. 9.15. The model structure for AF definition  

The integrated index Q  included in Table 9.15 depends on the factors: 1D  – 
road surface type; 2D  – road surface condition; T  – tires type. The recommenda-
tions for the evaluation of the integrated index Q  are given in Table 9.16 accord-
ing to the known technique [30]. 

The expert knowledge base necessary for AF evaluation is shown in Table 9.17 
(experts V. Rebedailo, А. Kashkanov). The application of the model of fuzzy logic 
inference to the knowledge base (Table 9.17) allows us to predict AF in some 
practical range of its modification. However, the exact evaluation of this factor 
depends on the choice of parameters for the model tuning. 

9.4.3   Parametrical Identification 

The tuning of the model was realized using training data, which represents the popula-
tion of pairs “influencing factors – adhesion factor”. To provide this training data a 
specially organized experiment with the automobile “Moskvich – 412” was carried 
out. In this experiment we used the car braking with different motion speeds on the 
horizontal road. Values of the factors which influence on AF were registered together 
with the values of car brake distances and values of brake initial velocity [31]. 
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Table 9.15. The factors influencing AF 

Factor Universal set Terms for estimations 
 

Q  – Integrated  

index 
 “type of tires –  

road” 

 
(0 – 9)  

conditional unit 

Low ( 1Q ), 

Below average ( 2Q ), 

Average ( 3Q ), 

Above average ( 4Q ), 

High ( 5Q ) 

S  – Degree of tires 
slip   (0 – 100)% 

Rolling with slip ( 1S ), 

Skid ( 2S ) 

 
H  – Wear of tires 

 
(0 – 100)% 

New ( 1H ), 

Within admissible range ( 2H ), 

Worn tire ( 3H ) 

 
P  – Pressure in tires 

 
(0.1 – 0.325) MPa

Reduced ( 1P ), 

Normal ( 2P ), 

Higher than normal ( 3P ) 

 
N  – Load on a 

wheel 

 
(0 – 100)% 

Without load ( 1N ), 

Average ( 2N ), 

Full load ( 3N ) 

 
V  – Velocity of the 

car 

 
(0 – 130) kms/h 

Low ( 1V ), 

Below average ( 2V ), 

Average ( 3V ), 

Above average ( 4V ), 

High ( 5V ) 
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Table 9.16. Recommendations for evaluation of the integrated index Q  

Road surface Index Q  for a type of tires ( T ) 

Type ( 1D ) Condition ( 2D ) High  
pressure 

Low 
pressure 

High  
permeability 

Asphalt, 
Bitumen 

Dry 5.63 – 7.88 7.88 – 9  7.88 – 9  

Rain moisture 3.1 – 4.33 4.33 – 4.95 4.33 – 4.95 

Wet  3.94 – 5.06 5.06 – 6.19 5.63 – 6.75 

Covered with a dirt 2.81 – 5.06 2.81 – 4.5 2.81 – 5.06 

Wet snow (t>0°C) 2.1 – 3.4 2.1 – 4.2 2.1 – 4.2 

Ice (t<0°C) 0.9 – 1.69 1.13 – 2.25 0.56 – 1.13 

 
Cobble 

Dry 4.5 – 5.63 5.63 – 6.19 6.75 – 7.88 

Wet 2.7 – 3.75 3.75 – 4.43 4.5 – 6.19 

 
Metal 

Dry 5.63 – 6.75 6.75 – 7.88 6.75 – 7.88 

Wet 3.38 – 4.5 4.5 – 5.63 4.5 – 6.19 

Ground road Dry 4.5 – 5.63 5.63 – 6.75 5.63 – 6.75 

 Rain moisture 2.25 – 4.5 3.38 – 5.06 3.94 – 5.63 

 Time of bad roads 1.68 – 2.81 1.68 – 2.81 2.25 – 3.38 

Virgin soil  
in summer: 

Sand 

 
 

Dry 

 
 

2.25 – 3.38

 
 

2.48 – 4.5 

 
 

2.25 – 3.38 
Damp 3.94 – 4.5 4.5 – 5.63 4.5 – 5.63 

Clayed soil Dry 4.5 – 5.63 5.06 – 6.19 4.5 – 5.63 

 Humidified  
up to a plastic state 

2.25 – 4.5 2.81 – 4.5 3.38 – 5.06 

 Humidified  
up to a fluid state 

1.69 – 2.25 1.69 – 2.81 1.69 – 2.81 

Virgin soil  
in winter: 

Snow 

Mellow 2.25 – 3.38 2.25 – 4.5 2.25 – 4.5 

Smooth 1.69 – 2.25 2.25 – 2.81 3.38 – 5.63 

 
The total volume of the training sample included 60 pairs of “influencing fac-

tors – AF” data.  
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After tuning we received the membership functions shown in Fig. 9.16. Pa-
rameters of centres ( b ) and concentration ( c ) of the tuned membership functions 
presented in Table 9.18. Weights of the fuzzy rules obtained after tuning are given 
in the right side of Table 9.17. 

Table 9.17. Fuzzy knowledge base 

Q  S  H  P  N  V  φ  Weight 

1Q  2S  2H  2P  1N  
1V   1.000 

1Q  1S  1H  1P  3N  
1V  1φ  0.700 

1Q  1S   3H  3P  2N  
2V   0.999 

2Q  2S  2H  2P  2N  
3V   0.700 

1Q  1S  2H  1P  2N  
2V  2φ  0.700 

2Q  1S  1H  3P  3N  
3V   0.998 

2Q  1S  2H  2P  3N  
5V   0.700 

2Q  1S  1H  3P  2N  
3V  3φ  0.400 

2Q  2S  2H  3P  1N  
2V   0.300 

2Q  1S  2H  2P  1N  
2V   0.400 

3Q  2S  2H  2P  2N  
3V  4φ  0.997 

3Q  1S  1H  1P  1N  
5V   0.400 

4Q  2S  1H  2P  3N  
2V   0.999 

3Q  1S  1H  3P  1N  
1V  5φ  1.000 

4Q  2S  3H  2P  1N  
3V   0.400 

4Q  2S  2H  2P  1N  
1V   0.999 

4Q  1S  2H  1P  3N  
2V  6φ  0.400 

4Q  2S  1H  2P  1N  
3V   0.400 

4Q  1S  1H  2P  1N  
2V   0.699 

5Q  1S  1H  2P  3N  
5V  7φ  1.000 

5Q  2S  2H  1P  2N  
4V   1.000 

5Q  2S  2H  2P  3N  
2V   1.000 

5Q  2S  2H  2P  1N  
3V  8φ  1.000 

5Q  1S  1H  2P  1N  
4V   0.600 
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Table 9.18. Parameters of membership functions after tuning 

Term b  c  Term b  c Term b  c  

1Q  0.90 0.97 
1H  21.36 24.33 

2N  64.48 28.92 

2Q  2.50 0.40 
2H  57.15 38.68 

3N  85.92 20.31 

3Q  4.63 0.59 
3H  90.21 26.55 

1V  10.40 14.74 

4Q  6.23 0.42 
1P  0.14 0.04 

2V  10.40 30.06 

5Q  8.58 0.75 
2P  0.20 0.04 

3V  14.07 42.26 

1S  24.88 41.76 
3P  0.32 0.07 

4V  64.65 5.82 

2S  98.93 41.95 
1N  0.10 38.98 

5V  119.99 13.48 
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Fig. 9.16. Fuzzy terms membership functions after tuning 
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Table 9.19. Comparison of decisions  

Factors Adhesion factor 
Q  S  H  P  N  V  Tabular  1) 2) 

6,15 100   62   0,2 15   20   0.45 – 0.55 0,55 0,54 
4,45 100   65   0,2 15   60   0.25 – 0.4 0,33 0,35 
4,7 100   65   0,18 20   40   0.30 – 0.45 0,39 0,39 
3,4 90   45   0,17 95   120   0.22 – 0.40 0,26 0,26 
3,7 64   95   0,25 45   72   0.20 – 0.40 0,28 0,29 
3,9 84   81   0,27 67   65   0.25 – 0.45 0,32 0,31 
8,1 67   72   0,25 20   58   0.60 – 0.70 0,68 0,68 
3,4 65   80   0,14 15   15   0.25 – 0.40 0,27 0,28 
3,6 40   75   0,18 20   45   0.30 – 0.45 0,34 0,31 
3,9 100   35   0,29 45   110   0.20 – 0.40 0,29 0,29 
7,4 35   70   0,19 60   90   0.60 – 0.70 0,62 0,62 
5,3 30   5   0,26 90   35   0.40 – 0.50 0,45 0,45 
8,6 100   60   0,2 15   20   0.70 – 0.80 0,76 0,75 
6,15 100   62   0,2 15   40   0.45 – 0.55 0,52 0,52 
6,3 100   65   0,18 20   20   0.50 – 0.60 0,56 0,54 
4,7 100   65   0,18 20   60   0.30 – 0.45 0,36 0,38 
4,8 15   55   0,21 62   32   0.40 – 0.50 0,42 0,41 
5 37   15   0,18 17   25   0.40 – 0.50 0,44 0,42 
6,8 70   28   0,16 90   52   0.50 – 0.70 0,55 0,54 
7,3 41   37   0,2 50   65   0.60 – 0.70 0,62 0,62 
6,7 80   55   0,12 56   62   0.50 – 0.60 0,52 0,54 
4,8 100   20   0,23 10   80   0.35 – 0.50 0,39 0,38 
3,3 50   90   0,3 50   85   0.25 – 0.40 0,24 0,24 
2,1 20   55   0,23 70   40   0.15 – 0.20 0,16 0,15 
8,6 100   60   0,2 15   40   0.70 – 0.80 0,74 0,74 
6,15 100   62   0,2 15   60   0.45 – 0.55 0,48 0,51 
6,3 100   65   0,18 20   40   0.50 – 0.60 0,53 0,52 
7,2 70   70   0,19 15   60   0.60 – 0.70 0,63 0,62 
1,7 35   30   0,16 74   34   0.10 – 0.20 0,16 0,15 
1,3 72   35   0,15 70   33   0.08 – 0.15 0,12 0,13 
2,25 62   21   0,31 85   64   0.20 – 0.25 0,17 0,18 
4,5 32   75   0,19 90   80   0.35 – 0.50 0,35 0,36 
7,5 75   25   0,18 71   67   0.60 – 0.70 0,64 0,63 
2,6 65   50   0,16 60   55   0.20 – 0.30 0,22 0,20 
5 70   20   0,17 100   25   0.40 – 0.50 0,39 0,40 
0,7 100   75   0,18 20   10   0.05 – 0.10 0,06 0,06 
8,6 100   60   0,2 15   60   0.70 – 0.80 0,70 0,70 
4,45 100   65   0,2 15   20   0.25 – 0.40 0,40 0,38 
6,3 100   65   0,18 20   60   0.50 – 0.60 0,51 0,52 
5,6 100   75   0,2 25   100   0.45 – 0.55 0,46 0,44 
2,9 48   25   0,24 51   68   0.20 – 0.40 0,22 0,21 
2,85 56   75   0,29 40   40   0.20 – 0.30 0,20 0,22 
5,5 53   98   0,18 100   35   0.40 – 0.50 0,42 0,43 
5,2 78   20   0,17 38   129   0.40 – 0.55 0,41 0,41 
8,2 15   10   0,2 100   115   0.70 – 0.80 0,67 0,66 
8,3 100   30   0,17 80   40   0.70 – 0.80 0,71 0,71 
4,3 90   10   0,13 10   120   0.35 – 0.40 0,33 0,33 
8,6 100   62   0,2 15   80   0.70 – 0.80 0,67 0,68 
4,45 100   65   0,2 15   40   0.25 – 0.40 0,36 0,38  
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1) Experimental 
2) On suggested models 

 
The comparison of the model with the experimental results of the AF evaluation 

shown in Table 9.19 testifies the adequacy of the obtained model for practical use. 

9.4.4   Example and Comparison with the Technique in Use Now 

The case of the run over a pedestrian by the automobile “GAZ-24” is discussed. 
The traffic accident protocol information: 
 

• type of road surface ( 1D ) – asphalt;  

• condition of road surface ( 2D ) – covered by dirt; 

• type of tires (T ) – low pressure; 
• tires slip degree ( S ) – rolling with slip; 
• wear of tires ( H ) – in admissible limits (about 50%); 
• pressure in tires ( P ) – normal (0.2MPa); 
• load on a wheel ( N ) – low (about 10%); 
• car velocity (V ) – 55 km/h.  

 
We consider the horizontal road strip. After the run-over and up to the full 

stoppage automobile GAZ – 24 in the state of employed brakes run the distance of 
9.2 m. From the moment when the motion barrier occurred and up to the moment 
of the pedestrian run-over he walked 5 m with the velocity of 4.5 km/h. The pe-
destrian was knocked-down by the front part of the car.  

The results of the AF calculations as follows: 

а)  using the conventional technique [30]: ϕ = 0.25 – 0.4; 

b)  using the suggested technique: ϕ = 0.35. 
The results using all the known information are presented in Table 9.20. The last 
column of this table shows the significance of the exact AF knowledge for the 
relevant decision making.  

Table 9.20. Calculation results for decision making 

Technique
Adhesion  

factor 
Car braking 

distance 

Distance up to the 
 obstacle at the  

moment of dangerous 
situation  

Decision making 
about the possibility 

to avoid collision 

In use 
0.25 68.8 m 46.2 m Impossible 
0.4 51.0 m 55.3 m Possible 

Suggested 0.35 55.3 m 53.3 m Impossible 
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9.5   Innovative Projects Creditworthiness Evaluation 

Estimation of innovation project quality level is an important task of any invest-
ment firm. An instant and correct solution of this problem that can generally be 
accomplished only by specialist economists allows one to manage financial re-
sources optimally. In this connection it is necessary to design computer based in-
formation system providing intelligent support for investment firm’s personnel in 
decision making.  

The expert system suggested here was developed to the order of Ukraine Inno-
vation Fund. Expert IF-THEN rules were obtained from a group of analysts under 
the leadership of Vinnitsa Chapter of Ukraine Innovation Fund Director Prof. N. 
Petrenko.  

This chapter is written on the basis of the work [33]. 

9.5.1   Types of Decisions and Partial Figures of Quality 

Innovation project quality estimation is used for making one of the following 
decisions: 1d  - to finance, 2d  - to finance after retrofit, 3d  - to finance when 

means are available, 4d  - to reject. 

Let us use letter D  to designate the integral figure of innovation project qual-
ity. To estimate this figure we will use the following information: 

X  - level of the enterprise-applicant, which is estimated using the following 
partial figures: 1x  - level of enterprise  leader, 2x  - enterprise assets, 3x  - enter-

prise liabilities, 4x  - enterprise balance profit, 5x  - enterprise debt receivables, 

6x  - enterprise indebtedness under credits. To estimate enterprise leader level 

we take into account the following figures: 1a  - sociability, 2a  - fidelity, 3a  - 

education, 4a  - leader work experience, 5a  - comfort; 

Y  - technical economic level of the project, in point for which estimation 
the following partial figures are used: 1y  - project scale, 2y  - project novelty, 

3y  - development trend priority, 4y  - degree of perfection, 5y  - juridical pro-

tection, 6y  - ecology level;  

V  - expected sales level; 
Z  - financial level of the enterprise-applicant, which is estimated using the fol-

lowing partial figures: 1z  - ratio of internal funds to innovation funds, 2z  - inno-

vation fund means return. 
The task of estimation is in bringing one of the decisions 1 4d d÷  into corre-

spondence with some innovation project with known partial figures. 
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9.5.2   Fuzzy Knowledge Bases 

A hierarchy diagram of accepted innovation project quality figures is shown in 
Fig. 9.17 in the form of a fuzzy logic inference tree, to which this system of rela-
tions corresponds: 

 

( , , , )DD f X Y V Z=  ,                                                (9.17) 
  

1 2 3 4 5 6( , , , , , )XX f x x x x x x=  ,                                   (9.18) 
 

11 1 2 3 4 5( , , , , )xx f a a a a a= ,                                         (9.19) 
 

1 2 3 4 5 6( , , , , , )YY f y y y y y y=  ,                                   (9.20) 

 

1 2( , )ZZ f z z=  .                                                        (9.21) 
 

Partial figures in point 1 6x x÷ , 1 5a a÷ , 1 6y y÷ , V , 1z  and 2z , and also 

enlarged figures X , Y , Z  are considered as linguistic variables. To estimate the 
introduced linguistic variables we will use the unitary scale of qualitative terms: 
vL – very Low, L - Low, lA – lower than average, A - average, hA – higher than 
average, H - High, vH – very high. 

Each of these terms represents some fuzzy set preset using the following mem-
bership function model. Using introduced quality terms let us represent relations 
(9.17) - (9.21), in the knowledge base form by Tables 9.21-9.25. 

Table 9.21. Knowledge about relation (9.17) 

X  Y  V  Z  D  
H H H H  
hA H H H 

1d  

H H H hA  
hA hA hA hA  
hA H H hA 

2d  

hA hA H A  
H H A A  
H A A A 

3d  

H A hA A  
L L L L 

4d  

A L L L  
 
 
 
 
 



9.5   Innovative Projects Creditworthiness Evaluation 295 

 

f x1
 

x1 

a1  

a2  

a3  

a4  

a5 

x2  

x3

x4

x5

x6

y1 

y2  

y3

y4  

y5

y6  

X  

V  

Y  

fY  

Z  

f X  

D  
fD  

 

 

 

 d1  

d2  

d3  

d4  

z2  

z1  

f Z  

 

Fig. 9.17. Fuzzy logic evidence tree  
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Table 9.22. Knowledge about relation (9.18) 

1x  2x  3x  4x  5x  6x  X  

L L L L L H L 

H H H lA lA lA lA 

H H H A A lA A 

H H H hA hA A hA 

H H H H H L H 
H H H A hA L  

Table 9.23. Knowledge about relation (9.19) 

1a  2a  3a  4a  5a  1x  

vL vL vL vL vL vL 

L L L L L L 

lA A lA A lA lA 

A A A A A A 

hA H hA H A hA 

H H H H H H 

vH vH vH vH vH vH 

 

Table 9.24. Knowledge about relation (9.20)  Table 9.25. Knowledge about 
relation (9.21) 

1y  2y  3y  4y  5y  6y  Y  

vL  vL vL vL vL vL L 
L L L L L L  

A A L L L A lA 

A A A A A A A 

H H H H H H hA 

vH vH vH vH vH vH H 
 

 
1z  2z  Z  

vL vL L 

A L lA 

A A A 

hA H hA 

vH vH H 

   

9.5.3   Evaluation Examples 

Some of the partial figures have a qualitative character; that is, they have no precise 
quantitative measurement. Therefore, while making estimations of the same figure 
by several experts there can be various opinions. In addition, the expert is not always 
capable of making an estimation of the partial figure using words though he intui-
tively feels its level. To overcome these difficulties we can estimate partial figures 
using the thermometer principle [14]. Convenience of such an approach is in the fact 
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that various sense partial figures are defined as linguistic variables given on the uni-
tary universal set [0, 100]U = , which is the scale of a thermometer. Parameters ( b ) 

and ( c ) of membership functions are introduced in Table 9.26. 

Table 9.26. Membership functions parameters 

Term vL L lA A hA H vH 

b  0.0 16.7 33.3 50.0 66.7 83.3 100 

c  15 15 15 15 15 15 15 

 
Examples of three innovation projects’ estimations by the suggested fuzzy 

model are represented in Table 9.27. Results of decision making are well in accor-
dance with expert assessments of quality. 

Table 9.27. Examples of innovation projects quality estimation 

Partial 
figure 

Project 1 Project 2 Project 3 

a1     
a2     
a3     
a4     
a5     
x2     
x3     
x4     
x5    
x6     
y1     
y2     
y3     
y4     
y5     
y6     
z1    
z2     
V     

Decision To finance with means 
available 

To finance To finance  
after retrofit 

 



298 Chapter 9 Applied Fuzzy Systems 

 

9.6   System Reliability Analysis 

Probabilistic models of reliability of technological processes and systems were 
considered in [34 – 39]. The application of these models presumes the availability 
of statistical data on probabilities of correct execution of elements of algorithmic 
process, i. e., technological operations. To take into account influencing factors, it 
is expedient to use experiment planning theory and regression models. It is very 
difficult to provide the equal conditions of experiment reiteration necessary for the 
statistical methods’ correct application while evaluating the probabilities of cor-
rect (noncorrect) performance of the system and its elements’ functioning process. 
From the other side an experiment and statistical data processing is too compli-
cated because of the many factors influencing the reliability such as environment 
task conditions; psychological stress and the degree of fatigue of an operator etc.  
It is relatively easy and natural to take into account such a factor’s influence lin-
guistically, e.g., “if the degree of fatigue of an operator is low, environment task 
conditions is good, psychological stress is low then human reliability is high”.  

The active research on fuzzy logic using in reliability theory began in the 10th 
decade of the last century. The first approaches to the fuzzy reliability theory crea-
tion have been proposed in monographs [40, 41]. The overwhelming majority of 
known works uses for the system reliability analysis the descriptive possibilities of 
fuzzy logic in combination with probability theory and descriptive possibilities of 
Boolean algebra [42 – 45]. In this chapter, we consider basic principles, mathe-
matical models and the example of application of the new method of complex 
systems reliability analysis on the basis of algebra of algorithms [46, 47] and 
fuzzy logic [48]. Here we present the results of simulation of the bioconversion 
technological process reliability. In reliability modeling of a technological system 
it is necessary to take into account not only the structure of the technological proc-
ess but also the influencing factors, connected with the quality of raw material, the 
technological equipment and the operator, controlling the process. 

This chapter is written on the basis of the works [49, 50]. 

9.6.1   Basic Principles 

The approach proposed in [49, 50] is based on the following principles:  
 

1. Principle of algorithmization 
This principle, adopted from theory of reliability of man-machine systems [35], 
envisages construction of the reliability model on the basis of the algorithmic de-
scription of the events, connected with the occurring, detecting and removal of the 
failures (faults, defects, errors) in the system. To depict the algorithm, we use 
graph-schemes or the language of V.M. Glushkov’s algorithmic algebra [46, 47], 
in which any regular algorithm can be built with the help of the three structures: 
 

a) linear ( B -structure): 1 2A A B= , producing the operator B , which is equiva-

lent to the consecutive performance of the operators 1A  and 2A ; 
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b) alternative ( C -structure): 1 2( )A A C
α

∨ = , producing the operator C , such that  

1

2

, ( 1)

, ( 0)

A if condition is true
C

A if condition is fault

α α
α α

=⎧
= ⎨ =⎩

   ; 

 

c) iterative ( D -structure):  { }A D
α

= , producing the operator D , which is 

equivalent to repeated implementation of operator A  till the condition α  has 
become true  ( 1)α = . 

 
2. Principle of fuzzy correctness  

Conception of the crisp boarder between “correct” (1) and “noncorrect” (0) results 
of the system and its elements functioning lacking underlies this principle. For the 
formal evaluation of the level of operator A  correct performance, we use the mul-
tidimensional membership function 1

1 2( , ,..., )A nx x xμ , which depends on the meas-

ured parameters (input variables). Correctness of each of the parameters is defined 
by the membership function 1( )ixμ , which can be interpreted as a parameter ix

 
values’ correctness distribution.  

 
3. Principle of linguistic evaluation of control quality 

The system functioning process control is accomplished with the help of the 
checking and correction operations. If the checking operation is performed by a 
human, then the 1st type error (false alarm or rejection of “good” result) can be 
connected with the level of “objectivity – preconception” of the inspector, and the 
2nd type error (acceptance of defective goods), – with the level of “vigilance – neg-
ligence” of the inspector.  

This principle envisages the possibility of evaluation of the checking and cor-
rection operations using verbal terms: low (average, high) tendency of man-
operator to commit the 1st and 2nd type errors; low (average, high) repair quality, 
etc. Membership functions, necessary for these terms formalization, are formed 
with the help of extension-compression operations [48], which underlie the idea of 
Soft Computing – computing with words. 

 
4. Principle of fuzzy identification 
This principle emphasizes that the problem of system reliability evaluation 
amounts to the problem of “multiple inputs – single output” object identification 
with the help of fuzzy knowledge bases [14].  

Inputs of the object are the measured parameters of the quality of raw material, 
equipment and man-operator. Output of the object is the discrete double-throw 
switch: 1 - correct; 0 - noncorrect. Because of the lack of the crisp border between 
1 and 0 results, the degrees of membership of the vector of input parameters to the 
levels 1 and 0 are calculated during system reliability modeling.  

Fuzzy knowledge bases, i.e., IF-THEN rules, necessary for solving the identifi-
cation problem, are determined by B -, C - and D - structures, from which the 
algorithmic model of reliability is built. 
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9.6.2   Fuzzy-Algorithmic Elements 

The fuzzy-algorithmic model of system reliability is built using the following 
elements (Fig. 9.18): 

 
 

AX  

a)

α  

Y S  

1
αk

0
αk

0

1 

c) b)

R

AX  

Ar

 

Fig. 9.18. Elements of reliability model 

Working operator A  (Fig. 9.18а) is the element of the model, describing oc-
curring abnormalities in the system functioning process. Quality of the working 
operator A  performance depends on the vector of measured parameters 

1 2( , ,..., )nx x x=X , where ( )i ix x t= , i.e., parameters values depend on time.  

Correctness of the working operator A  performance is defined by the formula: 
 

1 1

1

( ) ( ),
n

A i
i

xμ μ
=

= ∏X                                              (9.22) 

 

where  1 ( )Aμ X  is the multidimensional membership function of the vector of pa-

rameters X to the term “correct performance of the operator A ”,  
1( )ixμ  is the membership function, which describes the distribution of  pa-

rameter ix  , 1,2,...,i n= , values’ correctness. 

Correction operator R  (Fig. 9.18b) is the element of the model, which describes 
removal of abnormalities, occurred while performing the working operator A .  

Different kinds of repair and updating included in the system functioning algo-
rithm can be described by the correcting operator R . 

Correctness of the correction operator R  performance is defined by the formula:  
 

1 1( ) 1 [1 ( )] Ar
R Aμ μ= − −X X ,                                   (9.23)  

 

where   
1 ( )Aμ X  is defined by formula (9.22), 

       Ar  is the parameter, which characterizes the quality of correction: 

       1,3,5,7,9Ar = , if the quality of correction is low (1), lower than average 

(3), average (5), higher than average (7), high (9).  
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If, for example, a working operator A has correctness 1 ( ) 0.5Aμ =X , then the cor-

rectness of the correcting operator R  is increased with the growth of parameter Ar : 

 

Ar  1 3 5 7 9 

1 ( )R Xμ  0.5 0.875 0.967 0.992 0.9998 

        
Correctness of algorithm AR , i.e., “work ( A ) – correction ( R )”, performance 

is defined by formula: 
 

1 1 1 1( ) ( ) [1 ( )] ( )AR A A Rμ μ μ μ= + − ⋅X X X X ,                          (9.24) 
 

from which it is shown, that if 1 ( ) 1Rμ =X , then 1 ( ) 1ARμ =X . 

Logical condition α  (Fig. 9.18с) is the element of the model, which describes 
correctness checking for the vector of parameters

 1 2( , ,..., )ly y y=Y . This vector 

of parameters can correspond to the condition of the system components: the raw 
material, the equipment, the man-operator or the results of functioning process 
implementation. In particular, the diagnostic and functional checking which are 
used in reliability theory of man-machine systems [35] can be described by logical 
condition α .  

While performing condition α  the two results are possible: 
 

1α = , if all the parameters of vector Y
 
are correct,  

0α = , if at least one of the parameters of vector Y
 
is noncorrect.  

Correctness of condition α  performance is defined as follows: 
11( )αμ Y

 
is the possibility distribution of the condition α

 
performance for result 

1, i.е., without 1st type errors, when real correctness (1) is subjectively recognized 
as true (1), 

00 ( )αμ Y is the possibility distribution of the condition α
 
performance for result 

0, i.е., without 2nd type errors, when false (0) is subjectively recognized as false (0). 
These distributions are defined by the formulae: 
 

11( )αμ Y =
11[ ( ) ] kα

αμ Y ,                                                 (9.25) 
00 ( )αμ Y =

01[1 ( ) ] kα
αμ− Y ,

                                             (9.26) 

1 ( )αμ Y = 1

1

( )
l

i
i

yμ
=

∏ ,                                                  (9.27) 

 

where 1( )iyμ  is the correctness distribution of the parameter iy , 1, 2,...,i l= . 
1kα  and 0kα  are the coefficients, describing the tendency of the checking opera-

tion α  to the 1st and 2nd type errors, respectively ( 1 1kα ≥ , 0 1kα ≥  ).  



302 Chapter 9 Applied Fuzzy Systems 

 

If 1 1kα =  and 0 1kα = , then the 1st and 2nd type errors are absent. The increase of 

these coefficients results in compression of the membership functions in (9.25) 
and (9.26), and, respectively, lowering down of the level of correctness of check-
ing condition α  performance for results 1 and 0. This is equivalent to the growth 
of the 1st and 2nd type errors levels.  

For calculations on the basis of linguistic assessments one can use: 
1 1kα = , if the 1st type errors are absent (if the inspector is objective),  
1 2kα = , for small tendency to the 1st type errors (if the inspector is somewhat 

preconceived),  
1 3kα = , for sufficient tendency to the 1st type errors (if the inspector is precon-

ceived),  
i.e. with the growth of the inspector preconception (or with the lowering down 

of  his/her objectivity) the possibility of the 1st type error is increased. 

For the 2nd type errors: 
0 1kα = , if the 2nd type errors are absent (if the inspector is vigilant), 
0 2kα = , for small tendency to the 2nd type errors (if the inspector is somewhat 

negligent),  
0 3kα = , for sufficient tendency to the 2nd type errors (if the inspector is negligent),  

i.e., with the lowering down of the inspector vigilance (or with the growth of 
his/her negligence) the possibility of the 2nd type error is increased. 

9.6.3   Fuzzy-Algorithmic Structures 

Each of the algorithmic structures produces the mathematical model, which allows 
us to calculate the correctness of this structure implementation depending on the 
correctness of the included operators and conditions implementation. Such models 
are obtained in [50] on the basis of the graphs of events, taking place while per-
forming each of the structures (Fig. 9.19). Necessary formulae are given below. 

 
 

2A  

1A  1X  

2X  

a) 

 ω

X  A

U

1
ωk

0

1

0
ωk

Ar

b)

ν

Y S

R  

c)

1
νk

0
νk

Sr  0

1

 

Fig. 9.19. Algorithmic structures 
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Linear structure (Fig. 9.19а) is given by algorithm  
 

1 2B A A= ,                                                        (9.28) 
 

in which the working operators 1A  and 2A  depend on the vectors of parameters 
1 1 1

1 1 2( , ,..., )nx x x=X
 
and 2 2 2

2 1 2( , ,..., )nx x x=X , respectively. 

Fuzzy correctness of the equivalent operator B  performance in (9.28) is de-
fined by the formula: 

 
1 1 1

1 2 1 2( , ) ( ) ( )Bμ μ μ= ⋅X X X X ,                                     (9.29) 
 

where 
1

1 1 1
1

1

( ) ( )
n

i
i

xμ μ
=

= ∏X , 
2

1 1 2
2

1

( ) ( )
n

j
j

xμ μ
=

= ∏X .  

Alternative structure (Fig. 9.19b) is given by algorithm 
 

( )C A E U
ω

= ∨ ,                                              (9.30) 

 

in which ω  is the logical condition, verifying during the checking of the correct-
ness of the working operator A  implementation, where 
 

1, ,

0, .

if vector of parameters is normal

otherwise
ω ⎧

= ⎨
⎩

X
 

 

E  is the identical operator, corresponding to the checking operation ω  results 
fixation,  

U  is the operator correcting the parameters of the working operator A , 
1kω  , 0kω  and Ar  are the parameters of  condition ω  and operator U  implemen-

tation quality, respectively. 
Structure (9.30) corresponds to the process “work – checking  – correction 

without feedback” [35].  
Fuzzy correctness of the equivalent operator C  performance in (9.30) is de-

fined by the formula: 
 

1 1 0 1 11 1 11 1 00 1( , , , ) [ (1 ) (1 ) ]A Uk k rω ω ω ω ω ω ω ωμ μ μ μ μ μ μ μ= ⋅ + − + −XC  ,            (9.31) 
 

where 1 1

1

( )
n

i
i

xωμ μ
=

= ∏ , 
111 1( )k

A
ω

ωμ μ=  ,  
000 0(1 )k

A
ω

ωμ μ= − , 

1 11 (1 ) Ar
U Aμ μ= − − , 
1( )ixμ  is the correctness distribution of the parameter ix  1, 2,...,i n= , 
1kω  , 0kω  and Ar  are the numbers (1,2,3,…), which define the quality of check-

ing ω  and correcting U  operators, respectively.  
 
 
 



304 Chapter 9 Applied Fuzzy Systems 

 

Iterative structure (Fig. 9.19с) is given by algorithm 
 

{ }D S R
ν

= ,                                                  (9.32) 

 

in which ν  is the logical condition, verifying during the checking of the parame-
ters of the working operator S , where 

 

1, ,

0, .

if vector of parameters is normal
v

otherwise

⎧
= ⎨
⎩

Y
 

 

R  is the operator correcting parameters of the working operator S , 
1kν  , 0kν  and Sr  are the parameters of condition ν and operator R  implementa-

tion quality, respectively. 
Structure (9.32) describes the process “diagnostics – repair with feedback” [35] 

when the equipment is diagnosed. 
In the general case, operator S  corresponds to the equipment functioning, the 

raw material preparation or the man-operator work.  
Fuzzy correctness of the equivalent operator D  performance in (9.32) is de-

fined by the formula: 
 

1
1

1

1
( )

1D a ba
b

μ = + ⋅
−

Y ,                                         (9.33) 

 

where 1 11a ν νμ μ= ⋅ , 1 11
1 Ra νμ μ= ⋅ ,  

( ) ( )1 11 1 001 1 ,b ν ν ν νμ μ μ μ= − + −  ( ) ( )1 11 1 00
1 1 1R Rb ν νμ μ μ μ= − + − ⋅ , 

1 1

1

( )
m

l
l

yνμ μ
=

= ∏ , ( )
1

11 1 kν

ν νμ μ=  ,  ( )
0

00 11
kν

ν νμ μ= − , 

( )1 11 1
r

R

ν

νμ μ= − − , 
1( )lyμ  is the correctness distribution of the parameter ly , 1, 2,...,l m= , 
1kν  , 0kν  and Sr  are the numbers (1,2,3,…), which define the quality of check-

ing ν  and correcting R  operators, respectively. 

9.6.4   Example of Technological System Reliability Analysis  

Let us consider the bioconversion technological process (BCTP), the algorithmic 
model of which (Fig. 9.20) is defined by the formula: 

 

{ } ( )F S R A E U
ν ω

= ∨  ,                                            (9.34) 

 

where S  is the working operator, corresponding to the raw material preparation;  
ν  is the raw material parameters checking ( ho  - homogeneity, Ph - hydrogen 

factor, hu  - humidity); 
R is the operator of the raw material parameters correction; 
A  is the working operator, corresponding to the process performance; 
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ω  is the process parameters checking (V – rate of mixing, 0t -temperature); 
E  is the identical operator, corresponding to the checking operation ω  results 

fixation;      
1kν  , 0kν , Sr , 1kω  , 0kω  and Ar  are the parameters of the process control quality, 

shown in Fig. 9.20.  
 

ω

V, 0t
A

U

1
ωk

0

1

0
ωk

Ar

 ν  

ho, Ph, hu 
S

R

1
νk

0
νk

Sr
0

1

 

Fig. 9.20. Algorithmic model of the bioconversion process reliability 

The parameters correctness distributions are presented in Table 9.28. 
Algorithm (9.34) is presented as follows 

F D C= ⋅ ,    { }D S R
ν

= ,    ( )C A E U
ω

= ∨ . 

Therefore, the problem of reliability analysis is reduced to the consecutive ap-
plication of the models of B-, C- and D- structures: 

 
1 1 1( , , , , ) ( , , ) ( , )F D Chu Ph ho V t hu Ph ho V tμ μ μ= ⋅ , 

where 1 (...)Fμ  is the process (9.34) performance correctness distribution; 
1 (...)Dμ is the operator D  performance correctness distribution calculated by 

formula (9.33) for ( , , )hu Ph ho=Y , 
1 (...)Cμ  is the operator C  performance correctness distribution calculated by 

formula (9.31) for ( , )V t=X . 
The tree of inference, which defines the interconnection of the fuzzy-

algorithmic structures in identifying the process (9.34) reliability level, is shown 
in Fig. 9.21, where double circles are the models of B-, C- and D- structures;  

single circles are the operators and conditions, appearing in algorithm (9.34); 
output arrow is the process performance correctness level, which is defined by 

the membership function 1
Fμ ; 

input arrows are the variables, influencing the correctness level 1
Fμ .  
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Table 9.28. Parameters correctness distributions 

Parameter Membership function 

 
 
 
 

Homogeneity (ho, %) 
 
 

 1 
   ( )ho1μ  

 ho  
80 0 90 

 
 
 
 
 

Humidity (hu, %) 
 
 
 

0 

1 

 ( )hu1μ  

 hu  
80 91 94 

 
 
 
 
 

Hydrogen factor (Ph, c.u.)  
 
 

 

0 

1 
 ( )Ph1μ  

 Ph  
6.5 7 7.5 8.0 

 
 
 
 

Rate of mixing  
(V, rpm)  

 
 

 

0 

1 
 ( )V1μ  

 V  
0.5 1 1.5 

 
 
 
 
 

Temperature ( 0t C ) 

 
 
 

 

0 

1 
 ⎟

⎠
⎞⎜

⎝
⎛ 01 tμ  

 0t  

32.99 33 33.01 
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B

C D

R ω A U ν S

Ar 0
ωk 1

ωk 0t V Sr
0
νk

1
νk Ph hohu

 

Fig. 9.21. Tree of inference 

The aim of simulation consisted of the construction of three-dimensional cor-

rectness distributions ( )1 0,F V tμ  for different combinations of the raw material 

quality levels (Table 9.29) and the process control quality levels (Table 9.30). The 
nine three-dimensional distributions were obtained.  

Table 9.29. Values of the raw material parameters 

 
Raw material  
parameters 

 
Quality levels  

Low  Average  High  

ho (%) 83 87 91 

hu (%) 83 87 91 

Ph (c.u.) 6.6 6.8 7.1 
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The three distributions ( )1 0,F V tμ , which correspond to high level of raw mate-

rial quality and low (а), average (b) and high (с) levels of the process control qual-
ity are shown in Fig. 9.22. 

 

Table 9.30. Processes control parameters values 

Control 
element 

 
Parameters of checking 

and correcting  
operations 

 

Control quality levels 

Low  Average  High  

ν  

1kν  5 3 1 

0kν  9 5 1 

R  Sr  1 5 9 

ω  

1kω  5 3 1 

0kω  9 5 1 

U  Ar  1 5 9 

 
The correctness distributions ( )1 0,F V tμ  allow us to obtain the regions of pa-

rameters change (V and 0t ), which provide the required level of the process per-
formance correctness. Let call them zones (cross-sections) of μ - working capac-

ity, [0, 1]μ ∈ . Such zones for levels 1 0( , ) 0.9,0.8,0.7,0.6F V tμ =  are presented in 

Table 9.31. The obtained zones of μ - working capacity provide the possibility of 

optimization of the system reliability with taking into account the restrictions of 
the region of permissible parameters change [51]. 

 
  
 
 
 
 
 
 
 
 
 



9.6   System Reliability Analysis 309 

 

 

⎟
⎠
⎞⎜

⎝
⎛ 0,1 tVFμ

  

V  0t

a)  

⎟
⎠
⎞⎜

⎝
⎛ 0,1 tVFμ

  

V  0t

b)  

⎟
⎠
⎞⎜

⎝
⎛ 0,1 tVFμ

  

V  0t

c)  
 

Fig. 9.22. Process performance correctness distributions for low (а), average (b) and high 
(с) control quality levels 
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Table 9.31. Working capacity zones for process performance (0.6, 0.7, 0.8, 0.9)-correctness 
levels  

Control 
quality 

Raw material quality 

Low Average High 

 
Low 

 

Zone is 
absent 

Zone is absent 

0t   

V  
0.6 

0.9 

 

 
 
 

Average 
 
 

 

Zone is 
absent 

Zone is absent 

0t   

V  
0.6 

0.9 

 

 
 
 

High 
 
 
 

Zone is 
absent 

0t   

V  

0.6

0.7 

0t   

V  
0.6 

0.7 

0.8 0.9
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