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Chapter 8 
Fuzzy Relations Extraction from Experimental 
Data 

In this chapter, a problem of fuzzy genetic object identification expressed 
mathematically in terms of fuzzy relational equations is considered.  

Fuzzy relational calculus [1, 2] provides a powerful theoretical background for 
knowledge extraction from data. Some fuzzy rule base is modelled by a fuzzy 
relational matrix, discovering the structure of the data set [3 – 5]. Fuzzy relational 
equations, which connect membership functions of input and output variables, are 
built on the basis of a fuzzy relational matrix and Zadeh’s compositional rule of 
inference [6, 7]. The identification problem consists of extraction of an unknown 
relational matrix which can be translated as a set of fuzzy IF-THEN rules. In fuzzy 
relational calculus this type of problem relates to inverse problem resolution for 
the composite fuzzy relational equations [2]. Solvability and approximate 
solvability conditions of the composite fuzzy relational equations are considered 
in [2, 8, 9]. While the theoretical foundations of fuzzy relational equations are well 
developed, they call for more efficient use of their potential in system modeling. 
The non-optimizing approach [10] is widely used for fuzzy relational 
identification. Such adaptive recursive techniques are of interest for the most of 
on-line applications [11 – 13]. Under general conditions, an optimization 
environment is the convenient tool for fuzzy relational identification [14]. An 
approach for identification of fuzzy relational models by fuzzy neural networks is 
proposed in [15 – 17]. 

The genetic algorithm as a tool to solve the fuzzy relational equations was 
proposed in [18]. The genetic algorithm [19 – 21] allows us to solve the inverse 
problem which consists of the restoration of the unknown values of the vector of 
the unobserved parameters through the known values of the vector of the observed 
parameters and the known fuzzy relational matrix. In this chapter, the genetic 
algorithm [19 – 21] is adapted to identify the relational matrix for the given 
inputs-outputs data set. The algorithm for fuzzy relation matrix identification is 
accomplished in two stages. At the first stage, parameters of membership 
functions included in the fuzzy knowledge base and rules weights are defined 
using the genetic algorithm [22]. In this case, proximity of linguistic 
approximation results and experimental data is the criterion of extracted relations 
quality. It is shown here that in comparison with [22] the non-unique set of IF-
THEN rules can be extracted from the given data. Following [18 – 21], at the 
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second stage the obtained null solution allows us to arrange the genetic search for 
the complete solution set, which is determined by the unique maximum matrix and 
a set of minimum matrices. After linguistic interpretation the resulting solution 
can be represented as a set of possible rules collections, discovering the structure 
of the given data.  

The approach proposed is illustrated by the computer experiment and the 
example of medical diagnosis. This chapter is written on the basis of [23]. 

8.1   “Multiple Inputs – Multiple Outputs” Object 

Let us consider an object 
 

( )f=Y X                                                               (8.1) 
 

with n inputs 1 2( , ,..., )nx x x=X  and m outputs 1 2( , ,..., )my y y=Y , for which the 

following is known: 

- intervals of inputs and outputs change 

[ , ]ii ix x x∈ , 1,i n= ; [ , ]j jj
y y y∈ , 1,j m= ; 

 

- classes of decisions jpe  for evaluation of output variable jy , 1,j m= , formed 

by digitizing the range [ , jj
y y ] into jq  levels 
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]; 

- training data in the form of L pairs of “inputs-outputs” experimental data 
 

ˆ ˆ,s sX Y ,  1,s L= , 
 

where 1 2
ˆ ˆ ˆ ˆ( , ,..., )s s s

s nx x x=X  and 1 2
ˆ ˆ ˆ ˆ( , ,..., )s s s

s my y y=Y  are the vectors of the values of 

the input and output variables in the experiment number s.  
It is necessary to transfer the available training data into the following system 

of IF-THEN rules [7]: 

Rule l :      IF      1x = 1la   AND … ix = ila    AND … nx = nla   

       THEN 1y = 1lb   AND … jy = jlb   AND … my = mlb , 1,l N= ,         (8.2) 

where ila  is the fuzzy term describing a variable ix  in rule l , 1,i n= ; 

     jlb  is the fuzzy term describing a variable jy  in rule l , 1,j m= ; 

     N  is the number of rules.  
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8.2   Fuzzy Rules, Relations and Relational Equations 

This fuzzy rule base is modelled by the fuzzy relational matrix presented in Table 8.1.  

Table 8.1. Fuzzy knowledge base 

IF inputs THEN outputs 

 

1x  … ix  … nx  

1y  … jy  … my  

11e … 11qe … 1je … jjqe … 1me … mmqe  

1E … kE … ME  

1C  11a  … 1ia  … 1na  11r … 1kr … 1Mr  

… … …  … … … … … … … 

lC  1la  … ila  … nla  1lr … lkr … lMr  

… … …  … … … … … … … 

NC  1Na  … iNa  … nNa  1Nr … Nkr … NMr  

 
This relational matrix can be translated as a set of fuzzy IF-THEN rules 

Rule l : IF lC=X  THEN jy = jpe  with weight ,l jpr ,                  (8.3) 

where lC  is the combination of input terms in rule l , 1,l N= ;  

,l jpr  is the relation l jpC e× , 1,j m= ,  1, jp q= , interpreted as the rule weight. 

We shall redenote the set of classes of output variables as 

1 2{ , ,..., }ME E E ={
111 12 1 1 2, ,..., ,..., , ,...,

mq m m mqe e e e e e }, where 1 2 ... mM q q q= + + + .  

In the presence of relational matrix  
 

l kC E⊆ ×R =[ lkr , 1,l N= , 1,k M= ] 
 

the “inputs-outputs” dependency can be described with the help of Zadeh’s 
compositional rule of inference [6] 

 ( )Eμ Y = ( )Cμ X  D  R ,                                           (8.4)      

where ( )Cμ X = 1 2( , ,..., )NCC Cμ μ μ  is the vector of  membership degrees of vector 

X to input combinations lC ; 

( )Eμ Y = 1 2( , ,..., )ME E Eμ μ μ  is the vector of membership degrees of variables 

jy  to classes  jpe ; 

D  is the operation of max-min composition [6]. 
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The system of fuzzy relational equations is derived from relation (8.4):  

( )jpe

jyμ = 1 2
1, 2, ,( ( ) ) ( ( ) ) ... ( ( ) )NCC C

jp jp N jpr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧X X X , 

where 

( )lCμ X = 1 2
1 2( ) ( ) ... ( )l l nla a a

nx x xμμ μ∧ ∧ ∧ , 1,l N= ; 
or 

( )jpe

jyμ = ,
1,1,

(( ( )) )ila
i l jp

i nl N
x rμ

==
∨ ∧ ∧ .                           (8.5) 

 

Here  

( )ila
ixμ  is a membership function of a variable ix  to the fuzzy term ila ; 

    ( )jpe

jyμ  is a membership function of a variable jy  to the class jpe . 
 

Taking into account the fact that operations ∨ and ∧ are replaced by max and 
min in fuzzy set theory, system (8.5) is rewritten in the form 

( )jpe

jyμ = ( ),
1,1, 

max min min[ ( )] ,ila
i l jp

i nl N
x rμ

==

⎛ ⎞⎜ ⎟
⎝ ⎠

 .                        (8.6) 

We use a bell-shaped membership function model of variable u to arbitrary 
term T in the form [22]: 

                               
2

1
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β

σ
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                                          (8.7)  

where β  is a coordinate of function maximum, ( ) 1Tμ β = ; σ
 
is a parameter of 

concentration.  
The operation of defuzzification is defined in [22] as follows: 
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Relationships (8.6) – (8.8) define the generalized fuzzy model of an object (8.1) 
as follows: 

                                   
( , , , ),RF=Y X R Β Ω

                                             
(8.9)

     
where 1 2( , ,.., )Kβ β β=Β  and 1 2( , ,..., )Kσ σ σ=Ω  are the vectors of

 
β - and σ - 

parameters for fuzzy terms membership functions in (8.3);  
K is the total number of fuzzy terms; 

RF  is the operator of inputs-outputs connection, corresponding to formulae (8.6)–(8.8). 



8.3   Optimization Problem for Fuzzy Relations Extraction 239 

8.3   Optimization Problem for Fuzzy Relations Extraction 

Let us impose limitations on the knowledge base (8.2) volume in the following 
form: 

N N≤ , 

where N  is the maximum permissible total number of rules.  

So as content and number of linguistic terms ila  ( 1,i n= , 1,l N= ) used in 

fuzzy knowledge base (8.2) are not known beforehand then we suggest to interpret 

them on the basis of membership functions (8.7) parameter values ( ilaβ , ilaσ ). 

Therefore, knowledge base (8.2) synthesis is reduced to obtaining the matrix of 
parameters shown in Table 8.2 [22].  

Table 8.2. Knowledge base parameters matrix 

IF inputs THEN outputs 
 

1x  … nx  

1y  … jy  … my  

11e … 11qe … 1je … jjqe … 1me … mmqe  

1E … kE … ME  

1C  ( 11aβ , 11aσ ) … ( 1naβ , 1naσ ) 11r … 1kr … 1Mr  

… … … … … … … … … 

lC  ( 1laβ , 1laσ ) … ( nlaβ , nlaσ ) 1lr … lkr … lMr  

… … … … … … … … … 

NC  ( 1Naβ , 1Naσ ) … ( nNaβ , nNaσ ) 1Nr … Nkr … NMr  

 
This problem can be formulated as follows. It is necessary to find such a matrix 

(Table 8.2), which satisfies the limitations imposed on knowledge base volume and 
provides the least distance between model and experimental outputs of the object: 

 

2

, ,
1

ˆ ˆ[ ( , , , ) ] min
L

R s s
s

F
=

− =∑
R Β Ω

X R Β Ω Y  .                                (8.10) 

If 0R  is a solution of the optimization problem (8.10), then 0R  is the exact 

solution of the composite system of fuzzy relational equations: 

ˆ Aμ ( ˆ
sX ) D R = ˆ Bμ ( ˆ

sX ),                                          (8.11) 
 

where the experimental input and output matrices 
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are obtained for the given training data. 

Following [2], the system (8.11) has a solution set S ( ˆ Aμ , ˆ Bμ ), which is 

determined by the unique maximal solution R  and the set of minimal solutions 
*S ( ˆ Aμ , ˆ Bμ )= { , 1, }I I T=R : 

 

                                   *S  ( ˆ Aμ , ˆ Bμ ) =
*

[ , ]
I

I

S∈R

R R∪ .                                 (8.12) 

Here R =[ ]lkr  and IR =[ I
lkr ] are the matrices of the upper and lower bounds of 

the fuzzy relations lkr , where the union is taken over all I ∈R *S ( ˆ Aμ , ˆ Bμ ). 

The problem of solving fuzzy relational equations (8.11) is formulated as 

follows [19 – 21]. Fuzzy relation matrix [ ]lkr=R ,  1,l N= ,  1,k M= , should 

be found which satisfies the constraints [0,1]lkr ∈  and also provides the least 

distance between model and experimental outputs of the object; that is, the 
minimum value of the criterion (8.10). 

Following [19 – 21], formation of the intervals (8.12) is accomplished by way 
of solving a multiple optimization problem (8.10) and it begins with the search for 

its null solution 0
0 [ ]lkr=R , where 0

lklkr r≤ ,  1,l N= ,  1,k M= . The upper 

bound ( lkr ) is found in the range 0[ ,1]lkr . The lower bound ( I
lkr ) for 1I =  is found 

in the range 0[0, ]lkr , and for 1I >  in the range [0, ]lkr , where the minimal 

solutions JR , J I< , are excluded from the search space. 

Let ( ) [ ( )]lkt r t=R  be some t-th solution of optimization problem (8.10), that is 

0( ( )) ( )F t F=R R , since for all ∈R S ( ˆ Aμ , ˆ Bμ ) we have the same value of 

criterion (8.10). While searching for upper bounds lkr  it is suggested that 

( ) ( 1)lk lkr t r t≥ − , аnd while searching for lower bounds I
lkr  it is suggested that 

( ) ( 1)lk lkr t r t≤ −  (Fig. 8.1).   

The definition of the upper (lower) bounds follows the rule: if ( ) ( 1)t t≠ −R R , 

then lkr  ( I
lkr )= ( )lkr t . If ( ) ( 1)t t= −R R , then the search for the interval solution 

[ , ]IR R  is stopped. Formation of intervals (8.12) will go on until the condition 

I J≠R R , J I< , has been satisfied.  

The hybrid genetic and neuro approach is proposed for solving optimization 
problem (8.10).  
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 0                   1

                                                        0
lkr     1

lkr    ….     tlkr          

 
a) 
 

0                   1 

                    tlkr     …   1
lkr              0

lkr                                   

 
b) 
 

   
 0                   1 

         tlkr        I
lkr        …      1

lkr      0
lkr                 lkr                 

 
c) 

Fig. 8.1. Search for the upper (а) and lower bounds of the intervals for 1I =  (b) and  
 1I > (c) 

8.4   Genetic Algorithm for Fuzzy Relations Extraction 

To describe the chromosome for the parameters matrix (Table 8.2), we use the 
string shown in Fig. 8.2, where lC  is the code of IF-THEN rule with number l , 

1,l N= . The chromosome needed in the genetic algorithm for solving fuzzy 

relational equations (8.11) includes only the codes of parameters lkr ,   1,l N= , 

  1,k M= . Parameters of membership functions are defined simultaneously with 
the null solution.  

The crossover operation is defined in Fig. 8.3, and is carried out by way of 

exchanging chromosomes parts inside each rule lC  ( 1,l N= ) and inside matrix of 

rules weights R . The total number of exchange points is equal to 1N + . 
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A mutation operation ( Mu ) implies random change (with some probability) of 
chromosome elements: 

( ) ([0, 1])lkMu r RANDOM= , 

( ) ([ , ])ila
iiMu RANDOM x xβ = , ( ) ( [ , ] )

ililil
aaaMu RANDOMσ σ σ= , 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

The fitness function is evaluated on the basis of criterion (8.10). 

If ( )P t  are chromosomes-parents and ( )C t  are chromosomes-offsprings on a 

t -th iteration, then the genetic procedure of optimization will be carried out 
according to the following algorithm [24, 25]: 

 
begin 
    t:=0;  
    To set the initial population ( )P t ; 

    To evaluate the ( )P t  for the null solution using criterion (8.10); 

    while (no condition of null solution formation) do 
       To generate the C(t) by operation of cross-over with  P(t); 
       To evaluate the ( )C t  for the null solution using criterion (8.10); 

       To select the population ( 1)P t +  from ( )P t  and ( )C t ;   

       t:=t+1; 
   end 
   while (no condition of interval set formation) do 
       To generate the C(t) by operation of cross-over with  P(t); 
       To evaluate the ( )C t  for the bounds of intervals (8.12) using 

criterion (8.10); 
       To select the population ( 1)P t +  from ( )P t  and ( )C t ;  

       t:=t+1; 
    end 
end  
 
 

 

 
 … 

 
 … 

     
 

 

 

 

11r  1C  lC  NC  

      

  
... 

 
...

la1a1  la1a  ilaia ilaa  nlaa  nlaa  

 
... NMr  1Nr  

 
... 

 
... Mr1  

 

Fig. 8.2. Coding of parameters matrix  

 



8.5   Neuro-fuzzy Network for Fuzzy Relations Extraction 243 

 

 
… 

  
… 

  

    

   

      

   

 

 

 

 1C  lC  NC  

      

 ... 
 

... 

la1a1  la1a  ilaia ilaa  nlana  nlaa  

 

   
... 

     
... 

   . . .  . . . 

exchange 
points la1a1  la1a  ilaia  ilaa  nlana  nlaa  

1C  lC  NC  
11r  

 
... NMr  1Nr  

 
... 

 
... Mr1  

11r  
 

... NMr  1Nr  
 

... Mr1  
  

... 

 

1C  lC  NC  

   
... 

     
... 

   
... 

     
... 

 . . .  . . . 

   ...  . . . 
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Fig. 8.3. Crossover operation ( ,  - chromosomes-parents, ,    - chromosomes-
offsprings ) 

8.5   Neuro-fuzzy Network for Fuzzy Relations Extraction 

Let us impose limitations on the knowledge base (8.2) volume in the following 
form: 

1 1k k≤ , 2 2k k≤ , ..., n nk k≤ , 

where ik  is the maximum permissible total number of fuzzy terms describing a 

variable ix , 1,i n= . 

This allows embedding system (8.2) into the special neuro-fuzzy network, 
which is able to extract knowledge [16, 21]. The neuro-fuzzy network for 
knowledge extraction is shown in Fig. 8.4, and the nodes are presented in 
Table 3.1.  
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Fig. 8.4. Neuro-fuzzy network for knowledge extraction   

As is seen from Fig. 8.4 the neuro-fuzzy network has the following structure:  

layer 1 for object identification inputs (the number of nodes is equal to n),  
layer 2 for fuzzy terms used in the knowledge base (the number of nodes is 

equal to 1 2 ... nk k k+ + + ),  

layer 3 for strings-conjunctions (the number of nodes is equal to 1 2 ... nk k k⋅ ⋅ ⋅ ),  

layer 4 for fuzzy rules making classes (the layer is fully connected, the number 
of nodes is equal to the number of output classes M ), 

layer 5 for a defuzzification operation for each output.  
 
To train the parameters of the neuro-fuzzy network, the recurrent relations 

 

( 1) ( )
( )
t

lk lk
lk

r t r t
r t

εη ∂
+ = −

∂
 ; 

( 1) ( )
( )

il il

il

a a t
a

t t
t

εβ β η
β
∂

+ = −
∂

;   ( 1) ( )
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il il
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a a t
a

t t
t

εσ σ η
σ
∂

+ = −
∂

,  (8.13) 

 
 

 



8.6   Computer Simulations 245 

are used which minimize the criterion  

21
ˆ( )

2t t ty yε = − , 

where ˆty
 
and ty  are the experimental and the model outputs of the object at the t-

th step of training;  

( )lkr t  are fuzzy relations at the t-th step of training; 
ilaβ (t), ilaσ (t) are parameters for the fuzzy terms membership functions   at the 

t-th step of training. 

η is a parameter of training [26].  
 

The partial derivatives appearing in recurrent relations (8.13) can be obtained 
according to the results from Section 7.8. 

8.6   Computer Simulations 

Experiment 1 

The aim of the experiment is to generate the system of IF-THEN rules for the 
target “input ( x ) – output ( y )” model presented in Fig. 8.5.  

 

(1.8 0.8)(5 1.1)(4 2.9)(3 2.1)(9.5 9.5)(3 0.05) 20

80

x x x x x x
y

+ − − − − − += .   (8.14) 

The training data in the form of the interval values of input and output variable 
is presented in Table 8.3.  

 

y  

x
 

Fig. 8.5. Input-output model-generator 
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Table 8.3. Training data ( ˆsx , ˆsy ) 

s  
Input Output 

1x  1y  

1 [0, 0.1] [0.22, 0.32] 
2 [0.1, 0.2] [0.32, 0.27] 
3 [0.2, 0.3] [0.27, 0.17] 
4 [0.3, 0.4] [0.17, 0.12] 
5 [0.4, 0.5] [0.12, 0.14] 
6 [0.5, 0.6] [0.14, 0.21] 
7 [0.6, 0.7] [0.21, 0.25] 
8 [0.7, 0.8] [0.25, 0.22] 
9 [0.8, 0.9] [0.22, 0.14] 

10 [0.9, 1.0] [0.14, 0.25] 
 

The total number of fuzzy terms for the input variable is limited to six. The 
total number of classes for the output variable is limited to four. 

The classes for output variable evaluation are formed as follows: 
 

 [ ,y y ] = [

11

0.10, 0.15
e

��	�
 )∪ [

12

0.15, 0.20)
e

��	�
 ]∪ [

13

0.20, 0.25
e

��	�
 ]∪ [

14

0.25, 0.35
e

��	�
 ], 

The null solution 0R  presented in Table 8.4 together with the parameters of the 

knowledge matrix is obtained using the genetic algorithm. 

Table 8.4. Fuzzy relational matrix (null solution) 

IF input x  
THEN output y  

11e  12e  13e  14e  

1C  (0, 0.14) 0.3 0.9 0.7 0.1 

2C  (0.09, 0.14) 0.2 0.2 0.4 0.9 

3C  (0.40, 0.12) 0.8 0.3 0.3 0.1 

4C  (0.72, 0.12) 0.1 0.3 0.9 0.2 

5C  (0.92, 0.11) 0.9 0.6 0.2 0.3 

6C  (1.0, 0.07) 0.3 0.9 0.6 0.1 
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The obtained null solution allows us to arrange for the genetic search for the 

solution set of the system (8.11), where the matrices ˆ ˆ( )A
sxμ  and ˆ ˆ( )B

sxμ  for the 

training data take the following form: 

 
  1ˆ Cμ  2ˆ Cμ  3ˆ Cμ  4ˆ Cμ  5ˆ Cμ  6ˆ Cμ  

 1̂x  [0.67, 1.0] [0.75, 1.0] [0.09, 0.14][0.03, 0.04][0.01, 0.02] [0, 0.01] 

 2x̂ [0.33, 0.67] [0.62, 0.98] [0.14, 0.26][0.04, 0.05] 0.02 0.01 

 3x̂  [0.18, 0.33] [0.31, 0.62] [0.26, 0.59][0.05, 0.08][0.02, 0.03] 0.01 

ˆ Aμ = 
4x̂ [0.11, 0.18] [0.17, 0.31] [0.59, 1.0] [0.08, 0.17][0.03, 0.04] 0.01 

5x̂  [0.07, 0.11] [0.10, 0.17] [0.59, 1.0] [0.17, 0.30][0.04, 0.06][0.01, 0.02] 

 6x̂ [0.05, 0.07] [0.07, 0.10] [0.25, 0.59][0.30, 0.50][0.06, 0.11][0.02, 0.03] 

 7x̂ [0.04, 0.05] [0.05, 0.07] [0.17, 0.26][0.50, 0.97][0.11, 0.20][0.03, 0.05] 

 8x̂  [0.03, 0.04] [0.04, 0.05] [0.08, 0.17] [0.69, 1.0] [0.20, 0.46][0.05, 0.11] 

 9x̂ [0.02, 0.03] [0.03, 0.04] [0.05, 0.08][0.33, 0.69][0.46, 0.97][0.11, 0.33] 

 10x̂ 0.02 [0.02, 0.03] [0.04, 0.05][0.16, 0.33] [0.70, 1.0] [0.33, 1.0] 

 

  1ˆ Eμ  2ˆ Eμ  3ˆ Eμ  4ˆ Eμ  

 1̂x  0.30 [0.67, 0.90] [0.67, 0.70] [0.75, 0.90] 

 2x̂  0.30 [0.33, 0.67] [0.40, 0.67] [0.62, 0.90] 

 

ˆ Bμ = 

3x̂  [0.30, 0.59] [0.30, 0.33] [0.31, 0.40] [0.31, 0.62] 

4x̂  [0.59, 0.80] 0.30 [0.30, 0.31] [0.17, 0.31] 

5x̂  [0.59, 0.80] 0.30 0.30 [0.17, 0.20] 

 6x̂  [0.26, 0.59] 0.30 [0.30, 0.50] 0.20 

 7x̂  [0.17, 0.26] 0.30 [0.50, 0.90] 0.20 

 8x̂  [0.20, 0.46] [0.30, 0.46] [0.69, 0.90] [0.20, 0.30] 

 9x̂  [0.46, 0.90] [0.46, 0.60] [0.33, 0.69] 0.30 

 10x̂  [0.70, 0.90] [0.60, 0.90] [0.33, 0.60] 0.30 

 
The complete solution set for the fuzzy relation matrix is presented in Table 

8.5, where input x  is described by fuzzy terms Low (L), lower than Average (lA), 
Average (A), higher than Average (hA), lower than High (lH), High (H); output y  

is  described by fuzzy terms higher than Low (hL), lower than Average (lA),  
Average (A), High (H).  
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Table 8.5. Fuzzy relational matrix (complete solution set) 

IF input x  
THEN output y  

hL lA A H 

1C  L 0.30 0.90 0.70 [0, 0.75] 

2C  lA 0.30 0.30 0.40 0.90 

3C  A 0.80 0.30 0.30 [0, 0.20] 

4C  hA [0, 0.26] 0.30 [0.69, 0.90] 0.20 

5C  lH 0.90 0.60 [0.33, 0.60]∪ [0, 0.60] 0.30 

6C  H [0, 0.70] [0.60, 0.90] [0, 0.60]∪ [0.33, 0.60] [0, 0.30] 

 
The obtained solution provides the approximation of the object shown in Fig. 8.6. 

 
y  

x  
 

Fig. 8.6. Input-output model extracted from data 

The resulting solution can be linguistically interpreted as the set of the two 
possible rules bases (See Table 8.6), which differ in the fuzzy terms describing 
output y  in rule 6 with overlapping weights. 
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Table 8.6. System of IF-THEN rules 

Rule IF x  THEN y  

1 L lA 
2 lA H 
3 A hL 
4 hA A 
5 lH hL 
6 H hL or  lA 

 
Experiment 2 

The aim of the experiment is to generate the system of IF-THEN rules for the 

target “two inputs ( 1 2,x x ) – two outputs ( 1 2,y y )” model presented in Fig. 8.7: 

           1 1 1 2

1
( , ) (2 0.9)  (7 1)  (17 19)  (15 2)

10
y f x x z z z z= = − − − − ,              (8.15) 

2 2 1 2 1

1
( , ) 1

2
y f x x y= = − + , 

where 
2 2

1 2( 3.0) ( 2.5)

40

x x
z

− + −
= . 

The training data in the form of the interval values of input and output variables 
is presented in Table 8.7.  

 

 

y  

2x  

1x  

1y  

2y  

 

Fig. 8.7. Inputs-outputs model-generator     
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Table 8.7. Training data ( ˆ
sX , ˆ

sY ) 

s 

Inputs  Outputs 

1x  2x  1y  2y  

1 [0.2, 1.2] [0.3, 1.6] [0, 1.0] [0.5, 1.0] 
2 [0.2, 1.2] [1.3, 4.0] [0, 0.8] [0.6, 1.0] 
3 [0.7, 3.0] [0.3, 1.6] [0, 2.3] [-0.15, 1.0] 
4 [0.7, 3.0] [1.3, 4.0] [0, 3.4] [-0.7, 1.0] 
5 [3.0, 5.3] [0.3, 1.6] [0, 2.3] [-0.15, 1.0] 
6 [3.0, 5.3] [1.3, 4.0] [0, 3.4] [-0.7, 1.0] 
7 [4.8, 5.8] [0.3, 1.6] [0, 1.0] [0.5, 1.0] 
8 [4.8, 5.8] [1.3, 4.0] [0, 0.8] [0.6, 1.0] 

 
The total number of fuzzy terms for input variables is limited to three. The total 

number of combinations of input terms is limited to six. 
The classes for output variables evaluation are formed as follows:  

[ 11
,y y ] = [N

11

0, 0.2
e

)∪ [

12

0.2,1.2)
e

��	�
 ]∪ [

13

1.2, 3.4
e

�	
 ],    

[ 22
,y y ] = [

21

0.7, 0
e

−�	
 )∪ [N
22

0, 1.2
e

]. 

The null solution 0R  presented in Table 8.8 together with the parameters of the 

knowledge matrix is obtained using the genetic algorithm. 

Table 8.8. Fuzzy relational matrix (null solution) 

  IF inputs 
THEN outputs 

1y  2y  

 
1x  2x  11e  12e  13e  21e  22e  

C1 (0.03, 0.72) (0.01, 1.10) 0.15 0.78 0.24 0.52 0.48 

C2 (3.00, 1.77) (0.02, 1.14) 0.85 0.16 0.02 0.76 0.15 

C3 (5.96, 0.71) (0.04, 0.99) 0.10 0.92 0.27 0.50 0.43 

C4 (0.00, 0.75) (2.99, 2.07) 0.86 0.04 0.30 0.80 0.30 

C5 (3.02, 1.80) (2.97, 2.11) 0.21 0.11 0.10 0.15 0.97 

C6 (5.99, 0.74) (3.02, 2.10) 0.94 0.08 0.30 0.75 0.30 
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The obtained null solution allows us to arrange for the genetic search for the 

solution set of the system (8.11), where the matrices ˆˆ ( )A
sμ X  and ˆˆ ( )B

sμ X  for the 

training data take the following form: 
 

  1ˆ Cμ  2ˆ Cμ  3ˆ Cμ  4ˆ Cμ  5ˆ Cμ  6ˆ Cμ  

 1X̂ [0.16, 0.74][0.16, 0.52] 0 
[0.33, 
0.61] 

[0.28, 0.52] 0 

 2X̂ [0.21, 0.46][0.21, 0.46] 0 
[0.35, 
0.90] 

[0.28, 0.52] 0 

 3X̂ [0, 0.50] [0.16, 0.74] 0 [0, 0.50] [0.33, 0.61] 0 

ˆ Aμ  = 
4X̂ [0, 0.46] [0.21, 0.46] 0 [0, 0.50] [0.37, 0.95] 0 

5X̂ 0 [0.16, 0.74] [0, 0.50] 0 [0.33, 0.61] [0, 0.50] 

 6X̂ 0 [0.21, 0.46] [0, 0.46] 0 [0.34, 0.95] [0, 0.50] 

 7X̂ 0 [0.16, 0.52][0.16, 0.74] 0 [0.28, 0.52][0.33, 0.61] 

 8X̂ 0 [0.21, 0.46][0.21, 0.46] 0 [0.28, 0.52][0.35, 0.90] 

 

  1ˆ Eμ  2ˆ Eμ  3ˆ Eμ  4ˆ Eμ  5ˆ Eμ  

 1X̂  [0.33, 0.61] 
[0.16, 
0.74] 

[0.30, 
0.52] 

[0.33, 0.61] [0.30, 0.52] 

 2X̂ [0.35, 0.86] 
[0.21, 
0.46] 

[0.30, 
0.52] 

[0.35, 0.80] [0.30, 0.52] 

 

ˆ Bμ = 

3X̂  [0.21, 0.74] 
[0.16, 
0.50] 

[0.33, 
0.61] 

[0.16, 0.74] [0.33, 0.61] 

4X̂ [0.21, 0.46] 
[0.16, 
0.46] 

[0.37, 
0.95] 

[0.21, 0.50] [0.37, 0.95] 

5X̂  [0.21, 0.74] 
[0.16, 
0.50] 

[0.33, 
0.61] 

[0.16, 0.74] [0.33, 0.61] 

 6X̂ [0.21, 0.50] 
[0.16, 
0.46] 

[0.34, 
0.95] 

[0.21, 0.50] [0.34, 0.95] 

 7X̂ [0.33, 0.61] 
[0.16, 
0.74] 

[0.30, 
0.52] 

[0.33, 0.61] [0.30, 0.52] 

 8X̂  [0.35, 0.90] 
[0.21, 
0.46] 

[0.30, 
0.52] 

[0.35, 0.75] [0.30, 0.52] 

 
The complete solution set for the fuzzy relation matrix is presented in Table 8.9, 

where input 1x  is described by fuzzy terms Low (L), Average (A), High (H); input 
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2x  is described by fuzzy terms Low (L), High (H); output 1y  is described by fuzzy 

terms higher than Low (hL), lower than Average (lA), High (H); output 2y  is 

described by fuzzy terms Low (L), lower than Average (lA).  

Table 8.9. Fuzzy relational matrix (complete solution set) 

IF inputs 
THEN outputs 

y1 y2 

 1x  2x  hL lA H lA  L 

C1 L L [0, 0.21] [0.74, 1.0] [0, 0.30] [0.33, 0.61] [0, 0.52] 

C2 A L [0.74, 1.0] 
[0, 0.16] 

∪ 0.16 
[0, 0.30] [0.74, 1.0] [0, 0.30] 

C3 H L [0, 0.21] [0.74, 1.0] [0, 0.30] [0.33, 0.61] [0, 0.52] 

C4 L H 0.86 [0, 0.16] 0.30 0.80 0.30 

C5 A H 0.21 
0.16∪  

[0, 0.16] 
[0.95, 1.0] [0, 0.16] [0.97, 1.0] 

C6 H H [0.90, 1.0]  [0, 0.16] 0.30 0.75 0.30 

 
The obtained solution provides the approximation of the object shown in Fig. 8.8. 
 

y  

2x  

1x  

1y  

2y  

 

Fig. 8.8. Inputs-outputs model extracted from data 
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The resulting solution can be linguistically interpreted as the set of the four 
possible rules bases (See Table 8.10), which differ in the fuzzy terms describing 
output 2y  in rule 1 and rule 3 with overlapping weights. 

Table 8.10. System of IF-THEN rules 

Rule 
IF inputs THEN outputs 

1x  2x  1y  2y  

1 L L lA lA or L 
2 A L hL lA 
3 H L lA lA or L 
4 L H hL lA 
5 A H H L 
6 H H hL lA 

8.7   Example 7: Fuzzy Relations Extraction for Heart Diseases 
Diagnosis  

The aim is to generate the system of IF-THEN rules for diagnosis of heart 
diseases. Input parameters are (variation ranges are indicated in parentheses):  
 

1x – aortic valve size (0.75 – 2.5 cm 2); 

2x – mitral valve size (1 – 2 cm 2);  

3x – tricuspid valve size (0.5 – 2.7 cm 2);    

4x – lung artery pressure (65 – 100 mm Hg).  
 

Output parameters are:  
 

1y – left ventricle size (11–14 mm);  

2y – left auricle size (40–70 mm); 

3y – right ventricle size (36–41 mm);  

4y – right auricle size (38–45 mm). 
  

The training data obtained in the Vinnitsa Clinic of Cardiology is represented in 
Table 8.11 [27]. 

In current clinical practice, the number of combined heart diseases (aortic-mitral, 

mitral-tricuspid, mitral with lung hypertension etc.) is limited to six ( 6N = ). 
The classes for output variables evaluation are formed as follows:  

[ 11
,y y ] = [N

11

11, 12
e

)∪ [N
12

13, 14
e

],    [ 22
,y y ] = [N

21

41, 50
e

)∪ [N
22

50, 70
e

], 

[ 33
,y y ] = [N

31

36, 38
e

)∪ [N
32

38, 41
e

],   [ 44
,y y ] = [N

41

38, 40
e

)∪ [N
42

40, 45
e

]. 
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Table 8.11. Training data 

 
s 

Input parameters Output parameters 

1x  2x  3x  4x  1y  2y  3y  4y  

1 0.75-2 2 2 65-69 12-14 41-44 36 38 
2 2.0-2.5 2 2 65-69 11-13 40-41 36 38 
3 2.0-2.5 1-2 2 71-80 11 40 38-40 40-45 
4 2.0-2.5 2 2 71-80 11 50-70 37-38 38-40 
5 2.0-2.5 2 0.5-2 72-90 11-12 60-70 40-41 40-45 
6 2.0-2.5 1-2 2-2.7 80-90 11-12 40 40-41 38 
7 2.0-2.5 2 2 80-100 11 50-60 36 38 
8 2.0-2.5 1-2 2-2.7 80-100 11 40 40-41 38-40 

 
 

In clinical practice these classes correspond to the types of diagnoses 1je  low 

inflation and 2je  dilation (hypertrophy) of heart sections 1 4y y÷ . The aim of the 

diagnosis is to translate a set of specific parameters 1 4x x÷  into decision jpe  for 

each output 1 4y y÷ . 

The null solution 0R  presented in Table 8.12 together with the parameters of 

the knowledge matrix is obtained using the genetic algorithm. 

Table 8.12. Fuzzy relational matrix (null solution) 

IF inputs THEN outputs 

1x  2x  3x  4x  
1y  2y  3y  4y  

11e  12e  21e  22e  31e  32e  41e  42e  

(0.75, 
1.30) 

(2.00, 
0.63)

(2.35, 
0.92) 

(65.54, 
8.81) 

0.21 0.95 0.76 0.16 0.95 0.10 0.90 0.10 

(2.50, 
0.95) 

(2.00, 
0.65)

(2.44, 
1.15) 

(64.90, 
9.57) 

0.40 0.63 0.93 0.15 0.90 0.12 0.85 0.06 

 (2.52, 
1.04) 

(1.00, 
0.82)

(2.32, 
0.88) 

(69.32, 
10.23) 

0.92 0.20 0.86 0.08 0.31 0.75 0.14 0.82 

(2.55, 
0.98) 

(2.00, 
0.72)

(2.36, 
0.90) 

(95.07, 
21.94) 

0.90 0.15 0.24 0.59 0.55 0.02 0.64 0.26 

(2.51, 
1.10) 

(1.92, 
0.75)

(0.50, 
0.90) 

(100.48,
26.14) 

0.85 0.18 0.12 0.95 0.10 0.90 0.21 0.93 

(2.55, 
0.96) 

(1.00, 
0.94)

(2.30, 
1.20) 

(95.24, 
22.46) 

0.80 0.37 0.76 0.31 0.22 0.88 0.75 0.14 
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The obtained null solution allows us to arrange for the genetic search for the 

solution set of the system (8.11), where the matrices ˆ Aμ ( ˆ
sX ) and ˆ Bμ ( ˆ

sX ) for the 

training data take the following form: 
 

  1ˆ Cμ  2ˆ Cμ  3ˆ Cμ  4ˆ Cμ  5ˆ Cμ  6ˆ Cμ  

 1X̂  [0.62, 0.94] [0.32, 0.74] [0.30, 0.40] [0.09, 0.31] [0.07, 0.35] [0.08, 0.29] 

 2X̂  [0.35, 0.62] [0.74, 0.90] 0.40 [0.09, 0.31] [0.07, 0.35] [0.08, 0.29] 

 3X̂  [0.21, 0.54] [0.2, 0.52] [0.22, 0.56] [0.31, 0.72] 0.35 [0.29, 0.77] 

ˆ Aμ = 
4X̂  [0.21, 0.54] [0.2, 0.52] [0.22, 0.40] [0.31, 0.72] 0.35 [0.29, 0.41] 

5X̂  [0.1, 0.54] [0.08, 0.52] [0.07, 0.56] [0.31, 0.86] [0.35, 0.89] [0.29, 0.41] 

 6X̂  [0.1, 0.21] [0.08, 0.21] [0.07, 0.22] [0.72, 0.86] [0, 0.35] [0.41, 0.85] 

 7X̂  [0, 0.21] [0, 0.21] [0, 0.22] [0.72, 0.90] 0.35 0.41 

 8X̂  [0, 0.21] [0, 0.21] [0, 0.22] [0.72, 0.90] [0, 0.35] [0.41, 1.0] 

 
  1Eˆ Eˆ  2Eˆ Eˆ  3Eˆ Eˆ  4Eˆ Eˆ  5Eˆ Eˆ  6Eˆ Eˆ  7Eˆ Eˆ  8Eˆ Eˆ  

 1X̂  [0.32, 0.40] [0.62, 0.94] [0.62, 0.76] [0.16, 0.35] [0.62, 0.94] [0.30, 0.40] [0.62, 0.90] [0.30, 0.40] 

 2X̂  0.40 0.63 [0.74, 0.90] [0.16, 0.35] [0.74, 0.90] 0.40 [0.74, 0.85] 0.40 

 3X̂  [0.35, 0.77] [0.21, 0.54] [0.29, 0.76] [0.35, 0.59] [0.31, 0.55] [0.35, 0.77] [0.31, 0.75] [0.35, 0.56] 

Bμ̂ = 
4X̂  [0.35, 0.72] [0.21, 0.54] [0.29, 0.54] [0.35, 0.59] [0.31, 0.55] [0.35, 0.41] [0.31, 0.64] [0.35, 0.4] 

5X̂  [0.35, 0.89] [0.10, 0.54] [0.29, 0.56] [0.35, 0.89] [0.31, 0.55] [0.35, 0.89] [0.31, 0.64] [0.35, 0.89] 

 6X̂  [0.72, 0.86] 0.37 [0.41, 0.76] 0.59 0.55 [0.41, 0.85] [0.64, 0.75] [0.26, 0.35] 

 7X̂  [0.72, 0.90] 0.37 0.41 0.59 0.55 0.41 0.64 0.35 

 8X̂  [0.72, 0.90] 0.37 [0.41, 0.76] 0.59 0.55 [0.41, 0.88] [0.64, 0.75] [0.26, 0.35] 

  
 
The complete solution set for the fuzzy relation matrix is presented in Table 

8.13, where, according to current clinical practice, the valve sizes 1 3x x÷  are 

described by fuzzy terms stenosis (S) and insufficiency (I); pressure 4x  is 

described by fuzzy terms normal (N) and lung hypertension (H).  
The obtained solution provides the results of diagnosis presented in Table 8.14 

for 57 patients. Heart diseases diagnosis obtained an average accuracy rate of 90% 
after 10000 iterations of the genetic algorithm (100 min on Intel Core 2 Duo 
P7350 2.0 GHz). 

The resulting solution can be linguistically interpreted as the set of the four 
possible rules bases (See Table 8.15), which differ in the fuzzy terms describing 
outputs 1y  and 3y  in rule 3 with overlapping weights.  
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Table 8.13. Fuzzy relational matrix (complete solution set) 

IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  
L D L D L D L D 

S I I N [0, 0.40] [0.94, 1.0] 0.76 0.16 [0.94, 1.0] [0, 0.30] 0.90 [0, 0.30] 

I I I N 0.40 0.63 [0.90, 1.0] [0, 0.35] [0.90, 1.0] [0, 0.30] 0.85 [0, 0.30] 

I S I N [0.40, 1.0] [0, 0.54] [0.56, 1.0] [0, 0.35] [0, 0.55] [0.40, 1.0] [0, 0.31] [0.56, 1.0] 

I I I H [0.90, 1.0] 
[0, 0.37] 

0.37 [0, 0.41] 0.59 0.55 [0, 0.41] 0.64 
0.26  
[0, 0.26] 

I I S H [0.89, 1.0] [0, 0.54] [0, 0.56] [0.89, 1.0] [0, 0.55] [0.89, 1.0] [0, 0.31] [0.89, 1.0] 

I S I H [0.77, 0.90] 
0.37  
[0, 0.37] 

0.76 [0, 0.59] [0, 0.55] [0.85, 1.0] 0.75 
[0, 0.26] 

0.26 
 

Table 8.14. Genetic algorithm efficiency characteristics  

Output 
parameter 

Type of 
diagnosis 

Number  
of cases 

Probability 
of the correct diagnosis 

1y  
11e  20 17 / 20 = 0.85 

12e  37 34 / 37 = 0.92 

2y  
21e   26 23 / 26 = 0.88 

22e  31 28 / 31 = 0.90 

3y  
31e   28 25 / 28 = 0.89 

32e  29 27 / 29 = 0.93 

4y  
41e   40 37 / 40 = 0.92 

42e  17 15 / 17 = 0.88 

       

Table 8.15. System of IF-THEN rules 

Rule  
IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  

1 S I I N D L L L 
2 I I I N D L L L 
3 I S I N L or D L L or D D 
4 I I I H L D L L 
5 I I S H L D D D 
6 I S I H L L D L 
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