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Chapter 7 
Inverse Inference Based on Fuzzy Rules 

The wide class of the problems, arising from engineering, medicine, economics and 
other domains, belongs to the class of inverse problems [1]. The typical 
representative of the inverse problem is the problem of medical and technical 
diagnosis, which amounts to the restoration and the identification of the unknown 
causes of the disease or the failure through the observed effects, i.e. the symptoms or 
the external signs of the failure. The diagnosis problem, which is based on a cause 
and effect analysis and abductive reasoning can be formally described by neural 
networks [2] or Bayesian networks [3, 4]. In the cases, when domain experts are 
involved in developing cause-effect connections, the dependency between 
unobserved and observed parameters can be modelled using the means of fuzzy sets 
theory [5, 6]: fuzzy relations and fuzzy IF-THEN rules. Fuzzy relational calculus 
plays the central role as a uniform platform for inverse problem resolution on 
various fuzzy approximation operators [7, 8]. In the case of a multiple variable 
linguistic model, the cause-effect dependency is extended to the multidimensional 
fuzzy relational structure [6], and the problem of inputs restoration and identification 
amounts to solving a system of multidimensional fuzzy relational equations [9, 10].  
Fuzzy IF-THEN rules enable us to consider complex combinations in cause-effect 
connections as being simpler and more natural, which are difficult to model with 
fuzzy relations. In rule-based models, an inputs-outputs connection is described by a 
hierarchical system of simplified fuzzy relational equations with max-min and dual 
min-max laws of composition [11 – 13].  

In works [14 – 16], an expert system using a genetic algorithm [17] as a tool to 
solve the diagnosis problem was proposed. The diagnosis problem based on a 
cause and effect analysis was formally described by the single input single output 
fuzzy relation approximator [18 – 20]. This chapter proposes an approach for 
inverse problem solution based on the description of the interconnection between 
unobserved and observed parameters of an object (causes and effects) with the 
help of fuzzy IF-THEN rules. The problem consists of not only solving a system 
of fuzzy logical equations, which correspond to IF-THEN rules, but also in 
selection of such forms of the fuzzy terms membership functions and such weights 
of the fuzzy IF–THEN rules, which provide maximal proximity between model 
and real results of diagnosis [21].  

The essence of the proposed approach consists of formulating and solving the 
optimization problems, which, on the one hand, find the roots of fuzzy logical 
equations, corresponding to IF-THEN rules, and, on the other hand, tune the fuzzy 
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model using the readily available experimental data. The hybrid genetic and neuro 
approach is proposed for solving the formulated optimization problems. 

This chapter is written on the basis of [11 – 13]. 

7.1    Diagnostic Approximator Based on Fuzzy Rules 

The diagnosis object is treated as a black box with n inputs and m outputs (Fig. 7.1). 
Outputs of the object are associated with the observed effects (symptoms). Inputs 
correspond to the causes of the observed effects (diagnoses). The problem of 
diagnosis consists of restoration and identification of the causes (inputs) through the 
observed effects (outputs). Inputs and outputs can be considered as linguistic 
variables given on the corresponding universal sets. Fuzzy terms are used for these 
linguistic variables evaluation.  
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Fig. 7.1. Object of diagnosis 

We shall denote the following:  
 

1 2{ , ,..., }nx x x  is the set of input parameters, [ , ]ii ix x x∈ , 1,i n= ; 

1 2{ , ,..., }my y y  is the set of output parameters, [ , ]j jj
y y y∈ , 1,j m= ; 

1 2{ , ,..., }
ii i ikc c c  is the set of linguistic terms for parameter ix  evaluation, 1,i n= ; 

1 2{ , ,..., }
jj j jqe e e  is the set of linguistic terms for parameter jy  evaluation,  1,j m= . 
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Each term-assessment is described with the help of a fuzzy set: 

ilc = {( , ( ))}ilc
i ix xμ ,  1,i n= , 1, il k= ; 

jpe ={( , ( ))}jpe

j jy yμ , 1,j m= , 1, jp q= . 

where ( )ilc
ixμ  is a membership function of variable ix  to the term-assessment ilc , 

1,i n= ,  1, il k= ; 

( )jpe

jyμ  is a membership function of variable jy  to the term-assessment jpe , 

 1,j m= , 1, jp q= . 

We shall redenote the set of input and output terms-assessments in the 
following way: 

1 2{ , ,..., }NC C C ={
111 12 1 1 2, ,..., ,..., , ,...,

nk n n nkc c c c c c } is the set of terms for input 

parameters evaluation, where 1 2 ... nN k k k= + + + ; 

1 2{ , ,..., }ME E E ={
111 12 1 1 2, ,..., ,..., , ,...,

mq m m mqe e e e e e } is the set of terms for 

output parameters evaluation, where 1 2 ... mM q q q= + + + . 

Set { IC , 1,I N= } is called fuzzy causes (diagnoses), and set { JE ,  1,J M= } 

is called fuzzy effects (symptoms).  
Causes - effects interconnection can be represented using the expert matrix of 

knowledge (Table 7.1). 

Table 7.1. Fuzzy knowledge base 

№ rule 
Inputs Outputs 

1x  2x  … nx  1y  Weight 2y  Weight  my  Weight 

1 11a  21a  … 1na  11b  11w  21b  21w  … 1mb  1mw  

2 12a  22a  … 2na  12b  12w  22b  22w  … 2mb  2mw  

… … … … … … … … … … … … 

K 1Ka 2Ka  … nKa  1Kb 1Kw  2Kb 2Kw  … mKb  mKw  

 
 
 The fuzzy knowledge base below corresponds to this matrix:  

 Rule l : IF        1x = 1la  AND 2x = 2la  … AND nx = nla   

             THEN 1y = 1lb  (with weight 1lw )  

             AND   2y = 2lb (with weight 2lw ) …  

             AND     my = mlb (with weight mlw ), 1,l K= ;                                           (7.1) 
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where ila  is a fuzzy term for variable ix  evaluation in the rule with number l ; 

      jlb  is a fuzzy term for variable jy  evaluation in the rule with number l ; 

      jlw  is a rule weight, i.e. a number in the range [0, 1], characterizing the 

measure of confidence of an expert relative to the statement with number jl ; 

     K is the number of fuzzy rules.  
The problem of diagnosis is set in the following way: it is necessary to restore 

and identify the values of the input parameters * * *
1 2( , ,..., )nx x x  through the values of 

the observed output parameters * * *
1 2( , ,..., )my y y . 

7.2   Interconnection of Fuzzy Rules and Relations 

This fuzzy rules base is modelled by the fuzzy relational matrices presented in 
Table 7.2. These relational matrices can be translated as a set of fuzzy IF-THEN 
rules 

IF LA=X   

      (i.e., 1x = 1C   (with weight 1Lv )  

AND … ix = IC   (with weight ILv )  …    

AND      nx = CN  (with weight vNL) ) 

THEN   jy = JE   (with weight LJr )                                                                    (7.2) 

Here LA  is the combination of input terms in rule L , 1,L K= . 

Table 7.2. Fuzzy relational matrices 

IF inputs THEN outputs 

 

1x  … ix  … nx  1y  … jy  … my  

11c  … 11kc … 1ic  … iikc  … 1nc … nnkc
11e … 11qe … 1je … jjqe … 1me … mmqe  

1C  … IC  … NC 1E … JE … ME  

1A  11v  … 1Iv  … 1Nv 11r … 1Jr … 1Mr  

… … … … … … … … … … … 

LA  1Lv  … ILv  … NLv 1Lr … LJr … LMr  

… … … … … … … … … … … 

KA  1Kv  … IKv  … NKv 1Kr … KJr … KMr  

 



7.2   Interconnection of Fuzzy Rules and Relations 197 

“Causes – rules – effects” interconnection is given by the hierarchical system of 

relational matrices I LC A⊆ ×V =[ ILv , 1,I N= , 1,L K= ] and L JA E⊆ ×R =[ LJr , 

1,L K= , 1,J M= ]. An element of binary matrix V is the weight of term 

{0,1}ILv ∈ , where 1(0)ILv =  if term IC  is present (absent) in the causes 

combination LA . An element of fuzzy relational matrix R is the weight of rule
 

LJr ∈[0, 1], characterizing the degree to which causes combination LA  influences 

upon the rise of effect JE . 

Given the matrices R and V, the “causes-effects” dependency can be described 
with the help of Zadeh’s compositional rule of inference [5] 

 

 E A=μ μ R ,                                      (7.3)      
where 

A C= •μ μ V .                                           (7.4)      

Here V  is the complement of the matrix of terms weights V ; 
Cμ = 1 2( , ,..., )NCC Cμ μ μ  is the fuzzy causes vector with elements ICμ ∈ [0, 1], 

interpreted as some significance measures of IC  causes; 
Eμ = 1 2( , ,..., )ME E Eμ μ μ  is the fuzzy effects vector with elements JEμ ∈ [0, 1], 

interpreted as some significance measures of JE  effects; 
Aμ = 1 2( , ,..., )KA A Aμ μ μ  is the fuzzy causes combinations vector with elements 

LAμ ∈ [0, 1], interpreted as some significance measures of LA  causes 

combinations; 
•  ( ) is the operation of min-max (max-min) composition [5]. 

Finding vector Cμ  amounts to the solution of the hierarchical system of 

simplified fuzzy relational equations with max-min and dual min-max laws of 
composition 

1Eμ = 1 2
11 21 1( ) ( ) ... ( )KA A A

Kr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧  
2Eμ = 1 2

12 22 2( ) ( ) ... ( )KA A A
Kr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧  

…  
MEμ = 1 2

1 2( ) ( ) ... ( )KA A A
M M KMr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧ ,                   (7.5) 

where 
 

1Aμ = 1 2
11 21 1( ) ( ) ... ( )NCC C

Nv v vμ μ μ∨ ∧ ∨ ∧ ∧ ∨  
2Aμ = 1 2

12 22 2( ) ( ) ... ( )NCC C
Nv v vμ μ μ∨ ∧ ∨ ∧ ∧ ∨  

… 

KAμ = 1 2
1 2( ) ( ) ... ( )NCC C

K K NKv v vμ μ μ∨ ∧ ∨ ∧ ∧ ∨ ,                (7.6) 
which is derived from relations (7.3) and (7.4). 
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Since the operations ∨ and ∧ are replaced by max and min in fuzzy set theory 
[5], systems (7.5) and (7.6) can be rearranged as: 
 

1,
max(min( , )),J LE A

LJ
L K

rμ μ
=

= 1,J M= ,                         (7.7)  

where 

1,
min(max( , )),L IA C

IL
I N

vμ μ
=

= 1,L K=                                 (7.8)            

or 

JEμ = ( )1,1,
max min min(max( , )),IC

IL LJ
I NL K

v rμ
==

⎛ ⎞⎜ ⎟
⎝ ⎠

, 1,J M= .            (7.9) 

To translate the specific values of the input and output variables into the 
measures of the causes and effects significances it is necessary to define a 

membership function of linguistic terms IC  and JE , 1,I N= , 1,J M= , used in 

the fuzzy rules (7.1). We use a bell-shaped membership function model of variable 
u to arbitrary term T in the form: 

 

        
2

1
( ) ,

1

T u
u

μ
β

σ

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

                                   (7.10)  

where β  is a coordinate of function maximum, ( ) 1Tμ β = ; σ
 
is a parameter of 

concentration-extension.  
Correlations (7.9), (7.10) define the generalized fuzzy model of diagnosis as 

follows: 
 

     ( , , ) ( , , , ),E
E E Y C CF=μ Y Β Ω X R Β Ω                                (7.11)                        

 

 

where 11 12 1 1 2( , ,..., ,..., , ,..., )K m m mKr r r r r r=R  is the vector of rules weights; 

1 2( , ,..., )NCC C
C β β β=Β  and 1 2( , ,..., )NCC C

C σ σ σ=Ω  are the vectors of β - and 

σ - parameters for fuzzy causes 1C , 2C ,…, NC  membership functions; 
1 2( , ,..., )ME E E

E β β β=Β  and 1 2( , ,..., )ME E E
E σ σ σ=Ω  are the vectors of β - 

and σ - parameters for fuzzy effects 1E , 2E ,…, ME  membership functions; 

YF  is the operator of inputs-outputs connection, corresponding to formulae 

(7.9),  (7.10). 

7.3   Optimization Problem for Fuzzy Rules Based Inverse 
Inference 

Following the approach, proposed in [14 – 16], the problem of solving fuzzy logic 

equations (7.9) is formulated as follows. Fuzzy causes vector  Cμ =( 1 2, ,..., NCC Cμ μ μ ) 
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should be found which satisfies the constraints [0, 1]ICμ ∈ ,  1,I N= , and also 

provides the least distance between observed and model fuzzy effects vectors: 

F = ( ) 2

1,1,1

max min min(max( , )), minJ I

C

M
E C

IL LJ
I NL KJ

v rμ μ
===

⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑

μ

.     (7.12)  

Solving hierarchical system of fuzzy relational equations (7.9) is accomplished 
by way of consequent solving system (7.7) with max-min law of composition and 
system (7.8) with min-max law of composition. 

The problem of solving fuzzy logic equations (7.7) is formulated as follows. 
Fuzzy causes combinations vector Aμ =( 1 2, ,..., KA A Aμ μ μ ) should be found which 

satisfies the constraints [0,1]LAμ ∈ ,  1,L K= , and also provides the least 

distance between observed and model fuzzy effects vectors: 
 

F1 =
2

1,1

max(min( , )) minJ L

A

M
E A

LJ
L KJ

rμ μ
==

⎡ ⎤− =⎢ ⎥⎣ ⎦∑
μ

                   (7.13)  

 

The problem of solving fuzzy logic equations (7.8) is formulated as follows. 

Fuzzy causes vector Cμ =( 1 2, ,..., NCC Cμ μ μ ), should be found which satisfies the 

constraints [0, 1]ICμ ∈ ,   1,I N= , and also provides the least distance between 

observed and model fuzzy causes combinations vectors: 
 

F2 =
2

1,1

min(max( , )) minL I

C

K
A C

IL
I N

L

vμ μ
==

⎡ ⎤− =⎢ ⎥⎣ ⎦∑
μ

                   (7.14)  

Following [8], in the general case, system (7.7) has a solution set ( , )ES R μ , 

which is completely characterized by the unique greatest solution 
A

μ  and the set 

of lower solutions * ( , )ES R μ ={ , 1, }A

k
k T=μ : 

    ( , )ES R μ  =
*

,
A
k

AA

k
S∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                             (7.15) 

Here 
A

μ =( 1 2, ,..., KA A Aμ μ μ ) and A

k
μ =( 1 2, ,..., KA A A

k k k
μ μ μ )  are the vectors of the 

upper and lower bounds of causes combinations LA  significance measures, where 

the union is taken over all * ( , )A E

k
S∈μ R μ . 
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For the greatest solution 
A

μ ,  system (7.8) has a solution set ( )
A

D μ , which is 

completely characterized by the unique least solution Cμ  and the set of upper 

solutions 
*
( )

A
D μ ={ , 1, }

C

l l H=μ : 

   ( )A
D μ  =

*

,
C
l

CC
l

D∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                           (7.16) 

Here Cμ =( 1 2, ,..., NC C Cμ μ μ ) and 
C

lμ =( 1 2, ,..., NCC C
l l lμ μ μ ) are the vectors of the 

lower and upper bounds of causes IC  significance measures, where the union is 

taken over all 
C

l ∈μ ( )* A
D μ . 

For each lower solution A

k
μ , 1,k T= , system (7.8) has a solution set ( )A

k k
D μ , 

which is completely characterized by the unique least solution C

k
μ  and the set of 

upper solutions * ( )A
k k

D μ ={ }, 1,
C

kkl l H=μ : 

   ( )A
k k

D μ  =
*

,
C

kkl

CC
klk

D∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                               (7.17) 

Here C

k
μ =( 1 2, ,..., NC C C

k k k
μ μ μ ) and 

C

klμ =( 1 2, ,..., NCC C
kl kl klμ μ μ ) are the vectors of the 

lower and upper bounds of causes IC  significance measures, where the union is 

taken over all 
C

kl ∈μ * ( )A
k k

D μ . 

Following [14 – 16], formation of diagnostic results begins with the search for 

the null solution 1 2
0 0 0 0( , ,..., )NCC CC μ μ μ=μ  of optimization problem (7.12). 

Formation of intervals (7.15) begins with the search for the null vector of the 
causes combinations significances measures 1 2

0 0 0 0 0( ) ( , ,..., )KA A AA C μ μ μ=μ μ , which 

corresponds to the obtained null solution 0
Cμ . The upper bound (

LA
μ ) is found in 

the range 0[ ,1]LAμ . The lower bound ( LA

k
μ ) for 1k =  is found in the range 

0[0, ]LAμ , and for  1k >  – in the range [0, ]
LA

μ , where the minimal solutions A

p
μ , 

p k< , are excluded from the search space.  

Let 1 2( ) ( ( ), ( ),..., ( ))KA A AA t t t tμ μ μ=μ  be some t-th solution of optimization 

problem (7.13). While searching for upper bounds (
LA

μ ) it is suggested that  
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( ) ( 1)L LA At tμ μ≥ − , аnd while searching for lower bounds ( LA

k
μ ) it is suggested 

that ( ) ( 1)L LA At tμ μ≤ −  (Fig. 7.2a). The definition of the upper (lower) bounds 

follows the rule: if ( ) ( 1)A At t≠ −μ μ , then 
LA

μ ( LA

k
μ )= ( )LA tμ ,  1,L K= . If 

( ) ( 1)A At t= −μ μ , then the search for the interval solution [ , ]
AA

k
μ μ  is stopped. 

Formation of intervals (7.15) will go on until the condition A A

k p
≠μ μ , p k< , has 

been satisfied. 
Formation of intervals (7.16) begins with the search for the null solution  

1 2

0 0 00 ( , ,..., )
NC C C C

μ μ μ=μ  for the greatest solution 
A

μ . The lower bound ( ICμ ) of 

solution set (7.16) is found in the range 0[0, ]
IC

μ . The upper bound (
IC

lμ ) for 

 1l =  is found in the range 0[ , 1]
IC

μ , and for 1l >  – in the range [ , 1]ICμ , where 

the maximal solutions 
IC

pμ , p l< , are excluded from the search space.  

Formation of intervals (7.17) begins with the search for the null solutions 
1 2

0 0 00
( , ,..., )NC C C C

k k kk
μ μ μ=μ  for each of the lower solutions A

k
μ , 1,k T= . The lower 

bound ( IC

k
μ ) of solution set (7.17) is found in the range 

0
[0, ]IC

k
μ . The upper bound 

(
IC

klμ ) for 1l =  is found in the range 
0

[ , 1]IC

k
μ , and for 1l >  – in the range 

[ , 1]IC

k
μ , where the maximal solutions 

IC

kpμ , p l< , are excluded from the search 

space.  

Let 1 2( ) ( ( ), ( ),..., ( ))NCC CC t t t tμ μ μ=μ  be some t-th solution of optimization 

problem (7.14). While searching for upper bounds (
IC

lμ  or 
IC

klμ ) it is suggested 

that ( ) ( 1)I IC Ct tμ μ≥ − , аnd while searching for lower bounds ( ICμ  or IC

k
μ ) it is 

suggested that ( ) ( 1)I IC Ct tμ μ≤ −  (Fig. 7.2b,c). The definition of the upper 

(lower) bounds follows the rule: if ( ) ( 1)C Ct t≠ −μ μ , then 
IC

lμ ( ICμ )= ( )IC tμ  or 

IC

klμ ( IC

k
μ )= ( )IC tμ ,   1,I N= . If ( ) ( 1)C Ct t= −μ μ , then the search for the 

interval solution [ , ]
CC

l
μ μ  or [ , ]

CC
kkl

μ μ  is stopped. Formation of intervals (7.16) 

and (7.17) will go on until the conditions 
C C

l p≠μ μ  and 
C C

kl kp≠μ μ , p l< , have 

been satisfied. 
The hybrid genetic and neuro approach is proposed for solving optimization 

problems (7.12) – (7.14).  
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Fig. 7.2. Search for the solution sets (7.15) (а), (7.16) (b), (7.17) (c) 
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7.4   Genetic Algorithm for Fuzzy Rules Based Inverse Inference 

The chromosome needed in the genetic algorithm [14 – 16] for solving 
optimization problems (7.12) – (7.14) includes the binary codes of parameters 

ICμ ,   1,I N= , and LAμ ,   1,L K=  (Fig. 7.3).  

 

1CC  2CC  … NCC  1AA  2AA  … KAA  
 

Fig. 7.3. Structure of the chromosome  

The crossover operation is defined in Fig. 7.4, and is carried out by way of 
exchanging genes inside each of the solutions ICμ  and LAμ . The points of cross-

over shown in dotted lines are selected randomly. Upper symbols (1 and 2) in the 
vectors of parameters correspond to the first and second chromosomes-parents.  
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Fig. 7.4. Structure of the crossover operation 

A mutation operation implies random change (with some probability) of 
chromosome elements 

 

( )( ) ,
III

CCCMu RANDOMμ μ μ⎡ ⎤= ⎢ ⎥⎣ ⎦
; 

( )( ) ,
LLL

AAAMu RANDOMμ μ μ⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

Fitness function is built on the basis of criteria (7.12) – (7.14).  
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7.5   Neuro-fuzzy Network for Fuzzy Rules Based Inverse 
Inference 

The neuro-fuzzy networks isomorphic to the systems of fuzzy logical equations 
(7.7) – (7.9), are presented in Fig. 7.5, а-c, respectively, and the elements of the 
neuro-fuzzy networks are shown in Table 3.1 [16]. 

The network in Fig. 7.5,а is designed so that the adjusted weights of arcs are 

the unknown significance measures of causes combinations LAμ ,  1,L K= . The 

network in Fig. 7.5b is designed so that the adjusted weights of arcs are the 

unknown significance measures of causes ICμ ,  1,I N= .   

Network inputs in Fig. 7.5а are elements of the matrix of rules weights. As 
follows from the system of fuzzy relational equations (7.7), the rule weight LJr  is 

the significance measure of the effect JEμ  provided that the significance measure 

of the causes combination LAμ  is equal to unity, and the significance measures of 

other combinations are equal to zero, i. е., LJr = JEμ ( LAμ =1, PAμ =0),   1,P K= , 

P L≠ . At the network outputs, actual significance measures of the effects 

1,
max[min( , )]LA

LJ
L K

rμ
=

obtained for the actual weights of arcs LAμ  are united. 

Network inputs in Fig. 7.5,b are elements of the matrix of terms weights. As 
follows from the system of fuzzy relational equations (7.8), the term weight ILv  is 

the maximal possible significance measure of the cause ICμ  in the combination 
LAμ . At the network outputs, actual significance measures of the causes 

min( , )IC
ILvμ  obtained for the actual weights of arcs ICμ  are united.  

The neuro-fuzzy model in Fig. 7.5c is obtained by embedding the matrix of 
fuzzy relations into the neural network so that the adjusted weights of arcs are the 

unknown significance measures of the causes ICμ ,  1,I N= . Network inputs in 

Fig. 7.5,c are elements of the matrix of terms weights. At the network outputs, 

actual significance measures of the effects ( )1,1,
max min min( , ),IC

IL LJ
I NL K

v rμ
==

⎛ ⎞⎜ ⎟
⎝ ⎠

obtained 

for the actual weights of arcs ICμ  and LJr  are united. 

Thus, the problem of solving the system of fuzzy logic equations (7.9) is 
reduced to the problem of training of a neuro fuzzy network (see Fig. 7.5c) with 
the use of points  

1 2( , ,..., , )JE
L L NLv v v μ , 1,L K= , 1,J M= . 

The problem of solving the system of fuzzy logic equations (7.7) is reduced to 
the problem of training of a neuro fuzzy network (see Fig. 7.5a) with the use of 
points  

1 2( , ,..., , )JE
J J KJr r r μ , 1,J M= . 
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Fig. 7.5. Neuro-fuzzy models of diagnostic equations 
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The problem of solving the system of fuzzy logic equations (7.8) is reduced to 
the problem of training of a neuro fuzzy network (see Fig. 7.5b) with the use of 
points  

( 1 2, ,..., , LA
L L NLv v v μ ), 1,L K= . 

The adjustment of parameters of the neuro-fuzzy networks employs the 
recurrent relations 

( 1) ( )
( )

I I

I

E
C C t

C
t t

t

εμ μ η
μ
∂

+ = −
∂

 , 

( 1) ( )
( )

L L

L

E
A A t

A
t t

t

εμ μ η
μ
∂

+ = −
∂

 ,                    (7.18) 

( 1) ( )
( )

I I

I

A
C C t

C
t t

t

εμ μ η
μ
∂

+ = −
∂

 , 

that minimize the criteria 

21
ˆ( ( ) ( ))

2
E E E
t t tε = −μ μ ,                                 (7.19) 

21
ˆ( ( ) ( ))

2
A A A
t t tε = −μ μ ,                               (7.20) 

where ˆ ( )E tμ
 
and ( )E tμ

 
are the experimental and the model fuzzy effects vectors 

at the t-th step of training; 
ˆ ( )A tμ

 
and ( )A tμ are the experimental and the model fuzzy causes combinations 

vectors at the t-th step of training; 
( )IC tμ  and

 
( )LA tμ  are the significance measures of causes IC  and causes 

combinations LA  at the t-th step of training; 

η  is a parameter of training, which can be selected according to the results 
from [22]. 

The partial derivatives appearing in recurrent relations (7.18) characterize the 
sensitivity of the error ( E

tε  or A
tε )  to variations in parameters of the neuro-fuzzy 

network and can be calculated as follows: 
 

I

E
t
C

ε
μ

∂
=

∂ 1 1

;
J L

J L I

E E AM K
t
E A C

J L

ε μ μ
μ μμ= =

⎡ ⎤⎡ ⎤∂ ∂ ∂⋅ ⋅⎢ ⎥⎢ ⎥∂ ∂∂⎢ ⎥⎦⎣⎣ ⎦
∑ ∑  

L

E
t
A

ε
μ

∂
=

∂ 1
J

EM
t
E

J

ε
μ=

⎡ ∂
⋅⎢∂⎣

∑  ;
J

L

E

A

μ
μ

⎤∂
⎥∂ ⎦

 
I

A
t
C

ε
μ

∂
=

∂ 1
L

AK
t
A

L

ε
μ=

⎡ ∂
⋅⎢∂⎣

∑  .
L

I

A

C

μ
μ

⎤∂
⎥∂ ⎦

 

Since determining the element “fuzzy output” from Table 3.1 involves the min and 
max fuzzy-logic operations, the relations for training are obtained using finite 
differences. 
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7.6   Problem of Fuzzy Rules Tuning 

It is assumed that the training data which is given in the form of L pairs of 

experimental data is known: ˆ ˆ,p pX Y , 1,p L= , where 1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p nx x x=X  and 

1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p my y y=Y  are the vectors of the values of the input and output variables 

in the experiment number  p.  
The essence of tuning of the fuzzy model (7.11) consists of finding such null 

solutions 0 1 2ˆ ˆ ˆ( , ,..., )C p p p
nx x xμ  of the inverse problem, which minimize criterion 

(7.12) for all the points of the training data:  

C 2
0 1 2

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ( )) ( , ,..., )] .min
L

p p p E p p p
Y 1 2 n m

p

F x ,x ,...,x y y y
=

− =∑ μ μ  

 

In other words, the essence of tuning of the fuzzy model (7.11) consists of 
finding such a vector of rules weights R  and such vectors of membership 
functions parameters CΒ , CΩ , EΒ , EΩ , which provide the least distance 

between model and experimental fuzzy effects vectors:   

 
C C E E

2
C C E E

, , , ,1

ˆ ˆˆ[ ( , , ) ( , , )] min
L

E
Y p p

p

F , 
=

− =∑
R Β Ω Β Ω

X R Β Ω μ Y Β Ω .        (7.21) 

7.7   Genetic Algorithm for Fuzzy Rules Tuning 

The chromosome needed in the genetic algorithm [23, 24] for solving the 
optimization problem (7.21) is defined as the vector-line of binary codes of 
parameters R , CΒ , CΩ , EΒ , EΩ  (Fig. 7.6). 

 

R  CΒ  CΩ  EΒ  EΩ  
 

Fig. 7.6. Structure of the chromosome  

The crossover operation is defined in Fig. 7.7, and is carried out by way of 
exchanging genes inside the vector of rules weights ( R ) and each of the vectors 
of membership functions parameters CΒ , CΩ , EΒ , EΩ . The points of cross-over 

shown in dotted lines are selected randomly. Upper symbols (1 and 2) in the 
vectors of parameters correspond to the first and second chromosomes-parents.  
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Fig. 7.7. Structure of the crossover operation 

A mutation operation implies random change (with some probability) of 
chromosome elements: 

 

( )( ) ,
III

CCCMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( )( ) ,

III
CCCMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( )( ) ,
JjJ

EEEMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( )( ) ,

JJJ
EEEMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( ) ([ , ])LJLJLJMu r RANDOM r r= , 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

The fitness function is built on the basis of criterion (7.21).  

7.8   Adaptive Tuning of Fuzzy Rules 

The neuro-fuzzy model of the object of diagnostics is shown in Fig. 7.8, and the 
nodes are represented in Table 3.1. The neuro-fuzzy model in Fig. 7.8 is obtained 
by embedding the matrices of fuzzy relations into the neural network so that the 
weights of arcs subject to tuning are rules weights (fuzzy relations) and the 
membership functions for causes and effects fuzzy terms [16, 25].  
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Fig. 7.8. Neuro-fuzzy model of the object of diagnostics 

To train the parameters of the neuro-fuzzy network, the recurrent relations: 

( 1) ( )
( )
t

LJ LJ
LJ

r t r t
r t

εη ∂
+ = −

∂
; 

( 1) ( )
( )

I I

I

C C t
C

t t
t

εβ β η
β
∂

+ = −
∂

; ( 1) ( )
( )

I I

I

C C t
C

t t
t

εσ σ η
σ
∂

+ = −
∂

; 

( 1) ( )
( )

J J

J

E E t
E

t t
t

εβ β η
β
∂

+ = −
∂

; ( 1) ( )
( )

J J

J

E E t
E

t t
t

εσ σ η
σ
∂

+ = −
∂

,      (7.22) 

minimizing criterion (7.19) are used, where 
( )LJr t   are fuzzy relations (rules weights) at the t-th step of training; 

ICβ (t), ICσ (t), JEβ (t), JEσ (t) are parameters of the membership functions for 

causes and effects fuzzy terms at the t-th step of training. 
The partial derivatives appearing in recurrent relations (7.22) characterize the 

sensitivity of the error ( tε ) to variations in parameters of the neuro-fuzzy network 

and can be calculated as follows: 

t

LJr

ε∂
=

∂ ( )J

t
E X

ε
μ

∂
∂

( )JE

LJ

X

r

μ∂⋅
∂

; 
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I
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Since determining the element “fuzzy output” (see Table 3.1) involves the min 
and max fuzzy-logic operations, the relations for training are obtained using finite 
differences.  

7.9   Computer Simulations 

The aim of the experiment consists of checking the performance of the above 
proposed models and algorithms with the help of the target “two inputs ( 1 2,x x ) – 

two outputs ( 1 2,y y )” model. Some analytical functions 1y = 1f ( 1 2,x x ) and 

2y = 2f ( 1 2,x x ) were approximated by the combined fuzzy knowledge base, and 

served simultaneously as training and testing data generator. The input values 
( 1 2,x x ) restored for each output combination ( 1 2,y y ) were compared with the 

target level lines. 
The target model is given by the formulae: 

1 1 1 2

1
( , ) (2 0.9)  (7 1)  (17 19)  (15 2)

10
y f x x z z z z= = − − − − ,      (7.23) 

2 2 1 2 1

1
( , ) 1

2
y f x x y= = − + , 

where 
2 2

1 2( 3.0) ( 2.5)

40

x x
z

− + −
= . 

The target model is represented in Fig. 7.9.  
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Fig. 7.9. “Inputs-outputs” model-generator 

The fuzzy IF-THEN rules correspond to this model:  
 

Rule 1: IF 1x =L AND 2x =L THEN 1y =hA  AND 2y =lA; 

Rule 2: IF 1x =A AND 2x =L THEN 1y =hL AND 2y =A; 

Rule 3: IF 1x =H AND 2x =L THEN 1y =hA AND 2y =lA; 

Rule 4: IF 1x =L AND 2x =Н THEN 1y =hL AND 2y =A; 

Rule 5: IF 1x =A AND 2x =H THEN 1y =H  AND 2y =L; 

Rule 6: IF 1x =H AND 2x =Н THEN 1y =hL AND 2y =A. 

where the total number of the input and output terms-assessments consists of: 

11c  Low (L), 12c  Average (A), 13c  High (H) for 1x , 21c  (Low), 22c  (High) for 2x ; 

11e  higher than Low (hL), 12e  higher than Average (hA), 13e  High (H) for 1y ; 21e  

Low (L), 22e  lower than Average (lA), 23e  Average (A) for 2y .  
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We shall define the set of causes and effects in the following way:  

{ 1C , 2C ,…, 5C }={ 11c , 12c , 13c , 21c , 22c };  

{ 1E , 2E ,…, 6E }={ 11e , 12e , 13e , 21e , 22e , 23e }. 

This fuzzy rule base is modelled by the fuzzy relational matrix presented in 
Table 7.3.  

Table 7.3. Fuzzy knowledge matrix 

IF inputs THEN outputs  

 x1 x2 
y1 y2 

hL hA H L lA A 

A1 L L 0 1 0 0 1 0 

A2 A L 1 0 0 0 0 1 

A3 H L 0 1 0 0 1 0 

A4 L H 1 0 0 0 0 1 

A5 A H 0 0 1 1 0 0 

A6 H H 1 0 0 0 0 1 

 
The results of the fuzzy model tuning are given in Tables 7.4, 7.5.  

Table 7.4. Parameters of the membership functions for the causes fuzzy terms before (after) 
tuning 

Parameter 
Fuzzy terms 

1C  2C  3C  4C  5C  

β - 0 (0.03) 3.0 (3.03) 6.0 (5.98) 0 (0.02) 3.0 (3.05) 

σ - 1.0 (0.71) 2.0 (0.62) 1.0 (0.69) 1.0 (0.73) 2.0 (0.60)  
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Table 7.5. Parameters of the membership functions for the effects fuzzy terms before 
(after) tuning 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 0 (0.02) 1.0 (1.10) 3.5 (3.36) -0.7 (-0.67) 0.5 (0.44) 0.8 (0.89) 

σ - 0.5 (0.27) 0.5 (0.29) 2.0 (1.91) 2.0 (1.70) 0.5 (0.31) 0.5 (0.25) 

 
 
 
Fuzzy logic equations after tuning take the form: 

61 2 4( 0.75) ( 0.78) ( 0.86)AE A Aμ μ μ μ= ∧ ∨ ∧ ∨ ∧  

32 1( 0.80) ( 0.92)AE Aμ μ μ= ∧ ∨ ∧  

3 5( 0.97)E Aμ μ= ∧  

3 54 1( 0.50) ( 0.48) ( 0.77)A AE Aμ μ μ μ= ∧ ∨ ∧ ∨ ∧   

5 31( 0.76) ( 0.72)E AAμ μ μ= ∧ ∨ ∧  

6 62 4( 0.96) ( 0.82) ( 0.87)E AA Aμ μ μ μ= ∧ ∨ ∧ ∨ ∧  ,                 (7.24) 

where  
1Aμ = 1Cμ ∧ 4Cμ  
2Aμ = 2Cμ ∧ 4Cμ  
3Aμ = 3Cμ ∧ 4Cμ  
4Aμ = 1Cμ ∧ 5Cμ  
5Aμ = 2Cμ ∧ 5Cμ  

6Aμ = 3Cμ ∧ 5Cμ .                               (7.25)  
 

The results of solving the problem of inverse inference before and after tuning 
are shown in Fig. 7.10, 7.11. The same figure depicts the membership functions of 
the fuzzy terms for the causes and effects before and after tuning.  
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Fig. 7.10. Solution to the problem of inverse fuzzy inference before tuning 

Let the specific values of the output variables consist of *
1y =0.20 and *

2y =0.80. 

The fuzzy effects vector for these values can be defined with the help of the 
membership functions in Fig. 7.11: 

Eμ =( 1 *
1( )E yμ =0.69; 2 *

1( )E yμ =0.09; 3 *
1( )E yμ =0.27;  

4 *
2( )E yμ =0.57; 5 *

2( )E yμ =0.43; 6 *
2( )E yμ =0.89). 

 

The genetic algorithm yields a null solution of the optimization problem (7.12) 

3 51 2 4
0 0 0 0 0 0( 0.26, 0.93, 0.20, 0.89, 0.42)C CC C CC μ μ μ μ μ= = = = = =μ ,       (7.26) 

for which the value of the optimization criterion (7.12) is F=0.1064.   
The null vector of the causes combinations significances measures  

3 5 61 2 4
0 0 0 0 0 0 0( 0.26, 0.89, 0.20, 0.26, 0.42, 0.20)A A AA A AA μ μ μ μ μ μ= = = = = = =μ     

corresponds to the obtained null solution. 
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 

Aμ =(  
1A

μ =0.26, 
2A

μ =0.89, 
3A

μ =0.26, 
4A

μ =0.75, 
5A

μ =0.42,  
6A

μ =0.75) 
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and the two lower solutions *

1 2
{ , }A AS = μ μ   

1

Aμ =( 1

1

Aμ =0.26, 2

1

Aμ =0.89, 3

1

Aμ =0, 4

1

Aμ =0, 5

1

Aμ =0.42, 6

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0, 2

2

Aμ =0.89, 3

2

Aμ =0.26, 4

2

Aμ =0, 5

2

Aμ =0.42, 6

2

Aμ =0). 

 

Thus, the solution of fuzzy relational equations (7.24) can be represented in the 
form of intervals: 

( , )ES R μ ={ 1Aμ =0.26, 2Aμ =0.89, 3Aμ ∈ [0, 0.26], 4Aμ ∈ [0, 0.75], 5Aμ =0.42, 6Aμ ∈ [0, 0.75]}  

∪ { 1Aμ ∈ [0, 0.26], 2Aμ =0.89, 3Aμ =0.26, 4Aμ ∈ [0, 0.75], 5Aμ =0.42, 6Aμ ∈ [0, 0.75]}.  
(7.27) 

We next apply the genetic algorithm for solving the optimization problem 

(7.14) for the greatest solution Aμ  and the two lower solutions 
1

Aμ  and 
2

Aμ .  

For the greatest solution Aμ , the genetic algorithm yields a null solution of the 

optimization problem (7.14) 

1 2 3 4 5

0 0 0 0 00 ( 0.49, 0.96, 0.49, 0.90, 0.49)
C C C C C C

μ μ μ μ μ= = = = = =μ ,       (7.28) 

for which the value of the optimization criterion (7.14) is F=0.2459.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set D ( Aμ ), which is completely determined by the least solution 

Cμ =(  1Cμ =0.49, 2Cμ =0.89, 3Cμ =0.49, 4Cμ =0.89, 5Cμ =0.49) 

and the two upper solutions 
*

1 2{ , }
C C

D = μ μ   

1

C
μ =(

1

1

C
μ =0.49, 

2

1

C
μ =0.89, 

3

1

C
μ =0.49, 

4

1

C
μ =1.0, 

5

1

C
μ =0.49); 

2

C
μ =(

1

2

C
μ =0.49, 

2

2

C
μ =1.0, 

3

2

C
μ =0.49, 

4

2

C
μ =0.89, 

5

2

C
μ =0.49). 

Thus, the solution of fuzzy relational equations (7.25) for the greatest solution Aμ  

can be represented in the form of intervals: 

D ( Aμ )={ 1Cμ =0.49, 2Cμ =0.89, 3Cμ =0.49, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.49} 

∪ { 1Cμ =0.49, 2Cμ ∈ [0.89, 1.0], 3Cμ =0.49, 4Cμ =0.89, 5Cμ =0.49}.      (7.29) 

For the first lower solution 
1

Aμ , the genetic algorithm yields a null solution of 

the optimization problem  (7.14) 

1 2 3 4 5

01 01 01 01 0101
( 0.13, 0.89, 0, 0.94, 0.42)C C C C C Cμ μ μ μ μ= = = = = =μ ,       (7.30) 

for which the value of the optimization criterion (7.14) is F=0.0338.   
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The obtained null solution allows us to arrange for the genetic search for the 

solution set 1 1
( )AD μ , which is completely determined by the least solution 

Cμ =(  1Cμ =0.13, 2Cμ =0.89, 3Cμ =0, 4Cμ =0.89, 5Cμ =0.42) 

and the two upper solutions *
1 1 2{ , }

C C
D = μ μ   

1

C
μ =(

1

1

C
μ =0.13, 

2

1

C
μ =0.89, 

3

1

C
μ =0, 

4

1

C
μ =1.0, 

5

1

C
μ =0.42); 

2

C
μ =(

1

2

C
μ =0.13, 

2

2

C
μ =1.0, 

3

2

C
μ =0, 

4

2

C
μ =0.89, 

5

2

C
μ =0.42). 

 
Thus, the solution of fuzzy relational equations (7.25) for the first lower 

solution 
1

Aμ  can be represented in the form of intervals: 

 

1 1
( )AD μ ={ 1Cμ =0.13, 2Cμ =0.89, 3Cμ =0, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.42} 

  ∪ { 1Cμ =0.13, 2Cμ ∈ [0.89, 1.0], 3Cμ =0, 4Cμ =0.89, 5Cμ =0.42}.      (7.31) 
 

For the second lower solution  
2

Aμ , the genetic algorithm yields a null solution 

of the optimization problem (7.14) 

1 2 3 4 5

02 02 02 02 0202
( 0, 0.97, 0.13, 0.89, 0.42)C C C C C Cμ μ μ μ μ= = = = = =μ ,           (7.32) 

for which the value of the optimization criterion (7.14) is F=0.0338.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set 2 2
( )AD μ , which is completely determined by the least solution 

Cμ =(  1Cμ =0, 2Cμ =0.89, 3Cμ =0.13, 4Cμ =0.89, 5Cμ =0.42) 

and the two upper solutions *
2 1 2{ , }

C C
D = μ μ   

 

1

C
μ =(

1

1

C
μ =0, 

2

1

C
μ =0.89, 

3

1

C
μ =0.13, 

4

1

C
μ =1.0, 

5

1

C
μ =0.42); 

2

C
μ =(

1

2

C
μ =0, 

2

2

C
μ =1.0, 

3

2

C
μ =0.13, 

4

2

C
μ =0.89, 

5

2

C
μ =0.42). 

Thus, the solution of fuzzy relational equations (7.25) for the second lower 

solution 
2

Aμ  can be represented in the form of intervals: 
 

2 2
( )AD μ ={ 1Cμ =0, 2Cμ =0.89, 3Cμ =0.13, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.42} 

   ∪ { 1Cμ =0, 2Cμ ∈ [0.89, 1.0], 3Cμ =0.13, 4Cμ =0.89, 5Cμ =0.42}.          (7.33) 



7.9   Computer Simulations 217 

The intervals of the values of the input variable for each interval in solutions 
(7.29), (7.31), (7.33) can be defined with the help of the membership functions in 
Fig. 7.11: 

-  *
1x =0.75 or *

1x =1.85 or *
1x =6.00 for 1C ;  

-  *
1x ∈ [2.81, 3.25] for 2C ; 

-  *
1x =5.27 or *

1x =4.20 or  *
1x =0  for 3C ;  

-  *
2x ∈ [0, 0.27] for 4C ;  

-  *
2x =2.44 and *

2x =3.66 or *
2x =2.35 and *

2x =3.75  for 5C . 

The restoration of the input set for *
1y =0.20 and *

2y =0.80 is shown in Fig. 7.11, 

in which the values of the causes 1 5C C÷  and effects 1 6E E÷  significances 

measures are marked. The comparison of the target and restored level lines for 
*
1y =0.20 and *

2y =0.80 is shown in Fig. 7.12.  

 

 
Fig. 7.11. Solution to the problem of inverse fuzzy inference for *

1y =0.20 and *
2y =0.80  
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Fig. 7.12. Comparison of the target (a) and restored (b) level linesfor *
1y =0.20 and 

*
2y =0.80  

Let the values of the output variables have changed with *
1y =0.20 and *

2y =0.80 

to *
1y =1.00 and *

2y =0.60 (Fig. 7.13). For the new values, the fuzzy effects vector is  

Eμ =( 1 *
1( )E yμ =0.07; 2 *

1( )E yμ =0.89; 3 *
1( )E yμ =0.40;  

        4 *
2( )E yμ =0.64; 5 *

2( )E yμ =0.79; 6 *
2( )E yμ =0.43). 

 

A neural adjustment of the null solution (7.26) of the optimization problem 
(7.12) has yielded a fuzzy causes vector  

3 51 2 4
0 0 0 0 0 0( 0.84, 0.32, 0.89, 0.95, 0.32)C CC C CC μ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.12) has constituted F=0.1015.   
The null vector of the causes combinations significances measures  

3 5 61 2 4
0 0 0 0 0 0 0( 0.84, 0.32, 0.89, 0.32, 0.32, 0.32)A A AA A AA μ μ μ μ μ μ= = = = = = =μ , 

corresponds to the obtained null solution. 
The resultant null solution has allowed adjusting the bounds in the solution 

(7.27) and generating the set of solutions ( , )ES R μ  determined by the greatest 

solution 
Aμ =(  

1A
μ =1.0, 

2A
μ =0.32, 

3A
μ =0.89, 

4A
μ =0.32, 

5A
μ =0.32,  

6A
μ =0.32) 

and the three lower solutions *

1 2 3
{ , , }A A AS = μ μ μ   

1

Aμ =( 1

1

Aμ =0.76, 2

1

Aμ =0.32, 3

1

Aμ =0.89, 4

1

Aμ =0, 5

1

Aμ =0.32, 6

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0.76, 2

2

Aμ =0, 3

2

Aμ =0.89, 4

2

Aμ =0.32, 5

2

Aμ =0.32, 6

2

Aμ =0); 

3

Aμ =( 1

3

Aμ =0.76, 2

3

Aμ =0, 3

3

Aμ =0.89, 4

3

Aμ =0, 5

3

Aμ =0.32, 6

3

Aμ =0.32). 
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Thus, the solution of fuzzy relational equations (7.24) for the new values can be 
represented in the form of intervals: 
 

( , )ES R μ ={ 1Aμ ∈ [0.76, 1.0], 2Aμ =0.32, 3Aμ =0.89, 4Aμ ∈ [0, 0.32], 5Aμ =0.32, 6Aμ ∈ [0, 0.32]} 

∪ { 1Aμ ∈ [0.76, 1.0], 2Aμ ∈ [0, 0.32], 3Aμ =0.89, 4Aμ =0.32, 5Aμ =0.32, 6Aμ ∈ [0, 0.32]} 

∪ { 1Aμ ∈ [0.76, 1.0], 2Aμ ∈ [0, 0.32], 3Aμ =0.89, 4Aμ ∈ [0, 0.32], 5Aμ =0.32, 6Aμ =0.32]}. 

For the greatest solution Aμ , a neural adjustment of the null solution (7.28) has 

yielded a fuzzy causes vector  

1 2 3 4 5

0 0 0 0 00 ( 1.0, 0.32, 0.89, 1.0, 0.32)
C C C C C C

μ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.0.   
The resultant null solution has allowed adjusting the bounds in the solution 

(7.29) and generating the set of solutions D ( Aμ ) determined by the unique (null) 

solution 

D ( Aμ )={ 1Cμ =1.0, 2Cμ =0.32, 3Cμ =0.89, 4Cμ =1.0, 5Cμ =0.32}.    (7.34) 

For the first lower solution 
1

Aμ , a neural adjustment of the null solution (7.30) 

has yielded a fuzzy causes vector  

1 2 3 4 5

01 01 01 01 0101
( 0.76, 0.32, 0.89, 0.92, 0.11)C C C C C Cμ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.0683.   
The resulting null solution has allowed adjusting the bounds in the solution 

(7.31) and generating the set of solutions 1 1
( )AD μ , which is completely 

determined by the least solution 

Cμ =(  1Cμ =0.76, 2Cμ =0.32, 3Cμ =0.89, 4Cμ =0.89, 5Cμ =0.11) 

and the two upper solutions  *
1 1 2{ , }

C C
D = μ μ   

 

1

C
μ =(

1

1

C
μ =0.76, 

2

1

C
μ =0.32, 

3

1

C
μ =0.89, 

4

1

C
μ =1.0, 

5

1

C
μ =0.11); 

2

C
μ =(

1

2

C
μ =0.76, 

2

2

C
μ =0.32, 

3

2

C
μ =1.0, 

4

2

C
μ =0.89, 

5

2

C
μ =0.11). 

 

Thus, the solution of fuzzy relational equations (7.24) for the first lower 

solution 
1

Aμ  can be represented in the form of intervals: 
 

1 1
( )AD μ ={ 1Cμ =0.76, 2Cμ =0.32, 3Cμ =0.89, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.11} 

       ∪ { 1Cμ =0.76, 2Cμ =0.32, 3Cμ ∈ [0.89, 1.0], 4Cμ =0.89, 5Cμ =0.11}.      (7.35) 
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For the second lower solution 
2

Aμ , a neural adjustment of the null solution 

(7.32) has yielded a fuzzy causes vector 

1 2 3 4 5

02 02 02 02 0202
( 0.76, 0.16, 0.89, 1.0, 0.16)C C C C C Cμ μ μ μ μ= = = = = =μ , 

and for the third lower solution 
3

Aμ , a neural adjustment of the null solution (7.32) 

has yielded a fuzzy causes vector 

1 2 3 4 5

03 03 03 03 0303
( 0.76, 0.16, 0.96, 0.89, 0.16)C C C C C Cμ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.1024.   
The resulting null solutions have allowed adjusting the bounds in the solution 

(7.33) and generating the sets of solutions 2 2
( )AD μ  and 3 3

( )AD μ , which are 

completely determined by the least solution 

Cμ =(  1Cμ =0.76, 2Cμ =0.16, 3Cμ =0.89, 4Cμ =0.89, 5Cμ =0.16) 

and the two upper solutions * *
2 3 1 2{ , }

C C
D D= = μ μ   

 

1

C
μ =(

1

1

C
μ =0.76, 

2

1

C
μ =0.16, 

3

1

C
μ =0.89, 

4

1

C
μ =1.0, 

5

1

C
μ =0.16); 

2

C
μ =(

1

2

C
μ =0.76, 

2

2

C
μ =0.16, 

3

2

C
μ =1.0, 

4

2

C
μ =0.89, 

5

2

C
μ =0.16). 

 

Thus, the solution of fuzzy relational equations (7.24) for the second and third 

lower solutions 
2

Aμ  and 
3

Aμ  can be represented in the form of intervals: 
 

2 32 3
( ) ( )A AD D= =μ μ { 1Cμ =0.76, 2Cμ =0.16, 3Cμ =0.89, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.16} 

∪ { 1Cμ =0.76, 2Cμ =0.16, 3Cμ ∈ [0.89, 1.0], 4Cμ =0.89, 5Cμ =0.16}.       (7.36) 

The intervals of the values of the input variable for each interval in solutions 
(7.34), (7.35), (7.36) can be defined with the help of the membership functions in 
Fig. 7.13: 

-  *
1x =0.43 or *

1x =0  for 1C ;  

-  *
1x =2.12 and *

1x =3.93 or *
1x =1.60 and *

1x =4.45 for 2C ; 

-  *
1x ∈ [5.74, 6.0] for 3C ;  

-  *
2x ∈ [0, 0.27] for 4C ;  

-  *
2x =2.17 and *

2x =3.92  or *
2x =1.68 or *

2x =1.35 for 5C . 
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The restoration of the input set for *
1y =1.00 and *

2y =0.60 is shown in Fig. 7.13, 

in which the values of the causes 1 5C C÷  and effects 1 6E E÷  significances 

measures are marked. The comparison of the target and restored level lines for 
*
1y =1.00 and *

2y =0.60 is shown in Fig. 7.14.  
 

 
Fig. 7.13. Solution to the problem of inverse fuzzy inference for *

1y =1.00 and *
2y =0.60 
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Fig. 7.14. Comparison of the target (a) and restored (b) level lines for *

1y =1.00 ( ____ ) and 
*
2y =0.60 ( _ _ _ )  
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7.10   Example 6: Hydro Elevator Diagnosis 

Let us consider the algorithm’s performance having the recourse to the example of 
the hydraulic elevator faults causes diagnosis. Input parameters of the hydro 
elevator are (variation ranges are indicated in parentheses):  
 

1x   – engine speed (30 – 50 r.p.s);  

2x  – inlet pressure (0.02 – 0.15 kg/cm2);  

3x   –  feed change gear clearance (0.1 – 0.3 mm). 

Output parameters of the elevator are:  

1y  – productivity (13 – 24 l/min);  

2y  – consumed power (2.1 – 3.0 kw);  

3y  – suction conduit pressure (0.5 – 1 kg/cm2). 

“Causes-effects” interconnection is described with the help of the following 
system of fuzzy IF-THEN rules:  

Rule 1: IF 1x =I   AND 2x =I  AND 3x =I   THEN 1y =D AND 2y =I  AND 3y =D; 

Rule 2: IF 1x =D AND 2x =D AND 3x =D THEN 1y =D AND 2y =D AND 3y =I; 

Rule 3: IF 1x =I  AND 2x =I   AND 3x =D THEN 1y =D AND 2y =D AND 3y =D; 

Rule 4: IF 1x =I  AND 2x =D AND 3x =D THEN 1y =I  AND 2y =D  AND 3y =D; 

Rule 5: IF 1x =D AND 2x =I  AND 3x =D THEN 1y =I  AND 2y =D  AND 3y =I. 

where the total number of the causes and effects consists of: 11c  Decrease (D) and 

12c  Increase (I) for 1x ; 21c  (D) and 21c  (I) for 2x ; 31c  (D) and 32c  (I) for 3x ; 11e  

(D) and 12e  (I) for 1y ; 21e  (D) and 22e  (I) for 2y ; 31e  (D) and 32e  (I) for 3y . 

We shall define the set of causes and effects in the following way:  
 

{ 1C , 2C ,…, 6C }={ 11c , 12c , 21c , 22c , 31c , 32c };  

{ 1E , 2E ,…, 6E }={ 11e , 12e , 21e , 22e , 31e , 32e }.  

 

This fuzzy rule base is modelled by the fuzzy relational matrix presented in 
Table 7.6.  
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Table 7.6. Fuzzy knowledge matrix 

IF inputs THEN outputs 

 1x  2x  3x  1y  2y  3y  

D I D I D I 

1A  I I I 1 0 0 1 1 0 

2A  D D D 1 0 1 0 0 1 

3A  I I D 1 0 1 0 1 0 

4A  I D D 0 1 1 0 1 0 

5A  D I D 0 1 1 0 0 1 

 
For the fuzzy model tuning we used the results of diagnosis for 200 hydraulic 

elevators. The results of the fuzzy model tuning are given in Tables 7.7, 7.8 and in 
Fig. 7.15.  

Table 7.7. Parameters of the membership functions for the causes fuzzy terms after tuning 

Parameter  
Fuzzy terms 

1C  2C  3C  4C  5C  6C  

β - 32.15 48.65 0.021 0.144 0.11 0.27 

σ - 7.75 6.27 0.054 0.048 0.06 0.08 

Table 7.8. Parameters of the membership functions for the effects fuzzy terms after tuning 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 13.58 21.43 2.24 2.85 0.53 0.98 

σ - 4.76 4.58 0.35 0.17 0.31 0.22 
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Fig. 7.15. Membership functions of the causes (a) and effects (b) fuzzy terms after tuning 

Diagnostic equations after tuning take the form:  

 
1Eμ = 1 2( 0.97) ( 0.65)A Aμ μ∧ ∨ ∧ ∨ 3( 0.77)Aμ ∧  

2Eμ = 54( 1.00) ( 0.46)AAμ μ∧ ∨ ∧  
3Eμ = 2( 0.99)Aμ ∧ ∨ 3 54( 0.80) ( 0.69) ( 0.93)A AAμ μ μ∧ ∨ ∧ ∨ ∧  

4Eμ = 1( 0.96)Aμ ∧  
5Eμ = 1( 0.72)Aμ ∧ ∨ 3 4( 0.47) ( 0.76)A Aμ μ∧ ∨ ∧    

 6Eμ = 2( 0.92)Aμ ∧ ∨ 5( 0.87)Aμ ∧ ,                   (7.37) 
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where                       
1Aμ = 2Cμ ∧ 4Cμ ∧ 6Cμ  
2Aμ = 1Cμ ∧ 3Cμ ∧ 5Cμ  

3Aμ = 2Cμ ∧ 4Cμ ∧ 5Cμ  
4Aμ = 2Cμ ∧ 3Cμ ∧ 5Cμ  

5Aμ = 1Cμ ∧ 4Cμ ∧ 5Cμ .                                  (7.38) 

 
Let us represent the vector of the observed parameters for a specific elevator: 

*Y =( *
1y =17.10 l/min; *

2y =2.45 kw; *
3y =0.87 kg/cm2). 

The measures of the effects significances for these values can be defined with 
the help of the membership functions in Fig. 7.15,b:  

Eμ =( 1 *
1( )E yμ =0.65; 2 *

1( )E yμ =0.53; 

        3 *
2( )E yμ =0.74; 4 *

2( )E yμ =0.15; 

       5 *
3( )E yμ =0.45; 6 *

3( )E yμ =0.80). 

   The genetic algorithm yields a null solution of the optimization problem 
(7.12) 

 

3 5 61 2 4
0 0 0 0 0 0 0( 0.77, 0.49, 0.77, 0.62, 0.77, 0.15)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,(7.39) 

for which the value of the optimization criterion (7.12) takes the value of 
F=0.0050.   

The null vector of the causes combinations significances measures  

3 51 2 4
0 0 0 0 0 0( 0.15, 0.77, 0.49, 0.49, 0.62)A AA A AA μ μ μ μ μ= = = = = =μ     

corresponds to the obtained null solution. 
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 
 

Aμ =(  
1A

μ =0.15, 
2A

μ =0.77, 
3A

μ =0.65, 
4A

μ =0.49, 
5A

μ =0.77) 
 

and the two lower solutions *

1 2
{ , }A AS = μ μ   

 

1

Aμ =( 1

1

Aμ =0.15, 2

1

Aμ =0.77, 3

1

Aμ =0, 4

1

Aμ =0.49, 5

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0.15, 2

2

Aμ =0, 3

2

Aμ =0.65, 4

2

Aμ =0.49, 5

2

Aμ =0.77). 
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Thus, the solution of fuzzy relational equations (7.37) can be represented in the 
form of intervals: 
 

( , )ES R μ ={ 1Aμ =0.15, 2Aμ =0.77, 3Aμ ∈ [0, 0.65], 4Aμ =0.49, 5Aμ ∈ [0, 0.77]} 

∪ { 1Aμ =0.15, 2Aμ ∈ [0, 0.77], 3Aμ =0.65, 4Aμ =0.49, 5Aμ =0.77}.       (7.40) 

We next apply the genetic algorithm for solving optimization problem (7.14) 

for the greatest solution Aμ  and the two lower solutions 
1

Aμ  and 
2

Aμ .  

For the greatest solution Aμ , the genetic algorithm yields a null solution of the 

optimization problem (7.14) 
 

1 2 3 4 5 6

0 0 0 0 0 00 ( 0.77, 0.57, 0.94, 0.80, 0.79, 0.15)
C C C C C C C

μ μ μ μ μ μ= = = = = = =μ ,(7.41) 
 

for which the value of the optimization criterion (7.14) is F=0.0128.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set D ( Aμ ), which is completely determined by the least solution 
Cμ =( 1Cμ =0.77, 2Cμ =0.57, 3Cμ =0.77, 4Cμ =0.77, 5Cμ =0.77, 6Cμ =0.15) 

 

and the four upper solutions 
*

1 2 3 4{ , , , }
C C C C

D = μ μ μ μ   
 

1

C
μ =(

1

1

C
μ =0.77, 

2

1

C
μ =0.57, 

3

1

C
μ =1.0, 

4

1

C
μ =1.0, 

5

1

C
μ =1.0, 

6

1

C
μ =0.15); 

2

C
μ =(

1

2

C
μ =1.0, 

2

2

C
μ =0.57, 

3

2

C
μ =0.77, 

4

2

C
μ =1.0, 

5

2

C
μ =1.0, 

6

2

C
μ =0.15); 

3

C
μ =(

1

3

C
μ =1.0, 

2

3

C
μ =0.57, 

3

3

C
μ =1.0, 

4

3

C
μ =0.77, 

5

3

C
μ =1.0, 

6

3

C
μ =0.15); 

4

C
μ =(

1

4

C
μ =1.0, 

2

4

C
μ =0.57, 

3

4

C
μ =1.0, 

4

4

C
μ =1.0, 

5

4

C
μ =0.77, 

6

4

C
μ =0.15). 

 

Thus, the solution of fuzzy relational equations (7.38) for the greatest solution Aμ  

can be represented in the form of intervals: 
 

D ( Aμ )={ 1Cμ =0.77, 2Cμ =0.57, 3Cμ ∈ [0.77, 1.0], 4Cμ ∈ [0.77, 1.0], 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.57, 3Cμ =0.77, 4Cμ ∈ [0.77, 1.0], 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.57, 3Cμ ∈ [0.77, 1.0], 4Cμ =0.77, 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.57, 3Cμ ∈ [0.77, 1.0], 4Cμ ∈ [0.77, 1.0], 5Cμ =0.77, 6Cμ =0.15}. 

    (7.42) 

For the first lower solution 
1

Aμ , the genetic algorithm yields a null solution of 

the optimization problem (7.14) 

1 2 3 4 5 6

01 01 01 01 01 0101
( 0.77, 0.49, 0.84, 0, 0.92, 0)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ ,    (7.43) 
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for which the value of the optimization criterion (7.14) is F=0.0225.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set 1 1
( )AD μ , which is completely determined by the least solution 

Cμ =(  1Cμ =0.77, 2Cμ =0.49, 3Cμ =0.77, 4Cμ =0, 5Cμ =0.77, 6Cμ =0) 
 

and the three upper solutions *
1 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.77, 

2

1

C
μ =0.49, 

3

1

C
μ =1.0, 

4

1

C
μ =0, 

5

1

C
μ =1.0, 

6

1

C
μ =0); 

2

C
μ =(

1

2

C
μ =1.0, 

2

2

C
μ =0.49, 

3

2

C
μ =0.77, 

4

2

C
μ =0, 

5

2

C
μ =1.0, 

6

2

C
μ =0); 

3

C
μ =(

1

3

C
μ =1.0, 

2

3

C
μ =0.49, 

3

3

C
μ =1.0, 

4

3

C
μ =0, 

5

3

C
μ =0.77, 

6

3

C
μ =0). 

 

Thus, the solution of fuzzy relational equations (7.38) for the first lower solution 

1

Aμ  can be represented in the form of intervals: 

 

1 1
( )AD μ ={ 1Cμ =0.77, 2Cμ =0.49, 3Cμ ∈ [0.77, 1.0], 4Cμ =0, 5Cμ ∈ [0.77, 1.0], 6Cμ =0} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.49, 3Cμ =0.77, 4Cμ =0, 5Cμ ∈ [0.77, 1.0], 6Cμ =0} 

  ∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.49, 3Cμ ∈ [0.77, 1.0], 4Cμ =0, 5Cμ =0.77, 6Cμ =0}.  (7.44)  

For the second lower solution 
2

Aμ , the genetic algorithm yields a null solution 

of the optimization problem (7.14) 
 

1 2 3 4 5 6

02 02 02 02 02 0202
( 0.77, 0.65, 0.25, 0.97, 0.85, 0.15)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ , (7.45) 

 

for which the value of the optimization criterion (7.14) is F=0.1201.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set 2 2
( )AD μ , which is completely determined by the least solution 

 

Cμ =(  1Cμ =0.77, 2Cμ =0.65, 3Cμ =0.25, 4Cμ =0.77, 5Cμ =0.77, 6Cμ =0.15) 
 

and the three upper solutions *
2 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.77, 

2

1

C
μ =0.65, 

3

1

C
μ =0.25, 

4

1

C
μ =1.0, 

5

1

C
μ =1.0, 

6

1

C
μ =0.15); 

2

C
μ =(

1

2

C
μ =1.0, 

2

2

C
μ =0.65, 

3

2

C
μ =0.25, 

4

2

C
μ =0.77, 

5

2

C
μ =1.0, 

6

2

C
μ =0.15); 

3

C
μ =(

1

3

C
μ =1.0, 

2

3

C
μ =0.65, 

3

3

C
μ =0.25, 

4

3

C
μ =1.0, 

5

3

C
μ =0.77, 

6

3

C
μ =0.15). 
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Thus, the solution of fuzzy relational equations (7.38) for the second lower 

solution 
2

Aμ  can be represented in the form of intervals: 
 

2 2
( )AD μ ={ 1Cμ =0.77, 2Cμ =0.65, 3Cμ =0.25, 4Cμ ∈ [0.77, 1.0], 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.65, 3Cμ =0.25, 4Cμ =0.77, 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.65, 3Cμ =0.25, 4Cμ ∈ [0.77, 1.0], 5Cμ =0.77, 6Cμ =0.15}.     (7.46) 

Following the solutions (7.42), (7.44), (7.46), the causes 1C , 3C , 4C  and 5C  

are the causes of the observed elevator state, so that 1Cμ > 2Cμ , 3Cμ = 4Cμ , 
5Cμ > 6Cμ . The intervals of the values of the input variables for these causes can 

be defined with the help of the membership functions in Fig. 7.15,а: 

-  *
1x ∈ [30.0, 36.4] r.p.s for 1C ;  

-  *
2x ∈ [0.020, 0.050] kg/cm2  for 3C  and *

2x ∈ [0.118, 0.150] kg/cm2  for 4C ; 

-  *
3x ∈ [0.100, 0.143] mm  for  5C .  

The obtained solution allows the analyst to make the preliminary conclusions. 
The elevator failure may be because of the engine speed reduced to 30 – 36 r.p.s, 
the inlet pressure decreased to 0.020 – 0.050 kg/cm2 or increased to 0.118 – 0.150 
kg/cm2 , and the feed change gear clearance decreased to 100 – 143 mkm.   

Assume a repeated measurement has revealed an increase in the elevator 
productivity up to *

1y =18.80 l/min, an increase of the consumed power up to 
*
2y =2.51 kw, and a decrease in the suction pressure up to *

3y =0.75 kg/cm2.  

For the new values, the fuzzy effects vector is  
 

Eμ =( 1 *
1( )E yμ =0.45; 2 *

1( )E yμ =0.75; 

3 *
2( )E yμ =0.63; 4 *

2( )E yμ =0.20; 

5 *
3( )E yμ =0.67; 6 *

3( )E yμ =0.48). 
 

A neural adjustment of the null solution (7.39) of the optimization problem 
(7.12) has yielded a fuzzy causes vector  

3 5 61 2 4
0 0 0 0 0 0 0( 0.46, 0.69, 0.75, 0.25, 0.92, 0.20)C C CC C CC μ μ μ μ μ μ= = = = = = =μ , 

for which the value of the optimization criterion (7.12) has constituted F=0.0094.   
The null vector of the causes combinations significances measures  

 

3 51 2 4
0 0 0 0 0 0( 0.20, 0.46, 0.25, 0.69, 0.25)A AA A AA μ μ μ μ μ= = = = = =μ , 

 

corresponds to the obtained null solution. 
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The resulting null solution has allowed adjusting the bounds in the solution 
(7.40) and generating the set of solutions ( , )ES R μ  determined by the greatest 

solution 
Aμ =(  

1A
μ =0.20, 

2A
μ =0.46, 

3A
μ =0.46, 

4A
μ =0.69, 

5A
μ =0.46) 

 

and the two lower solutions *

1 2
{ , }A AS = μ μ   

 

1

Aμ =( 1

1

Aμ =0.20, 2

1

Aμ =0.46, 3

1

Aμ =0, 4

1

Aμ =0.69, 5

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0.20, 2

2

Aμ =0, 3

2

Aμ =0.46, 4

2

Aμ =0.69, 5

2

Aμ =0.46). 

 
Thus, the solution of fuzzy relational equations (7.37) for the new values can be 
represented in the form of intervals: 
 

( , )ES R μ ={ 1Aμ =0.20, 2Aμ =0.46, 3Aμ ∈ [0, 0.46], 4Aμ =0.69, 5Aμ ∈ [0, 0.46]} 

               ∪ { 1Aμ =0.20, 2Aμ ∈ [0, 0.46], 3Aμ =0.46, 4Aμ =0.69, 5Aμ =0.46}. 
 
For the greatest solution Aμ , a neural adjustment of the null solution (7.41) has 

yielded a fuzzy causes vector 

1 2 3 4 5 6

0 0 0 0 0 00 ( 0.46, 0.78, 0.69, 0.46, 0.91, 0.20)
C C C C C C C

μ μ μ μ μ μ= = = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.   
The resultant null solution has allowed adjusting the bounds in the solution 

(7.42) and generating the set of solutions D ( Aμ ), which is completely determined 

by the least solution 

Cμ =(  1Cμ =0.46, 2Cμ =0.69, 3Cμ =0.69, 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20) 

and the three upper solutions 
*

1 2 3{ , , }
C C C

D = μ μ μ   

1

C
μ =(

1

1

C
μ =0.46, 

2

1

C
μ =0.69, 

3

1

C
μ =1.0, 

4

1

C
μ =0.46, 

5

1

C
μ =1.0, 

6

1

C
μ =0.20); 

2

C
μ =(

1

2

C
μ =0.46, 

2

2

C
μ =1.0, 

3

2

C
μ =0.69, 

4

2

C
μ =0.46, 

5

2

C
μ =1.0, 

6

2

C
μ =0.20); 

3

C
μ =(

1

3

C
μ =0.46, 

2

3

C
μ =1.0, 

3

3

C
μ =1.0, 

4

3

C
μ =0.46, 

5

3

C
μ =0.69, 

6

3

C
μ =0.20). 

 
 

 



230 Chapter 7 Inverse Inference Based on Fuzzy Rules 

Thus, the solution of fuzzy relational equations (7.38) for the greatest solution Aμ  

can be represented in the form of intervals: 
 

D ( Aμ )={ 1Cμ =0.46, 2Cμ =0.69, 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20}            

∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ =0.69, 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20} 

           ∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20} 

    (7.47) 

For the first lower solution 
1

Aμ , a neural adjustment of the null solution (7.43) 

has yielded a fuzzy causes vector  
 

1 2 3 4 5 6

01 01 01 01 01 0101
( 0.46, 0.92, 0.86, 0.10, 0.69, 0.10)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ , 

 

for which the value of the optimization criterion (7.14) has constituted F=0.0300.   
The resulting null solution has allowed adjusting the bounds in the solution 

(7.44) and generating the set of solutions 1 1
( )AD μ , which is completely 

determined by the least solution 
 

Cμ =(  1Cμ =0.46, 2Cμ =0.69, 3Cμ =0.69, 4Cμ =0.10, 5Cμ =0.69, 6Cμ =0.10) 
 

and the three upper solutions  *
1 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.46, 

2

1

C
μ =0.69, 

3

1

C
μ =1.0, 

4

1

C
μ =0.10, 

5

1

C
μ =1.0, 

6

1

C
μ =0.10); 

2

C
μ =(

1

2

C
μ =0.46, 

2

2

C
μ =1.0, 

3

2

C
μ =0.69, 

4

2

C
μ =0.10, 

5

2

C
μ =1.0, 

6

2

C
μ =0.10); 

3

C
μ =(

1

3

C
μ =0.46, 

2

3

C
μ =1.0, 

3

3

C
μ =1.0, 

4

3

C
μ =0.10, 

5

3

C
μ =0.69, 

6

3

C
μ =0.10). 

 

Thus, the solution of fuzzy relational equations (7.38) for the first lower 

solution 
1

Aμ  can be represented in the form of intervals: 

1 1
( )AD μ ={ 1Cμ =0.46, 2Cμ =0.69, 3Cμ ∈ [0.69, 1.0], 4Cμ =0.10, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.10} 

∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ =0.69, 4Cμ =0.10, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.10} 

∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ ∈ [0.69, 1.0], 4Cμ =0.10, 5Cμ =0.69, 6Cμ =0.10}.      

(7.48) 
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For the second lower solution 
2

Aμ , a neural adjustment of the null solution 

(7.45) has yielded a fuzzy causes vector 
 

1 2 3 4 5 6

02 02 02 02 02 0202
( 0.23, 0.69, 0.83, 0.46, 0.97, 0.20)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ , 

 

for which the value of the optimization criterion (7.14) has constituted F=0.1058.   
The resulting null solution has allowed adjusting the bounds in the solution 

(7.46) and generating the sets of solutions 2 2
( )AD μ , which is completely 

determined by the least solution 
 

Cμ =(  1Cμ =0.23, 2Cμ =0.69, 3Cμ =0.69, 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20) 
 

 

and the three upper solutions *
2 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
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1

C
μ =0.23, 
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1

C
μ =0.69, 
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1
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2
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4

2
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6
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3

C
μ =(

1

3
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μ =0.23, 
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C
μ =1.0, 

3

3

C
μ =1.0, 

4

3

C
μ =0.46, 

5

3

C
μ =0.69, 

6

3

C
μ =0.20). 

 

Thus, the solution of fuzzy relational equations (7.38) for the second lower 

solution 
2

Aμ  can be represented in the form of intervals: 

 

2 2
( )AD μ ={ 1Cμ =0.23, 2Cμ =0.69, 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20} 

∪ { 1Cμ =0.23, 2Cμ ∈ [0.69, 1.0], 3Cμ =0.69, 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20} 

∪ { 1Cμ =0.23, 2Cμ ∈ [0.69, 1.0], 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20}.      

(7.49) 

Following the resultant solutions (7.47), (7.48), (7.49), the causes 2C , 3C  and 

5C  are the causes of the observed elevator state, since 2Cμ > 1Cμ , 3Cμ > 4Cμ , 
5Cμ > 6Cμ . The intervals of the values of the input variables for these causes can 

be defined with the help of the membership functions in Fig. 7.15,а: 
 
-  *

1x ∈ [44.4, 50.0]  r.p.s for  2C ;  

-  *
2x ∈ [0.020, 0.057] kg/cm2 for 3C ; 

-  *
3x ∈ [0.100, 0.150] mm  for  5C .  
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The solution obtained allows the final conclusions. Thus, the causes of the 
observed elevator state should be located and identified as the increase of the 
engine speed to 45-50 r.p.s, the decrease of the inlet pressure to 0.020 – 0.057 
kg/cm2, and the decrease of the feed change gear clearance to 100-150 mk. 

To test the fuzzy model we used the results of diagnosis for 192 elevators with 
different kinds of faults. The tuning algorithm efficiency characteristics for the 
testing data are given in Table 7.9. Attaining a 96% correctness of the diagnostics 
required 30 min of operation of the genetic algorithm and 7 min of operation of 
the neural network (Intel Core 2 Duo P7350 2.0 GHz). 

Table 7.9. Tuning algorithm efficiency characteristics 

Causes  
(diagnoses)

Number  
of cases  

in the data 
sample 

Probability of the correct diagnosis 

Before tuning After tuning 

 Null solution 
(genetic algorithm)

Refined diagnoses 
(neural network) 

1C  104 86 / 104=0.82 96 / 104=0.92 101 / 104=0.97 

2C  88 67 / 88=0.76 80 / 88=0.91 84 / 88=0.95 

3C  92 74 / 92=0.80 82 / 92=0.89 88 / 92=0.95 

4C  100 70 / 100=0.70 93 / 100=0.93 97 / 100=0.97 

5C  122 103 / 122=0.84 109 / 122=0.89 117 / 122=0.96 

6C  70 51 / 70=0.73 61 / 70=0.87 68 / 70=0.97 
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