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Chapter 6 
Inverse Inference with Fuzzy Relations Tuning 

Diagnosis, i.e. determination of the identity of the observed phenomena, is the 
most important stage of decision making in different domains of human activity: 
medicine, engineering, economics, military affairs, and others. In the case of the 
diagnosis of problems where physical mechanisms are not well known due to high 
complexity and nonlinearity, a fuzzy relational model may be useful. A fuzzy 
relational model for simulating cause and effect connections in diagnosing 
problems has been introduced by Sanchez [1, 2]. A model for diagnosis can be 
built on the basis of Zadeh’s compositional rule of inference [3], in which the 
fuzzy matrix of “causes-effects” relations serves as the support of the diagnostic 
information. In this case, the problem of diagnosis amounts to solving fuzzy 
relational equations.  

Inverse problem resolution is of interest to both exact methods and approximate 
ones. The complete bibliographical notes are presented in [4]. Analytically exact 
methods for fuzzy relational equations on various lattices and with different kinds 
of composition laws for fuzzy relations are given in [4 – 8]. There exist tasks in 
which approximate solutions instead of exact ones are reasonable [9]. Solvability 
and approximate solvability conditions of fuzzy relational equations are 
considered in [10 – 14]. In the general case, an optimization environment is a 
convenient tool for decomposing fuzzy relations. Solving fuzzy relational 
equations by neural networks is described in [15, 16]. The use of genetic 
optimization for decomposition of fuzzy relations is proposed in [17]. 

The necessary condition of diagnostic problem solving is to ascertain the cause-
effect relationship. A general methodological scheme envisages structure 
determination, parameter identification and model validation [18, 19]. An 
approach of integrated genetic and gradient-based learning in construction of 
fuzzy relational models is proposed in [20]. An approach of identification of fuzzy 
relational models by fuzzy neural networks is proposed in [21, 22]. 

In those cases, when domain experts are involved in developing fuzzy models, 
construction of the cause-effect connections can be considered as rough tuning of 
the fuzzy relational model [23]. The observed (output) and diagnosed (input) 
parameters of a system are considered as linguistic variables [3]. Fuzzy terms, e.g. 
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“temperature rise”, “pressure drop” etc., associated with causes and effects are 
used for these variables evaluation. The use of the expert relational matrix cannot 
guarantee the coincidence of theoretical results of diagnosis and real data. In other 
words, the “quality” of the model strongly depends on the “quality” of the expert 
forming the diagnostic matrix. In addition, the problem of solving fuzzy relational 
equations is still relevant – as of yet there does not exist a satisfactory answer for 
computing a complete solution set [4]. 

In chapter 5, a pure expert system using a genetic algorithm [24, 25] as a tool to 
solve the diagnosis problem was proposed. In this chapter, we propose an 
approach for building fuzzy systems of diagnosis, which enables solving fuzzy 
relational equations together with design and tuning of fuzzy relations on the basis 
of expert and experimental information [26, 27]. The essence of tuning consists of 
the selection of such membership functions of the fuzzy terms for the input and 
output variables (causes and effects) and such “causes-effects” fuzzy relations, 
which provide minimal difference between theoretical and experimental results of 
diagnosis.  

To overcome the NP-hardness, chapter 5 used the ideology of genetic 
optimization [24, 25], which quickly established the domain of global minimum of 
the discrepancy between the left and right sides of the system of equations 
followed by a fine adjustment of the solution by search methods available. The 
genetic algorithm uses all the available experimental information for the 
optimization, i.e., operates off-line and becomes toilful and inefficient if new 
experimental data are obtained, i.e., in the on-line mode. The process of diagnosis 
should be augmented by a hybrid genetic and neuro approach to designing 
adaptive diagnostic systems [28]. The essence of the approach is in constructing 
and training a special neuro-fuzzy network isomorphic to the diagnostic equations, 
which allows on-line correction of decisions.  

This chapter is written using original work materials [26 – 28]. 

6.1   Diagnostic Approximator Based on Fuzzy Relations 

The diagnosis object is treated as a black box with n inputs and m outputs 
(Fig. 6.1). Outputs of the object are associated with the observed effects 
(symptoms). Inputs correspond to the causes of the observed effects (diagnoses). 
The problem of diagnosis consists of restoration and identification of the causes 
(inputs) through the observed effects (outputs). Inputs and outputs can be 
considered as linguistic variables given on the corresponding universal sets. Fuzzy 
terms are used for these linguistic variables evaluation.  

We shall denote: 

1 2{ , ,..., }nx x x  is the set of input parameters, [ , ]ii ix x x∈ , 1,i n= ; 

1 2{ , ,..., }my y y  is the set of output parameters, [ , ]j jj
y y y∈ , 1,j m= ; 

1 2{ , ,..., }
ii i ikc c c  is the set of linguistic terms for parameter ix  evaluation, 1,i n= ; 

1 2{ , ,..., }
jj j jqe e e  is the set of linguistic terms for parameter jy  evaluation,  1,j m= . 
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Fig. 6.1. The object of diagnosis 

Each term-assessment is described with the help of a fuzzy set: 

ilc = {( , ( ))}ilc
i ix xμ ,  1,i n= , 1, il k= ; 

jpe ={( , ( ))}jpe

j jy yμ , 1,j m= , 1, jp q= . 

where ( )ilc
ixμ  is a membership function of variable ix  to the term-assessment ilc , 

1,i n= ,  1, il k= ; 

( )jpe

jyμ  is a membership function of variable jy  to the term-assessment jpe , 

 1,j m= , 1, jp q= . 

We shall redenote the set of input and output terms-assessments in the 
following way: 

1 2{ , ,..., }NC C C ={
111 12 1 1 2, ,..., ,..., , ,...,

nk n n nkc c c c c c } is the set of terms for input 

parameters evaluation, where 1 2 ... nN k k k= + + + ; 

1 2{ , ,..., }ME E E ={
111 12 1 1 2, ,..., ,..., , ,...,

mq m m mqe e e e e e } is the set of terms for 

output parameters evaluation, where 1 2 ... mM q q q= + + + . 

Set { IC , 1,I N= } is called fuzzy causes (diagnoses), and set { JE ,  1,J M= } 

is called fuzzy effects (symptoms). 
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The diagnostic problem is set in the following way: it is necessary to restore 
and identify the values of the input parameters * * *

1 2( , ,..., )nx x x  through the values of 

the observed output parameters * * *
1 2( , ,..., )my y y . 

“Causes-effects” interconnection is given by the matrix of fuzzy relations 
 

I JC E⊆ ×R =[ IJr , 1,I N= , 1,J M= ]. 
 

An element of this matrix is a number IJr ∈ [0, 1], characterizing the degree to 

which cause IC  influences upon the rise of effect JE . 

In the presence of matrix R the “causes-effects” dependency can be described 
with the help of Zadeh’s compositional rule of inference [3] 

                 Eμ = Cμ DR,                           (6.1)  

where Cμ = 1 2( , ,..., )NCC Cμ μ μ  is the fuzzy causes vector with elements 
ICμ ∈ [0, 1], interpreted as some significance measures of IC  causes; 

Eμ = 1 2( , ,..., )ME E Eμ μ μ  is the fuzzy effects vector with elements JEμ ∈ [0, 1], 

interpreted as some significance measures of JE  effects; 

D  is the operation of max-min composition [3]. 
Finding vector Cμ  amounts to the solution of the fuzzy relational equations: 

1 1 2
11 21 1( ) ( )... ( )NCE C C

Nr r rμ μ μ μ= ∧ ∨ ∧ ∨ ∧  
2 1 2

12 22 2( ) ( )... ( )NCE C C
Nr r rμ μ μ μ= ∧ ∨ ∧ ∨ ∧  

                            …       …      …         … 
1 2

1 2( ) ( )... ( )NM CE C C
M M NMr r rμ μ μ μ= ∧ ∨ ∧ ∨ ∧ ,               (6.2) 

 

which is derived from relation (6.1). Taking into account the fact that operations ∨ 
and ∧ are replaced by max and min in fuzzy set theory [3], system (6.2) is 
rewritten in the form: 
 

      
1,

max(min( , )),J IE C
IJ

I N
rμ μ

=
= 1,J M= .                  (6.3)    

In order to translate the specific values of the input and output variables into the 
measures of the causes and effects significances it is necessary to define a membership 

function of fuzzy terms IC  and JE , 1,I N= , 1,J M= . We use a bell-shaped 

membership function model of variable u to arbitrary term T in the form: 

2

1
( ) ,

1

T u
u

μ
β

σ

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

                                   (6.4)                                
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where β  is a coordinate of function maximum, ( ) 1Tμ β = ; σ
 
is a parameter of 

concentration-extension (Fig. 6.2).  
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Fig. 6.2. Model of the bell-shaped membership function 

This function was determined in [23] and was used for nonlinear dependencies 
identification by fuzzy IF-THEN rules [29, 30]. 

Correlations (6.3) and (6.4) define the generalized fuzzy model of diagnosis as 
follows: 

  ( , , ) ( , , , ),E
E E R C CF=μ Y Β Ω X R Β Ω                          (6.5)                              

 
where 1 2( , ,..., )NCC C

C β β β=Β  and 1 2( , ,..., )NCC C
C σ σ σ=Ω  are the vectors of β - 

and σ - parameters for fuzzy causes 1C , 2C ,…, NC  membership functions; 
1 2( , ,..., )ME E E

E β β β=Β  and 1 2( , ,..., )ME E E
E σ σ σ=Ω  are the vectors of β - 

and σ - parameters for fuzzy effects 1E , 2E ,…, ME  membership functions; 

FR is the operator of inputs-outputs connection, corresponding to formulae 
(6.3), (6.4).  

6.2   Optimization Problem for Fuzzy Relations Based Inverse 
Inference 

Following the approach proposed in [24, 25], the problem of solving fuzzy 
relational equations (6.3) is formulated as follows. Fuzzy causes vector 

Cμ = 1 2( , ,..., )NCC Cμ μ μ  should be found which satisfies the constraints 

[0, 1]ICμ ∈ , 1,I N= , and also provides the least distance between observed and 

model measures of effects significances, that is between the left and the right parts 
of each system equation (6.3): 

2

1,1

[ max(min( , ))] minJ I

C

M
E C

IJ
I NJ

rμ μ
==

− =∑
μ

.                        (6.6)  
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Following [4], in the general case, system (6.3) has a solution set ( , )ES R μ , 

which is completely characterized by the unique greatest solution 
C

μ  and the set 

of lower solutions * ( , )ES R μ ={ , 1, }C

l
l T=μ : 

( , )ES R μ  =
*

,
C
l

CC

l
S∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                               (6.7) 

Here 
C

μ = 1 2( , ,..., )NCC Cμ μ μ  and C

l
μ = 1 2( , ,..., )NC C C

l l l
μ μ μ  are the vectors of the 

upper and lower bounds of causes IC  significance measures, where the union is 

taken over all * ( , )C E

l
S∈μ R μ . 

Following [24, 25], formation of intervals (6.7) is accomplished by way of 
solving a multiple optimization problem (6.6) and it begins with the search for its 
null solution. As the null solution of optimization problem (6.6) we designate 

1 2
0 0 0 0( , ,..., )NCC CC μ μ μ=μ , where  0

I
I

CCμ μ≤ , 1,I N= . The upper bound (
IC

μ ) is 

found in the range 0 , 1ICμ⎡ ⎤⎣ ⎦ . The lower bound ( IC

l
μ ) for 1l =  is found in the 

range 00, ICμ⎡ ⎤⎣ ⎦ , and for  1l >  – in the range 0,
IC

μ⎡ ⎤
⎢ ⎥⎣ ⎦

, where the minimal 

solutions C

k
μ , k l< , are excluded from the search space. 

Let 1 2( ) ( ( ), ( ),..., ( ))NCC CC t t t tμ μ μ=μ  be some t-th solution of optimization 

problem (6.6), that is 0( ( )) ( )C CF t F=μ μ , since for all ( , )C ES∈μ R μ  we have the 

same value of criterion (6.6). While searching for upper bounds (
IC

μ ) it is 

suggested that ( ) ( 1)I IC Ct tμ μ≥ − , and while searching for lower bounds ( IC

l
μ ) it 

is suggested that ( ) ( 1)I IC Ct tμ μ≤ −  (Fig. 6.3).   

The definition of the upper (lower) bounds follows the rule: if 

( ) ( 1)C Ct t≠ −μ μ , then 
IC

μ ( IC

l
μ )= ( )IC tμ , 1,I N= . If ( ) ( 1)C Ct t= −μ μ , then the 

search for the interval solution  ,
CC

l
⎡ ⎤
⎢ ⎥⎣ ⎦
μ μ  is stopped. Formation of intervals (6.7) 

will go on until the condition C C

l k
≠μ μ , k l< , has been satisfied. 

The hybrid genetic and neuro approach is proposed for solving optimization 
problem (6.6).  
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Fig. 6.3. Search for the upper (а) and lower bounds of the intervals for 1l =  (b) and  1l >  (c) 

6.3   Genetic Algorithm for Fuzzy Relations Based Inverse 
Inference 

The chromosome needed in the genetic algorithm for solving the optimization 
problem (6.6) is defined as the vector-line of binary codes of the lower and upper 

bounds of the solutions ICμ ,   1,I N=  (Fig. 6.4) [31].  

 
1CC  2CC  … NCC  1CC  2CC  … NCC   

Fig. 6.4. Structure of the chromosome  

The crossover operation is defined in Fig. 6.5, and is carried out by way of 
exchanging genes inside each solution ICμ . The points of cross-over shown in 

dotted lines are selected randomly. Upper symbols (1 and 2) in the vectors of 
parameters correspond to the first and second chromosomes-parents.  
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Fig. 6.5. Structure of the crossover operation 

A mutation operation implies random change (with some probability) of 
chromosome elements 

( ) ([ , ] )
III

CCCMu RANDOMμ μ μ= , 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

We choose a fitness function as the negative of criterion (6.6). 

6.4   Neuro-fuzzy Network for Fuzzy Relations Based Inverse 
Inference 

A neuro-fuzzy network isomorphic to the system of fuzzy logic equations (6.3) is 
presented in Fig. 6.6. Table 3.1 shows elements of the neuro-fuzzy network [28]. 
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Fig. 6.6. Neuro-fuzzy model of diagnostic equations 

The network is designed so that the adjusted weights of arcs are the unknown 
significance measures of  1 2, ,..., NC C C  causes.  
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Network inputs are elements of the matrix of fuzzy relations. As follows from 
the system of fuzzy logic equations (6.3), the fuzzy relation IJr  is the significance 

measure of the effect JEμ  provided that the significance measure ICμ  is equal to 

unity, and  the significance measures of other causes are equal to zero, i.e. 

IJr = JEμ ( ICμ =1, KCμ =0),   1,K N= , K I≠ . At the network outputs, actual 

significance measures of the effects 
1,

max[min( , )]IC
IJ

I N
rμ

=
obtained with allowance 

for the actual weights of arcs  ICμ  are united. 

Thus, the problem of solving the system of fuzzy logic equations (6.3) is 
reduced to the problem of training of a neuro fuzzy network (see Fig. 6.6) with the 
use of points  

1 2( , ,..., , )JE
J J NJr r r μ , 1,J M= . 

To train the parameters of the neuro-fuzzy network, the recurrent relations: 

( 1) ( )
( )

I I

I

C C t
C

t t
t

εμ μ η
μ
∂

+ = −
∂

 ,                             (6.8) 

that minimize the criterion  

21
ˆ( ( ) ( ))

2
E E

t t tε = −μ μ ,                              (6.9) 

applied in the neural network theory, where 
ˆ ( )E tμ  and ( )E tμ

 
are the experimental and the model fuzzy effects vectors at 

the t-th step of training; 
( )IC tμ   are the significance measures of causes  IC  at the t-th step of training; 

η is a parameter of training, which can be selected according to the results from 
[32]. 

The partial derivatives appearing in recurrent relations (6.8) characterize the 
sensitivity of the error ( tε ) to variations in parameters of the neuro-fuzzy network 

and can be calculated as follows: 

I

t
C

ε
μ
∂

=
∂ 1

J

M
t

E
J

ε
μ=

∂⎡
⋅⎢∂⎣

∑  .
J

I

E

C

μ
μ

⎤∂
⎥∂ ⎦

 

Since determining the element “fuzzy output” from Table 3.1 involves the min 
and max fuzzy-logic operations, the relations for training are obtained using finite 
differences. 

6.5   Expert Method of Fuzzy Relations Construction 

To obtain matrix R between causes 1 2C , ,..., NC C  and effects 1 2, ,..., ME E E , 

included in correlation (6.1), we shall use the method of membership functions 
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construction proposed in [33] on the basis of the 9-mark scale of Saaty’s paired 
comparisons [34]. 

We consider an effect JE  as a fuzzy set, which is given on the universal set of 

causes as follows:  

JE 1 2

1 2

, ,...,J J NJ

N

r r r

C C C

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

, 1,J M= ,                      (6.10)   

where 1Jr , 2Jr ,..., NJr  represent the degrees of membership of causes 

1 2C , ,..., NC C  to fuzzy set JE , and correspond to the J-th column of the fuzzy 

relational matrix. 
Following [33], to obtain membership degrees IJr , included in (6.10), it is 

necessary to form the matrix of paired comparisons for each effect JE , which 

reflects the influence of causes 1 2C , ,..., NC C  upon the rise of effect JE , 

 1,J M= . 

For an effect JE  the matrix of paired comparisons looks as follows:  

                        1C   2C    …   NC  

        

1 11 12 1

2 21 22 2

1 2

...

...

: ... ... ... ...

...

J J J
N

J J J
N

J

J J J
N N N NN

C a a a

C a a a

C a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  ,  1,J M= ,              (6.11)              

 

where the element J
IKa  is evaluated by an expert according to the 9-mark Saaty’s 

scale: 
1 — if cause KC  has no advantage over cause IC ; 

3 — if KC  has a weak advantage over IC ;  

5 — if KC  has an essential advantage over IC ;  

7 — if KC  has an obvious advantage over IC ;  

9— if KC  has an absolute advantage over IC .  

 
Values of  2, 4, 6, 8 correspond to intermediate comparative assessments 
In accordance with [33], we assume that matrix (6.11) has the following 

properties:  
 

- elements placed symmetrically relative to the main diagonal are connected by 
correlation J

IKa =1/ J
KIa ; 

- transitivity‚ i. e., J J J
IL LK IKa a a= ; 

- diagonality‚ i.e., J
IIa =1‚ 1,I N= , as the consequence from symmetry and 

transitivity. 
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These properties allow us to define all elements of matrix (6.11) by using 
elements of only a single row. If the L-th row is known‚ i. e. the elements J

LKa ‚ 

1,K N= , then an arbitrary element J
IKa  is defined as follows:  

,
J
LK
J
LI

aJ
IK a

a =      , , 1, ,I K L N=    1, .J M=  

After defining matrix (6.11), the degrees of membership needed for 
constructing fuzzy set (6.10) are calculated by formula [33]: 

         
1 2

1

...IJ J J J
I I IN

r
a a a

=
+ + +

,  1,I N= , 1, .J M=             (6.12)                 

Obtained membership degrees (6.12) are to be normalized by way of dividing into 
the highest degree of membership.  

6.6   Problem of Fuzzy Relations Tuning 

It is assumed that the training data which is given in the form of L pairs of 
experimental data is known: 

ˆ ˆ,p pX Y , 1,p L= , 

where 1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p nx x x=X  and 1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p my y y=Y  are the vectors of the values 

of the input and output variables in the experiment number  p.  
Let 1 2( , ,.., )Mλ λ λ=Λ  be the vector of concentration parameters for fuzzy sets 

of effects (6.10), such as: 

1 2

1 2

1 2

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

M

M

M

M

M

N N NM

r r r

r r r

r r r

λ λ λ

λ λ λ

λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R . 

The essence of tuning of the fuzzy model (6.5) consists of finding such null 
solutions 0 1 2ˆ ˆ ˆ( , ,..., )C p p p

nx x xμ  of the inverse problem, which minimize criterion (6.6) 

for all the points of the training data:  

C 2
0 1 2

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ( )) ( , ,..., )] .
L

p p p E p p p
R 1 2 n m

p

F x ,x ,...,x y y y min
=

− =∑ μ μ  
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In other words, the essence of tuning of the fuzzy model (6.5) consists of 
finding such a vector of concentration parameters Λ  and such vectors of 
membership functions parameters CΒ , CΩ , EΒ , EΩ , which provide the least 

distance between model and experimental fuzzy effects vectors: 

C C E E

2
C C E E

, , , ,1

ˆ ˆˆ[ ( , , , ) ( , , )] min
L

E
R p p

p

F
=

− =∑
Λ Β Ω Β Ω

X Λ Β Ω μ Y Β Ω .       (6.13) 

6.7   Genetic Algorithm of Fuzzy Relations Tuning 

The chromosome needed in the genetic algorithm for solving the optimization 
problem (6.13) is defined as the vector-line of binary codes of parameters Λ , CΒ , 

CΩ , EΒ , EΩ  (Fig. 6.7) [31].  

 

Λ  CΒ  CΩ  EΒ  EΩ  
 

Fig. 6.7. Structure of the chromosome  

The crossover operation is defined in Fig. 6.8, and is carried out by way of 
exchanging genes inside the vector of concentration parameters (Λ ) and each of the 
vectors of membership functions parameters CΒ , CΩ , EΒ , EΩ . The points of 

cross-over shown in dotted lines are selected randomly. Upper symbols (1 and 2) in 
the vectors of parameters correspond to the first and second chromosomes-parents. 
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Fig. 6.8. Structure of the crossover operation 
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A mutation operation implies random change (with some probability) of 
chromosome elements:  

 

( ) ( ),
III

CCCMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( ) ( ),

III
CCCMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( ) ( ),
JJJ

EEEMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( ) ( ),

JJJ
EEEMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( ) ([ , ])JJ JMu RANDOMλ λ λ= , 
 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

We choose criterion (6.13) with the negative sign as the fitness function; that is, 
the higher the degree of adaptability of the chromosome to perform the criterion of 
optimization the greater is the fitness function. 

6.8   Adaptive Tuning of Fuzzy Relations 

The neuro-fuzzy model of the object of diagnostics (6.5) is represented in Fig. 6.9, 
and the nodes are in Table. 3.1. The neuro-fuzzy model is obtained by embedding 
the matrix of fuzzy relations into the neural network so that the weights of arcs 
subject to tuning are fuzzy relations and membership functions for causes and 
effects fuzzy terms [28, 30].  
 

 
 
 
 

 

. . . 

1x  

. . . 
12c  

11c  

11kc  

1E  

ix  

. . . 
2ic  

1ic  

iikc  

nx  

. . . 
2nc  

1nc  

nnkc  

. . . 

1y  

. . . 

12e  

11qe  

11e  

jy  

. . . 

2je  

jjqe  

1je  

. . . 

. . . 

JE  

ME  

my  

. . . 

2me  

mmqe  

1me  

1C  

2C  

 

IC  

 

NC  

2E  

. . . 

. . . 

. . . 

. . . 

. . . 

ilcμ  IJr  jpe je jjˆ  jpee  

 
Fig. 6.9. Neuro-fuzzy model of the object of diagnostics 
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To train the parameters of the neuro-fuzzy network, the recurrent relations: 
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r t r t
r t
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;    ( 1) ( )
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jp jp
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e e t
e
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+ = −
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,   (6.14) 

 
minimizing criterion (6.9) are used, where 

( )IJr t  are fuzzy relations at the t-th step of training; 
ilcβ (t), ilcσ (t), jpeβ (t), jpeσ (t) are the parameters of the membership functions 

for causes and effects fuzzy terms at the t-th step of training. 
The partial derivatives appearing in recurrent relations (6.14) characterize the 

sensitivity of the error ( tε ) to variations in parameters of the neuro-fuzzy network 

and can be calculated as follows: 
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Since determining the element “fuzzy output” (see Table 3.1) involves the min 
and max fuzzy-logic operations, the relations for training are obtained using finite 
differences.  

6.9   Computer Simulations 

The aim of the experiment consists of checking the performance of the above 
proposed models and algorithms of diagnosis with the help of the target “input-
output” model. The target model was some analytical function y =f( x ). This 

function was approximated by the rule of inference (6.1), and served  
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simultaneously as training and testing data generator. The input values ( x ) 
restored for each output ( y ) were compared with the target values.   

The target model is given by the formula: 
 

(1.8 0.8)(5 1.1)(4 2.9)(3 2.1)(9.5 9.5)(3 0.05) 20

80

x x x x x x
y

+ − − − − − += , 

 

which is represented in Fig. 6.10 together with the fuzzy terms of causes 1C =low 

(L), 2C =lower than average (lA), 3C =average (A), 4C =higher than average (hA), 

5C =lower than high, 6C =high (H) and effects 1E =lower than average (lA), 

2E =average (A),  3E =higher than average (hA), 4E =high (H).  
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Fig. 6.10. “Input-output” model-generator 

A fuzzy relational matrix was formed on the basis of expert assessments. For 
example, the procedure of fuzzy relations construction for effect 1E  consists of the 

following. Cause 2C  is the least important for effect 1E , so that the visual 

difference between the output values 1y E=  and 2( )y x C= , i.e. 1 2( )E y x C− = , 

is maximal. Therefore, we start forming the matrix of paired comparisons 1A  

(6.11) from the 2nd row. This row is formed by an expert and contains the 
assessments, which define the degree of advantage of the rest causes KC ,  
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1,6K = , over 2C . The advantage of cause KC  over cause 2C  is defined by the 

fact, how much the distance 1 ( )KE y x C− =  is less than the distance 

1 2( )E y x C− = . Matrix 1A  (6.11) is defined by the known 2nd row as follows: 

 
  1C  2C  3C  4C  5C  6C  

 1C  1 1/3 3 1 8/3 1 

 2C  3 1 9 3 8 3 

1A = 3C  1/3 1/9 1 1/3 8/9 1/3 

 4C  1 1/3 3 1 8/3 1 

 5C  3/8 1/8 9/8 3/8 1 3/8 

 6C  1 1/3 3 1 8/3 1 

 

Matrix 1A  allows us to construct fuzzy set 1E  (6.10) using formula (6.12). The 

degrees of membership 1Ir  of causes IC  to fuzzy set 1E  are defined as follows:  
 

1
11 (1 1/ 3 3 1 8 / 3 1) 0.11r −= + + + + + = ;   

1
21 (3 1 9 3 8 3) 0.04r −= + + + + + = ; 

1
31 (1/ 3 1/ 9 1 1/ 3 8 / 9 1/ 3) 0.33r −= + + + + + = ;  

1
41 (1 1/ 3 3 1 8 / 3 1) 0.11r −= + + + + + = ;   

1
51 (3 / 8 1/ 8 9 / 8 3 / 8 1 3 / 8) 0.30r −= + + + + + = ; 

1
61 (1 1/ 3 3 1 8 / 3 1) 0.11r −= + + + + + = . 

The obtained membership degrees should be normalized, i.e. 11r =0.11/0.33 ≈ 0.33; 

21r =0.04/0.33 ≈ 0.12; 31r =0.33/0.33=1.00; 41r =0.11/0.33 ≈ 0.33; 51r =0.30/0.33 ≈ 0.91; 

61r =0.11/0.33 ≈ 0.33. 

Thus, fuzzy set 1E , whose elements correspond to the 1st column of the fuzzy 

relational matrix, takes the form: 
 

1E
1 2 3 4 5 6

0.33 0.12 1.00 0.33 0.91 0.33
, , , , ,

C C C C C C

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

. 
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The resulting expert fuzzy relational matrix takes the form: 

 

    R = 

 1E  2E  3E  4E  

1C  0.33 1.00 0.67 0.21 

2C  0.12 0.10 0.33 1.00 

3C  1.00 0.23 0.11 0.11 

4C  0.33 0.33 1.00 0.21 

5C  0.91 0.77 0.22 0.34 

6C  0.33 0.90 0.67 0.21 

The results of the fuzzy model tuning are given in Tables 6.1, 6.2. 
 

Table 6.1. Parameters of the membership functions for the causes fuzzy terms before (after) 
tuning 

Fuzzy 
terms 

Parameters ( β -,σ -) 

Before tuning Genetic algorithm Neural net 

1C  (0, 0.17) (0, 0.114) (0, 0.114) 

2C  (0.1, 0.17) (0.091, 0.121) (0.091, 0.121) 

3C  (0.4, 0.17) (0.430, 0.115) (0.446, 0.115) 

4C  (0.7, 0.17) (0.703, 0.100) (0.711, 0.118) 

5C  (0.9, 0.17) (0.919, 0.112) (0.919, 0.112) 

6C  (1.0, 0.08) (1.0, 0.041) (1.0, 0.041) 

 
Table 6.2. Parameters of the membership functions for the effects fuzzy terms before 
(after) tuning 

Fuzzy 
terms 

Parameters ( β -,σ -) 

Before tuning Genetic algorithm Neural net 

1E  (0.15, 0.05) (0.171, 0.032) (0.172, 0.037) 

2E  (0.2, 0.05) (0.209, 0.040) (0.209, 0.040) 

3E  (0.25, 0.05) (0.257, 0.039) (0.259, 0.041) 

4E  (0.3, 0.05) (0.350, 0.037) (0.352, 0.040) 
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Fuzzy relational equations after tuning take the form: 
 

3 5 61 1 2 4( 0.27) ( 0.13) ( 0.97) ( 0.20) ( 0.86) ( 0.21)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧
3 5 62 1 2 4( 0.93) ( 0.09) ( 0.28) ( 0.44) ( 0.75) ( 0.82)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧

3 3 5 61 2 4( 0.63) ( 0.41) ( 0.15) ( 0.95) ( 0.26) ( 0.67)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧
3 5 64 1 2 4( 0.12) ( 0.88) ( 0.07) ( 0.08) ( 0.32) ( 0.12)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧   (6.15) 

 
The results of solving the problem of inverse inference before and after tuning 

are shown in Fig. 6.11 and 6.12. The same figure depicts the membership 
functions of the fuzzy terms for the causes and effects before and after tuning.  
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Fig. 6.11. Solution to the problem of inverse fuzzy inference before tuning 
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а) 

b)  

Fig. 6.12. Solution to the problem of inverse fuzzy inference after tuning:(а) *y =0.23; (b) 
*y =0.24 
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Let a specific value of the output variable consists of *y =0.23. The measures of 

the effects significances for this value can be defined with the help of the 
membership functions in Fig. 6.12,а: 

*( )E yμ =( 1Eμ =0.29; 2Eμ =0.78; 3Eμ =0.67; 4Eμ =0.10). 

The genetic algorithm yields a null solution 

3 5 61 2 4
0 0 0 0 0 0 0( 0.78, 0.10, 0.29, 0.67, 0.07, 0.45)C C CC C CC μ μ μ μ μ μ= = = = = = =μ , (6.16) 

for which the value of the optimization criterion (6.6) is F=0.0004.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 

Cμ =(  
1C

μ =0.78, 
2C

μ =0.12, 
3C

μ =0.29, 
4C

μ =0.67, 
5C

μ =0.12,  
6C

μ =0.78) 

and the three lower solutions *

1 2 3
{ , , }C C CS = μ μ μ   

1

Cμ =( 1

1

Cμ =0.78, 2

1

Cμ =0, 3

1

Cμ =0.29, 4

1

Cμ =0, 5

1

Cμ =0, 6

1

Cμ =0.67); 

2

Cμ =( 1

2

Cμ =0.78, 2

2

Cμ =0, 3

2

Cμ =0.29, 4

2

Cμ =0.67, 5

2

Cμ =0, 6

2

Cμ =0); 

              
3

Cμ =( 1

3

Cμ =0, 2

3

Cμ =0, 3

3

Cμ =0.29, 4

3

Cμ =0, 5

3

Cμ =0, 6

3

Cμ =0.78). 

 
Thus, the solution of fuzzy relational equations (6.15) can be represented in the 
form of intervals: 

 
( , )ES R μ ={ 1Cμ =0.78; 2Cμ ∈ [0, 0.12]; 3Cμ =0.29; 4Cμ ∈ [0, 0.67]; 5Cμ ∈ [0, 0.12]; 6Cμ ∈ [0.67, 0.78]} 

∪ { 1Cμ =0.78; 2Cμ ∈ [0, 0.12]; 3Cμ =0.29; 4Cμ =0.67; 5Cμ ∈ [0, 0.12]; 6Cμ ∈ [0, 0.78]} 

∪ { 1Cμ ∈ [0, 0.78]; 2Cμ ∈ [0, 0.12]; 3Cμ =0.29; 4Cμ ∈ [0, 0.67]; 5Cμ ∈ [0, 0.12]; 6Cμ =0.78}. 

(6.17) 
 

The intervals of the values of the input variable for each interval in solution 
(6.17) can be defined with the help of the membership functions in Fig. 6.12,а: 

 

-  *x =0.060 or *x ∈ [0.060, 1.0] for 1C ;  

-  *x ∈ [0.418, 1.0] for 2C ; 

-  *x =0.264 or *x =0.628 for 3C ;  

- *x =0.628, *x ∈ [0, 0.628], *x =0.794 or *x ∈ [0.794, 1.0] for 4C ; 

-  *x ∈ [0, 0.610] for 5C ; 

- *x ∈ [0.971, 0.978], *x ∈ [0, 0.978] or *x =0.978 for 6C . 
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The restoration of the input set for *y =0.23, i.e. points (0.264, 0.230), (0.628, 

0.230), (0.794, 0.230) and (0.978, 0.230), is shown by the continuous line in Fig. 
6.12, a, in which the values of the causes and effects significances measures are 
marked. The rest of the found input values correspond to other values of the 
output variable with the same measures of effects significances. The restoration of 
these points is shown by the dotted line in Fig. 6.12,а.  

Assume the value of the output variable has changed from *y =0.23 to *y =0.24 

(Fig. 6.12,b). For the new value, the fuzzy effects vector is  

*( )E yμ =( 1Eμ =0.23; 2Eμ =0.62; 3Eμ =0.82; 4Eμ =0.11). 

A neural adjustment of the null solution (6.16) has yielded a fuzzy causes 
vector  

3 5 61 2 4
0 0 0 0 0 0 0( 0.17, 0.04, 0.23, 0.82, 0.09, 0.62)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,    

for which the value of the optimization criterion (6.6) has constituted  F=0.0001.   
The resulting null solution has allowed adjustment of the bounds in the solution 

(6.17) and generation of the set of solutions ( , )ES R μ  determined by the greatest 

solution 
 

Cμ =(  
1C

μ =0.23, 
2C

μ =0.12, 
3C

μ =0.23, 
4C

μ =0.82, 
5C

μ =0.12,  
6C

μ =0.62) 
 

and the two lower solutions *

1 2
{ , }C CS = μ μ   

 

1

Cμ =( 1

1

Cμ =0.23, 2

1

Cμ =0, 3

1

Cμ =0, 4

1

Cμ =0.82, 5

1

Cμ =0, 6

1

Cμ =0.62); 

2

Cμ =( 1

2

Cμ =0, 2

2

Cμ =0, 3

2

Cμ =0.23, 4

2

Cμ =0.82, 5

2

Cμ =0, 6

2

Cμ =0.62). 

 

Thus, the solution of fuzzy relational equations (6.15) for the new value can be 
represented in the form of intervals: 

 
( , )ES R μ ={ 1Cμ =0.23; 2Cμ ∈ [0, 0.12]; 3Cμ ∈ [0, 0.23]; 4Cμ =0.82; 5Cμ ∈ [0, 0.12]; 6Cμ =0.62} 

∪ { 1Cμ ∈ [0, 0.23]; 2Cμ ∈ [0, 0.12]; 3Cμ =0.23; 4Cμ =0.82; 5Cμ ∈ [0, 0.12]; 6Cμ =0.62}.  

                             (6.18) 
 

Solution (6.18) differs from (6.17) in the significance measures of the causes 

1C , 3C , 4C  and 6C , for which the ranges of the input variable have been 

determined using the membership functions in Fig. 6.12,b: 
 

-  *x =0.208 or *x ∈ [0.208, 1.0] for 1C ; 

- *x =0.236, *x ∈ [0, 0.236],  *x =0.656 or *x ∈ [0.656, 1.0] for 3C ; 
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-  *x =0.656 or *x =0.766 for 4C ;  

-  *x =0.968 for 6C . 

The restoration of the input set for *y =0.24, i.e., points (0.236, 0.240), (0.656, 

0.240), (0.766, 0.240), is shown in Fig. 6.12,b.  

6.10   Example 5: Oil Pump Diagnosis 

Let us consider the algorithm’s performance having the recourse to the example of 
the fuel pump faults causes diagnosis. 

Input parameters are (variation ranges are indicated in parentheses):  
 

1x   – engine speed (2600 – 3200 rpm);  

2x  – filter clear area (30 – 45 cm2/kw);  

3x  –  throat ring side clearance (0.1 – 0.3 mm); 

4x  – suction conduit leakage (0.5 – 2.0 cm 3/h);  

5x  – force main resistance (1.2–3.4 kg/cm2). 
 

The fault causes to be identified (input term-assessments) are: 11c  – engine 

speed 1x  drop; 21c  – decrease of clear area 2x , i.e. filter clogging; 31c  ( 32c ) – 

decrease (increase) of side clearance 3x , i.e. assembling defect (throat ring wear-

out); 41c  – increase of leakage 4x , i.e. fuel escape; 51c  – high resistance of the 

force main 5x . 

Output parameters are (variation ranges are indicated in parentheses):  
 

1y  – productivity (20–45 m3/h);  

2y  – force main pressure (3.7–5.5 kg/cm2);  

3y  – consumed power (15–30 kw);  

4y  – suction conduit pressure (0.5–1.0 kg/cm2). 
 

The observed effects (output term-assessments) are: 11e  – productivity 1y  fall; 

21e  ( 22e ) – force main pressure 2y  drop (rise); 31e  ( 32e ) – consumed power 3y  

drop (rise); 41e  – pressure in suction conduit 4y  rise. 

We shall define the set of causes and effects in the following way:  
 

{ 1C , 2C , 3C , 4C , 5C , 6C }={ 11c , 21c , 31c , 32c , 41c , 51c }; 

{ 1E , 2E , 3E , 4E , 5E , 6E }={ 11e , 21e , 22e , 31e , 32e , 41e }. 
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“Causes-effects” relations were formed on the basis of expert assessments. For 
example, the procedure of fuzzy relations construction for effect 1E  consists of the 

following. Cause 3C  is the least important for effect 1E . Therefore, we start 

forming the matrix of paired comparisons 1A  (6.11) from the 3rd row. This row is 

formed by an expert and contains the assessments, which define the degree of 
advantage of the rest of the causes over 3C . Not a single cause has an absolute 

advantage over 3C . Therefore, matrix 1A  contains a fictitious cause 7C , where 

7C  has absolute advantage over 3C . Matrix 1A  (6.11) is defined by the known 

3rd row as follows: 

 
  

1C  2C  3C  4C  5C  6C  7C  

 
1C  1 7/2 1/2 4 3 1 9/2 

 
2C  2/7 1 1/7 8/7 6/7 2/7 9/7 

1A = 3C  2 7 1 8 6 2 9 

 
4C  1/4 7/8 1/8 1 3/4 1/4 9/8 

 
5C  1/3 7/6 1/6 4/3 1 1/3 3/2 

 
6C  1 7/2 1/2 4 3 1 9/2 

 
7C  2/9 7/9 1/9 8/9 2/3 2/9 1 

  
Matrix 1A  allows us to construct fuzzy set 1E  (6.10) using formula (6.12). The 

degrees of membership 1Ir  of causes IC  to fuzzy set 1E  are defined as follows:  

1
11 (1 7 / 2 1/ 2 4 3 1 9 / 2)r −= + + + + + + = 0.06;   

1
21 (2 / 7 1 1/ 7 8 / 7 6 / 7 2 / 7 9 / 7)r −= + + + + + + = 0.20; 

1
31 (2 7 1 8 6 2 9)r −= + + + + + + = 0.03;    

1
41 (1/ 4 7 / 8 1/ 8 1 3 / 4 1/ 4 9 / 8)r −= + + + + + + = 0.23; 

1
51 (1/ 3 7 / 6 1/ 6 4 / 3 1 1/ 3 3 / 2)r −= + + + + + + = 0.17; 

1
61 (1 7 / 2 1/ 2 4 3 1 9 / 2)r −= + + + + + + = 0.06; 

1
71 (2 / 9 7 / 9 1/ 9 8 / 9 2 / 3 2 / 9 1)r −= + + + + + + = 0.26. 
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The obtained membership degrees should be normalized, i.e. 11r =0.06/0.26 ≈ 0.23; 

21r =0.20/0.26 ≈ 0.77; 31r =0.03/0.26=0.11; 41r =0.23/0.26 ≈ 0.88; 51r =0.17/0.26 ≈ 0.65; 

61r =0.06/0.26=0.23. 

Thus, fuzzy set 1E , whose elements correspond to the 1st column of the fuzzy 

relational matrix, takes the form: 
 

1E
1 2 3 4 5 6

0.23 0.77 0.11 0.88 0.65 0.23
, , , , ,

C C C C C C

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

. 

 

The resulting expert fuzzy relational matrix takes the form: 
 

R  = 

 1E  2E  3E  4E  5E  6E  

1C  0.23 0.90 0.44 0.88 0.11 0.76 

2C  0.77 0.21 0.89 0.23 0.22 0.32 

3C  0.11 0.45 0.22 0.69 0.89 0.24 

4C  0.88 0.21 0.67 0.12 0.11 0.68 

5C  0.65 0.10 0.33 0.12 0.11 0.88 

6C  0.23 0.55 0.11 0.81 0.40 0.12 

 
For the fuzzy model tuning we used the results of diagnosis for 340 pumps. The 

results of the fuzzy model tuning are given in Tables 6.3, 6.4 and in Fig. 6.13.  

 
Table 6.3. Parameters of the membership functions for the causes and effects fuzzy terms 
after genetic tuning 

Parameter 
Fuzzy terms 

1C  2C  3C  4C  5C  6C  

β - 2700 34.75 0.11 0.26 1.84 3.15 

σ - 107.12 3.18 0.04 0.05 0.33 0.65 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 22.79 3.84 5.32 15.94 28.84 0.89 

σ - 5.02 0.92 0.35 3.76 1.85 0.16 
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Fig. 6.13. Membership functions of the causes (a) and effects (b) fuzzy terms after tuning 

Table 6.4. Parameters of the membership functions for the causes and effects fuzzy terms 
after neural tuning 

Parameter 
Fuzzy terms 

1C  2C  3C  4C  5C  6C  

β - 2700 32.27 0.11 0.28 1.82 3.19 

σ - 104.57 2.94 0.03 0.06 0.31 0.54 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 22.98 3.86 5.37 16.45 28.92 0.89 

σ - 4.93 0.87 0.38 3.54 1.82 0.17 
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Diagnostic equations after tuning take the form: 
 

3 5 61 1 2 4( 0.21) ( 0.78) ( 0.15) ( 0.84) ( 0.73) ( 0.18)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧             
3 5 62 1 2 4( 0.97) ( 0.20) ( 0.43) ( 0.18) ( 0.14) ( 0.58)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧          

3 3 5 61 2 4( 0.48) ( 0.59) ( 0.85) ( 0.63) ( 0.34) ( 0.12)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧           
3 5 64 1 2 4( 0.94) ( 0.21) ( 0.64) ( 0.18) ( 0.16) ( 0.74)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧           

5 3 5 61 2 4( 0.16) ( 0.14) ( 0.92) ( 0.08) ( 0.10) ( 0.41)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧  
6 3 5 61 2 4( 0.64) ( 0.82) ( 0.21) ( 0.72) ( 0.99) ( 0.09)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧  

  (6.19) 
Let us represent the vector of the observed parameters for a specific pump: 

*Y =( *
1y =26.12 m3/h; *

2y =5.08 kg/cm2; *
3y =24 kw; *

4y =0.781 kg/cm2). 

The measures of the effects significances for these values can be defined with 
the help of the membership functions in Fig. 6.13,b:  

*( )Eμ Y =( 1Eμ =0.71; 2Eμ =0.34; 3Eμ =0.63; 4Eμ =0.18; 5Eμ =0.12; 6Eμ =0.71). 

The genetic algorithm yields a null solution 
 

3 5 61 2 4
0 0 0 0 0 0 0( 0.26, 0.54, 0.14, 0.69, 0.71, 0.08)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,(6.20) 

for which the value of the optimization criterion (6.6) is F=0.0144.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 
 

Cμ =(
1C

μ =0.26, 
2C

μ =0.71, 
3C

μ =0.16, 
4C

μ =0.71, 
5C

μ =0.71, 
6C

μ =0.16) 
 

and the three lower solutions *

1 2 3
{ , , }C C CS = μ μ μ   

 

1

Cμ =( 1

1

Cμ =0.26, 2

1

Cμ =0.71, 3

1

Cμ =0, 4

1

Cμ =0.63, 5

1

Cμ =0, 6

1

Cμ =0); 

2

Cμ =( 1

2

Cμ =0.26, 2

2

Cμ =0, 3

2

Cμ =0, 4

2

Cμ =0.71, 5

2

Cμ =0, 6

2

Cμ =0); 

3

Cμ =( 1

3

Cμ =0.26, 2

3

Cμ =0, 3

3

Cμ =0, 4

3

Cμ =0.63, 5

3

Cμ =0.71, 6

3

Cμ =0). 
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Thus, the solution of fuzzy relational equations (6.19) can be represented in the 
form of intervals: 
 

( , )ES R μ ={ 1Cμ =0.26; 2Cμ =0.71; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.63, 0.71]; 5Cμ ∈ [0, 0.71]; 6Cμ ∈ [0, 0.16]}  

∪ { 1Cμ =0.26; 2Cμ ∈ [0, 0.71]; 3Cμ ∈ [0, 0.16]; 4Cμ =0.71; 5Cμ ∈ [0, 0.71]; 6Cμ ∈ [0, 0.16]}  

∪ { 1Cμ =0.26; 2Cμ ∈ [0, 0.71]; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.63, 0.71]; 5Cμ =0.71; 6Cμ ∈ [0, 0.16]}.  

                                                  (6.21) 
 

The intervals of the values of the input variables for each interval in solution 
(6.21) can be defined with the help of the membership functions in Fig. 6.13,b: 
 

 -  *
1x =2877 rpm for 1C ;  

-  *
2x =34.15 or *

2x ∈ [34.15, 45] cm2/kw for 2C ; 

-  *
3x ∈ [0.178, 0.300] mm for 3C ;   

-  *
3x =0.242 or *

3x ∈ [0.234, 0.242] mm for 4C ; 

- *
4x =1.62 or *

4x ∈ [0.5, 1.62] cm 3/h  for 5C ; 

-  *
5x ∈ [1.2, 1.95] kg/cm2  for 6C . 

 

The obtained solution allows the analyst to make the preliminary conclusions. 
The cause of the observed pump state should be located and identified as the filter 
clogging, the throat ring wear-out or fuel escape in the suction conduit (clear area 
decreased up to 34.15-45 cm2/kw, side clearance increased up to 0.234-0.242 mm, 
and leakage increased up to 0.5-1.62 cm3/h), since the significance measures of the 
causes 2C , 4C  and 5C  are sufficiently high. An assembly defect of the throat ring 

for the side clearance within 0.178-0.300 mm should be excluded since the 
significance measure of the cause 3C  is small. The engine speed reduced to 2877 

rpm can also tell on the pump’s proper functioning, the significance measure of 
which is indicative of the cause 1C . Resistance of the force main increased up to 

1.2-1.95 kg/cm2 practically has no influence on the pump fault, so that the 
significance measure of cause 6C  is small.  

Assume a repeated measurement has revealed a decrease in the pump delivery 
up to *

1y =24.97 m3/h and an increase in the suction pressure up to *
4y =0.792 

kg/cm2, the values of 1Eμ  increasing up to 0.86, 6Eμ  up to 0.75, and the values of 

other parameters remaining unchanged.  
A neural adjustment of the null solution (6.20) has yielded a fuzzy causes 

vector   

3 5 61 2 4
0 0 0 0 0 0 0( 0.26, 0.17, 0.10, 0.93, 0.75, 0.05)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,   

for which the value of the optimization criterion (6.6) has constituted  F=0.0148. 
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The resulting null solution has allowed adjustment of the bounds in the solution 
(6.21) and generation of the set of solutions ( , )ES R μ  determined by the greatest 

solution 
 

Cμ =(
1C

μ =0.26, 
2C

μ =0.75, 
3C

μ =0.16, 
4C

μ =1.00, 
5C

μ =0.75, 
6C

μ =0.16) 
 

and the two lower solutions *

1 2
{ , }C CS = μ μ   

 

1

Cμ =( 1

1

Cμ =0.26, 2

1

Cμ =0.75, 3

1

Cμ =0, 4

1

Cμ =0.84, 5

1

Cμ =0, 6

1

Cμ =0); 

2

Cμ =( 1

2

Cμ =0.26, 2

2

Cμ =0, 3

2

Cμ =0, 4

2

Cμ =0.84, 5

2

Cμ =0.75, 6

2

Cμ =0). 
 

Thus, the solution of fuzzy relational equations (6.19) can be represented in the 
form of intervals: 

 
( , )ES R μ ={ 1Cμ =0.26; 2Cμ =0.75; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.84, 1.00]; 5Cμ ∈ [0, 0.75]; 6Cμ ∈ [0, 0.16]}  

∪ { 1Cμ =0.26; 2Cμ ∈ [0, 0.75]; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.84, 1.00]; 5Cμ =0.75; 6Cμ ∈ [0, 0.16]}.   

  (6.22) 
 

Solution (6.22) differs from (6.21) in the significance measures of the causes 

2C , 4C  and 5C . The ranges of input variables have been determined for these 

causes using the membership functions in Fig. 6.13,a: 
 

-  *
2x =33.97 or *

2x ∈ [33.97, 45] cm2/kw for 2C ;  

-  *
3x ∈ [0.254, 0.300] mm for 4C ; 

- *
4x =1.64 or *

4x ∈ [0.5, 1.64] cm3/h for 5C . 
 

The solution obtained allows for the final conclusions. The state of the pump 
being observed is due to the throat ring wear-out (the side clearance increased to 
0.254-0.300 mm), since the significance measure of the cause 4C  is maximal. The 

causes of the pump failure are still the filter clogging and fuel escape in the 
suction conduit (the flow area decreased to 33.97-45 cm2/kw and the leakage 
increased to 0.5-1.64 cm3/h), since the significance measures of the causes 2C  and 

5C  are reasonably high. The values of other parameters have not changed. 

To test the fuzzy model we used the results of diagnosis for 250 pumps with 
different kinds of faults. The tuning algorithm efficiency characteristics for the 
testing data are given in Table 6.5. Attaining an average accuracy rate of 95% 
required 30 min of the operation of a genetic algorithm and 4 min of the operation 
of a neural network (Intel Core 2 Duo P7350 2.0 GHz).  
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Table 6.5. Tuning algorithm efficiency characteristics 

Causes  
(diagnoses)

Number  
of cases in 

the data 
sample 

Probability of the correct diagnosis 

Before tuning After tuning 

 Null solution 
(genetic algorithm)

Refined 
diagnoses 

(neural network) 

1C  105 83 / 105 = 0.79 99 / 105 = 0.94 103 / 105 = 0.98 

2C  203 164 / 203 = 0.81 186 / 203 = 0.92 197 / 203 = 0.97 

3C  59 52 / 59 = 0.88 54 / 59 = 0.91 57 / 59 = 0.97 

4C  187 154 / 187 = 0.82 174 / 187 = 0.93 178 / 187 = 0.95 

5C  94 85 / 94 = 0.90 90 / 94 = 0.96 93 / 94 = 0.99 

6C  75 64 / 75 = 0.85 69 / 75 = 0.92 73 / 75 = 0.97 
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