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Chapter 2 
Direct Inference Based on Fuzzy Rules  

This chapter is devoted to the methodology aspects of identification and decision 
making on the basis of intellectual technologies. The essence of intellectuality 
consists of representation of the structure of the object in the form of linguistic IF-
THEN rules, reflecting human reasoning on the common sense and practical 
knowledge level. The linguistic approach to designing complex systems based on 
linguistically described models was originally initiated by Zadeh [1] and devel-
oped further by Tong [2], Gupta [3], Pedrych [4 – 6], Sugeno [7], Yager [8], 
Zimmermann [9], Kacprzyk [10], Kandel [11]. The main principles of fuzzy mod-
eling were formulated by Yager [8]. The linguistic model is a knowledge-based 
system. The set of fuzzy IF-THEN rules takes the place of the usual set of equa-
tions used to characterize a system [12 – 14]. The fuzzy sets associated with input 
and output variables are the parameters of the linguistic model [15]; the number of 
the rules determines its structure. Different interpretations of the knowledge con-
tained in these rules, which are due to different reasoning mechanisms, result in 
different types of models. 

This monograph can be regarded as one of the possible approaches to modeling 
intellectual activity on the basis of knowledge engineering. The herein proposed 
intellectual technique of identification, which supports the human-system ap-
proach to the solution of the simulation tasks [16], represents some general 
framework for design of fuzzy expert systems. The aim of this chapter is to intro-
duce the main formalisms necessary for the definition of fuzzy knowledge bases 
being the medium of expert information. All intellectual tasks discussed above 
can be considered to be the tasks of identification having the following com-
mon properties [17]: 

1) the output variable is associated with the object of identification, that is 
with the type of the decision made, 

2) the input variables are associated with the parameters of the identifica-
tion object state, 

3) output and input variables can have quantitative and qualitative estima-
tions, 

4) the structure of the interconnection between output and input variables is 
described by IF <inputs> THEN <outputs> rules using qualitative esti-
mations of variables and representing fuzzy knowledge bases. 
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A fuzzy knowledge base represents some combination of IF <inputs>, THEN 
<output> rules, which reflect expert experience and the understanding of cause-
effect connections in the decision making task considered (control, diagnosis, pre-
diction and other ones). Peculiarity of the similar expressions consists in the fact 
that their adequacy doesn’t change with the insignificant deviations of experiment 
conditions. Therefore, formation of the fuzzy knowledge base can be treated as an 
analog of the structural identification [12 – 14] stage, which involves simulation 
of the rough object model. In this case, the results of fuzzy evidence depend on the 
forms of fuzzy terms membership functions, which are used to estimate object 
inputs and outputs. In addition, the combination of IF-THEN rules can be consi-
dered as a set of expert points in input-output space. Application of the fuzzy logic 
evidence apparatus allows us to restore and identify the multidimensional surface 
according to these points, which allows us to receive output values with various 
combinations of input variables values available. 

Work [17] is the basis of this chapter. 

2.1   Formalization of Source Information 

2.1.1   Inputs and Outputs of an Object 

Here we consider an object with one output and n  inputs of the form: 

1 2( , ,..., )y ny f x x x=  , (2.1) 

where y  is the output variable; 1 2, ,..., nx x x  are the input variables. 

Variables 1 2, ,..., nx x x  and y  can be quantitative and qualitative. The examples 

of quantitative variables are: VEHICLE SPEED = [0, 160] km/h, PATIENT 
TEMPERATURE = [36, 41] °C, REACTOR LOAD DOZE  = [6, 20]%, and other 
variables, easily measured using accepted for them quantitative scales. 

The example of a variable for which there is no natural scale is the LEVEL OF 
OPERATOR STRESS, which can be estimated by qualitative terms (low, average, 
high) or measured by artificial scales, for example, using 5-, 10- or 100- points 
systems. 

For quantitative variables some known intervals of change are suggested: 

[ , ]ii iU x x= , 1,i n=   , (2.2) 

[ , ]Y y y=   ,    (2.3) 

where ix  ( )ix  is the lower (upper) value of input variable ix , 1,i n=  ; 
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y ( )y  is the lower (upper) value of output variable y . 

It is suggested that the sets of all possible values for qualitative variables 

1 nx x÷  and y  are known: 

1 2{ , ,..., }iq
i i i iU v v v= , 1,i n= , (2.4) 

1 2{ , ,..., }mqY y y y=   ,    (2.5) 

where 1
iv ( )iq

iv  is the point estimation corresponding to the smallest (largest) value 

of input variable ix ; 
1y ( )mqy  is the point estimation corresponding to the smallest (largest) value of 

output variable y ; 

iq , 1,i n=   and mq  are the cardinalities of sets (2.4) and (2.5), where in the 

general case 1 2  . . . n mq q q q≠ ≠ ≠ ≠ . 

2.1.2   Linguistic Variables 

Let * * * *
1 2, ,..., nx x x=X  be some vector of the input variables fixed values of the 

considered object, where *
i ix U∈ , 1,i n= . The task of decision making consists of 

defining the output *y Y∈  on the basis of the information about the vector of in-

puts *X . The necessary condition for a formal solution of this task is the availabil-
ity of dependence (2.1). To define this dependence we consider input variables ix , 

1,i n= , and output variable y  as linguistic variables [15], given on universal sets 

(2.2), (2.3) or (2.4), (2.5). 

To make an estimation of the linguistic variables ix , 1,i n= , and y  we use 

qualitative terms from the following term-sets: 
 

1 2{ , ,..., }il
i i i iA a a a=  is the term-set of variable ix , 1,i n= , 

1 2{ , ,..., }mD d d d=  is the term-set of variable y , 

where p
ia  is the p -th linguistic term of variable ix , 1, ip l= , 1,i n= ; 

      jd  is the j -th linguistic term of variable y , 

      m  is the number of various solutions in the considered region. 

Cardinalities of term-sets iA , 1,i n= , in the general case can be various, that is 

1 2  . . . nl l l≠ ≠ ≠ . 
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The names of separate terms 1 2, ,..., il
i i ia a a  can also differ for various linguistic 

variables ix , 1,i n= .  

For example, VEHICLE SPEED { low, average, high, very high }, CONVER-
SION TEMPERATURE { psychrophilic, mesophilic, thermophilic }, PULSE 
FREQUENCE { delayed, normal, increased }.  

Linguistic terms p
i ia A∈  and jd D∈ , 1, ip l= , 1,i n= , 1,j m= , are consi-

dered as fuzzy sets given on universal sets iU  and Y  defined by relations 

(2.2) ÷ (2.5). 

In the case of quantitative variables ix , 1,i n= , and y  fuzzy sets p
ia  and jd  

are defined by relations: 

( ) /
i

p
i

i

x
ap

i i i

x

a x xμ= ∫  ,                                              (2.6) 

( ) /j

d
d

j

d

d d dμ= ∫   ,                                               (2.7) 

where ( )
p
ia

ixμ  is the membership function of the input variable [ , ]i i ix x x∈ value 

to the term p
i ia A∈ , 1, ip l= , 1,i n= ; 

( )jd dμ  is the membership function of the output variable [ , ]y y y∈ to the term 

- solution jd D∈ , 1,j m= . 

In the case of qualitative variables ix , 1,i n=  and y  fuzzy sets p
ia  and jd  are 

defined as: 

1

( ) /
i p

i

q
ap k k

i i i
k

a v vμ
=

=∑   ,                                         (2.8) 

1

( ) /
m

j

q
d r

j
r

d yμ
=

=∑ ry ,                                          (2.9) 

where ( )
p
ia k

ivμ  is the membership degree of the element k
i iv U∈  to the term 

p
i ia A∈ , 1, ip l= , 1,i n= , 1, ik q= ; 

( )jd ryμ  is the membership degree of the element ry Y∈  to the term - solution 

jd D∈ , 1,j m= ;  

iU  and Y  are defined by relations (2.4) and (2.5).  
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Note that integral and summation signs in relations (2.6) – (2.9) designate join-
ing of pairs ( ) /u uμ . 

This stage of fuzzy model construction is named fuzzification of variables in 
fuzzy logic literature [9]. At this stage the linguistic estimations of variables and 
the membership functions necessary for their formalization are defined.  

2.1.3   Fuzzy Knowledge Base 

Let us take N  experimental data connecting inputs and output of the identifica-
tion object, and distribute it in the following way: 

1 2 ... mN k k k= + + + , 

where jk  is the number of experimental data corresponding to output solution jd , 

1,j m= , m  is the number of output decisions where in the general case 

1 2 ... mk k k≠ ≠ ≠ . 

It is supposed that  1 2 ... nN l l l< ⋅ ⋅ ⋅ , that is, the number of the selected experi-

mental data is smaller than the complete set of various combinations of object 

input variables change levels ( , 1, )il i n= . 

Let us number N  experimental data in the following way: 
11, 12, ..., 1 1k  – numbers of input variables combinations for solution 1d ; 

...  

j 1, j 2, ..., j jk  – numbers of input variables combinations for solution jd ; 

...  

m 1, m 2, ..., m mk  – numbers of input variables combinations for solution md . 

Let us designate Table 2.1 as a knowledge matrix formed according to such rules: 

1) Dimension of this matrix is equal to ( 1)n N+ × , where ( 1)n +  is the number 

of columns and 1 2 ... mN k k k= + + +  is the number of rows. 

2) The first n  columns of the matrix correspond to input variables ix , 1,i n= , 

and the ( 1n + )-th column corresponds to values jd  of output variable 

y ( 1,j m= ). 

3) Each row of the matrix represents some combination of input variables val-
ues referred to one of possible output variable y  values. In this connection: the 

first 1k  rows correspond to output variable 1y d=  value, the second 2k  rows cor-

respond to 2y d=  value, . . . , the last mk  rows correspond to value my d= . 

4) Element jp
ia , placed at the crossing of i -th column and jp -th row, corres-

ponds to the linguistic estimation of parameter ix  in row number jp  of the fuzzy 
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knowledge base, where linguistic estimation jp
ia  is selected from a term-set cor-

responding to variable ix , that is jp
i ia A∈ , 1,i n= , 1,j m= , 1, jp k= . 

Thus introduced knowledge base defines some system of logical expressions of 
the type «IF - THEN, OTHERWISE», interconnecting input variables values 

1 nx x÷  with one of the possible types of solution jd , 1,j m= : 

Table 2.1. Knowledge base 

Number of 
the input 

Input variables Output  
variable 

combination 
of values 1x  2x  . . . ix  . . . nx  y  

11 11
1a  11

2a  . . . 11
ia  . . . 11

na   

12 12
1a  12

2a  . . . 12
ia  . . . 12

na  1d  

. . .      
1 1k  11

1
ka  11

2
ka  . . . 11k

ia  . . . 11k
na   

. . .      
1j  1

1
ja  1

2
ja  . . . 1j

ia  . . . 1j
na   

2j  2
1
ja  2

2
ja  . . . 2j

ia  . . . 2j
na  jd  

. . .      

jjk  jjk
a1  jjk

a2  . . . jjk
ia  . . . jjk

na   

. . .      
m 1 1

1
ma  1

2
ma  . . . 1m

ia  . . . 1m
na   

m 2 2
1
ma  2

2
ma  . . . 2m

ia  . . . 2m
na  md  

. . .      

mmk  mmka1  mmka2  . . . mmk
ia  . . . mmk

na   
 

 

IF      11
1 1( )x a=   AND 11

2 2( )x a=   AND  . . . AND 11( )n nx a=    OR 
12

1 1( )x a=   AND 12
2 2( )x a=   AND  . . . AND 12( )n nx a=   OR   . . .  

11
1 1( )kx a=  AND 11

2 2( )kx a=  AND  . . . AND 11( )k
n nx a= , 

THEN 1y d= , OTHERWISE 

IF      21
1 1( )x a=    AND 21

2 2( )x a=    AND  . . .  AND 21( )n nx a=   OR 
22

1 1( )x a=    AND 22
2 2( )x a=   AND  . . .  AND 22( )n nx a=   OR   . . .  

22
1 1( )kx a=  AND 22

2 2( )kx a=  AND  . . . AND 22( )k
n nx a= , 

THEN 2y d= , OTHERWISE . . .  
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IF      1
1 1( )mx a=    AND 1

2 2( )mx a=    AND  . . . AND 1( )m
n nx a=    OR 

2
1 1( )mx a=    AND 2

2 2( )mx a=    AND  . . . AND 2( )m
n nx a=   OR   . . .  

1 1( )mmkx a=  AND 2 2( )mmkx a=  AND  . . . AND ( )mmk
n nx a= , 

THEN my d= ,                                                                                            (2.10) 

where jd ( 1,j m= ) is a linguistic estimation of output variable y  defined from 

term-set D ; 
jp

ia  is a linguistic estimation of input variable ix  in p -th row of j -th disjunc-

tion selected from the corresponding term-set iA , 1,i n= , 1,j m= , 1, jp k= ; 

jk  is the number of rules defining output variable value jy d= . 

Let us call the system of logic statements like this one the fuzzy knowledge base 
system. 

Using operations ∪ (OR) and ∩ (AND) the system of logical statements 

(2.10) can be rewritten in a more compact form: 

1 1

( )      
jk n

jp
i i j

p i

x a y d
= =

⎡ ⎤= ⎯⎯→ =⎢ ⎥
⎣ ⎦
∪ ∩ , 1,j m=  .           (2.11) 

Thus, the required relation (2.1) defining interconnection between input parame-
ters ix  and output variable y , is formalized in the form of fuzzy logical statements 

(2.11) system, which is based on the above introduced knowledge matrix. 

2.1.4   Membership Functions 
According to definition [15], membership function ( )T xμ  characterizes some 

subjective measure (in the range of [0, 1] ) of expert certainty in the fact that crisp 
value x  corresponds to fuzzy term T . The most spread in practical applications 
[9] are triangle, trapezoidal and bell shape Gaussian membership functions, para-
meters of which allow us to change function shapes. 

We suggest an analytical model of a variable x  membership function to an ar-
bitrary fuzzy term T  in the form of: 

2

1
( )

1

T x
x b

c

μ =
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

  ,                                   

(2.12)

 

which is simple and convenient for tuning, where b and c are tuning parameters: b 
is the function maximum coordinate, ( ) 1T bμ = ; c is the function concentration-

extension ratio (Fig. 2.1). For fuzzy term T  number b represents the most possible 
value of variable x . 
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Fig. 2.1. Membership function model  

2.2   Fuzzy Approximator for System with Discrete Output 

2.2.1   Problem Statement 

Let us consider the following as known: 
 

* the set of decisions 1 2{ , , ..., }mD d d d= , corresponding to output variable y , 

* the set of input variables 1 2( , ,..., )nx x x=X , 

* the ranges of quantitative change of each input variable [ , ]i i ix x x∈ , 1,i n=  , 

* the membership functions allowing to represent variables ix , 1,i n= , in the 

form of fuzzy sets (2.6) or (2.8), 
* the knowledge matrix defined according to the rules introduced in Section 

2.1.3. 

It is thus required to design such an algorithm of decision making which allows 

us to bring the fixed vector of input variables * * * *
1 2, ,..., nx x x=X , * [ , ]i i ix x x∈ , 

into correspondence with decision y D∈ .  
The task of object approximation with a discrete output is shown in the form of 

a diagram in Fig. 2.2, where it is emphasized that the object inputs are given by 
three methods: 1- by number, 2- by linguistic term, 3- by thermometer principle. 

The idea behind the method suggested below for the solution of this task con-
sists of using fuzzy logic equations. These equations are constructed on the basis 
of a knowledge matrix or of some system of logical statements (2.10) which is 
isomorphic to this matrix and allow us to calculate the values of membership func-
tions of various decisions (solutions) for fixed values of object input variables. 
The solution with the greatest value of membership function is chosen as the re-
quired one. 
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2.2.2   Fuzzy Logical Equations 

Linguistic estimations jp
ia  of variables 1 nx x÷ , contained in logic statements 

about decisions jd  (2.10), are considered as fuzzy sets defined on universal sets 

[ , ]i i iU x x= , 1,i n= , 1,j m= . 

Let ( )
jp

ia
ixμ  be the membership function of parameter [ , ]i i ix x x∈ to fuzzy 

term jp
ia , 1,i n= , 1,j m= , 1, jp k= ; 

1 2( , ,..., )jd

nx x xμ  is the membership function of input variables 

1 2( , ,..., )nX x x x= vector to the value of output variable jy d= , 1,j m= . 

Interconnection between these functions is defined by fuzzy knowledge base 
(2.11) and can be represented in the form of the following equations: 

 

Knowledge matrix

d1 d j dm. . .. . .
C l a s s e s   o f   s o l u t i o n s

Fuzzy logic inference

y

x1 xi xn. . .. . .

1x
1x

. . .
vi
1 vi

2
vi
qi

minimal 
level

nx

average 
level

*
nx

maximum 
level

nx
I n p u t   v a r i a b l e s 

 

Fig. 2.2. Approximation of a nonlinear object with discrete output  
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where ∨  is the logic OR operation, ∧  is the logic AND operation. 
These fuzzy logical equations are derived from fuzzy knowledge base (2.11) by 

way of replacing linguistic terms jp
ia  and jd  by corresponding membership func-

tions, and operations ∪ and ∩  by operations ∨  and ∧ . 

The logical equation system can be briefly written in the following way: 

1 2 1 1
( , ,..., ) ( )

j jp
j i

k n
d a

n ip i
x x x xμ μ

= =

⎡ ⎤= ∨ ∧⎢ ⎥⎣ ⎦
, 1,j m=  .                 (2.13) 

2.2.3   Approximation Algorithm 

The making of decision *
1 2{ , ,..., }md D d d d∈ = , which corresponds to the fixed 

values vector of input variables * * * *
1 2, ,..., nx x x=X , is performed in the following 

sequence. 
 

1°. Let us fix the input variables values vector 
* * * *

1 2( , ,..., )nx x x=X  . 

2°. Let us assign fuzzy terms membership functions used in the fuzzy know-
ledge base (2.11) and define values of these functions for the given values of input 
variables * *

1 nx x÷ . 
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3°. Using logical equations (2.13) we calculate multidimensional membership 

functions * * *
1 2( , ,..., )jd

nx x xμ  of vector *X  for all the values jd , 1,j m=  of output 

variable y . Logic operations AND ( ∧ ) and OR ( ∨ ) performed on membership 

functions are replaced by the operations min and max. 
 

( ) ( ) min[ ( ), ( )]a b a bμ μ μ μ∧ = , 

( ) ( ) max[ ( ), ( )]a b a bμ μ μ μ∨ = . 
 

4°. Let us define value *
jd , the membership function of which is maximal: 

( )* * * * * *
1 2 1 2

1,
( , ,..., ) max ( , ,..., )j jd d

n n
j m

x x x x x xμ μ
=

= . 

It is this solution that is required for the input variables values vector 
* * * *

1 2( , ,..., )nx x x=X . 

Thus, the suggested algorithm uses the idea of linguistic term identification by 
membership function maximum and generalizes this idea over the entire know-
ledge base. 

The computational part of the suggested algorithm is easily realized with the 
membership functions values matrix derived from the knowledge matrix by way 
of doing min and max operations (Fig. 2.3). 

The suggested algorithm of finding discrete values 1 2{ , , ..., }md d d of output 

variable y  by the given input variables fixed values vector * * * *
1 2, ,..., nx x x=X  

and by the knowledge matrix allows to approximate the object 

1 2( , ,..., )y ny f x x x= with a discrete output. 

2.3   Fuzzy Approximator for System with Continuous Output 

Let us break interval [ , ]y y , with which object output y changes, into m parts:  

21

1 1 2 1 1[ , ] [ , ) [ , ) ... [ , ) ... [ , ]

mj

j j m

d dd d

y y y y y y y y y y− −= ∪ ∪ ∪ ∪ ∪  .       
(2.14)

 

Known expert information about the object with continuous output we give in 
the form of fuzzy logical expressions system:  

   IF          1 1 1
1 1 2 2[( )  AND  ( )  AND ...   ( )]         j j j

n nx a x a x a= = =  

  OR         2 2 2
1 1 2 2[( )   AND  ( )  AND ...   ( )]        j j j

n nx a x a x a= = = . . . 

. . .  OR        1 1 2 2( )  AND  ( )  AND ...   ( )j j jjk jk jk

n nx a x a x a⎡ ⎤= = =⎣ ⎦ , 

THEN      1[ , )j j jy d y y−∈ = , for all 1,j m= ,                                          (2.15) 
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where  p
ja  is the linguistic term by which variable ix  in the row with number 

jp k=  is estimated;  

jk  is the number of rows-conjunctions corresponding to interval jd , 1,j m= . 
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Fig. 2.3. Matrix realization of decision making algorithm  

2.3.1   Problem Statement 

Let us consider the following as known: 

* the interval of change [ , ]y y of output variable y , 

* the input variables set 1 2( , ,..., )nx x x=X , 

* the ranges of quantitative change of each input variable [ , ]i i ix x x∈ , 1,i n=  , 

* the membership functions allowing to represent variables ix , 1,i n= , in the 

form of fuzzy sets (2.6) or (2.8), 
* the system of logical expressions of form (2.15), which can be represented in 

the form of the knowledge base from Section 2.1.3.  
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It is thus required to design such a decision making algorithm that allows to 

bring the fixed vector of input variables * * * *
1 2, ,..., nx x x=X , * [ , ]i i ix x x∈  into cor-

respondence with decision [ , ]y y y∈ . 

The fuzzy logic evidence algorithm presented in Section 2.2.3 allows us to cal-
culate the output value y  in the form of a fuzzy set: 

1 2

1 1 2 1

( ) ( ) ( )
,   ,  ... ,  .

[ , ) [ , ) [ , ]

mdd d

m

y y y
y

y y y y y y

μ μ μ

−

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

                          (2.16)
 

To obtain a crisp number corresponding to the fuzzy value (2.16) from interval 

[ , ]y y it is necessary to use the defuzzification operation [9]. Defuzzification is 

the operation of transforming fuzzy information into its crisp form. Let us define a 
crisp number *y  which corresponds to fuzzy set (2.16) such that: 

1 2

1 2

1 1*
( ) ( ) ... ( )

( ) ( ) ... ( )

m

m

dd d
m

dd d

y y y y y y
y

y y y

μ μ μ
μ μ μ

−+ + +
=

+ + +
.                 (2.17) 

Where there is probability interpretation of membership degrees, formula (2.17) can 
be considered as an analog to mathematical expectation of a discrete random value. 

If we break interval [ , ]y y  into m equal parts, that is, 

1y y= + Δ , 2 2y y= + Δ , ..., 1my y− = − Δ , 
1

y y

m

−
Δ =

−
,   

then formula (2.17) is simplified and takes the form which is convenient for  
calculations:  

1*

1

[ ( 1) ] ( )

( )

j

j

m
d

j

m
d

j

y j y

y
y

μ

μ

=

=

+ − Δ
=
∑

∑
.                              (2.18)  

2.3.2   Approximation Algorithm 

To solve the stated problem of the approximation of a nonlinear object with conti-
nuous output we use the fuzzy logic evidence algorithm from Section 2.2.3 and 
the defuzzification operation (2.18). Then the value of the output variable 

* [ , ]y y y∈ , which corresponds to the vector of input variables fixed values 

* * * *
1 2, ,..., nx x x=X , is found in such a sequence. 
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1°. Using the fuzzy logic evidence algorithm from Section 2.2.3 we calculate 

multi-dimensional membership functions * * *
1 2( , ,..., )jd

nx x xμ  of vector *X  for all 

the subintervals 1[ , )j j jd y y−= , 1,j m= , into which interval [ , ]y y of output va-

riable y  is broken. 

2°. Using defuzzification operation (2.18) we obtain the required value *y  . 

Approximation of a nonlinear object with continuous output is shown in 
Fig. 2.4. 
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Fig. 2.4. Approximation of a nonlinear object with continuous output  
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