

A.P. Rotshtein et al.: Fuzzy Evidence in Identif., Forecast. and Diagn., STUDFUZZ 275, pp. 1–37.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

ti

Chapter 1
Fundamentals of Intellectual Technologies

Intellectual technologies which are used to do the tasks of identification and deci-
sion making in this book represent a combination of three independent theories:

- of fuzzy sets - as a means of natural language expressions and logic evidence
formalization;

- of neural nets - artificial analogs of the human brain simulating the capabili-
ty to learn;

- of genetic algorithms - as a means of optimal decision synthesis from a mul-
tiplicity of initial variants on which the operations of crossing, mutation and
selection are performed.

The concept of the linguistic variable underlies natural language expressions
formalization [1, 2]. According to Zadeh [1], such a variable whose values are
words or sentences of the natural language, that is the qualitative terms, is
called the linguistic variable. Using the notion of membership function, each
of the terms estimating a linguistic variable can be formulated in the form of a
fuzzy set defined on a corresponding universal set [2]. Fuzzy logic apparatus
does not contain learning mechanisms. That is why the results of fuzzy logic evi-
dence strongly depend on the membership functions type used to formalize fuzzy
terms: “small”, “large”, “cool”, “hot” and alike.

The main feature of neural networks is their learning ability. This is realized by
special algorithms among which the back-propagation algorithm is the most popu-
lar [3, 4]. There is no need for prior information about the structure of the sought
functional dependence to train the neural network. Only the training data in the
form of experimental “input – output” pairs are needed, and the price for it is the
fact that a trained neural network – a graph with weighted edges – doesn’t yield to
semantic interpretation.

Optimization is the most important stage in solving identification problems [5 – 7].
A task of nonlinear optimization can be solved by various methods among which the
gradient descent [8] is the most universal. However, when there is a great number of
input variables the gradient descent method requires finding the minimum from vari-
ous initial points that substantially increases computer time expenses. Genetic algo-
rithms represent the powerful apparatus of optimal decision synthesis [9, 10]. These
algorithms are analogues of random search [8], which is carried out simultaneously
from various initial points, cutting the time of search for optimal solutions.

2 Chapter 1 Fundamentals of Intellectual Technologies

1.1 Fuzzy Sets

This section is written on the basis of the works [1, 2, 11, 12]. The additional in-
formation relative to fuzzy sets and decision making under uncertainty can be
found in the works [13 – 21].

The concept of a set, and set theory, are powerful tools in mathematics. Unfor-
tunately, a sin qua non condition underlying set theory, i.e. that an element can
either belong to a set or not, is often not applicable in real life where many vague
terms as “large profit”, “high pressure”, “moderate temperature”, “reliable tools”,
“safe conditions”, etc. are extensively used. Unfortunately, such imprecise de-
scriptions cannot be adequately handled by conventional mathematical tools.

If we wish to maintain the very meaning of imprecise (vague) terms, a crisp dif-
ferentiation between elements (e.g., pressure values) that are either high or not
high may be artificial, and some values may be perceived high to some extent, not
fully high and not fully not high.

An attempt to develop a formal apparatus to involve a partial membership in a
set was undertaken in the mid-1960’s by Zadeh [1]. He introduced the concept of
a fuzzy set as a collection of objects which might “belong” to it to a degree, from 1
for full belongingness to 0 for full nonbelongingness, through all intermediate
values. This was done by employing the concept of a membership function, as-
signing to each element of a universe of discourse a number from the unit interval
to indicate the intensity (grade) of belongingness. The concept of a membership
function was evidently an extension of that of a characteristic function of a con-
ventional set assigning to the universe of discourse either 0 (nonbelongingness) or
1 (belongingness). Then, basic properties and operations on fuzzy sets were de-
fined by Zadeh (and later by his numerous followers) being essentially extensions
(in the above spirit) of their conventional counterparts.

Since its inception, fuzzy sets theory has experienced an unprecedented growth
of interest in virtually all fields of science and technology.

1.1.1 Fundamentals of Fuzzy Set Theory

Suppose that { }X x= is a universe of discourse, i.e. the set of all possible (feasi-

ble, relevant, ...) elements to be considered with respect to a fuzzy (vague) concept
(property). Then a fuzzy subset (or a fuzzy set, for short) A in X is defined as a
set of ordered pairs {(, ())}Ax xμ , where x X∈ and : [0,1]A Xμ → is the mem-

bership function of A ; () [0, 1]A xμ ∈ is the grade of membership of x in A ,

from 0 for full nonbelongingness to 1 for full belongingness, through all interme-
diate values. In some contexts it may be expedient to view the grade of member-
ship of a particular element as its degree of compatibility with the (vague) concept
represented by the fuzzy set. Notice that the degrees of membership are clearly
subjective.

1.1 Fuzzy Sets 3

Many authors denote ()A xμ by ()A x . Moreover, a fuzzy set is often equated

with its membership function so that both A and ()A xμ are often used interchan-

geably.
Notice that if [0, 1] is replaced by {0, 1} , this definition coincides with the cha-

racteristic function based description of an ordinary (nonfuzzy) set. Moreover, the
original Zadeh’s unit interval is chosen for simplicity, and a similar role may be
played by an ordered set, e.g., a lattice.

It is convenient to denote a fuzzy set defined in a finite universe of discourse,

say A in 1 2{ , ,..., }nX x x x= as

1 1 2 2
1

() () ... () ()
n

A A A A
n n i i

i

A x x x x x x x xμ μ μ μ
=

= + + + =∑ ,

where “ ()A
i ix xμ ” (called a singleton) is a pair “grade of membership – element”

and “+” is meant in the set-theoretic sense.

Example 1.1. If {1, 2,...,10}X = , then a fuzzy set “large number” may be given as

A = ” large number”=0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10

to be meant as: 9 and 10 are surely (to degree 1) “large numbers”, 8 is a “large
number” to degree 0.8, etc. and 1,2,...,5 are surely not “large numbers”. Notice
that the above degrees of membership are subjective (a “large number” is a sub-
jective concept!) and context-dependent, and - by convention - the singletons with

() 0Aμ • = are omitted.

In practice it is usually convenient to use a piecewise linear representation of
the membership function of a fuzzy set as shown in Fig. 1.1 since only two values,

a and a , are needed.

a a
0

1

)(x(x

x

Fig. 1.1. Membership function of a fuzzy set

4 Chapter 1 Fundamentals of Intellectual Technologies

1.1.2 Basic Properties of Fuzzy Sets

A fuzzy set A in X is empty, A = ∅ , if and only if () 0A xμ = , x X∀ ∈ .

Two fuzzy sets A , B in X are equal, A B= , if and only if () ()A Bx xμ μ= ,

x X∀ ∈ .
A fuzzy set A in X is included in (is a subset of) a fuzzy set B in X ,

A B⊆ , if and only if () ()A Bx xμ μ≤ , x X∀ ∈ .

Example 1.2. Suppose {1, 2, 3}X = and A = 0.3/1 + 0.5/2 + 1/3 and B = 0.4/1 +
0.6/2 + 1/3; then A B⊆ .

An important concept is the cardinality of a fuzzy set. If 1 2{ , ,..., }nX x x x= , and

1 1 2 2
1

() () ... () ()
n

A A A A
n n i i

i

A x x x x x x x xμ μ μ μ
=

= + + + =∑ ,

then the (nonfuzzy) cardinality of A is defined as

1

card | | ()
n

A
i

i

A A xμ
=

= =∑ .

Example 1.3. If {1,2,3,4}X = and A = 0.1/1 + 0.4/2 + 0.7/3 + 1/4, then

card A =2.2.

1.1.3 Basic Operations on Fuzzy Sets

The basic operations here are naturally the complement, intersection and union, as
in the conventional set theory.

The complement of a fuzzy set A in X , A¬ , is defined as

() 1 ()A Ax xμ μ¬ = − , x X∀ ∈ .

and it corresponds to the negation «not».
The intersection of two fuzzy sets A , B in X , A B∩ , is defined as

() () ()A B A Bx x xμ μ μ∩ = ∧ , x X∀ ∈ ,

where « ∧ » is the minimum, and it corresponds to the connective «and».
The union of two fuzzy sets, A , B in X , A B∪ , is defined as

() () ()A B A Bx x xμ μ μ∪ = ∨ , x X∀ ∈ ,

where « ∨ » is the maximum, and it corresponds to the connective «or».

1.1 Fuzzy Sets 5

Example 1.4. If {1, 2,...,10}X = ,

A = “small number” = 1/1 + 1/2 + 0.8/3 + 0.5/4 + 0.3/5 + 0.1/6,
B = “large number” = 0.1/5 + 0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10,

then A¬ = “not small number” = 0.2/3 + 0.5/4 + 0.7/5 + 0.9/6 + 1/7 + 1/8 + 1/9 +
1/10

A B∩ = “small number” and “large number” = 0.1/5 + 0.1/6
A B∪ = “small number” or “large number” = 1/1 + 1/2 + 0.8/3 + 0.5/4 + 0.3/5

+ 0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10.

The above definitions are classic, and have been commonly employed though
they are evidently by no means the only ones. For instance, the use of a t -norm
for the intersection and an s -norm for the union has often been advocated. They
are defined as follows:

a t -norm is defined as t : [0, 1] [0,1] [0,1]× → such that:

a) a t 1 = a
b) a t b = b t a
c) a t b ≥ c t d, if a ≥ c, b ≥ d
d) a t b t c = a t (b t c).

Some more relevant examples of t -norms are:

min(,)a b a b∧ = - this is the most popular t -norm,

a b⋅ ,
1/1 [1 ((1) (1))]p p pa b− ∧ − + − , 1p ≥ .

an s -norm (t -conorm) is defined as s : [0, 1] [0,1] [0,1]× → such that:

a) a s 0 = a
b) a s b = b s a
c) a s b ≥ c s d, if a ≥ c, b ≥ d
d) a s b s c = a s (b s c).

Some examples of more popular s -norms are:

max(,)a b a b∨ = - this is the most popular s -norm,

a b a b+ − ⋅

()1/
1

pp pa b∧ + , 1p ≥ .

1.1.4 Further Properties and Related Concepts

An α -cut (α -level set) of a fuzzy set A in X is defined as the ordinary set
A Xα ⊆ such that

{ : () }AA x X xα μ α= ∈ ≥ , [0,1]α∀ ∈ .

6 Chapter 1 Fundamentals of Intellectual Technologies

Example 1.5. If A = 1/1 + 0.8/2 + 0.5/3 +0.1/4, then 0.1 {1,2,3,4 }A = ,

0.5 { 1, 2, 3 }A = , 0.8 {1,2 }A = 1 { 1 }A = .

The concept of an α -cut of a fuzzy set is crucial for the so-called decomposi-
tion theorem which states that any fuzzy set A in X may be represented as some
(equivalent) operation on conventional sets (subsets of X).

Of fundamental importance here is the so-called extension principle [1] which
gives a formal apparatus to carry over operations (e.g., arithmetic or algebraic)
from sets to fuzzy sets. Namely, if :f X Y→ is a function (operation) and A is a

fuzzy set in X , then A induces via f a fuzzy set B in Y given by

1

()

1

sup () , ()
()

0 , ()

A

B y f x
x f y

y
f y

μ
μ

−

=

−

⎧ ≠ ∅⎪= ⎨
⎪ = ∅⎩

. (1.1)

Example 1.6. Let { 1, 2, 3, 4 }X = , {1, 2, 3, 4, 5, 6 }Y = and 2y x= + . If now

A = 0.1/1 + 0.2/2 + 0.7/3 + 1/4, then B = 0.1/3 + 0.2/4 + 0.7/5 + 1/6.

1.1.5 Fuzzy Relations

Fuzzy relations - exemplified by «much larger than», «more or less equal», etc. -
are clearly omnipresent in human discourse. Formally, if { }X x= and { }Y y= are

two universes of discourse, then a fuzzy relation R is defined as a fuzzy set in the
Cartesian product X Y× , characterized by its membership function

: [0,1]R X Yμ × → ; (,) [0,1]R x yμ ∈ reflects the strength of relation between

x X∈ and y Y∈ .

Example 1.7. Suppose that X = {horse, donkey} and Y = {mule, cow}. The
fuzzy relation «similar» may then be defined as

R = «similar» = 0.8/(horse, mule) + 0.4/(horse, cow) +
 + 0.9/(donkey, mule) + 0.5/(donkey, cow)

to be read that, e.g., a horse and a mule are similar to degree 0.8, a horse and a
cow to degree 0.4, etc.

Notice that for finite, small enough X and Y , a fuzzy relation may be evident-
ly shown in the matrix form.

A crucial concept related to fuzzy relations is their composition. If we have two
fuzzy relations R in X Y× and S in Y Z× , then their (max-min) composition is
a fuzzy relation R S in X Z× defined by

(,) sup[(,) (,)]R S R S

y Y
x z x y y zμ μ μ

∈
= ∧ .

1.1 Fuzzy Sets 7

Fuzzy relations play a crucial role in virtually all applications, notably in deci-
sion making and control.

1.1.6 Fuzzy Numbers

The extension principle defined by (1.1) is a very powerful tool for extending non-
fuzzy relationships to their fuzzy counterparts. It can also be used, e.g., to devise
fuzzy arithmetic.

A fuzzy number is defined as a fuzzy set in the real line, A in R , which is
normal (i.e. sup () 1A

x R
xμ

∈
=) and bounded convex (i.e. whose all α -cuts are con-

vex and bounded). A fuzzy number may be exemplified by «about five», «a little
more than 7», «more or less between 5 and 8», etc.

Notice that function f in (1.1) may be, say, the sum, product, difference and

quotient, and we can extend via (1.1) the four main arithmetic operations: addi-
tion, multiplication, subtraction and division to fuzzy sets, hence obtaining fuzzy
arithmetic.

Namely, for the basic four operations we obtain:
* addition

() max[() ()]A B A B

z x y
z x yμ μ μ+

= +
= ∧ , , ,x y z R∀ ∈ ;

* subtraction

() max[() ()]A B A B

z x y
z x yμ μ μ−

= −
= ∧ , , ,x y z R∀ ∈ ;

* multiplication

*

*
() max[() ()]A B A B

z x y
z x yμ μ μ

=
= ∧ , , ,x y z R∀ ∈ ;

* division

/

/ , 0
() max [() ()]A B A B

z x y y
z x yμ μ μ

= ≠
= ∧ , , ,x y z R∀ ∈ .

Unfortunately, the use of the extension principle to define the arithmetic opera-
tions on fuzzy numbers is in general numerically inefficient, hence it is usually
assumed that a fuzzy number is given in the so-called L R− representation whose
essence is that the membership function of a fuzzy number is

 , 0,

()

 , 0,

A

m x
L x m

x
m x

R x m

α
α

μ
β

β

⎧ −⎛ ⎞ > ∀ ≤⎜ ⎟⎪ ⎝ ⎠⎪= ⎨
⎛ ⎞−⎪ > ∀ ≥⎜ ⎟⎪ ⎝ ⎠⎩

 ,

8 Chapter 1 Fundamentals of Intellectual Technologies

where function L is such that:

а) () ()L x L x− = ,
b) (0) 1L = ,
c) L is increasing in [0,]+ ∞ ,

and similarly function R .
Here m is the mean value of the fuzzy number A , α is its left spread, and β

is its right spread; notice that when α , β =0, then the fuzzy number A boils
down to a real number m .

A fuzzy number A can now be written as (, ,)A A AA m α β= , and the arith-

metic operations may be defined in terms of the m ’s,α ’s and β ’s. For instance,

in the case of addition:

(, ,) (, ,) (, ,)A A A B B B A B A B A BA B m m m mα β α β α α β β+ = + = + + + ,

and similarly for the other arithmetic operations.
In practice, however, the L R− representation is further simplified in that the

functions L and R are assumed to be linear which leads to triangular fuzzy num-
bers exemplified by the one shown in Fig. 1.2a, and whose membership function
is generally given by

() () ,
()

() () ,
A x a a a a x a

x
a x a a a x a

μ
− − −

+ + +

⎧ − − ≤ ≤⎪= ⎨
− − ≤ ≤⎪⎩

.

a a aa a a a

0

1

)(x(x

x

a) b)
Fig. 1.2. Membership functions of triangular and trapezoid fuzzy numbers

1.1 Fuzzy Sets 9

Notice that a triangular fuzzy number may be adequate for the formalization of
such terms as, say, around 5 or much more than 10 (in this case, evidently, a+ must
be a very large number). For the representation of such fuzzy numbers as, e.g., more
or less between 5 and 7 the trapezoid fuzzy numbers may be used which are exem-
plified in Fig. 1.2b and whose membership function is generally written as

() () ,

() 1 ,

() () ,

A

x a a a a x a

x a x a

a x a a a x a

μ

− − −

+ + +

⎧ − − ≤ ≤
⎪⎪= ≤ ≤⎨
⎪ − − ≤ ≤⎪⎩

.

1.1.7 Fuzziness and Probability

Novices at fuzzy set theory very often try to compare it with theory of probability.
However, both theories are hardly comparable because they treat uncertainty dif-
ferently. Some statistical uncertainty is considered in theory of probability, e.g., a
probability of hitting the target is equal to 0.9. Fuzzy set theory allows us to oper-
ate with linguistic uncertainty, e.g., good shot. These types of uncertainty can be
formalized with the help of:

• distribution functions – for theory of probability,

• membership functions – for fuzzy set theory.

The founder of fuzzy set theory L. Zadeh gives the following example to illustrate
the crucial difference between the two distributions [17].

Example 1.8. Let us consider the assertion «The author eats X eggs at break-
fast»,

{1, 2, 3, ... }X = .
Some possibility and probability distributions correspond to the value of X ,
which can be considered as an uncertain parameter.

The possibility distribution ()X uπ can be interpreted as a degree (a subjective

measure) of easiness, with which the author eats u eggs. To define the probability
distribution ()XP u , it is necessary to observe the author over a period of 100 days.

Both distributions are presented below.

Possibility and probability distribution

u 1 2 3 4 5 6 7 8

()X uπ 1 1 1 1 0.8 0.6 0.4 0.2

()XP u 0.1 0.8 0.1 0 0 0 0 0

10 Chapter 1 Fundamentals of Intellectual Technologies

It is seen, that the high degree of possibility ()X uπ does not mean in any case

the same high degree of probability ()XP u . There is no doubt: if an event is im-

possible, then it is also improbable.
The crucial difference between theory of probability and theory of possibility is ap-

parent wherein the axiom of complement is treated differently in these two theories:

() () 1P A P A+ = - for theory of probability,

() () 1A Aπ π+ ≠ - for theory of possibility.

1.2 Genetic Algorithms
As mentioned in the preface, optimization is the most important stage in solving
identification problems [5 – 7]. The main difficulties in the application of the
classical methods of nonlinear functions optimization [8] are related to the prob-
lems of finding a local extremum (Fig. 1.3) and overcoming of the “dimension
curse” (Fig. 1.4).

-0.2

0

0.2

0.4

0.6

0.8

1

0
0 0
94
0 1
88
0 2
81
0 3
75
0 4
69
0 5
62
0 6
56 0.7

5
0 8
44
0 9
38

Local minimum

Global minimum 0
500
1000
1500

2000
2500
3000
3500

0
0.0
94
0.1
88
0.2
81
0.3
75
0.4
69
0.5
62
0.6
56 0.7

5
0.8
44
0.9
38

Time of
calculation

“Wall” of
complexity

Dimension of
the problem

Fig. 1.3. Problem of local extremum Fig. 1.4. Problem of “dimension curse”

The attempts to overcome these problems resulted in the creation of a special
theory of genetic algorithms, which grow the optimal solution by crossing-over
the initial variants with consequent selection using some criterion (Fig. 1.5). The
general information about genetic algorithms presented in this chapter is based on
the works [9, 10, 22, 23].

1.2 Genetic Algorithms 11

Population

Fitness function

The best variant

Selection of parents
from the population

Offsprings

Features
inheritance

Replenishment
of the population

Fig. 1.5. Idea of genetic algorithm

(In: Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning, Addi-
son Wesley, 1989)

1.2.1 General Structure of Genetic Algorithms

Genetic algorithms are stochastic search techniques based on the mechanism of
natural selection and natural genetics. Genetic algorithms, differing from conven-
tional search techniques, start with an initial set of random solutions called a popu-
lation. Each individual in the population is called a chromosome, representing a

12 Chapter 1 Fundamentals of Intellectual Technologies

solution to the problem at hand. A chromosome is a string of symbols; it is usu-
ally, but not necessarily, a binary bit string. The chromosomes evolve through suc-
cessive iterations, called generations. During each generation, the chromosomes
are evaluated, using some measures of fitness. To create the next generation, new
chromosomes, called offsprings, are formed by either (a) merging two chromo-
somes from the current generation using a crossover operator or (b) modifying a
chromosome using a mutation operator. A new generation is formed by (a) select-
ing, according to the fitness values, some of the parents and offsprings and (b)
rejecting others so as to keep the population size constant. Fitter chromosomes
have higher probabilities of being selected. After several generations, the algo-
rithms converge to the best chromosome, which hopefully represents the optimum
or suboptimal solution to the problem. Let ()P t and ()C t be parents and off-

springs in current generation t ; the general structure of genetic algorithms (see
Fig. 1.6) is described as follows:

Procedure: Genetic Algorithm

begin
 t :=0 ;

initialize ()P t ;

 evaluate ()P t by using a fitness function;

while (not termination condition) do
 recombine ()P t to yield ()C t ;

 evaluate ()C t by using a fitness function;

 select (1)P t + from ()P t and ()C t ;

 t := t +1 ;
 end
end.

Usually, initialization is assumed to be random. Recombination typically in-
volves crossover and mutation to yield offspring. In fact, there are only two kinds
of operations in genetic algorithms:

1. Genetic operations: crossover and mutation.
2. Evolution operation: selection.

The genetic operations mimic the process of heredity of genes to create new

offspring at each generation. The evolution operation mimics the process of Dar-
winian evolution to create populations from generation to generation.

1.2 Genetic Algorithms 13

Solutions

1100101010
1011101110
0011011001
1100110001

1100101110
1011101010
0011001001

1100101110
1011101010

1100101010
1011101110

0011001001

0011011001

solutions

fitness

computation

roulette
wheel

decoding

chromosomes

selection evaluation

mutation

crossover

encoding

new
population

Fig. 1.6. The general structure of genetic algorithms

1.2.2 Genetic Operators

Crossover operator. Crossover is the main genetic operator. It operates on two
chromosomes at a time and generates offspring by combining both chromosomes’
features. A simple way to achieve crossover would be to choose a random cut-
point and generate the offspring by combining the segment of one parent to the
left of the cut-point with the segment of the other parent to the right of the cut-
point (Fig. 1.7).

14 Chapter 1 Fundamentals of Intellectual Technologies

Fig. 1.7. Crossover operator

This method works well with the bit string representation. The performance of
genetic algorithms depends, to a great extent, on the performance of the crossover
operator used.

The crossover rate (denoted by cp) is defined as the ratio of the number of off-

spring produced in each generation to the population size (usually denoted by
pop_size). This ratio controls the expected number cp × pop_size of chromo-

somes to undergo the crossover operation. A higher crossover rate allows explora-
tion of more of the solution space and reduces the chances of settling for a false
optimum. However, if this rate is too high, it results in the wastage of a lot of
computation time in exploring unpromising regions of the solution space.

Mutation operator. Mutation is a background operator which produces spontane-
ous random changes in various chromosomes. A simple way to achieve mutation
would be to alter one or more genes. In genetic algorithms, mutation serves the
crucial role of either (a) replacing the genes lost from the population during the
selection process so that they can be tried in a new context or (b) providing the
genes that were not present in the initial population.

The mutation rate (denoted by mp) is defined as the percentage of the total

number of genes in the population. The mutation rate controls the rate at which
new genes are introduced into the population for trial. If it is too low, many genes
that would have been useful are never tried out; if it is too high, there will be much
random perturbation, the offspring will start losing their resemblance to the par-
ents, and the algorithm will lose the ability to learn from the history of the search.

1.2.3 Search Techniques

Search is one of the more universal problem-solving methods for such problems
where one cannot determine a priori the sequence of steps leading to a solution.
Search can be performed with either blind strategies or heuristic strategies. Blind
search strategies do not use information about the problem domain. Heuristic
search strategies use additional information to guide the search along with the best
search directions. There are two important issues in search strategies: exploiting
the best solution and exploring the search space. Hill-climbing is an example of a
strategy which exploits the best solution for possible improvement while ignoring

1.2 Genetic Algorithms 15

the exploration of the search space. Random search is an example of a strategy
which explores the search space while ignoring the exploitation of the promising
regions of the search space. Genetic algorithms are a class of general-purpose
search methods combining elements of directed and stochastic search which can
make a remarkable balance between exploration and exploitation of the search
space. At the beginning of genetic search, there is a widely random and diverse
population and the crossover operator tends to perform a widespread search for
exploring the complete solution space. As the high fitness solutions develop, the
crossover operator provides exploration in the neighbourhood of each of them. In
other words, the types of searches (exploration or exploitation) a crossover per-
forms would be determined by the environment of the genetic system (the diver-
sity of population), but not by the operator itself. In addition, simple genetic op-
erators are designed as general-purpose search methods (the domain-independent
search methods); they perform essentially a blind search and could not guarantee
to yield an improved offspring.

1.2.4 Comparison of Conventional and Genetic Approaches

Generally, the algorithm for solving optimization problems is a sequence of com-
putational steps which asymptotically converge to an optimal solution. Most clas-
sical optimization methods generate a deterministic sequence of computation
based on the gradient or higher-order derivatives of the objective function. The
methods are applied to a single point in the search space. The point is then im-
proved along the deepest descending/ascending direction gradually through itera-
tions. This point-to-point approach has the danger of falling in local optima. Ge-
netic algorithms perform a multiple directional search by maintaining a population
of potential solutions. The population-to-population approach attempts to make
the search escape from local optima. Population undergoes a simulated evolution:
at each generation the relatively good solutions are reproduced, while the rela-
tively bad solutions die. Genetic algorithms use probabilistic transition rules to
select someone to be reproduced and someone to die so as to guide their search
toward regions of the search space with likely improvement.

1.2.5 Advantages of Genetic Algorithms

Genetic algorithms have received considerable attention regarding their potential
as a novel optimization technique. There are three major advantages when apply-
ing genetic algorithms to optimization problems:

1. Genetic algorithms do not have much mathematical requirements about the op-
timization problems. Due to their evolutionary nature, genetic algorithms will search
for solutions without regard to the specific inner workings of the problem. Genetic
algorithms can handle any kind of objective functions and any kind of constraints
(i.e., linear or nonlinear) defined on discrete, continuous, or mixed search spaces.

16 Chapter 1 Fundamentals of Intellectual Technologies

2. The ergodicity of evolution operators makes genetic algorithms very effec-
tive at performing a global search (in probability). The traditional approaches per-
form a local search by a convergent stepwise procedure, which compares the val-
ues of nearby points and moves to the relative optimal points. Global optima can
be found only if the problem possesses certain convexity properties that essen-
tially guarantee that any local optima is a global optima.

3. Genetic algorithms provide us with a great flexibility to hybridize with domain-
dependent heuristics to make an efficient implementation for a specific problem.

1.2.6 Genetic Algorithm Vocabulary

Because genetic algorithms are rooted in both natural genetics and computer sci-
ences, the terminology used in genetic algorithm literature is a mixture of the natu-
ral and the artificial.

In a biological organism, the structure that encodes the prescription specifying
how the organism is to be constructed is called a chromosome. One or more chro-
mosomes may be required to specify the complete organism. The complete set of
chromosomes is called a genotype, and the resulting organism is called a pheno-
type. Each chromosome comprises a number of individual structures called genes.
Each gene encodes a particular feature of the organism, and the location, or locus,
of the gene within the chromosome structure determines what particular character-
istic the gene represents. At a particular locus, a gene may encode any of several
different values of the particular characteristic it represents. The different values
of a gene are called alleles.

The correspondence of genetic algorithm terms and optimization terms is sum-
marized in Table. 1.1.

Table 1.1. Explanation of genetic algorithm terms

Genetic algorithms Explanation
1. Chromosome
2. Gene (bits)
3. Locus
4. Alleles
5. Phenotype
6. Genotype

Solution (coding)
Part of solution
Position of gene
Values of gene
Decoded solution
Encoded solution

1.2.7 Examples with Genetic Algorithms

In this section we explain in detail about how a genetic algorithm actually works,
using two simple examples.

Example 1.9. Optimization problem. The numerical example of optimization
problem is given as follows:

1.2 Genetic Algorithms 17

23 2
1 2 2 2 2 1(,) (2 6 6 10) sin(ln())xf x x x x x x e= − + + + ⋅ ⋅

0.5 ≤ 1x ≤ 1.1, 1.0 ≤ 2x ≤ 4.6

It is necessary to find:
1 2

1 2
,

max (,)
x x

f x x .

A three-dimensional plot of the objective function is shown in Fig. 1.8.

Representation. First, we need to encode decision variables into binary strings.
The length of the string depends on the required precision. For example, the do-

main of variable jx is ,j ja b⎡ ⎤⎣ ⎦ and the required precision is five places after the

decimal point. The precision requirements imply that the range of the domain of

each variable should be divided into at least () 510j jb a− × size ranges. The re-

quired bits (denoted with jm) for a variable is calculated as follows:

()1 52 10 2 1j jm m

j jb a
− < − × ≤ −

The mapping from a binary string to a real number for variable jx is straight-

forward and completed as follows:

j jx a= + decimal(substring j)
2 1j

j j

m

b a−
×

−
 ,

where decimal(substring j) represents the decimal value of substring j for deci-

sion variable jx .

1
1.72

2.44
3.16 3.88

4.6

0.5

0.62

0.74

0.86

0.98

1.1

-50
-30
-10
10
30
50
70
90
110
130
150

x1

x2

),(21 xxf

Fig. 1.8. Objective function

18 Chapter 1 Fundamentals of Intellectual Technologies

Suppose that the precision is set as five places after the decimal point. The re-

quired bits for variables 1x and 2x is calculated as follows:

(1.1 - 0.5) × 100,000 = 60,000

2 15 < 60,000 ≤ 2 16 - 1, 1 16m =

(4.6 - 1.0) × 100,000 = 360,000

2 18 < 360,000 ≤ 2 19 - 1, 2 19m =

1 2 16 19 35m m m= + = + = .

The total length of a chromosome is 35 bits which can be represented as follows:

v j 0100000101010010 1001101111011111110
19 bits16 bits

35 bits

The corresponding values for variables 1x and 2x are given below:

 Binary number Decimal number

1x 0100000101010010 16722

2x 1001101111011111110 319230

1x = 0.5 + 16722×
16

1.1 0.6

2 1

− =
−

0.65310 ,

2x = 1.0 + 319230 ×
19

4.6 1.0

2 1

− =
−

 3.19198 .

Initial population. Initial population is randomly generated as follows:

v 1 = [01000001010100101001101111011111110]

v 2 = [10001110101110011000000010101001000]

v 3 = [11111000111000001000010101001000110]

v 4 = [01100110110100101101000000010111001]

v 5 = [00000010111101100010001110001101000]

1.2 Genetic Algorithms 19

v 6 = [10111110101011011000000010110011001]

v 7 = [00110100010011111000100110011101101]

v 8 = [11001011010100001100010110011001100]

v 9 = [01111110001011101100011101000111101]

v 10 = [01111101001110101010000010101101010]

The corresponding decimal values are:

v 1 = [1 2,x x] = [0.653097, 3.191983]

v 2 = [1 2,x x] = [0.834511,2.809287]

v 3 = [1 2,x x] = [1.083310,2.874312]

v 4 = [1 2,x x] = [0.740989,3.926276]

v 5 = [1 2,x x] = [0.506940,1.499934]

v 6 = [1 2,x x] = [0.946903,2.809843]

v 7 = [1 2,x x] = [0.622600,2.935225]

v 8 = [1 2,x x] = [0.976521,3.778750]

v 9 = [1 2,x x] = [0.795738,3.802377]

v 10 = [1 2,x x] = [0.793504,3.259521]

Evaluation. The process of evaluating the fitness of a chromosome consists of the
following three steps:

1°. Convert the chromosome’s genotype to its phenotype. Here, this means
converting the binary string into relative real values 1 2(,)k k kx x=x ,

1, 2,..., _k pop size= .

2°. Evaluate the objective function ()kf x .

3°. Convert the value of the objective function into fitness. For the maximiza-
tion problem, the fitness is simply equal to the value of the objective function

() ()k
keval v f= x , 1, 2,..., _k pop size= .

An evaluation function plays the role of the environment, and it rates chromo-

somes in terms of their fitness.

20 Chapter 1 Fundamentals of Intellectual Technologies

The fitness function values of the above chromosomes are as follows:

1()eval v = f(0.653097,3.191983) = 20.432394

2()eval v = f(0.834511,2.809287) = -4.133627

3()eval v = f(1.083310,2.874312) = 28.978472

4()eval v = f(0.740989,3.926276) = -2.415740

5()eval v = f(0.506940,1.499934) = -2.496340

6()eval v = f(0.946903,2.809843) = -23.503709

7()eval v = f(0.622600,2.935225) = -13.878172

8()eval v = f(0.976521,3.778750) = -8.996062

9()eval v = f(0.795738,3.802377) = 6.982708

10()eval v = f(0.793504,3.259521) = 6.201905

It is clear that chromosome 3v is the strongest one and that chromosome 6v is

the weakest one.

Selection. In most practices, a roulette wheel approach is adopted as the selection
procedure [22]; it belongs to the fitness-proportional selection and can select a
new population with respect to the probability distribution based on fitness values.
The roulette wheel can be constructed as follows:

1. Calculate the fitness value ()keval v for each chromosome kv :

() ()k
keval v f= x , 1, 2,..., _k pop size= .

2. Calculate the total fitness for the population:

()_

1, _
1

() min { ()}
pop size

k j
j pop size

k

F eval v eval v
==

= −∑

3. Calculate selection probability kp for each chromosome kv :

1, _
() min { ()}k j

j pop size
k

eval v eval v
p

F
=

−
= , 1, 2,..., _k pop size= .

1.2 Genetic Algorithms 21

4. Calculate cumulative probability kq for each chromosome kv :

1

k

k j
j

q p
=

=∑ , 1, 2,..., _k pop size= .

The selection process begins by spinning the roulette wheel _pop size times; each

time, a single chromosome is selected for a new population in the following way:

1°. Generate a random number r from the range [0,1] .

2°. If 1r q≤ , then select the first chromosome 1v ; otherwise, select the k th

chromosome kv (2 _k pop size≤ ≤) such that 1k kq r q− < ≤ .

The total fitness F of the population is:

()10

1,10
1

() min{ ()}k j
j

k

F eval v eval v
==

= − =∑ 242.208919 .

The probability of a selection kp for each chromosome kv (1, 2,...,10k =) is as

follows:

1p = 0.181398, 2p = 0.079973, 3p = 0.216681,

4p = 0.087065, 5p = 0.086732, 6p = 0.000000,

7p = 0.039741, 8p = 0.059897, 9p = 0.125868,

10p = 0.122645 .

The cumulative probability kq for each chromosome kv (1, 2,...,10k =) is as

follows:

1q = 0.181398, 2q = 0.261370, 3q = 0.478052,

4q = 0.565117, 5q = 0.651849, 6q = 0.651849,

7q = 0.691590, 8q = 0.751487, 9q = 0.877355,

10q = 1.000000 .

Now we are ready to spin the roulette wheel 10 times, and each time we select a

single chromosome for a new population. Let us assume that a random sequence
of 10 numbers from the range [0,1] is as follows:

0.301431 0.322062 0.766503 0.881893

0.350871 0.583392 0.177618 0.343242

0.032685 0.197577 .

22 Chapter 1 Fundamentals of Intellectual Technologies

The first number 1r = 0.301431 is greater than 2q and smaller than 3q , mean-

ing that the chromosome 3v is selected for the new population; the second number

2r = 0.322062 is greater than 2q and smaller than 3q , meaning that the chromo-

some 3v is again selected for the new population; and so on. Finally, the new

population consists of the following chromosomes:

1v′ = [11111000111000001000010101001000110] 3()v

2v′ = [11111000111000001000010101001000110] 3()v

3v′ = [11001011010100001100010110011001100] 8()v

4v′ = [01111110001011101100011101000111101] 9()v

5v′ = [11111000111000001000010101001000110] 3()v

6v′ = [01100110110100101101000000010111001] 4()v

7v′ = [01000001010100101001101111011111110] 1()v

8v′ = [11111000111000001000010101001000110] 3()v

9v′ = [01000001010100101001101111011111110] 1()v

10v′ = [10001110101110011000000010101001000] 2()v

Crossover. Crossover used here is one-cut-point method, which randomly selects
one cut-point and exchanges the right parts of two parents to generate offspring.
Consider two chromosomes as follows, and the cut-point is randomly selected
after the 17th gene:

1v =

2v = [10001110101110011000000010101001000]
[11111000111000001000010101001000110]

The resulting offspring by exchanging the right parts of their parents would be
as follows:

1v =

2v =[10001110101110011
[11111000111000001

000010101001000110]
000000010101001000]

1.2 Genetic Algorithms 23

The probability of crossover is set as 0.25cp = , so we expect that, on average, 25%

of chromosomes undergo crossover. Crossover is performed in the following way:

Procedure: Crossover
begin
 k :=0 ;

 while (10k ≤) do

 kr := random number from [0,1] ;

 if (0.25kr <) then

 select kv as one parent for crossover;

 end ;

 : 1k k= + ;
 end ;
end.

Assume that the sequence of random numbers is:

0.625721 0.266823 0.288644 0.295114

0.163274 0.567461 0.085940 0.392865

0.770714 0.548656 .

This means that the chromosomes 5v′ and 7v′ were selected for crossover. We

generate a random integer number pos from the range [1, 34] (because 35 is the

total length of a chromosome) as cutting point or in other words, the position of
the crossover point. Assume that the generated number pos equals 1, the two

chromosomes are cut after the first bit, and offspring are generated by exchanging
the right parts of them as follows:

5v5 =

7v7 = [01000001010100101001101111011111110]

5v5 =

7v7 = 1111000111000001000010101001000110]
1000001010100101001101111011111110]

[0
[1

[11111000111000001000010101001000110]

24 Chapter 1 Fundamentals of Intellectual Technologies

Mutation. Mutation alters one or more genes with a probability equal to the muta-
tion rate. Assume that the 18th gene of the chromosome 1v′ is selected for a muta-

tion. Since the gene is 1, it would be flipped into 0. Thus the chromosome after
mutation would be:

1v1 = [11111000111000001 00010101001000110]0

1v1 = [11111000111000001 00010101001000110]1

The probability of mutation is set as 0.01mp = , so we expect that, on average,

1% of the total bit of the population would undergo mutation. There are
_m pop size× = 35 10 350= × = bits in the whole population; we expect 3.5 mu-

tations per generation. Every bit has an equal chance to be mutated. Thus we need
to generate a sequence of random numbers kr (1..350)k = from the range [0,1].

Suppose that the following genes will go through mutation:

Position of gene
in population

Number of
chromosome

Position of gene
 in population

Random number |

kr

111 4 6 0.009857

172 5 32 0.003113

211 7 1 0.000946

347 10 32 0.001282

After mutation, we get the final population as follows:

1v′ = [11111000111000001000010101001000110]

2v′ = [11111000111000001000010101001000110]

3v′ = [11001011010100001100010110011001100]

4v′ = [01111010001011101100011101000111101]

5v′ = [11000001010100101001101111011110110]

6v′ = [01100110110100101101000000010111001]

7v′ = [11111000111000001000010101001000110]

8v′ = [11111000111000001000010101001000110]

9v′ = [01000001010100101001101111011111110]

10v′ = [10001110101110011000000010101000000] .

1.2 Genetic Algorithms 25

The corresponding decimal values of variables 1x and 2x and fitness are as follows:

f(1.083310,2.874312)=28.978472

f(1.083310,2.874312)=28.978472

f(0.976521,3.778750)=-8.996062

f(0.786363,3.802377)=9.366723

f(0.953101,3.191928)=-23.229745

f(0.740989,3.926276)=-2.415740

f(1.083310,2.874312)=28.978472

f(1.083310,2.874312)=28.978472

f(0.653097,3.191983)=20.432394

f(0.834511,2.809232)=-4.138564

Now we just completed one iteration of the genetic algorithm. The test run is
terminated after 1000 generations. We have obtained the best chromosome in the
419th generation:

*v = [01000011000100110110010011011101001]

*()eval v = f(0.657208,2.418399) = 31.313555
*
1x = 0.657208 *

2x = 2.418399
* *
1 2(,)f x x = 31.313555.

Example 1.10. Word matching problem. Another nice example to show the
power of genetic algorithms, the word matching problem tries to evolve an ex-
pression of «live and learn» from the randomly-generated lists of letters with a
genetic algorithm. Since there are 26 possible letters plus space character for each
of 14 locations in the list, the probability that we get the correct phrase in a pure
random way is (1/27)14 = 9.14× 10-22, which is almost equal to zero.

We use a list of ASCII integers to encode the string of letters. The lowercase
letters in ASCII are represented by numbers in the range [97,122] and the space
character is 32 in the decimal number system. For example, the string
«live and learn» is converted into the following chromosome represented with
ASCII integers:

[108,105,118,101, 32, 97,110,100, 32,108,101, 97,114,110]

Generate an initial population of 10 random phrases as follows:

[115,111,113,114,100,109,119,115,118,106,108,116,112,106]
[116,111,112,122,122,119,103,106,122,100,114, 99,115,103]
[117,106,111,102,113, 97, 32,114,114,112,117,117,103,115]
[32, 97,114,118,104, 99,117,105,100,118, 98,114,102, 32]
[119, 99,117,103,102,122,112, 32,114,122,101,107,101,106]

26 Chapter 1 Fundamentals of Intellectual Technologies

[116,117,100,120, 32, 32, 97,122,118,121,104,103, 97,113]
[118,100,104,122,101,102,114,113,113, 98,111,114, 98,116]
[120,106,105,101, 98,110,108,116, 97,118,104,116,103,118]
[102,117,115,100,122,107,118,104,107,112, 99,109,120,109]
[100,110,100,102,115, 32,107,104,104, 32,121,109, 99,120]

Now, we convert this population to string to see what they look like:

«soqrdmwsvjltpj»
«topzzwgjzdrcsg»
«ujofqa rrpuugs»
« arvhcuidvbrf »
«wcugfzp rzekej»
«tudx azvyhgaq»
«vdhzefrqqborbt»
«xjiebnltavhtgv»
«fusdzkvhkpcmxm»
«dndfs khh ymcx»

Fitness is calculated as the number of matched letters. For example, the fitness for
string «ujofqa rrpuugs» is 1. Only mutation is used which results in a change to a given
letter with a given probability. Now, we run our genetic algorithm with 32 generations
to see how well it works. The best one of each generation is listed in Table 1.2.

Table 1.2. The best string for each generation

Gen. String Fitness func-
tion

Gen. String Fitness func-
tion

1 ujofqa rrpuugs 1 17 liie xnd leaez 10
2 wfugfzpnrzewen 2 18 liye xnt learn 11
3 wiipvap ozekej 3 19 liye xnt learn 11
4 wi gvahdlzerej 4 20 liye xnt learn 11
5 liigvapt yekej 5 21 live xnd nearn 12
6 liigvapt yekej 5 22 live xnd nearn 12
7 lqie zp zekrj 6 23 live xnd nearn 12
8 lqie zp zekrj 6 24 live xnd nearn 12
9 lqie zp zekrj 6 25 live gnd learn 13
10 ljie zni yeaez 7 26 live gnd learn 13
11 ljie zni yeaez 7 27 live gnd learn 13
12 liie xnt beaez 8 28 live gnd learn 13
13 liye nd yeaez 9 29 live and learn 14
14 liye nd yeaez 9 30 live and learn 14
15 liye nd yeaez 9 31 live and learn 14
16 liie xnd leaez 10 32 live and learn 14

1.3 Neural Networks 27

After 29 generations, the population produced the desired phrase. The total ex-
amined chromosomes are 290. If we use pure random method to produce 290 ran-
dom phrases, could we have a match?

1.3 Neural Networks

This chapter is written on the basis of the works [3, 4, 24, 25]. The additional informa-
tion relative to artificial neural networks can be found in the works [26 – 31].

1.3.1 Neural Net Basics

The imitation of human minds in machines has inspired scientists for the last cen-
tury. About 50 years ago, researchers created the first electronic hardware models
of nerve cells. Since then, the greater scientific community has been working on
new mathematical models and training algorithms. Today, so-called neural nets
absorb most of the interest in this domain. Neural nets use a number of simple
computational units called “neurons”, of which each tries to imitate the behavior
of a single human brain cell. The brain is considered as a “biological neural net”
and implementations on computers are considered as “neural nets”. Fig. 1.9 shows
the basic structure of such a neural net.

 Input Signal Output Signal

Input Layer 1. Hidden Layer 2. Hidden Layer Output Layer

Fig 1.9. Basic structure of an artificial neural net

28 Chapter 1 Fundamentals of Intellectual Technologies

Each neuron in a neural net processes the incoming inputs to an output. The
output is then linked to other neurons. Some of the neurons form the interface of
the neural net. The neural net shown in Fig. 1.9 has a layer for the input signals
and one for the output signals. The information enters the neural net at the input
layer. All layers of the neural net process these signals through the net until they
reach the output layer.

The objective of a neural net is to process the information in a way that it is
previously trained. Training uses either sample data sets of inputs and correspond-
ing outputs or a teacher who rates the performance of the neural net. For this train-
ing, neural nets use so-called learning algorithms. Upon creation, a neural net is
dumb and does not exhibit any behavior at all. The learning algorithms then modi-
fy the individual neurons of the net and the weight of their connections in such a
way that the behavior of the net reflects the desired one.

1.3.2 Mimic of Human Nerve Cells

Researchers in the area of neural nets have analyzed various models of human
brain cells. In the following, we only describe the one most commonly used in
industrial applications.

The human brain contains about 1011 nerve cells with about 1014 connections to
each other. Fig. 1.10 shows the simplified scheme of such a human neuron. The
cell itself contains a kernel, and the outside is an electrical membrane. Each neu-
ron has an activation level, which ranges between a maximum and a minimum.
Hence, in contrast to Boolean logic, more then two values exist.

To increase or decrease the activation of this neuron by other neurons, so-called
synapses exist. These synapses carry the activation level from a sending neuron to
a receiving neuron. If the synapse is an excitatory one, the activation level from
the sending neuron increases the activation of the receiving neuron. If the synapse
is an inhibiting one, the activation from the sending neuron decreases the activa-
tion of the receiving neuron. Synapses differ not only in whether they excite or
inhibit the receiving neuron, but also in the amount of this effect (synaptic
strength). The output of each neuron is transferred by the so-called axon, which
ends in as much as 10,000 synapses influencing other neurons.

The considered neuron model underlies most of today’s neural net applications.
Note that this model is only a very coarse approximation of reality. You cannot
exactly model even one single human neuron; it is beyond the ability of humans to
model. Hence, every work based on this simple neuron model is unable to exactly
copy the human brain. However, many successful applications using this tech-
nique prove the benefit of neural nets based on the simple neuron model.

1.3 Neural Networks 29

Axon

: Exciting Synapses
: Inhibiting Synapses

Fig. 1.10. Simplified scheme of a human neuron

1.3.3 Mathematical Model of a Neuron

Various mathematical models are based on the simple neuron concept. Fig. 1.11
shows the most common one. First, the so-called propagation function combines
all inputs Xi that stem from the sending neurons. The means of combination is a
weighted sum, where the weights wi represent the synaptic strength. Exciting syn-
apses have positive weights, inhibiting synapses have negative weights. To ex-
press a background activation level of the neuron, an offset (bias) Θ is added to
the weighted sum.

 Inputs X1

w1

w2

wn

w3

X2

X3

Xn

 Output

Y

 Propagation Function

 n

 f = wi xi +
 i=0

 Activation Function

 Y

 f

. . .

Fig. 1.11. Simple mathematical model of a neuron.

30 Chapter 1 Fundamentals of Intellectual Technologies

The so-called activation function computes the output signal Y of the neuron
from the activation level f. For this, the activation function is of the sigmoid type
as plotted in the lower right box of Fig. 1.11. Other types of the activation function
are the linear function and the radial-symmetric function showed in Fig. 1.12.

 Y

 f

 Y

 f

a) b)

Fig. 1.12. Activation functions of a neuron:a) linear; b) radial-symmetric

1.3.4 Training Neural Nets

There are multiple ways to build a neural net. They differ in their topology and the
learning methods they employ.

The first step in designing a neural net solution is teaching the desired behavior.
This is called the learning phase. Here, you can either use sample data sets or a
“teacher”. A teacher is either a mathematical function or a person who rates the
quality of the neural net performance. Since neural nets are mostly used for com-
plex applications where no good mathematical models exist, and rating the per-
formance of a neural net is hard in most applications, most applications use sam-
ple data training.

After completion of learning, the neural net is ready to use. This is called the
working phase. As a result of the training, the neural net will output values similar
to those in the sample data sets when the input values match one of the training
samples. For input values in between, it approximates output values. In the work-
ing phase, the behavior of the neural net is deterministic. That is, for every combi-
nation of input values, the output value will always be the same. During the work-
ing phase, the neural net does not learn. This is important in most technical appli-
cations to ensure that the system never drifts to hazardous behavior.

Pavlov’s dogs. So, how do you teach a neural net? Basically, it works like Pav-
lov’s dogs. More then hundred years ago, the researcher Pavlov experimented
with dogs. When he showed the dogs food, the dogs salivated. He also installed
bells in the dogs’ cages. When he rang the bell, the dogs did not salivate, as they
saw no link between the bell and the food. Then he trained the dogs by always
letting the bell ring when he presented the dogs food. After a while, the dogs also
salivated when just the bell rang and he showed no food.

1.3 Neural Networks 31

Fig. 1.13 shows how the simple neuron model can represent Pavlov’s experi-
ment. There are two input neurons: one represents the fact that the dog sees food,
the other one the fact that the bell rings. Both input neurons have links to the out-
put neuron. These links are the synapses. The thickness of the lines represents
synapse weights. Before learning, the dog only reacts to the food and not the bell.
Hence, the line from the left input neuron to the output neuron is thick, while the
line from the right input neuron to the output neuron is very thin.

Before Learning After Learning

Food Bell Food Bell Food Bell Food Bell

 Dog Salivates

Training Increases the Weight
of this Synapse

 Dog Salivates Dog Salivates Dog Salivates

Fig. 1.13. Principle of the Pavlov dog experiment

The Hebbian learning rule. Constantly letting the bell ring when food is pre-
sented creates an association between the bell and the food. Hence, the right line
also becomes thicker - the synapse weight increases. From these experiments, in
1949 a researcher by the name of Hebb deduced the following learning rule:

Increase weight to active input neuron, if the output of this neuron should
be active.

Decrease weight to active input neuron, if the output of this neuron should
be inactive.

This rule, called the Hebbian rule, is the forerunner of all learning rules, includ-
ing today’s most used neural net learning algorithm, the so-called error back prop-
agation algorithm.

1.3.5 Error Back Propagation Algorithm

The learning rule for multilayer neural nets is called the “generalized delta rule”,
or the “back propagation rule”, and was suggested in 1986 by Rumelhart, McClel-
land, and Williams. It signaled the renaissance of the entire subject. It was later
found that Parker had published similar results in 1982, and then Werbos was
shown to have done the work in 1984. Such is the nature of science; groups work-
ing in diverse fields cannot keep up with all the advances in other areas, and there
is often duplication of effort. However, the paper of Rumelhart et al. published in
“Nature” (1986) is still one of the most important works in this field.

32 Chapter 1 Fundamentals of Intellectual Technologies

Learning of the net is begun by the net being shown a pattern and calculating its
response. Comparison with the desired response enables the weights to be altered
so that the network can produce a more accurate output the next time. The learn-
ing rule provides the method for adjusting the weights in the network. Information
about the output is available to units in earlier layers, so that these units can have
their weights adjusted so as to decrease the error the next time.

When we show the untrained network an input pattern, it will produce any ran-
dom output. An error function represents the difference between the network’s
current output and the correct output that we want it to produce. In order to learn
successfully we want to make the output of the net approach the designed output,
that is, we want to continually reduce the value of this error function. This is
achieved by adjusting the weights on the links between the units; the generalized
delta rule does this by calculating the value of the error function for that particular
input, and then back-propagating (hence the name!) the error from one layer to the
previous one. Each unit in the net has its weights adjusted so that it reduces the
value of the error function; for units actually on the output, their output and de-
sired output are known, so adjusting the weights is relatively simple, but for units
in the middle layer, the adjustment is not so obvious. Intuitively, we might guess
that the hidden units that are connected to outputs with a large error should have
their weights adjusted a lot, while units that feed almost correct outputs should not
be altered much. In other words, the weights for a particular node should be ad-
justed in direct proportion to the error in the units to which it is connected; that is
why back-propagating these errors through the net allows the weights between all
the layers to be correctly adjusted. In this way the error function is reduced and the
network learns.

The main formulae for the error back propagation method have been obtained
in [3, 4].

The notation used is as follows:

pE is the error function for pattern p ;

pjt is the target output for pattern p on node j ;

pjo is the actual output for pattern p on node j ;

ijw is the weight from node i to node j .

Let us define the error function to be proportional to the square of the differ-

ence between the actual and desired output, for all the patterns to be learnt:

()21

2p pj pj
j

E t o= −∑ . (1.2)

The
1

2
 makes the math a bit simpler, and brings this specific error function into

line with other similar measures.
The activation of each unit j, for pattern p, can be written simply as the

weighted sum:

1.3 Neural Networks 33

pj ij pi
i

net w o=∑ . (1.3)

The output of each unit j is the threshold function jf activated on the weighted

sum. In the multilayer networks, it is usually the sigmoid function, although any
continuously differentiable monotonic function can be used:

()pj j pjo f net= . (1.4)

We can write by the chain rule:

p p pj

ij pj ij

E E net

w net w

∂ ∂ ∂
=

∂ ∂ ∂
 . (1.5)

Looking at the second term in (1.5), and substituting in (1.3)

pj jk
kj pk pk pi

k kij ij ij

net w
w o o o

w w w

∂ ∂∂= = =
∂ ∂ ∂∑ ∑ , (1.6)

since 0kj

ij

w

w

∂
=

∂
, except when k = i , and this derivative is equal to unity.

We can define the change in error as a function of the change in the net
inputs to a unit as

p
pj

pj

E

net
δ

∂
− =

∂
 , (1.7)

and so (1.5) becomes

p
pj pi

ij

E
o

w
δ

∂
− =

∂
 . (1.8)

Decreasing the value pE therefore means making the weight changes proportion-

al to pj pjoδ , i.e.,

p ij pj piw oηδΔ = , (1.9)

where η is a learning rate.
We now need to know what pjδ is for each of the units. Using (1.7) and the

chain rule, we can write:

p p pj
pj

pj pj pj

E E o

net o net
δ

∂ ∂ ∂
= − = −

∂ ∂ ∂
 . (1.10)

Consider the second term, and from (1.4):

()pj
j pj

pj

o
f net

net

∂ ′=
∂

 . (1.11)

34 Chapter 1 Fundamentals of Intellectual Technologies

Consider now the first term in (1.10). From (1.2), we can easy obtain

()p
pj pj

pj

E
t o

o

∂
= − −

∂
 . (1.12)

Thus

() ()pj j pj pj pjf net t oδ ′= − . (1.13)

This is useful for the output units, since the target and output are both available,
but not for the hidden units, since their targets are not known.

Therefore, if unit j is not an output unit, we can write, by the chain rule again,
that

p p pk p
ik pi

k k ipj pk pj pk pj

E E net E
w o

o net o net o

∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂∑ ∑ ∑ , (1.14)

p
ik pi pk jk

k i kpk pj

E
w o w

net o
δ

∂ ∂ = −
∂ ∂∑ ∑ ∑ , (1.15)

using (1.3) and (1.7), noticing that the sum drops out since the partial differential
is non-zero for only one value, just as in (1.6). Substituting (1.15) in (1.10), we get
finally

()pj j pj pk jk
k

f net wδ δ′= ∑ . (1.16)

Equations (1.13) and (1.16) are the basis of the multilayer network learning me-

thod.
One advantage of using the sigmoid function as the nonlinear threshold func-

tion is that it is quite like the step function, and so should demonstrate behavior of
a similar nature. The sigmoid function is defined as

1
()

1 k net
f net

e− ⋅=
+

and has the range 0 < ()f net < 1. k is a positive constant that controls the

“spread” of the function - large values of k squash the function until as k → ∞

when ()f net → Heaviside function. It also acts as an automatic gain control, since

for small input signals the slope is quite steep and so the function is changing
quite rapidly, producing a large gain. For large inputs, the slope and thus the gain
is much less. This means that the network can accept large inputs and still remain
sensitive to small changes.

1.3 Neural Networks 35

A major reason for its use is that it has a simple derivative, however, and this
makes the implementation of the back-propagation system much easier. Given that
the output of unit, pjo is given by

1
()

1pj k net
o f net

e− ⋅= =
+

 ,

the derivative with respect to that unit, ()f net′ , is give by

2

()
()

1 ()(1)

k net

k net

ke kf net
f net

f nete

− ⋅

− ⋅
′ = = =

−+
(1)pj pjko o− .

The derivative is therefore a simple function of the outputs.

1.3.6 The Multilayer Neural Network Learning Algorithm

The algorithm for the multilayer neural network learning that implements the
back-propagation training rule is shown below. It requires the units to have thre-
sholding nonlinear functions that are continuously differentiable, i.e. smooth eve-

rywhere. We have assumed the use of the sigmoid function,
1

()
1 k net

f net
e− ⋅=

+
,

since it has a simple derivative.
The multilayer neural network learning algorithm includes the following steps.

1°. Initialize weights and thresholds. Set all weights and thresholds to small
random values.

2°. Present input and desired output.

Present input 0 1 1{ , ,..., }p nX x x x −= and target output 0 1 1{ , ,..., }p mT t t t −= , where

n is a number of input nodes and m is a number of output nodes. Set 0w = −Θ

the bias, and 0 1x = .

For classification, pT is set to zero except for one element set to 1 that corres-

ponds to the class that pX is in.

3°. Calculate actual output.
Each layer calculates

1

0

n

pj i i
i

y f w x
−

=

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑

and passes that as input to the next layer. The final layer output values are pjo .

4°. Adapt weights.
Start from the output layer, and work backwards

(1) ()ij ij pj pjw t w t oηδ+ = + ,

36 Chapter 1 Fundamentals of Intellectual Technologies

where ()ijw t represents the weights from node i to node j at time t, η is a learn-

ing rate, and pjδ is an error term for pattern p on node j .

For output units

()()1pj pj pj pj pjko o t oδ = − − .

For hidden units

()1pj pj pj pk jk
k

ko o wδ δ= − ∑ ,

where the sum is over the k nodes in the layer above node j.

References

1. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate
Reasoning, Part 1-3. Information Sciences 8, 199–251 (1975); 9, 301 – 357, 43 – 80
(1976)

2. Zadeh, L.A.: Fuzzy Sets as a Basic for a Theory of Possibility. Fuzzy Sets and Sys-
tems 1, 3–28 (1978)

3. Rummelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, vol. 1,2, p. 320. The MIT Press (1986)

4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representation by
Back - Propagation Errors. Nature 323, 533–536 (1986)

5. Eickhoff, P.: System Identification: Parameter and State Estimation. Wiley, London
(1974)

6. Tsypkin, Y.Z.: Information Theory of Identification, p. 320. Nauka, Moscow (1984)
(in Russian)

7. Shteinberg, S.E.: Identification in Control Systems, p. 81. Energoatomizdat, Moscow
(1987) (in Russian)

8. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization. In: Me-
thods and Applications. John Wiley & Sons, New York (1983)

9. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley (1989)

10. Tang, K.S., Man, K.F., Kwong, S., He, Q.: Genetic Algorithms and Their Applica-
tions. IEEE Signal Processing Magazine, 22–36 (November 1996)

11. Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic: Theory and Applica-
tions. Van Nostrand Reinhold, New York (1985)

12. Pospelov, D.A. (ed.): Fuzzy Sets in Management Models and Artificial Intelligence.
Nauka, Moscow (1986) (in Russian)

13. Bellman, R.E., Zadeh, L.A.: Decision-Making in a Fuzzy Environment. Management
Science 17(4), 141–164 (1970)

14. Yager, R.R.: Fuzzy Set and Possibility Theory: Recent Developments. Pergamon
Press, New York (1982) (Russian Translation, 1986)

15. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing
of Uncertainty, p. 263. Plenum Press, New York (1988)

References 37

16. Borisov, A.N., Krumberg, O.A., Fedorov, I.P.: Decision Making based on Fuzzy Mod-
els: Examples Use, p. 184. Zinatne, Riga (1990) (in Russian)

17. Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications, p. 315. Kluwer, Dordrecht
(1991)

18. Zadeh, L., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty, p. 676. John
Wiley & Sons, Chichester (1992)

19. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications, p. 592.
Prentice Hall PTR, New York (1995)

20. Ross, T.J.: Fuzzy Logic with Engineering Applications, p. 593. Wiley, Chichester
(1995)

21. Pedrycz, W., Gomide, F.: An introduction to fuzzy sets: Analysis and Design. A Brad-
ford Book, p. 465. The MIT Press (1998)

22. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design, p. 352. John Wiley
& Sons, New York (1997)

23. Haupt, R., Haupt, S.: Practical Genetic Algorithms, p. 177. John Willey & Sons, New
York (1998)

24. Hinton, G.E.: How Neural Networks Learn from Experience. Scientific American,
145–151 (September 1992)

25. Hung, S.L., Adeli, H.: Machine Learning, p. 211. John Willey & Sons, New York
(1995)

26. Mkrtchan, S.O.: Neurons and Neural Networks, p. 272. Energia, Moscow (1971) (in
Russian)

27. Amosov, N.M. (ed.): Neurocomputers and Intelligent Robots, Kiev, Naukova Dumka,
p. 272 (1991) (in Russian)

28. von Altrock, C.: Fuzzy Logic & NeuroFuzzy Applications Explained, p. 350. Prentice
Hall PTR, New Jersey (1995)

29. Lin, C.T., Lee, C.S.: Neural Fuzzy Systems. Prentice Hall PTR, New York (1996)
30. Nauck, D., Klawonn, F., Kruse, R.: Foundation of Neuro–Fuzzy Systems, p. 305. John

Willey & Sons, New York (1997)
31. Bishop, C.M.: Neural Networks for Pattern Recognition, p. 482. Oxford University

Press (2002)

	Fundamentals of Intellectual Technologies
	Fuzzy Sets
	Fundamentals of Fuzzy Set Theory
	Basic Properties of Fuzzy Sets
	Basic Operations on Fuzzy Sets
	Further Properties and Related Concepts
	Fuzzy Relations
	Fuzzy Numbers
	Fuzziness and Probability

	Genetic Algorithms
	General Structure of Genetic Algorithms
	Genetic Operators
	Search Techniques
	Comparison of Conventional and Genetic Approaches
	Advantages of Genetic Algorithms
	Genetic Algorithm Vocabulary
	Examples with Genetic Algorithms

	Neural Networks
	Neural Net Basics
	Mimic of Human Nerve Cells
	Mathematical Model of a Neuron
	Training Neural Nets
	Error Back Propagation Algorithm
	The Multilayer Neural Network Learning Algorithm

	References

