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Preface 

The identification of an object refers to the construction of its mathematical model 
which determines the interrelationship between input and output variables by ex-
perimental data. The presence of the “input – output” model provides the possibil-
ity of solving two classes of problems; direct problems and inverse problems. 

A direct problem is understood as a look into the future; i.e., a prediction of the 
effects (outputs) as a result of the observed causes (inputs).  

An inverse problem is understood as a look into the past; i.e., a renewal of the 
causes (inputs) through the observed effects (outputs).  

The resolution of these problems plays an important role in automatic and situ-
ational control, technical and medical diagnostics, pattern recognition, prediction, 
many-factor analysis, multi-criteria estimation and other decision making tasks. 

As a rule, the task of identification is performed in two stages. At the first 
stage, called structural identification, some coarse model of an object is formed 
which approximates the input-output interconnection and contains adjustable pa-
rameters. At the second stage, called parametric identification, parameter values 
are chosen such that they minimize the distances between the model and experi-
mental outputs of the object.  

The stage of parametric identification is sufficiently formalized, because it 
amounts to the use of various optimization methods. The only difficulty is in finding 
the global minimum of nonlinear functions with divergence of theory and experi-
mentation, and in computing complexity growth with the growth of the adjustable 
parameters number. 

The stage of the structural identification is perceived to be more an act of art 
rather than that of science. The choice of the adjustable model considerably de-
pends upon “the starting capital of the researcher”, his/her qualifications, expertise, 
object essence understanding, bias in favor of one of many mathematical appara-
tuses and upon other subjective factors. In modern theory of identification, some 
quantitative relations in the form of various types of equations (algebraic, differen-
tial, difference, integral and others) are used. This apparatus is more intrinsically 
applied to those objects which are described by the laws of physics, mechanics, 
thermodynamics and electromagnetism. Classic theory leads to catastrophic com-
plex models while identifying dependencies in the so-called intellectual tasks 
which are traditionally performed by people. Man walks, swims, does the most 
complex physical exercises, drives a car, recognizes familiar objects, conceives 
regularities in experimental data, solves other complicated  mathematical tasks of 
control and decision making without resorting to strict quantitative relations. 



VIII Preface 

Two unique qualities play fundamental role in solving the task of identification 
and decision making by man. They are known as: the capability to learn defined 
as the capability to minimize divergence of the actual activity result from some 
desired standard, and linguistic capability, which is the capability to express 
learned knowledge in a natural language.  

Therefore, while simulating intellectual activity it is quite natural to employ 
such a mathematical apparatus which, in contrast to classical methods, is adjusted 
to employ learning and linguistic capabilities. 

Fuzzy set theory, proposed by L. Zadeh in 1965, is a handy tool for natural lan-
guage statements formalization. The first works on practical application of fuzzy 
logic in the direct problems of simulation and control performed in 1980 – 1990 
are due to E. Mamdani, T. Takagi and M. Sugeno.  

Quality of the fuzzy model directly depends on the parameters of fuzzy rules, 
fuzzy relations and fuzzy terms membership functions, which are chosen by em-
ploying expert methods at the stage of structural identification. Therefore, the 
stage of the fuzzy model tuning by using experimental data is required. The stage 
of tuning is connected with the statement and resolution of the problem of nonlin-
ear optimization.  

Investigations relative to fuzzy models tuning have been intensely developing 
since the end of the last century. Some combination of the genetic algorithm and 
the neural network appears to be the efficient means of solving tuning problems. 
The genetic algorithm provides a quick hitting into the area of the global minimum, 
while the neural network is then used for successive adjustment of the parameters 
of the fuzzy model in real time mode. One of the first monographs dedicated to the 
resolution of the direct problems of simulation on the basis of the complex use  
of fuzzy sets, genetic algorithms and neural networks is the work “Intellectual 
Technologies of Identification” by A. Rotshtein, 1999 (http:/matlab.exponenta.ru/ 
fuzzy_logic/book5/index.php). 

Solving inverse problems of fuzzy inference is connected with the problem of 
solving fuzzy logical equations. We propose a method for numerical resolution of 
the system of fuzzy logical equations by reducing this problem to the search for 
the minimum with the help of the genetic algorithm. A combination of the genetic 
algorithm with the neuro-fuzzy network is helpful in solving the inverse problem 
simultaneously with design and tuning of the fuzzy model on the basis of readily 
available expert and experimental information.  

This monograph is written on the basis of the author’s originally suggested in-
vestigations, devoted to the resolution of the direct and inverse problems of fuzzy 
inference with the use of genetic and neural algorithms.  

The book consists of nine chapters: 
Chapter One is a short introduction into intellectual technologies and contains 

the main knowledge of the theory of fuzzy sets, genetic algorithms and neural nets 
necessary to understanding the following chapters.  

Chapter Two contains nonlinear objects approximation models on the basis of 
linguistic expressions joined in fuzzy knowledge bases. Some object models with 
continuous and discrete outputs are considered here. The approach to the linguistic 
approximation is based on the method of fuzzy logic equations suggested in the 
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work “Medical Diagnosis based on Fuzzy Logic” by A. Rotshtein, 1997 
(http:/matlab.exponenta.ru/fuzzy_logic/book7/index.php). 

Chapter Three describes some methods of linguistic models tuning using ge-
netic algorithms and neural nets. The tasks of optimal tuning are formulated in 
terms of mathematical programming for the objects with the continuous and dis-
crete output as well as for the generalized object “many inputs - many outputs”. 
Membership functions forms of fuzzy terms and weights of rules are considered as 
adjustable parameters.  

In Chapter Four, the methods of IF-THEN rules extraction from experimental 
data using genetic algorithms and neural networks are described. The problem of 
linguistic knowledge extraction is formulated as the optimization problem, where 
the synthesis of the knowledge base amounts to finding the matrix of membership 
functions parameters interpreted as fuzzy terms. 

In Chapter Five, we propose some procedures of numerical solution of the 
fuzzy relational equations using genetic algorithms. The procedures envisage the 
optimal solution growing from a set of primary variants using genetic cross-over, 
mutation and selection operations. To serve as an illustration of the procedures 
and genetic algorithm’s effectiveness we present an example of the diagnosis 
problem. 

In Chapter Six, we propose an approach for building fuzzy systems of diagnosis, 
which enables solving fuzzy relational equations together with design and tuning of 
fuzzy relations on the basis of expert and experimental information. The essence of 
tuning consists of the selection of such membership functions of the fuzzy causes 
and effects and such “causes-effects” fuzzy relations, which provide minimal dif-
ference between theoretical and experimental results of diagnosis. Genetic algo-
rithms and neural networks are used for solving the optimization problems. 

In Chapter Seven, an approach for an inverse problem solution based on the de-
scription of the interconnection between unobserved and observed parameters of 
an object with the help of fuzzy IF-THEN rules is proposed. The essence of the 
proposed approach consists of formulating and solving the optimization problems, 
which, on the one hand, find the roots of fuzzy logical equations, corresponding to 
IF-THEN rules, and, on the other hand, tune the fuzzy model using the readily 
available experimental data. The hybrid genetic – neuro approach is proposed for 
solving the formulated optimization problems. 

In Chapter Eight, we consider a problem of multiple inputs – multiple outputs  
object identification expressed mathematically in terms of fuzzy relational equa-
tions. The identification problem consists of the extraction of an unknown relational 
matrix which can be translated as a set of fuzzy IF-THEN rules. In fuzzy relational 
calculus this type of the problem relates to the inverse problem and requires resolu-
tion for the composite fuzzy relational equations. The resulting solution is linguisti-
cally interpreted as a set of possible rules bases discovering the structure of the given 
experimental data. 

The efficiency of the models and algorithms suggested in Chapters 3 – 8 is  
illustrated by computer experiments with standard objects as well as real examples 
of forecasting and diagnosis.  



X Preface 

Chapter Nine describes the results of application of intellectual technologies of 
identification in system control problems, sport forecasting, automobile design, 
projects creditworthiness evaluation and system reliability analysis.  

The presented bibliography does not in any way reflect the overwhelming major-
ity of works in the given domain. Only the works which were used by the authors in 
carrying out the investigations are referred to.   

While writing this book, we used the results of investigations carried out to-
gether with Dr. Denis Katelnikov and Dr. Yuriy Mityushkin, which remained the 
best reminiscences during our team work.  

The first author would like to express his thanks to the colleagues from Jerusalem 
College of Technology (JCT – Machon Lev) Prof. Yaakov Friedman, Prof. Usiel 
Sandler, Prof. Morton Posner, Prof. Alan Stulman, Prof. Joseph M. Steiner and Mrs. 
Ariella Berkowitz for many useful discussions and support. Finally, we thank the 
JCT student Shaya Rubinshtein for the linguistic editing.  
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Chapter 1 
Fundamentals of Intellectual Technologies 

Intellectual technologies which are used to do the tasks of identification and deci-
sion making in this book represent a combination of three independent theories: 

- of fuzzy sets - as a means of natural language expressions and logic evidence 
formalization; 

- of neural nets - artificial analogs of the human brain simulating the capabili-
ty to learn; 

- of genetic algorithms - as a means of optimal decision synthesis from a mul-
tiplicity of initial variants on which the operations of crossing, mutation and 
selection are performed. 

The concept of the linguistic variable underlies natural language expressions 
formalization [1, 2]. According to Zadeh [1], such a variable whose values are 
words or sentences of the natural language, that is the qualitative terms, is 
called the linguistic variable. Using the notion of membership function, each 
of the terms estimating a linguistic variable can be formulated in the form of a 
fuzzy set defined on a corresponding universal set [2]. Fuzzy logic apparatus 
does not contain learning mechanisms. That is why the results of fuzzy logic evi-
dence strongly depend on the membership functions type used to formalize fuzzy 
terms: “small”, “large”, “cool”, “hot” and alike. 

The main feature of neural networks is their learning ability. This is realized by 
special algorithms among which the back-propagation algorithm is the most popu-
lar [3, 4]. There is no need for prior information about the structure of the sought 
functional dependence to train the neural network. Only the training data in the 
form of experimental “input – output” pairs are needed, and the price for it is the 
fact that a trained neural network – a graph with weighted edges – doesn’t yield to 
semantic interpretation. 

Optimization is the most important stage in solving identification problems [5 – 7]. 
A task of nonlinear optimization can be solved by various methods among which the 
gradient descent [8] is the most universal. However, when there is a great number of 
input variables the gradient descent method requires finding the minimum from vari-
ous initial points that substantially increases computer time expenses. Genetic algo-
rithms represent the powerful apparatus of optimal decision synthesis [9, 10]. These 
algorithms are analogues of random search [8], which is carried out simultaneously 
from various initial points, cutting the time of search for optimal solutions. 



2 Chapter 1 Fundamentals of Intellectual Technologies 

 

1.1   Fuzzy Sets 

This section is written on the basis of the works [1, 2, 11, 12]. The additional in-
formation relative to fuzzy sets and decision making under uncertainty can be 
found in the works [13 – 21]. 

The concept of a set, and set theory, are powerful tools in mathematics. Unfor-
tunately, a sin qua non condition underlying set theory, i.e. that an element can 
either belong to a set or not, is often not applicable in real life where many vague 
terms as “large profit”, “high pressure”, “moderate temperature”, “reliable tools”, 
“safe conditions”, etc. are extensively used. Unfortunately, such imprecise de-
scriptions cannot be adequately handled by conventional mathematical tools. 

If we wish to maintain the very meaning of imprecise (vague) terms, a crisp dif-
ferentiation between elements (e.g., pressure values) that are either high or not 
high may be artificial, and some values may be perceived high to some extent, not 
fully high and not fully not high. 

An attempt to develop a formal apparatus to involve a partial membership in a 
set was undertaken in the mid-1960’s by Zadeh [1]. He introduced the concept of 
a fuzzy set as a collection of objects which might “belong” to it to a degree, from 1 
for full belongingness to 0 for full nonbelongingness, through all intermediate 
values. This was done by employing the concept of a membership function, as-
signing to each element of a universe of discourse a number from the unit interval 
to indicate the intensity (grade) of belongingness. The concept of a membership 
function was evidently an extension of that of a characteristic function of a con-
ventional set assigning to the universe of discourse either 0 (nonbelongingness) or 
1 (belongingness). Then, basic properties and operations on fuzzy sets were de-
fined by Zadeh (and later by his numerous followers) being essentially extensions 
(in the above spirit) of their conventional counterparts.  

Since its inception, fuzzy sets theory has experienced an unprecedented growth 
of interest in virtually all fields of science and technology. 

1.1.1   Fundamentals of Fuzzy Set Theory 

Suppose that { }X x=  is a universe of discourse, i.e. the set of all possible (feasi-

ble, relevant, ...) elements to be considered with respect to a fuzzy (vague) concept 
(property). Then a fuzzy subset (or a fuzzy set, for short) A  in X  is defined as a 
set of ordered pairs {( , ( ))}Ax xμ , where x X∈  and : [0,1]A Xμ →  is the mem-

bership function of A ; ( ) [0, 1]A xμ ∈  is the grade of membership of x  in A , 

from 0 for full nonbelongingness to 1 for full belongingness, through all interme-
diate values. In some contexts it may be expedient to view the grade of member-
ship of a particular element as its degree of compatibility with the (vague) concept 
represented by the fuzzy set. Notice that the degrees of membership are clearly 
subjective. 
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Many authors denote ( )A xμ  by ( )A x . Moreover, a fuzzy set is often equated 

with its membership function so that both A  and ( )A xμ  are often used interchan-

geably. 
Notice that if [0, 1]  is replaced by {0, 1} , this definition coincides with the cha-

racteristic function based description of an ordinary (nonfuzzy) set. Moreover, the 
original Zadeh’s unit interval is chosen for simplicity, and a similar role may be 
played by an ordered set, e.g., a lattice. 

It is convenient to denote a fuzzy set defined in a finite universe of discourse, 

say A  in 1 2{ , ,..., }nX x x x= as  

1 1 2 2
1

( ) ( ) ... ( ) ( )
n

A A A A
n n i i

i

A x x x x x x x xμ μ μ μ
=

= + + + =∑ , 

where “ ( )A
i ix xμ ” (called a singleton) is a pair “grade of membership – element” 

and “+” is meant in the set-theoretic sense.  

Example 1.1. If {1, 2,...,10}X = , then a fuzzy set “large number” may be given as  

A = ” large number”=0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10 

to be meant as: 9 and 10 are surely (to degree 1) “large numbers”, 8 is a “large 
number” to degree 0.8, etc. and 1,2,...,5 are surely not “large numbers”. Notice 
that the above degrees of membership are subjective (a “large number” is a sub-
jective concept!) and context-dependent, and - by convention - the singletons with 

( ) 0Aμ • =  are omitted.  

In practice it is usually convenient to use a piecewise linear representation of 
the membership function of a fuzzy set as shown in Fig. 1.1 since only two values, 

a  and a , are needed.  

 

a a
0

1

)(x(x

x
 

Fig. 1.1. Membership function of a fuzzy set 
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1.1.2   Basic Properties of Fuzzy Sets 

A fuzzy set A  in X  is empty, A = ∅ , if and only if ( ) 0A xμ = , x X∀ ∈ . 

Two fuzzy sets A , B  in X  are equal, A B= , if and only if ( ) ( )A Bx xμ μ= , 

x X∀ ∈ . 
A fuzzy set A  in X  is included in (is a subset of) a fuzzy set B  in X , 

A B⊆ , if and only if ( ) ( )A Bx xμ μ≤ , x X∀ ∈ . 

Example 1.2. Suppose {1, 2, 3}X =  and A = 0.3/1 + 0.5/2 + 1/3  and B = 0.4/1 + 
0.6/2 + 1/3; then A B⊆ . 

An important concept is the cardinality of a fuzzy set. If 1 2{ , ,..., }nX x x x= , and  

1 1 2 2
1

( ) ( ) ... ( ) ( )
n

A A A A
n n i i

i

A x x x x x x x xμ μ μ μ
=

= + + + =∑  , 

then the (nonfuzzy) cardinality of A  is defined as 

1

card | | ( )
n

A
i

i

A A xμ
=

= =∑ . 

Example 1.3. If {1,2,3,4}X =  and A = 0.1/1 + 0.4/2 + 0.7/3 + 1/4, then 

card A =2.2. 

1.1.3   Basic Operations on Fuzzy Sets 

The basic operations here are naturally the complement, intersection and union, as 
in the conventional set theory. 

The complement of a fuzzy set A  in X , A¬ , is defined as 

( ) 1 ( )A Ax xμ μ¬ = − , x X∀ ∈ . 

and it corresponds to the negation «not». 
The intersection of two fuzzy sets A , B  in X , A B∩ , is defined as 

( ) ( ) ( )A B A Bx x xμ μ μ∩ = ∧ , x X∀ ∈ , 

where «∧ » is the minimum, and it corresponds to the connective «and». 
The union of two fuzzy sets, A , B  in X , A B∪ , is defined as 

( ) ( ) ( )A B A Bx x xμ μ μ∪ = ∨ , x X∀ ∈ , 

where «∨ » is the maximum, and it corresponds to the connective «or». 
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Example 1.4. If {1, 2,...,10}X = ,  

A = “small number” = 1/1 + 1/2 + 0.8/3 + 0.5/4 + 0.3/5 + 0.1/6,  
B = “large number” = 0.1/5 + 0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10,  

then A¬  = “not small number” = 0.2/3 + 0.5/4 + 0.7/5 + 0.9/6 + 1/7 + 1/8 + 1/9 + 
1/10 

A B∩  = “small number” and “large number” = 0.1/5 + 0.1/6  
A B∪  = “small number” or “large number” = 1/1 + 1/2 + 0.8/3 + 0.5/4 + 0.3/5 

+  0.2/6 + 0.5/7 + 0.8/8 + 1/9 + 1/10. 

The above definitions are classic, and have been commonly employed though 
they are evidently by no means the only ones. For instance, the use of a t -norm 
for the intersection and an s -norm for the union has often been advocated. They 
are defined as follows: 

a t -norm is defined as t : [0, 1] [0,1] [0,1]× →  such that: 

a)  a t 1 = a 
b)  a t b = b t a  
c)  a t b ≥  c t d,  if a ≥  c,  b ≥  d 
d)  a t b t c = a t (b t c). 

Some more relevant examples of t -norms are: 

min( , )a b a b∧ =  - this is the most popular t -norm, 

a b⋅ , 
1/1 [1 ((1 ) (1 ) ) ]p p pa b− ∧ − + − , 1p ≥  . 

an s -norm ( t -conorm) is defined as s : [0, 1] [0,1] [0,1]× →  such that: 

a)  a s 0 = a 
b)  a s b = b s a  
c)  a s b ≥  c s d,  if a ≥  c,  b ≥  d 
d)  a s b s c = a s (b s c). 

Some examples of more popular s -norms are: 

max( , )a b a b∨ =  - this is the most popular s -norm, 

a b a b+ − ⋅  

( )1/
1

pp pa b∧ + , 1p ≥ . 

1.1.4   Further Properties and Related Concepts 

An α -cut (α -level set) of a fuzzy set A  in X  is defined as the ordinary set 
A Xα ⊆  such that 

{ : ( ) }AA x X xα μ α= ∈ ≥ , [0,1]α∀ ∈  . 
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Example 1.5. If A  = 1/1 + 0.8/2 + 0.5/3 +0.1/4, then 0.1 {1,2,3,4 }A = , 

0.5 { 1, 2, 3 }A = , 0.8 {1,2 }A =  1 { 1 }A = . 

The concept of an α -cut of a fuzzy set is crucial for the so-called decomposi-
tion theorem which states that any fuzzy set A  in X  may be represented as some 
(equivalent) operation on conventional sets (subsets of X ). 

Of fundamental importance here is the so-called extension principle [1] which 
gives a formal apparatus to carry over operations (e.g., arithmetic or algebraic) 
from sets to fuzzy sets. Namely, if :f X Y→  is a function (operation) and A  is a 

fuzzy set in X , then A  induces via f  a fuzzy set B  in Y  given by 

1

( )

1

sup ( )  ,   ( )
( )   

0                ,  ( )

A

B y f x
x f y

y
f y

μ
μ

−

=

−

⎧ ≠ ∅⎪= ⎨
⎪ = ∅⎩

.                          (1.1) 

Example 1.6. Let { 1, 2, 3, 4 }X = , {1, 2, 3, 4, 5, 6 }Y =  and 2y x= + . If now 

A =  0.1/1 + 0.2/2 + 0.7/3 + 1/4, then B =  0.1/3 + 0.2/4 + 0.7/5 + 1/6. 

1.1.5   Fuzzy Relations 

Fuzzy relations - exemplified by «much larger than», «more or less equal», etc. - 
are clearly omnipresent in human discourse. Formally, if { }X x=  and { }Y y=  are 

two universes of discourse, then a fuzzy relation R  is defined as a fuzzy set in the 
Cartesian product X Y× , characterized by its membership function 

: [0,1]R X Yμ × → ; ( , ) [0,1]R x yμ ∈  reflects the strength of relation between 

x X∈  and y Y∈ . 

Example 1.7. Suppose that X  = {horse, donkey} and Y  = {mule, cow}. The 
fuzzy relation «similar» may then be defined as 

R  = «similar» = 0.8/(horse, mule) + 0.4/(horse, cow) + 
                                             + 0.9/(donkey, mule) + 0.5/(donkey, cow) 
 

to be read that, e.g., a horse and a mule are similar to degree 0.8, a horse and a 
cow to degree 0.4, etc. 

Notice that for finite, small enough X  and Y , a fuzzy relation may be evident-
ly shown in the matrix form. 

A crucial concept related to fuzzy relations is their composition. If we have two 
fuzzy relations R  in X Y×  and S  in Y Z× , then their (max-min) composition is 
a fuzzy relation R SD  in X Z×  defined by 

( , ) sup[ ( , ) ( , )]R S R S

y Y
x z x y y zμ μ μ

∈
= ∧D . 

 



1.1   Fuzzy Sets 7 

 

Fuzzy relations play a crucial role in virtually all applications, notably in deci-
sion making and control. 

1.1.6   Fuzzy Numbers 

The extension principle defined by (1.1) is a very powerful tool for extending non-
fuzzy relationships to their fuzzy counterparts. It can also be used, e.g., to devise 
fuzzy arithmetic.  

A fuzzy number is defined as a fuzzy set in the real line, A  in R , which is 
normal (i.e. sup ( ) 1A

x R
xμ

∈
= ) and bounded convex (i.e. whose all α -cuts are con-

vex and bounded). A fuzzy number may be exemplified by «about five», «a little 
more than 7», «more or less between 5 and 8», etc. 

Notice that function f  in (1.1) may be, say, the sum, product, difference and 

quotient, and we can extend via (1.1) the four main arithmetic operations: addi-
tion, multiplication, subtraction and division to fuzzy sets, hence obtaining fuzzy 
arithmetic. 

Namely, for the basic four operations we obtain: 
* addition 

( ) max[ ( ) ( )]A B A B

z x y
z x yμ μ μ+

= +
= ∧ , , ,x y z R∀ ∈ ; 

* subtraction 

( ) max[ ( ) ( )]A B A B

z x y
z x yμ μ μ−

= −
= ∧ , , ,x y z R∀ ∈ ; 

* multiplication 

*

*
( ) max[ ( ) ( )]A B A B

z x y
z x yμ μ μ

=
= ∧ , , ,x y z R∀ ∈ ; 

* division 

/

/ , 0
( ) max [ ( ) ( )]A B A B

z x y y
z x yμ μ μ

= ≠
= ∧ , , ,x y z R∀ ∈ . 

Unfortunately, the use of the extension principle to define the arithmetic opera-
tions on fuzzy numbers is in general numerically inefficient, hence it is usually 
assumed that a fuzzy number is given in the so-called L R−  representation whose 
essence is that the membership function of a fuzzy number is   

  ,   0,  

( )

 ,   0,  

A

m x
L x m

x
m x

R x m

α
α

μ
β

β

⎧ −⎛ ⎞ > ∀ ≤⎜ ⎟⎪ ⎝ ⎠⎪= ⎨
⎛ ⎞−⎪ > ∀ ≥⎜ ⎟⎪ ⎝ ⎠⎩

  , 
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where function L  is such that:  

а) ( ) ( )L x L x− =  , 
b) (0) 1L =  , 
c) L  is increasing in [0, ]+∞ , 

and similarly function R .  
Here m  is the mean value of the fuzzy number A , α  is its left spread, and β  

is its right spread; notice that when α , β =0, then the fuzzy number A  boils 
down to a real number m . 

A fuzzy number A  can now be written as ( , , )A A AA m α β= , and the arith-

metic operations may be defined in terms of the m ’s,α ’s and β ’s. For instance, 

in the case of addition: 

( , , ) ( , , ) ( , , )A A A B B B A B A B A BA B m m m mα β α β α α β β+ = + = + + + , 

and similarly for the other arithmetic operations. 
In practice, however, the L R−  representation is further simplified in that the 

functions L  and R  are assumed to be linear which leads to triangular fuzzy num-
bers exemplified by the one shown in Fig. 1.2a, and whose membership function 
is generally given by 

( ) ( )  ,  
( )

( ) ( )  ,  
A x a a a a x a

x
a x a a a x a

μ
− − −

+ + +

⎧ − − ≤ ≤⎪= ⎨
− − ≤ ≤⎪⎩

. 

a a aa a a a

0

1

)(x(x

x

a) b)  
Fig. 1.2. Membership functions of triangular and trapezoid fuzzy numbers 
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Notice that a triangular fuzzy number may be adequate for the formalization of 
such terms as, say, around 5 or much more than 10 (in this case, evidently, a+  must  
be a very large number). For the representation of such fuzzy numbers as, e.g., more 
or less between 5 and 7 the trapezoid fuzzy numbers may be used which are exem-
plified in Fig. 1.2b and whose membership function is generally written as 

 

( ) ( )  ,  

( ) 1                              ,  

( ) ( )  ,  

A

x a a a a x a

x a x a

a x a a a x a

μ

− − −

+ + +

⎧ − − ≤ ≤
⎪⎪= ≤ ≤⎨
⎪ − − ≤ ≤⎪⎩

. 

1.1.7   Fuzziness and Probability  

Novices at fuzzy set theory very often try to compare it with theory of probability. 
However, both theories are hardly comparable because they treat uncertainty dif-
ferently. Some statistical uncertainty is considered in theory of probability, e.g., a 
probability of hitting the target is equal to 0.9. Fuzzy set theory allows us to oper-
ate with linguistic uncertainty, e.g., good shot. These types of uncertainty can be 
formalized with the help of: 
 

• distribution functions – for theory of probability, 

• membership functions – for fuzzy set theory. 
 

The founder of fuzzy set theory L. Zadeh gives the following example to illustrate 
the crucial difference between the two distributions [17]. 

Example 1.8. Let us consider the assertion «The author eats X  eggs at break-
fast», 

{1, 2, 3, ... }X = . 
Some possibility and probability distributions correspond to the value of X , 
which can be considered as an uncertain parameter. 

The possibility distribution ( )X uπ  can be interpreted as a degree (a subjective 

measure) of easiness, with which the author eats u  eggs. To define the probability 
distribution ( )XP u , it is necessary to observe the author over a period of 100 days. 

Both distributions are presented below. 

Possibility and probability distribution 

u  1 2 3 4 5 6 7 8 

( )X uπ  1 1 1 1 0.8 0.6 0.4 0.2 

( )XP u  0.1 0.8 0.1 0 0 0 0 0 
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It is seen, that the high degree of possibility ( )X uπ  does not mean in any case 

the same high degree of probability ( )XP u . There is no doubt: if an event is im-

possible, then it is also improbable. 
The crucial difference between theory of probability and theory of possibility is ap-

parent wherein the axiom of complement is treated differently in these two theories: 

( ) ( ) 1P A P A+ =  -  for theory of probability, 

( ) ( ) 1A Aπ π+ ≠   - for theory of possibility. 

1.2   Genetic Algorithms 
As mentioned in the preface, optimization is the most important stage in solving 
identification problems [5 – 7]. The main difficulties in the application of the  
classical methods of nonlinear functions optimization [8] are related to the prob-
lems of finding a local extremum (Fig. 1.3) and overcoming of the “dimension 
curse” (Fig. 1.4).  
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Fig. 1.3. Problem of local extremum Fig. 1.4. Problem of “dimension curse”   

The attempts to overcome these problems resulted in the creation of a special 
theory of genetic algorithms, which grow the optimal solution by crossing-over 
the initial variants with consequent selection using some criterion (Fig. 1.5). The 
general information about genetic algorithms presented in this chapter is based on 
the works [9, 10, 22, 23]. 
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Fig. 1.5. Idea of genetic algorithm  

(In: Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning, Addi-
son Wesley, 1989) 

1.2.1   General Structure of Genetic Algorithms 

Genetic algorithms are stochastic search techniques based on the mechanism of 
natural selection and natural genetics. Genetic algorithms, differing from conven-
tional search techniques, start with an initial set of random solutions called a popu-
lation. Each individual in the population is called a chromosome, representing a  
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solution to the problem at hand. A chromosome is a string of symbols; it is usu-
ally, but not necessarily, a binary bit string. The chromosomes evolve through suc-
cessive iterations, called generations. During each generation, the chromosomes 
are evaluated, using some measures of fitness. To create the next generation, new 
chromosomes, called offsprings, are formed by either (a) merging two chromo-
somes from the current generation using a crossover operator or (b) modifying a 
chromosome using a mutation operator. A new generation is formed by (a) select-
ing, according to the fitness values, some of the parents and offsprings and (b) 
rejecting others so as to keep the population size constant. Fitter chromosomes 
have higher probabilities of being selected. After several generations, the algo-
rithms converge to the best chromosome, which hopefully represents the optimum 
or suboptimal solution to the problem. Let ( )P t  and ( )C t  be parents and off-

springs in current generation t ; the general structure of genetic algorithms (see 
Fig. 1.6) is described as follows: 

 
Procedure: Genetic Algorithm 

begin 
 t :=0 ;  

initialize ( )P t ; 

 evaluate ( )P t by using a fitness function; 

while (not termination condition) do 
    recombine ( )P t  to yield ( )C t ; 

    evaluate ( )C t by using a fitness function;  

    select ( 1)P t +  from ( )P t and ( )C t  ; 

    t := t +1 ; 
 end 
end. 
 

Usually, initialization is assumed to be random. Recombination typically in-
volves crossover and mutation to yield offspring. In fact, there are only two kinds 
of operations in genetic algorithms: 

 
1. Genetic operations: crossover and mutation. 
2. Evolution operation: selection. 
 
The genetic operations mimic the process of heredity of genes to create new 

offspring at each generation. The evolution operation mimics the process of Dar-
winian evolution to create populations from generation to generation. 
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Fig. 1.6. The general structure of genetic algorithms  

1.2.2   Genetic Operators 

Crossover operator. Crossover is the main genetic operator. It operates on two 
chromosomes at a time and generates offspring by combining both chromosomes’ 
features. A simple way to achieve crossover would be to choose a random cut-
point and generate the offspring by combining the segment of one parent to the 
left of the cut-point with the segment of the other parent to the right of the cut-
point (Fig. 1.7). 
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Fig. 1.7. Crossover operator 

This method works well with the bit string representation. The performance of 
genetic algorithms depends, to a great extent, on the performance of the crossover 
operator used. 

The crossover rate (denoted by cp ) is defined as the ratio of the number of off-

spring produced in each generation to the population size (usually denoted by 
pop_size). This ratio controls the expected number cp ×  pop_size of chromo-

somes to undergo the crossover operation. A higher crossover rate allows explora-
tion of more of the solution space and reduces the chances of settling for a false 
optimum. However, if this rate is too high, it results in the wastage of a lot of 
computation time in exploring unpromising regions of the solution space. 

Mutation operator. Mutation is a background operator which produces spontane-
ous random changes in various chromosomes. A simple way to achieve mutation 
would be to alter one or more genes. In genetic algorithms, mutation serves the 
crucial role of either (a) replacing the genes lost from the population during the 
selection process so that they can be tried in a new context or (b) providing the 
genes that were not present in the initial population. 

The mutation rate (denoted by mp ) is defined as the percentage of the total 

number of genes in the population. The mutation rate controls the rate at which 
new genes are introduced into the population for trial. If it is too low, many genes 
that would have been useful are never tried out; if it is too high, there will be much 
random perturbation, the offspring will start losing their resemblance to the par-
ents, and the algorithm will lose the ability to learn from the history of the search. 

1.2.3   Search Techniques 

Search is one of the more universal problem-solving methods for such problems 
where one cannot determine a priori the sequence of steps leading to a solution. 
Search can be performed with either blind strategies or heuristic strategies. Blind 
search strategies do not use information about the problem domain. Heuristic 
search strategies use additional information to guide the search along with the best 
search directions. There are two important issues in search strategies: exploiting 
the best solution and exploring the search space. Hill-climbing is an example of a 
strategy which exploits the best solution for possible improvement while ignoring  
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the exploration of the search space. Random search is an example of a strategy 
which explores the search space while ignoring the exploitation of the promising 
regions of the search space. Genetic algorithms are a class of general-purpose 
search methods combining elements of directed and stochastic search which can 
make a remarkable balance between exploration and exploitation of the search 
space. At the beginning of genetic search, there is a widely random and diverse 
population and the crossover operator tends to perform a widespread search for 
exploring the complete solution space. As the high fitness solutions develop, the 
crossover operator provides exploration in the neighbourhood of each of them. In 
other words, the types of searches (exploration or exploitation) a crossover per-
forms would be determined by the environment of the genetic system (the diver-
sity of population), but not by the operator itself. In addition, simple genetic op-
erators are designed as general-purpose search methods (the domain-independent 
search methods); they perform essentially a blind search and could not guarantee 
to yield an improved offspring. 

1.2.4   Comparison of Conventional and Genetic Approaches 

Generally, the algorithm for solving optimization problems is a sequence of com-
putational steps which asymptotically converge to an optimal solution. Most clas-
sical optimization methods generate a deterministic sequence of computation 
based on the gradient or higher-order derivatives of the objective function. The 
methods are applied to a single point in the search space. The point is then im-
proved along the deepest descending/ascending direction gradually through itera-
tions. This point-to-point approach has the danger of falling in local optima. Ge-
netic algorithms perform a multiple directional search by maintaining a population 
of potential solutions. The population-to-population approach attempts to make 
the search escape from local optima. Population undergoes a simulated evolution: 
at each generation the relatively good solutions are reproduced, while the rela-
tively bad solutions die. Genetic algorithms use probabilistic transition rules to 
select someone to be reproduced and someone to die so as to guide their search 
toward regions of the search space with likely improvement. 

1.2.5   Advantages of Genetic Algorithms 

Genetic algorithms have received considerable attention regarding their potential 
as a novel optimization technique. There are three major advantages when apply-
ing genetic algorithms to optimization problems: 

1. Genetic algorithms do not have much mathematical requirements about the op-
timization problems. Due to their evolutionary nature, genetic algorithms will search 
for solutions without regard to the specific inner workings of the problem. Genetic 
algorithms can handle any kind of objective functions and any kind of constraints 
(i.e., linear or nonlinear) defined on discrete, continuous, or mixed search spaces. 
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2. The ergodicity of evolution operators makes genetic algorithms very effec-
tive at performing a global search (in probability). The traditional approaches per-
form a local search by a convergent stepwise procedure, which compares the val-
ues of nearby points and moves to the relative optimal points. Global optima can 
be found only if the problem possesses certain convexity properties that essen-
tially guarantee that any local optima is a global optima. 

3. Genetic algorithms provide us with a great flexibility to hybridize with domain-
dependent heuristics to make an efficient implementation for a specific problem. 

1.2.6   Genetic Algorithm Vocabulary 

Because genetic algorithms are rooted in both natural genetics and computer sci-
ences, the terminology used in genetic algorithm literature is a mixture of the natu-
ral and the artificial. 

In a biological organism, the structure that encodes the prescription specifying 
how the organism is to be constructed is called a chromosome. One or more chro-
mosomes may be required to specify the complete organism. The complete set of 
chromosomes is called a genotype, and the resulting organism is called a pheno-
type. Each chromosome comprises a number of individual structures called genes. 
Each gene encodes a particular feature of the organism, and the location, or locus, 
of the gene within the chromosome structure determines what particular character-
istic the gene represents. At a particular locus, a gene may encode any of several 
different values of the particular characteristic it represents. The different values 
of a gene are called alleles. 

The correspondence of genetic algorithm terms and optimization terms is sum-
marized in Table. 1.1. 

Table 1.1. Explanation of genetic algorithm terms 

Genetic algorithms Explanation 
1. Chromosome 
2. Gene (bits) 
3. Locus 
4. Alleles  
5. Phenotype 
6. Genotype 

Solution (coding) 
Part of solution 
Position of gene 
Values of gene 
Decoded solution 
Encoded solution 

1.2.7   Examples with Genetic Algorithms 

In this section we explain in detail about how a genetic algorithm actually works, 
using two simple examples.  

Example 1.9. Optimization problem. The numerical example of optimization 
problem is given as follows: 
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23 2
1 2 2 2 2 1( , ) ( 2 6 6 10) sin(ln( ) )xf x x x x x x e= − + + + ⋅ ⋅  

0.5≤ 1x ≤ 1.1,        1.0≤ 2x ≤ 4.6 

It is necessary to find:    
1 2

1 2
,

max ( , )
x x

f x x . 

A three-dimensional plot of the objective function is shown in Fig. 1.8. 
 

Representation. First, we need to encode decision variables into binary strings. 
The length of the string depends on the required precision. For example, the do-

main of variable jx  is ,j ja b⎡ ⎤⎣ ⎦  and the required precision is five places after the 

decimal point. The precision requirements imply that the range of the domain of 

each variable should be divided into at least ( ) 510j jb a− ×  size ranges. The re-

quired bits (denoted with jm ) for a variable is calculated as follows: 

( )1 52 10 2 1j jm m

j jb a
− < − × ≤ −  

The mapping from a binary string to a real number for variable jx  is straight-

forward and completed as follows: 

j jx a= +  decimal( substring j  ) 
2 1j

j j

m

b a−
×

−
  , 

where decimal( substring j  ) represents the decimal value of substring j  for deci-

sion variable jx .  

 

1
1.72

2.44
3.16 3.88

4.6

0.5

0.62

0.74

0.86

0.98

1.1

-50
-30
-10
10
30
50
70
90
110
130
150

x1

x2

),( 21 xxf

 

Fig. 1.8. Objective function  
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Suppose that the precision is set as five places after the decimal point. The re-

quired bits for variables 1x  and 2x  is calculated as follows: 

 
(1.1 - 0.5) × 100,000 = 60,000 

 

2 15 < 60,000≤ 2 16 - 1,                                    1 16m =  

 
(4.6 - 1.0) × 100,000 = 360,000 

 
2 18 < 360,000≤ 2 19 - 1,                                 2 19m =  

1 2 16  19  35m m m= + = + =  . 

 
The total length of a chromosome is 35 bits which can be represented as follows: 

v j 0100000101010010 1001101111011111110
19 bits16 bits

35 bits

 

The corresponding values for variables 1x  and 2x  are given below: 

 
 Binary number Decimal number 

1x  0100000101010010 16722 

2x  1001101111011111110 319230 

 

1x = 0.5 + 16722×
16

1.1 0.6

2 1

− =
−

0.65310   , 

2x = 1.0 + 319230 ×
19

4.6 1.0

2 1

− =
−

 3.19198  . 

Initial population. Initial population is randomly generated as follows: 
 

v 1   = [01000001010100101001101111011111110] 

v 2   = [10001110101110011000000010101001000] 

v 3   = [11111000111000001000010101001000110] 

v 4   = [01100110110100101101000000010111001] 

v 5   = [00000010111101100010001110001101000] 
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v 6   = [10111110101011011000000010110011001] 

v 7   = [00110100010011111000100110011101101] 

v 8   = [11001011010100001100010110011001100] 

v 9   = [01111110001011101100011101000111101] 

v 10 = [01111101001110101010000010101101010] 

 
The corresponding decimal values are: 
 

v 1   =  [ 1 2,x x ] = [0.653097, 3.191983] 

v 2   =  [ 1 2,x x ] = [0.834511,2.809287] 

v 3   =  [ 1 2,x x ] = [1.083310,2.874312] 

v 4   =  [ 1 2,x x ] = [0.740989,3.926276] 

v 5   =  [ 1 2,x x ] = [0.506940,1.499934] 

v 6   =  [ 1 2,x x ] = [0.946903,2.809843] 

v 7   =  [ 1 2,x x ] = [0.622600,2.935225] 

v 8   =  [ 1 2,x x ] = [0.976521,3.778750] 

v 9   =  [ 1 2,x x ] = [0.795738,3.802377] 

v 10 =   [ 1 2,x x ] = [0.793504,3.259521] 

 
Evaluation. The process of evaluating the fitness of a chromosome consists of the 
following three steps: 
 

1°. Convert the chromosome’s genotype to its phenotype. Here, this means 
converting the binary string into relative real values 1 2( , )k k kx x=x , 

1, 2,..., _k pop size= . 

2°. Evaluate the objective function ( )kf x . 

3°. Convert the value of the objective function into fitness. For the maximiza-
tion problem, the fitness is simply equal to the value of the objective function 

( ) ( )k
keval v f= x , 1, 2,..., _k pop size= . 

 
An evaluation function plays the role of the environment, and it rates chromo-

somes in terms of their fitness. 
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The fitness function values of the above chromosomes are as follows: 
 

1( )eval v  = f(0.653097,3.191983  ) = 20.432394 

2( )eval v = f(0.834511,2.809287  ) = -4.133627 

3( )eval v = f(1.083310,2.874312  ) = 28.978472 

4( )eval v = f(0.740989,3.926276  ) = -2.415740 

5( )eval v = f(0.506940,1.499934  ) = -2.496340 

6( )eval v = f(0.946903,2.809843  ) = -23.503709 

7( )eval v = f(0.622600,2.935225  ) = -13.878172 

8( )eval v = f(0.976521,3.778750  ) = -8.996062 

9( )eval v = f(0.795738,3.802377  ) = 6.982708 

10( )eval v = f(0.793504,3.259521  ) = 6.201905 

 
It is clear that chromosome 3v  is the strongest one and that chromosome 6v  is 

the weakest one. 
 

Selection. In most practices, a roulette wheel approach is adopted as the selection 
procedure [22]; it belongs to the fitness-proportional selection and can select a 
new population with respect to the probability distribution based on fitness values. 
The roulette wheel can be constructed as follows: 
 

1. Calculate the fitness value ( )keval v  for each chromosome kv : 

( ) ( )k
keval v f= x , 1, 2,..., _k pop size=  . 

2. Calculate the total fitness for the population: 

( )_

1, _
1

( ) min { ( )}
pop size

k j
j pop size

k

F eval v eval v
==

= −∑  

3. Calculate selection probability kp  for each chromosome kv : 

1, _
( ) min { ( )}k j

j pop size
k

eval v eval v
p

F
=

−
=  ,   1, 2,..., _k pop size=  . 
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4. Calculate cumulative probability kq  for each chromosome kv : 

1

k

k j
j

q p
=

=∑  ,        1, 2,..., _k pop size=  . 

The selection process begins by spinning the roulette wheel _pop size  times; each 

time, a single chromosome is selected for a new population in the following way: 
 
1°. Generate a random number r  from the range [0,1]  . 

2°. If 1r q≤ , then select the first chromosome 1v ; otherwise, select the k th 

chromosome kv  ( 2 _k pop size≤ ≤ ) such that 1k kq r q− < ≤  . 

The total fitness F  of the population is: 
 

( )10

1,10
1

( ) min{ ( )}k j
j

k

F eval v eval v
==

= − =∑ 242.208919 . 

 

The probability of a selection kp  for each chromosome kv  ( 1, 2,...,10k = ) is as 

follows: 
 

1p  = 0.181398, 2p  = 0.079973, 3p  = 0.216681, 

4p  = 0.087065, 5p  = 0.086732, 6p  = 0.000000, 

7p  = 0.039741, 8p  = 0.059897, 9p  = 0.125868, 

10p  = 0.122645 .   

 

The cumulative probability kq  for each chromosome kv  ( 1, 2,...,10k = ) is as 

follows: 
 

1q  = 0.181398, 2q  = 0.261370, 3q  = 0.478052, 

4q  = 0.565117, 5q  = 0.651849, 6q  = 0.651849, 

7q  = 0.691590, 8q  = 0.751487, 9q  = 0.877355, 

10q  = 1.000000 .   

 
Now we are ready to spin the roulette wheel 10 times, and each time we select a 

single chromosome for a new population. Let us assume that a random sequence 
of 10 numbers from the range [0,1]  is as follows: 

 

0.301431 0.322062 0.766503 0.881893 

0.350871 0.583392 0.177618 0.343242 

0.032685 0.197577 .   
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The first number 1r = 0.301431 is greater than 2q  and smaller than 3q , mean-

ing that the chromosome 3v  is selected for the new population; the second number 

2r = 0.322062 is greater than 2q  and smaller than 3q , meaning that the chromo-

some 3v  is again selected for the new population; and so on. Finally, the new 

population consists of the following chromosomes: 
 

1v′ = [11111000111000001000010101001000110] 3( )v  

2v′ = [11111000111000001000010101001000110] 3( )v  

3v′ = [11001011010100001100010110011001100] 8( )v  

4v′ = [01111110001011101100011101000111101] 9( )v  

5v′ = [11111000111000001000010101001000110] 3( )v  

6v′ = [01100110110100101101000000010111001] 4( )v  

7v′ = [01000001010100101001101111011111110] 1( )v  

8v′ = [11111000111000001000010101001000110] 3( )v  

9v′ = [01000001010100101001101111011111110] 1( )v  

10v′ = [10001110101110011000000010101001000] 2( )v  

 
Crossover.  Crossover used here is one-cut-point method, which randomly selects 
one cut-point and exchanges the right parts of two parents to generate offspring. 
Consider two chromosomes as follows, and the cut-point is randomly selected 
after the 17th gene: 

1v =

2v = [10001110101110011000000010101001000]
[11111000111000001000010101001000110]

 
 

The resulting offspring by exchanging the right parts of their parents would be 
as follows:  

1v =

2v =[10001110101110011
[11111000111000001 

000010101001000110]
000000010101001000]

 
 



1.2   Genetic Algorithms 23 

 

The probability of crossover is set as 0.25cp = , so we expect that, on average, 25% 

of chromosomes undergo crossover. Crossover is performed in the following way: 
 
Procedure: Crossover 
begin 
  k :=0 ; 

  while ( 10k ≤ ) do 

       kr := random number from [0,1]  ; 

       if ( 0.25kr < ) then 

         select kv  as one parent for crossover; 

       end ; 

      : 1k k= +  ; 
    end ; 
end. 
 

Assume that the sequence of random numbers is: 
 

0.625721 0.266823 0.288644 0.295114 

0.163274 0.567461 0.085940 0.392865 

0.770714 0.548656 .   

 
This means that the chromosomes 5v′  and 7v′were selected for crossover. We 

generate a random integer number pos  from the range [1, 34] (because 35 is the 

total length of a chromosome) as cutting point or in other words, the position of 
the crossover point. Assume that the generated number pos  equals 1, the two 

chromosomes are cut after the first bit, and offspring are generated by exchanging 
the right parts of them as follows: 

 

5v5 =

7v7 = [01000001010100101001101111011111110]

5v5 =

7v7 = 1111000111000001000010101001000110]
1000001010100101001101111011111110]

[0 
[1 

[11111000111000001000010101001000110]
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Mutation. Mutation alters one or more genes with a probability equal to the muta-
tion rate. Assume that the 18th gene of the chromosome 1v′  is selected for a muta-

tion. Since the gene is 1, it would be flipped into 0. Thus the chromosome after 
mutation would be: 

1v1 = [11111000111000001 00010101001000110]0 

1v1 = [11111000111000001 00010101001000110]1 
 

 
The probability of mutation is set as 0.01mp = , so we expect that, on average, 

1% of the total bit of the population would undergo mutation. There are 
_m pop size× =  35 10 350= × =  bits in the whole population; we expect 3.5 mu-

tations per generation. Every bit has an equal chance to be mutated. Thus we need 
to generate a sequence of random numbers kr  ( 1..350)k =  from the range [0,1]. 

Suppose that the following genes will go through mutation: 
 

Position of gene 
in population 

Number of  
chromosome 

Position of gene 
 in population 

Random number | 

kr  

111 4 6 0.009857 

172 5 32 0.003113 

211 7 1 0.000946 

347 10 32 0.001282 

 
After mutation, we get the final population as follows: 

 

1v′ = [11111000111000001000010101001000110] 

2v′ = [11111000111000001000010101001000110] 

3v′ = [11001011010100001100010110011001100] 

4v′ = [01111010001011101100011101000111101] 

5v′ = [11000001010100101001101111011110110] 

6v′ = [01100110110100101101000000010111001] 

7v′ = [11111000111000001000010101001000110] 

8v′ = [11111000111000001000010101001000110] 

9v′ = [01000001010100101001101111011111110] 

10v′ = [10001110101110011000000010101000000] . 
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The corresponding decimal values of variables 1x  and 2x  and fitness are as follows: 

f(1.083310,2.874312)=28.978472 

f(1.083310,2.874312)=28.978472 

f(0.976521,3.778750)=-8.996062 

f(0.786363,3.802377)=9.366723 

f(0.953101,3.191928)=-23.229745 

f(0.740989,3.926276)=-2.415740 

f(1.083310,2.874312)=28.978472 

f(1.083310,2.874312)=28.978472 

f(0.653097,3.191983)=20.432394 

f(0.834511,2.809232)=-4.138564 

Now we just completed one iteration of the genetic algorithm. The test run is 
terminated after 1000 generations. We have obtained the best chromosome in the 
419th generation: 

*v  = [01000011000100110110010011011101001] 

*( )eval v  = f(0.657208,2.418399) = 31.313555 
*
1x  = 0.657208       *

2x  = 2.418399 
* *
1 2( , )f x x  = 31.313555. 

 
Example 1.10. Word matching problem. Another nice example to show the 
power of genetic algorithms, the word matching problem tries to evolve an ex-
pression of «live and learn» from the randomly-generated lists of letters with a 
genetic algorithm. Since there are 26 possible letters plus space character for each 
of 14 locations in the list, the probability that we get the correct phrase in a pure 
random way is (1/27)14 = 9.14× 10-22, which is almost equal to zero.  

We use a list of ASCII integers to encode the string of letters. The lowercase 
letters in ASCII are represented by numbers in the range [97,122] and the space 
character is 32 in the decimal number system. For example, the string 
«live and learn» is converted into the following chromosome represented with 
ASCII integers: 

[108,105,118,101, 32, 97,110,100, 32,108,101, 97,114,110] 

Generate an initial population of 10 random phrases as follows: 

[115,111,113,114,100,109,119,115,118,106,108,116,112,106] 
[116,111,112,122,122,119,103,106,122,100,114, 99,115,103] 
[117,106,111,102,113, 97, 32,114,114,112,117,117,103,115] 
[ 32, 97,114,118,104, 99,117,105,100,118, 98,114,102, 32] 
[119, 99,117,103,102,122,112, 32,114,122,101,107,101,106] 
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[116,117,100,120, 32, 32, 97,122,118,121,104,103, 97,113] 
[118,100,104,122,101,102,114,113,113, 98,111,114, 98,116] 
[120,106,105,101, 98,110,108,116, 97,118,104,116,103,118] 
[102,117,115,100,122,107,118,104,107,112, 99,109,120,109] 
[100,110,100,102,115, 32,107,104,104, 32,121,109, 99,120] 

Now, we convert this population to string to see what they look like: 

«soqrdmwsvjltpj» 
«topzzwgjzdrcsg» 
«ujofqa rrpuugs» 
« arvhcuidvbrf » 
«wcugfzp rzekej» 
«tudx  azvyhgaq» 
«vdhzefrqqborbt» 
«xjiebnltavhtgv» 
«fusdzkvhkpcmxm» 
«dndfs khh ymcx» 

Fitness is calculated as the number of matched letters. For example, the fitness for 
string «ujofqa rrpuugs» is 1. Only mutation is used which results in a change to a given 
letter with a given probability. Now, we run our genetic algorithm with 32 generations 
to see how well it works. The best one of each generation is listed in Table 1.2. 

Table 1.2. The best string for each generation 

Gen. String Fitness func-
tion 

Gen. String Fitness func-
tion 

1 ujofqa rrpuugs 1 17 liie xnd leaez 10 
2 wfugfzpnrzewen 2 18 liye xnt learn 11 
3 wiipvap ozekej 3 19 liye xnt learn 11 
4 wi gvahdlzerej 4 20 liye xnt learn 11 
5 liigvapt yekej 5 21 live xnd nearn 12 
6 liigvapt yekej 5 22 live xnd nearn 12 
7 lqie zp  zekrj 6 23 live xnd nearn 12 
8 lqie zp  zekrj 6 24 live xnd nearn 12 
9 lqie zp  zekrj 6 25 live gnd learn 13 
10 ljie zni yeaez 7 26 live gnd learn 13 
11 ljie zni yeaez 7 27 live gnd learn 13 
12 liie xnt beaez 8 28 live gnd learn 13 
13 liye  nd yeaez 9 29 live and learn 14 
14 liye  nd yeaez 9 30 live and learn 14 
15 liye  nd yeaez 9 31 live and learn 14 
16 liie xnd leaez 10 32 live and learn 14 
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After 29 generations, the population produced the desired phrase. The total ex-
amined chromosomes are 290. If we use pure random method to produce 290 ran-
dom phrases, could we have a match? 

1.3   Neural Networks 

This chapter is written on the basis of the works [3, 4, 24, 25]. The additional informa-
tion relative to artificial neural networks can be found in the works [26 – 31]. 

1.3.1   Neural Net Basics 

The imitation of human minds in machines has inspired scientists for the last cen-
tury. About 50 years ago, researchers created the first electronic hardware models 
of nerve cells. Since then, the greater scientific community has been working on 
new mathematical models and training algorithms. Today, so-called neural nets 
absorb most of the interest in this domain. Neural nets use a number of simple 
computational units called “neurons”, of which each tries to imitate the behavior 
of a single human brain cell. The brain is considered as a “biological neural net” 
and implementations on computers are considered as “neural nets”. Fig. 1.9 shows 
the basic structure of such a neural net.  

  Input Signal Output Signal

Input Layer 1. Hidden Layer 2. Hidden Layer Output Layer  

Fig 1.9. Basic structure of an artificial neural net 

 
 
 



28 Chapter 1 Fundamentals of Intellectual Technologies 

 

Each neuron in a neural net processes the incoming inputs to an output. The 
output is then linked to other neurons. Some of the neurons form the interface of 
the neural net. The neural net shown in Fig. 1.9 has a layer for the input signals 
and one for the output signals. The information enters the neural net at the input 
layer. All layers of the neural net process these signals through the net until they 
reach the output layer.  

The objective of a neural net is to process the information in a way that it is 
previously trained. Training uses either sample data sets of inputs and correspond-
ing outputs or a teacher who rates the performance of the neural net. For this train-
ing, neural nets use so-called learning algorithms. Upon creation, a neural net is 
dumb and does not exhibit any behavior at all. The learning algorithms then modi-
fy the individual neurons of the net and the weight of their connections in such a 
way that the behavior of the net reflects the desired one.  

1.3.2   Mimic of Human Nerve Cells 

Researchers in the area of neural nets have analyzed various models of human 
brain cells. In the following, we only describe the one most commonly used in 
industrial applications.  

The human brain contains about 1011 nerve cells with about 1014 connections to 
each other. Fig. 1.10 shows the simplified scheme of such a human neuron. The 
cell itself contains a kernel, and the outside is an electrical membrane. Each neu-
ron has an activation level, which ranges between a maximum and a minimum. 
Hence, in contrast to Boolean logic, more then two values exist.  

To increase or decrease the activation of this neuron by other neurons, so-called 
synapses exist. These synapses carry the activation level from a sending neuron to 
a receiving neuron. If the synapse is an excitatory one, the activation level from 
the sending neuron increases the activation of the receiving neuron. If the synapse 
is an inhibiting one, the activation from the sending neuron decreases the activa-
tion of the receiving neuron. Synapses differ not only in whether they excite or 
inhibit the receiving neuron, but also in the amount of this effect (synaptic 
strength). The output of each neuron is transferred by the so-called axon, which 
ends in as much as 10,000 synapses influencing other neurons.  

The considered neuron model underlies most of today’s neural net applications. 
Note that this model is only a very coarse approximation of reality. You cannot 
exactly model even one single human neuron; it is beyond the ability of humans to 
model. Hence, every work based on this simple neuron model is unable to exactly 
copy the human brain. However, many successful applications using this tech-
nique prove the benefit of neural nets based on the simple neuron model.  
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Axon

: Exciting Synapses
: Inhibiting Synapses

 

Fig. 1.10. Simplified scheme of a human neuron 

1.3.3   Mathematical Model of a Neuron 

Various mathematical models are based on the simple neuron concept. Fig. 1.11 
shows the most common one. First, the so-called propagation function combines 
all inputs Xi that stem from the sending neurons. The means of combination is a 
weighted sum, where the weights wi represent the synaptic strength. Exciting syn-
apses have positive weights, inhibiting synapses have negative weights. To ex-
press a background activation level of the neuron, an offset (bias) Θ is added to 
the weighted sum. 
 

 Inputs X1 

w1 

w2 

wn 

w3 

X2 

X3 

Xn 

 Output 

Y 

     Propagation Function 

           n 

   f =  wi  xi +  
        i=0 

  Activation Function 

  Y 

  f 

. . . 

 

Fig. 1.11. Simple mathematical model of a neuron. 
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The so-called activation function computes the output signal Y of the neuron 
from the activation level f. For this, the activation function is of the sigmoid type 
as plotted in the lower right box of Fig. 1.11. Other types of the activation function 
are the linear function and the radial-symmetric function showed in Fig. 1.12.  

 
 Y

 f

 Y

 f

 
a)                                                                        b) 

Fig. 1.12. Activation functions of a neuron:a) linear; b) radial-symmetric 

1.3.4   Training Neural Nets 

There are multiple ways to build a neural net. They differ in their topology and the 
learning methods they employ.  

The first step in designing a neural net solution is teaching the desired behavior. 
This is called the learning phase. Here, you can either use sample data sets or a 
“teacher”. A teacher is either a mathematical function or a person who rates the 
quality of the neural net performance. Since neural nets are mostly used for com-
plex applications where no good mathematical models exist, and rating the per-
formance of a neural net is hard in most applications, most applications use sam-
ple data training.  

After completion of learning, the neural net is ready to use. This is called the 
working phase. As a result of the training, the neural net will output values similar 
to those in the sample data sets when the input values match one of the training 
samples. For input values in between, it approximates output values. In the work-
ing phase, the behavior of the neural net is deterministic. That is, for every combi-
nation of input values, the output value will always be the same. During the work-
ing phase, the neural net does not learn. This is important in most technical appli-
cations to ensure that the system never drifts to hazardous behavior.  

Pavlov’s dogs. So, how do you teach a neural net? Basically, it works like Pav-
lov’s dogs. More then hundred years ago, the researcher Pavlov experimented 
with dogs. When he showed the dogs food, the dogs salivated. He also installed 
bells in the dogs’ cages. When he rang the bell, the dogs did not salivate, as they 
saw no link between the bell and the food. Then he trained the dogs by always 
letting the bell ring when he presented the dogs food. After a while, the dogs also 
salivated when just the bell rang and he showed no food. 



1.3   Neural Networks 31 

 

Fig. 1.13 shows how the simple neuron model can represent Pavlov’s experi-
ment. There are two input neurons: one represents the fact that the dog sees food, 
the other one the fact that the bell rings. Both input neurons have links to the out-
put neuron. These links are the synapses. The thickness of the lines represents 
synapse weights. Before learning, the dog only reacts to the food and not the bell. 
Hence, the line from the left input neuron to the output neuron is thick, while the 
line from the right input neuron to the output neuron is very thin.  

 
Before Learning    After Learning

Food     Bell Food     Bell   Food       Bell Food     Bell

   Dog Salivates

Training Increases the Weight
of this Synapse

         Dog Salivates      Dog Salivates     Dog Salivates
 

Fig. 1.13. Principle of the Pavlov dog experiment  

The Hebbian learning rule. Constantly letting the bell ring when food is pre-
sented creates an association between the bell and the food. Hence, the right line 
also becomes thicker - the synapse weight increases. From these experiments, in 
1949 a researcher by the name of Hebb deduced the following learning rule: 
 

Increase weight to active input neuron, if the output of this neuron should 
be active. 

Decrease weight to active input neuron, if the output of this neuron should 
be inactive. 

This rule, called the Hebbian rule, is the forerunner of all learning rules, includ-
ing today’s most used neural net learning algorithm, the so-called error back prop-
agation algorithm.  

1.3.5   Error Back Propagation Algorithm 

The learning rule for multilayer neural nets is called the “generalized delta rule”, 
or the “back propagation rule”, and was suggested in 1986 by Rumelhart, McClel-
land, and Williams. It signaled the renaissance of the entire subject. It was later 
found that Parker had published similar results in 1982, and then Werbos was 
shown to have done the work in 1984. Such is the nature of science; groups work-
ing in diverse fields cannot keep up with all the advances in other areas, and there 
is often duplication of effort. However, the paper of Rumelhart et al. published in 
“Nature” (1986) is still one of the most important works in this field.  
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Learning of the net is begun by the net being shown a pattern and calculating its 
response. Comparison with the desired response enables the weights to be altered 
so that the network can produce a more accurate output the next time. The learn-
ing rule provides the method for adjusting the weights in the network. Information 
about the output is available to units in earlier layers, so that these units can have 
their weights adjusted so as to decrease the error the next time.  

When we show the untrained network an input pattern, it will produce any ran-
dom output. An error function represents the difference between the network’s 
current output and the correct output that we want it to produce. In order to learn 
successfully we want to make the output of the net approach the designed output, 
that is, we want to continually reduce the value of this error function. This is 
achieved by adjusting the weights on the links between the units; the generalized 
delta rule does this by calculating the value of the error function for that particular 
input, and then back-propagating (hence the name!) the error from one layer to the 
previous one. Each unit in the net has its weights adjusted so that it reduces the 
value of the error function; for units actually on the output, their output and de-
sired output are known, so adjusting the weights is relatively simple, but for units 
in the middle layer, the adjustment is not so obvious. Intuitively, we might guess 
that the hidden units that are connected to outputs with a large error should have 
their weights adjusted a lot, while units that feed almost correct outputs should not 
be altered much. In other words, the weights for a particular node should be ad-
justed in direct proportion to the error in the units to which it is connected; that is 
why back-propagating these errors through the net allows the weights between all 
the layers to be correctly adjusted. In this way the error function is reduced and the 
network learns.  

The main formulae for the error back propagation method have been obtained 
in [3, 4].  

The notation used is as follows:  
 

pE  is the error function for pattern p ; 

pjt  is the target output for pattern p  on node j ; 

pjo  is the actual output for pattern p  on node j ; 

ijw  is the weight from node i  to node j .  

 
Let us define the error function to be proportional to the square of the differ-

ence between the actual and desired output, for all the patterns to be learnt:  

( )21

2p pj pj
j

E t o= −∑   .                                         (1.2) 

The 
1

2
 makes the math a bit simpler, and brings this specific error function into 

line with other similar measures.  
The activation of each unit j, for pattern p, can be written simply as the 

weighted sum:  
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pj ij pi
i

net w o=∑  .                                                 (1.3) 

The output of each unit j is the threshold function jf  activated on the weighted 

sum. In the multilayer networks, it is usually the sigmoid function, although any 
continuously differentiable monotonic function can be used: 

 

( )pj j pjo f net=  .                                               (1.4) 

 
We can write by the chain rule:  

 

p p pj

ij pj ij

E E net

w net w

∂ ∂ ∂
=

∂ ∂ ∂
  .                                        (1.5) 

 
Looking at the second term in (1.5), and substituting in (1.3) 

pj jk
kj pk pk pi

k kij ij ij

net w
w o o o

w w w

∂ ∂∂= = =
∂ ∂ ∂∑ ∑  ,              (1.6) 

since 0kj

ij

w

w

∂
=

∂
, except when  k = i , and this derivative is equal to unity. 

We can define the change in error as a function of the change in the net 
inputs to a unit as  

p
pj

pj

E

net
δ

∂
− =
∂

 ,                                                 (1.7) 

and so (1.5) becomes 

p
pj pi

ij

E
o

w
δ

∂
− =
∂

 .                                               (1.8) 

Decreasing the value  pE  therefore means making the weight changes proportion-

al to pj pjoδ , i.e., 

p ij pj piw oηδΔ =  ,                                              (1.9) 

where  η is a learning rate. 
We now need to know what pjδ  is for each of the units. Using (1.7) and the 

chain rule, we can write:  

p p pj
pj

pj pj pj

E E o

net o net
δ

∂ ∂ ∂
= − = −

∂ ∂ ∂
 .                             (1.10) 

Consider the second term, and from (1.4):  

( )pj
j pj

pj

o
f net

net

∂ ′=
∂

 .                                       (1.11) 
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Consider now the first term in (1.10). From (1.2), we can easy obtain  

( )p
pj pj

pj

E
t o

o

∂
= − −

∂
 .                                      (1.12) 

Thus 

( ) ( )pj j pj pj pjf net t oδ ′= −  .                            (1.13) 

This is useful for the output units, since the target and output are both available, 
but not for the hidden units, since their targets are not known. 

Therefore, if unit j is not an output unit, we can write, by the chain rule again, 
that 

 

p p pk p
ik pi

k k ipj pk pj pk pj

E E net E
w o

o net o net o

∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ,    (1.14) 

 

p
ik pi pk jk

k i kpk pj

E
w o w

net o
δ

∂ ∂ = −
∂ ∂∑ ∑ ∑  ,                 (1.15) 

 
using (1.3) and (1.7), noticing that the sum drops out since the partial differential 
is non-zero for only one value, just as in (1.6). Substituting (1.15) in (1.10), we get 
finally 

 

( )pj j pj pk jk
k

f net wδ δ′= ∑  .                     (1.16) 

 
Equations (1.13) and (1.16) are the basis of the multilayer network learning me-

thod.  
One advantage of using the sigmoid function as the nonlinear threshold func-

tion is that it is quite like the step function, and so should demonstrate behavior of 
a similar nature. The sigmoid function is defined as 

1
( )

1 k net
f net

e− ⋅=
+

 

and has the range 0 < ( )f net  < 1. k is a positive constant that controls the 

“spread” of the function - large values of  k squash the function until as k →∞  

when ( )f net →Heaviside function. It also acts as an automatic gain control, since 

for small input signals the slope is quite steep and so the function is changing 
quite rapidly, producing a large gain. For large inputs, the slope and thus the gain 
is much less. This means that the network can accept large inputs and still remain 
sensitive to small changes.  
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A major reason for its use is that it has a simple derivative, however, and this 
makes the implementation of the back-propagation system much easier. Given that 
the output of unit, pjo  is given by 

1
( )

1pj k net
o f net

e− ⋅= =
+

 , 

the derivative with respect to that unit, ( )f net′ , is give by 

2

( )
( )

1 ( )(1 )

k net

k net

ke kf net
f net

f nete

− ⋅

− ⋅
′ = = =

−+
(1 )pj pjko o− . 

The derivative is therefore a simple function of the outputs. 

1.3.6   The Multilayer Neural Network Learning Algorithm 

The algorithm for the multilayer neural network learning that implements the 
back-propagation training rule is shown below. It requires the units to have thre-
sholding nonlinear functions that are continuously differentiable, i.e. smooth eve-

rywhere. We have assumed the use of the sigmoid function, 
1

( )
1 k net

f net
e− ⋅=
+

, 

since it has a simple derivative.  
The multilayer neural network learning algorithm includes the following steps. 
 

1°. Initialize weights and thresholds. Set all weights and thresholds to small 
random values.  

2°. Present input and desired output.  

Present input 0 1 1{ , ,..., }p nX x x x −=  and target output 0 1 1{ , ,..., }p mT t t t −= , where 

n  is a number of input nodes and  m  is a number of output nodes. Set 0w = −Θ   

the bias, and 0 1x = .  

For classification, pT  is set to zero except for one element set to 1 that corres-

ponds to the class that pX  is in.  

3°. Calculate actual output.  
Each layer calculates 

1

0

n

pj i i
i

y f w x
−

=

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑  

and passes that as input to the next layer. The final layer output values are pjo . 

4°. Adapt weights.  
Start from the output layer, and work backwards  

( 1) ( )ij ij pj pjw t w t oηδ+ = +  , 
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where ( )ijw t  represents the weights from node  i  to node  j  at time  t, η is a learn-

ing rate, and  pjδ  is an error term for pattern  p  on node  j . 

For output units 

( )( )1pj pj pj pj pjko o t oδ = − −  . 

For hidden units 

( )1pj pj pj pk jk
k

ko o wδ δ= − ∑  , 

where the sum is over the  k  nodes in the layer above node  j. 
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Chapter 2 
Direct Inference Based on Fuzzy Rules  

This chapter is devoted to the methodology aspects of identification and decision 
making on the basis of intellectual technologies. The essence of intellectuality 
consists of representation of the structure of the object in the form of linguistic IF-
THEN rules, reflecting human reasoning on the common sense and practical 
knowledge level. The linguistic approach to designing complex systems based on 
linguistically described models was originally initiated by Zadeh [1] and devel-
oped further by Tong [2], Gupta [3], Pedrych [4 – 6], Sugeno [7], Yager [8], 
Zimmermann [9], Kacprzyk [10], Kandel [11]. The main principles of fuzzy mod-
eling were formulated by Yager [8]. The linguistic model is a knowledge-based 
system. The set of fuzzy IF-THEN rules takes the place of the usual set of equa-
tions used to characterize a system [12 – 14]. The fuzzy sets associated with input 
and output variables are the parameters of the linguistic model [15]; the number of 
the rules determines its structure. Different interpretations of the knowledge con-
tained in these rules, which are due to different reasoning mechanisms, result in 
different types of models. 

This monograph can be regarded as one of the possible approaches to modeling 
intellectual activity on the basis of knowledge engineering. The herein proposed 
intellectual technique of identification, which supports the human-system ap-
proach to the solution of the simulation tasks [16], represents some general 
framework for design of fuzzy expert systems. The aim of this chapter is to intro-
duce the main formalisms necessary for the definition of fuzzy knowledge bases 
being the medium of expert information. All intellectual tasks discussed above 
can be considered to be the tasks of identification having the following com-
mon properties [17]: 

1) the output variable is associated with the object of identification, that is 
with the type of the decision made, 

2) the input variables are associated with the parameters of the identifica-
tion object state, 

3) output and input variables can have quantitative and qualitative estima-
tions, 

4) the structure of the interconnection between output and input variables is 
described by IF <inputs> THEN <outputs> rules using qualitative esti-
mations of variables and representing fuzzy knowledge bases. 



40 Chapter 2 Direct Inference Based on Fuzzy Rules 

A fuzzy knowledge base represents some combination of IF <inputs>, THEN 
<output> rules, which reflect expert experience and the understanding of cause-
effect connections in the decision making task considered (control, diagnosis, pre-
diction and other ones). Peculiarity of the similar expressions consists in the fact 
that their adequacy doesn’t change with the insignificant deviations of experiment 
conditions. Therefore, formation of the fuzzy knowledge base can be treated as an 
analog of the structural identification [12 – 14] stage, which involves simulation 
of the rough object model. In this case, the results of fuzzy evidence depend on the 
forms of fuzzy terms membership functions, which are used to estimate object 
inputs and outputs. In addition, the combination of IF-THEN rules can be consi-
dered as a set of expert points in input-output space. Application of the fuzzy logic 
evidence apparatus allows us to restore and identify the multidimensional surface 
according to these points, which allows us to receive output values with various 
combinations of input variables values available. 

Work [17] is the basis of this chapter. 

2.1   Formalization of Source Information 

2.1.1   Inputs and Outputs of an Object 

Here we consider an object with one output and n  inputs of the form: 

1 2( , ,..., )y ny f x x x=  , (2.1) 

where y  is the output variable; 1 2, ,..., nx x x  are the input variables. 

Variables 1 2, ,..., nx x x  and y  can be quantitative and qualitative. The examples 

of quantitative variables are: VEHICLE SPEED = [0, 160] km/h, PATIENT 
TEMPERATURE = [36, 41] °C, REACTOR LOAD DOZE  = [6, 20]%, and other 
variables, easily measured using accepted for them quantitative scales. 

The example of a variable for which there is no natural scale is the LEVEL OF 
OPERATOR STRESS, which can be estimated by qualitative terms (low, average, 
high) or measured by artificial scales, for example, using 5-, 10- or 100- points 
systems. 

For quantitative variables some known intervals of change are suggested: 

[ , ]ii iU x x= , 1,i n=   , (2.2) 

[ , ]Y y y=   ,    (2.3) 

where ix  ( )ix  is the lower (upper) value of input variable ix , 1,i n=  ; 
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y ( )y  is the lower (upper) value of output variable y . 

It is suggested that the sets of all possible values for qualitative variables 

1 nx x÷  and y  are known: 

1 2{ , ,..., }iq
i i i iU v v v= , 1,i n= , (2.4) 

1 2{ , ,..., }mqY y y y=   ,    (2.5) 

where 1
iv ( )iq

iv  is the point estimation corresponding to the smallest (largest) value 

of input variable ix ; 
1y ( )mqy  is the point estimation corresponding to the smallest (largest) value of 

output variable y ; 

iq , 1,i n=   and mq  are the cardinalities of sets (2.4) and (2.5), where in the 

general case 1 2  . . . n mq q q q≠ ≠ ≠ ≠ . 

2.1.2   Linguistic Variables 

Let * * * *
1 2, ,..., nx x x=X  be some vector of the input variables fixed values of the 

considered object, where *
i ix U∈ , 1,i n= . The task of decision making consists of 

defining the output *y Y∈  on the basis of the information about the vector of in-

puts *X . The necessary condition for a formal solution of this task is the availabil-
ity of dependence (2.1). To define this dependence we consider input variables ix , 

1,i n= , and output variable y  as linguistic variables [15], given on universal sets 

(2.2), (2.3) or (2.4), (2.5). 

To make an estimation of the linguistic variables ix , 1,i n= , and y  we use 

qualitative terms from the following term-sets: 
 

1 2{ , ,..., }il
i i i iA a a a=  is the term-set of variable ix , 1,i n= , 

1 2{ , ,..., }mD d d d=  is the term-set of variable y , 

where p
ia  is the p -th linguistic term of variable ix , 1, ip l= , 1,i n= ; 

      jd  is the j -th linguistic term of variable y , 

      m  is the number of various solutions in the considered region. 

Cardinalities of term-sets iA , 1,i n= , in the general case can be various, that is 

1 2  . . . nl l l≠ ≠ ≠ . 
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The names of separate terms 1 2, ,..., il
i i ia a a  can also differ for various linguistic 

variables ix , 1,i n= .  

For example, VEHICLE SPEED { low, average, high, very high }, CONVER-
SION TEMPERATURE { psychrophilic, mesophilic, thermophilic }, PULSE 
FREQUENCE { delayed, normal, increased }.  

Linguistic terms p
i ia A∈  and jd D∈ , 1, ip l= , 1,i n= , 1,j m= , are consi-

dered as fuzzy sets given on universal sets iU  and Y  defined by relations 

(2.2) ÷ (2.5). 

In the case of quantitative variables ix , 1,i n= , and y  fuzzy sets p
ia  and jd  

are defined by relations: 

( ) /
i

p
i

i

x
ap

i i i

x

a x xμ= ∫  ,                                              (2.6) 

( ) /j

d
d

j

d

d d dμ= ∫   ,                                               (2.7) 

where ( )
p
ia

ixμ  is the membership function of the input variable [ , ]i i ix x x∈ value 

to the term p
i ia A∈ , 1, ip l= , 1,i n= ; 

( )jd dμ  is the membership function of the output variable [ , ]y y y∈ to the term 

- solution jd D∈ , 1,j m= . 

In the case of qualitative variables ix , 1,i n=  and y  fuzzy sets p
ia  and jd  are 

defined as: 

1

( ) /
i p

i

q
ap k k

i i i
k

a v vμ
=

=∑   ,                                         (2.8) 

1

( ) /
m

j

q
d r

j
r

d yμ
=

=∑ ry ,                                          (2.9) 

where ( )
p
ia k

ivμ  is the membership degree of the element k
i iv U∈  to the term 

p
i ia A∈ , 1, ip l= , 1,i n= , 1, ik q= ; 

( )jd ryμ  is the membership degree of the element ry Y∈  to the term - solution 

jd D∈ , 1,j m= ;  

iU  and Y  are defined by relations (2.4) and (2.5).  
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Note that integral and summation signs in relations (2.6) – (2.9) designate join-
ing of pairs ( ) /u uμ . 

This stage of fuzzy model construction is named fuzzification of variables in 
fuzzy logic literature [9]. At this stage the linguistic estimations of variables and 
the membership functions necessary for their formalization are defined.  

2.1.3   Fuzzy Knowledge Base 

Let us take N  experimental data connecting inputs and output of the identifica-
tion object, and distribute it in the following way: 

1 2 ... mN k k k= + + + , 

where jk  is the number of experimental data corresponding to output solution jd , 

1,j m= , m  is the number of output decisions where in the general case 

1 2 ... mk k k≠ ≠ ≠ . 

It is supposed that  1 2 ... nN l l l< ⋅ ⋅ ⋅ , that is, the number of the selected experi-

mental data is smaller than the complete set of various combinations of object 

input variables change levels ( , 1, )il i n= . 

Let us number N  experimental data in the following way: 
11, 12, ..., 1 1k  – numbers of input variables combinations for solution 1d ; 

...  

j 1, j 2, ..., j jk  – numbers of input variables combinations for solution jd ; 

...  

m 1, m 2, ..., m mk  – numbers of input variables combinations for solution md . 

Let us designate Table 2.1 as a knowledge matrix formed according to such rules: 

1) Dimension of this matrix is equal to ( 1)n N+ × , where ( 1)n +  is the number 

of columns and 1 2 ... mN k k k= + + +  is the number of rows. 

2) The first n  columns of the matrix correspond to input variables ix , 1,i n= , 

and the ( 1n + )-th column corresponds to values jd  of output variable 

y ( 1,j m= ). 

3) Each row of the matrix represents some combination of input variables val-
ues referred to one of possible output variable y  values. In this connection: the 

first 1k  rows correspond to output variable 1y d=  value, the second 2k  rows cor-

respond to 2y d=  value, . . . , the last mk  rows correspond to value my d= . 

4) Element jp
ia , placed at the crossing of i -th column and jp -th row, corres-

ponds to the linguistic estimation of parameter ix  in row number jp  of the fuzzy 
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knowledge base, where linguistic estimation jp
ia  is selected from a term-set cor-

responding to variable ix , that is jp
i ia A∈ , 1,i n= , 1,j m= , 1, jp k= . 

Thus introduced knowledge base defines some system of logical expressions of 
the type «IF - THEN, OTHERWISE», interconnecting input variables values 

1 nx x÷  with one of the possible types of solution jd , 1,j m= : 

Table 2.1. Knowledge base 

Number of 
the input 

Input variables Output  
variable 

combination 
of values 1x  2x  . . . ix  . . . nx  y  

11 11
1a  11

2a  . . . 11
ia  . . . 11

na   

12 12
1a  12

2a  . . . 12
ia  . . . 12

na  1d  

. . .      
1 1k  11

1
ka  11

2
ka  . . . 11k

ia  . . . 11k
na   

. . .      
1j  1

1
ja  1

2
ja  . . . 1j

ia  . . . 1j
na   

2j  2
1
ja  2

2
ja  . . . 2j

ia  . . . 2j
na  jd  

. . .      

jjk  jjk
a1  jjk

a2  . . . jjk
ia  . . . jjk

na   

. . .      
m 1 1

1
ma  1

2
ma  . . . 1m

ia  . . . 1m
na   

m 2 2
1
ma  2

2
ma  . . . 2m

ia  . . . 2m
na  md  

. . .      

mmk  mmka1  mmka2  . . . mmk
ia  . . . mmk

na   
 

 

IF      11
1 1( )x a=   AND 11

2 2( )x a=   AND  . . . AND 11( )n nx a=    OR 
12

1 1( )x a=   AND 12
2 2( )x a=   AND  . . . AND 12( )n nx a=   OR   . . .  

11
1 1( )kx a=  AND 11

2 2( )kx a=  AND  . . . AND 11( )k
n nx a= , 

THEN 1y d= , OTHERWISE 

IF      21
1 1( )x a=    AND 21

2 2( )x a=    AND  . . .  AND 21( )n nx a=   OR 
22

1 1( )x a=    AND 22
2 2( )x a=   AND  . . .  AND 22( )n nx a=   OR   . . .  

22
1 1( )kx a=  AND 22

2 2( )kx a=  AND  . . . AND 22( )k
n nx a= , 

THEN 2y d= , OTHERWISE . . .  
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IF      1
1 1( )mx a=    AND 1

2 2( )mx a=    AND  . . . AND 1( )m
n nx a=    OR 

2
1 1( )mx a=    AND 2

2 2( )mx a=    AND  . . . AND 2( )m
n nx a=   OR   . . .  

1 1( )mmkx a=  AND 2 2( )mmkx a=  AND  . . . AND ( )mmk
n nx a= , 

THEN my d= ,                                                                                            (2.10) 

where jd ( 1,j m= ) is a linguistic estimation of output variable y  defined from 

term-set D ; 
jp

ia  is a linguistic estimation of input variable ix  in p -th row of j -th disjunc-

tion selected from the corresponding term-set iA , 1,i n= , 1,j m= , 1, jp k= ; 

jk  is the number of rules defining output variable value jy d= . 

Let us call the system of logic statements like this one the fuzzy knowledge base 
system. 

Using operations ∪ (OR) and ∩ (AND) the system of logical statements 

(2.10) can be rewritten in a more compact form: 

1 1

( )      
jk n

jp
i i j

p i

x a y d
= =

⎡ ⎤= ⎯⎯→ =⎢ ⎥
⎣ ⎦
∪ ∩ , 1,j m=  .           (2.11) 

Thus, the required relation (2.1) defining interconnection between input parame-
ters ix  and output variable y , is formalized in the form of fuzzy logical statements 

(2.11) system, which is based on the above introduced knowledge matrix. 

2.1.4   Membership Functions 
According to definition [15], membership function ( )T xμ  characterizes some 

subjective measure (in the range of [0, 1] ) of expert certainty in the fact that crisp 
value x  corresponds to fuzzy term T . The most spread in practical applications 
[9] are triangle, trapezoidal and bell shape Gaussian membership functions, para-
meters of which allow us to change function shapes. 

We suggest an analytical model of a variable x  membership function to an ar-
bitrary fuzzy term T  in the form of: 

2

1
( )

1

T x
x b

c

μ =
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

  ,                                   

(2.12)

 

which is simple and convenient for tuning, where b and c are tuning parameters: b 
is the function maximum coordinate, ( ) 1T bμ = ; c is the function concentration-

extension ratio (Fig. 2.1). For fuzzy term T  number b represents the most possible 
value of variable x . 
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Fig. 2.1. Membership function model  

2.2   Fuzzy Approximator for System with Discrete Output 

2.2.1   Problem Statement 

Let us consider the following as known: 
 

* the set of decisions 1 2{ , , ..., }mD d d d= , corresponding to output variable y , 

* the set of input variables 1 2( , ,..., )nx x x=X , 

* the ranges of quantitative change of each input variable [ , ]i i ix x x∈ , 1,i n=  , 

* the membership functions allowing to represent variables ix , 1,i n= , in the 

form of fuzzy sets (2.6) or (2.8), 
* the knowledge matrix defined according to the rules introduced in Section 

2.1.3. 

It is thus required to design such an algorithm of decision making which allows 

us to bring the fixed vector of input variables * * * *
1 2, ,..., nx x x=X , * [ , ]i i ix x x∈ , 

into correspondence with decision y D∈ .  
The task of object approximation with a discrete output is shown in the form of 

a diagram in Fig. 2.2, where it is emphasized that the object inputs are given by 
three methods: 1- by number, 2- by linguistic term, 3- by thermometer principle. 

The idea behind the method suggested below for the solution of this task con-
sists of using fuzzy logic equations. These equations are constructed on the basis 
of a knowledge matrix or of some system of logical statements (2.10) which is 
isomorphic to this matrix and allow us to calculate the values of membership func-
tions of various decisions (solutions) for fixed values of object input variables. 
The solution with the greatest value of membership function is chosen as the re-
quired one. 
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2.2.2   Fuzzy Logical Equations 

Linguistic estimations jp
ia  of variables 1 nx x÷ , contained in logic statements 

about decisions jd  (2.10), are considered as fuzzy sets defined on universal sets 

[ , ]i i iU x x= , 1,i n= , 1,j m= . 

Let ( )
jp

ia
ixμ  be the membership function of parameter [ , ]i i ix x x∈ to fuzzy 

term jp
ia , 1,i n= , 1,j m= , 1, jp k= ; 

1 2( , ,..., )jd

nx x xμ  is the membership function of input variables 

1 2( , ,..., )nX x x x= vector to the value of output variable jy d= , 1,j m= . 

Interconnection between these functions is defined by fuzzy knowledge base 
(2.11) and can be represented in the form of the following equations: 

 

Knowledge matrix

d1 d j dm. . .. . .
C l a s s e s   o f   s o l u t i o n s

Fuzzy logic inference

y

x1 xi xn. . .. . .

1x
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. . .
vi
1 vi

2
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nx
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*
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nx
I n p u t   v a r i a b l e s 

 

Fig. 2.2. Approximation of a nonlinear object with discrete output  
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where ∨  is the logic OR operation, ∧  is the logic AND operation. 
These fuzzy logical equations are derived from fuzzy knowledge base (2.11) by 

way of replacing linguistic terms jp
ia  and jd  by corresponding membership func-

tions, and operations ∪ and ∩  by operations ∨  and ∧ . 

The logical equation system can be briefly written in the following way: 

1 2 1 1
( , ,..., ) ( )

j jp
j i

k n
d a

n ip i
x x x xμ μ

= =

⎡ ⎤= ∨ ∧⎢ ⎥⎣ ⎦
, 1,j m=  .                 (2.13) 

2.2.3   Approximation Algorithm 

The making of decision *
1 2{ , ,..., }md D d d d∈ = , which corresponds to the fixed 

values vector of input variables * * * *
1 2, ,..., nx x x=X , is performed in the following 

sequence. 
 

1°. Let us fix the input variables values vector 
* * * *

1 2( , ,..., )nx x x=X  . 

2°. Let us assign fuzzy terms membership functions used in the fuzzy know-
ledge base (2.11) and define values of these functions for the given values of input 
variables * *

1 nx x÷ . 
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3°. Using logical equations (2.13) we calculate multidimensional membership 

functions * * *
1 2( , ,..., )jd

nx x xμ  of vector *X  for all the values jd , 1,j m=  of output 

variable y . Logic operations AND ( ∧ ) and OR (∨ ) performed on membership 

functions are replaced by the operations min and max. 
 

( ) ( ) min[ ( ), ( )]a b a bμ μ μ μ∧ = , 

( ) ( ) max[ ( ), ( )]a b a bμ μ μ μ∨ = . 
 

4°. Let us define value *
jd , the membership function of which is maximal: 

( )* * * * * *
1 2 1 2

1,
( , ,..., ) max ( , ,..., )j jd d

n n
j m

x x x x x xμ μ
=

= . 

It is this solution that is required for the input variables values vector 
* * * *

1 2( , ,..., )nx x x=X . 

Thus, the suggested algorithm uses the idea of linguistic term identification by 
membership function maximum and generalizes this idea over the entire know-
ledge base. 

The computational part of the suggested algorithm is easily realized with the 
membership functions values matrix derived from the knowledge matrix by way 
of doing min and max operations (Fig. 2.3). 

The suggested algorithm of finding discrete values 1 2{ , , ..., }md d d of output 

variable y  by the given input variables fixed values vector * * * *
1 2, ,..., nx x x=X  

and by the knowledge matrix allows to approximate the object 

1 2( , ,..., )y ny f x x x= with a discrete output. 

2.3   Fuzzy Approximator for System with Continuous Output 

Let us break interval [ , ]y y , with which object output y changes, into m parts:  

N
21

1 1 2 1 1[ , ] [ , ) [ , ) ... [ , ) ... [ , ]

mj

j j m

d dd d

y y y y y y y y y y− −= ∪ ∪ ∪ ∪ ∪�	
 ��	�
��	�

 .       

(2.14)
 

Known expert information about the object with continuous output we give in 
the form of fuzzy logical expressions system:  

   IF          1 1 1
1 1 2 2[( )  AND  ( )  AND ...   ( )]         j j j

n nx a x a x a= = =  

  OR         2 2 2
1 1 2 2[( )   AND  ( )  AND ...   ( )]        j j j

n nx a x a x a= = = . . . 

. . .  OR        1 1 2 2( )  AND  ( )  AND ...   ( )j j jjk jk jk

n nx a x a x a⎡ ⎤= = =⎣ ⎦ , 

THEN      1[ , )j j jy d y y−∈ = , for all 1,j m= ,                                          (2.15) 
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where  p
ja  is the linguistic term by which variable ix  in the row with number 

jp k=  is estimated;  

jk  is the number of rows-conjunctions corresponding to interval jd , 1,j m= . 
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Fig. 2.3. Matrix realization of decision making algorithm  

2.3.1   Problem Statement 

Let us consider the following as known: 

* the interval of change [ , ]y y of output variable y , 

* the input variables set 1 2( , ,..., )nx x x=X , 

* the ranges of quantitative change of each input variable [ , ]i i ix x x∈ , 1,i n=  , 

* the membership functions allowing to represent variables ix , 1,i n= , in the 

form of fuzzy sets (2.6) or (2.8), 
* the system of logical expressions of form (2.15), which can be represented in 

the form of the knowledge base from Section 2.1.3.  
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It is thus required to design such a decision making algorithm that allows to 

bring the fixed vector of input variables * * * *
1 2, ,..., nx x x=X , * [ , ]i i ix x x∈  into cor-

respondence with decision [ , ]y y y∈ . 

The fuzzy logic evidence algorithm presented in Section 2.2.3 allows us to cal-
culate the output value y  in the form of a fuzzy set: 

1 2

1 1 2 1

( ) ( ) ( )
,   ,  ... ,  .

[ , ) [ , ) [ , ]

mdd d

m

y y y
y

y y y y y y

μ μ μ

−

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

�                           (2.16)
 

To obtain a crisp number corresponding to the fuzzy value (2.16) from interval 

[ , ]y y it is necessary to use the defuzzification operation [9]. Defuzzification is 

the operation of transforming fuzzy information into its crisp form. Let us define a 
crisp number *y  which corresponds to fuzzy set (2.16) such that: 

1 2

1 2

1 1*
( ) ( ) ... ( )

( ) ( ) ... ( )

m

m

dd d
m

dd d

y y y y y y
y

y y y

μ μ μ
μ μ μ

−+ + +
=

+ + +
.                 (2.17) 

Where there is probability interpretation of membership degrees, formula (2.17) can 
be considered as an analog to mathematical expectation of a discrete random value. 

If we break interval [ , ]y y  into m equal parts, that is, 

1y y= + Δ , 2 2y y= + Δ , ..., 1my y− = − Δ , 
1

y y

m

−
Δ =

−
,   

then formula (2.17) is simplified and takes the form which is convenient for  
calculations:  

1*

1

[ ( 1) ] ( )

( )

j

j

m
d

j

m
d

j

y j y

y
y

μ

μ

=

=

+ − Δ
=
∑

∑
.                              (2.18)  

2.3.2   Approximation Algorithm 

To solve the stated problem of the approximation of a nonlinear object with conti-
nuous output we use the fuzzy logic evidence algorithm from Section 2.2.3 and 
the defuzzification operation (2.18). Then the value of the output variable 

* [ , ]y y y∈ , which corresponds to the vector of input variables fixed values 

* * * *
1 2, ,..., nx x x=X , is found in such a sequence. 
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1°. Using the fuzzy logic evidence algorithm from Section 2.2.3 we calculate 

multi-dimensional membership functions * * *
1 2( , ,..., )jd

nx x xμ  of vector *X  for all 

the subintervals 1[ , )j j jd y y−= , 1,j m= , into which interval [ , ]y y of output va-

riable y  is broken. 

2°. Using defuzzification operation (2.18) we obtain the required value *y  . 

Approximation of a nonlinear object with continuous output is shown in 
Fig. 2.4. 
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Fig. 2.4. Approximation of a nonlinear object with continuous output  
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Chapter 3 
Fuzzy Rules Tuning for Direct Inference 

The identification of an object consists of the construction of its mathematical 
model, i.e., an operator of connection between input and output variables from 
experimental data. Modern identification theory [1 – 3], based on modeling dy-
namical objects by equations (differential, difference, etc.), is poorly suited for the 
use of information about an object in the form of expert IF-THEN statements. 
Such statements are concentrated expertise and play an important role in the proc-
ess of human solution of various cybernetic problems: control of technological 
processes, pattern recognition, diagnostics, forecast, etc. The formal apparatus for 
processing expert information in a natural language is fuzzy set theory [4, 5]. Ac-
cording to this theory, a model of an object is given in the form of a fuzzy knowl-
edge base, which is a set of IF-THEN rules that connect linguistic estimates for 
input and output object variables. The adequacy of the model is determined by the 
quality of the membership functions, by means of which linguistic estimates are 
transformed into a quantitative form. Since membership functions are determined 
by expert methods [5], the adequacy of the fuzzy model depends on the expert 
qualification. 

A method for identification of nonlinear objects by fuzzy knowledge bases was 
proposed in [6, 7]. Various theoretical and applied aspects of this method were 
considered in [8 – 15]. Constructing the object model was realized by two-stage 
tuning of fuzzy knowledge bases, which can be considered as the stages of 
structural and parametric identification. The first stage is traditional for fuzzy 
expert systems [16]. Rough model tuning is realized by constructing know-
ledge bases using expert information. The passage from a knowledge base to 
the corresponding logical equations allows one to relate membership functions 
of output and input variables of the object for identification. For rough tuning 
of rules weights and membership functions forms in [6] the modified method 
of Saaty’s pairwise comparisons suggested in [17] was used.  

The higher the professional level of the expert the higher the adequacy of 
the fuzzy model simulated at the stage of rough tuning. This model is called a 
pure expert system so that only expert information is used for its construction. 
Though, no one can guarantee the coincidence of the results of fuzzy logic 
evidence (theory) with the experimental data. Therefore, the second stage at 
which fine tuning of the fuzzy model by way of training according to experi-
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mental data is necessary. The essence of the fine tuning stage consists of the 
selection of such weights of fuzzy IF-THEN rules and such membership func-
tions parameters that provide the least distance between the desired (experi-
mental) and the model (theoretical) behavior of the object. The stage of fine 
tuning reduces to the optimization problem, for solution of which a genetic 
algorithm was used in [8]. The drawback of the method is that it is poorly 
suited for taking into account new data entering the training sample. 

In [10] a method of neural-linguistic identification of nonlinear dependen-
cies was proposed. Linguistic information about the object is represented in 
the form of a special neural fuzzy network isomorphic to a fuzzy knowledge 
base. To train the network, recursive relations obtained by the gradient method 
were used. The principal advantage of the method [10] is the ability to learn 
fuzzy knowledge bases in real time, i.e., in the on-line mode. The drawback of 
this method lies in the danger of getting into a local extremum.  

In this Chapter, we propose a two-stage tuning of the parameters of the 
fuzzy model. The first off-line stage uses the training sample at hand and the 
genetic algorithm for rough hitting into a neighborhood of a global minimum 
of discrepancy between the model and the experimental results. The second 
stage uses the neural fuzzy network for on-line tuning of the parameters and 
their adaptive correction as new experimental data arrive.  

This chapter is written using original work materials [6 – 15]. 

3.1   Problems of Fuzzy Rules Tuning 

The certainty of an expert in each IF-THEN rule included in the fuzzy knowledge 
base (2.1) can be of various nature (may vary from one rule to another). The ex-
pert can explicitly single out a rule as some indisputable truth and, relative to 
another rule, the same expert can experience some doubt. To reflect various de-
grees of the expert’s certainty relative to the various rules we introduce the con-
cept of rules weights [6, 7] into the fuzzy knowledge base. A number on the inter-
val [0, 1] which characterizes the expert’s certainty in this rule is called the weight 
of the rule. 

Taking into consideration the weights of the rules, fuzzy knowledge base (2.1) 

about an unknown dependence 1 2( , ,..., )y ny f x x x= takes the following form: 

 

IF   11
1 1( )x a=  AND 11

2 2( )x a=  AND  . . . AND 11( )n nx a=   (with weight 11w ) 

OR 12
1 1( )x a=  AND 12

2 2( )x a=  AND  . . . AND 12( )n nx a=   (with weight 12w ) 

OR   . . .  

OR   11
1 1( )kx a=  AND 11

2 2( )kx a=  AND  . . . AND 11( )k
n nx a=   (with weight 

11kw ),  

THEN 1y d= , OTHERWISE 
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IF     21
1 1( )x a=  AND 21

2 2( )x a=  AND  . . . AND 21( )n nx a=   (with weight 21w ) 

OR   22
1 1( )x a=  AND 22

2 2( )x a=  AND  . . . AND 22( )n nx a=   (with weight 22w ) 

OR   . . .  

OR   22
1 1( )kx a=  AND 22

2 2( )kx a=  AND  . . . AND 22( )k
n nx a=   (with weight 

22kw ), 

THEN 2y d= , OTHERWISE . . .  
 

... 
 

IF     1
1 1( )mx a=  AND 1

2 2( )mx a=  AND  . . . AND 1( )m
n nx a=   (with weight 1mw ) 

OR   2
1 1( )mx a=  AND 2

2 2( )mx a=  AND  . . . AND 2( )m
n nx a=   (with weight 2mw ) 

OR   . . .  

OR ( )1 1
mmkx a=  AND ( )2 2

mmkx a=  AND ... AND ( )mmk
n nx a=  (with  

weight 
mmkw ), 

THEN my d= ,                                                                                                       (3.1) 

 

where jd , 1,j m= , is either one of the solution types if an object with discrete 

output is meant or subinterval of output variable y  values if an object with con-

tinuous output is meant; 
jp

ia  is the linguistic estimation of input variable ix  in  the p -th row of the j -

th disjunction chosen from the corresponding term-set iA , 1,i n= , 1,j m= , 

1, jp k= ; 

jk  is the number of rules defining the output variable jy d=  value; 

jpw  is the weight of the rule. 

The following system of fuzzy logic equations will correspond to the modified 
fuzzy knowledge base (3.1): 

1 2
1 1

( , ,..., ) ( )
j jp

j i

k n
d a

n jp i
p i

x x x w xμ μ
= =

⎧ ⎫⎡ ⎤= ∨ ∧⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
, 1,j m=  .                    (3.2) 

Taking into consideration the fact that in fuzzy sets theory the operations min 
and max correspond to operations ∨  and ∧ , from (3.2) we obtain: 

1 2
1, 1,

( , ,..., ) max min ( )
jp

j i

j

d a
n jp i

p k i n
x x x w xμ μ

= =

⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦⎩ ⎭
, 1,j m=  .                (3.3) 
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3.1.1   Object with Continuous Output 

The generalized model of the object with continuous output has the following 
form: 

( , , , )y F= X W B C  ,                                           (3.4) 

where 1 2( , ,..., )nx x x=X is the vector of input variables; 

      1 2( , ,..., )Nw w w=W  is the rules weights vector from the fuzzy knowledge 

base (3.1); 
            1 2( , ,..., )qb b b=B and 1 2( , ,..., )qc c c=C are the vectors of membership 

functions (2.12) tuning parameters; 

N is the total number of rows in fuzzy knowledge base (3.1), 

1 2 ... mN k k k= + + + ; 

q  is the total number of terms in (3.1); 

F  is the inputs-output connection operator, corresponding to relations (3.3), 
(2.12) and (2.18). 

It is assumed that the training data is given in the form of M pairs of experi-
mental data: 

( , )l lyX , 1,l M= ,                                            (3.5) 

where 1 2( , ,..., )l l l l
nx x x=X  and ly  are the vector of the values of the input vari-

ables and the corresponding value of the output variable y  for l -th pair “inputs – 

output”, [ , ]ly y y∈ . 

In accordance with the least squares method, the problem of optimal tuning of 
the fuzzy model can be formulated as follows: it is required to find a vector 
( , , )W B C , satisfying the restrictions 

[ , ]ii iw w w∈ , 1,i N= , [ , ]jj jb b b∈ , [ , ]jj jc c c∈ , 1,j q= , 

which provides 

2

, ,
1

[ ( , , , ) ] min
M

l l

l

F y
=

− =∑
W B C

X W B C  .                           (3.6) 

3.1.2   Object with Discrete Output 

Relations (3.3) allow us to calculate the vector of inferred membership functions 
of the output variable y  to the different decision classes jd : 

( )( , , , ), 1,jd j mμ =X W B C                                      (3.7) 

where X , W , B  and C are vectors which have been defined in Section 3.1.1.  
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Let us define the desirable vector of membership degrees as: 
 

1

2

(1, 0, ... , 0)

(0, 1, ... , 0)

. . .

(0, 0, ... , 1) m

for class decision d

for class decision d

for class decision d

− ⎫
⎪− ⎪
⎬
⎪
⎪− ⎭

  .                      (3.8) 

 

It is assumed that the training data is given in the form of M pairs of experi-
mental data: 

( , )l ldX , 1,l M= ,                                          (3.9) 

where 1 2( , ,..., )l l l l
nx x x=X  and ld  are the vector of the values of the input vari-

ables and the corresponding class-decision of the output variable for l -th pair 

“inputs – output”,  1 2{ , ,..., }l
md d d d∈  . 

To find the unknown parameters vector ( , , )W B C , which minimizes the differ-

ence between theory (3.7) and experiment (3.9), we take advantage of the least 
squares method. Thus, the problem of optimal fuzzy model tuning can be formu-
lated in the following way: it is required to find a vector ( , , )W B C , satisfying the 

restrictions 

[ , ]ii iw w w∈ , 1,i N= , [ , ]jj jb b b∈ , [ , ]jj jc c c∈ , 1,j q= , 

which provides the minimal distance between desirable and model membership 
functions vectors  

2

, ,
1 1

( , , , ) ( ) minj j

M m
d dl l

l j

μ μ
= =

⎡ ⎤⎡ ⎤− =⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑

W B C
X W B C X  ,           (3.10) 

where 

1,    if
( )

0,    if .
j

l
jd l

l
j

d d

d d
μ

⎧ =⎪= ⎨
≠⎪⎩

X  

In the following sections we design a hybrid genetic-neuro algorithm to solve 
the problems (3.6) and (3.10) of optimal fuzzy knowledge base tuning. 

3.1.3   “Multiple Inputs – Multiple Outputs” Object  

If 1x , 2x ,..., nx  - object inputs and 1y , 2y ,..., my  - object outputs then “inputs – 

outputs” interconnection can be assigned using a fuzzy knowledge base of the 
following form:  
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IF        1 1( )lx A=  AND 2 2( )lx A=  AND . . . AND ( )l
n nx A= , 

THEN 1 1( )ly B=  AND 2 2( )ly B=  AND . . . AND ( )l
m my B= , 

 

where l  is the rule number, 1,l N= , N  is the number of rules, l
iA  and l

jB  are 

the fuzzy terms for the input variable ix  ( 1,i n= ) and the output variable jy  

( 1, )j m=  estimation in l -th rule, respectively. 

 
 

F

. . .

. . .

1x 2x nx

1y 2y my

1F 2F mF

1y 2y my

. . .

1x 2x nx

. . .

. . .
 

Fig. 3.1. Transformation of knowledge base 

After knowledge base transformation (Fig. 3.1) and fuzzy logic inference op-
eration execution we can obtain approximation models of each output variable: 

 

1 1( , , , )y F= X W B C , 

2 2 ( , , , )y F= X W B C ,  

...  

( , , , )m my F= X W B C ,  
 

where 1 2( . ,..., )nx x x=X is the vector of inputs,  

1 2( , ,..., )Nw w w=W is the vector of rules weights,  

B  and C  are the vectors of the fuzzy terms membership functions  
parameters. 

It is assumed that the training data is given in the form of L pairs of experimen-
tal data: 
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1 2ˆ ˆ ˆ( , , ,..., )p p p p
my y yX , 1 2( , ,..., )p p p p

nx x x=X , 1,p L=  .  

Then optimal model tuning problem for the considered object can be formu-
lated in the following way: 

It is required to find such a vector ( , , )B C W , which satisfying change range 

limitations on parameters provides 
 

2 2
1 1 2 2

1 1

2

1

2

, ,
1 1

ˆ ˆ[ ( , , , ) ] [ ( , , , ) ] ...

ˆ... [ ( , , , ) ]

ˆ[ ( , , , ) ] min .

L L
p p p p

p p

L
p p

m m
p

m L
p p

j j
j p

F y F y

F y

F y

= =

=

= =

− + − +

+ − =

− =

∑ ∑

∑

∑∑
W B C

X W B C X W B C

X W B C

X W B C

 

 
The problem of tuning, in case there are discrete outputs, is formulated by analogy. 

3.1.4   Criteria of Identification Quality 

Object with continuous output. Let ( , )Fy MX be the fuzzy model of the object 

after tuning by M pairs of training data. To evaluate the quality of the fuzzy infe-
rence, the following criterion can be used: 

21

{ }
{ }

ˆ[ ( , ) ] ,
i

i

F i iR y M y= −∑X
X

X                      (3.11) 

where ( , )F iy MX and ˆiy  are the inferred and experimental outputs in a point 

1 21 2 1 2( , ,..., ) [ , ] [ , ] . . . [ , ]i i i
ni n nx x x x x x x x x= ∈ × × ×X , respectively,  

{ }iX is a set of elements of type iX ,  

{ }iX is the power of set of { }iX . 

The proposed criterion (3.11) is similar to a mean-square deviation between the 
inferred and experimental outputs corresponding to one element of the input 
space. The dependence of the R ( M ) criterion (3.11) on the number M of train-
ing data pairs can be used to observe the dynamics of fuzzy model learning. 

 
Object with discrete output. Let Q  be the total number of situations used for 

testing the fuzzy model. To evaluate the quality of fuzzy inference in our case of 
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discrete output 1 2{ , , ... , }my d d d∈ , it is necessary to make a distribution of Q  

situations according to the tree shown in Fig. 3.2,  
 
 

Q jm

Q m1

Q i1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Q11

Q j1

Q ji

Qmm

Qm1

Qmi

Q1

Q j

Qm

d di1
d1

d d1 1

d dm m

d dm i

d dm 1

d dj m

d dj i

d dj 1

d dm1

. . .

Q

dm

d j

 

Fig. 3.2. Test sample points distribution tree 

where jQ  is the number of situations demanding the decision jd , that is 

1 2 ... mQ Q Q Q= + + +  , 

jiQ  is the number of situations demanding the decision jd , but recognized by 

fuzzy inference as decision id , that is 1 2 ...j j j jmQ Q Q Q= + + + , 1,j m=  . 

According to Fig. 3.2 we can evaluate the quality of the fuzzy inference by: 
 

jj
j

j

Q
P

Q

∧
=  ,   ji

ji
j

Q
P

Q

∧
=   ,  

1

1 m

jj
j

P Q
Q

∧

=

= ∑  ,                       (3.12) 

where jP
∧

 is the probability of correct inference of decision jd ; 

jiP
∧

 is the probability of incorrect decision id  when decision jd  was correct; 

P
∧

 is the average probability of correct decision inference. 
By observing the dependence of the probabilities (3.12) from the number M  of 

training data, we can study the dynamics of fuzzy model learning. 
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3.2   Genetic Tuning of Fuzzy Rules 

3.2.1   Coding 

To implement a genetic algorithm one should employ a method of fuzzy models 
coding [18]. Let us put together all unknown parameters , ,W B C  into the string 
(Fig. 3.3): 

 

( , , )S = =W B C
1 11 11 11 1 1 1 1( ,..., , , ,..., , ,..., , ,..., , )

n nN l l n n nl nlw w b c b c b c b c      (3.13) 

 
where N  is the total number of rows in fuzzy knowledge base (3.1); 

il  is the number of input variable ix  term-estimations,  

 

1 2 ... nl l l q+ + + = , 1,i n=  ; 

 
q  is the total number of terms in (3.1); 

 
 

Nw1w
nnlc

nnlb
1nc1nb . . .. . .. . .

11lb
11lc

11b 11c . . .

term 11 term 11l term 1n term nnl

1x nx weights of rules

 

Fig. 3.3. Code of fuzzy model - chromosome 

Solely string S  defines some fuzzy model ( , , , )F X W B C  and, vice versa, any 
model ( , , , )F X W B C  unambiguously defines some string S . Therefore, string 
S  can be accepted as a code of fuzzy model ( , , , )F X W B C . Here, model 

( , , , )F X W B C is understood either as fuzzy model (3.7) of nonlinear object with 
discrete output or as fuzzy model (3.4) of nonlinear object with continuous output. 

3.2.2   Crossover 

As crossover is the main operation of the genetic algorithm, its productivity first 
of all depends upon the productivity of the used crossover operation [18]. Cross-
over of two chromosomes 1S  and 2S  means obtaining two chromosome-
offsprings 1Ch  and 2Ch  by way of genes exchange in parent chromosomes rela-
tive to ( 1)n +  crossing points (Fig. 3.4). 
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1w 1
Nw

 
 

b) chromosomes-offsprings 

Fig. 3.4. Crossover operation 

It should be pointed out that so as sets 1 2{ , ,..., }il
i i i iA a a a=  of input parameters 

term-estimations are ordered in an ascending manner (that is: low, average, high 
and so on) the introduced crossover operation can violate the order. Therefore, 
after carrying out of genes exchange sets of terms should be controlled as remain-
ing ordered. Let us introduce the following designations: 

 
1S

jw  – j -th rule weight in parent chromosome 1S ,  

2S
jw  – j -th rule weight in parent chromosome 2S ,  

1Ch
jw  – j -th rule weight in chromosome-offspring 1Ch ,  

2Ch
jw  – j -th rule weight in chromosome-offspring 2Ch , 1,j N= ,  

1S
ipb  – ip -th parameter b  in parent chromosome 1S ,  

2S
ipb  – ip -th parameter b  in parent chromosome 2S ,  

1Ch
ipb  – ip -th parameter b  in chromosome-offspring 1Ch , 

2Ch
ipb  – ip -th parameter b  in chromosome-offspring 2Ch . 

 
A crossover operation algorithm of two parent chromosomes 1S  and 2S , which 

yields offsprings 1Ch  and 2Ch  has the following form: 
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1°. Generate 1n +  random integer numbers iz , 1 i iz l≤ < , where il  is the num-

ber of input variable ix , 1,i n= , terms-estimations; 11 nz N+≤ < , where N  is the 

total number of rows in fuzzy knowledge base (3.1). 
 

2°. Exchange genes according to found values of exchange points iz
 
by using 

the following rules: 
 

1

1

2

,    

,    

S
ip iCh

ip S
ip i

b p z
b

b p z

⎧ ≤⎪= ⎨
>⎪⎩

,    
2

2

1

,    

,    

S
ip iCh

ip S
ip i

b p z
b

b p z

⎧ ≤⎪= ⎨
>⎪⎩

,    1 ip l≤ < , 1,i n= ,         (3.14) 

 
 

1

1

2

1

1

,    

,    

S
j nCh

j S
j n

w j z
w

w j z

+

+

⎧ ≤⎪= ⎨
>⎪⎩

,     
2

2

1

1

1

,    

,    

S
j nCh

j S
j n

w j z
w

w j z

+

+

⎧ ≤⎪= ⎨
>⎪⎩

,    1 j N≤ < .          (3.15) 

3°. Control the order of terms: 
 

( ) ( )  ,  i i i i i ib b b b c cξ η ξ η ξ ηξ η> ∧ < ⇒ ↔ ↔ , 1 , ilξ η≤ ≤ , 1,i n= ,         (3.16) 

 
where  ↔  is the operation of ordering. 

3.2.3   Mutation 

Each string S  element can undergo a mutation operation with probability mp . Let 

us designate the mutation of element s  by ( )Mu s : 

 

( ) ([ , ])jMu w RANDOM w w= , 1,j N=   ,                         (3.17) 

( ) ([ , ])ip i iMu b RANDOM x x= ,                                         (3.18) 

( ) ([ , ])ip i iMu c RANDOM c c= ,                                         (3.19) 

where w ( w ) is the lower (upper) interval bound of possible rule weight value, 

[ , ] [0,1]w w ⊂ ; 

[ , ]iic c  is the interval of possible values of input variable ix  terms-estimations 

membership function concentration-extension ratio, [ , ] (0, ]iic c ⊂ +∞ , 1,i n= ; 

([ , ])RANDOM ξ ξ  designates the operation of finding uniformly distributed on 

the interval [ , ]ξ ξ  random number. 
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Mutation operation algorithm will have this form: 
 
1°. For each element s S∈  in string (3.13) we generate random number 

([0,1])z RANDOM= .  

If mz p>  then mutation is not carried out, otherwise we go to 2°. 

2°. We carry out mutation operation of element s S∈  according to formulae 

(3.17) – (3.19). 

3°. We control ordering of terms according to (3.16). 

3.2.4   Fitness Function 

Let us designate the chromosome S  fitness function using letters ( )FF S . We use 

optimization criterion taken with the negative sign as fitness function. The fitness 
function of chromosome S  (3.13) obtained from criterion (3.10) for fuzzy models 

( , , , )F X W B C  of discrete output objects will have the following form: 

2

1 1

( ) ( , , , ) ( )j j

M m
d dl l

l j

FF S μ μ
= =

⎡ ⎤⎡ ⎤= − −⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑ X W B C X  .                      (3.20) 

The fitness function of chromosome S  (3.13) obtained from criterion (3.6) for 
fuzzy models ( , , , )F X W B C  of continuous output objects will have the following 

form: 
 

2

1

( ) [ ( , , , ) ]
M

l l

l

FF S F y
=

= − −∑ X W B C .                                 (3.21) 

 
To not change fitness function, we use the negative sign; that is, the worse the 

fuzzy model describes the training sample the lesser the fitness of the model. 

3.2.5   Choice of Parents 

According to the principles of genetic algorithms the choice of parents for a cross-
over operation should not be carried out randomly. The greater the fitness function 
of some chromosome the greater the probability for the given chromosome to 
yield offsprings [18]. 

The method of defining parents is based on the fact that each chromosome iS  

from a population must be in correspondence with a number ip  such that: 
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0ip ≥ , 
1

1
K

i
i

p
=

=∑ , ( ) ( )    i j i jFF S FF S p p> ⇒ > ,  

where K  is the number of chromosomes in the population.  
 

The set of ip  numbers can be interpreted as the law of discrete random value 

distribution. A series of numbers ip  is defined using the fitness function in the 

following way: 
 

1

( )

( )

i
i K

j
j

FF S
p

FF S
=

=
∑

 ,                                        (3.22) 

 

where 
1,

( ) ( ) min ( )i i j
j K

FF S FF S FF S
=

= −  . 

Using a series of numbers ip , chromosomes-parents for a crossover operation 

are found according to the following algorithm: 
 

1°. Let us mark off series ip  on the horizontal axis (Fig. 3.5). 

 

0 1

p1 p2 . . .p3 pKp4

z  

Fig. 3.5. Choice of chromosome-parents 

2°. Generate random number z  (Fig. 3.5) of uniform distribution law on inter-
val [0, 1]. 

3°. Choose the chromosome iS , which corresponds to subinterval ip  into 

which number z  finds itself. In Fig. 3.5 generated number z  defines chromo-
some 2S  as the parent. 

4°. Repeat steps 1°-3° to define the second chromosome-parent. 

3.2.6   Population Initialization 

Chromosomes of initial population can be assigned by various methods. The  
best method consists of taking available zero variants of fuzzy models as initial  
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chromosomes. Some hybrid decision incorporating the best features of its parents 
will be derived in the genetic algorithm run. 

Some part of chromosomes or all source information as a whole can be as-
signed randomly according to the formulae: 

 
0 ([ , ])ii iw RANDOM w w= ,                                (3.23) 

0 ([ , ])ii ib RANDOM x x= ,                                 (3.24) 

0 ([ , ])
i

iic RANDOM c c= ,                                  (3.25) 

 

where ([ , ])RANDOM ξ ξ  designates the operation of finding a uniformly distrib-

uted random number on the interval [ , ]ξ ξ . 

After random definition of initial chromosome variants they should be sub-
jected to control (3.16) with the aim of preserving term ordering. It is supposed 
that the initial population contains K  parent chromosomes. 

It should be noted that the random method of initial population definition con-
siderably slows down the genetic algorithm convergence process. 

3.2.7   Genetic Algorithm   

At each genetic algorithm iteration the size of the population will increase by 

cK p⋅  chromosomes-offsprings, where cp  is the crossover ratio. To keep the 

population size K  constant it is necessary to reject the worst of the cK p⋅  chro-

mosomes (in regard to the fitness function). Taking into consideration all above-
mentioned the genetic algorithm of fuzzy model ( , , , )F X W B C  optimal tuning 

will have the following form: 
 

1°. Form initial population by formulae (3.23) – (3.25). 

2°. Find fitness function value for each chromosome ( )iFF S , 1,i K= , using 

relations (3.20), (3.21). 

3°. Define 
2

cK p⋅
 pairs of chromosome-parents using the algorithm from  

section 3.2.5. 
4°. Perform crossover operation of each chromosome-parents pair according to 

the algorithm from section 3.2.2. 

5°. Carry out mutation of obtained chromosome-offsprings with probability mp  

according to the algorithm from section 3.2.3. 

6°. Reject cK p⋅  chromosomes from the obtained population of cK K p+ ⋅  

chromosomes size as having the worst values of fitness function ( )iFF S . 
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7°. If we obtain chromosome iS , for which ( ) 0iFF S = (optimal solution), then 

it will be algorithm end otherwise go to step 8. 
8°. If the preset number of iterations has not yet exhausted then go to step 2° 

otherwise the chromosome having the highest value of fitness function ( )iFF S  

represents the found suboptimal solution. 
A fuzzy model which is defined by the chromosome obtained by the genetic al-

gorithm can be further optimized using usual optimization methods, the most uni-
versal of which is the quickest descent algorithm. The use of the given genetic 
algorithm is described in consequent sections.  

3.3   Neural Tuning of Fuzzy Rules 

3.3.1   Structure of the Network  

In this section, we propose a method of representation of linguistic information 
about object (3.1) in the form of the specific neuro-fuzzy network which is iso-
morphic to knowledge base (3.2) [10]. The structure of such a neural fuzzy net-
work is represented in Fig. 3.6, and the elements functions are shown in Table 3.1. 
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Fig. 3.6. Structure of neuro-fuzzy network 
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As we can see from Fig. 3.6, the neuro-fuzzy network has five layers: 

layer 1 – for object identification inputs; 
layer 2 – for fuzzy terms used in knowledge base (3.2); 
layer 3 – for strings-conjunctions of the fuzzy knowledge base (3.2); 

layer 4 – for fuzzy rules making classes jd , 1,j m= ; 

layer 5 – for defuzzification operation (2.18), that is, transformation of the 
fuzzy logical inference results into some crisp number. 

The number of elements of the neuro-fuzzy network is defined in this way: 
layer 1 – accordingly to the number of the object identification inputs; 
layer 2 – accordingly to the number of fuzzy terms in knowledge base (3.2); 
layer 3 – accordingly to the number of strings-conjunctions in knowledge base; 
layer 4 – accordingly to the number of classes dividing the output variable 

range. 

Table 3.1. Elements of neuro-fuzzy network 

Element Name Function 

νu
 

Input  uν =  

νu T

 

Fuzzy term ( )Tv uμ=  

ν.1u

lu

 

Fuzzy rule 
1

l

i
i

v u
=

= ∧  

. ν

lu

1u

 

Class of rules 
1

l

i
i

v u
=

= ∨  

. ν

mu

1u

 

 
Defuzzification 1 1

m m

j j j
j j

v u d u
= =

=∑ ∑  
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We use the following weights in the proposed neuro-fuzzy network: 

- unity for arcs between the first and the second layers; 
- input membership functions of fuzzy terms for arcs between the second 

and the third layers; 
- rules weights for arcs between the third and the forth layers; 
- unity for arcs between the forth and the fifth layers. 

In Table 3.1 we denote: 

( )T uμ  is the membership function of variable u relative to fuzzy term T; 

jd  is a centre of class [ , ]jd y y∈ . 

For determination of the “fuzzy rule” and the “class of rules” elements shown 
in Table 3.1 the fuzzy-logical operations min and max from (3.2) are changed for 
arithmetical operations of multiplication and addition, respectively. The possibility 
of such change is given foundation in [5]. It allows us to obtain analytical expres-
sions convenient to differentiation. 

3.3.2   Recursive Relations 

The essence of the tuning is in such arcs weights selection which minimizes the 
difference between the results of the neuro-fuzzy approximation and real object 
behavior. The system of recurrent relations  

 
 

( 1) ( )
( )
t

jp jp
jp

E
w t w t

w t
η ∂

+ = −
∂

 ,                               (3.26) 

 

( 1) ( )
( )

jp jp t
i i jp

i

E
c t c t

c t
η ∂

+ = −
∂

 ,                               (3.27) 

 

( 1) ( )
( )

jp jp t
i i jp

i

E
b t b t

b t
η ∂

+ = −
∂

 , 1,j m= , 1,i n=  , jp k= ,     (3.28) 

 
minimizing criterion 

 

21
ˆ( )

2t t tE y y= −  ,                                       (3.29) 

 
applied in the neural networks theory, is used for training, where: 
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ˆty  and  ty  are the experimental and the theoretical outputs of object (3.1) at the  

t -th step of training; 

( )jpw t , ( )jp
ic t , ( )jp

ib t  are rules weights ( w ) and membership functions para-

meters ( b , c ) at the  t -th step of training; 

η is a tuning parameter which is selected accordingly to the recommendations 
in [2]. 

Partial derivatives making the part of the relations (3.26) – (3.28), characterize 

the sensitivity of the error ( tE ) relative to the change of the neuro-fuzzy network 

parameters and are calculated in the following way: 
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In analogy to the back-propagation rule, the neuro-fuzzy network tuning algo-
rithm is made of two phases. The first phase involves the computation of an output 
model value of object (y) which corresponds to the given network structure. The 
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second phase involves the computation of error value (Et) and the interneuron 
connections weights are recalculated according to (3.26) – (3.28). 

3.4   Computer Simulations 

3.4.1   Computer Experiment Methods 

In this section we describe the results of computer experiments directed at testing 
the possibility of identification of nonlinear objects with continuous and discrete 
output using models and algorithms simulated and designed in Chapters 2 and 3. 
Experiment methods consist of carrying out the following steps. 

1°. Nonlinear object was given by some standard model in the form of analyti-
cal formulae. 

2°. Expert knowledge base was generated from the given standard model. 

3°. Identification of nonlinear object was carried out over expert knowledge 
base using models and algorithms developed in Chapters 2 and 3. 

4°. The results of identification carried out using fuzzy knowledge base ob-

tained at step 3° were compared with standard models chosen at step 1°. In this 
case curves of training dynamics were traced showing identification quality with 
the increase of training sample volume. 

Two pairs of objects with continuous and discrete outputs, respectively, with 
parametric assignment of membership functions were investigated in sections 
3.4.2 and 3.4.3. 

3.4.2   Objects with Continuous Output 

Experiment 1. Let us consider an object with one input [0, 1]x∈  and one output 

[0.05,  0.417]y∈ . Model-standard has this form: 

 
(5 1.1)(4 2.9)(3 2.1)(11 11)(3 0.05) 10

( )
40

x x x x x
y f x

− − − − − += =  . 

 
This formula was chosen with the aim of studying the possibility of modeling 

the fifth order object the behavior of which is shown in Fig. 3.7. 
Let us divide the interval of change of output variable y  into four subintervals:  

 

[0.05, 0.417] [0.05, 0.14) [0.14, 0.23) [0.23, 0.32) [0.32, 0.417]= ∪ ∪ ∪ . 
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Then the behavior of the investigated object can be described using the follow-
ing rules: 

 
IF 1x P=  ,  THEN [0.14,  0.23]y∈  (with weight 1w ), 

IF 2x P=  ,  THEN [0.32,  0.42]y∈  (with weight 2w ), 

IF 3 ,x P=   THEN [0.05,  0.14]y∈  (with weight 3w ), 

IF 4x P=  ,  THEN [0.14,  0.23]y∈  (with weight 4w ), 

IF 5x P=  ,  THEN [0.05,  0.14]y∈  (with weight 5w ), 

IF 6x P=  ,  THEN [0.23,  0.32]y∈  (with weight 6w ), 

 
where 1P =  about 0, 2P =  about 0.09, 3P =  about 0.4, 4P =  about  0.71,  

5P =  about 0.92, 6P =  about 1.0 are fuzzy terms of input variable x with member-

ship functions shown in Fig. 3.8b. 
 
 

x 

y 

 

Fig. 3.7. Model-standard for one input – one output object 

Before tuning all the rules weights jw  were alike, that is 1jw = , 1,6j = . It 

provided fuzzy model shown in Fig. 3.8а. After genetic and neuro tuning, which 
consisted of solving optimization task (3.6), the new fuzzy models shown in Fig. 
3.9, 3.10 were obtained. Fuzzy terms membership functions parameters as well as 
rules weights before and after tuning are presented in Tables 3.2 and 3.3. The dy-

namics of object ( )y f x=  fuzzy model learning obtained using formula (3.11) is 

shown in Fig. 3.11. 
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(a) comparison of standard with fuzzy model 
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(b) fuzzy terms membership functions 

Fig. 3.8. One input – one output object fuzzy model before tuning 
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(a) comparison of standard with fuzzy model 

Fig. 3.9. One input - one output object fuzzy model after genetic tuning 
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(b) fuzzy terms membership functions 

Fig. 3.9. (continued) 
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(a) comparison of standard with fuzzy model 

 

 
(b) fuzzy terms membership functions 

Fig. 3.10. One input - one output object fuzzy model after neural tuning 
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Table 3.2. Linguistic terms membership functions parameters for object ( )y f x=  fuzzy 
model 

 Parameters 
Term before tuning genetic 

tuning 
neural 
tuning 

 в с в с в с 
Р1 0 0.1 0 0.021 0 0.006 

Р2 0.09 0.1 0.08 0.030 0.10 0.020 

Р3 0.4 0.1 0.43 0.040 0.40 0.030 

Р4 0.71 0.1 0.88 0.012 0.85 0.007 

Р5 0.92 0.1 0.91 0.030 0.93 0.034 

Р6 1.0 0.1 1.0 0.092 1.0 0.090 

Table 3.3. Rules weights for object ( )y f x=  fuzzy model  

Rules weights 1w  2w  3w  4w  5w  6w  

Before tuning 1 1 1 1 1 1 

Genetic tuning 1 0.90 0.92 1 0.89 0.78 

Neural tuning 1 0.72 0.71 1 0.68 0.70 
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Fig. 3.11. One input - one output object fuzzy model learning dynamics 
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Experiment 2. We consider an object with two inputs 1 [0,6]x ∈ , 2 [0,6]x ∈  and 

one output [ 5.08, 0.855]y∈ − , having standard analytical model of this form:  

1 2

1
( , ) (2 0.9)  (7 1)  (17 19)  (15 2)

40
y f x x z z z z= = − − − − , 

where   
2 2

1 2( 3) ( 3)

18

x x
z

− + −
= .  

The target model is shown in Fig. 3.12 
 
 

2x

y

1x

 

Fig. 3.12. Target model for “two inputs – one output” object 

Rough knowledge base formed on the basis of object 1 2( , )y f x x=  behavior 

observation in Fig. 3.12 consists of 49 rules of the following form: 
 

IF 1 ix P=    AND  2 ix Q=   ,   THEN   jy B=  , 1,7i =  , 1,5j =  ,  

 
which can be depicted in the following matrix 7 7×  form: 

 
 
 
 
 
 

x
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where 1 1P Q= = about 0, 2 2P Q= = about 0.5, 3 3P Q= = about 1.5, 

4 4P Q= = about 3, 5 5P Q= =  about 4.5, 6 6P Q= =  about 5.5, 7 7P Q= =  about 6 

are fuzzy terms of input variables 1x  and 2x  with membership functions shown in 

Fig. 3.13b;  

1 [ 5.08,   4.5)B = − − , 2 [ 4.5,   3.0)B = − − , 3 [ 3.0,   -0.5)B = − , 4 [ 0.5,   0)B = − , 

5 [0,   0.855]B =  are the classes of the output variable y . 

 Weights of all rules before tuning were considered to be identical and were 
equal to 1. This provided the fuzzy model shown in Fig. 3.13а.  
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(а) fuzzy model 

Fig. 3.13. Fuzzy model of two inputs - one output object before tuning 
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 (b) fuzzy terms membership functions 

Fig. 3.13. (continued) 

Table 3.4. Fuzzy model 1 2( , )y f x x=  linguistic terms membership functions parameters 
b  and c  before tuning 

Function 1
1( )P xμ , 

1
2( )Q xμ  

2
1( )P xμ , 

2
2( )Q xμ  

3
1( )P xμ ,

3
2( )Q xμ

4
1( )P xμ ,

4
2( )Q xμ

5
1( )P xμ ,

5
2( )Q xμ

6
1( )P xμ ,

6
2( )Q xμ

7
1( )P xμ , 

7
2( )Q xμ  

b  0 0.5 1.5 3 4.5 5.5 6 
c  2 2 2 2 2 2 2 

 
Membership functions parameters before tuning are shown in Table. 3.4.  
As the result of genetic and neuro tuning, an improved fuzzy model is shown in 

Fig. 3.14 and 3.15. The change of rules weights in the process of tuning can be 
represented in the form of the following matrix: 

 
 P

1
 P

2
 P

3
 P

4
 P

5
 P

6
 P

7
 

Q
1

 0.01/0.01 0.50/0.42 0.05/0.03 0.75/0.64 0.07/0.05 0.50/0.42 0.05/0.03 

Q
2

 0.73/0.61 0.02/0.03 0.30/0.27 0.31/0.26 0.36/0.27 0.05/0.05 0.70/0.61 

Q
3

 0.04/0.05 0.52/0.44 0.88/0.71 0.04/0.03 0.78/0.71 0.56/0.44 0.12/0.09 

Q
4

 0.92/0.87 0.40/0.34 0.02/0.01 0.95/0.90 0.05/0.02 0.40/0.34 0.92/0.87 

Q
5

 0.02/0.03 0.55/0.43 0.82/0.70 0.05/0.05 0.78/0.70 0.55/0.43 0.03/0.01 

Q
6

 0.71/0.60 0.02/0.03 0.44/0.30 0.41/0.29 0.38/0.30 0.05/0.05 0.71/0.60 

Q
7

 0.01/0.03 0.55/0.48 0.06/0.05 0.87/0.83 0.12/0.09 0.61/0.48 0.03/0.01 
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where numerators are weights after genetic tuning, and denominators are weights 
after neural tuning. Fuzzy terms membership functions parameters b  and c  val-
ues are shown in Table 3.5. 

The dynamics of fuzzy model learning is shown in Fig. 3.16.  

Table 3.5. Fuzzy model 1 2( , )y f x x=  linguistic terms membership functions parameters 
b  and c  after genetic and neural tuning 

Function 1
1( )P xμ  2

1( )P xμ  3
1( )P xμ 4

1( )P xμ 5
1( )P xμ 6

1( )P xμ 7
1( )P xμ  

b  0 
(0.07) 

0.15 
(0.00) 

2.37 
(2.39) 

3.0 
(3.00) 

3.72 
(3.63) 

5.86 
(5.99) 

5.99 
(5.92) 

c  0.35  
(0.09) 

1.26 
 (0.81) 

0.61 
(0.32) 

0.88 
(0.65) 

0.47 
(0.29) 

1.34 
(0.83) 

0.28  
(0.09) 

Function 1
2( )Q xμ  2

2( )Q xμ 3
2( )Q xμ 4

2( )Q xμ 5
2( )Q xμ 6

2( )Q xμ  7
2( )Q xμ  

b  0 
(0.00) 

0.17 
(0.17) 

2.32 
(2.06) 

3.0 
(2.99) 

3.85 
(3.94) 

5.89 
(5.82) 

5.99 
(5.99) 

c  0.22 
 (0.09) 

1.35  
(1.10) 

0.77 
(0.49) 

0.97 
(0.72) 

0.65 
(0.49) 

1.25 
(1.10) 

 0.36 
 (0.09) 

 
 

y  

x2  x1  

 
             

(а) fuzzy model 

Fig. 3.14. Fuzzy model of two inputs - one output object after genetic tuning  
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(b) fuzzy terms membership functions 

Fig. 3.14. (continued) 
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Fig. 3.15. Fuzzy model of two inputs - one output object after neural tuning  
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Fig. 3.16. Two inputs - one output object fuzzy model learning dynamics 
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3.4.3   Objects with Discrete Output 

Experiment 1. An object with two inputs 1 [0, 1]x ∈  , 2 [0,1]x ∈  and one output 

y  is considered where there can occur 5 values: 1 2 3 4 5{ , , , , }d d d d d . The investi-

gated object represents itself two-dimensional space divided into 5 regions-classes 
of decision (Fig. 3.17а). The target bounds of the region-classes have the follow-
ing form: 

: 1 [0.5,0.625]x ∈ ,  2
2 132( 0.5) 0.5x x= − + ; 

: 1 [0,0.25]x ∈ ,  4
2 116( 0.25) 0.8125x x= − − + ; 

: 1 [0.25,0.5]x ∈ ,  4
2 180( 0.25) 0.8125x x= − − + ; 

: 2 [0,0.5]x ∈ 1 2 2 2(0.5 )(2 )( 0.1 ) 0.5x x x x= − − − − + ; 

: 2 [0.25,0.5]x ∈ ,  1 2(0.5 ) 0.5x x= − + ; 

: 1 [0.75,1.0]x ∈ ,  4
2 180( 1) 0.75x x= − − +  
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Fig. 3.17. Two inputs - one output object - 1: a) five decision classes, b) fuzzy IF-THEN 
rules acquisition 

In Fig. 3.17b it is shown the way fuzzy IF-THEN rules were obtained and used 
to form a fuzzy knowledge base in Table 3.6, where L – low, lA – lower than aver-
age, A – average, hA – higher than average, H – High. 
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Fuzzy terms membership functions from knowledge base (Table 3.6) are shown 
in Fig. 3.18b, and corresponding parameters are presented in Table 3.7. Rules 
weights before tuning were considered identical and equal to 1 that provided the 
rough fuzzy model depicted in Fig. 3.18а.  

 

Table 3.6. Knowledge matrix and corresponding rules weights  after genetic ( gw ) and 
neural ( nw ) tuning 

N  1x  2x d   N  gw nw

11 L H   11 0.943 0.997

12 lA H d1  12 0.987 0.995

13 A H   13 0.935 0.995

21 hA H   21 1.000 0.995

22 hA hA d2  22 1.000 0.993

23 H H   23 1.000 0.997

31 H hA d3  31 0.909 0.996

32 H A   32 0.984 0.996

41 L hA   41 1.000 0.995

42 L A d4  42 0.999 0.995

43 L lA   43 0.998 0.996

44 L L   44 0.998 0.997
 

N 1x 2x d N gw  nw  

45 lA hA d4 45 0.984 0.994 

46 lA A  46 1.000 0.994 

51 lA lA  51 0.978 0.995 

52 lA L  52 0.988 0.996 

53 A A  53 0.965 0.993 

54 A lA  54 0.986 0.994 

55 A L d5 55 1.000 0.996 

56 hA lA  56 0.977 0.995 

57 hA L  57 1.000 0.996 

58 H lA  58 0.982 0.997 

59 H L  59 1.000 0.997 
 

 

Table 3.7. Parameters b  and c of the fuzzy model 1 2( , )y f x x=  linguistic terms 
membership functions before tuning 

 
Function 

1( )L xμ  1( )lA xμ  1( )A xμ  1( )hA xμ  1( )H xμ  

b  0.100 0.375 0.550 0.650 0.950 

c  0.250 0.250 0.250 0.250 0.250 

Function 
2( )L xμ  2( )lA xμ  2( )A xμ  2( )hA xμ  2( )H xμ  

b  0.100 0.375 0.460 0.620 0.900 

c  0.250 0.250 0.250 0.250 0.250 
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a) results of decision making (♦ - d1,   - d2,  + - d3,  ×  - d4,  ◊ - d5 ) 
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b) fuzzy terms membership functions 

Fig. 3.18. Two inputs - one output object-1 fuzzy model before tuning 
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a) results of decision making  (♦ - d1,   - d2,  + - d3,  ×  - d4,  ◊ - d5 ) 

Fig. 3.19. Two inputs - one output object-1 fuzzy model after genetic tuning 
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b) fuzzy terms membership functions 

Fig. 3.19. (continued) 
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a) results of decision making  (♦ - d1,   - d2,  + - d3,  ×  - d4,  ◊ - d5 ) 
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b) fuzzy terms membership functions 

Fig. 3.20. Two inputs - one output object-1 fuzzy model after neural tuning 

After genetic and neuro tuning, which consisted of solving optimization prob-
lem (3.10), the new fuzzy models were obtained which are shown in Fig. 3.19а, 
3.20а.  

 
 



3.4   Computer Simulations 87 

Membership functions, obtained as the result of tuning, are shown in 
Fig. 3.19b, 3.20b, and their parameters are presented in Table. 3.8.  

 

Table 3.8. Parameters b  and c of the fuzzy model 1 2( , )y f x x=  linguistic terms 
membership functions after genetic (neuro) tuning 

Function 
1( )L xμ  1( )lA xμ  1( )A xμ  1( )hA xμ  1( )H xμ  

b  0.156 (0.100) 0.423 (0.375) 0.528 (0.550) 0.699 (0.650) 0.931 (0.950) 

c  0.201 (0.122) 0.056 (0.025) 0.085 (0.098) 0.081 (0.098) 0.117 (0.107) 

Function 
2( )L xμ  2( )lA xμ  2( )A xμ  2( )hA xμ  2( )H xμ  

b  0.130 (0.100) 0.305 (0.375) 0.472 (0.460) 0.612 (0.620) 0.893 (0.901) 

c  0.210 (0.109) 0.135 (0.025) 0.050 (0.092) 0.115 (0.100) 0.143 (0.089) 

 
 

Tuned rules weights are shown in Table. 3.6. Object 1 2( , )y f x x=  fuzzy model 

learning dynamics can be seen in Fig. 3.21, where îP  ( 1,5)i = and P̂  are criteria 

of identification quality (3.12). 
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Fig. 3.21. Two inputs - one output object-1 fuzzy model learning dynamics 

Experiment 2. Another object with two inputs 1 [0, 1]x ∈  , 2 [0,1]x ∈  and one 

discrete output y  is considered here. Let number of classes - decisions be equal to 

five as before. Let us change standard models of region bounds (Fig. 3.22а): 
 
 



88 Fuzzy Rules Tuning for Direct Inference 

: 2 [0.5,0.75]x ∈ , 1 3
1 22 4(0.75 ) 0.25x x= − +  

: 2 [0.25,0.75]x ∈ , 2
1 2( 0.5) 0.1875x x= − +  

: 1 [0.25,0.75]x ∈ , 2
2 10.5 0.0625(4(0.75 ))x x= − −  

: 1 [0.25,0.5]x ∈ , 0.6
2 10.25(4( 0.25)) 0.75x x= − +  

: 1 [0,0.1875]x ∈ , 0.3416
2 130.25(1 ) 0.5x x= − +  

: 1 [0.25,0.5]x ∈ , 2 10.25 0.125 0.25x x= − −  

: 1 [0.5,0.8125]x ∈ , ( )4
15 ( 0.5)

2 0.1875 0.25 1 0.0625 xx −= + −  

: 1 [0.5,1.0]x ∈ , 216
2 150.3125 0.125( ( 0.8125))x x= + −   . 

 
Obtaining of fuzzy IF-THEN rules describing the object behavior is depicted in 

Fig. 3.22b. These rules are brought together in fuzzy knowledge base (Table 3.9).  
Fuzzy terms membership functions parameters which are used in knowledge 

base in Table 3.9 before tuning are shown in Table 3.10. 
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a)                                                          b) 

Fig. 3.22. Two inputs - one output object - 2: a) five classes-decisions, b) fuzzy IF-THEN 
rules acquisition 
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Table 3.9. Knowledge matrix and corresponding rules weights  after genetic ( gw ) and 
neural ( nw ) tuning 

N  
1x 2x  d   

gw  nw  N
1x 2x d gw  nw  

11 lA hA   0.998 0.999 32 hA lA d3 0.995 0.999 

12 A hA   0.998 0.998 41 L hA  0.998 0.999 
13 hA hA d1  0.997 0.999 42 L A  1.000 0.998 
14 lA A   1.000 0.997 43 L lA  1.000 0.998 
15 A A   0.997 0.995 44 L L  1.000 0.999 

21 A H   1.000 0.996 45 lA L d4 1.000 0.998 
22 hA H   1.000 0.999 46 A L  1.000 0.997 
23 H H d2  1.000 0.998 47 hA L  1.000 0.999 
24 H hA   1.000 0.999 48 H L  1.000 0.998 
25 hA A   1.000 0.999 49 H lA  0.998 0.999 

26 H A   1.000 0.997 51 L H d5 1.000 0.998 
31 A lA d3  0.999 0.997 52 lA H  0.998 0.998 

Table 3.10. Parameters b  and c of the fuzzy model 1 2( , )y f x x=  linguistic terms 

membership functions before tuning 

Function 
1( )L xμ  1( )lA xμ  1( )A xμ  1( )hA xμ  1( )H xμ  

b  0.00 0.25 0.50 0.75 1.00 

c  0.10 0.10 0.10 0.10 0.10 
Function 

2( )L xμ  2( )lA xμ  2( )A xμ  2( )hA xμ  2( )H xμ  

b  0.00 0.25 0.50 0.75 1.00 

c  0.10 0.10 0.10 0.10 0.10 
 
 

Fuzzy terms membership functions from knowledge base (Table 3.9) are shown 
in Fig. 3.23b, and corresponding parameters are presented in Table 3.10. Rules 
weights before tuning were considered identical and equal to 1. The described 
fuzzy model is shown in Fig. 3.23а. 

After genetic and neuro tuning, which consisted of solving optimization prob-
lem (3.10), the new fuzzy models were obtained which are shown in Fig. 3.24а, 
3.25а. Tuned membership functions are depicted in Fig. 3.24b, 3.25b. 

Fuzzy model membership functions parameters, obtained as the result of tun-
ing, are shown in Table 3.11 
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Table 3.11. Parameters b  and c of the fuzzy model 1 2( , )y f x x=  linguistic terms 
membership functions after genetic (neural) tuning 

Function 
1( )L xμ  1( )lA xμ  1( )A xμ  1( )hA xμ  1( )H xμ  

b  0.033 (0.025) 0.275 (0.273) 0.503 (0.492) 0.735 (0.743) 0.960 (0.972) 

c  0.149 (0.114) 0.073 (0.078) 0.139 (0.118) 0.010 (0.014) 0.313 (0.119) 

Function 
2( )L xμ  2( )lA xμ  2( )A xμ  2( )hA xμ  2( )H xμ  

b  0.031 (0.035) 0.275 (0.275) 0.529 (0.515) 0.733 (0.725) 0.967 (0.977) 

c  0.188 (0.139) 0.062 (0.069) 0.136 (0.118) 0.010 (0.017) 0.243 (0.202) 

 

Rules weights after tuning are shown in Table 3.9. Object 1 2( , )y f x x=  fuzzy 

model learning dynamics can be seen in Fig. 3.26.  
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b) fuzzy terms membership functions 

Fig. 3.23. Two inputs - one output object-2 fuzzy model before tuning 
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b) fuzzy terms membership functions 

Fig. 3.24. Two inputs - one output object-2 fuzzy model after genetic tuning 
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Fig. 3.25. Two inputs - one output object-2 fuzzy model after neural tuning 
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b) fuzzy terms membership functions 

Fig. 3.25. (continued) 
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Fig. 3.26. Two inputs – one output object-2 fuzzy model learning dynamics 

3.5   Example 1: Differential Diagnosis of Heart Disease 

Ischemia heart disease (IHD) is one of the most widespread sources of disability, 
and it has a high death rate among adults. The success of IHD treatment is defined 
by the achievement of some differential diagnosis, that is, a classification as one 
of the complication levels accepted in clinical practice [6]: cardiac neurocircula-
tory dystonia or stenocardia. The quality of medical diagnosis strongly depends on 
the qualification of the diagnostician. Therefore, a computer support system for 
diagnostic decision making in such conditions is of particular significance.  

3.5.1    Diagnosis Types and Parameters of Patient’s State 

According to current clinical practice, the complication of IHD will be defined at 
the levels as follows (from the lowest to the highest): 
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1d  – neurocirculatory dystonia (NCD) of light complication; 

2d  – NCD of average complication; 

3d  – NCD of heavy complication; 

4d  – stenocardia of the first functional disability degree; 

5d  – stenocardia of the second functional disability degree; 

6d  – stenocardia of the third functional disability degree. 

 
The above mentioned levels 1 6d d÷  are considered the types of diagnoses 

which should be identified. While making the diagnosis of IHD of a specific pa-
tient, we should take into consideration the next main parameters defined by labo-
ratory tests (possible variation ranges are indicated in round brackets where c. u. is 
a conventional unit): 

 

1x  is the age of the patient (31–57 years), 

2x  is the double product (DP) of pulse and blood pressure (147–405 c.u.), 

3x  is the tolerance to physical loads (90–1200 kgm/min), 

4x  is the increase of DP per kg of the patient body weight (0.6–3.9 c.u.), 

5x  is the increase of DP per kg of load (0.1–0.4 c.u.), 

6x  is the adenosine-triphosphoric acid - ATP (34.5–66.2 mmol/l), 

7x  is the adenosine-diphosphoric acid - ADP (11.9–29.2 mmol/l), 

8x  is the adenosine-monophosphoric acid - AMP (3.6–27.1 mmol/l), 

9x  is the coefficient of phosphorylation (1–5.7 c.u.), 

10x  is the max. oxygen consumption per kg of patient weight (10.5 – 40.9 

mlitre/min× kg), 

11x  is the increase of DP in response to submaximal load ( 46–312 c.u.), 

12x  is the ratio factor of milk and pyruvic acid (3.9–22.8 c.u.). 

 
The aim of the diagnosis is to translate a set of specific parameters 1 12x x÷  into 

a decision jd  ( 1,6)j = . 

3.5.2   Fuzzy Rules 

The structure of the model for differential diagnosis of IHD is shown in Fig. 3.27, 
which corresponds to the following hierarchical tree of logic inference: 

 

1( , , )dd f x y z= ,                                              (3.30) 

2 3 4 5 10 11( , , , , , )yy f x x x x x x= ,                                  (3.31) 
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6 7 8 9 12( , , , , )zz f x x x x x= ,                                      (3.32) 

where d  is the danger of IHD measured by levels 1 6d d÷ ; y  is the instrumental 

danger depending on parameters 2 3 4 5 10 11{ , , , , , }x x x x x x ; z  is the biochemical dan-

ger depending on parameters 6 7 8 9 12{ , , , , }x x x x x . 

 
 

d1 d2 d3 d4 d5 d6

fd

f y f z

x2 x3 x4 x5 x10 x11 x1 x6 x7 x8 x9 x12

d

zy

 

Fig. 3.27. Tree of logic inference 

The expert fuzzy if-then rules which correspond to the relations (3.30) – (3.32) 
are represented in Tables 3.12–3.14 using fuzzy terms as: L – low, lA – lower than 
average, A – average, hA – higer than average, H – high. These rules were pre-
sented by the therapist of Vinnitsa Cardiology Clinic V. M. Sheverda. 

Table 3.12. Knowledge about relation (3.30) 

1x  y z  d  

L 
L 
lA 

L 
lA 
lA 

L 
lA 
L 

 

1d  

lA 
A 
lA 

lA 
lA 
lA 

lA 
lA 
A 

 

2d  
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Table 3.12. (continued) 

A 
hA 
hA 

lA 
hA 
A 

A 
lA 
A 

 

3d  

hA 
A 
lA 

A 
hA 
hA 

hA 
hA 
hA 

 

4d  

A 
hA 
H 

H 
hA 
hA 

A 
H 
hA 

 

5d  

H 
hA 
A 

H 
H 
H 

H 
hA 
hA 

 

6d  

Table 3.13. Knowledge about relation (3.31) 

2x  3x  4x  5x  10x  11x  y  

H 
H 
hA 

H 
hA 
H 

H 
H 
hA 

L 
lA 
L 

H 
H 
H 

H 
H 
H 

 
L 

hA 
H 
hA 

hA 
H 
hA 

H 
hA 
H 

lA 
A 
lA 

H 
H 
hA 

hA 
H 
hA 

 
lA 

A 
hA 
A 

A 
hA 
hA 

A 
A 

hA 

A 
lA 
A 

A 
hA 
hA 

A 
A 

hA 

 
A 

lA 
lA 
A 

A 
lA 
lA 

lA 
A 
lA 

hA 
A 

hA 

lA 
L 
lA 

lA 
lA 
A 

 
hA 

L 
lA 
L 

L 
L 
lA 

L 
lA 
lA 

hA 
H 
hA 

L 
L 
L 

L 
lA 
L 

 
H 

 

Table 3.14. Knowledge about relation (3.32) 

6x  7x  8x  9x  12x  z  

H 
hA 
H 

H 
H 
hA 

H 
hA 
H 

H 
hA 
A 

H 
hA 
hA 

 
L 

hA 
A 
A 

hA 
hA 
H 

A 
A 

hA 

A 
hA 
hA 

hA 
H 
hA 

 
lA 
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Table 3.14. (continued) 

A 
hA 
hA 

A 
hA 
A 

A 
A 

hA 

hA 
A 

hA 

hA 
A 
A 

 
A 

lA 
hA 
L 

A 
lA 
A 

lA 
A 
A 

A 
lA 
lA 

A 
lA 
A 

 
hA 

L 
lA 
L 

L 
L 
lA 

L 
lA 
lA 

L 
L 
L 

lA 
L 
lA 

 
H 

3.5.3   Fuzzy Logic Equations 

Using Tables 3.12–3.14 and operations •  (AND - min ) and ∨  (OR - max), it is 
easy to write the system of fuzzy logic equations which connect the membership 
functions of diagnosis and parameters of the patient state as: 

 

1
1 1 1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )] ,d L L L L lA lA lA lA Ld x y z x y z x y zμ μ μ μ μ μ μ μ μ μ= ⋅ ⋅ ∨ ⋅ ⋅ ∨ ⋅ ⋅

2
1 1 1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )] ,d lA lA lA A lA lA lA lA Ad x y z x y z x y zμ μ μ μ μ μ μ μ μ μ= ⋅ ⋅ ∨ ⋅ ⋅ ∨ ⋅ ⋅

3
1 1 1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )] ,d A lA A hA hA lA hA A Ad x y z x y z x y zμ μ μ μ μ μ μ μ μ μ= ⋅ ⋅ ∨ ⋅ ⋅ ∨ ⋅ ⋅

4
1 1 1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )] ,d hA A hA A hA hA lA hA hAd x y z x y z x y zμ μ μ μ μ μ μ μ μ μ= ⋅ ⋅ ∨ ⋅ ⋅ ∨ ⋅ ⋅

5
1 1 1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )] ,d A H A hA hA H H hA hAd x y z x y z x y zμ μ μ μ μ μ μ μ μ μ= ⋅ ⋅ ∨ ⋅ ⋅ ∨ ⋅ ⋅

6
1 1 1( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )] . d H H H hA H hA A H hAd x y z x y z x y zμ μ μ μ μ μ μ μ μ μ= ⋅ ⋅ ∨ ⋅ ⋅ ∨ ⋅ ⋅

(3.33) 

2 3 4 5 10 11

2 3 4 5 10 11

2 3 4 5 10 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) ,

L H H H L H H

H hA H lA H H

hA H hA L H H

y x x x x x x

x x x x x x

x x x x x x

μ μ μ μ μ μ μ
μ μ μ μ μ μ
μ μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅

 

 

2 3 4 5 10 11

2 3 4 5 10 11

2 3 4 5 10 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) ,

lA hA hA H lA H hA

H H hA A H H

hA hA H lA hA hA

y x x x x x x

x x x x x x

x x x x x x

μ μ μ μ μ μ μ
μ μ μ μ μ μ
μ μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅

 

 
2 3 4 5 10 11

2 3 4 5 10 11

2 3 4 5 10 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) ,

A A A A A A A

hA hA A lA hA A

A hA hA A hA hA

y x x x x x x

x x x x x x

x x x x x x

μ μ μ μ μ μ μ
μ μ μ μ μ μ
μ μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅
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2 3 4 5 10 11

2 3 4 5 10 11

2 3 4 5 10 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) ,

hA lA A lA hA lA lA

lA lA A A L lA

A lA lA hA lA A

y x x x x x x

x x x x x x

x x x x x x

μ μ μ μ μ μ μ
μ μ μ μ μ μ
μ μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅

 

 

2 3 4 5 10 11

2 3 4 5 10 11

2 3 4 5 10 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) 

         ( ) ( ) ( ) ( ) ( ) ( ) 

        ( ) ( ) ( ) ( ) ( ) ( )   .      (3.34)

H L L L hA L L

lA L lA H L lA

L lA lA hA L L

y x x x x x x

x x x x x x

x x x x x x

μ μ μ μ μ μ μ
μ μ μ μ μ μ
μ μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅ ∨

∨ ⋅ ⋅ ⋅ ⋅ ⋅

 

 

6 7 8 9 12

6 7 8 9 12

6 7 8 9 12

( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )  ,

L H H H H H

hA H hA hA hA

H hA H A hA

z x x x x x

x x x x x

x x x x x

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

 

 

6 7 8 9 12

6 7 8 9 12

6 7 8 9 12

( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )  ,

lA hA hA A A hA

A hA A hA H

A H hA hA hA

z x x x x x

x x x x x

x x x x x

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

 

 

6 7 8 9 12

6 7 8 9 12

6 7 8 9 12

( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )  ,

A A A A hA hA

hA hA A A A

hA A hA hA A

z x x x x x

x x x x x

x x x x x

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

 

 

6 7 8 9 12

6 7 8 9 12

6 7 8 9 12

( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )  ,

hA lA A lA A A

hA lA A lA lA

L A A lA A

z x x x x x

x x x x x

x x x x x

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

 

 

6 7 8 9 12

6 7 8 9 12

6 7 8 9 12

( ) ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( ) ( )                    (3.35)

H L L L L lA

lA L lA L L

L lA lA L lA

z x x x x x

x x x x x

x x x x x

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

= ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

∨ ⋅ ⋅ ⋅ ⋅

 

The total number of fuzzy logic equations (3.33) – (3.35) is 16. Note that we do 
not use the weights of rules in (3.33) – (3.35) because all weights before tuning 
are equal to one. 

3.5.4   Rough Membership Functions 

Generally, all parameters 1 12x x÷  have their own membership functions of the 

fuzzy terms (L, lA, A, hA, H), used in equations (3.33) - (3.35). To simplify the 
modeling, we can use only one shape of the membership functions for all parame-
ters 1 12x x÷ , as  shown in Fig. 3.28:  
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( ) ( )j j
ix uμ μ= � ,  4 i i

i i

x x

x x
u

−

−
=  , , , , ,j L lA A hA H=  , 

where  [ , ]i ix x  is an interval of parameter ix  changing,  1,12i =  . 

Analytical expressions of the functions in Fig. 3.28 are of the form: 

 

2

1
( )

1 ( )
j

u b
c

uμ
−

=
+

�    ,                            (3.36) 

 
where the parameters b  and c  are given in Table 3.15. Selection of such curves is 
stipulated by the fact that they are approximations of membership functions 
gained by the expert method of pairwise comparison [17]. 

Table 3.15. Parameters of rough membership functions 

Term L lA A hA H 

b  0 1 2 3 4 

c  0.923 0.923 0.923 0.923 0.923 
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Fig. 3.28. Rough membership functions 

3.5.5   Algorithm of Decision Making 

Fuzzy logic equations (3.33) – (3.35) with membership functions of fuzzy terms 
(3.36) allow us to make the decision about the level of IHD according to this  
algorithm: 
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1°. Registration of parameters * * * *
1 2 12( , ,..., )x x x=X values for a specific patient. 

2°. Using the model (3.36) and parameters b  and c  from Table 3.15, we define 
the values of the membership functions *( )j

ixμ when parameters values *
ix , 

1,12i = , are fixed. 
3°. Using fuzzy logic equations (3.33) - (3.35), we calculate membership func-

tions * * *
1 2 12( , ,..., )jd x x xμ  for all diagnoses 1 2 6, ,...,d d d . In doing so, according to 

[4], the logic operations AND ( ∧ ) and OR (∨ ) are substituted for min  and 
max : 

 

( ) ( ) min[ ( ), ( )]a b a bμ μ μ μ∧ = , 

 
( ) ( ) max[ ( ), ( )]a b a bμ μ μ μ∨ = . 

 
4°. Let us define the decision *

jd , for which: 

 
*

* * * * * *
1 2 12 1 2 12

1,6
( , ,..., ) max[ ( , ,..., )]j jd d

j
x x x x x xμ μ

=
= . 

 
Example 1. Let us represent the next values of the parameters of a patient corre-
sponding to her/his state: 

 
*
1x = 53  years,                 *

2x =  175 c.u.,           *
3x =  507 kg/min,        

 
*
4x = 2.4 c.u.,                   *

5x =  0.25 c.u.,            *
6x = 60.7 mmol/l, 

 
*
7x =  26.14 mmol/l,        *

8x =  10.4 mmol/l,        *
9x =  3.9 c.u., 

 
*
10x =  22.4 mlitre/min× kg,  *

11x =  172 c.u.,        *
12x = 26.1 c.u.. 

 
Using model (3.36) and parameters values b  and c  from Table 3.15, we find 

the membership functions values at points *
ix , 1,12i =  for all fuzzy terms and 

represent them in Table 3.16. 
Substituting the membership functions obtained from equation (3.34), we find: 
 

( ) 0.072 0.120 0.205 0.315 0.149 0.133

        0.072 0.275 0.205 0.867 0.149 0.133

        0.137 0.120 0.560 0.315 0.149 0.133 0.120 .

L yμ = ⋅ ⋅ ⋅ ⋅ ⋅
∨ ⋅ ⋅ ⋅ ⋅ ⋅
∨ ⋅ ⋅ ⋅ ⋅ ⋅ =
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Similarly, we find: ( ) 0.137lA yμ = , ( ) 0.328A yμ = , ( ) 0.241hA yμ = , 

( ) 0.210H yμ = . 

 
According to equation (3.35), we find: 
 

( ) 0.458 0.635 0.095 0.266 0.687

       1.000 0.635 0.201 0.751 0.857

       0.458 0.911 0.095 0.795 0.857 0.201 .

L zμ = ⋅ ⋅ ⋅ ⋅
∨ ⋅ ⋅ ⋅ ⋅
∨ ⋅ ⋅ ⋅ ⋅ =

 

 
Similarly: ( ) 0.545lA zμ = , ( ) 0.343A zμ = , ( ) 0.176hA zμ = , ( ) 0.087H zμ = . 

Table 3.16 Membership functions values *( )j
ixμ  

№ *
ix  *u  *( )L

ixμ  *( )lA
ixμ  *( )A

ixμ  *( )hA
ixμ  *( )H

ixμ
 

1 53 3.259 0.074 0.143 0.349 0.927 0.608 
2 175 0.679 0.649 0.892 0.328 0.136 0.072 
3 507 1.503 0.274 0.771 0.775 0.275 0.120 
4 2.4 2.182 0.152 0.379 0.963 0.560 0.205 
5 0.25 1.362 0.315 0.867 0.676 0.241 0.109 
6 60.7 2.996 0.087 0.176 0.462 1.000 0.458 
7 26.14 3.255 0.074 0.142 0.343 0.911 0.635 
8 10.4 1.157 0.389 0.972 0.545 0.201 0.095 
9 3.9 2.468 0.123 0.283 0.795 0.751 0.266 
10 22.4 1.791 0.210 0.576 0.951 0.368 0.149 
11 172 1.647 0.239 0.670 0.872 0.318 0.133 
12 26.1 3.376 0.070 0.131 0.310 0.857 0.687 

 
According to equation (3.33) we ultimately find that: 

 
1 ( ) 0.074 0.120 0.201 0.074 0.137 0.545d dμ = ⋅ ⋅ ∨ ⋅ ⋅

0.143 0.137 0.201 0.137  .∨ ⋅ ⋅ =  
 

Finally, we find:  
2 ( ) 0.137d dμ = , 3 ( ) 0.328d dμ = , 4 ( ) 0.176d dμ = , 5 ( ) 0.210d dμ = , 

6 ( ) 0.176d dμ =   

 
Because the largest membership value corresponds to decision 3d , we select 

NCD with heavy complication as the patient’s diagnosis. 
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3.5.6   Fine Tuning of the Fuzzy Rules 

We used real data related to diseases with verified diagnoses as the training data 
for the fine tuning of fuzzy rules for differential diagnosis of IHD. The optimiza-
tion problem was solved by the combination of a genetic algorithm and gradient 
descent. The parameters b  and c of the linguistic terms used in the fuzzy rules 
and the weights of rules w after tuning are presented in Tables 3.17–3.20. Mem-
bership functions after tuning are shown in Fig. 3.29.  

The comparison of the inferred and correct diagnosis for 65 patients is shown in 
Table 3.21. There is only one case (**) in which the inferred decision ( 4d ) is too 

far from the real decision ( 2d ). In 8 cases (*) we have the real and inferred deci-

sions on a boundary between classes of diagnoses. For the rest of the patients, 
there is full matching of real and inferred decisions. These results are quite satis-
factory from a practical point of view, and thus the expert system can be used as a 
decision support system for the differential diagnosis of IHD. 

Table 3.17. Parameters b  and c  of the membership functions after tuning 

 L lA A hA H 

 b  c  b  c b  c b  c b  c  

1x  32.58 23.33 38.21 9.80 43.39 11.92 51.07 16.01 56.74 22.62

2x  128.00 57.31 186.39 87.84 235.24 80.39 332.76 109.61 389.33 162.75

3x  182.46 807.90 509.02 242.91 648.08 575.61 922.18 261.011105.75 568.27

4x  0.600 0.761 1.288 0.985 1.847 0.386 2.852 1.421 3.900 0.064

5x  0.117 0.055 0.217 0.026 0.322 0.179 0.422 0.079 0.530 0.066

6x  34.48 7.88 47.34 40.20 51.94 8.90 59.48 21.90 69.49 8.08

7x  11.90 4.04 16.28 4.04 21.56 11.31 25.03 4.04 27.99 13.19

8x  3.60 5.42 8.61 10.79 15.93 0.24 19.03 25.09 27.10 5.42

9x  1.00 1.08 2.18 1.08 3.18 3.37 4.02 1.20 5.70 1.08

10x  9.01 18.62 16.69 8.50 21.63 17.92 32.44 8.88 36.24 10.14

11x  46.00 30.15 144.32 157.80 200.10 147.95 270.43 5.96 335.18 193.27

12x  3.90 6.07 10.48 6.07 19.47 24.04 22.81 10.87 30.20 6.07
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Table 3.18 Weights of the rules before 

( bw ) and after ( aw ) tuning in Table 

3.13 

 

Table 3.19 Weights of the rules before 

( bw ) and after ( aw ) tuning in Table 

3.14 

 
y  wb  wa  

 

L 

1.000 

1.000 

1.000 

0.500 

0.500 

0.734 

 

lA 

1.000 

1.000 

1.000 

0.500 

0.632 

0.500 

 

A 

1.000 

1.000 

1.000 

0.757 

0.470 

0.473 

 

hA 

1.000 

1.000 

1.000 

0.527 

0.480 

0.664 

 

H 

1.000 

1.000 

1.000 

0.499 

0.806 

0.499 
 

z  wb  wa  

 

L 

1.000 

1.000 

1.000 

0.500 

0.744 

0.500 

 

lA 

1.000 

1.000 

1.000 

0.500 

0.500 

0.400 

 

A 

1.000 

1.000 

1.000 

0.500 

0.500 

0.565 

 

hA 

1.000 

1.000 

1.000 

0.771 

0.500 

0.500 

 

H 

1.000 

1.000 

1.000 

0.500 

0.500 

0.500 

 

Table 3.20. Weights of the rules before ( bw ) and after ( aw ) tuning in Table 3.12 

d  wb  wa   d  wb  wa   

 

d1  

1.000 

1.000 

1.000 

0.934 

0.500 

0.419 

  

d4  

1.000 

1.000 

1.000 

0.663 

0.449 

0.449 

 

 

d2  

1.000 

1.000 

1.000 

0.500 

0.500 

0.764 

  

d5  

1.000 

1.000 

1.000 

0.499 

0.500 

0.770 

 

 

d3  

1.000 

1.000 

1.000 

0.428 

0.500 

0.724 

  

d6  

1.000 

1.000 

1.000 

0.500 

0.524 

0.915 
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Fig. 3.29. Membership functions of the patient’s state parameters after tuning 
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Table 3.21. Comparison of real and inferred decisions for 65 patients 

 Parameters of state Diagnosis  
№ 

1x  2x 3x  4x  5x  6x  7x  8x  9x 10x 11x 12x Real Model  

1 31 324 980 2.8 0.12 50.07 22.76 8.05 3.7 34.2 266 19.3 d1 d1 
2 36 330 900 2.9 0.14 56.52 24.33 9.02 4.1 29.7 242 21.0 d1 d1 
3 39 260 800 2.3 0.18 51.73 25.62 8.53 4.2 28.5 194 23.8 d2 d2 
4 42 272 867 2.5 0.28 59.31 28.44 8.53 4.0 28.7 198 19.4 d2 d2 
5 48 287 491 2.2 0.24 52.77 21.61 8.53 3.5 25.3 156 20.5 d3 d3 
6 53 175 507 2.4 0.25 60.70 26.14 10.40 3.9 22.4 172 26.1 d3 d3 
7 45 247 728 2.0 0.34 62.06 26.14 5.55 2.3 26.5 144 22.9 d4 d4 
8 52 231 768 1.5 0.36 62.77 23.01 6.83 2.5 20.0 158 23.8 d4 d4 
9 32 151 610 1.3 0.42 54.49 23.91 5.55 2.4 19.8 104 25.7 d5 d5 

10 45 177 542 1.6 0.48 62.06 26.14 5.55 2.3 21.7 120 28.1 d5 d6  *  
11 38 128 349 1.4 0.48 67.03 24.46 5.20 1.9 13.9 92 30.2 d6 d6 
12 38 145 304 1.2 0.56 64.15 25.62 7.11 2.6 14.4 74 25.5 d6 d6 
13 40 327 930 2.2 0.24 59.31 25.62 7.56 3.3 35.4 347 18.9 d1 d2  *  
14 38 348 952 1.8 0.20 34.48 20.79 9.56 5.7 34.2 352 21.6 d1 d1 
15 34 307 800 1.9 0.21 57.90 25.08 6.83 2.9 30.1 304 19.3 d2 d4 **  
16 48 284 738 2.0 0.26 62.06 25.08 8.53 3.4 29.7 339 20.4 d2 d2 
17 35 174 600 1.7 0.32 55.18 24.46 8.56 3.8 27.2 312 22.0 d3 d3 
18 49 229 515 2.1 0.30 61.34 22.20 6.83 2.4 22.4 300 23.4 d3 d4  *  
19 58 265 421 2.0 0.26 60.07 22.76 4.08 1.8 17.7 258 23.8 d4 d4 
20 49 330 650 1.5 0.25 69.49 25.08 6.83 2.5 20.3 244 22.0 d4 d4 
21 48 187 475 1.4 0.34 60.39 23.31 5.55 2.1 21.4 204 22.7 d5 d5 
22 42 224 400 1.5 0.39 55.18 21.05 7.11 2.7 20.4 215 22.5 d5 d5 
23 32 195 100 1.2 0.48 60.70 21.61 7.52 2.7 22.6 191 25.9 d6 d6 
24 51 192 292 1.3 0.45 62.77 23.70 5.55 1.6 19.2 188 24.4 d6 d6 
25 36 347 952 2.9 0.10 62.40 23.70 12.50 4.3 35.7 298 19.6 d1 d1 
26 48 314 902 3.2 0.14 59.40 24.20 10.50 4.2 33.5 287 18.8 d1 d1 
27 42 352 875 3.2 0.16 52.30 22.70 9.50 3.9 38.2 322 19.0 d1 d1 
28 40 323 1040 2.7 0.20 59.60 25.20 8.80 3.2 30.4 290 18.2 d1 d2  *  
29 41 377 988 2.9 0.09 60.40 24.30 10.20 3.4 32.5 275 17.7 d1 d1 
30 34 309 932 3.2 0.15 60.80 25.40 9.40 4.4 31.5 312 18.5 d1 d1 
31 52 279 1056 2.7 0.09 59.90 21.30 8.80 3.7 33.4 334 18.7 d1 d1 
32 44 376 895 2.7 0.18 61.50 23.60 9.50 3.6 30.4 312 20.1 d2 d2 
33 46 304 929 2.6 0.22 58.20 25.10 10.70 3.8 32.5 346 19.2 d2 d2 
34 46 292 904 2.2 0.24 56.00 27.90 10.10 4.0 29.3 290 18.5 d2 d2 
35 42 276 885 2.4 0.25 61.40 29.40 11.20 3.6 27.8 226 20.8 d2 d2 
36 31 311 930 2.7 0.19 62.50 23.80 9.80 2.9 25.6 249 21.0 d2 d1  *  
37 44 335 992 2.4 0.22 61.60 24.70 9.90 3.3 24.6 255 20.3 d2 d2 
38 47 346 873 2.3 0.18 57.70 22.50 10.60 3.7 28.7 267 18.8 d2 d2 
39 48 288 804 2.4 0.27 60.00 22.20 11.50 3.5 20.9 275 19.5 d3 d3 
40 50 316 875 2.1 0.31 61.40 24.00 9.30 2.8 22.5 302 21.2 d3 d4  *  
41 51 292 774 2.0 0.28 62.50 25.90 8.80 3.0 26.7 277 22.5 d3 d4  *  
42 54 315 766 2.2 0.22 53.70 26.20 8.70 2.7 21.4 265 20.5 d3 d4  *  
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Table 3.21. (continued) 

 Parameters of state Diagnosis  
№ 

1x  2x 3x  4x  5x  6x  7x  8x 9x 10x  11x 12x  Real Model  

43 40 300 865 2.1 0.25 59.40 25.80 9.30 3.5 21.9 303 21.4 d3 d3  
44 36 270 777 2.1 0.28 61.00 26.10 9.70 4.1 22.3 316 21.3 d3 d3  
45 34 275 859 2.3 0.30 62.50 27.00 9.60 4.2 24.0 295 22.5 d3 d3  
46 52 261 776 1.7 0.36 65.00 22.50 8.40 2.7 20.4 204 23.8 d4 d4  
47 41 258 785 1.5 0.36 62.70 23.80 7.60 2.5 19.8 225 24.0 d4 d4  
48 53 290 845 1.8 0.39 57.10 24.00 7.20 2.5 18.7 268 22.5 d4 d4  
49 39 203 723 2.0 0.40 58.50 23.70 6.20 2.8 17.1 209 24.7 d4 d4  
50 45 244 802 1.7 0.35 62.00 25.30 6.30 3.0 18.5 212 24.9 d4 d4  
51 46 233 795 1.9 0.39 57.90 24.90 5.20 2.4 17.4 251 23.5 d4 d4  
52 54 262 805 1.8 0.38 57.90 24.50 7.70 2.2 19.2 244 22.1 d4 d4  
53 51 245 595 1.3 0.44 64.20 26.40 5.60 2.1 16.5 204 24.7 d5 d5  
54 40 209 772 1.5 0.45 60.20 27.80 5.90 2.4 14.7 195 25.0 d5 d5  
55 42 198 621 1.4 0.42 58.80 25.20 6.10 2.6 12.2 225 24.5 d5 d5  
56 44 245 523 1.5 0.39 57.50 23.30 6.50 2.2 14.1 207 26.9 d5 d5  
57 50 237 652 1.6 0.45 63.70 24.70 6.40 2.1 11.9 262 24.2 d5 d5  
58 56 202 744 1.3 0.45 61.80 25.70 5.70 2.4 12.3 226 22.6 d5 d5  
59 51 247 723 1.2 0.38 62.50 26.90 5.60 2.3 10.4 230 25.8 d5 d5  
60 48 192 516 1.1 0.52 60.10 22.70 5.50 2.0 9.9 200 22.9 d6 d6  
61 39 188 446 1.2 0.48 59.00 23.50 5.20 2.4 9.5 212 26.7 d6 d6  
62 49 212 406 0.9 0.56 61.70 26.00 5.30 1.9 8.2 225 29.4 d6 d6  
63 45 247 527 0.7 0.51 62.60 27.40 5.10 2.0 7.4 197 28.5 d6 d6  
64 44 206 448 0.8 0.55 57.40 22.10 6.30 2.1 7.4 188 30.1 d6 d6  
65 42 228 512 1.0 0.52 53.90 25.60 5.40 2.3 7.8 204 29.5 d6 d6  

3.6   Example 2: Prediction of Disease Rate Evolution 

The prediction of the number of diseases of some type or other at the level of a 
region is a necessary element of organization of medical-preventive measures. 
From a formal viewpoint, this problem is related to a wide class of problems of 
predicting discrete sequences (collections of values at some fixed time points [19, 
20]) originating not only in medicine but also in engineering, economics, etc. The 
nontrivial nature of the prediction of discrete sequences is due to the fact that, in 
contrast to well-algorithmisized interpolation procedures, the prediction requires 
the extrapolation of data on the past to data on the future. In this case, it is neces-
sary to take into account an unknown law governing a process generating discrete 
sequences.  

A great number of papers deal with the development of mathematical models of 
prediction [19]. The methods based on probabilistic-statistical means are most 
widely used; however, their use requires a considerable amount of experimental 
data, which are not always available under the conditions of even recent events 
(for example, the Chernobyl accident). 

Interest has recently been revived [21] on the use of artificial neural networks for 
the solution of prediction problems. The networks are considered as universal mod-
els akin to the human brain, which are trained to recognize unknown regularities. 
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However, a large sample of experimental data is required in the case of training 
neural networks, as well as in the case of using probabilistic-statistical methods. 
Moreover, a trained neural network does not permit one to explicitly interpret the 
weights of arcs. 

In this section, we propose an approach to the prediction of disease evolution, 
which combines experimental data of disease numbers with expert-linguistic infor-
mation on regularities that can be revealed in available experimental data. The use of 
expert information in the form of the natural language IF-THEN rules formalized by 
means of fuzzy logic allows us to construct models of prediction in the case of rela-
tively small (in comparison with statistical methods) samples of experimental data. 
The proposed approach is sufficiently close to the neuro-fuzzy approach [22], which 
combines learning ability of neural networks with transparency and invariability of 
fuzzy IF-THEN rules. However, we do not use the neural network for training the 
fuzzy predictive model. In comparison with [22], we directly train fuzzy IF-THEN 
rules with the help of the available experimental data [9, 13]. 

3.6.1   Linguistic Model of Prediction 

We consider information on the incidence of appendicular peritonitis disease ac-
cording to the data of the Vinnitsa Clinic of Children’s Surgery in 1982-2001 that 
are presented in Table. 3.22.  

Table 3.22. Distribution of the diseases number 

Year 1982 1983 1984 1985 1986 1987 1988 1989 
Number of  

diseases 
109 143 161 136 161 163 213 220 

Year 1990 1991 1992 1993 1994 1995 1996 1997 
 Number of diseases 162 194 164 196 245 252 240 225 

Year 1998 1999 2000 2001     
 Number of diseases 160 185 174 207     

 
Analyzing the disease dynamics in Fig. 3.30, it is easy to observe the presence 

of four-year cycles the third position of which is occupied by the leap year. These 
cycles will be denoted as follows: 

 
  

 
 

where i  is the number of a four-year cycle,  

1
ix  is the number of diseases during two years prior to a leap year,  

2
ix  is the number of diseases during one year prior to a leap year,  

3
ix  is the number of diseases during a leap year,  

4
ix  is the diseases number during the year following the leap year. 

1 1
4 1 2 3 4 1...   }  {               }  {     ...i i i i i ix x x x x x− +

Leap year 
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Fig. 3.30. Disease dynamics 

The regularities that can be seen in Fig. 3.30 are easily written in the form of 
four expert opinions in a natural language. These opinions are IF-THEN rules that 
relate the sickness rates in the i-th and (i+1)-th cycles [9]: 

 

:1F  :2F  

IF ix1  low   

AND ix2  lower than average,  

THEN ix4  low 

IF ix1  lower than average   

AND ix2  lower than average,  

THEN ix4  higher than average 

IF ix1  lower than average  

AND ix2  average,  

THEN ix4  average  

IF ix1  high  

AND ix2  high,  

THEN ix4  higher than average 

IF ix1  low   

AND ix2 lower than average,  

THEN ix3  lower than average 

IF ix1  lower than average  

AND ix2  lower than average,  

THEN ix3  higher than average 

IF ix1  lower than average  

AND ix2  average,  

THEN ix3  lower than average 

IF ix1 high   

AND ix2  high,  

THEN ix3  high   
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IF ix4  low  

AND 1
1
ix  lower than average, 

THEN 1
2

ix  lower than average 

IF ix4  higher than average 

AND 1
1
ix  lower than average, 

THEN 1
2

ix  average 

IF ix4  average  

AND 1
1
ix  high,  

THEN 1
2

ix  high 

 
IF ix4  low,  

THEN 1
1
ix  lower than average 

IF ix4  higher than average,  

THEN 1
1
ix  lower than average 

IF ix4  average,  

THEN 1
1
ix  high 

:3F  
:4F  

   
The network of relations in Fig. 3.31 shows that it is possible to predict the 

situation for the next four years: for the last two years of the i-th cycle and for the 
first two years of the succeeding (i+1)-th cycle using the data of the first two years 
of the i-th cycle. 

 
 

ix3  

ix4  

1
1

1ix  

1
2

1
2
ix  

ix2  

ix1  

3F

4F  

1F  

2F

 

Fig. 3.31. A network of relations for prediction 

To use the expert-linguistic opinions 1 4F F÷ , we apply the methods of fuzzy 

sets theory. According to this theory the linguistic estimates “low”, “lower than  
 



3.6   Example 2: Prediction of Disease Rate Evolution 109 

average”, “average”, and others are formalized with the help of membership func-
tions. The parameters b  and c  chosen by an expert for various linguistic esti-
mates used in rules 1 4F F÷ , are presented in Table. 3.23. The membership func-

tions obtained in this case are shown in Fig. 3.32. 

Table 3.23. Membership functions parameters before training 

Linguistic estimates of variables   Parameter 

1 4
i ix x÷  b  c

low (L) 100 50 
lower than average (lA) 160 30 

average (A) 195 25 
higher than average (hA) 222 20 

high (H) 260 30 
 
 

0

1

100 140 180 220 260

L lA A hA H 

ii xx 41 x  

 

Fig. 3.32. Membership functions of linguistic estimates before training 

In addition to the two-parameter membership functions chosen above, other 
functions can also be used, for example, triangular or trapezoidal ones [5], con-
taining three and four adjustable parameters, respectively. 

We denote by [ , ]x x the range of all possible values of the number of diseases. 

Let us subdivide this range into the following five parts: 

 
 
 

 
 

associated with the following linguistic estimations: low (L), lower than average 
(lA), average (A), higher than average (hA), high (H). Then, using the fuzzy-logic 
operations min (AND) and max (OR), and the principle of weighted sum for trans-
formation of a membership function into a precise number, we can write a model 
of prediction in the following explicit form: 

x x1x  2x 3x 4x

L H hAA lA 
, 
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Using the obtained model we can receive some rough diseases number predic-
tion as shown in Fig. 3.33.  
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Fig. 3.33. Comparison of the experimental data and the prediction model before training   

To increase the precision of prediction, it is necessary to train the model by 
available experimental data.  

3.6.2   Neuro-fuzzy Model of Prediction 

A neuro-fuzzy model of prediction based on the elements from Table 3.1 is pre-
sented in Fig. 3.34.  

As is seen from Fig. 3.34 the neuro-fuzzy network has the following five lay-
ers:  

(1) – the inputs of the model of prediction; 
(2)  – the fuzzy terms used in knowledge bases 1 4F F÷ ;  

(3) – the conjunctions rows of knowledge bases 1 4F F÷ ;  

(4) – the rules united in the classes 1 2[ , , ,.., ]x x x x ;  

(5) – the operation of defuzzification, i. e. transformation of the results of fuzzy 
logic inference into the crisp number. 

The following weights are assigned to the edges of the graph: unity (the edges 
between the first and second layers, fourth and fifth layers); the membership func-
tion specifying the grade of membership of an input in a fuzzy term (the edges 
between the second and third layers); the weights of rules (the edges between the 
third and fourth layers). 
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Fig. 3.34. Neuro-fuzzy model of prediction 



3.6   Example 2: Prediction of Disease Rate Evolution 113 

3.6.3   On-Line Training of the Neuro-fuzzy Model of Prediction 

The essence of training consists of the selection of such rules weights (w-) and 
such parameters of the membership functions (b-, c-) for the linguistic estimates, 
which provide the least distance between theoretical and experimental numbers of 
diseases: 

 
1 1

2 2 1 1 2 1 1 2
3 3 4 4 1 1 2 2 , ,

1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) min ,
N N N N

i i i i i i i i

w b c
i i i i

x x x x x x x x
− −

+ + + +

= = = =

− + − + − + − =∑ ∑ ∑ ∑            

 
where 3

ix , 4
ix , 1

1
ix + , 1

2
ix +  are predicted numbers of diseases depending on the pa-

rameters b  and c of the membership functions and rules weights;  

3ˆ
ix , 4ˆ

ix , 1
1̂
ix + , 1

2ˆ
ix +  are experimental numbers of diseases; 

N  is the number of cycles used to train the model. 
To train the parameters of the neuro-fuzzy network, the following system of re-

cursive relations is used: 

                ( 1) ( )
( )
t

jk jk
jk

E
w t w t

w t
η ∂

+ = −
∂

 ,                                 (3.41) 

1 4 1 4
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∂
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∂
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1 4 1 4
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( 1) ( )
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ip ip t
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E
b t b t

b t
η− −

−

∂
+ = −

∂
 ,                               (3.43) 

that minimize the criterion 
 

21
ˆ( )

2t t tE x x= −  , 

 
applied in the theory of neural networks, where 

ˆtx  and  tx
 
are the experimental and the theoretical number of diseases at the t-

th step of training; 
( )jkw t  is the weight of k-th rule, combined data about diseases numbers in rela-

tion jF , 1, 4j = ; 

1 4 ( )ipc t− , 1 4 ( )ipb t−  are parameters of the membership function of variable 1 4
ix −  to  

p-th fuzzy term at the t-th step of training; 

η is the parameter of training which can be chosen in accordance with the rec-

ommendations of [2]. 
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3.6.4   Results of Prediction 
After training of the prediction model for 4N = , which means using the data ob-
tained over the years 1982-1997, the weights of expert-linguistic regularities 

1 4F F÷  presented in Table 3.24 were evaluated. It was supposed before training 

that rules weights were equal to 1. Parameters of membership functions after train-
ing are presented in Table. 3.25.  

Table 3.24. Weights of the expert-linguistic regularities after training 

Rules weights in 1F  Rules weights in 3F  

11w  12w  13w  14w  31w  32w  33w  

1.000 0.999 0.564 0.885 1.000 1.000 0.668 

Rules weights in 2F  Rules weights in 4F  

21w  22w  23w  24w  41w  42w  43w  

 1.000  1.000  1.000  1.000 1.000 0.992 0.965 

Table 3.25. Parameters of membership functions after training 

Linguistic estimates  

of variables 1 4
i ix x÷  

Parameters 

b  c  

low (L) 99.944 8.194 

lower than average (lA) 145.813 19.504 

average (A) 194.949 6.999 

higher than average (hA) 234.001 10.636 

high (H) 249.134 42.742 
 

As is seen from Tables 3.23 and 3.25, after training the neuro-fuzzy network 
we have the greatest changes in the parameters с of membership functions. This 
can be explained by the fact that in forming the fuzzy knowledge base the expert 
has specified sufficiently exact positions of the maxima of membership functions 
(the parameters b) and weights of the rules (parameters w). The choice of large 
values of the parameters с by the expert testifies to a considerable uncertainty in 
estimating fuzzy terms. A decrease in the values of the parameters с in the course 
of training has resulted in a “concentration” (compression) of membership func-
tions which testifies to the removal of the uncertainty in estimating fuzzy terms. 
Membership functions after training are presented in Fig. 3.35. The following  
values were taken into consideration: 95x = , 1 150x = , 2 190x = , 3 220x = , 

4 242x = , 260x = . 
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Fig. 3.35. Membership functions of linguistic estimates after training 

The training was performed until the prognosis produced by the neuro-fuzzy 
network was sufficiently close to experimental data. The application of tuned 
membership functions allows one to obtain a prediction model that is sufficiently 
close to the experimental data (See Fig. 3.36). 
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Fig. 3.36. Comparison of the experimental data and the prediction model after training 

Since experimental values of the numbers of appendicular peritonitis diseases 
in 1998-2001 have not been used for fuzzy rules extraction, the proximity of the 
theoretical and experimental results for these years demonstrates the sufficient 
quality of the constructed prediction model from the practical viewpoint. A com-
parison of the results of simulation with the experimental data and also a predic-
tion of the number of appendicular peritonitis diseases until 2005 is presented in 
Table 3.26.  
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Table 3.26. Experimental and model number of diseases 

Year 1982 1983 1984 1985 1986 1987 1988 1989 

Experiment 109 143 161 136 161 163 213 220 

Theory   167 138 165 167 214 216 

Error   6 2 4 4 1 4 

Year 1990 1991 1992 1993 1994 1995 1996 1997 

Experiment 162 194 164 196 245 252 240 225 

Theory 173 204 165 197 240 250 250 220 

Error 11 10 1 1 5 2 10 5 

Year 1998 1999 2000 2001 2002 2003 2004 2005 

Experiment 160 185 174 207     

Theory 162 193 180 203 223 249 250 220 

Error 2 8 6 4     
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Chapter 4 
Fuzzy Rules Extraction from Experimental 
Data  

The necessary condition for nonlinear object identification on the basis of fuzzy logic 
is the availability of IF-THEN rules interconnecting linguistic estimations of input and 
output variables. Earlier we assumed that IF-THEN rules are generated by an expert 
who knows the object very well. What is to be done when there is no expert? In this 
case the generation of IF-THEN rules becomes of interest because it means the 
generation of fuzzy knowledge base from accessible experimental data [1]. 

Transformation of experimental information into fuzzy knowledge bases may turn 
out to be a useful method of data processing in medicine, banking, management and 
in other fields where persons making decisions instead of strict quantitative relations 
give preference to the use of transparent easily interpreted verbal rules [2, 3]. In this 
case proximity of linguistic approximation results and corresponding experimental 
data is the criterion for the quality of extracted regularities. 

Fuzzy-neural networks and genetic algorithms are traditionally used for 
knowledge extraction from experimental data [4]. Fuzzy-neural network is an 
excellent approach for automatic rules formation and adjustment due to the 
mechanisms of pruning redundant membership functions and rules [5 – 7]. 
However, convergence of the training depends on the initial structure of the fuzzy 
model. On the other hand, genetic algorithms grow the appropriate structure of 
fuzzy inference automatically [8, 9]. In this case, the restriction of the total 
number of fuzzy terms and fuzzy rules prevents the construction of more compact 
structure of the fuzzy model. Combinations of both paradigms stipulated for the 
development of a new hybrid approach, which consists of automatic generation of 
fuzzy-neural network based on the genetic algorithm [10 – 13].  

The extraction of fuzzy IF-THEN rules has two phases. In the first phase we 
define the fuzzy model structure by using the generalized fuzzy approximator 
proposed in [3, 14]. The second phase consists of finding optimal parameters of 
rules which provide the least distance between the model and experimental 
outputs of the object. For solving the optimization problem we use a combination 
of genetic algorithm and neural network. The genetic algorithm provides a rough 
finding of the appropriate structure of the fuzzy inference [15, 16]. We use the 
neural network for fine adjustment and adaptive correction of approximating rules 
by pruning the redundant membership functions and rules [17]. 

This chapter is written using original work materials [15 – 17]. 
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4.1   Fuzzy Rules for “Multiple Inputs – Single Output” Object 

Let us consider an object of this form 

1 2( , ,..., )ny f x x x=                                              (4.1) 

with n  inputs and one output for which the following is known: 

• intervals of inputs and output change: 

[ , ]i i ix x x∈ , 1,i n= , [ , ]y y y∈ , 

• classes of decisions jd  ( 1, )j m=  in case of discrete output:  

[ ,y y ] = [N
1

1,
d

y y )∪…∪[ 1,

j

j j

d

y y−��	�

)∪…∪[ 1,

m

m

d

y y−�	
 ] . 

• training sample in the form of M  pairs of experimental data “inputs-output”: 

{ , }p pyX  - for objects with continuous output, 

{ , }p pdX  - for objects with discrete output, 
 

where 1 2{ , ,..., }p p p
p nx x x=X  - input vector in p -th pair, 1,p M= . 

It is required: to synthesize knowledge about object (4.1) in the form of fuzzy 
logical expressions system: 

 

IF  
⎡
⎢
⎣

1
1 1( )jx a=  AND 1

2 2( )jx a=  AND ...  1( )j
n nx a=

⎤
⎥
⎦

 (with weight 1jw ) 

OR  
⎡
⎢
⎣

2
1 1( )jx a=  AND 2

2 2( )jx a=  AND ...  2( )j
n nx a=

⎤
⎥
⎦

 (with weight 2jw ) ... 

....OR  
⎡
⎢
⎣
( )1 1

jjk
x a=  AND ( )2 2

jjk
x a=  AND ... ( )jjk

n nx a= ⎤
⎥
⎦

 (with weight 
jjkw ), 

    THEN   1[ , ]j j jy d y y−∈ = , for all  1,j m= ,                                                (4.2) 

 
where jp

ia  is the linguistic term for variable ix  evaluation in the row with number 

1, jp k= , 

jk  is the number of conjunction rows corresponding to the class jd , 1,j m= , 

jpw  is a number in the range [0,1] , which characterizes the weight of the 

expression with number jp . 
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4.2   Rules Extraction as Optimization Problem 

It was shown that object (4.1) model in the form of the following calculation 
relations corresponds to knowledge base (4.2): 

1 2
1 1

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

dd d m
m

dd d m

y y y y y y

y y y
y

μ μ μ
μ μ μ

−+ + +

+ + +
=     ,                                  (4.3) 

{ }1,1,
( ) max min[ ( )]j

j

d jp
jp i

i np k
y w xμ μ

==
=      ,                                 (4.4) 

               ( )
1

( )
1

jp
i i

jp
i

jp
i x b

c

xμ
−

=
+

  ,    1,i n=  , 1, jp k=  , 1,j m=  ,       (4.5) 

where ( )jd yμ  is the membership function of the output y  to the class jd , 

( )jp
ixμ  is the membership function of the input ix  to the term jp

ia , 
jp

ib  and jp
ic  are the tuning parameters for the input variables ix  

membership functions. 
Relations (4.3) - (4.5) define the model of the object (4.1) which is written 

down in this form: 

( , , , )y F= X W B C  - for continuous output, 

( ) ( , , , )j jd dyμ μ= X W B C  - for discrete output,  

where 1 2( , ,..., )nx x x=X is the input vector, 1 2( , ,..., )Nw w w=W is the vector of 

rules-rows in the fuzzy knowledge base (4.2), 1 2( , ,..., )qb b b=B  and 

1 2( , ,..., )qc c c=C  are the vectors of fuzzy terms membership functions tuning 

parameters in (4.5), N  is the total number of rules-rows, q  is the total number of 

terms, F  is the operator of inputs-output connection corresponding to relations 
(4.3) - (4.5). 

Let us impose limitations on the knowledge base (4.2) volume in one of the 
following forms: 

а) 1 2 ... mN k k k N= + + + ≤ , 

b) 1 1k k≤ , 2 2k k≤ , ..., m mk k≤ , 

where N  is the maximum permissible total number of conjunction rows in (4.2),  

jk  is the maximum permissible number of conjunction rows in rules of j -th 

decision class, 1,j m= . 

So as the content and number of linguistic terms jp
ia  ( 1,i n= , 1, jp k= , 

1,j m= ), used in the knowledge base (4.2), are not known beforehand then it is 
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suggested to interpret them on the basis of membership functions (4.5) parameter 
values ( , )jp jp

i ib c . Therefore, knowledge base (4.2) synthesis is reduced to 

obtaining the parameter matrix shown in Table 4.1. 

Table 4.1. Knowledge base parameters matrix 

Rule 
IF  THEN 

1x  ... ix  ... nx  Weight y  

11 11 11
1 1( , )b c  11 11( , )i ib c  11 11( , )n nb c  11w  

 

1d  12 12 12
1 1( , )b c  12 12( , )i ib c  12 12( , )n nb c  12w  

... ... ... ... ... 
1 1k  1 11 1

1 1( , )k kb c  1 11 1( , )k k
i ib c  1 11 1( , )k k

n nb c  
11kw   

... ... ... ... ...  
j 1 1 1

1 1( , )j jb c  1 1( , )j j
i ib c  1 1( , )j j

n nb c  1jw   

j 2 2 12
1 1( , )jb c  2 2( , )j j

i ib c  2 2( , )j j
n nb c  2jw   

... ... ... ... ... 
jd  

j jk  ( )1 1,j jjk jk
b c  ( ),j jjk jk

i ib c  ( ),j jjk jk

n nb c  jjkw   

... ... ... ... ...  
m 1 1 1

1 1( , )m mb c  1 1( , )m m
i ib c  1 1( , )m m

n nb c  1mw   

m 2 2 2
1 1( , )m mb c  2 2( , )m m

i ib c  2 2( , )m m
n nb c  2mw   

... ... ... ... ... 
md  

m mk  ( )1 1,m mmk mkb c  ( ),m mmk mk
i ib c  ( ),m mmk mk

n nb c  
mmkw   

 
In terms of mathematical programming this problem can be formulated in the 

following way. It is required to find such matrix (Table 4.1) which satisfying 
limitations imposed on parameters ( , , )W B C  change ranges and number of rows 

provides for: 

2

, ,
1

[ ( , , , ) ] min
M

p p
p

F y
=

− =∑
W B C

X W B C ,                               (4.6) 

for the object with continuous output, 

2

, ,
1 1

( , , , ) ( ) minj j

M m
d d

p p
p j

yμ μ
= =

⎧ ⎫⎡ ⎤− =⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑

W B C
X W B C  ,            (4.7) 

for the object with discrete output, where 

1,

0,
j j pd

p
j p

if d d

if d d
μ

=⎧⎪= ⎨ ≠⎪⎩
  . 
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To solve these optimization problems it is appropriate to use a hybrid genetic 
and neuro approach. 

4.3   Genetic Algorithm for Rules Extraction 

The chromosome describing desired parameter matrix (Table 4.1), we define by 
the row shown in Fig. 4.1, where jpr  is the code of IF-THEN rule with number 

jp , 1, jp k= , 1,j m= . 

The operation of chromosomes crossover is defined in Fig. 4.2. It consists of 

exchanging parts of chromosomes in each rule jpr  ( 1,j m= ) and rules weights 

vector. The total number of exchange points makes 1 2 ... 1mk k k+ + + + : one for 

each rule and one for rules weights vector. 
The operation of mutation ( Mu ) consists in random change (with some 

probability) of chromosome elements: 

( ) ([0,1])jpMu w RANDOM= , 

( ) ([ , ])jp
ii iMu b RANDOM x x= , 

( ) ([ , ])
jpjpjp
ii iMu c RANDOM c c= , 

where ([ , ])RANDOM x x is the operation of finding random number which is 

uniformly distributed on the interval [ , ]x x . 

If rules weights can take values 1 (rule available) or 0 (rule not available), then 
weights mutation can take place by way of random choice of 1 or 0. 

Fitness function of chromosomes - solutions is calculated on the basis of (4.6) 
and (4.7) criteria. 

If ( )P t  - parent chromosomes, and ( )C t  - offspring chromosomes on t -th 

iteration then genetic procedure of optimization will be carried out according to 
the following algorithm [18, 19]: 

 
begin 
 t:=0 ;  
         assign initial value ( )P t ; 

         estimate ( )P t using criteria (4.6) and (4.7); 

 while (not condition for completion) do 
    Crossover ( )P t  to obtain ( )C t ; 

    Estimate C(t) using criteria (4.6) and (4.7); 
    Choose ( 1)P t +  from ( )P t  and ( )C t ; 

    t:=t+1 ; 
 end 
end  
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Fig. 4.1. Coding of parameter matrix 

 

 

Fig. 4.2. Crossover operation  ( ,  - parents symbols, ,    - offspring symbols) 

4.4   Neuro-fuzzy Network for Rules Extraction from Data 

Let us impose limitations on the knowledge base (4.2) volume in the following 
form: 

1 1q q≤ , 2 2q q≤ , ..., n nq q≤ , 
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where iq  is the maximum permissible total number of fuzzy terms describing a 

variable ix , 1,i n= ; 

This allows embedding system (4.2) into the special neuro-fuzzy network, which 
is able to extract knowledge [7, 17]. The neuro-fuzzy network for knowledge 
extraction is shown in Fig. 4.3, and the nodes are presented in Table 3.1.  

As is seen from Fig. 4.3 the neuro-fuzzy network has the following structure:  
 
layer 1 for object identification inputs (the number of nodes is equal to n),  
layer 2 for fuzzy terms used in knowledge base (the number of nodes is equal 

to 1 2 ... nq q q+ + + ),  

layer 3 for strings-conjunctions (the number of nodes is equal to 1 2 ... nq q q⋅ ⋅ ⋅ ),  

layer 4 for fuzzy rules making classes (the layer is fully connected, the number 
of nodes is equal to the number of output classes m), 

layer 5 for a defuzzification operation.  
 
 

 

Fig. 4.3. Neuro-fuzzy network for knowledge extraction   
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To train the parameters of the neuro-fuzzy network, the recurrent relations 
 

( 1) ( )
( )
t

jp jp
jp

E
w t w t

w t
η ∂

+ = −
∂

 , 

( 1) ( )
( )

jp jp t
i i jp

i

E
c t c t

c t
η ∂

+ = −
∂

 ,     ( 1) ( )
( )

jp jp t
i i jp

i

E
b t b t

b t
η ∂

+ = −
∂

 

are used which minimize the criterion  

21
ˆ( )

2t t tE y y= − , 

applied in the neural network theory, where ˆty ( ty ) are experimental and model 

outputs of the object at the t-th step of training;  

( )jpw t ,
 

( )jp
ic t , ( )jp

ib t
 
are rules weights and parameters for the fuzzy terms 

membership functions at the t-th step of training; 

η is a parameter of training [20].  
The partial derivatives appearing in recurrent relations can be obtained 

according to the results from Section 3.3. 

4.5   Computer Simulations 

Example 1 
Experimental data about the object was generated using the model “one input – 
one output” 

4

2( ) sin( )
x

y f x e xπ−

= = ⋅ , [0, 10]x∈ , [ 0.47, 0.79]y∈ − ,                (4.8) 
 

which is represented in Fig. 4.4. 
 

 

Fig. 4.4. “One input – one output” object behavior 

x

y
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The object output was divided into seven classes: 
 

1 2 3 4

75 6

[ 0.47, 0.30) [ 0.30, 0.05) [ 0.05,0.15) [0.15,0.30)

[0.30,0.45) [0.45,0.65) [0.65,0.78]

d d d d

dd d

y∈ − − ∪ − − ∪ − ∪ ∪

∪ ∪ ∪

���	��
 ���	��
 ���	��
 ��	�


��	�
��	�
 ��	�

 

 

The goal was to synthesize 5 rules for every class describing the object (4.8). 
Rules weights were accepted as equal to 0 and 1. As the result of using the 

genetic and neuro algorithm of optimization we obtained the parameters matrix 
represented in Table 4.2.  

Table 4.2. Rules parameters matrix 

IF x  THEN  
y  Genetic algorithm Neuro-fuzzy network 

Term parameters ( b , c ) Weight Term parameters ( b , c ) Weight  

(2.85, 0.96) 1 (2.81, 1.12) 1  
(2.77, 1.05) 1 (2.72, 0.70) 1 

1d  

(2.90, 0.88) 
(0.25, 0.85) 

1 
0 

(2.93, 0.85) 
(0.13, 0.64) 

1 
0 

 

(2.88, 1.24) 1 (2.81, 1.17) 1  
(6.85, 1.94) 
(8.74, 1.26) 

1 
1 

(6.11, 1.13) 
(3.71, 0.25) 

1 
0 

 

(8.91, 2.17) 1 (6.91, 2.05) 1 
2d  

(6.92, 1.83) 
(0.93, 1.21) 

1 
0 

(6.83, 0.72) 
(1.13, 0.92) 

1 
0 

 

(0.06, 0.74) 
(8.91, 2.53) 

1 
0 

(0.13, 0.87) 
(9.10, 1.25) 

1 
0 

 

(9.72, 2.12) 1 (8.62, 2.20) 1 
3d  

(9.90, 1.30) 1 (9.92, 1.12) 1  
(8.25, 1.15) 0 (8.7, 1.33) 1  
(4.85, 0.11) 1 (4.91, 0.21) 1  
(5.33, 1.72) 1 (5.20, 1.50) 1 

4d  

(5.10, 1.08) 
(6.54, 0.70) 
(9.48, 2.31) 

1 
0 
0 

(5.01, 0.90) 
(5.12, 0.83) 
(9.17, 1.19) 

1 
0 
0 

 

(2.00, 0.94) 
(0.64, 2.46) 
(0.88, 0.76) 
(1.25, 0.67) 

0 
0 
1 
0 

(2.13, 0.72) 
(0.70, 1.25) 
(0.92, 0.70) 
(0.93, 1.12) 

0 
0 
1 
0 

7d  

(0.97, 2.18) 1 (1.01, 1.90) 1  
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After linguistic interpretation the genetically generated rules look like this: 
 

IF x =  about 2.8 THEN 1y d∈  

IF x =  about 6.9 OR x =  about 8.8 THEN 2y d∈  

IF x =  about 0 OR x =  about 10 THEN 3y d∈  

IF x =  about 5 THEN 4y d∈  

IF x =  about 0.9 THEN 7y d∈  

 
Rules specified using neural adjustment after linguistic interpretation look like 

this: 
 

IF x =  about 2.8 THEN 1y d∈  

IF x =  about 6.9 THEN 2y d∈  

IF x =  about 0 OR x =  about 8.8 OR x =  about 10 THEN 3y d∈  

IF x =  about 5 THEN 4y d∈  

IF x =  about 0.9 THEN 7y d∈  
 

The model derived according to synthesized rules in comparison with the target 
one is shown in Fig. 4.5, 4.6. 

 
 

 

Fig. 4.5. Comparison of the genetically synthesized linguistic model with the standard 

 

target
model

x

y
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Fig. 4.6. Comparison of the linguistic model specified using neural adjustment with the 
standard 

Further increase of linguistic model precision is possible on the account of its 
fine tuning. 

 
Example 2 

Experimental data about the object was generated using the model “two inputs – 
one output”: 

 

1 2

1
( , ) (2 0.9)  (7 1)  (17 19)  (15 2)

10
y f x x z z z z= = − − − − ,                    (4.9) 

 

where 
2 2

1 2( 3.0) ( 3.0)

40

x x
z

− + −
= ,  

which is represented in Fig. 4.7. 
The object output was divided into five classes:  
 

2 3 41 5

[ 5.08, 4.50) [ 4.50, 3.0) [ 3.0, 0.5) [ 0.5,0) [0,0.855)
d d dd d

y∈ − − ∪ − − ∪ − − ∪ − ∪���	��
 ��	�
 ��	�
���	��
 ��	�
 . 

 

The goal was to synthesize 20 rules for every class describing the object (4.9). 
Rules weights were accepted as equal to 0 and 1. As the result of using the genetic 
and neuro algorithm of optimization we obtained the parameters matrix 
represented in Table 4.3.  

x

y

target
model
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Fig. 4.7. “Two inputs – one output” object behaviour 

Table 4.3. Rules parameters (b , c) matrix 

Genetic algorithm Neuro-fuzzy network 
d  

1x  2x  weight 
1x  2x  weight  

(0.05, 0.12)
(0.39, 0.98)
(4.83, 0.86)
(5.99, 0.15)
(0.20, 0.15)
(0.77, 0.96)
(5.95, 0.17)
(4.93, 1.36)

(1.10, 0.99) 
(0.02, 0.17) 
(0.20, 0.11) 
(1.33, 0.84) 
(5.08, 0.92) 
(5.92, 0.14) 
(4.91, 0.83) 
(5.90, 0.17) 

1 
1 
1 
1 
1 
1 
1 
1 

(0.15, 0.08)
(0.32, 0.75)
(4.72, 1.14)
(5.97, 0.12)
(0.17, 0.09)
(0.92, 0.81)
(5.85, 0.10)
(5.24, 1.17)

(1.16, 0.83) 
(0.09, 0.06) 
(0.18, 0.09) 
(1.48, 1.17) 
(5.62, 0.79) 
(5.99, 0.06) 
(4.69, 0.72) 
(5.99, 0.07) 

1 
1 
1 
1 
1 
1 
1 
1 

1d  

(0.08, 0.12)
(5.99, 0.20)
(0.13, 0.17)
(5.97, 0.11)
(0.44, 0.96)
(4.06, 0.52)
(0.58, 1.07)
(4.91, 0.78)

(0.16, 0.08) 
(0.19, 0.18) 
(5.92, 0.12) 
(5.90, 0.20) 
(0.87, 0.91) 
(0.03, 0.08) 
(5.71, 1.20) 
(1.48, 0.77) 

1 
1 
1 
1 
1 
1 
1 
1 

(0.04, 0.06)
(5.98, 0.11)
(0.10, 0.09)
(5.87, 0.09)
(0.56, 1.17)
(5.88, 0.14)
(0.82, 1.34)
(5.32, 0.89)

(0.05, 0.11) 
(0.17, 0.04) 
(5.97, 0.08) 
(6.00, 0.10) 
(1.28, 0.99) 
(0.12, 0.14) 
(5.86, 0.92) 
(1.54, 0.65) 

1 
1 
1 
1 
0 
1 
0 
0 

2d  

 
 
 

2x  

y  

1x  
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Table 4.3.(continued)  

(0.09, 0.15)
(3.65, 0.74)
 (5.91, 0.08)
(0.16, 0.07)
 (0.04, 0.20)
(4.88, 0.84)
(3.02, 0.77)
(5.91, 0.34)
(5.34, 0.76)
(0.16, 0.25)
(4.97, 0.56)
(3.22, 0.91)

(2.04, 0.56) 
(1.52, 0.73) 
 (3.71, 0.67) 
(3.94, 0.64) 
 (3.05, 0.86) 
(5.32, 0.98) 
 (5.94, 0.13) 
(0.12, 0.19) 
(4.18, 0.56) 
(3.44, 0.95) 
(5.11, 0.93) 
(5.99, 0.32) 

1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 

(0.10, 0.12)
(0.44, 0.96)
(1.86, 0.37)
(4.06, 0.52)
(4.91, 0.78)
(5.94, 0.09)
(0.06, 0.15)
(0.58, 1.07)
(5.96, 0.04)
(5.17, 0.88)
(2.02, 0.60)
(3.74, 0.49)

(2.17, 0.45) 
(0.87, 0.91) 
(0.16, 0.09) 
(0.03, 0.08) 
(1.48, 0.77) 
(2.11, 0.56) 
(3.67, 0.39) 
(5.71, 1.20) 
(3.94, 0.65) 
(4.98, 0.70) 
(5.99, 0.06) 
(5.87, 0.09) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3d  

(0.22, 1.17)
(1.25, 0.93)
(2.17, 0.75)
(3.00, 0.92)
(1.08, 0.54)
(5.93, 0.18)
(1.85, 0.46)
(3.03, 0.88)
(5.92, 0.20)
(2.03, 0.68)
(5.99, 0.08)
(1.98, 0.93)
(3.81, 0.69)
(4.82, 1.45)
(2.26, 0.74)
(3.67, 0.81)
(4.55, 1.34)
(1.87, 0.72)
(3.77, 0.21)
(3.08, 0.83)

(3.07, 0.85) 
(1.96, 0.53) 
(0.74, 0.72) 
(0.04, 0.26) 
(3.45, 0.65) 
(2.16, 0.78) 
(0.06, 0.15) 
(2.03, 0.47) 
(2.34, 0.67) 
(3.00, 0.91) 
(2.92, 0.79) 
(5.74, 1.17) 
(3.66, 0.61) 
(3.52, 0.93) 
(4.65, 1.14) 
(5.86, 0.26) 
(3.22, 0.96) 
(5.08, 0.33) 
(4.26, 1.91) 
(5.07, 2.36) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

(0.16, 0.09)
(1.07, 1.15)
(1.96, 0.54)
(3.04, 0.79)
(1.06, 0.94)
(4.07, 0.52)
(1.92, 0.33)
(2.96, 0.81)
(3.61, 0.42)
(4.75, 0.79)
(2.17, 0.38)
(3.81, 0.54)
(5.96, 0.11)
(1.77, 0.42)
(3.07, 0.68)
(3.91, 0.53)
(4.78, 1.15)
(2.18, 0.39)
(3.65, 0.47)
(2.97, 0.75)

(2.86, 0.59) 
(2.25, 0.35) 
(0.37, 0.88) 
(0.09, 0.16) 
(3.75, 0.49) 
(0.42, 0.30) 
(1.96, 0.51) 
(2.40, 0.38) 
(2.08, 0.44) 
(1.96, 0.50) 
(3.08, 0.72) 
(2.99, 0.85) 
(3.06, 0.69) 
(3.68, 0.47) 
(4.05, 0.32) 
(3.89, 0.37) 
(3.61, 0.45) 
(5.67, 0.95) 
(4.86, 0.71) 
(5.96, 0.11) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4d  

(3.68, 1.31)
 (2.97, 0.93)
(2.92, 0.55)
(5.64, 0.97)
(3.02, 1.26)
(2.33, 0.85)
(3.92, 1.45)
(3.90, 1.58)
(1.82, 0.23)
(3.06, 1.72)

(4.78, 1.56) 
 (0.52, 0.09) 
(3.02, 0.98) 
(3.00, 1.17) 
(5.44, 0.97) 
(2.07, 0.46) 
(1.89, 0.92) 
(3.02, 0.77) 
(3.48, 0.82) 
(4.01, 2.12) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

(0.26, 0.81)
(3.02, 0.70)
(2.96, 0.64)
(5.41, 0.79)
(3.06, 0.67)
(2.17, 1.68)
(3.12, 2.65)
(3.18, 0.54)
(1.89, 0.74)
(3.00, 2.16)

(3.02, 0.75) 
(0.56, 0.15) 
(3.09, 0.66) 
(3.03, 0.82) 
(5.56, 1.13) 
(1.74, 0.61) 
(1.28, 1.12) 
(3.00, 0.38) 
(3.91, 0.60) 

(4.871, 0.53)

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 

5d  
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The generated rules after linguistic interpretation are presented in Table 4.4, 
where the parameters of fuzzy terms for variables 1x  and 2x evaluation are 

interpreted as follows: about 0 – Low (L), about 0.5 – higher than Low (hL), about 
1.5 – lower than Average (lA), about 3 – Average (A), about 4.5 – higher than 
Average (hA), about 5.5 – lower than High (lH), about 6 – High (H). 

Table 4.4. Fuzzy knowledge base 

 
 

The model of the object derived according to synthesized rules is shown in Fig. 
4.8, 4.9. 
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algorithm
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network d
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H
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H
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1d
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L
H
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L
L
H
H
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L
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hL

L
H
L
H

L
L
H
H

2d
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H
L
L
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A
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H
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H
L
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3d
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4d
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A
A
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A
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A
A
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Fig. 4.8. Linguistic model synthesized using the genetic algorithm 

 

Fig. 4.9. Linguistic model specified using neural adjustment 

 

y  

2x  

1x

y

2x 1x
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Further increase of linguistic model precision is possible on the account of its 
fine tuning. 

4.6   Example 3: Rules Extraction for Differential Diagnosis  
of Heart Disease 

4.6   Example 3: R ules Extraction for Differential D iagnosis  

In a lot of areas of medicine there are huge experimental data collections and it is 
necessary to convert these data into the form convenient for decision making. 
Several well-known methods like mathematical statistics, regression analyses etc. 
are usually used for data processing [21]. Decision makers in medicine, however, 
are typically not statisticians or mathematicians. It is therefore important to 
present the results of data processing in an easily understandable form for decision 
makers without special mathematical backgrounds.  

Fuzzy information granulation in the form of fuzzy IF-THEN rules [1] allows 
making the results of data analysis easily understandable and well interpretable. 
But during the development of fuzzy expert systems it is supposed that an initial 
knowledge base is generated by an expert from the given area of medicine [2, 3]. 
That is why the quality of these systems depends on the skill of a medical expert.  

The aim of this section is (1) to propose the formal procedure of fuzzy IF-
THEN rules extraction from histories of diseases and (2) to compare the results of 
medical diagnosis using extracted IF-THEN rules and the similar rules proposed 
by an expert [3].  

A specific feature of fuzzy rules bases for medical diagnosis consists of their 
hierarchical character. In this section we propose the formal procedure for 
extraction of a hierarchical system of fuzzy rules for medical diagnosis from real 
histories of diseases. The suggested procedure is based on the optimal solution 
growing from a set of primary IF-THEN rules variants using the genetic cross-
over, mutation and selection operations [18, 19]. The neural approach is used for 
adaptive correction of the diagnostic rules by pruning redundant membership 
functions and rules.  

The efficiency of proposed genetic and neuro algorithms is illustrated by an 
example of ischemia heart disease (IHD) diagnosis [3].  

4.6.1   Hierarchical System of IF-THEN Rules 

Let us consider the object (3.30) - (3.32) for which the following is known: 

- intervals of inputs (parameters of the patient state) change [ , ]i i ix x x∈ , 1,i n= , 

- classes of decisions jd  ( 1, )j m=  (types of diagnoses),  

- training data (histories of diseases) in the form of M  pairs of experimental 

data “parameters of patient state - type of diagnose” { , }p pdX , where 

1 2{ , ,..., }p p p
p nx x x=X  - input vector in p -th pair, 1,p M= . 

It is necessary to transfer the available training data into the following systems 
of the fuzzy IF-THEN rules: 
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1) for the instrumental danger y depending on parameters 2 3 4 5 10 11{ , , , , , }x x x x x x : 

 

IF  
⎡
⎢
⎣

1
2 2( )jx a=  AND 1

3 3( )jx a=  AND ...  1
11 11( )jx a=

⎤
⎥
⎦

 (with weight 1
y
jw ) 

    ... 

OR 
⎡
⎢
⎣
( )2 2

jjk
x a=  AND ( )3 3

jjk
x a=  AND ...  ( )11 11

jjk
x a= ⎤

⎥
⎦

 (with weight 
j

y
jkw ), 

THEN   jy y∈ , for all 1,5j = ;                                                                                    (4.10) 

 

2)  )  for the biochemical danger z depending on parameters 6 7 8 9 12{ , , , , }x x x x x : 
 

IF 
⎡
⎢
⎣

1
6 6( )jx a=  AND  1

7 7( )jx a=  AND ...  1
12 12( )jx a=

⎤
⎥
⎦

 (with weight 1
z
jw ) 

    ... 

OR 
⎡
⎢
⎣
( )6 6

jjk
x a=  AND ( )7 7

jjk
x a=  AND ...  ( )12 12

jjk
x a= ⎤

⎥
⎦

 (with weight 
j

z
jkw ), 

THEN jz z∈ , for all 1,5j = ;                                                                                       (4.11) 
 

3)  for the danger of IHD d depending on parameters 1{ , , }x y z : 

 

IF 
⎡
⎢
⎣

1
1 1( )jx a=  AND 1( )j

yy a=  AND 1( )j
zz a=

⎤
⎥
⎦

 (with weight 1jw ) 

    ... 

OR   
⎡
⎢
⎣
( )1 1

jjk
x a=  AND ( )jjk

yy a=  AND ( )jjk

zz a= ⎤
⎥
⎦

 (with weight 
jjkw ), 

THEN jd d∈ , for all 1,j m= ,                                                                               (4.12) 
 

where  jp
ia  is the linguistic term for the estimation of variable ix  in the row with 

number 1, jp k= , 

jp
ya ( jp

za ) is the linguistic term for the estimation of variable y (z) in the row 

with number 1, jp k= , and it is supposed that term jp
ya ( jp

za ) should be chosen 

from estimates jy  ( jz ), 1,5j = ; 

jk  is the number of conjunction rows corresponding to the classes jd , jy , jz ; 
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y
jpw , z

jpw , jpw  the weights of the expressions with number jp  in (4.10) - 

(4.12). 

4.6.2   Hierarchical System of Parameter Matrices 

The problem of fuzzy IF-THEN rules (4.10) - (4.12) extraction can be considered 
as finding three matrices presented in Tables 4.5 - 4.7. Each element ( jp

ib , jp
ic ) of 

these matrices corresponds to the membership function parameters and can be 

interpreted as a fuzzy term (low, average, high, etc.). Each element jp
ya ( jp

za ) in 

Table 4.7 is chosen from the decision classes jy  ( jz ) in Table 4.5, 4.6. 

Table 4.5. Matrix of IF-THEN rules parameters for model (3.31)  

Rule IF 
Weight 

THEN 

№ 2x  … 11x  y  

11 11 11
2 2( , )b c   11 11

11 11( , )b c  11
yw   

... ...  ... ... 
1y  

1 1k  1 11 1
2 2( , )k kb c   1 11 1

11 11( , )k kb c  
11

y
kw   

... ...  ... ... … 
51 51 51

2 2( , )b c   51 51
11 11( , )b c  51

yw   

... ...  ... ... 
5y  

5 5k  5 55 5
2 2( , )k kb c   5 55 5

11 11( , )k kb c  55
y
kw   

Table 4.6. Matrix of IF-THEN rules parameters for model (3.32) 

Rule IF 
Weight 

THEN 
№ 

6x  … 
12x  z 

11 11 11
6 6( , )b c   11 11

12 12( , )b c  11
zw   

... ...  ... ... 
1z  

1 1k  1 11 1
6 6( , )k kb c   1 11 1

12 12( , )k kb c  
11

z
kw   

... ...  ... ... … 

51 51 51
6 6( , )b c   51 51

12 12( , )b c  51
zw   

... ...  ... ... 
5z  

5 5k  ( )5 55 5
6 6,k kb c   ( )5 55 5

12 12,k kb c  
55

z
kw   
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Table 4.7. Matrix of IF-THEN rules parameters for model (3.30) 

Rule IF 
Weight 

THEN 
№ 

1x   y z d 

11 11 11
1 1( , )b c  11

ya  
11
za  11w   

... ... ... ... ... 
1d  

1 1k  1 11 1
1 1( , )k kb c  11k

ya  11k
za  

11kw   

... ... ... ... ... … 

m 1 1 1
1 1( , )m mb c  1m

ya  
1m

za  1mw   

... ... ... ... ... 
md  

m mk  ( )1 1,m mmk mkb c  mmk
ya  mmk

za  mmkw   

4.6.3   Computer Experiment 

The total number of patients with IHD in our study was 65. The aim of computer 
experiment was to generate three rules for each class of decision (y-, z-, d-) 
according to the models (3.30) - (3.32). The results of this optimization problem 
solving using genetic and neuro algorithm are presented in Tables 4.8 - 4.13. 
According to these tables it is easy to make interpretation of each pairs of 
parameters using fuzzy terms: L – Low, lA – lower than Average, A – Average, hA 
– higher than Average, H – High. For example, the pairs (176.5, 87.8), (256.1, 
25.1), (368.3, 49.8) correspond to the membership functions shown in Fig. 4.10, 
which can be interpreted as lower than Average (lA), Average (A), High (H).  

After linguistic interpretation we can describe the optimal solutions (Tables 
4.8 - 4.13) in the form of fuzzy IF-THEN rules matrices (Tables 4.14 - 4.16), 
where 

 

GA – genetic algorithm; 
NN – neuro-fuzzy network. 

 
 

 

Fig. 4.10. Example of linguistic interpretation 
 
 

0

1

0

1

1x

lA

0

1

128 405
1x

A

0

1

1x

H

128128 405 405

1 1

0 0
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Table 4.8. Parameters of rules for model (3.31) synthesized using the genetic algorithm 

 
 

Table 4.9. Parameters of rules for model (3.31) specified using the neuro-fuzzy network 

 

2x 3x 4x 5x 10x 11x y
(366.22, 83.44)

(176.48, 206.91)
(145.31, 50.27)

(941.93, 251.67)
(667.20, 120.90)
(109.43, 1350.49)

(3.22, 5.24)
(1.84, 5.63)
(0.81, 0.41)

(0.43, 0.08)
(0.25, 0.02)
(0.09, 0.11)

(34.28, 11.42)
(17.79, 41.88)
(24.23, 3.10)

(275.50, 535.50)
(298.45, 135.26)
(65.13, 21.18)

L

(368.30, 102.18)
(256.11, 90.71)
(128.00, 48.30)

(955.80, 842.19)
(128.85, 408.26)
(92.78, 180.36)

(1.31, 2.48)
(2.14, 0.46)
(0.60, 0.58)

(0.17, 0.15)
(0.32, 0.59)
(0.10, 0.05)

(11.42, 12.05)
(40.57, 25.13)
(7.40, 3.86)

(251.02, 7.03)
(179.88, 160.36)
(199.77, 52.74)

lA

(184.79, 350.26)
(130.77, 80.12)
(162.63, 45.64)

(914.18, 1942.50)
(808.73, 224.63)
(306.45, 1406.27)

(2.41, 5.78)
(0.62, 2.60)
(0.66, 0.39)

(0.23, 0.18)
(0.40, 0.23)
(0.12, 0.35)

(26.33, 18.37)
(8.91, 10.84)
(8.41, 4.69)

(227.31, 229.50)
(140.10, 200.05)
(290.80, 150.46)

A

(315.67, 50.92)
(188.94, 346.25)
(128.00, 74.17)

(123.30, 917.02)
(142.73, 268.38)
(645.00, 138.73)

(0.88, 5.78)
(1.89, 2.05)
(0.76, 0.49)

(0.28, 0.27)
(0.36, 0.07)
(0.10, 0.03)

(33.53, 7.18)
(8.91, 9.04)
(8.49, 16.79)

(191.35, 688.50)
(325.23, 116.83)
(208.95, 10.25)

hA

(202.79, 120.62)
(290.74, 80.56)
(128.00, 60.04)

(597.83, 340.36)
(434.10, 380.95)
(114.98, 570.30)

(1.47, 1.42)
(1.06, 7.02)
(0.61, 0.78)

(0.11, 0.35)
(0.46, 0.21)
(0.09, 0.08)

(16.53, 8.17)
(39.90, 18.37)
(7.74, 5.28)

(185.23, 137.25)
(277.80, 155.48)
(46.00, 40.34)

H

2x 3x 4x 5x 10x 11x w y

(330.21, 207.75) (539.55, 260.85) (1.76, 5.78) (0.26, 0.03) (18.12, 6.20) (75.84, 688.50) 0.98

0.51

0.99

L(314.28, 42.24) (114.98, 238.65) (0.77, 5.78) (0.20, 0.35) (33.20, 25.13) (59.77, 535.50)

(205.56, 623.25) (711.60, 185.93) (3.64, 5.78) (0.35, 0.06) (26.83, 25.46) (114.09, 688.50)

(179.25, 484.75) (575.63, 2497.50) (2.68, 0.82) (0.46, 0.11) (38.30, 4.69) (216.60, 688.50) 0.54

0.59

0.88

lA(206.95, 346.25) (950.25, 1387.50) (3.49, 0.83) (0.19, 0.35) (40.73, 8.29) (176.82, 229.50)

(397.38, 623.25) (1197.23, 1942.50) (1.37, 7.43) (0.20, 1.06) (37.22, 7.04) (205.12, 688.50)

(140.47, 58.86) (797.63, 1942.50) (3.19, 0.59) (0.49, 0.59) (23.40, 8.38) (296.16, 69.62) 0.51

0.70

0.95

A(215.95, 195.29) (794.85, 8.33) (3.26, 7.43) (0.15, 0.59) (19.21, 41.88) (259.44, 231.03)

(299.74, 346.25) (1086.23, 1387.50) (1.81, 5.78) (0.22, 0.04) (24.65, 41.88) (301.51, 95.63)

(226.34, 484.75) (395.25, 832.50) (1.59, 2.48) (0.49, 0.10) (38.14, 8.12) (155.40, 74.21) 0.50

0.53

0.97

hA(200.71, 346.25) (425.78, 2497.50) (2.14, 2.48) (0.27, 0.12) (38.89, 7.79) (62.07, 65.79)

(202.10, 74.79) (1039.05, 563.33) (0.90, 0.54) (0.26, 0.20) (14.10, 25.13) (332.88, 387.09)

(321.21, 623.25) (148.28, 122.10) (0.81, 0.43) (0.33, 0.59) (36.88, 5.53) (262.50, 229.50) 0.50

0.50

1.00

H(146.70, 46.40) (1061.25 230.33) (1.44, 4.13) (0.17, 0.09) (11.59, 3.10) (86.55, 45.14)

(232.57, 346.25) (237.08, 740.93) (2.49, 4.21) (0.53, 0.06) (20.72, 58.63) (152.34, 382.50)
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Table 4.10. Parameters of rules for model (3.32) synthesized using the genetic algorithm 

6x  7x  8x  9x  12x  z  

(50.32, 26.25) 
(49.71, 9.16) 
(35.09, 8.75) 

(20.56, 11.28) 
(22.53, 4.17) 
(22.84, 2.75) 

(13.41, 4.45) 
(15.47, 41.13) 
(4.42, 0.57) 

(4.50, 5.06) 
(3.82, 0.72) 
(1.01, 3.58) 

(21.92, 30.85) 
(16.59, 28.14) 
(3.90, 10.52) 

 
L 

(62.31, 7.80) 
(61.70, 15.03) 
(35.01, 8.75) 

(26.91, 20.48) 
(20.87, 3.37) 
(11.90, 8.51) 

(15.88, 25.16) 
(24.69, 12.04) 
(3.66, 5.28) 

(2.33, 7.95) 
(2.75, 5.98) 
(1.01, 1.05) 

(23.56, 41.17) 
(24.74, 27.44) 
(4.29, 7.20) 

 
lA 

(49.10, 6.11) 
(65.38, 12.34) 
(56.45, 9.72) 

(28.09, 39.38) 
(27.74, 21.88) 
(15.71, 4.76) 

(16.94, 27.06) 
(7.30, 12.65) 
(3.66, 5.88) 

(5.32, 1.41) 
(3.80, 5.00) 
(2.48, 0.88) 

(21.85, 15.22) 
(20.60, 5.17) 
(4.10, 3.24) 

 
A 

(58.64, 43.75) 
(47.35, 20.85) 
(34.66, 78.75) 

(16.84, 8.90) 
(22.36, 5.03) 
(11.90, 4.55) 

(4.60, 4.18) 
(5.95, 1.03) 
(5.07, 13.18) 

(4.71, 6.27) 
(3.77, 8.16) 
(1.00, 0.93) 

(24.94, 15.88) 
(7.91, 11.07) 
(3.97, 5.43) 

 
hA 

(58.72, 26.25) 
(34.57, 8.75) 
(34.57, 6.28) 

(28.83, 30.63) 
(15.27, 20.15) 
(11.90, 4.74) 

(24.40, 9.47) 
(9.24, 22.94) 
(3.84, 16.32) 

(5.32, 10.29) 
(4.88, 9.84) 
(1.01, 4.40) 

(16.79, 6.29) 
(6.67, 30.15) 
(18.76, 3.65) 

 
H 

 

Table 4.11. Parameters of rules for model (3.32) specified using the neuro-fuzzy network 

 
 
 
 
                                                                

 

6x  7x  8x  9x  12x  w z  

(52.79, 43.75) (27.96, 4.38) (9.59, 17.63) (4.77, 3.40) (29.48, 3.48) 0.57 
0.98 
0.69 

 
L (55.68, 78.75) (24.02, 2.71) (8.12, 52.88) (1.72, 3.53) (10.61, 33.53) 

(63.90, 78.75) (12.82, 30.63) (19.29, 17.63) (2.75, 0.88) (16.46, 5.65) 
(47.54, 78.75) (20.08, 21.88) (25.28, 29.38) (2.30, 5.88) (21.85, 32.88) 0.97 

1.00 
0.99 

 
lA (39.84, 8.75) (17.24, 30.63) (11.77, 52.88) (2.42, 1.18) (25.86, 46.03) 

(35.90, 44.63) (24.11, 21.88) (23.05, 41.13) (4.30, 3.53) (17.64, 32.88) 
(56.73, 43.75) (15.49, 4.33) (17.41, 52.88) (4.45, 10.58) (7.38, 5.33) 0.61 

0.78 
0.93 

 
A (40.98, 78.75) (28.00, 13.13) (26.63, 5.76) (1.95, 5.88) (20.86, 6.58) 

(56.29, 6.74) (28.35, 9.23) (8.12, 41.13) (4.63, 1.32) (25.33, 19.73) 
(68.19, 26.25) (13.08, 4.38) (19.87, 29.38) (4.78, 8.23) (26.91, 6.58) 0.60 

0.70 
0.50 

 
hA (37.48, 8.75) (14.96, 30.63) (5.72, 5.88) (2.54, 5.88) (20.27, 32.88) 

(61.10, 78.75) (27.13, 3.98) (6.07, 52.88) (2.36, 3.53) (26.52, 6.05) 
(66.18, 43.75) (20.30, 30.63) (21.87, 29.38) (2.35, 3.53) (19.94, 59.18) 0.80 

1.00 
1.00 

 
H (44.91, 8.75) (26.12, 39.38) (3.78, 5.88) (4.81, 10.58) (18.43, 32.88) 

(49.73, 61.25) (16.41, 39.38) (13.59, 52.88) (1.99, 10.58) (27.37, 32.88) 
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Table 4.12. Parameters of rules for model 
(3.30) synthesized using the genetic 
algorithm 

Table 4.13. Parameters of rules for model 
(3.30) specified using the neuro-fuzzy 
network 

 

  
 

 
 
 
 
 
 
 
 
 

1x y z d
(38.56, 25.19)
(54.83, 40.26)
(31.07, 10.04)

H
A
H

L
H
H

1d

(55.30, 6.74)
(51.25, 10.57)
(31.00, 4.36)

hA
lA
A

A
H
lA

2d

(55.91, 12.11)
(49.83, 4.67)
(34.38, 5.12)

lA
lA
lA

A
lA
lA

3d

(56.04, 12.20)
(31.14, 37.21)
(32.01, 4.23)

L
lA
L

A
hA
L

4d

(42.34, 11.45)
(46.80, 5.17)
(32.96, 4.82)

L
hA
L

lA
hA
hA

5d

(33.30, 6.31)
(45.78, 16.70)
(31.07, 4.48)

A
hA
L

hA
hA
lA

6d

1x y z w d
(38.90, 60.75) hA

L
hA 

L
H
H

0.93
0.70
0.70

1d(31.47, 33.75)
(51.05, 33.75)
(57.46, 19.85) H

A
L

A
H
hA

0.50
0.99
0.50 2d

(45.92, 9.79)
(50.04, 33.75)
(51.52, 60.75) A

A
A

A
hA
hA

1.00
0.70
0.50 3d

(48.15, 33.75)
(52.40, 33.75)
(52.06, 6.62) lA

A
lA 

A
lA
L

0.50
0.83
0.50 4d

(40.38, 47.25)
(42.00, 20.25)
(57.53, 47.25) lA

H
lA 

hA
lA
lA

0.72
0.50
0.97 5d

(34.85, 60.75)
(44.16, 33.75)
(36.54, 60.75) L

H
lA 

hA
lA
hA

1.00
0.60
1.00 6d

(44.84, 20.25)
(31.47, 35.91)
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Table 4.14. Fuzzy knowledge base for the instrumental danger y 

2x  3x  4x  5x  10x  11x  
y  

GA  / NN GA  / NN GA  / NN GA  / NN GA  / NN GA  / NN 
 hA 

lA / 
L  /  

hA 
lA 

hA / 
A  / 
L  / 

A 
lA 
A 

hA / 
A  / 
lA  / 

lA 
L 
H 

hA  / 
lA

L  /  

lA 

A 

hA / 
lA  / 

A

lA 
hA 

hA  / 
hA  / 

lA

L 
L L 

hA / 
A  / 
L / 

lA 
lA 
H 

hA / 
L  / 
L  / 

A 
hA 
H 

lA  / 
A  / 
L  / 

hA 
H 
lA 

lA  / 
A  / 
L  / 

hA 
lA 
lA 

lA  / 
H

L  / 

H 

H 

hA  / 
A
A

A 
lA 

lA  / 
L  / 
lA / 

L 
lA 
A 

hA 
hA 

lA / H 

A  / 
L  / 
L / 

hA 
hA 
lA 

lA  / 
hA / 

lA

hA 
lA 

A
L  / 
L  / 

lA 
A 

A  / 
lA / 

hA

hA 
hA A 

hA / 
lA 

L 

lA 

lA 

L  / 
L  / 
A  / 

lA 
lA 
hA 

lA 
A 

       L 

A  /  
A

L  / 

hA 

lA 

hA / 
L  / 
L  / 

H 
H 
lA 

A  / 
H  / 
A  / 

lA 
L 
H 

hA 

lA / 
A  / 
L  / 

hA 
L 
A 

A  / 
lA  / 
L  / 

L 
hA 
lA 

lA / 
lA 

L  /  

L 

A 

L  / 
hA / 
L   / 

A 
lA 
H 

lA  / 
H  / 
L  / 

hA 
L 
lA 

A  / 
hA  / 
L  / 

hA 
L 
lA 

H 

 

Table 4.15. Fuzzy knowledge base for the biochemical danger z 

6x  7x  8x  9x  12x  
z 

GA  / NN GA  / NN GA  / NN GA  / NN GA  / NN 
A 
A 

L  / hA 

A  / 
A  / 
hA / 

H 
hA 
L 

A  / 
A  / 
L  / 

lA 
lA 
hA 

hA
A  / 
L  / 

lA 
lA 

hA / 
A  / 
L  / 

H 
lA 
A 

 
L 

hA / 
hA / 

L

lA 
lA 

hA / 
A  / 
L  / 

A 
lA 
hA 

A  / 
H  / 
L  / 

H 
lA 
hA 

lA
lA

L  / hA 

hA
hA

L  / A 

 
lA 

A 
H  / 
hA /  

lA 
A 

H  / 
H 

lA  / 

lA 

H 

A
lA  / 
L  / 

H 
lA 

H  / 
A  / 
lA  / 

hA 
lA 
hA 

hA / 
hA

L  / 

lA 

hA 

 
A 

hA 
lA 

L hA 

lA / 
A  / 
L  / 

L 
lA 
hA 

L  / 
lA  / 
lA  /   

A 
L 
L 

hA
A  / 
L  / 

lA 
lA 

hA
lA  / 
L  / 

A 
hA 

 
hA 

hA / 
L  / 
L  / 

H 
lA 
A 

H  / 
lA  / 
L  / 

A 
hA 
lA 

H  / 
lA  / 
L  / 

hA 
L 
A 

H  / 
hA

L  / 

lA 

lA 

A
lA  / 
A  / 

A 
H 

 
H 
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Table 4.16. Fuzzy knowledge base for IHD danger d 

1x  y  z  
d  

GA  / NN GA  / NN GA  / NN 

lA 
   H  / 
  L  / 

 
L 

hA 

 H  / 
  A  / 
  H  / 

hA  
L 

hA 

L
H
H

 
 
 

1d  

H 
hA  / 
  L  / 

 
A 

hA 

  hA  / 
  lA  / 
  A  / 

H 
A 
L   

A
H

lA  / 

 
 

hA 
2d  

 H  / 
 hA  / 
 lA  / 

hA 
A 

hA 

  lA  / 
  lA  / 
  lA  / 

A   
A   
A   

A
 lA / 
 lA / 

 
hA 
hA 

3d  

  H  / 
  L  / 
   L  / 

hA 
lA 
A 

   L  / 
   lA  / 
   L  / 

lA   
A   
lA  

A
 hA / 

L

 
lA 
 

4d  

  A  / 
  A  / 
  lA  / 

H 
lA 
A 

  L  / 
  hA / 
   L  / 

lA   
H   
lA   

 lA / 
 hA / 
 hA / 

hA 
lA 
lA 

5d  

lA 
A 
L 

 
 
 

   A  / 
  hA  / 
   L  / 

L   
H   
lA  

hA
 hA / 
 lA / 

 
lA 
hA 

6d  

4.6.4   Comparison of the Expert and Extracted from Histories  
of Diseases IF-THEN Rules 

Comparison of the expert [3] and extracted from the real histories of diseases IF-
THEN rules is presented in Tables 4.17 – 4.19. As can be seen 
 

- fuzzy terms marked by 
(!) fully coincide;  

- instead of terms marked 
by (+) the adjacent terms 
were extracted; 

- instead of terms marked 
by (-), the terms which are 
too far from the expert ones 
were extracted. 

No coincidences of the 
terms are due to the 
parameters с- of membership 

128 405

1x

μ A hAL lA

128 405

μ A hAL lA
A (232.5, 346.2)

Fig. 4.11. Comparison of fuzzy terms 
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functions compression-extension. For example, the pair (232.5, 346.2) in the first 
column of Table 4.9, to which term Average (A) corresponds in Fig. 4.11, can be 
presented by a term set:  L – Low, lA – lower than Average, A – Average, hA – 
higher than Average. If some expert rule contains the term from this set, then this 
rule is not at variance with the rule extracted from data.  

Table 4.17. Comparison of the extracted and expert rules for instrumental danger y  

Number of the
extracted rule
in Table 4.14

Expert rules 
 
y  
 2x  3x  4x  5x  10x  11x  

Rule 3 
Rule 1 
Rule 2 

H  (-) 
H  (+) 
hA  (!) 

H  (-) 
hA  (+) 
H  (-) 

H  (!) 
H  (-) 

hA  (-) 

L  (-) 
lA  (!) 
L  (+) 

H  (-) 
H  (-) 
H  (+) 

H  (-) 
H  (-) 
H  (-) 

 
L 

Rule 3 
Rule 2 
Rule 1 

hA  (+) 
H  (-) 

hA  (-) 

hA  (+) 
H  (+) 

hA  (+) 

H  (-) 
hA  (+) 
H  (+) 

lA  (!) 
A  (+) 
lA  (-) 

H  (!) 
H  (!) 

hA  (+) 

hA  (+) 
H  (-) 

hA  (+) 

 
lA 

Rule 3 
Rule 2 
Rule 1 

A  (!) 
hA  (-) 
A  (-) 

A  (-) 
hA  (!) 
hA  (!) 

A  (+) 
A  (+) 
hA  (!) 

A  (+) 
lA  (!) 
A  (+) 

A  (!) 
hA  (-) 
hA  (+) 

A  (+) 
A  (+) 
hA  (!) 

 
A 

Rule 1 
Rule 2 
Rule 3 

lA  (!) 
lA  (!) 
A  (+) 

A  (+) 
lA  (!) 
lA  (-) 

lA  (!) 
A  (!) 

lA  (+) 

hA  (!) 
A  (!) 

hA  (-) 

lA  (-) 
L  (-) 
lA  (!) 

lA  (!) 
lA  (+) 
A  (-) 

 
hA 

Rule 1 
Rule 3 
Rule 2 

L  (-) 
lA  (+) 
L  (!) 

L  (!) 
L  (+) 
lA  (-) 

L  (!) 
lA  (+) 
lA  (!) 

hA  (+) 
H  (!) 

hA  (-) 

L  (-) 
L  (+) 
L  (!) 

L  (-) 
lA  (!) 
L  (!) 

 
H 

 

Table 4.18.  Comparison of the extracted and expert rules for biochemical danger z  

Number of the
extracted rule 
in Table 4.15

Expert rules  
z  

6x  7x  8x  9x  12x  

Rule 1 
Rule 2 
Rule 3 

H  (-) 
hA  (+) 
H  (+) 

H  (!) 
H  (+) 
hA  (-) 

H  (-) 
hA  (-) 
H  (+) 

H  (+) 
hA  (-) 
A  (+) 

H  (!) 
hA  (-) 
hA  (+) 

 
L 

Rule 1 
Rule 2 
Rule 3 

hA  (-) 
A  (+) 
A  (-) 

hA  (+) 
hA  (-) 
H  (+) 

A  (-) 
A  (+) 
hA  (!) 

A  (+) 
hA  (-) 
hA  (!) 

hA  (!) 
H  (+) 

hA  (+) 

 
lA 
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Table 4.18. (continued) 

Rule 1 
Rule 3 
Rule 2 

A  (!) 
hA  (+) 
hA  (-) 

A  (+) 
hA  (+) 
A  (-) 

A  (!) 
A  (+) 

hA  (+) 

hA  (!) 
A  (+) 
hA  (-) 

hA  (-) 
A  (+) 
A  (+) 

 
A 

Rule 2 
Rule 1 
Rule 3 

lA  (!) 
hA  (!) 
L  (-) 

A  (+) 
lA  (+) 
A  (+) 

lA  (+) 
A  (!) 
A  (-) 

A  (+) 
lA  (-) 
lA  (!) 

A  (!) 
lA  (-) 
A  (+) 

 
hA 

Rule 1 
Rule 2 
Rule 3 

L  (-) 
lA  (!) 
L  (-) 

L  (-) 
L  (-) 
lA  (!) 

L  (-) 
lA  (+) 
lA  (+) 

L  (+) 
L  (-) 
L  (+) 

lA  (+) 
L  (-) 
lA  (-) 

 
H 

Table 4.19. Comparison of the extracted and expert rules for IHD danger d  

Number of the 
extracted rule  
in Table 4.16 

Expert rules 

d  
1x  y  z  

Rule 1 
Rule 2 
Rule 3 

L  (+) 
lA  (+) 
lA  (-) 

L  (-) 
L  (!) 
lA  (-) 

L  (!) 
lA  (-) 
H  (!) 

1d  

Rule 3 
Rule 2 
Rule 1 

lA  (-) 
lA  (+) 
lA  (-) 

lA  (+) 
A  (!) 
lA  (-) 

lA  (-) 
lA  (-) 
A  (!) 

2d  

Rule 2 
Rule 3 
Rule 1 

lA  (+) 
hA  (!) 
A  (+) 

A  (!) 
hA  (+) 
hA  (+) 

A  (+) 
lA  (-) 
A  (!) 

3d  

Rule 3 
Rule 2 
Rule 1 

A  (!) 
hA  (-) 
hA  (!) 

hA  (-) 
A  (!) 
lA  (!) 

hA  (-) 
hA  (-) 
hA  (+) 

4d  

Rule 1 
Rule 3 
Rule 2 

H  (!) 
hA  (+) 
hA  (-) 

A  (+) 
hA  (-) 
H  (!) 

A  (+) 
H  (-) 

hA  (-) 
5d  

Rule 2 
Rule 3 
Rule 1 

H  (-) 
H  (-) 
H  (-) 

H  (!) 
hA  (-) 
A  (-) 

H  (-) 
hA  (!) 
hA  (!) 

6d  

4.6.5   Comparison of the Results of Medical Diagnosis 

The separate aim of our study was to compare the results of medical diagnosis 
obtained by formally extracted IF-THEN rules (using a genetic and neuro 
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algorithm) and the same rules proposed by a medical expert in the field of 
ischemia heart disease [3]. The fragment of data sample is presented in Table 4.20.  

Comparison of diagnoses for 65 patients shows the following (See Table 4.21). 
As a result of the genetic algorithm operation, there are full coincidences of all 
types of diagnoses for 54 patients. In 9 cases we can observe decisions on a 
boundary between classes of diagnoses (these cases are marked by *). In 2 cases 
the results of computer decision were too far from the real medical doctor 
diagnosis (these cases are marked by **). After neural correction of diagnostic 
rules there are full coincidences of all types of diagnoses for 57 patients. In 8 cases 
we can observe decisions on a boundary between classes of diagnoses (these cases 
are marked by *).  

These results (obtained by extracted IF-THEN rules) are close enough to 
similar results obtained by the fuzzy expert system described in [3]. Future quality 
improvement of extracted fuzzy IF-THEN rules can be reached by increasing the 
number of tuning parameters. 

The number of unknown parameters in our computer experiment was 486, and 
for the optimization problem solving we spent about 3 hours (Intel Core 2 Duo 
P7350 2.0 GHz). 

Table 4.20. Comparison of the diagnosis results 

 IF-THEN rules 

Expert 

Extracted from histories of diseases 

Genetic algorithm 
Neuro-fuzzy 

network 

Full coincidences  
of all types of diagnoses 

56 54 57 

Decisions on a boundary 
between classes of 
diagnoses (*)  

8 9 8 

Computer decision is too 
far from the real medical 
doctor diagnosis (**) 

1 2 0 

Table 4.21. Fragment of the data sample and diagnosis results 

 Patient state parameters Diagnosis 
№ 

1x  2x  3x  4x  5x  6x  7x  8x  9x  10x 11x 12x d̂ ed  Gd  Nd  

1 324 980 2.8 0.12 34.2 266 50.07 22.76 8.05 3.7 19.3 31 d1 d1 d1 d1 
2 330 900 2.9 0.14 29.7 242 56.52 24.33 9.02 4.1 21.0 36 d1 d1 d1 d1 
3 260 800 2.3 0.18 28.5 194 51.73 25.62 8.53 4.2 23.8 39 d2 d2 d2 d2 
4 272 867 2.5 0.28 28.7 198 59.31 28.44 8.53 4.0 19.4 42 d2 d2 d2 d3* 
5 287 491 2.2 0.24 25.3 156 52.77 21.61 8.53 3.5 20.5 48 d3 d3 d3 d3 
6 175 507 2.4 0.25 22.4 172 60.70 26.14 10.40 3.9 26.1 53 d3 d3 d3 d3 
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Table 4.21. (continued) 

7 247 728 2.0 0.34 26.5 144 62.06 26.14 5.55 2.3 22.9 45 d4 d4 d4 d4 
8 231 768 1.5 0.36 20.0 158 62.77 23.01 6.83 2.5 23.8 52 d4 d4 d5* d4 
9 151 610 1.3 0.42 19.8 104 54.49 23.91 5.55 2.4 25.7 32 d5 d5 d5 d5 

10 177 542 1.6 0.48 21.7 120 62.06 26.14 5.55 2.3 28.1 45 d5 d6* d6* d6* 
11 128 349 1.4 0.48 13.9 92 67.03 24.46 5.20 1.9 30.2 38 d6 d6 d6 d6 
12 145 304 1.2 0.56 14.4 74 64.15 25.62 7.11 2.6 25.5 38 d6 d6 d6 d6 
13 327 930 2.2 0.24 35.4 347 59.31 25.62 7.56 3.3 18.9 40 d1 d2* d1 d1 
14 348 952 1.8 0.20 34.2 352 34.48 20.79 9.56 5.7 21.6 38 d1 d1 d1 d1 
15 307 800 1.9 0.21 30.1 304 57.90 25.08 6.83 2.9 19.3 34 d2 d4** d2 d1* 
16 284 738 2.0 0.26 29.7 339 62.06 25.08 8.53 3.4 20.4 48 d2 d2 d2 d2 
17 174 600 1.7 0.32 27.2 312 55.18 24.46 8.56 3.8 22.0 35 d3 d3 d1** d3 
18 229 515 2.1 0.30 22.4 300 61.34 22.20 6.83 2.4 23.4 49 d3 d4* d3 d4* 
19 265 421 2.0 0.26 17.7 258 60.07 22.76 4.08 1.8 23.8 58 d4 d4 d4 d4 
20 330 650 1.5 0.25 20.3 244 69.49 25.08 6.83 2.5 22.0 49 d4 d4 d4 d4 
21 187 475 1.4 0.34 21.4 204 60.39 23.31 5.55 2.1 22.7 48 d5 d5 d5 d5 
22 224 400 1.5 0.39 20.4 215 55.18 21.05 7.11 2.7 22.5 42 d5 d5 d5 d5 
23 195 100 1.2 0.48 22.6 191 60.70 21.61 7.52 2.7 25.9 32 d6 d6 d5* d6 
24 192 292 1.3 0.45 19.2 188 62.77 23.70 5.55 1.6 24.4 51 d6 d6 d6 d6 
25 347 952 2.9 0.10 35.7 298 62.40 23.70 12.50 4.3 19.6 36 d1 d1 d1 d1 
26 314 902 3.2 0.14 33.5 287 59.40 24.20 10.50 4.2 18.8 48 d1 d1 d1 d1 

27 352 875 3.2 0.16 38.2 322 52.30 22.70 9.50 3.9 19.0 42 d1 d1 d1 d1 
28 323 1040 2.7 0.20 30.4 290 59.60 25.20 8.80 3.2 18.2 40 d1 d2* d1 d2* 
29 377 988 2.9 0.09 32.5 275 60.40 24.30 10.20 3.4 17.7 41 d1 d1 d1 d1 
30 309 932 3.2 0.15 31.5 312 60.80 25.40 9.40 4.4 18.5 34 d1 d1 d1 d1 
31 279 1056 2.7 0.09 33.4 334 59.90 21.30 8.80 3.7 18.7 52 d1 d1 d1 d1 
32 376 895 2.7 0.18 30.4 312 61.50 23.60 9.50 3.6 20.1 44 d2 d2 d2 d2 
33 304 929 2.6 0.22 32.5 346 58.20 25.10 10.70 3.8 19.2 46 d2 d2 d2 d2 
34 292 904 2.2 0.24 29.3 290 56.00 27.90 10.10 4.0 18.5 46 d2 d2 d1* d2 
35 276 885 2.4 0.25 27.8 226 61.40 29.40 11.20 3.6 20.8 42 d2 d2 d2 d2 
36 311 930 2.7 0.19 25.6 249 62.50 23.80 9.80 2.9 21.0 31 d2 d1* d2 d2 
37 335 992 2.4 0.22 24.6 255 61.60 24.70 9.90 3.3 20.3 44 d2 d2 d2 d2 
38 346 873 2.3 0.18 28.7 267 57.70 22.50 10.60 3.7 18.8 47 d2 d2 d1* d2 
39 288 804 2.4 0.27 20.9 275 60.00 22.20 11.50 3.5 19.5 48 d3 d3 d1** d3 
40 316 875 2.1 0.31 22.5 302 61.40 24.00 9.30 2.8 21.2 50 d3 d4* d3 d4* 
41 292 774 2.0 0.28 26.7 277 62.50 25.90 8.80 3.0 22.5 51 d3 d4* d3 d3 
42 315 766 2.2 0.22 21.4 265 53.70 26.20 8.70 2.7 20.5 54 d3 d4* d3 d2* 
43 300 865 2.1 0.25 21.9 303 59.40 25.80 9.30 3.5 21.4 40 d3 d3 d3 d2* 
44 270 777 2.1 0.28 22.3 316 61.00 26.10 9.70 4.1 21.3 36 d3 d3 d3 d3 
45 275 859 2.3 0.30 24.0 295 62.50 27.00 9.60 4.2 22.5 34 d3 d3 d3 d3 
46 261 776 1.7 0.36 20.4 204 65.00 22.50 8.40 2.7 23.8 52 d4 d4 d5* d4 
47 258 785 1.5 0.36 19.8 225 62.70 23.80 7.60 2.5 24.0 41 d4 d4 d5* d4 
48 290 845 1.8 0.39 18.7 268 57.10 24.00 7.20 2.5 22.5 53 d4 d4 d4 d4 
49 203 723 2.0 0.40 17.1 209 58.50 23.70 6.20 2.8 24.7 39 d4 d4 d4 d4 
50 244 802 1.7 0.35 18.5 212 62.00 25.30 6.30 3.0 24.9 45 d4 d4 d5* d4 
51 233 795 1.9 0.39 17.4 251 57.90 24.90 5.20 2.4 23.5 46 d4 d4 d4 d4 
52 262 805 1.8 0.38 19.2 244 57.90 24.50 7.70 2.2 22.1 54 d4 d4 d4 d4 
53 245 595 1.3 0.44 16.5 204 64.20 26.40 5.60 2.1 24.7 51 d5 d5 d5 d5 
54 209 772 1.5 0.45 14.7 195 60.20 27.80 5.90 2.4 25.0 40 d5 d5 d5 d5 
55 198 621 1.4 0.42 12.2 225 58.80 25.20 6.10 2.6 24.5 42 d5 d5 d5 d5 
56 245 523 1.5 0.39 14.1 207 57.50 23.30 6.50 2.2 26.9 44 d5 d5 d5 d5 
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Table 4.21. (continued 

57 237 652 1.6 0.45 11.9 262 63.70 24.70 6.40 2.1 24.2 50 d5 d5 d5 d5 
58 202 744 1.3 0.45 12.3 226 61.80 25.70 5.70 2.4 22.6 56 d5 d5 d5 d5 
59 247 723 1.2 0.38 10.4 230 62.50 26.90 5.60 2.3 25.8 51 d5 d5 d6* d5 
60 192 516 1.1 0.52 9.9 200 60.10 22.70 5.50 2.0 22.9 48 d6 d6 d6 d6 
61 188 446 1.2 0.48 9.5 212 59.00 23.50 5.20 2.4 26.7 39 d6 d6 d6 d6 
62 212 406 0.9 0.56 8.2 225 61.70 26.00 5.30 1.9 29.4 49 d6 d6 d6 d6 
63 247 527 0.7 0.51 7.4 197 62.60 27.40 5.10 2.0 28.5 45 d6 d6 d6 d6 
64 206 448 0.8 0.55 7.4 188 57.40 22.10 6.30 2.1 30.1 44 d6 d6 d6 d6 
65 228 512 1.0 0.52 7.8 204 53.90 25.60 5.40 2.3 29.5 42 d6 d6 d6 d6 

                          
d̂     - diagnosis obtained by medical doctor. 

ed   - computer diagnosis obtained by the expert IF-THEN rules. 

Gd  - computer diagnosis obtained by the genetically grown rules. 

Nd  - computer diagnosis specified using the neural network. 
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Chapter 5 
Inverse Inference Based on Fuzzy Relational 
Equations 

Application of a fuzzy methodology in system failure engineering encompasses 
the fault diagnosis problem [1, 2]. According to Cai [1] by fault we mean a system 
state which deviates from the desired system state. The task of fault diagnosing 
may include detecting whether a fault has occurred, diagnosing where the fault 
occurred, determining the type of fault, assessing the fault damage, and 
reconfiguring the system to accommodate the fault. Fault diagnosis partially 
answers one of the basic issues in system failure engineering: why does it fail.  

Cause and effect analysis is an important part of fault diagnosis [3, 4]. 
Obviously, various symptoms of a system during its operation are essential to 
implement tasks of fault diagnosis. However, vague symptoms frequently emerge 
[5, 6]. 

Fuzzy abduction is a promising approach to fault detection [7, 8]. Simulation of 
the cause-effect connections is done by way of interpreting Zadeh’s compositional 
rule of inference which connects input and output variables of an object (causes 
and effects) using a fuzzy relational matrix [9]. The problem of inputs restoration 
and identification is formulated in the form of inverse fuzzy logical inference and 
requires solution of a system of fuzzy relational equations [10]. In this case some 
renewal of causes takes place according to observable effects. Thus fault causes 
diagnosis implies (1) fuzzy relations construction and (2) fuzzy relational 
equations solution. 

Precise relationships between causes and effects are rarely documented in the 
literature. To determine the fuzzy relational matrix, either linguistically 
documented or statistically acquired from databases assessments are used [11, 12]. 
However, experts often establish the cause-effect connections using the 
comparisons like “Cause A has obvious advantage in comparison with cause B 
while effect C is occurring”. Such paired comparisons can be used for fuzzy 
relational matrix construction. In this case, effects can be considered as fuzzy sets 
given on the universal set of causes. The definition of membership degree is 
accomplished on the basis of expert information regarding cause paired 
comparisons with the help of a 9-mark Saaty’s scale [13]. 

The insufficient use of the inverse logical inference is stipulated through the 
lack of effective algorithms for solving fuzzy relational equations. In this chapter, 
the search for a system solution amounts to the solution of an optimization 
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problem. It has to be emphasized that the identification of a fuzzy relational 
equation solution is a complex optimization task with many local minima. Another 
difficulty comes from the exponential growth of the solution search space with the 
increase in the number of causes and effects considered in the diagnosis process. 
Generally, this problem is identified as being among NP-hard ones [14 – 16]. 

Genetic programming [17] provides a way to solve such complex optimization 
problems. We suggest some procedures of numerical solution of the fuzzy 
relational equations using genetic algorithms. The procedures envisage the optimal 
solution growing from a set of primary variants using genetic cross-over, mutation 
and selection operations. To serve the illustration of the procedures and genetic 
algorithm effectiveness study we present an example of technical diagnosis. 

This chapter is written using original work materials [18 – 20]. 

5.1   Fuzzy Relational Equations in Diagnostic Problems 

The diagnosis object is treated as a black box with n inputs and m outputs: 

Х= 1 2( , ,..., )nx x x is the set of inputs; 

Y =( 1 2, ,..., )my y y is the set of outputs. 

Simulation of the cause-effect “input-output” connections is done by way of 
interpreting Zadeh’s compositional  rule of inference [9] 

         B = A D  R,                      (5.1) 
where: 

1 2  ( )na ,a ,...,a=A  is the fuzzy causes vector with elements ia ∈ [0, 1], 

interpreted as some significance measures of ix  causes; 

1 2 ( )mb ,b ,...,b=B  is the fuzzy effects vector with elements jb ∈[0, 1], 

interpreted as some significance measures of jy  effects; 

R is the fuzzy relational matrix with elements ijr ,  1,i n= , 1,j m= , where ijr  

is the number in the range of [0,1] characterizing the degree to which cause ix  

influences upon the rise of effect jy ; 

D  is the operation of max-min composition [9]. 
The diagnostic problem is set in the following way. According to the known 

matrix R and fuzzy effects vector B, it is necessary to find some fuzzy causes 
vector A. It is suggested that matrix R and fuzzy effects vector B are formed on 
the basis of expert assessments, for example, by way of Saaty’s paired 
comparisons [13].  
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Finding vector A amounts to the solution of the fuzzy relational equations: 

1 1 11 2 21 1( ) ( )... ( )n nb a r a r a r= ∧ ∨ ∧ ∨ ∧  

2 1 12 2 22 2( ) ( )... ( )n nb a r a r a r= ∧ ∨ ∧ ∨ ∧                (5.2) 
                                        …           …            …            …   

              1 1 2 2( ) ( )... ( )m m m n nmb a r a r a r= ∧ ∨ ∧ ∨ ∧ , 

which is derived from relation (5.1). Taking into account the fact that operations ∨ 
and ∧ are replaced by max and min in fuzzy set theory [9], system (5.2) is 
rewritten in the form 

i 1,n
max(min( , )),j i ijb a r
=

=  1,j m= .                              (5.3) 

5.2   Solving Fuzzy Relational Equations as an Optimization 
Problem 

The problem of solving fuzzy relational equations (5.3) is formulated as follows. 
Vector 1 2( , ,..., )na a a=A  should be found which satisfies limitations of 

[0, 1]ia ∈ ,   1,i n= , 
and also provides the least distance between expert and analytical measures of 
effects significances, that is between the left and the right parts of each system 
equation (5.3): 

2

1,1

( ) [ max(min( , ))] min
m

j i ij
i nj

F b a r
==

= − =∑
A

A .                 (5.4) 

In the general case, system (5.3) can have no unique solution but rather a set of 
them. Therefore, according to [8] we find the fuzzy relational equations (5.3) 
solution in the form of intervals:  

                            [ , ]ii ia a a= [0, 1]⊂ ,  1,i n= ,                  (5.5)   

where ia ( ia ) is the lower (upper) bound of cause ix  significance measure. 

Formation of intervals (5.5) is accomplished by way of solving a multiple 
optimization problem (5.4) and it begins with the search for its null solution. As 
the null solution of optimization problem (5.4) we designate 

(0) (0) (0) (0)
1 2( , ,..., )na a a=A ,   where (0) [ , ]ii ia a a∈ ,  1,i n= .  

The upper bound ( ia ) is found in range (0)[ ,1]ia , and the lower bound ( ia ) - in 

range  (0)[0, ]ia . 
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Let ( ) ( ) ( ) ( )
1 2( , ,..., )k k k k

na a a=A  be some k-th solution of optimization problem 

(5.4), that is ( ) (0)( ) ( )kF F=A A , since for the all values of parameter ia  in the 

range [ ia , ia ] we have the same value of criterion (5.4). While searching for 

upper bounds ( ia ) it is suggested that ( ) ( 1)k k
i ia a −≥ , аnd while searching for lower 

bounds ( ia ) it is suggested that ( ) ( 1)k k
i ia a −≤  (Fig. 5.1).  

The definition of the upper (lower) bounds follows the rule: if ( ) ( 1)k k−≠A A , 

then ia ( ia )= ( )k
ia ,   1,i n= . If ( ) ( 1)k k−=A A , then the search is stopped. 

 

 0            1
а)

  0      1
b)

                                       )0(
ia         )1(

ia ….    )(k
ia         

          )(k
ia …   )1(

ia )0(
ia                                              

 
Fig. 5.1. Search for upper (a) and lower (b) bounds of the interval 

5.3   Genetic Algorithm for Solving Fuzzy Relational Equations  

To realize the genetic algorithm for solving the optimization problem (5.4) it is 
necessary to define the following main notions and operations [17]: chromosome 
– coded solution variant; gene – solution element; population – original set of 
solution variants; fitness function – criterion  of variants selection; cross over – 
operation of providing variants-offsprings from variants-parents; mutation – 
random change of chromosome elements 

Let P(t) be chromosome-parents, and C(t) – chromosome-offsprings of the t-th 
iteration. The general structure of the genetic algorithm will have this form: 
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begin 
 t:=0;  
  set the initial set P(t);  
          assess P(t) using fitness function; 
  while (no condition of completion) do 
             generate C(t) by way of crossing over P(t); 
                perform mutation C(t);  

              assess C(t) using fitness function;  
                       select P(t+1) from P(t) and C(t); 
              t:=t+1;  
                        end; 
end. 

We define the chromosome as the vector-line of binary solution codes ia ,   1,i n= . 

The number of bits ig  for variable ia  coding is defined according to formula 
12 ( ) 10 2 1i ig gq

i id d− < − ⋅ ≤ − , 
where [ , ]iid d  is the range of changes of variable ia ; 

   q is the required precision, that is the number of digits after the decimal 

point in ia  solution. 

For example, if there is a solution in the range [0,1] with set precision q=3, and 

1a =0.593,    2a =0.814,     3a =0.141,    4a =0.970,    5a =0.300, 

then the following chromosome will fit this solution 
 

     v = 1001010001 1100101110 0010001101 1111001010 0100101100 
 

The chromosomes of the initial population will be defined by 

ia RANDOM([0,1])= ,  1,i n= , 

where RANDOM([0,1])  denotes a random number within the interval [0,1]. 

We choose a fitness function as the negative of criterion (5.4) so that: 

f(v)= - F(v) .            (5.6) 

Thus, the higher the degree of adaptability of the chromosome to perform the 
criteria of optimization, the greater is the fitness function. 

Let cp  be some cross-over factor, that is the share of the offsprings of the each 

iteration performed, and let K be the population dimension. Then it is necessary to 

select  
2

cK p⋅
  pairs of chromosome-parents at the each iteration.  
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Selection of chromosome-parents for the cross-over operation should not be 
performed randomly. The greater the fitness function of some chromosome the 
greater is the probability for the given chromosome to yield offsprings. The 

probability of selection kp , corresponding to chromosome kv ,  1,k K= , is 

calculated according to formula [17]: 

  
( )

1,

1,1

( ) min[ ( )]

( ) min[ ( )]

k j
j K

k K

k j
j Kk

f v f v
p

f v f v

=

==

−
=

−∑
,          

1

1
K

k
k

p
=

=∑ .                (5.7) 

Using these probabilities we define chromosome-parents in the following way. 
Let us mark row kp  on the horizontal axis (Fig.5.2), and generate uniform random 

number z on interval [0,1].  
 

0                                              z                                                 1

      p1                   p2                      p3                       p4             …                pK

 
Fig. 5.2. Selection of chromosome-parent 

We select chromosome kv  as the parent, this chromosome corresponding to 

subinterval kp , within which number z finds itself. For example, in Fig.5.2 

generated number z defines chromosome 3v  as the parent. 

Selection of the second chromosome-parent is carried out in similar way. 
The cross-over operation is shown in Fig. 5.3. It is carried out by way of 

exchanging genes inside each variable ia ,  1,i n= . The cross-over points shown 

as dotted lines are selected randomly. 
 

v1

v2

1'v

2'v

     a1              a2 a3                       a4                     a5  

Fig. 5.3. Example of cross-over operation performance with n=5. 

The mutation operation (Mu) implies random change (with some probability 
mp ) of chromosome elements  

( )iMu a RANDOM= ([ , ])iid d . 
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So as this solution is coded by binary line then the mutation is reduced to 
inversion of some separate bits. 

While performing the genetic algorithm the dimension of the population stays 
constant at K. That is why after cross-over and mutation operations it is necessary 
to remove cK p⋅  chromosomes having the fitness function of the worst 

significance from the obtained population. 

5.4   Example 4: Car Engine Diagnosis 

Let us consider the algorithm performance having the recourse to the example of 
the car engine faults causes diagnosis.  

Engine fault effects are: 1y   – engine power insufficiency; 2y  – difficulties with 

engine starting; 3y  – smoky exhaust; 4y  – oil pressure too low. 

Fault causes to be identified: 1x  – wear out of crank gear; 2x  – valve timing 

gear wear out; 3x   – carburetor fault; 4x  – battery fault; 5x   – oil pump fault. 

Let the expert matrix of fuzzy relations has this form: 

 
 
 
 

R = 

       
1y  2y  3y  4y  

1x  0.8 0.4 0.8 0.3 

2x  0.7 0.3 0.6 0.1 

3x  0.9 0.7 0.3 0.1 

4x  0.1 0.9 0.1 0.1 

5x  0.5 0.6 0.4 0.9 

 
As the result of the examination the expert defined the following measures of 

significance for the engine fault criteria: 

1b = 0.8,  2b =0.6,  3b =0.2, 4b =0.1. 

It means that engine power insufficiency and difficulties in starting the engine 
with the smoky exhaust and oil pressure being normal were identified. 

The system of fuzzy logical equations in this case will appear in this form: 
 

1 1 2 3 4 5( 0.8) ( 0.7) ( 0.9) ( 0.1) ( 0.5)b a a a a a= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ,   

2 1 2 3 4 5( 0.4) ( 0.3) ( 0.7) ( 0.9) ( 0.6)b a a a a a= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ,  

3 1 2 3 4 5( 0.8) ( 0.6) ( 0.3) ( 0.1) ( 0.4)b a a a a a= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ , 

4 1 2 3 4 5( 0.3) ( 0.1) ( 0.1) ( 0.1) ( 0.9)b a a a a a= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ .       (5.8) 
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5.4.1   Genetic Search for the Null Solution 

To implement the genetic algorithm the initial population was formed as 
consisting of seven solutions:  

 
1v =(0.343, 0.257, 0.489, 0.136, 0.967),     

2v =(0.345, 0.415, 0.848, 0.724, 0.261),    

3v =(0.536, 0.134, 0.677, 0.869, 0.880),     

4v =(0.791, 0.010, 0.411, 0.245, 0.279),    

5v =(0.665, 0.315, 0.631, 0.199, 0.456),     

6v =(0.400, 0.652, 0.943, 0.673, 0.551),    

7v =(0.622, 0.284, 0.992, 0.933, 0.072);    

 
Fitness functions of these solutions found using formulae (5.4) and (5.6) made 

up this representation:  
 

f( 1v )= - 0.770;     f( 2v )= - 0.104;       f( 3v )= - 0.809;      f( 4v )= - 0.425; 

f( 5v )= - 0.362;     f( 6v )= - 0.383;       f( 7v )= - 0.318. 

 

Let the cross-over probability be cp =0.3. So that 
2

cK p⋅
=

7 0.3
1

2

⋅ ≈ , then one 

pair of chromosomes must be selected to realize the cross-over operation. On the 
basis of formula (5.7) the probability distribution for chromosome selection is 
given by: 

 
1p =0.01558;  2p =0.28306; 3p =0.00000;  4p =0.15409;  

5p =0.17936;  6p =0.17082; 7p =0.19705. 

  
Let us assume that for the chromosomes-parents two random numbers 

1z =0.18320 and 2z =0.50780 were generated. Then according to the algorithm of 

chromosome-parents selection, chromosomes 2v  and 5v  must be subjected to the 

cross-over. 
To realize cross-over operation, we used 5 points of exchange which were 

generated randomly in range [1,10] what corresponds to solutions ia  

representation using 10 digits. These random numbers made up 4, 3, 5, 4, 1 and  
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defined points of chromosome exchange shown in Fig. 5.4, where 2v , 5v  are 

chromosomes-parents, 2'v , 5'v  are chromosomes-offsprings. 

The same figure depicts mutation operation which implied inversion of the 49-
th gene of 5'v  chromosome-offspring. The mutation ratio ( mp ) was set at the 

level of 0.01. 

 

v2 0101   011001 011   0011111 11010   10000 1011   010100 0   100000101
v5 1010   011001 010   0111011 10011   10111 0011   000111 0   111001000

2'v 0101 011001 011 0111011 11010 10111 1011 000111 0 111001000
5'v 1010 011001 010 0011111 10011 10000 0011 010100 0 100000101

                                                                                                      

       a1           a2         a3                       a4                      a5

1

 

Fig. 5.4. Cross-over and mutation operations performance 

Fitness function of chromosomes-offsprings 

2'v =(0.345,0.443,0.855,0.711,0.456), 5'v =(0.665,0.287,0.624,0.212,0.263) 
 
made up this representation: 

f( 2'v )= - 0.201,   f( 5'v )= - 0.275. 

 
To maintain the same total population, let us exempt 2 chromosomes with the 

worst fitness functions, that is 1v  and 3v . Then, the new population will include 

also chromosomes: 2v ,  4v ,  5v ,  6v ,  7v , 2'v , 5'v . 

This operation completes one iteration of the genetic algorithm. 
Sequential application of genetic cross-over, mutation and selection operations 

to the initial set of variants provides for the growth of the fitness function of the 
solutions being obtained. The dynamics of change of the optimization criterion (F) 
relative to the number of iterations (N) are shown in Fig. 5.5. Table 5.1 shows the 
list of chromosomes which were the best in carrying out some definite iterations 
of the genetic algorithm. 
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N 

F 

 
Fig. 5.5. Relationship between optimization criterion (F) and number of iterations (N) 

(crossover cp = 0.3,  mutation mp = 0.01) 

Table 5.1. The best solutions of various iterations of the genetic algorithm  

Iteration 
number 

Solution Optimization 
criterion 

1 (0.345,0.415,0.848,0.724,0.261) 0.10390 
4 (0.345,0.415,0.848,0.660,0.261) 0.09853 
6 (0.320,0.031,0.784,0.724,0.256) 0.07003 
7 (0.320,0.031,0.785,0.724,0.256) 0.07000 
24 (0.320,0.287,0.789,0.724,0.256) 0.06990 
27 (0.256,0.287,0.789,0.724,0.256) 0.04983 
35 (0.256,0.287,0.789,0.708,0.256) 0.04612 
43 (0.256,0.279,0.797,0.708,0.256) 0.04601 
54 (0.075,0.162,0.808,0.256,0.024) 0.02006 
61 (0.075,0.162,0.800,0.256,0.024) 0.02000 

100 (0.075,0.162,0.800,0.256,0.024) 0.02000 

 
It is seen from Fig. 5.5 and Table 5.1 that as the number of iterations increases, 

the resulting optimization criterion decreases, finally converging to 0.02000 
approximately.  

5.4.2   Genetic Search for the Complete Solution Set 

The obtained null solution 

(0) (0) (0) (0) (0) (0)
1 2 3 4 5( 0.075, 0.162, 0.800, 0.256, 0.024)a a a a a= = = = = =A  

allows us to arrange for the genetic search for ia  variables significances intervals. 

Search dynamics of upper and lower solutions bounds is depicted in Tables 5.2 
and 5.3. 
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Table 5.2. Genetic search for upper bounds of intervals 

Iteration  1a  2a  3a  4a  5a  

1 0.075 0.162 0.800 0.256 0.024 

10 0.084 0.178 0.800 0.359 0.054 

20 0.088 0.251 0.800 0.420 0.078 

30 0.095 0.275 0.800 0.573 0.095 

40 0.098 0.287 0.800 0.585 0.100 

50 0.099 0.298 0.800 0.640 0.100 

60 0.100 0.299 0.800 0.688 0.100 

70 0.100 0.300 0.800 0.695 0.100 

80 0.100 0.300 0.800 0.699 0.100 

90 0.100 0.300 0.800 0.700 0.100 

100 0.100 0.300 0.800 0.700 0.100 

Table 5.3. Genetic search for lower bounds of intervals 

Iteration 1a  2a  3a  
4a  5a  

1 0.075 0.162 0.800 0.256 0.024 

10 0.039 0.151 0.800 0.173 0.010 

20 0.022 0.085 0.800 0.159 0.004 

30 0.017 0.043 0.800 0.084 0.001 

40 0.011 0.028 0.800 0.047 0.000 

50 0.005 0.016 0.800 0.038 0.000 

60 0.001 0.008 0.800 0.020 0.000 

70 0.000 0.003 0.800 0.007 0.000 

80 0.000 0.000 0.800 0.002 0.000 

90 0.000 0.000 0.800 0.000 0.000 

100 0.000 0.000 0.800 0.000 0.000 
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These tables show that the fuzzy relational equations (5.8) solution can be 
represented in the form of intervals: 

1a ∈[0, 0.1]; 2a ∈[0, 0.3]; 3a =0.8; 4a ∈[0, 0.7]; 5a ∈[0, 0.1]. 

5.4.3   Solution Interpretation and Model Testing 

The resulting solution allows the analyst to make the following conclusions. The 
cause of the observed engine state should be located and identified as the 

carburetor fault ( 3x ), so that the measure of significance of this fault is maximal. 

In addition, the observed state can be the effect of the battery fault ( 4x ), since the 

significance measure of this cause is sufficiently high. Insufficient wear-out of the 

valve timing gear ( 2x ) can also tell on engine proper functioning, the significance 

measure of which is indicative of the cause. Crank gear ( 1x ) and oil pump ( 5x ) 

functionate properly and have practically no influence on engine fault, so that the 
significance measures of the given causes are small. 

The genetic algorithm’s accuracy was measured using the 250 test instances, 
obtained from the expert at car engine fault diagnosis domain. The goal was to 
identify one of five possible car engine fault causes 1 5x x÷   by observed effects 

1 4y y÷ . The 250 cases acted as input events to test the fuzzy model diagnosis 

results, and the percentage of correct predictions was recorded. The results are 
shown in Fig. 5.6 which shows the relationship between average accuracy of the 
fault causes diagnosis and number of iterations. The fault causes diagnosis 
obtained an accuracy rate of 95.2 % after 1000 iterations (120 seconds on Intel 
Core 2 Duo P7350 2.0 GHz). 

N

Р

 

Fig. 5.6. Relationship between average accuracy (P) and number of iterations (N) 

(crossover =cp 0.3,  mutation =mp 0.01) 
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5.4.4   Assessment of Genetic Algorithm Effectiveness 

Dependence of the number of iterations, which is necessary to obtain an optimal 

solution, on the population volume (K), frequency of cross-over ( cp ) and 

mutation ( mp ) was studied in the course of computer experiment. Dependence of 

optimization criterion (F) on iteration number (N) under conditions of various 
parameters of the genetic algorithm is shown in Fig. 5.7. 

It was determined that a population volume of K=7 is sufficient for fuzzy 
logical equations system (5.8) resolution. To exclude hitting the local minimum 

the experiment was carried out for large values of cp  and mp . Fig. 5.7,a shows 

that under conditions of cp = 0.6 and mp = 0.02 about 100 iterations were 

required to grow an optimal solution. 
To cut time losses in unpromising fields studies, some parameters of the main 

genetic operations were experimentally selected. Fig. 5.7,b shows that setting of 
cross-over frequency at the level of 0.3 allowed to cut the number of iterations on 
the average to 75. Reduction of the mutation number to 0.01 allowed to cut 
iteration number to 50 (Fig. 5.7,c). 

      

                    а) b)      c)

F F F

0            50           100                        0             50           100                     0            50          100        

0.50.5 0.5

N N N

 

Fig. 5.7. Dependence of optimization criterion (F) on iteration number (N) under conditions 
of various parameters of genetic algorithm а)  K=7, cp = 0.6, mp = 0.02;  b) K=7, cp = 0.3, 

mp = 0.02; c) K=7, cp = 0.3, mp = 0.01. 
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Chapter 6 
Inverse Inference with Fuzzy Relations Tuning 

Diagnosis, i.e. determination of the identity of the observed phenomena, is the 
most important stage of decision making in different domains of human activity: 
medicine, engineering, economics, military affairs, and others. In the case of the 
diagnosis of problems where physical mechanisms are not well known due to high 
complexity and nonlinearity, a fuzzy relational model may be useful. A fuzzy 
relational model for simulating cause and effect connections in diagnosing 
problems has been introduced by Sanchez [1, 2]. A model for diagnosis can be 
built on the basis of Zadeh’s compositional rule of inference [3], in which the 
fuzzy matrix of “causes-effects” relations serves as the support of the diagnostic 
information. In this case, the problem of diagnosis amounts to solving fuzzy 
relational equations.  

Inverse problem resolution is of interest to both exact methods and approximate 
ones. The complete bibliographical notes are presented in [4]. Analytically exact 
methods for fuzzy relational equations on various lattices and with different kinds 
of composition laws for fuzzy relations are given in [4 – 8]. There exist tasks in 
which approximate solutions instead of exact ones are reasonable [9]. Solvability 
and approximate solvability conditions of fuzzy relational equations are 
considered in [10 – 14]. In the general case, an optimization environment is a 
convenient tool for decomposing fuzzy relations. Solving fuzzy relational 
equations by neural networks is described in [15, 16]. The use of genetic 
optimization for decomposition of fuzzy relations is proposed in [17]. 

The necessary condition of diagnostic problem solving is to ascertain the cause-
effect relationship. A general methodological scheme envisages structure 
determination, parameter identification and model validation [18, 19]. An 
approach of integrated genetic and gradient-based learning in construction of 
fuzzy relational models is proposed in [20]. An approach of identification of fuzzy 
relational models by fuzzy neural networks is proposed in [21, 22]. 

In those cases, when domain experts are involved in developing fuzzy models, 
construction of the cause-effect connections can be considered as rough tuning of 
the fuzzy relational model [23]. The observed (output) and diagnosed (input) 
parameters of a system are considered as linguistic variables [3]. Fuzzy terms, e.g. 
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“temperature rise”, “pressure drop” etc., associated with causes and effects are 
used for these variables evaluation. The use of the expert relational matrix cannot 
guarantee the coincidence of theoretical results of diagnosis and real data. In other 
words, the “quality” of the model strongly depends on the “quality” of the expert 
forming the diagnostic matrix. In addition, the problem of solving fuzzy relational 
equations is still relevant – as of yet there does not exist a satisfactory answer for 
computing a complete solution set [4]. 

In chapter 5, a pure expert system using a genetic algorithm [24, 25] as a tool to 
solve the diagnosis problem was proposed. In this chapter, we propose an 
approach for building fuzzy systems of diagnosis, which enables solving fuzzy 
relational equations together with design and tuning of fuzzy relations on the basis 
of expert and experimental information [26, 27]. The essence of tuning consists of 
the selection of such membership functions of the fuzzy terms for the input and 
output variables (causes and effects) and such “causes-effects” fuzzy relations, 
which provide minimal difference between theoretical and experimental results of 
diagnosis.  

To overcome the NP-hardness, chapter 5 used the ideology of genetic 
optimization [24, 25], which quickly established the domain of global minimum of 
the discrepancy between the left and right sides of the system of equations 
followed by a fine adjustment of the solution by search methods available. The 
genetic algorithm uses all the available experimental information for the 
optimization, i.e., operates off-line and becomes toilful and inefficient if new 
experimental data are obtained, i.e., in the on-line mode. The process of diagnosis 
should be augmented by a hybrid genetic and neuro approach to designing 
adaptive diagnostic systems [28]. The essence of the approach is in constructing 
and training a special neuro-fuzzy network isomorphic to the diagnostic equations, 
which allows on-line correction of decisions.  

This chapter is written using original work materials [26 – 28]. 

6.1   Diagnostic Approximator Based on Fuzzy Relations 

The diagnosis object is treated as a black box with n inputs and m outputs 
(Fig. 6.1). Outputs of the object are associated with the observed effects 
(symptoms). Inputs correspond to the causes of the observed effects (diagnoses). 
The problem of diagnosis consists of restoration and identification of the causes 
(inputs) through the observed effects (outputs). Inputs and outputs can be 
considered as linguistic variables given on the corresponding universal sets. Fuzzy 
terms are used for these linguistic variables evaluation.  

We shall denote: 

1 2{ , ,..., }nx x x  is the set of input parameters, [ , ]ii ix x x∈ , 1,i n= ; 

1 2{ , ,..., }my y y  is the set of output parameters, [ , ]j jj
y y y∈ , 1,j m= ; 

1 2{ , ,..., }
ii i ikc c c  is the set of linguistic terms for parameter ix  evaluation, 1,i n= ; 

1 2{ , ,..., }
jj j jqe e e  is the set of linguistic terms for parameter jy  evaluation,  1,j m= . 
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Fig. 6.1. The object of diagnosis 

Each term-assessment is described with the help of a fuzzy set: 

ilc = {( , ( ))}ilc
i ix xμ ,  1,i n= , 1, il k= ; 

jpe ={( , ( ))}jpe

j jy yμ , 1,j m= , 1, jp q= . 

where ( )ilc
ixμ  is a membership function of variable ix  to the term-assessment ilc , 

1,i n= ,  1, il k= ; 

( )jpe

jyμ  is a membership function of variable jy  to the term-assessment jpe , 

 1,j m= , 1, jp q= . 

We shall redenote the set of input and output terms-assessments in the 
following way: 

1 2{ , ,..., }NC C C ={
111 12 1 1 2, ,..., ,..., , ,...,

nk n n nkc c c c c c } is the set of terms for input 

parameters evaluation, where 1 2 ... nN k k k= + + + ; 

1 2{ , ,..., }ME E E ={
111 12 1 1 2, ,..., ,..., , ,...,

mq m m mqe e e e e e } is the set of terms for 

output parameters evaluation, where 1 2 ... mM q q q= + + + . 

Set { IC , 1,I N= } is called fuzzy causes (diagnoses), and set { JE ,  1,J M= } 

is called fuzzy effects (symptoms). 
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The diagnostic problem is set in the following way: it is necessary to restore 
and identify the values of the input parameters * * *

1 2( , ,..., )nx x x  through the values of 

the observed output parameters * * *
1 2( , ,..., )my y y . 

“Causes-effects” interconnection is given by the matrix of fuzzy relations 
 

I JC E⊆ ×R =[ IJr , 1,I N= , 1,J M= ]. 
 

An element of this matrix is a number IJr ∈ [0, 1], characterizing the degree to 

which cause IC  influences upon the rise of effect JE . 

In the presence of matrix R the “causes-effects” dependency can be described 
with the help of Zadeh’s compositional rule of inference [3] 

                 Eμ = Cμ DR,                           (6.1)  

where Cμ = 1 2( , ,..., )NCC Cμ μ μ  is the fuzzy causes vector with elements 
ICμ ∈ [0, 1], interpreted as some significance measures of IC  causes; 

Eμ = 1 2( , ,..., )ME E Eμ μ μ  is the fuzzy effects vector with elements JEμ ∈ [0, 1], 

interpreted as some significance measures of JE  effects; 

D  is the operation of max-min composition [3]. 
Finding vector Cμ  amounts to the solution of the fuzzy relational equations: 

1 1 2
11 21 1( ) ( )... ( )NCE C C

Nr r rμ μ μ μ= ∧ ∨ ∧ ∨ ∧  
2 1 2

12 22 2( ) ( )... ( )NCE C C
Nr r rμ μ μ μ= ∧ ∨ ∧ ∨ ∧  

                            …       …      …         … 
1 2

1 2( ) ( )... ( )NM CE C C
M M NMr r rμ μ μ μ= ∧ ∨ ∧ ∨ ∧ ,               (6.2) 

 

which is derived from relation (6.1). Taking into account the fact that operations ∨ 
and ∧ are replaced by max and min in fuzzy set theory [3], system (6.2) is 
rewritten in the form: 
 

      
1,

max(min( , )),J IE C
IJ

I N
rμ μ

=
= 1,J M= .                  (6.3)    

In order to translate the specific values of the input and output variables into the 
measures of the causes and effects significances it is necessary to define a membership 

function of fuzzy terms IC  and JE , 1,I N= , 1,J M= . We use a bell-shaped 

membership function model of variable u to arbitrary term T in the form: 

2

1
( ) ,

1

T u
u

μ
β

σ

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

                                   (6.4)                                
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where β  is a coordinate of function maximum, ( ) 1Tμ β = ; σ
 
is a parameter of 

concentration-extension (Fig. 6.2).  

                   

0

1

  β 
 u 

 σ 3 
 σ 2  
 σ 1 

 σ1< σ 2< σ 3 
)(uTT  

 
Fig. 6.2. Model of the bell-shaped membership function 

This function was determined in [23] and was used for nonlinear dependencies 
identification by fuzzy IF-THEN rules [29, 30]. 

Correlations (6.3) and (6.4) define the generalized fuzzy model of diagnosis as 
follows: 

  ( , , ) ( , , , ),E
E E R C CF=μ Y Β Ω X R Β Ω                          (6.5)                              

 
where 1 2( , ,..., )NCC C

C β β β=Β  and 1 2( , ,..., )NCC C
C σ σ σ=Ω  are the vectors of β - 

and σ - parameters for fuzzy causes 1C , 2C ,…, NC  membership functions; 
1 2( , ,..., )ME E E

E β β β=Β  and 1 2( , ,..., )ME E E
E σ σ σ=Ω  are the vectors of β - 

and σ - parameters for fuzzy effects 1E , 2E ,…, ME  membership functions; 

FR is the operator of inputs-outputs connection, corresponding to formulae 
(6.3), (6.4).  

6.2   Optimization Problem for Fuzzy Relations Based Inverse 
Inference 

Following the approach proposed in [24, 25], the problem of solving fuzzy 
relational equations (6.3) is formulated as follows. Fuzzy causes vector 

Cμ = 1 2( , ,..., )NCC Cμ μ μ  should be found which satisfies the constraints 

[0, 1]ICμ ∈ , 1,I N= , and also provides the least distance between observed and 

model measures of effects significances, that is between the left and the right parts 
of each system equation (6.3): 

2

1,1

[ max(min( , ))] minJ I

C

M
E C

IJ
I NJ

rμ μ
==

− =∑
μ

.                        (6.6)  
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Following [4], in the general case, system (6.3) has a solution set ( , )ES R μ , 

which is completely characterized by the unique greatest solution 
C

μ  and the set 

of lower solutions * ( , )ES R μ ={ , 1, }C

l
l T=μ : 

( , )ES R μ  =
*

,
C
l

CC

l
S∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                               (6.7) 

Here 
C

μ = 1 2( , ,..., )NCC Cμ μ μ  and C

l
μ = 1 2( , ,..., )NC C C

l l l
μ μ μ  are the vectors of the 

upper and lower bounds of causes IC  significance measures, where the union is 

taken over all * ( , )C E

l
S∈μ R μ . 

Following [24, 25], formation of intervals (6.7) is accomplished by way of 
solving a multiple optimization problem (6.6) and it begins with the search for its 
null solution. As the null solution of optimization problem (6.6) we designate 

1 2
0 0 0 0( , ,..., )NCC CC μ μ μ=μ , where  0

I
I

CCμ μ≤ , 1,I N= . The upper bound (
IC

μ ) is 

found in the range 0 , 1ICμ⎡ ⎤⎣ ⎦ . The lower bound ( IC

l
μ ) for 1l =  is found in the 

range 00, ICμ⎡ ⎤⎣ ⎦ , and for  1l >  – in the range 0,
IC

μ⎡ ⎤
⎢ ⎥⎣ ⎦

, where the minimal 

solutions C

k
μ , k l< , are excluded from the search space. 

Let 1 2( ) ( ( ), ( ),..., ( ))NCC CC t t t tμ μ μ=μ  be some t-th solution of optimization 

problem (6.6), that is 0( ( )) ( )C CF t F=μ μ , since for all ( , )C ES∈μ R μ  we have the 

same value of criterion (6.6). While searching for upper bounds (
IC

μ ) it is 

suggested that ( ) ( 1)I IC Ct tμ μ≥ − , and while searching for lower bounds ( IC

l
μ ) it 

is suggested that ( ) ( 1)I IC Ct tμ μ≤ −  (Fig. 6.3).   

The definition of the upper (lower) bounds follows the rule: if 

( ) ( 1)C Ct t≠ −μ μ , then 
IC

μ ( IC

l
μ )= ( )IC tμ , 1,I N= . If ( ) ( 1)C Ct t= −μ μ , then the 

search for the interval solution  ,
CC

l
⎡ ⎤
⎢ ⎥⎣ ⎦
μ μ  is stopped. Formation of intervals (6.7) 

will go on until the condition C C

l k
≠μ μ , k l< , has been satisfied. 

The hybrid genetic and neuro approach is proposed for solving optimization 
problem (6.6).  
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Fig. 6.3. Search for the upper (а) and lower bounds of the intervals for 1l =  (b) and  1l >  (c) 

6.3   Genetic Algorithm for Fuzzy Relations Based Inverse 
Inference 

The chromosome needed in the genetic algorithm for solving the optimization 
problem (6.6) is defined as the vector-line of binary codes of the lower and upper 

bounds of the solutions ICμ ,   1,I N=  (Fig. 6.4) [31].  

 
1CC  2CC  … NCC  1CC  2CC  … NCC   

Fig. 6.4. Structure of the chromosome  

The crossover operation is defined in Fig. 6.5, and is carried out by way of 
exchanging genes inside each solution ICμ . The points of cross-over shown in 

dotted lines are selected randomly. Upper symbols (1 and 2) in the vectors of 
parameters correspond to the first and second chromosomes-parents.  
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Fig. 6.5. Structure of the crossover operation 

A mutation operation implies random change (with some probability) of 
chromosome elements 

( ) ([ , ] )
III

CCCMu RANDOMμ μ μ= , 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

We choose a fitness function as the negative of criterion (6.6). 

6.4   Neuro-fuzzy Network for Fuzzy Relations Based Inverse 
Inference 

A neuro-fuzzy network isomorphic to the system of fuzzy logic equations (6.3) is 
presented in Fig. 6.6. Table 3.1 shows elements of the neuro-fuzzy network [28]. 

 

 

2CC  

NJr  

JEEJr2  

. . . 

1CC  

NCC  

Jr1  

 
Fig. 6.6. Neuro-fuzzy model of diagnostic equations 

The network is designed so that the adjusted weights of arcs are the unknown 
significance measures of  1 2, ,..., NC C C  causes.  
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Network inputs are elements of the matrix of fuzzy relations. As follows from 
the system of fuzzy logic equations (6.3), the fuzzy relation IJr  is the significance 

measure of the effect JEμ  provided that the significance measure ICμ  is equal to 

unity, and  the significance measures of other causes are equal to zero, i.e. 

IJr = JEμ ( ICμ =1, KCμ =0),   1,K N= , K I≠ . At the network outputs, actual 

significance measures of the effects 
1,

max[min( , )]IC
IJ

I N
rμ

=
obtained with allowance 

for the actual weights of arcs  ICμ  are united. 

Thus, the problem of solving the system of fuzzy logic equations (6.3) is 
reduced to the problem of training of a neuro fuzzy network (see Fig. 6.6) with the 
use of points  

1 2( , ,..., , )JE
J J NJr r r μ , 1,J M= . 

To train the parameters of the neuro-fuzzy network, the recurrent relations: 

( 1) ( )
( )

I I

I

C C t
C

t t
t

εμ μ η
μ
∂

+ = −
∂

 ,                             (6.8) 

that minimize the criterion  

21
ˆ( ( ) ( ))

2
E E

t t tε = −μ μ ,                              (6.9) 

applied in the neural network theory, where 
ˆ ( )E tμ  and ( )E tμ

 
are the experimental and the model fuzzy effects vectors at 

the t-th step of training; 
( )IC tμ   are the significance measures of causes  IC  at the t-th step of training; 

η is a parameter of training, which can be selected according to the results from 
[32]. 

The partial derivatives appearing in recurrent relations (6.8) characterize the 
sensitivity of the error ( tε ) to variations in parameters of the neuro-fuzzy network 

and can be calculated as follows: 

I

t
C

ε
μ
∂

=
∂ 1

J

M
t

E
J

ε
μ=

∂⎡
⋅⎢∂⎣

∑  .
J

I

E

C

μ
μ

⎤∂
⎥∂ ⎦

 

Since determining the element “fuzzy output” from Table 3.1 involves the min 
and max fuzzy-logic operations, the relations for training are obtained using finite 
differences. 

6.5   Expert Method of Fuzzy Relations Construction 

To obtain matrix R between causes 1 2C , ,..., NC C  and effects 1 2, ,..., ME E E , 

included in correlation (6.1), we shall use the method of membership functions 
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construction proposed in [33] on the basis of the 9-mark scale of Saaty’s paired 
comparisons [34]. 

We consider an effect JE  as a fuzzy set, which is given on the universal set of 

causes as follows:  

JE 1 2

1 2

, ,...,J J NJ

N

r r r

C C C

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

, 1,J M= ,                      (6.10)   

where 1Jr , 2Jr ,..., NJr  represent the degrees of membership of causes 

1 2C , ,..., NC C  to fuzzy set JE , and correspond to the J-th column of the fuzzy 

relational matrix. 
Following [33], to obtain membership degrees IJr , included in (6.10), it is 

necessary to form the matrix of paired comparisons for each effect JE , which 

reflects the influence of causes 1 2C , ,..., NC C  upon the rise of effect JE , 

 1,J M= . 

For an effect JE  the matrix of paired comparisons looks as follows:  

                        1C   2C    …   NC  

        

1 11 12 1

2 21 22 2

1 2

...

...

: ... ... ... ...

...

J J J
N

J J J
N

J

J J J
N N N NN

C a a a

C a a a

C a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  ,  1,J M= ,              (6.11)              

 

where the element J
IKa  is evaluated by an expert according to the 9-mark Saaty’s 

scale: 
1 — if cause KC  has no advantage over cause IC ; 

3 — if KC  has a weak advantage over IC ;  

5 — if KC  has an essential advantage over IC ;  

7 — if KC  has an obvious advantage over IC ;  

9— if KC  has an absolute advantage over IC .  

 
Values of  2, 4, 6, 8 correspond to intermediate comparative assessments 
In accordance with [33], we assume that matrix (6.11) has the following 

properties:  
 

- elements placed symmetrically relative to the main diagonal are connected by 
correlation J

IKa =1/ J
KIa ; 

- transitivity‚ i. e., J J J
IL LK IKa a a= ; 

- diagonality‚ i.e., J
IIa =1‚ 1,I N= , as the consequence from symmetry and 

transitivity. 



6.6   Problem of Fuzzy Relations Tuning 173 

These properties allow us to define all elements of matrix (6.11) by using 
elements of only a single row. If the L-th row is known‚ i. e. the elements J

LKa ‚ 

1,K N= , then an arbitrary element J
IKa  is defined as follows:  

,
J
LK
J
LI

aJ
IK a

a =      , , 1, ,I K L N=    1, .J M=  

After defining matrix (6.11), the degrees of membership needed for 
constructing fuzzy set (6.10) are calculated by formula [33]: 

         
1 2

1

...IJ J J J
I I IN

r
a a a

=
+ + +

,  1,I N= , 1, .J M=             (6.12)                 

Obtained membership degrees (6.12) are to be normalized by way of dividing into 
the highest degree of membership.  

6.6   Problem of Fuzzy Relations Tuning 

It is assumed that the training data which is given in the form of L pairs of 
experimental data is known: 

ˆ ˆ,p pX Y , 1,p L= , 

where 1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p nx x x=X  and 1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p my y y=Y  are the vectors of the values 

of the input and output variables in the experiment number  p.  
Let 1 2( , ,.., )Mλ λ λ=Λ  be the vector of concentration parameters for fuzzy sets 

of effects (6.10), such as: 

1 2

1 2

1 2

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

M

M

M

M

M

N N NM

r r r

r r r

r r r

λ λ λ

λ λ λ

λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R . 

The essence of tuning of the fuzzy model (6.5) consists of finding such null 
solutions 0 1 2ˆ ˆ ˆ( , ,..., )C p p p

nx x xμ  of the inverse problem, which minimize criterion (6.6) 

for all the points of the training data:  

C 2
0 1 2

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ( )) ( , ,..., )] .
L

p p p E p p p
R 1 2 n m

p

F x ,x ,...,x y y y min
=

− =∑ μ μ  
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In other words, the essence of tuning of the fuzzy model (6.5) consists of 
finding such a vector of concentration parameters Λ  and such vectors of 
membership functions parameters CΒ , CΩ , EΒ , EΩ , which provide the least 

distance between model and experimental fuzzy effects vectors: 

C C E E

2
C C E E

, , , ,1

ˆ ˆˆ[ ( , , , ) ( , , )] min
L

E
R p p

p

F
=

− =∑
Λ Β Ω Β Ω

X Λ Β Ω μ Y Β Ω .       (6.13) 

6.7   Genetic Algorithm of Fuzzy Relations Tuning 

The chromosome needed in the genetic algorithm for solving the optimization 
problem (6.13) is defined as the vector-line of binary codes of parameters Λ , CΒ , 

CΩ , EΒ , EΩ  (Fig. 6.7) [31].  

 

Λ  CΒ  CΩ  EΒ  EΩ  
 

Fig. 6.7. Structure of the chromosome  

The crossover operation is defined in Fig. 6.8, and is carried out by way of 
exchanging genes inside the vector of concentration parameters (Λ ) and each of the 
vectors of membership functions parameters CΒ , CΩ , EΒ , EΩ . The points of 

cross-over shown in dotted lines are selected randomly. Upper symbols (1 and 2) in 
the vectors of parameters correspond to the first and second chromosomes-parents. 
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Fig. 6.8. Structure of the crossover operation 
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A mutation operation implies random change (with some probability) of 
chromosome elements:  

 

( ) ( ),
III

CCCMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( ) ( ),

III
CCCMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( ) ( ),
JJJ

EEEMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( ) ( ),

JJJ
EEEMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( ) ([ , ])JJ JMu RANDOMλ λ λ= , 
 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

We choose criterion (6.13) with the negative sign as the fitness function; that is, 
the higher the degree of adaptability of the chromosome to perform the criterion of 
optimization the greater is the fitness function. 

6.8   Adaptive Tuning of Fuzzy Relations 

The neuro-fuzzy model of the object of diagnostics (6.5) is represented in Fig. 6.9, 
and the nodes are in Table. 3.1. The neuro-fuzzy model is obtained by embedding 
the matrix of fuzzy relations into the neural network so that the weights of arcs 
subject to tuning are fuzzy relations and membership functions for causes and 
effects fuzzy terms [28, 30].  
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Fig. 6.9. Neuro-fuzzy model of the object of diagnostics 



176 Chapter 6 Inverse Inference with Fuzzy Relations Tuning 

To train the parameters of the neuro-fuzzy network, the recurrent relations: 

( 1) ( )
( )
t

IJ IJ
IJ

r t r t
r t

εη ∂
+ = −

∂
; 

( 1) ( )
( )

il il

il

c c t
c

t t
t

εβ β η
β
∂

+ = −
∂

;   ( 1) ( )
( )

il il

il

c c t
c

t t
t

εσ σ η
σ
∂

+ = −
∂

; 

( 1) ( )
( )

jp jp

jp

e e t
e

t t
t

εβ β η
β
∂

+ = −
∂

;    ( 1) ( )
( )

jp jp

jp

e e t
e

t t
t

εσ σ η
σ
∂

+ = −
∂

,   (6.14) 

 
minimizing criterion (6.9) are used, where 

( )IJr t  are fuzzy relations at the t-th step of training; 
ilcβ (t), ilcσ (t), jpeβ (t), jpeσ (t) are the parameters of the membership functions 

for causes and effects fuzzy terms at the t-th step of training. 
The partial derivatives appearing in recurrent relations (6.14) characterize the 

sensitivity of the error ( tε ) to variations in parameters of the neuro-fuzzy network 

and can be calculated as follows: 
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Since determining the element “fuzzy output” (see Table 3.1) involves the min 
and max fuzzy-logic operations, the relations for training are obtained using finite 
differences.  

6.9   Computer Simulations 

The aim of the experiment consists of checking the performance of the above 
proposed models and algorithms of diagnosis with the help of the target “input-
output” model. The target model was some analytical function y =f( x ). This 

function was approximated by the rule of inference (6.1), and served  
 
 



6.9   Computer Simulations 177 

simultaneously as training and testing data generator. The input values ( x ) 
restored for each output ( y ) were compared with the target values.   

The target model is given by the formula: 
 

(1.8 0.8)(5 1.1)(4 2.9)(3 2.1)(9.5 9.5)(3 0.05) 20

80

x x x x x x
y

+ − − − − − += , 

 

which is represented in Fig. 6.10 together with the fuzzy terms of causes 1C =low 

(L), 2C =lower than average (lA), 3C =average (A), 4C =higher than average (hA), 

5C =lower than high, 6C =high (H) and effects 1E =lower than average (lA), 

2E =average (A),  3E =higher than average (hA), 4E =high (H).  

 
 

Effects 
 

4E  
 

3E  
 

2E   
 

1E  

. 
 

                        

Causes           1C    2C               3C               4C            5C  6C   

x 

y 

 
Fig. 6.10. “Input-output” model-generator 

A fuzzy relational matrix was formed on the basis of expert assessments. For 
example, the procedure of fuzzy relations construction for effect 1E  consists of the 

following. Cause 2C  is the least important for effect 1E , so that the visual 

difference between the output values 1y E=  and 2( )y x C= , i.e. 1 2( )E y x C− = , 

is maximal. Therefore, we start forming the matrix of paired comparisons 1A  

(6.11) from the 2nd row. This row is formed by an expert and contains the 
assessments, which define the degree of advantage of the rest causes KC ,  
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1,6K = , over 2C . The advantage of cause KC  over cause 2C  is defined by the 

fact, how much the distance 1 ( )KE y x C− =  is less than the distance 

1 2( )E y x C− = . Matrix 1A  (6.11) is defined by the known 2nd row as follows: 

 
  1C  2C  3C  4C  5C  6C  

 1C  1 1/3 3 1 8/3 1 

 2C  3 1 9 3 8 3 

1A = 3C  1/3 1/9 1 1/3 8/9 1/3 

 4C  1 1/3 3 1 8/3 1 

 5C  3/8 1/8 9/8 3/8 1 3/8 

 6C  1 1/3 3 1 8/3 1 

 

Matrix 1A  allows us to construct fuzzy set 1E  (6.10) using formula (6.12). The 

degrees of membership 1Ir  of causes IC  to fuzzy set 1E  are defined as follows:  
 

1
11 (1 1/ 3 3 1 8 / 3 1) 0.11r −= + + + + + = ;   

1
21 (3 1 9 3 8 3) 0.04r −= + + + + + = ; 

1
31 (1/ 3 1/ 9 1 1/ 3 8 / 9 1/ 3) 0.33r −= + + + + + = ;  

1
41 (1 1/ 3 3 1 8 / 3 1) 0.11r −= + + + + + = ;   

1
51 (3 / 8 1/ 8 9 / 8 3 / 8 1 3 / 8) 0.30r −= + + + + + = ; 

1
61 (1 1/ 3 3 1 8 / 3 1) 0.11r −= + + + + + = . 

The obtained membership degrees should be normalized, i.e. 11r =0.11/0.33≈ 0.33; 

21r =0.04/0.33≈ 0.12; 31r =0.33/0.33=1.00; 41r =0.11/0.33≈ 0.33; 51r =0.30/0.33≈ 0.91; 

61r =0.11/0.33≈ 0.33. 

Thus, fuzzy set 1E , whose elements correspond to the 1st column of the fuzzy 

relational matrix, takes the form: 
 

1E
1 2 3 4 5 6

0.33 0.12 1.00 0.33 0.91 0.33
, , , , ,

C C C C C C

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

. 
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The resulting expert fuzzy relational matrix takes the form: 

 

    R = 

 1E  2E  3E  4E  

1C  0.33 1.00 0.67 0.21 

2C  0.12 0.10 0.33 1.00 

3C  1.00 0.23 0.11 0.11 

4C  0.33 0.33 1.00 0.21 

5C  0.91 0.77 0.22 0.34 

6C  0.33 0.90 0.67 0.21 

The results of the fuzzy model tuning are given in Tables 6.1, 6.2. 
 

Table 6.1. Parameters of the membership functions for the causes fuzzy terms before (after) 
tuning 

Fuzzy 
terms 

Parameters ( β -,σ -) 

Before tuning Genetic algorithm Neural net 

1C  (0, 0.17) (0, 0.114) (0, 0.114) 

2C  (0.1, 0.17) (0.091, 0.121) (0.091, 0.121) 

3C  (0.4, 0.17) (0.430, 0.115) (0.446, 0.115) 

4C  (0.7, 0.17) (0.703, 0.100) (0.711, 0.118) 

5C  (0.9, 0.17) (0.919, 0.112) (0.919, 0.112) 

6C  (1.0, 0.08) (1.0, 0.041) (1.0, 0.041) 

 
Table 6.2. Parameters of the membership functions for the effects fuzzy terms before 
(after) tuning 

Fuzzy 
terms 

Parameters ( β -,σ -) 

Before tuning Genetic algorithm Neural net 

1E  (0.15, 0.05) (0.171, 0.032) (0.172, 0.037) 

2E  (0.2, 0.05) (0.209, 0.040) (0.209, 0.040) 

3E  (0.25, 0.05) (0.257, 0.039) (0.259, 0.041) 

4E  (0.3, 0.05) (0.350, 0.037) (0.352, 0.040) 
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Fuzzy relational equations after tuning take the form: 
 

3 5 61 1 2 4( 0.27) ( 0.13) ( 0.97) ( 0.20) ( 0.86) ( 0.21)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧
3 5 62 1 2 4( 0.93) ( 0.09) ( 0.28) ( 0.44) ( 0.75) ( 0.82)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧

3 3 5 61 2 4( 0.63) ( 0.41) ( 0.15) ( 0.95) ( 0.26) ( 0.67)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧
3 5 64 1 2 4( 0.12) ( 0.88) ( 0.07) ( 0.08) ( 0.32) ( 0.12)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧   (6.15) 

 
The results of solving the problem of inverse inference before and after tuning 

are shown in Fig. 6.11 and 6.12. The same figure depicts the membership 
functions of the fuzzy terms for the causes and effects before and after tuning.  
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Fig. 6.11. Solution to the problem of inverse fuzzy inference before tuning 
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а) 

b)  

Fig. 6.12. Solution to the problem of inverse fuzzy inference after tuning:(а) *y =0.23; (b) 
*y =0.24 
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Let a specific value of the output variable consists of *y =0.23. The measures of 

the effects significances for this value can be defined with the help of the 
membership functions in Fig. 6.12,а: 

*( )E yμ =( 1Eμ =0.29; 2Eμ =0.78; 3Eμ =0.67; 4Eμ =0.10). 

The genetic algorithm yields a null solution 

3 5 61 2 4
0 0 0 0 0 0 0( 0.78, 0.10, 0.29, 0.67, 0.07, 0.45)C C CC C CC μ μ μ μ μ μ= = = = = = =μ , (6.16) 

for which the value of the optimization criterion (6.6) is F=0.0004.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 

Cμ =(  
1C

μ =0.78, 
2C

μ =0.12, 
3C

μ =0.29, 
4C

μ =0.67, 
5C

μ =0.12,  
6C

μ =0.78) 

and the three lower solutions *

1 2 3
{ , , }C C CS = μ μ μ   

1

Cμ =( 1

1

Cμ =0.78, 2

1

Cμ =0, 3

1

Cμ =0.29, 4

1

Cμ =0, 5

1

Cμ =0, 6

1

Cμ =0.67); 

2

Cμ =( 1

2

Cμ =0.78, 2

2

Cμ =0, 3

2

Cμ =0.29, 4

2

Cμ =0.67, 5

2

Cμ =0, 6

2

Cμ =0); 

              
3

Cμ =( 1

3

Cμ =0, 2

3

Cμ =0, 3

3

Cμ =0.29, 4

3

Cμ =0, 5

3

Cμ =0, 6

3

Cμ =0.78). 

 
Thus, the solution of fuzzy relational equations (6.15) can be represented in the 
form of intervals: 

 
( , )ES R μ ={ 1Cμ =0.78; 2Cμ ∈ [0, 0.12]; 3Cμ =0.29; 4Cμ ∈ [0, 0.67]; 5Cμ ∈ [0, 0.12]; 6Cμ ∈ [0.67, 0.78]} 

∪ { 1Cμ =0.78; 2Cμ ∈ [0, 0.12]; 3Cμ =0.29; 4Cμ =0.67; 5Cμ ∈ [0, 0.12]; 6Cμ ∈ [0, 0.78]} 

∪ { 1Cμ ∈ [0, 0.78]; 2Cμ ∈ [0, 0.12]; 3Cμ =0.29; 4Cμ ∈ [0, 0.67]; 5Cμ ∈ [0, 0.12]; 6Cμ =0.78}. 

(6.17) 
 

The intervals of the values of the input variable for each interval in solution 
(6.17) can be defined with the help of the membership functions in Fig. 6.12,а: 

 

-  *x =0.060 or *x ∈ [0.060, 1.0] for 1C ;  

-  *x ∈ [0.418, 1.0] for 2C ; 

-  *x =0.264 or *x =0.628 for 3C ;  

- *x =0.628, *x ∈ [0, 0.628], *x =0.794 or *x ∈ [0.794, 1.0] for 4C ; 

-  *x ∈ [0, 0.610] for 5C ; 

- *x ∈ [0.971, 0.978], *x ∈ [0, 0.978] or *x =0.978 for 6C . 
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The restoration of the input set for *y =0.23, i.e. points (0.264, 0.230), (0.628, 

0.230), (0.794, 0.230) and (0.978, 0.230), is shown by the continuous line in Fig. 
6.12, a, in which the values of the causes and effects significances measures are 
marked. The rest of the found input values correspond to other values of the 
output variable with the same measures of effects significances. The restoration of 
these points is shown by the dotted line in Fig. 6.12,а.  

Assume the value of the output variable has changed from *y =0.23 to *y =0.24 

(Fig. 6.12,b). For the new value, the fuzzy effects vector is  

*( )E yμ =( 1Eμ =0.23; 2Eμ =0.62; 3Eμ =0.82; 4Eμ =0.11). 

A neural adjustment of the null solution (6.16) has yielded a fuzzy causes 
vector  

3 5 61 2 4
0 0 0 0 0 0 0( 0.17, 0.04, 0.23, 0.82, 0.09, 0.62)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,    

for which the value of the optimization criterion (6.6) has constituted  F=0.0001.   
The resulting null solution has allowed adjustment of the bounds in the solution 

(6.17) and generation of the set of solutions ( , )ES R μ  determined by the greatest 

solution 
 

Cμ =(  
1C

μ =0.23, 
2C

μ =0.12, 
3C

μ =0.23, 
4C

μ =0.82, 
5C

μ =0.12,  
6C

μ =0.62) 
 

and the two lower solutions *

1 2
{ , }C CS = μ μ   

 

1

Cμ =( 1

1

Cμ =0.23, 2

1

Cμ =0, 3

1

Cμ =0, 4

1

Cμ =0.82, 5

1

Cμ =0, 6

1

Cμ =0.62); 

2

Cμ =( 1

2

Cμ =0, 2

2

Cμ =0, 3

2

Cμ =0.23, 4

2

Cμ =0.82, 5

2

Cμ =0, 6

2

Cμ =0.62). 

 

Thus, the solution of fuzzy relational equations (6.15) for the new value can be 
represented in the form of intervals: 

 
( , )ES R μ ={ 1Cμ =0.23; 2Cμ ∈ [0, 0.12]; 3Cμ ∈ [0, 0.23]; 4Cμ =0.82; 5Cμ ∈ [0, 0.12]; 6Cμ =0.62} 

∪ { 1Cμ ∈ [0, 0.23]; 2Cμ ∈ [0, 0.12]; 3Cμ =0.23; 4Cμ =0.82; 5Cμ ∈ [0, 0.12]; 6Cμ =0.62}.  

                             (6.18) 
 

Solution (6.18) differs from (6.17) in the significance measures of the causes 

1C , 3C , 4C  and 6C , for which the ranges of the input variable have been 

determined using the membership functions in Fig. 6.12,b: 
 

-  *x =0.208 or *x ∈ [0.208, 1.0] for 1C ; 

- *x =0.236, *x ∈ [0, 0.236],  *x =0.656 or *x ∈ [0.656, 1.0] for 3C ; 
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-  *x =0.656 or *x =0.766 for 4C ;  

-  *x =0.968 for 6C . 

The restoration of the input set for *y =0.24, i.e., points (0.236, 0.240), (0.656, 

0.240), (0.766, 0.240), is shown in Fig. 6.12,b.  

6.10   Example 5: Oil Pump Diagnosis 

Let us consider the algorithm’s performance having the recourse to the example of 
the fuel pump faults causes diagnosis. 

Input parameters are (variation ranges are indicated in parentheses):  
 

1x   – engine speed (2600 – 3200 rpm);  

2x  – filter clear area (30 – 45 cm2/kw);  

3x  –  throat ring side clearance (0.1 – 0.3 mm); 

4x  – suction conduit leakage (0.5 – 2.0 cm 3/h);  

5x  – force main resistance (1.2–3.4 kg/cm2). 
 

The fault causes to be identified (input term-assessments) are: 11c  – engine 

speed 1x  drop; 21c  – decrease of clear area 2x , i.e. filter clogging; 31c  ( 32c ) – 

decrease (increase) of side clearance 3x , i.e. assembling defect (throat ring wear-

out); 41c  – increase of leakage 4x , i.e. fuel escape; 51c  – high resistance of the 

force main 5x . 

Output parameters are (variation ranges are indicated in parentheses):  
 

1y  – productivity (20–45 m3/h);  

2y  – force main pressure (3.7–5.5 kg/cm2);  

3y  – consumed power (15–30 kw);  

4y  – suction conduit pressure (0.5–1.0 kg/cm2). 
 

The observed effects (output term-assessments) are: 11e  – productivity 1y  fall; 

21e  ( 22e ) – force main pressure 2y  drop (rise); 31e  ( 32e ) – consumed power 3y  

drop (rise); 41e  – pressure in suction conduit 4y  rise. 

We shall define the set of causes and effects in the following way:  
 

{ 1C , 2C , 3C , 4C , 5C , 6C }={ 11c , 21c , 31c , 32c , 41c , 51c }; 

{ 1E , 2E , 3E , 4E , 5E , 6E }={ 11e , 21e , 22e , 31e , 32e , 41e }. 
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“Causes-effects” relations were formed on the basis of expert assessments. For 
example, the procedure of fuzzy relations construction for effect 1E  consists of the 

following. Cause 3C  is the least important for effect 1E . Therefore, we start 

forming the matrix of paired comparisons 1A  (6.11) from the 3rd row. This row is 

formed by an expert and contains the assessments, which define the degree of 
advantage of the rest of the causes over 3C . Not a single cause has an absolute 

advantage over 3C . Therefore, matrix 1A  contains a fictitious cause 7C , where 

7C  has absolute advantage over 3C . Matrix 1A  (6.11) is defined by the known 

3rd row as follows: 

 
  

1C  2C  3C  4C  5C  6C  7C  

 
1C  1 7/2 1/2 4 3 1 9/2 

 
2C  2/7 1 1/7 8/7 6/7 2/7 9/7 

1A = 3C  2 7 1 8 6 2 9 

 
4C  1/4 7/8 1/8 1 3/4 1/4 9/8 

 
5C  1/3 7/6 1/6 4/3 1 1/3 3/2 

 
6C  1 7/2 1/2 4 3 1 9/2 

 
7C  2/9 7/9 1/9 8/9 2/3 2/9 1 

  
Matrix 1A  allows us to construct fuzzy set 1E  (6.10) using formula (6.12). The 

degrees of membership 1Ir  of causes IC  to fuzzy set 1E  are defined as follows:  

1
11 (1 7 / 2 1/ 2 4 3 1 9 / 2)r −= + + + + + + = 0.06;   

1
21 (2 / 7 1 1/ 7 8 / 7 6 / 7 2 / 7 9 / 7)r −= + + + + + + = 0.20; 

1
31 (2 7 1 8 6 2 9)r −= + + + + + + = 0.03;    

1
41 (1/ 4 7 / 8 1/ 8 1 3 / 4 1/ 4 9 / 8)r −= + + + + + + = 0.23; 

1
51 (1/ 3 7 / 6 1/ 6 4 / 3 1 1/ 3 3 / 2)r −= + + + + + + = 0.17; 

1
61 (1 7 / 2 1/ 2 4 3 1 9 / 2)r −= + + + + + + = 0.06; 

1
71 (2 / 9 7 / 9 1/ 9 8 / 9 2 / 3 2 / 9 1)r −= + + + + + + = 0.26. 
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The obtained membership degrees should be normalized, i.e. 11r =0.06/0.26≈ 0.23; 

21r =0.20/0.26≈ 0.77; 31r =0.03/0.26=0.11; 41r =0.23/0.26≈ 0.88; 51r =0.17/0.26≈ 0.65; 

61r =0.06/0.26=0.23. 

Thus, fuzzy set 1E , whose elements correspond to the 1st column of the fuzzy 

relational matrix, takes the form: 
 

1E
1 2 3 4 5 6

0.23 0.77 0.11 0.88 0.65 0.23
, , , , ,

C C C C C C

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

. 

 

The resulting expert fuzzy relational matrix takes the form: 
 

R  = 

 1E  2E  3E  4E  5E  6E  

1C  0.23 0.90 0.44 0.88 0.11 0.76 

2C  0.77 0.21 0.89 0.23 0.22 0.32 

3C  0.11 0.45 0.22 0.69 0.89 0.24 

4C  0.88 0.21 0.67 0.12 0.11 0.68 

5C  0.65 0.10 0.33 0.12 0.11 0.88 

6C  0.23 0.55 0.11 0.81 0.40 0.12 

 
For the fuzzy model tuning we used the results of diagnosis for 340 pumps. The 

results of the fuzzy model tuning are given in Tables 6.3, 6.4 and in Fig. 6.13.  

 
Table 6.3. Parameters of the membership functions for the causes and effects fuzzy terms 
after genetic tuning 

Parameter 
Fuzzy terms 

1C  2C  3C  4C  5C  6C  

β - 2700 34.75 0.11 0.26 1.84 3.15 

σ - 107.12 3.18 0.04 0.05 0.33 0.65 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 22.79 3.84 5.32 15.94 28.84 0.89 

σ - 5.02 0.92 0.35 3.76 1.85 0.16 
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Fig. 6.13. Membership functions of the causes (a) and effects (b) fuzzy terms after tuning 

Table 6.4. Parameters of the membership functions for the causes and effects fuzzy terms 
after neural tuning 

Parameter 
Fuzzy terms 

1C  2C  3C  4C  5C  6C  

β - 2700 32.27 0.11 0.28 1.82 3.19 

σ - 104.57 2.94 0.03 0.06 0.31 0.54 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 22.98 3.86 5.37 16.45 28.92 0.89 

σ - 4.93 0.87 0.38 3.54 1.82 0.17 
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Diagnostic equations after tuning take the form: 
 

3 5 61 1 2 4( 0.21) ( 0.78) ( 0.15) ( 0.84) ( 0.73) ( 0.18)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧             
3 5 62 1 2 4( 0.97) ( 0.20) ( 0.43) ( 0.18) ( 0.14) ( 0.58)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧          

3 3 5 61 2 4( 0.48) ( 0.59) ( 0.85) ( 0.63) ( 0.34) ( 0.12)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧           
3 5 64 1 2 4( 0.94) ( 0.21) ( 0.64) ( 0.18) ( 0.16) ( 0.74)C C CE C C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧           

5 3 5 61 2 4( 0.16) ( 0.14) ( 0.92) ( 0.08) ( 0.10) ( 0.41)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧  
6 3 5 61 2 4( 0.64) ( 0.82) ( 0.21) ( 0.72) ( 0.99) ( 0.09)E C C CC C Cμ μ μ μ μ μ μ= ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧  

  (6.19) 
Let us represent the vector of the observed parameters for a specific pump: 

*Y =( *
1y =26.12 m3/h; *

2y =5.08 kg/cm2; *
3y =24 kw; *

4y =0.781 kg/cm2). 

The measures of the effects significances for these values can be defined with 
the help of the membership functions in Fig. 6.13,b:  

*( )Eμ Y =( 1Eμ =0.71; 2Eμ =0.34; 3Eμ =0.63; 4Eμ =0.18; 5Eμ =0.12; 6Eμ =0.71). 

The genetic algorithm yields a null solution 
 

3 5 61 2 4
0 0 0 0 0 0 0( 0.26, 0.54, 0.14, 0.69, 0.71, 0.08)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,(6.20) 

for which the value of the optimization criterion (6.6) is F=0.0144.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 
 

Cμ =(
1C

μ =0.26, 
2C

μ =0.71, 
3C

μ =0.16, 
4C

μ =0.71, 
5C

μ =0.71, 
6C

μ =0.16) 
 

and the three lower solutions *

1 2 3
{ , , }C C CS = μ μ μ   

 

1

Cμ =( 1

1

Cμ =0.26, 2

1

Cμ =0.71, 3

1

Cμ =0, 4

1

Cμ =0.63, 5

1

Cμ =0, 6

1

Cμ =0); 

2

Cμ =( 1

2

Cμ =0.26, 2

2

Cμ =0, 3

2

Cμ =0, 4

2

Cμ =0.71, 5

2

Cμ =0, 6

2

Cμ =0); 

3

Cμ =( 1

3

Cμ =0.26, 2

3

Cμ =0, 3

3

Cμ =0, 4

3

Cμ =0.63, 5

3

Cμ =0.71, 6

3

Cμ =0). 
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Thus, the solution of fuzzy relational equations (6.19) can be represented in the 
form of intervals: 
 

( , )ES R μ ={ 1Cμ =0.26; 2Cμ =0.71; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.63, 0.71]; 5Cμ ∈ [0, 0.71]; 6Cμ ∈ [0, 0.16]}  

∪ { 1Cμ =0.26; 2Cμ ∈ [0, 0.71]; 3Cμ ∈ [0, 0.16]; 4Cμ =0.71; 5Cμ ∈ [0, 0.71]; 6Cμ ∈ [0, 0.16]}  

∪ { 1Cμ =0.26; 2Cμ ∈ [0, 0.71]; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.63, 0.71]; 5Cμ =0.71; 6Cμ ∈ [0, 0.16]}.  

                                                  (6.21) 
 

The intervals of the values of the input variables for each interval in solution 
(6.21) can be defined with the help of the membership functions in Fig. 6.13,b: 
 

 -  *
1x =2877 rpm for 1C ;  

-  *
2x =34.15 or *

2x ∈ [34.15, 45] cm2/kw for 2C ; 

-  *
3x ∈ [0.178, 0.300] mm for 3C ;   

-  *
3x =0.242 or *

3x ∈ [0.234, 0.242] mm for 4C ; 

- *
4x =1.62 or *

4x ∈ [0.5, 1.62] cm 3/h  for 5C ; 

-  *
5x ∈ [1.2, 1.95] kg/cm2  for 6C . 

 

The obtained solution allows the analyst to make the preliminary conclusions. 
The cause of the observed pump state should be located and identified as the filter 
clogging, the throat ring wear-out or fuel escape in the suction conduit (clear area 
decreased up to 34.15-45 cm2/kw, side clearance increased up to 0.234-0.242 mm, 
and leakage increased up to 0.5-1.62 cm3/h), since the significance measures of the 
causes 2C , 4C  and 5C  are sufficiently high. An assembly defect of the throat ring 

for the side clearance within 0.178-0.300 mm should be excluded since the 
significance measure of the cause 3C  is small. The engine speed reduced to 2877 

rpm can also tell on the pump’s proper functioning, the significance measure of 
which is indicative of the cause 1C . Resistance of the force main increased up to 

1.2-1.95 kg/cm2 practically has no influence on the pump fault, so that the 
significance measure of cause 6C  is small.  

Assume a repeated measurement has revealed a decrease in the pump delivery 
up to *

1y =24.97 m3/h and an increase in the suction pressure up to *
4y =0.792 

kg/cm2, the values of 1Eμ  increasing up to 0.86, 6Eμ  up to 0.75, and the values of 

other parameters remaining unchanged.  
A neural adjustment of the null solution (6.20) has yielded a fuzzy causes 

vector   

3 5 61 2 4
0 0 0 0 0 0 0( 0.26, 0.17, 0.10, 0.93, 0.75, 0.05)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,   

for which the value of the optimization criterion (6.6) has constituted  F=0.0148. 
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The resulting null solution has allowed adjustment of the bounds in the solution 
(6.21) and generation of the set of solutions ( , )ES R μ  determined by the greatest 

solution 
 

Cμ =(
1C

μ =0.26, 
2C

μ =0.75, 
3C

μ =0.16, 
4C

μ =1.00, 
5C

μ =0.75, 
6C

μ =0.16) 
 

and the two lower solutions *

1 2
{ , }C CS = μ μ   

 

1

Cμ =( 1

1

Cμ =0.26, 2

1

Cμ =0.75, 3

1

Cμ =0, 4

1

Cμ =0.84, 5

1

Cμ =0, 6

1

Cμ =0); 

2

Cμ =( 1

2

Cμ =0.26, 2

2

Cμ =0, 3

2

Cμ =0, 4

2

Cμ =0.84, 5

2

Cμ =0.75, 6

2

Cμ =0). 
 

Thus, the solution of fuzzy relational equations (6.19) can be represented in the 
form of intervals: 

 
( , )ES R μ ={ 1Cμ =0.26; 2Cμ =0.75; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.84, 1.00]; 5Cμ ∈ [0, 0.75]; 6Cμ ∈ [0, 0.16]}  

∪ { 1Cμ =0.26; 2Cμ ∈ [0, 0.75]; 3Cμ ∈ [0, 0.16]; 4Cμ ∈ [0.84, 1.00]; 5Cμ =0.75; 6Cμ ∈ [0, 0.16]}.   

  (6.22) 
 

Solution (6.22) differs from (6.21) in the significance measures of the causes 

2C , 4C  and 5C . The ranges of input variables have been determined for these 

causes using the membership functions in Fig. 6.13,a: 
 

-  *
2x =33.97 or *

2x ∈ [33.97, 45] cm2/kw for 2C ;  

-  *
3x ∈ [0.254, 0.300] mm for 4C ; 

- *
4x =1.64 or *

4x ∈ [0.5, 1.64] cm3/h for 5C . 
 

The solution obtained allows for the final conclusions. The state of the pump 
being observed is due to the throat ring wear-out (the side clearance increased to 
0.254-0.300 mm), since the significance measure of the cause 4C  is maximal. The 

causes of the pump failure are still the filter clogging and fuel escape in the 
suction conduit (the flow area decreased to 33.97-45 cm2/kw and the leakage 
increased to 0.5-1.64 cm3/h), since the significance measures of the causes 2C  and 

5C  are reasonably high. The values of other parameters have not changed. 

To test the fuzzy model we used the results of diagnosis for 250 pumps with 
different kinds of faults. The tuning algorithm efficiency characteristics for the 
testing data are given in Table 6.5. Attaining an average accuracy rate of 95% 
required 30 min of the operation of a genetic algorithm and 4 min of the operation 
of a neural network (Intel Core 2 Duo P7350 2.0 GHz).  
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Table 6.5. Tuning algorithm efficiency characteristics 

Causes  
(diagnoses)

Number  
of cases in 

the data 
sample 

Probability of the correct diagnosis 

Before tuning After tuning 

 Null solution 
(genetic algorithm)

Refined 
diagnoses 

(neural network) 

1C  105 83 / 105 = 0.79 99 / 105 = 0.94 103 / 105 = 0.98 

2C  203 164 / 203 = 0.81 186 / 203 = 0.92 197 / 203 = 0.97 

3C  59 52 / 59 = 0.88 54 / 59 = 0.91 57 / 59 = 0.97 

4C  187 154 / 187 = 0.82 174 / 187 = 0.93 178 / 187 = 0.95 

5C  94 85 / 94 = 0.90 90 / 94 = 0.96 93 / 94 = 0.99 

6C  75 64 / 75 = 0.85 69 / 75 = 0.92 73 / 75 = 0.97 
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Chapter 7 
Inverse Inference Based on Fuzzy Rules 

The wide class of the problems, arising from engineering, medicine, economics and 
other domains, belongs to the class of inverse problems [1]. The typical 
representative of the inverse problem is the problem of medical and technical 
diagnosis, which amounts to the restoration and the identification of the unknown 
causes of the disease or the failure through the observed effects, i.e. the symptoms or 
the external signs of the failure. The diagnosis problem, which is based on a cause 
and effect analysis and abductive reasoning can be formally described by neural 
networks [2] or Bayesian networks [3, 4]. In the cases, when domain experts are 
involved in developing cause-effect connections, the dependency between 
unobserved and observed parameters can be modelled using the means of fuzzy sets 
theory [5, 6]: fuzzy relations and fuzzy IF-THEN rules. Fuzzy relational calculus 
plays the central role as a uniform platform for inverse problem resolution on 
various fuzzy approximation operators [7, 8]. In the case of a multiple variable 
linguistic model, the cause-effect dependency is extended to the multidimensional 
fuzzy relational structure [6], and the problem of inputs restoration and identification 
amounts to solving a system of multidimensional fuzzy relational equations [9, 10].  
Fuzzy IF-THEN rules enable us to consider complex combinations in cause-effect 
connections as being simpler and more natural, which are difficult to model with 
fuzzy relations. In rule-based models, an inputs-outputs connection is described by a 
hierarchical system of simplified fuzzy relational equations with max-min and dual 
min-max laws of composition [11 – 13].  

In works [14 – 16], an expert system using a genetic algorithm [17] as a tool to 
solve the diagnosis problem was proposed. The diagnosis problem based on a 
cause and effect analysis was formally described by the single input single output 
fuzzy relation approximator [18 – 20]. This chapter proposes an approach for 
inverse problem solution based on the description of the interconnection between 
unobserved and observed parameters of an object (causes and effects) with the 
help of fuzzy IF-THEN rules. The problem consists of not only solving a system 
of fuzzy logical equations, which correspond to IF-THEN rules, but also in 
selection of such forms of the fuzzy terms membership functions and such weights 
of the fuzzy IF–THEN rules, which provide maximal proximity between model 
and real results of diagnosis [21].  

The essence of the proposed approach consists of formulating and solving the 
optimization problems, which, on the one hand, find the roots of fuzzy logical 
equations, corresponding to IF-THEN rules, and, on the other hand, tune the fuzzy 
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model using the readily available experimental data. The hybrid genetic and neuro 
approach is proposed for solving the formulated optimization problems. 

This chapter is written on the basis of [11 – 13]. 

7.1    Diagnostic Approximator Based on Fuzzy Rules 

The diagnosis object is treated as a black box with n inputs and m outputs (Fig. 7.1). 
Outputs of the object are associated with the observed effects (symptoms). Inputs 
correspond to the causes of the observed effects (diagnoses). The problem of 
diagnosis consists of restoration and identification of the causes (inputs) through the 
observed effects (outputs). Inputs and outputs can be considered as linguistic 
variables given on the corresponding universal sets. Fuzzy terms are used for these 
linguistic variables evaluation.  

 

 
                      
...                 … 
 

 
                      
                     …                              

… 

 
                        
                        … 
 

 
                        
                     …                              

… 

 

Rule 1: IF 1x =term 11  AND  … nx = term n1      THEN 1y = term 11 AND … my = term m1 

 

 

 

 

        …  

 Rule K: IF 1x = term 1K  AND  … nx = term nK    THEN 1y = term 1K AND … my = term mK 
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Fig. 7.1. Object of diagnosis 

We shall denote the following:  
 

1 2{ , ,..., }nx x x  is the set of input parameters, [ , ]ii ix x x∈ , 1,i n= ; 

1 2{ , ,..., }my y y  is the set of output parameters, [ , ]j jj
y y y∈ , 1,j m= ; 

1 2{ , ,..., }
ii i ikc c c  is the set of linguistic terms for parameter ix  evaluation, 1,i n= ; 

1 2{ , ,..., }
jj j jqe e e  is the set of linguistic terms for parameter jy  evaluation,  1,j m= . 
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Each term-assessment is described with the help of a fuzzy set: 

ilc = {( , ( ))}ilc
i ix xμ ,  1,i n= , 1, il k= ; 

jpe ={( , ( ))}jpe

j jy yμ , 1,j m= , 1, jp q= . 

where ( )ilc
ixμ  is a membership function of variable ix  to the term-assessment ilc , 

1,i n= ,  1, il k= ; 

( )jpe

jyμ  is a membership function of variable jy  to the term-assessment jpe , 

 1,j m= , 1, jp q= . 

We shall redenote the set of input and output terms-assessments in the 
following way: 

1 2{ , ,..., }NC C C ={
111 12 1 1 2, ,..., ,..., , ,...,

nk n n nkc c c c c c } is the set of terms for input 

parameters evaluation, where 1 2 ... nN k k k= + + + ; 

1 2{ , ,..., }ME E E ={
111 12 1 1 2, ,..., ,..., , ,...,

mq m m mqe e e e e e } is the set of terms for 

output parameters evaluation, where 1 2 ... mM q q q= + + + . 

Set { IC , 1,I N= } is called fuzzy causes (diagnoses), and set { JE ,  1,J M= } 

is called fuzzy effects (symptoms).  
Causes - effects interconnection can be represented using the expert matrix of 

knowledge (Table 7.1). 

Table 7.1. Fuzzy knowledge base 

№ rule 
Inputs Outputs 

1x  2x  … nx  1y  Weight 2y  Weight  my  Weight 

1 11a  21a  … 1na  11b  11w  21b  21w  … 1mb  1mw  

2 12a  22a  … 2na  12b  12w  22b  22w  … 2mb  2mw  

… … … … … … … … … … … … 

K 1Ka 2Ka  … nKa  1Kb 1Kw  2Kb 2Kw  … mKb  mKw  

 
 
 The fuzzy knowledge base below corresponds to this matrix:  

 Rule l : IF        1x = 1la  AND 2x = 2la  … AND nx = nla   

             THEN 1y = 1lb  (with weight 1lw )  

             AND   2y = 2lb (with weight 2lw ) …  

             AND     my = mlb (with weight mlw ), 1,l K= ;                                           (7.1) 
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where ila  is a fuzzy term for variable ix  evaluation in the rule with number l ; 

      jlb  is a fuzzy term for variable jy  evaluation in the rule with number l ; 

      jlw  is a rule weight, i.e. a number in the range [0, 1], characterizing the 

measure of confidence of an expert relative to the statement with number jl ; 

     K is the number of fuzzy rules.  
The problem of diagnosis is set in the following way: it is necessary to restore 

and identify the values of the input parameters * * *
1 2( , ,..., )nx x x  through the values of 

the observed output parameters * * *
1 2( , ,..., )my y y . 

7.2   Interconnection of Fuzzy Rules and Relations 

This fuzzy rules base is modelled by the fuzzy relational matrices presented in 
Table 7.2. These relational matrices can be translated as a set of fuzzy IF-THEN 
rules 

IF LA=X   

      (i.e., 1x = 1C   (with weight 1Lv )  

AND … ix = IC   (with weight ILv )  …    

AND      nx = CN  (with weight vNL) ) 

THEN   jy = JE   (with weight LJr )                                                                    (7.2) 

Here LA  is the combination of input terms in rule L , 1,L K= . 

Table 7.2. Fuzzy relational matrices 

IF inputs THEN outputs 

 

1x  … ix  … nx  1y  … jy  … my  

11c  … 11kc … 1ic  … iikc  … 1nc … nnkc
11e … 11qe … 1je … jjqe … 1me … mmqe  

1C  … IC  … NC 1E … JE … ME  

1A  11v  … 1Iv  … 1Nv 11r … 1Jr … 1Mr  

… … … … … … … … … … … 

LA  1Lv  … ILv  … NLv 1Lr … LJr … LMr  

… … … … … … … … … … … 

KA  1Kv  … IKv  … NKv 1Kr … KJr … KMr  
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“Causes – rules – effects” interconnection is given by the hierarchical system of 

relational matrices I LC A⊆ ×V =[ ILv , 1,I N= , 1,L K= ] and L JA E⊆ ×R =[ LJr , 

1,L K= , 1,J M= ]. An element of binary matrix V is the weight of term 

{0,1}ILv ∈ , where 1(0)ILv =  if term IC  is present (absent) in the causes 

combination LA . An element of fuzzy relational matrix R is the weight of rule
 

LJr ∈[0, 1], characterizing the degree to which causes combination LA  influences 

upon the rise of effect JE . 

Given the matrices R and V, the “causes-effects” dependency can be described 
with the help of Zadeh’s compositional rule of inference [5] 

 

 E A=μ μ RD ,                                      (7.3)      
where 

A C= •μ μ V .                                           (7.4)      

Here V  is the complement of the matrix of terms weights V ; 
Cμ = 1 2( , ,..., )NCC Cμ μ μ  is the fuzzy causes vector with elements ICμ ∈ [0, 1], 

interpreted as some significance measures of IC  causes; 
Eμ = 1 2( , ,..., )ME E Eμ μ μ  is the fuzzy effects vector with elements JEμ ∈ [0, 1], 

interpreted as some significance measures of JE  effects; 
Aμ = 1 2( , ,..., )KA A Aμ μ μ  is the fuzzy causes combinations vector with elements 

LAμ ∈ [0, 1], interpreted as some significance measures of LA  causes 

combinations; 
•  ( D ) is the operation of min-max (max-min) composition [5]. 

Finding vector Cμ  amounts to the solution of the hierarchical system of 

simplified fuzzy relational equations with max-min and dual min-max laws of 
composition 

1Eμ = 1 2
11 21 1( ) ( ) ... ( )KA A A

Kr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧  
2Eμ = 1 2

12 22 2( ) ( ) ... ( )KA A A
Kr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧  

…  
MEμ = 1 2

1 2( ) ( ) ... ( )KA A A
M M KMr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧ ,                   (7.5) 

where 
 

1Aμ = 1 2
11 21 1( ) ( ) ... ( )NCC C

Nv v vμ μ μ∨ ∧ ∨ ∧ ∧ ∨  
2Aμ = 1 2

12 22 2( ) ( ) ... ( )NCC C
Nv v vμ μ μ∨ ∧ ∨ ∧ ∧ ∨  

… 

KAμ = 1 2
1 2( ) ( ) ... ( )NCC C

K K NKv v vμ μ μ∨ ∧ ∨ ∧ ∧ ∨ ,                (7.6) 
which is derived from relations (7.3) and (7.4). 
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Since the operations ∨ and ∧ are replaced by max and min in fuzzy set theory 
[5], systems (7.5) and (7.6) can be rearranged as: 
 

1,
max(min( , )),J LE A

LJ
L K

rμ μ
=

= 1,J M= ,                         (7.7)  

where 

1,
min(max( , )),L IA C

IL
I N

vμ μ
=

= 1,L K=                                 (7.8)            

or 

JEμ = ( )1,1,
max min min(max( , )),IC

IL LJ
I NL K

v rμ
==

⎛ ⎞⎜ ⎟
⎝ ⎠

, 1,J M= .            (7.9) 

To translate the specific values of the input and output variables into the 
measures of the causes and effects significances it is necessary to define a 

membership function of linguistic terms IC  and JE , 1,I N= , 1,J M= , used in 

the fuzzy rules (7.1). We use a bell-shaped membership function model of variable 
u to arbitrary term T in the form: 

 

        
2

1
( ) ,

1

T u
u

μ
β

σ

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

                                   (7.10)  

where β  is a coordinate of function maximum, ( ) 1Tμ β = ; σ
 
is a parameter of 

concentration-extension.  
Correlations (7.9), (7.10) define the generalized fuzzy model of diagnosis as 

follows: 
 

     ( , , ) ( , , , ),E
E E Y C CF=μ Y Β Ω X R Β Ω                                (7.11)                        

 

 

where 11 12 1 1 2( , ,..., ,..., , ,..., )K m m mKr r r r r r=R  is the vector of rules weights; 

1 2( , ,..., )NCC C
C β β β=Β  and 1 2( , ,..., )NCC C

C σ σ σ=Ω  are the vectors of β - and 

σ - parameters for fuzzy causes 1C , 2C ,…, NC  membership functions; 
1 2( , ,..., )ME E E

E β β β=Β  and 1 2( , ,..., )ME E E
E σ σ σ=Ω  are the vectors of β - 

and σ - parameters for fuzzy effects 1E , 2E ,…, ME  membership functions; 

YF  is the operator of inputs-outputs connection, corresponding to formulae 

(7.9),  (7.10). 

7.3   Optimization Problem for Fuzzy Rules Based Inverse 
Inference 

Following the approach, proposed in [14 – 16], the problem of solving fuzzy logic 

equations (7.9) is formulated as follows. Fuzzy causes vector  Cμ =( 1 2, ,..., NCC Cμ μ μ ) 
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should be found which satisfies the constraints [0, 1]ICμ ∈ ,  1,I N= , and also 

provides the least distance between observed and model fuzzy effects vectors: 

F = ( ) 2

1,1,1

max min min(max( , )), minJ I

C

M
E C

IL LJ
I NL KJ

v rμ μ
===

⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑

μ

.     (7.12)  

Solving hierarchical system of fuzzy relational equations (7.9) is accomplished 
by way of consequent solving system (7.7) with max-min law of composition and 
system (7.8) with min-max law of composition. 

The problem of solving fuzzy logic equations (7.7) is formulated as follows. 
Fuzzy causes combinations vector Aμ =( 1 2, ,..., KA A Aμ μ μ ) should be found which 

satisfies the constraints [0,1]LAμ ∈ ,  1,L K= , and also provides the least 

distance between observed and model fuzzy effects vectors: 
 

F1 =
2

1,1

max(min( , )) minJ L

A

M
E A

LJ
L KJ

rμ μ
==

⎡ ⎤− =⎢ ⎥⎣ ⎦∑
μ

                   (7.13)  

 

The problem of solving fuzzy logic equations (7.8) is formulated as follows. 

Fuzzy causes vector Cμ =( 1 2, ,..., NCC Cμ μ μ ), should be found which satisfies the 

constraints [0, 1]ICμ ∈ ,   1,I N= , and also provides the least distance between 

observed and model fuzzy causes combinations vectors: 
 

F2 =
2

1,1

min(max( , )) minL I

C

K
A C

IL
I N

L

vμ μ
==

⎡ ⎤− =⎢ ⎥⎣ ⎦∑
μ

                   (7.14)  

Following [8], in the general case, system (7.7) has a solution set ( , )ES R μ , 

which is completely characterized by the unique greatest solution 
A

μ  and the set 

of lower solutions * ( , )ES R μ ={ , 1, }A

k
k T=μ : 

    ( , )ES R μ  =
*

,
A
k

AA

k
S∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                             (7.15) 

Here 
A

μ =( 1 2, ,..., KA A Aμ μ μ ) and A

k
μ =( 1 2, ,..., KA A A

k k k
μ μ μ )  are the vectors of the 

upper and lower bounds of causes combinations LA  significance measures, where 

the union is taken over all * ( , )A E

k
S∈μ R μ . 
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For the greatest solution 
A

μ ,  system (7.8) has a solution set ( )
A

D μ , which is 

completely characterized by the unique least solution Cμ  and the set of upper 

solutions 
*
( )

A
D μ ={ , 1, }

C

l l H=μ : 

   ( )A
D μ  =

*

,
C
l

CC
l

D∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                           (7.16) 

Here Cμ =( 1 2, ,..., NC C Cμ μ μ ) and 
C

lμ =( 1 2, ,..., NCC C
l l lμ μ μ ) are the vectors of the 

lower and upper bounds of causes IC  significance measures, where the union is 

taken over all 
C

l ∈μ ( )* A
D μ . 

For each lower solution A

k
μ , 1,k T= , system (7.8) has a solution set ( )A

k k
D μ , 

which is completely characterized by the unique least solution C

k
μ  and the set of 

upper solutions * ( )A
k k

D μ ={ }, 1,
C

kkl l H=μ : 

   ( )A
k k

D μ  =
*

,
C

kkl

CC
klk

D∈

⎡ ⎤
⎢ ⎥⎣ ⎦

μ

μ μ∪ .                               (7.17) 

Here C

k
μ =( 1 2, ,..., NC C C

k k k
μ μ μ ) and 

C

klμ =( 1 2, ,..., NCC C
kl kl klμ μ μ ) are the vectors of the 

lower and upper bounds of causes IC  significance measures, where the union is 

taken over all 
C

kl ∈μ * ( )A
k k

D μ . 

Following [14 – 16], formation of diagnostic results begins with the search for 

the null solution 1 2
0 0 0 0( , ,..., )NCC CC μ μ μ=μ  of optimization problem (7.12). 

Formation of intervals (7.15) begins with the search for the null vector of the 
causes combinations significances measures 1 2

0 0 0 0 0( ) ( , ,..., )KA A AA C μ μ μ=μ μ , which 

corresponds to the obtained null solution 0
Cμ . The upper bound (

LA
μ ) is found in 

the range 0[ ,1]LAμ . The lower bound ( LA

k
μ ) for 1k =  is found in the range 

0[0, ]LAμ , and for  1k >  – in the range [0, ]
LA

μ , where the minimal solutions A

p
μ , 

p k< , are excluded from the search space.  

Let 1 2( ) ( ( ), ( ),..., ( ))KA A AA t t t tμ μ μ=μ  be some t-th solution of optimization 

problem (7.13). While searching for upper bounds (
LA

μ ) it is suggested that  
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( ) ( 1)L LA At tμ μ≥ − , аnd while searching for lower bounds ( LA

k
μ ) it is suggested 

that ( ) ( 1)L LA At tμ μ≤ −  (Fig. 7.2a). The definition of the upper (lower) bounds 

follows the rule: if ( ) ( 1)A At t≠ −μ μ , then 
LA

μ ( LA

k
μ )= ( )LA tμ ,  1,L K= . If 

( ) ( 1)A At t= −μ μ , then the search for the interval solution [ , ]
AA

k
μ μ  is stopped. 

Formation of intervals (7.15) will go on until the condition A A

k p
≠μ μ , p k< , has 

been satisfied. 
Formation of intervals (7.16) begins with the search for the null solution  

1 2

0 0 00 ( , ,..., )
NC C C C

μ μ μ=μ  for the greatest solution 
A

μ . The lower bound ( ICμ ) of 

solution set (7.16) is found in the range 0[0, ]
IC

μ . The upper bound (
IC

lμ ) for 

 1l =  is found in the range 0[ , 1]
IC

μ , and for 1l >  – in the range [ , 1]ICμ , where 

the maximal solutions 
IC

pμ , p l< , are excluded from the search space.  

Formation of intervals (7.17) begins with the search for the null solutions 
1 2

0 0 00
( , ,..., )NC C C C

k k kk
μ μ μ=μ  for each of the lower solutions A

k
μ , 1,k T= . The lower 

bound ( IC

k
μ ) of solution set (7.17) is found in the range 

0
[0, ]IC

k
μ . The upper bound 

(
IC

klμ ) for 1l =  is found in the range 
0

[ , 1]IC

k
μ , and for 1l >  – in the range 

[ , 1]IC

k
μ , where the maximal solutions 

IC

kpμ , p l< , are excluded from the search 

space.  

Let 1 2( ) ( ( ), ( ),..., ( ))NCC CC t t t tμ μ μ=μ  be some t-th solution of optimization 

problem (7.14). While searching for upper bounds (
IC

lμ  or 
IC

klμ ) it is suggested 

that ( ) ( 1)I IC Ct tμ μ≥ − , аnd while searching for lower bounds ( ICμ  or IC

k
μ ) it is 

suggested that ( ) ( 1)I IC Ct tμ μ≤ −  (Fig. 7.2b,c). The definition of the upper 

(lower) bounds follows the rule: if ( ) ( 1)C Ct t≠ −μ μ , then 
IC

lμ ( ICμ )= ( )IC tμ  or 

IC

klμ ( IC

k
μ )= ( )IC tμ ,   1,I N= . If ( ) ( 1)C Ct t= −μ μ , then the search for the 

interval solution [ , ]
CC

l
μ μ  or [ , ]

CC
kkl

μ μ  is stopped. Formation of intervals (7.16) 

and (7.17) will go on until the conditions 
C C

l p≠μ μ  and 
C C

kl kp≠μ μ , p l< , have 

been satisfied. 
The hybrid genetic and neuro approach is proposed for solving optimization 

problems (7.12) – (7.14).  
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Fig. 7.2. Search for the solution sets (7.15) (а), (7.16) (b), (7.17) (c) 
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7.4   Genetic Algorithm for Fuzzy Rules Based Inverse Inference 

The chromosome needed in the genetic algorithm [14 – 16] for solving 
optimization problems (7.12) – (7.14) includes the binary codes of parameters 

ICμ ,   1,I N= , and LAμ ,   1,L K=  (Fig. 7.3).  

 

1CC  2CC  … NCC  1AA  2AA  … KAA  
 

Fig. 7.3. Structure of the chromosome  

The crossover operation is defined in Fig. 7.4, and is carried out by way of 
exchanging genes inside each of the solutions ICμ  and LAμ . The points of cross-

over shown in dotted lines are selected randomly. Upper symbols (1 and 2) in the 
vectors of parameters correspond to the first and second chromosomes-parents.  
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Fig. 7.4. Structure of the crossover operation 

A mutation operation implies random change (with some probability) of 
chromosome elements 

 

( )( ) ,
III

CCCMu RANDOMμ μ μ⎡ ⎤= ⎢ ⎥⎣ ⎦
; 

( )( ) ,
LLL

AAAMu RANDOMμ μ μ⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

Fitness function is built on the basis of criteria (7.12) – (7.14).  
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7.5   Neuro-fuzzy Network for Fuzzy Rules Based Inverse 
Inference 

The neuro-fuzzy networks isomorphic to the systems of fuzzy logical equations 
(7.7) – (7.9), are presented in Fig. 7.5, а-c, respectively, and the elements of the 
neuro-fuzzy networks are shown in Table 3.1 [16]. 

The network in Fig. 7.5,а is designed so that the adjusted weights of arcs are 

the unknown significance measures of causes combinations LAμ ,  1,L K= . The 

network in Fig. 7.5b is designed so that the adjusted weights of arcs are the 

unknown significance measures of causes ICμ ,  1,I N= .   

Network inputs in Fig. 7.5а are elements of the matrix of rules weights. As 
follows from the system of fuzzy relational equations (7.7), the rule weight LJr  is 

the significance measure of the effect JEμ  provided that the significance measure 

of the causes combination LAμ  is equal to unity, and the significance measures of 

other combinations are equal to zero, i. е., LJr = JEμ ( LAμ =1, PAμ =0),   1,P K= , 

P L≠ . At the network outputs, actual significance measures of the effects 

1,
max[min( , )]LA

LJ
L K

rμ
=

obtained for the actual weights of arcs LAμ  are united. 

Network inputs in Fig. 7.5,b are elements of the matrix of terms weights. As 
follows from the system of fuzzy relational equations (7.8), the term weight ILv  is 

the maximal possible significance measure of the cause ICμ  in the combination 
LAμ . At the network outputs, actual significance measures of the causes 

min( , )IC
ILvμ  obtained for the actual weights of arcs ICμ  are united.  

The neuro-fuzzy model in Fig. 7.5c is obtained by embedding the matrix of 
fuzzy relations into the neural network so that the adjusted weights of arcs are the 

unknown significance measures of the causes ICμ ,  1,I N= . Network inputs in 

Fig. 7.5,c are elements of the matrix of terms weights. At the network outputs, 

actual significance measures of the effects ( )1,1,
max min min( , ),IC

IL LJ
I NL K

v rμ
==

⎛ ⎞⎜ ⎟
⎝ ⎠

obtained 

for the actual weights of arcs ICμ  and LJr  are united. 

Thus, the problem of solving the system of fuzzy logic equations (7.9) is 
reduced to the problem of training of a neuro fuzzy network (see Fig. 7.5c) with 
the use of points  

1 2( , ,..., , )JE
L L NLv v v μ , 1,L K= , 1,J M= . 

The problem of solving the system of fuzzy logic equations (7.7) is reduced to 
the problem of training of a neuro fuzzy network (see Fig. 7.5a) with the use of 
points  

1 2( , ,..., , )JE
J J KJr r r μ , 1,J M= . 
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Fig. 7.5. Neuro-fuzzy models of diagnostic equations 



206 Chapter 7 Inverse Inference Based on Fuzzy Rules 

The problem of solving the system of fuzzy logic equations (7.8) is reduced to 
the problem of training of a neuro fuzzy network (see Fig. 7.5b) with the use of 
points  

( 1 2, ,..., , LA
L L NLv v v μ ), 1,L K= . 

The adjustment of parameters of the neuro-fuzzy networks employs the 
recurrent relations 

( 1) ( )
( )

I I

I

E
C C t

C
t t

t

εμ μ η
μ
∂

+ = −
∂

 , 

( 1) ( )
( )

L L

L

E
A A t

A
t t

t

εμ μ η
μ
∂

+ = −
∂

 ,                    (7.18) 

( 1) ( )
( )

I I

I

A
C C t

C
t t

t

εμ μ η
μ
∂

+ = −
∂

 , 

that minimize the criteria 

21
ˆ( ( ) ( ))

2
E E E
t t tε = −μ μ ,                                 (7.19) 

21
ˆ( ( ) ( ))

2
A A A
t t tε = −μ μ ,                               (7.20) 

where ˆ ( )E tμ
 
and ( )E tμ

 
are the experimental and the model fuzzy effects vectors 

at the t-th step of training; 
ˆ ( )A tμ

 
and ( )A tμ are the experimental and the model fuzzy causes combinations 

vectors at the t-th step of training; 
( )IC tμ  and

 
( )LA tμ  are the significance measures of causes IC  and causes 

combinations LA  at the t-th step of training; 

η  is a parameter of training, which can be selected according to the results 
from [22]. 

The partial derivatives appearing in recurrent relations (7.18) characterize the 
sensitivity of the error ( E

tε  or A
tε )  to variations in parameters of the neuro-fuzzy 

network and can be calculated as follows: 
 

I

E
t
C

ε
μ
∂

=
∂ 1 1

;
J L

J L I

E E AM K
t
E A C

J L

ε μ μ
μ μμ= =

⎡ ⎤⎡ ⎤∂ ∂ ∂⋅ ⋅⎢ ⎥⎢ ⎥∂ ∂∂⎢ ⎥⎦⎣⎣ ⎦
∑ ∑  

L

E
t
A

ε
μ
∂

=
∂ 1

J

EM
t
E

J

ε
μ=

⎡ ∂
⋅⎢∂⎣

∑  ;
J

L

E

A

μ
μ

⎤∂
⎥∂ ⎦

 
I

A
t
C

ε
μ
∂

=
∂ 1

L

AK
t
A

L

ε
μ=

⎡ ∂
⋅⎢∂⎣

∑  .
L

I

A

C

μ
μ

⎤∂
⎥∂ ⎦

 

Since determining the element “fuzzy output” from Table 3.1 involves the min and 
max fuzzy-logic operations, the relations for training are obtained using finite 
differences. 
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7.6   Problem of Fuzzy Rules Tuning 

It is assumed that the training data which is given in the form of L pairs of 

experimental data is known: ˆ ˆ,p pX Y , 1,p L= , where 1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p nx x x=X  and 

1 2
ˆ ˆ ˆ ˆ( , ,..., )p p p

p my y y=Y  are the vectors of the values of the input and output variables 

in the experiment number  p.  
The essence of tuning of the fuzzy model (7.11) consists of finding such null 

solutions 0 1 2ˆ ˆ ˆ( , ,..., )C p p p
nx x xμ  of the inverse problem, which minimize criterion 

(7.12) for all the points of the training data:  

C 2
0 1 2

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ( )) ( , ,..., )] .min
L

p p p E p p p
Y 1 2 n m

p

F x ,x ,...,x y y y
=

− =∑ μ μ  

 

In other words, the essence of tuning of the fuzzy model (7.11) consists of 
finding such a vector of rules weights R  and such vectors of membership 
functions parameters CΒ , CΩ , EΒ , EΩ , which provide the least distance 

between model and experimental fuzzy effects vectors:   

 
C C E E

2
C C E E

, , , ,1

ˆ ˆˆ[ ( , , ) ( , , )] min
L

E
Y p p

p

F , 
=

− =∑
R Β Ω Β Ω

X R Β Ω μ Y Β Ω .        (7.21) 

7.7   Genetic Algorithm for Fuzzy Rules Tuning 

The chromosome needed in the genetic algorithm [23, 24] for solving the 
optimization problem (7.21) is defined as the vector-line of binary codes of 
parameters R , CΒ , CΩ , EΒ , EΩ  (Fig. 7.6). 

 

R  CΒ  CΩ  EΒ  EΩ  
 

Fig. 7.6. Structure of the chromosome  

The crossover operation is defined in Fig. 7.7, and is carried out by way of 
exchanging genes inside the vector of rules weights ( R ) and each of the vectors 
of membership functions parameters CΒ , CΩ , EΒ , EΩ . The points of cross-over 

shown in dotted lines are selected randomly. Upper symbols (1 and 2) in the 
vectors of parameters correspond to the first and second chromosomes-parents.  
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Fig. 7.7. Structure of the crossover operation 

A mutation operation implies random change (with some probability) of 
chromosome elements: 

 

( )( ) ,
III

CCCMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( )( ) ,

III
CCCMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( )( ) ,
JjJ

EEEMu RANDOMβ β β⎡ ⎤= ⎢ ⎥⎣ ⎦
; ( )( ) ,

JJJ
EEEMu RANDOMσ σ σ⎡ ⎤= ⎢ ⎥⎣ ⎦

; 

( ) ([ , ])LJLJLJMu r RANDOM r r= , 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

The fitness function is built on the basis of criterion (7.21).  

7.8   Adaptive Tuning of Fuzzy Rules 

The neuro-fuzzy model of the object of diagnostics is shown in Fig. 7.8, and the 
nodes are represented in Table 3.1. The neuro-fuzzy model in Fig. 7.8 is obtained 
by embedding the matrices of fuzzy relations into the neural network so that the 
weights of arcs subject to tuning are rules weights (fuzzy relations) and the 
membership functions for causes and effects fuzzy terms [16, 25].  

 
 



7.8   Adaptive Tuning of Fuzzy Rules 209 

1E  

NC  

. . . 

1x  

. . . 
2C  

1C  

ix  

. . . 
IC  

nx  

. . . 

. . . 

1y  

. 

12e  

11qe  

11e  

jy  

. . . 

2je  

jjqe  

1je  

. . . 

. . . 

JE  

ME  

my  

. . . 

2me  

mmqe  

1me  

2E  

. . . 

. . . 

. . . 

. . . 

. . . 

ICC
 

LJr  
JEEˆ  JEE  

1A  

2A  

 

LA  

 

KA

LAA
 

ILv  

 
Fig. 7.8. Neuro-fuzzy model of the object of diagnostics 

To train the parameters of the neuro-fuzzy network, the recurrent relations: 

( 1) ( )
( )
t

LJ LJ
LJ

r t r t
r t

εη ∂
+ = −

∂
; 

( 1) ( )
( )

I I

I

C C t
C

t t
t

εβ β η
β
∂

+ = −
∂

; ( 1) ( )
( )

I I

I

C C t
C

t t
t

εσ σ η
σ
∂

+ = −
∂

; 

( 1) ( )
( )

J J

J

E E t
E

t t
t

εβ β η
β
∂

+ = −
∂

; ( 1) ( )
( )

J J

J

E E t
E

t t
t

εσ σ η
σ
∂

+ = −
∂

,      (7.22) 

minimizing criterion (7.19) are used, where 
( )LJr t   are fuzzy relations (rules weights) at the t-th step of training; 

ICβ (t), ICσ (t), JEβ (t), JEσ (t) are parameters of the membership functions for 

causes and effects fuzzy terms at the t-th step of training. 
The partial derivatives appearing in recurrent relations (7.22) characterize the 

sensitivity of the error ( tε ) to variations in parameters of the neuro-fuzzy network 

and can be calculated as follows: 

t

LJr

ε∂
=

∂ ( )J

t
E X

ε
μ
∂

∂
( )JE

LJ

X

r

μ∂⋅
∂

; 
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I
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∂ 1 1
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J L i ii

x x x

x xx
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∂
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x x x
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⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂
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∂

 

 

Since determining the element “fuzzy output” (see Table 3.1) involves the min 
and max fuzzy-logic operations, the relations for training are obtained using finite 
differences.  

7.9   Computer Simulations 

The aim of the experiment consists of checking the performance of the above 
proposed models and algorithms with the help of the target “two inputs ( 1 2,x x ) – 

two outputs ( 1 2,y y )” model. Some analytical functions 1y = 1f ( 1 2,x x ) and 

2y = 2f ( 1 2,x x ) were approximated by the combined fuzzy knowledge base, and 

served simultaneously as training and testing data generator. The input values 
( 1 2,x x ) restored for each output combination ( 1 2,y y ) were compared with the 

target level lines. 
The target model is given by the formulae: 

1 1 1 2

1
( , ) (2 0.9)  (7 1)  (17 19)  (15 2)

10
y f x x z z z z= = − − − − ,      (7.23) 

2 2 1 2 1

1
( , ) 1

2
y f x x y= = − + , 

where 
2 2

1 2( 3.0) ( 2.5)

40

x x
z

− + −
= . 

The target model is represented in Fig. 7.9.  
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Fig. 7.9. “Inputs-outputs” model-generator 

The fuzzy IF-THEN rules correspond to this model:  
 

Rule 1: IF 1x =L AND 2x =L THEN 1y =hA  AND 2y =lA; 

Rule 2: IF 1x =A AND 2x =L THEN 1y =hL AND 2y =A; 

Rule 3: IF 1x =H AND 2x =L THEN 1y =hA AND 2y =lA; 

Rule 4: IF 1x =L AND 2x =Н THEN 1y =hL AND 2y =A; 

Rule 5: IF 1x =A AND 2x =H THEN 1y =H  AND 2y =L; 

Rule 6: IF 1x =H AND 2x =Н THEN 1y =hL AND 2y =A. 

where the total number of the input and output terms-assessments consists of: 

11c  Low (L), 12c  Average (A), 13c  High (H) for 1x , 21c  (Low), 22c  (High) for 2x ; 

11e  higher than Low (hL), 12e  higher than Average (hA), 13e  High (H) for 1y ; 21e  

Low (L), 22e  lower than Average (lA), 23e  Average (A) for 2y .  
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We shall define the set of causes and effects in the following way:  

{ 1C , 2C ,…, 5C }={ 11c , 12c , 13c , 21c , 22c };  

{ 1E , 2E ,…, 6E }={ 11e , 12e , 13e , 21e , 22e , 23e }. 

This fuzzy rule base is modelled by the fuzzy relational matrix presented in 
Table 7.3.  

Table 7.3. Fuzzy knowledge matrix 

IF inputs THEN outputs  

 x1 x2 
y1 y2 

hL hA H L lA A 

A1 L L 0 1 0 0 1 0 

A2 A L 1 0 0 0 0 1 

A3 H L 0 1 0 0 1 0 

A4 L H 1 0 0 0 0 1 

A5 A H 0 0 1 1 0 0 

A6 H H 1 0 0 0 0 1 

 
The results of the fuzzy model tuning are given in Tables 7.4, 7.5.  

Table 7.4. Parameters of the membership functions for the causes fuzzy terms before (after) 
tuning 

Parameter 
Fuzzy terms 

1C  2C  3C  4C  5C  

β - 0 (0.03) 3.0 (3.03) 6.0 (5.98) 0 (0.02) 3.0 (3.05) 

σ - 1.0 (0.71) 2.0 (0.62) 1.0 (0.69) 1.0 (0.73) 2.0 (0.60)  
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Table 7.5. Parameters of the membership functions for the effects fuzzy terms before 
(after) tuning 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 0 (0.02) 1.0 (1.10) 3.5 (3.36) -0.7 (-0.67) 0.5 (0.44) 0.8 (0.89) 

σ - 0.5 (0.27) 0.5 (0.29) 2.0 (1.91) 2.0 (1.70) 0.5 (0.31) 0.5 (0.25) 

 
 
 
Fuzzy logic equations after tuning take the form: 

61 2 4( 0.75) ( 0.78) ( 0.86)AE A Aμ μ μ μ= ∧ ∨ ∧ ∨ ∧  

32 1( 0.80) ( 0.92)AE Aμ μ μ= ∧ ∨ ∧  

3 5( 0.97)E Aμ μ= ∧  

3 54 1( 0.50) ( 0.48) ( 0.77)A AE Aμ μ μ μ= ∧ ∨ ∧ ∨ ∧   

5 31( 0.76) ( 0.72)E AAμ μ μ= ∧ ∨ ∧  

6 62 4( 0.96) ( 0.82) ( 0.87)E AA Aμ μ μ μ= ∧ ∨ ∧ ∨ ∧  ,                 (7.24) 

where  
1Aμ = 1Cμ ∧ 4Cμ  
2Aμ = 2Cμ ∧ 4Cμ  
3Aμ = 3Cμ ∧ 4Cμ  
4Aμ = 1Cμ ∧ 5Cμ  
5Aμ = 2Cμ ∧ 5Cμ  

6Aμ = 3Cμ ∧ 5Cμ .                               (7.25)  
 

The results of solving the problem of inverse inference before and after tuning 
are shown in Fig. 7.10, 7.11. The same figure depicts the membership functions of 
the fuzzy terms for the causes and effects before and after tuning.  
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Fig. 7.10. Solution to the problem of inverse fuzzy inference before tuning 

Let the specific values of the output variables consist of *
1y =0.20 and *

2y =0.80. 

The fuzzy effects vector for these values can be defined with the help of the 
membership functions in Fig. 7.11: 

Eμ =( 1 *
1( )E yμ =0.69; 2 *

1( )E yμ =0.09; 3 *
1( )E yμ =0.27;  

4 *
2( )E yμ =0.57; 5 *

2( )E yμ =0.43; 6 *
2( )E yμ =0.89). 

 

The genetic algorithm yields a null solution of the optimization problem (7.12) 

3 51 2 4
0 0 0 0 0 0( 0.26, 0.93, 0.20, 0.89, 0.42)C CC C CC μ μ μ μ μ= = = = = =μ ,       (7.26) 

for which the value of the optimization criterion (7.12) is F=0.1064.   
The null vector of the causes combinations significances measures  

3 5 61 2 4
0 0 0 0 0 0 0( 0.26, 0.89, 0.20, 0.26, 0.42, 0.20)A A AA A AA μ μ μ μ μ μ= = = = = = =μ     

corresponds to the obtained null solution. 
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 

Aμ =(  
1A

μ =0.26, 
2A

μ =0.89, 
3A

μ =0.26, 
4A

μ =0.75, 
5A

μ =0.42,  
6A

μ =0.75) 
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and the two lower solutions *

1 2
{ , }A AS = μ μ   

1

Aμ =( 1

1

Aμ =0.26, 2

1

Aμ =0.89, 3

1

Aμ =0, 4

1

Aμ =0, 5

1

Aμ =0.42, 6

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0, 2

2

Aμ =0.89, 3

2

Aμ =0.26, 4

2

Aμ =0, 5

2

Aμ =0.42, 6

2

Aμ =0). 

 

Thus, the solution of fuzzy relational equations (7.24) can be represented in the 
form of intervals: 

( , )ES R μ ={ 1Aμ =0.26, 2Aμ =0.89, 3Aμ ∈ [0, 0.26], 4Aμ ∈ [0, 0.75], 5Aμ =0.42, 6Aμ ∈ [0, 0.75]}  

∪ { 1Aμ ∈ [0, 0.26], 2Aμ =0.89, 3Aμ =0.26, 4Aμ ∈ [0, 0.75], 5Aμ =0.42, 6Aμ ∈ [0, 0.75]}.  
(7.27) 

We next apply the genetic algorithm for solving the optimization problem 

(7.14) for the greatest solution Aμ  and the two lower solutions 
1

Aμ  and 
2

Aμ .  

For the greatest solution Aμ , the genetic algorithm yields a null solution of the 

optimization problem (7.14) 

1 2 3 4 5

0 0 0 0 00 ( 0.49, 0.96, 0.49, 0.90, 0.49)
C C C C C C

μ μ μ μ μ= = = = = =μ ,       (7.28) 

for which the value of the optimization criterion (7.14) is F=0.2459.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set D ( Aμ ), which is completely determined by the least solution 

Cμ =(  1Cμ =0.49, 2Cμ =0.89, 3Cμ =0.49, 4Cμ =0.89, 5Cμ =0.49) 

and the two upper solutions 
*

1 2{ , }
C C

D = μ μ   

1

C
μ =(

1

1

C
μ =0.49, 

2

1

C
μ =0.89, 

3

1

C
μ =0.49, 

4

1

C
μ =1.0, 

5

1

C
μ =0.49); 

2

C
μ =(

1

2

C
μ =0.49, 

2

2

C
μ =1.0, 

3

2

C
μ =0.49, 

4

2

C
μ =0.89, 

5

2

C
μ =0.49). 

Thus, the solution of fuzzy relational equations (7.25) for the greatest solution Aμ  

can be represented in the form of intervals: 

D ( Aμ )={ 1Cμ =0.49, 2Cμ =0.89, 3Cμ =0.49, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.49} 

∪ { 1Cμ =0.49, 2Cμ ∈ [0.89, 1.0], 3Cμ =0.49, 4Cμ =0.89, 5Cμ =0.49}.      (7.29) 

For the first lower solution 
1

Aμ , the genetic algorithm yields a null solution of 

the optimization problem  (7.14) 

1 2 3 4 5

01 01 01 01 0101
( 0.13, 0.89, 0, 0.94, 0.42)C C C C C Cμ μ μ μ μ= = = = = =μ ,       (7.30) 

for which the value of the optimization criterion (7.14) is F=0.0338.   
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The obtained null solution allows us to arrange for the genetic search for the 

solution set 1 1
( )AD μ , which is completely determined by the least solution 

Cμ =(  1Cμ =0.13, 2Cμ =0.89, 3Cμ =0, 4Cμ =0.89, 5Cμ =0.42) 

and the two upper solutions *
1 1 2{ , }

C C
D = μ μ   

1

C
μ =(

1

1

C
μ =0.13, 

2

1

C
μ =0.89, 

3

1

C
μ =0, 

4

1

C
μ =1.0, 

5

1

C
μ =0.42); 

2

C
μ =(

1

2

C
μ =0.13, 

2

2

C
μ =1.0, 

3

2

C
μ =0, 

4

2

C
μ =0.89, 

5

2

C
μ =0.42). 

 
Thus, the solution of fuzzy relational equations (7.25) for the first lower 

solution 
1

Aμ  can be represented in the form of intervals: 

 

1 1
( )AD μ ={ 1Cμ =0.13, 2Cμ =0.89, 3Cμ =0, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.42} 

  ∪ { 1Cμ =0.13, 2Cμ ∈ [0.89, 1.0], 3Cμ =0, 4Cμ =0.89, 5Cμ =0.42}.      (7.31) 
 

For the second lower solution  
2

Aμ , the genetic algorithm yields a null solution 

of the optimization problem (7.14) 

1 2 3 4 5

02 02 02 02 0202
( 0, 0.97, 0.13, 0.89, 0.42)C C C C C Cμ μ μ μ μ= = = = = =μ ,           (7.32) 

for which the value of the optimization criterion (7.14) is F=0.0338.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set 2 2
( )AD μ , which is completely determined by the least solution 

Cμ =(  1Cμ =0, 2Cμ =0.89, 3Cμ =0.13, 4Cμ =0.89, 5Cμ =0.42) 

and the two upper solutions *
2 1 2{ , }

C C
D = μ μ   

 

1

C
μ =(

1

1

C
μ =0, 

2

1

C
μ =0.89, 

3

1

C
μ =0.13, 

4

1

C
μ =1.0, 

5

1

C
μ =0.42); 

2

C
μ =(

1

2

C
μ =0, 

2

2

C
μ =1.0, 

3

2

C
μ =0.13, 

4

2

C
μ =0.89, 

5

2

C
μ =0.42). 

Thus, the solution of fuzzy relational equations (7.25) for the second lower 

solution 
2

Aμ  can be represented in the form of intervals: 
 

2 2
( )AD μ ={ 1Cμ =0, 2Cμ =0.89, 3Cμ =0.13, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.42} 

   ∪ { 1Cμ =0, 2Cμ ∈ [0.89, 1.0], 3Cμ =0.13, 4Cμ =0.89, 5Cμ =0.42}.          (7.33) 
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The intervals of the values of the input variable for each interval in solutions 
(7.29), (7.31), (7.33) can be defined with the help of the membership functions in 
Fig. 7.11: 

-  *
1x =0.75 or *

1x =1.85 or *
1x =6.00 for 1C ;  

-  *
1x ∈ [2.81, 3.25] for 2C ; 

-  *
1x =5.27 or *

1x =4.20 or  *
1x =0  for 3C ;  

-  *
2x ∈ [0, 0.27] for 4C ;  

-  *
2x =2.44 and *

2x =3.66 or *
2x =2.35 and *

2x =3.75  for 5C . 

The restoration of the input set for *
1y =0.20 and *

2y =0.80 is shown in Fig. 7.11, 

in which the values of the causes 1 5C C÷  and effects 1 6E E÷  significances 

measures are marked. The comparison of the target and restored level lines for 
*
1y =0.20 and *

2y =0.80 is shown in Fig. 7.12.  

 

 
Fig. 7.11. Solution to the problem of inverse fuzzy inference for *

1y =0.20 and *
2y =0.80  
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Fig. 7.12. Comparison of the target (a) and restored (b) level linesfor *
1y =0.20 and 

*
2y =0.80  

Let the values of the output variables have changed with *
1y =0.20 and *

2y =0.80 

to *
1y =1.00 and *

2y =0.60 (Fig. 7.13). For the new values, the fuzzy effects vector is  

Eμ =( 1 *
1( )E yμ =0.07; 2 *

1( )E yμ =0.89; 3 *
1( )E yμ =0.40;  

        4 *
2( )E yμ =0.64; 5 *

2( )E yμ =0.79; 6 *
2( )E yμ =0.43). 

 

A neural adjustment of the null solution (7.26) of the optimization problem 
(7.12) has yielded a fuzzy causes vector  

3 51 2 4
0 0 0 0 0 0( 0.84, 0.32, 0.89, 0.95, 0.32)C CC C CC μ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.12) has constituted F=0.1015.   
The null vector of the causes combinations significances measures  

3 5 61 2 4
0 0 0 0 0 0 0( 0.84, 0.32, 0.89, 0.32, 0.32, 0.32)A A AA A AA μ μ μ μ μ μ= = = = = = =μ , 

corresponds to the obtained null solution. 
The resultant null solution has allowed adjusting the bounds in the solution 

(7.27) and generating the set of solutions ( , )ES R μ  determined by the greatest 

solution 
Aμ =(  

1A
μ =1.0, 

2A
μ =0.32, 

3A
μ =0.89, 

4A
μ =0.32, 

5A
μ =0.32,  

6A
μ =0.32) 

and the three lower solutions *

1 2 3
{ , , }A A AS = μ μ μ   

1

Aμ =( 1

1

Aμ =0.76, 2

1

Aμ =0.32, 3

1

Aμ =0.89, 4

1

Aμ =0, 5

1

Aμ =0.32, 6

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0.76, 2

2

Aμ =0, 3

2

Aμ =0.89, 4

2

Aμ =0.32, 5

2

Aμ =0.32, 6

2

Aμ =0); 

3

Aμ =( 1

3

Aμ =0.76, 2

3

Aμ =0, 3

3

Aμ =0.89, 4

3

Aμ =0, 5

3

Aμ =0.32, 6

3

Aμ =0.32). 
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Thus, the solution of fuzzy relational equations (7.24) for the new values can be 
represented in the form of intervals: 
 

( , )ES R μ ={ 1Aμ ∈ [0.76, 1.0], 2Aμ =0.32, 3Aμ =0.89, 4Aμ ∈ [0, 0.32], 5Aμ =0.32, 6Aμ ∈ [0, 0.32]} 

∪ { 1Aμ ∈ [0.76, 1.0], 2Aμ ∈ [0, 0.32], 3Aμ =0.89, 4Aμ =0.32, 5Aμ =0.32, 6Aμ ∈ [0, 0.32]} 

∪ { 1Aμ ∈ [0.76, 1.0], 2Aμ ∈ [0, 0.32], 3Aμ =0.89, 4Aμ ∈ [0, 0.32], 5Aμ =0.32, 6Aμ =0.32]}. 

For the greatest solution Aμ , a neural adjustment of the null solution (7.28) has 

yielded a fuzzy causes vector  

1 2 3 4 5

0 0 0 0 00 ( 1.0, 0.32, 0.89, 1.0, 0.32)
C C C C C C

μ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.0.   
The resultant null solution has allowed adjusting the bounds in the solution 

(7.29) and generating the set of solutions D ( Aμ ) determined by the unique (null) 

solution 

D ( Aμ )={ 1Cμ =1.0, 2Cμ =0.32, 3Cμ =0.89, 4Cμ =1.0, 5Cμ =0.32}.    (7.34) 

For the first lower solution 
1

Aμ , a neural adjustment of the null solution (7.30) 

has yielded a fuzzy causes vector  

1 2 3 4 5

01 01 01 01 0101
( 0.76, 0.32, 0.89, 0.92, 0.11)C C C C C Cμ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.0683.   
The resulting null solution has allowed adjusting the bounds in the solution 

(7.31) and generating the set of solutions 1 1
( )AD μ , which is completely 

determined by the least solution 

Cμ =(  1Cμ =0.76, 2Cμ =0.32, 3Cμ =0.89, 4Cμ =0.89, 5Cμ =0.11) 

and the two upper solutions  *
1 1 2{ , }

C C
D = μ μ   

 

1

C
μ =(

1

1

C
μ =0.76, 

2

1

C
μ =0.32, 

3

1

C
μ =0.89, 

4

1

C
μ =1.0, 

5

1

C
μ =0.11); 

2

C
μ =(

1

2

C
μ =0.76, 

2

2

C
μ =0.32, 

3

2

C
μ =1.0, 

4

2

C
μ =0.89, 

5

2

C
μ =0.11). 

 

Thus, the solution of fuzzy relational equations (7.24) for the first lower 

solution 
1

Aμ  can be represented in the form of intervals: 
 

1 1
( )AD μ ={ 1Cμ =0.76, 2Cμ =0.32, 3Cμ =0.89, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.11} 

       ∪ { 1Cμ =0.76, 2Cμ =0.32, 3Cμ ∈ [0.89, 1.0], 4Cμ =0.89, 5Cμ =0.11}.      (7.35) 
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For the second lower solution 
2

Aμ , a neural adjustment of the null solution 

(7.32) has yielded a fuzzy causes vector 

1 2 3 4 5

02 02 02 02 0202
( 0.76, 0.16, 0.89, 1.0, 0.16)C C C C C Cμ μ μ μ μ= = = = = =μ , 

and for the third lower solution 
3

Aμ , a neural adjustment of the null solution (7.32) 

has yielded a fuzzy causes vector 

1 2 3 4 5

03 03 03 03 0303
( 0.76, 0.16, 0.96, 0.89, 0.16)C C C C C Cμ μ μ μ μ= = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.1024.   
The resulting null solutions have allowed adjusting the bounds in the solution 

(7.33) and generating the sets of solutions 2 2
( )AD μ  and 3 3

( )AD μ , which are 

completely determined by the least solution 

Cμ =(  1Cμ =0.76, 2Cμ =0.16, 3Cμ =0.89, 4Cμ =0.89, 5Cμ =0.16) 

and the two upper solutions * *
2 3 1 2{ , }

C C
D D= = μ μ   

 

1

C
μ =(

1

1

C
μ =0.76, 

2

1

C
μ =0.16, 

3

1

C
μ =0.89, 

4

1

C
μ =1.0, 

5

1

C
μ =0.16); 

2

C
μ =(

1

2

C
μ =0.76, 

2

2

C
μ =0.16, 

3

2

C
μ =1.0, 

4

2

C
μ =0.89, 

5

2

C
μ =0.16). 

 

Thus, the solution of fuzzy relational equations (7.24) for the second and third 

lower solutions 
2

Aμ  and 
3

Aμ  can be represented in the form of intervals: 
 

2 32 3
( ) ( )A AD D= =μ μ { 1Cμ =0.76, 2Cμ =0.16, 3Cμ =0.89, 4Cμ ∈ [0.89, 1.0], 5Cμ =0.16} 

∪ { 1Cμ =0.76, 2Cμ =0.16, 3Cμ ∈ [0.89, 1.0], 4Cμ =0.89, 5Cμ =0.16}.       (7.36) 

The intervals of the values of the input variable for each interval in solutions 
(7.34), (7.35), (7.36) can be defined with the help of the membership functions in 
Fig. 7.13: 

-  *
1x =0.43 or *

1x =0  for 1C ;  

-  *
1x =2.12 and *

1x =3.93 or *
1x =1.60 and *

1x =4.45 for 2C ; 

-  *
1x ∈ [5.74, 6.0] for 3C ;  

-  *
2x ∈ [0, 0.27] for 4C ;  

-  *
2x =2.17 and *

2x =3.92  or *
2x =1.68 or *

2x =1.35 for 5C . 
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The restoration of the input set for *
1y =1.00 and *

2y =0.60 is shown in Fig. 7.13, 

in which the values of the causes 1 5C C÷  and effects 1 6E E÷  significances 

measures are marked. The comparison of the target and restored level lines for 
*
1y =1.00 and *

2y =0.60 is shown in Fig. 7.14.  
 

 
Fig. 7.13. Solution to the problem of inverse fuzzy inference for *

1y =1.00 and *
2y =0.60 
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Fig. 7.14. Comparison of the target (a) and restored (b) level lines for *

1y =1.00 ( ____ ) and 
*
2y =0.60 ( _ _ _ )  
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7.10   Example 6: Hydro Elevator Diagnosis 

Let us consider the algorithm’s performance having the recourse to the example of 
the hydraulic elevator faults causes diagnosis. Input parameters of the hydro 
elevator are (variation ranges are indicated in parentheses):  
 

1x   – engine speed (30 – 50 r.p.s);  

2x  – inlet pressure (0.02 – 0.15 kg/cm2);  

3x   –  feed change gear clearance (0.1 – 0.3 mm). 

Output parameters of the elevator are:  

1y  – productivity (13 – 24 l/min);  

2y  – consumed power (2.1 – 3.0 kw);  

3y  – suction conduit pressure (0.5 – 1 kg/cm2). 

“Causes-effects” interconnection is described with the help of the following 
system of fuzzy IF-THEN rules:  

Rule 1: IF 1x =I   AND 2x =I  AND 3x =I   THEN 1y =D AND 2y =I  AND 3y =D; 

Rule 2: IF 1x =D AND 2x =D AND 3x =D THEN 1y =D AND 2y =D AND 3y =I; 

Rule 3: IF 1x =I  AND 2x =I   AND 3x =D THEN 1y =D AND 2y =D AND 3y =D; 

Rule 4: IF 1x =I  AND 2x =D AND 3x =D THEN 1y =I  AND 2y =D  AND 3y =D; 

Rule 5: IF 1x =D AND 2x =I  AND 3x =D THEN 1y =I  AND 2y =D  AND 3y =I. 

where the total number of the causes and effects consists of: 11c  Decrease (D) and 

12c  Increase (I) for 1x ; 21c  (D) and 21c  (I) for 2x ; 31c  (D) and 32c  (I) for 3x ; 11e  

(D) and 12e  (I) for 1y ; 21e  (D) and 22e  (I) for 2y ; 31e  (D) and 32e  (I) for 3y . 

We shall define the set of causes and effects in the following way:  
 

{ 1C , 2C ,…, 6C }={ 11c , 12c , 21c , 22c , 31c , 32c };  

{ 1E , 2E ,…, 6E }={ 11e , 12e , 21e , 22e , 31e , 32e }.  

 

This fuzzy rule base is modelled by the fuzzy relational matrix presented in 
Table 7.6.  
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Table 7.6. Fuzzy knowledge matrix 

IF inputs THEN outputs 

 1x  2x  3x  1y  2y  3y  

D I D I D I 

1A  I I I 1 0 0 1 1 0 

2A  D D D 1 0 1 0 0 1 

3A  I I D 1 0 1 0 1 0 

4A  I D D 0 1 1 0 1 0 

5A  D I D 0 1 1 0 0 1 

 
For the fuzzy model tuning we used the results of diagnosis for 200 hydraulic 

elevators. The results of the fuzzy model tuning are given in Tables 7.7, 7.8 and in 
Fig. 7.15.  

Table 7.7. Parameters of the membership functions for the causes fuzzy terms after tuning 

Parameter  
Fuzzy terms 

1C  2C  3C  4C  5C  6C  

β - 32.15 48.65 0.021 0.144 0.11 0.27 

σ - 7.75 6.27 0.054 0.048 0.06 0.08 

Table 7.8. Parameters of the membership functions for the effects fuzzy terms after tuning 

Parameter 
Fuzzy terms 

1E  2E  3E  4E  5E  6E  

β - 13.58 21.43 2.24 2.85 0.53 0.98 

σ - 4.76 4.58 0.35 0.17 0.31 0.22 
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Fig. 7.15. Membership functions of the causes (a) and effects (b) fuzzy terms after tuning 

Diagnostic equations after tuning take the form:  

 
1Eμ = 1 2( 0.97) ( 0.65)A Aμ μ∧ ∨ ∧ ∨ 3( 0.77)Aμ ∧  

2Eμ = 54( 1.00) ( 0.46)AAμ μ∧ ∨ ∧  
3Eμ = 2( 0.99)Aμ ∧ ∨ 3 54( 0.80) ( 0.69) ( 0.93)A AAμ μ μ∧ ∨ ∧ ∨ ∧  

4Eμ = 1( 0.96)Aμ ∧  
5Eμ = 1( 0.72)Aμ ∧ ∨ 3 4( 0.47) ( 0.76)A Aμ μ∧ ∨ ∧    

 6Eμ = 2( 0.92)Aμ ∧ ∨ 5( 0.87)Aμ ∧ ,                   (7.37) 
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where                       
1Aμ = 2Cμ ∧ 4Cμ ∧ 6Cμ  
2Aμ = 1Cμ ∧ 3Cμ ∧ 5Cμ  

3Aμ = 2Cμ ∧ 4Cμ ∧ 5Cμ  
4Aμ = 2Cμ ∧ 3Cμ ∧ 5Cμ  

5Aμ = 1Cμ ∧ 4Cμ ∧ 5Cμ .                                  (7.38) 

 
Let us represent the vector of the observed parameters for a specific elevator: 

*Y =( *
1y =17.10 l/min; *

2y =2.45 kw; *
3y =0.87 kg/cm2). 

The measures of the effects significances for these values can be defined with 
the help of the membership functions in Fig. 7.15,b:  

Eμ =( 1 *
1( )E yμ =0.65; 2 *

1( )E yμ =0.53; 

        3 *
2( )E yμ =0.74; 4 *

2( )E yμ =0.15; 

       5 *
3( )E yμ =0.45; 6 *

3( )E yμ =0.80). 

   The genetic algorithm yields a null solution of the optimization problem 
(7.12) 

 

3 5 61 2 4
0 0 0 0 0 0 0( 0.77, 0.49, 0.77, 0.62, 0.77, 0.15)C C CC C CC μ μ μ μ μ μ= = = = = = =μ ,(7.39) 

for which the value of the optimization criterion (7.12) takes the value of 
F=0.0050.   

The null vector of the causes combinations significances measures  

3 51 2 4
0 0 0 0 0 0( 0.15, 0.77, 0.49, 0.49, 0.62)A AA A AA μ μ μ μ μ= = = = = =μ     

corresponds to the obtained null solution. 
The obtained null solution allows us to arrange for the genetic search for the 

solution set ( , )ES R μ , which is completely determined by the greatest solution 
 

Aμ =(  
1A

μ =0.15, 
2A

μ =0.77, 
3A

μ =0.65, 
4A

μ =0.49, 
5A

μ =0.77) 
 

and the two lower solutions *

1 2
{ , }A AS = μ μ   

 

1

Aμ =( 1

1

Aμ =0.15, 2

1

Aμ =0.77, 3

1

Aμ =0, 4

1

Aμ =0.49, 5

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0.15, 2

2

Aμ =0, 3

2

Aμ =0.65, 4

2

Aμ =0.49, 5

2

Aμ =0.77). 
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Thus, the solution of fuzzy relational equations (7.37) can be represented in the 
form of intervals: 
 

( , )ES R μ ={ 1Aμ =0.15, 2Aμ =0.77, 3Aμ ∈ [0, 0.65], 4Aμ =0.49, 5Aμ ∈ [0, 0.77]} 

∪ { 1Aμ =0.15, 2Aμ ∈ [0, 0.77], 3Aμ =0.65, 4Aμ =0.49, 5Aμ =0.77}.       (7.40) 

We next apply the genetic algorithm for solving optimization problem (7.14) 

for the greatest solution Aμ  and the two lower solutions 
1

Aμ  and 
2

Aμ .  

For the greatest solution Aμ , the genetic algorithm yields a null solution of the 

optimization problem (7.14) 
 

1 2 3 4 5 6

0 0 0 0 0 00 ( 0.77, 0.57, 0.94, 0.80, 0.79, 0.15)
C C C C C C C

μ μ μ μ μ μ= = = = = = =μ ,(7.41) 
 

for which the value of the optimization criterion (7.14) is F=0.0128.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set D ( Aμ ), which is completely determined by the least solution 
Cμ =( 1Cμ =0.77, 2Cμ =0.57, 3Cμ =0.77, 4Cμ =0.77, 5Cμ =0.77, 6Cμ =0.15) 

 

and the four upper solutions 
*

1 2 3 4{ , , , }
C C C C

D = μ μ μ μ   
 

1

C
μ =(

1

1

C
μ =0.77, 

2

1

C
μ =0.57, 

3

1

C
μ =1.0, 

4

1

C
μ =1.0, 

5

1

C
μ =1.0, 

6

1

C
μ =0.15); 

2

C
μ =(

1

2

C
μ =1.0, 

2

2

C
μ =0.57, 

3

2

C
μ =0.77, 

4

2

C
μ =1.0, 

5

2

C
μ =1.0, 

6

2

C
μ =0.15); 

3

C
μ =(

1

3

C
μ =1.0, 

2

3

C
μ =0.57, 

3

3

C
μ =1.0, 

4

3

C
μ =0.77, 

5

3

C
μ =1.0, 

6

3

C
μ =0.15); 

4

C
μ =(

1

4

C
μ =1.0, 

2

4

C
μ =0.57, 

3

4

C
μ =1.0, 

4

4

C
μ =1.0, 

5

4

C
μ =0.77, 

6

4

C
μ =0.15). 

 

Thus, the solution of fuzzy relational equations (7.38) for the greatest solution Aμ  

can be represented in the form of intervals: 
 

D ( Aμ )={ 1Cμ =0.77, 2Cμ =0.57, 3Cμ ∈ [0.77, 1.0], 4Cμ ∈ [0.77, 1.0], 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.57, 3Cμ =0.77, 4Cμ ∈ [0.77, 1.0], 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.57, 3Cμ ∈ [0.77, 1.0], 4Cμ =0.77, 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.57, 3Cμ ∈ [0.77, 1.0], 4Cμ ∈ [0.77, 1.0], 5Cμ =0.77, 6Cμ =0.15}. 

    (7.42) 

For the first lower solution 
1

Aμ , the genetic algorithm yields a null solution of 

the optimization problem (7.14) 

1 2 3 4 5 6

01 01 01 01 01 0101
( 0.77, 0.49, 0.84, 0, 0.92, 0)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ ,    (7.43) 
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for which the value of the optimization criterion (7.14) is F=0.0225.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set 1 1
( )AD μ , which is completely determined by the least solution 

Cμ =(  1Cμ =0.77, 2Cμ =0.49, 3Cμ =0.77, 4Cμ =0, 5Cμ =0.77, 6Cμ =0) 
 

and the three upper solutions *
1 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.77, 

2

1

C
μ =0.49, 

3

1

C
μ =1.0, 

4

1

C
μ =0, 

5

1

C
μ =1.0, 

6

1

C
μ =0); 

2

C
μ =(

1

2

C
μ =1.0, 

2

2

C
μ =0.49, 

3

2

C
μ =0.77, 

4

2

C
μ =0, 

5

2

C
μ =1.0, 

6

2

C
μ =0); 

3

C
μ =(

1

3

C
μ =1.0, 

2

3

C
μ =0.49, 

3

3

C
μ =1.0, 

4

3

C
μ =0, 

5

3

C
μ =0.77, 

6

3

C
μ =0). 

 

Thus, the solution of fuzzy relational equations (7.38) for the first lower solution 

1

Aμ  can be represented in the form of intervals: 

 

1 1
( )AD μ ={ 1Cμ =0.77, 2Cμ =0.49, 3Cμ ∈ [0.77, 1.0], 4Cμ =0, 5Cμ ∈ [0.77, 1.0], 6Cμ =0} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.49, 3Cμ =0.77, 4Cμ =0, 5Cμ ∈ [0.77, 1.0], 6Cμ =0} 

  ∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.49, 3Cμ ∈ [0.77, 1.0], 4Cμ =0, 5Cμ =0.77, 6Cμ =0}.  (7.44)  

For the second lower solution 
2

Aμ , the genetic algorithm yields a null solution 

of the optimization problem (7.14) 
 

1 2 3 4 5 6

02 02 02 02 02 0202
( 0.77, 0.65, 0.25, 0.97, 0.85, 0.15)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ , (7.45) 

 

for which the value of the optimization criterion (7.14) is F=0.1201.   
The obtained null solution allows us to arrange for the genetic search for the 

solution set 2 2
( )AD μ , which is completely determined by the least solution 

 

Cμ =(  1Cμ =0.77, 2Cμ =0.65, 3Cμ =0.25, 4Cμ =0.77, 5Cμ =0.77, 6Cμ =0.15) 
 

and the three upper solutions *
2 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.77, 

2

1

C
μ =0.65, 

3

1

C
μ =0.25, 

4

1

C
μ =1.0, 

5

1

C
μ =1.0, 

6

1

C
μ =0.15); 

2

C
μ =(

1

2

C
μ =1.0, 

2

2

C
μ =0.65, 

3

2

C
μ =0.25, 

4

2

C
μ =0.77, 

5

2

C
μ =1.0, 

6

2

C
μ =0.15); 

3

C
μ =(

1

3

C
μ =1.0, 

2

3

C
μ =0.65, 

3

3

C
μ =0.25, 

4

3

C
μ =1.0, 

5

3

C
μ =0.77, 

6

3

C
μ =0.15). 
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Thus, the solution of fuzzy relational equations (7.38) for the second lower 

solution 
2

Aμ  can be represented in the form of intervals: 
 

2 2
( )AD μ ={ 1Cμ =0.77, 2Cμ =0.65, 3Cμ =0.25, 4Cμ ∈ [0.77, 1.0], 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.65, 3Cμ =0.25, 4Cμ =0.77, 5Cμ ∈ [0.77, 1.0], 6Cμ =0.15} 

∪ { 1Cμ ∈ [0.77, 1.0], 2Cμ =0.65, 3Cμ =0.25, 4Cμ ∈ [0.77, 1.0], 5Cμ =0.77, 6Cμ =0.15}.     (7.46) 

Following the solutions (7.42), (7.44), (7.46), the causes 1C , 3C , 4C  and 5C  

are the causes of the observed elevator state, so that 1Cμ > 2Cμ , 3Cμ = 4Cμ , 
5Cμ > 6Cμ . The intervals of the values of the input variables for these causes can 

be defined with the help of the membership functions in Fig. 7.15,а: 

-  *
1x ∈ [30.0, 36.4] r.p.s for 1C ;  

-  *
2x ∈ [0.020, 0.050] kg/cm2  for 3C  and *

2x ∈ [0.118, 0.150] kg/cm2  for 4C ; 

-  *
3x ∈ [0.100, 0.143] mm  for  5C .  

The obtained solution allows the analyst to make the preliminary conclusions. 
The elevator failure may be because of the engine speed reduced to 30 – 36 r.p.s, 
the inlet pressure decreased to 0.020 – 0.050 kg/cm2 or increased to 0.118 – 0.150 
kg/cm2 , and the feed change gear clearance decreased to 100 – 143 mkm.   

Assume a repeated measurement has revealed an increase in the elevator 
productivity up to *

1y =18.80 l/min, an increase of the consumed power up to 
*
2y =2.51 kw, and a decrease in the suction pressure up to *

3y =0.75 kg/cm2.  

For the new values, the fuzzy effects vector is  
 

Eμ =( 1 *
1( )E yμ =0.45; 2 *

1( )E yμ =0.75; 

3 *
2( )E yμ =0.63; 4 *

2( )E yμ =0.20; 

5 *
3( )E yμ =0.67; 6 *

3( )E yμ =0.48). 
 

A neural adjustment of the null solution (7.39) of the optimization problem 
(7.12) has yielded a fuzzy causes vector  

3 5 61 2 4
0 0 0 0 0 0 0( 0.46, 0.69, 0.75, 0.25, 0.92, 0.20)C C CC C CC μ μ μ μ μ μ= = = = = = =μ , 

for which the value of the optimization criterion (7.12) has constituted F=0.0094.   
The null vector of the causes combinations significances measures  

 

3 51 2 4
0 0 0 0 0 0( 0.20, 0.46, 0.25, 0.69, 0.25)A AA A AA μ μ μ μ μ= = = = = =μ , 

 

corresponds to the obtained null solution. 
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The resulting null solution has allowed adjusting the bounds in the solution 
(7.40) and generating the set of solutions ( , )ES R μ  determined by the greatest 

solution 
Aμ =(  

1A
μ =0.20, 

2A
μ =0.46, 

3A
μ =0.46, 

4A
μ =0.69, 

5A
μ =0.46) 

 

and the two lower solutions *

1 2
{ , }A AS = μ μ   

 

1

Aμ =( 1

1

Aμ =0.20, 2

1

Aμ =0.46, 3

1

Aμ =0, 4

1

Aμ =0.69, 5

1

Aμ =0); 

2

Aμ =( 1

2

Aμ =0.20, 2

2

Aμ =0, 3

2

Aμ =0.46, 4

2

Aμ =0.69, 5

2

Aμ =0.46). 

 
Thus, the solution of fuzzy relational equations (7.37) for the new values can be 
represented in the form of intervals: 
 

( , )ES R μ ={ 1Aμ =0.20, 2Aμ =0.46, 3Aμ ∈ [0, 0.46], 4Aμ =0.69, 5Aμ ∈ [0, 0.46]} 

               ∪ { 1Aμ =0.20, 2Aμ ∈ [0, 0.46], 3Aμ =0.46, 4Aμ =0.69, 5Aμ =0.46}. 
 
For the greatest solution Aμ , a neural adjustment of the null solution (7.41) has 

yielded a fuzzy causes vector 

1 2 3 4 5 6

0 0 0 0 0 00 ( 0.46, 0.78, 0.69, 0.46, 0.91, 0.20)
C C C C C C C

μ μ μ μ μ μ= = = = = = =μ , 

for which the value of the optimization criterion (7.14) has constituted F=0.   
The resultant null solution has allowed adjusting the bounds in the solution 

(7.42) and generating the set of solutions D ( Aμ ), which is completely determined 

by the least solution 

Cμ =(  1Cμ =0.46, 2Cμ =0.69, 3Cμ =0.69, 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20) 

and the three upper solutions 
*

1 2 3{ , , }
C C C

D = μ μ μ   

1

C
μ =(

1

1

C
μ =0.46, 

2

1

C
μ =0.69, 

3

1

C
μ =1.0, 

4

1

C
μ =0.46, 

5

1

C
μ =1.0, 

6

1

C
μ =0.20); 

2

C
μ =(

1

2

C
μ =0.46, 

2

2

C
μ =1.0, 

3

2

C
μ =0.69, 

4

2

C
μ =0.46, 

5

2

C
μ =1.0, 

6

2

C
μ =0.20); 

3

C
μ =(

1

3

C
μ =0.46, 

2

3

C
μ =1.0, 

3

3

C
μ =1.0, 

4

3

C
μ =0.46, 

5

3

C
μ =0.69, 

6

3

C
μ =0.20). 

 
 

 



230 Chapter 7 Inverse Inference Based on Fuzzy Rules 

Thus, the solution of fuzzy relational equations (7.38) for the greatest solution Aμ  

can be represented in the form of intervals: 
 

D ( Aμ )={ 1Cμ =0.46, 2Cμ =0.69, 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20}            

∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ =0.69, 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20} 

           ∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20} 

    (7.47) 

For the first lower solution 
1

Aμ , a neural adjustment of the null solution (7.43) 

has yielded a fuzzy causes vector  
 

1 2 3 4 5 6

01 01 01 01 01 0101
( 0.46, 0.92, 0.86, 0.10, 0.69, 0.10)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ , 

 

for which the value of the optimization criterion (7.14) has constituted F=0.0300.   
The resulting null solution has allowed adjusting the bounds in the solution 

(7.44) and generating the set of solutions 1 1
( )AD μ , which is completely 

determined by the least solution 
 

Cμ =(  1Cμ =0.46, 2Cμ =0.69, 3Cμ =0.69, 4Cμ =0.10, 5Cμ =0.69, 6Cμ =0.10) 
 

and the three upper solutions  *
1 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.46, 

2

1

C
μ =0.69, 

3

1

C
μ =1.0, 

4

1

C
μ =0.10, 

5

1

C
μ =1.0, 

6

1

C
μ =0.10); 

2

C
μ =(

1

2

C
μ =0.46, 

2

2

C
μ =1.0, 

3

2

C
μ =0.69, 

4

2

C
μ =0.10, 

5

2

C
μ =1.0, 

6

2

C
μ =0.10); 

3

C
μ =(

1

3

C
μ =0.46, 

2

3

C
μ =1.0, 

3

3

C
μ =1.0, 

4

3

C
μ =0.10, 

5

3

C
μ =0.69, 

6

3

C
μ =0.10). 

 

Thus, the solution of fuzzy relational equations (7.38) for the first lower 

solution 
1

Aμ  can be represented in the form of intervals: 

1 1
( )AD μ ={ 1Cμ =0.46, 2Cμ =0.69, 3Cμ ∈ [0.69, 1.0], 4Cμ =0.10, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.10} 

∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ =0.69, 4Cμ =0.10, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.10} 

∪ { 1Cμ =0.46, 2Cμ ∈ [0.69, 1.0], 3Cμ ∈ [0.69, 1.0], 4Cμ =0.10, 5Cμ =0.69, 6Cμ =0.10}.      

(7.48) 
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For the second lower solution 
2

Aμ , a neural adjustment of the null solution 

(7.45) has yielded a fuzzy causes vector 
 

1 2 3 4 5 6

02 02 02 02 02 0202
( 0.23, 0.69, 0.83, 0.46, 0.97, 0.20)C C C C C C Cμ μ μ μ μ μ= = = = = = =μ , 

 

for which the value of the optimization criterion (7.14) has constituted F=0.1058.   
The resulting null solution has allowed adjusting the bounds in the solution 

(7.46) and generating the sets of solutions 2 2
( )AD μ , which is completely 

determined by the least solution 
 

Cμ =(  1Cμ =0.23, 2Cμ =0.69, 3Cμ =0.69, 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20) 
 

 

and the three upper solutions *
2 1 2 3{ , , }

C C C
D = μ μ μ   

 

1

C
μ =(

1

1

C
μ =0.23, 

2

1

C
μ =0.69, 

3

1

C
μ =1.0, 

4

1

C
μ =0.46, 

5

1

C
μ =1.0, 

6

1

C
μ =0.20); 

2

C
μ =(

1

2

C
μ =0.23, 

2

2

C
μ =1.0, 

3

2

C
μ =0.69, 

4

2

C
μ =0.46, 

5

2

C
μ =1.0, 

6

2

C
μ =0.20); 

3

C
μ =(

1

3

C
μ =0.23, 

2

3

C
μ =1.0, 

3

3

C
μ =1.0, 

4

3

C
μ =0.46, 

5

3

C
μ =0.69, 

6

3

C
μ =0.20). 

 

Thus, the solution of fuzzy relational equations (7.38) for the second lower 

solution 
2

Aμ  can be represented in the form of intervals: 

 

2 2
( )AD μ ={ 1Cμ =0.23, 2Cμ =0.69, 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20} 

∪ { 1Cμ =0.23, 2Cμ ∈ [0.69, 1.0], 3Cμ =0.69, 4Cμ =0.46, 5Cμ ∈ [0.69, 1.0], 6Cμ =0.20} 

∪ { 1Cμ =0.23, 2Cμ ∈ [0.69, 1.0], 3Cμ ∈ [0.69, 1.0], 4Cμ =0.46, 5Cμ =0.69, 6Cμ =0.20}.      

(7.49) 

Following the resultant solutions (7.47), (7.48), (7.49), the causes 2C , 3C  and 

5C  are the causes of the observed elevator state, since 2Cμ > 1Cμ , 3Cμ > 4Cμ , 
5Cμ > 6Cμ . The intervals of the values of the input variables for these causes can 

be defined with the help of the membership functions in Fig. 7.15,а: 
 
-  *

1x ∈ [44.4, 50.0]  r.p.s for  2C ;  

-  *
2x ∈ [0.020, 0.057] kg/cm2 for 3C ; 

-  *
3x ∈ [0.100, 0.150] mm  for  5C .  
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The solution obtained allows the final conclusions. Thus, the causes of the 
observed elevator state should be located and identified as the increase of the 
engine speed to 45-50 r.p.s, the decrease of the inlet pressure to 0.020 – 0.057 
kg/cm2, and the decrease of the feed change gear clearance to 100-150 mk. 

To test the fuzzy model we used the results of diagnosis for 192 elevators with 
different kinds of faults. The tuning algorithm efficiency characteristics for the 
testing data are given in Table 7.9. Attaining a 96% correctness of the diagnostics 
required 30 min of operation of the genetic algorithm and 7 min of operation of 
the neural network (Intel Core 2 Duo P7350 2.0 GHz). 

Table 7.9. Tuning algorithm efficiency characteristics 

Causes  
(diagnoses)

Number  
of cases  

in the data 
sample 

Probability of the correct diagnosis 

Before tuning After tuning 

 Null solution 
(genetic algorithm)

Refined diagnoses 
(neural network) 

1C  104 86 / 104=0.82 96 / 104=0.92 101 / 104=0.97 

2C  88 67 / 88=0.76 80 / 88=0.91 84 / 88=0.95 

3C  92 74 / 92=0.80 82 / 92=0.89 88 / 92=0.95 

4C  100 70 / 100=0.70 93 / 100=0.93 97 / 100=0.97 

5C  122 103 / 122=0.84 109 / 122=0.89 117 / 122=0.96 

6C  70 51 / 70=0.73 61 / 70=0.87 68 / 70=0.97 
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Chapter 8 
Fuzzy Relations Extraction from Experimental 
Data 

In this chapter, a problem of fuzzy genetic object identification expressed 
mathematically in terms of fuzzy relational equations is considered.  

Fuzzy relational calculus [1, 2] provides a powerful theoretical background for 
knowledge extraction from data. Some fuzzy rule base is modelled by a fuzzy 
relational matrix, discovering the structure of the data set [3 – 5]. Fuzzy relational 
equations, which connect membership functions of input and output variables, are 
built on the basis of a fuzzy relational matrix and Zadeh’s compositional rule of 
inference [6, 7]. The identification problem consists of extraction of an unknown 
relational matrix which can be translated as a set of fuzzy IF-THEN rules. In fuzzy 
relational calculus this type of problem relates to inverse problem resolution for 
the composite fuzzy relational equations [2]. Solvability and approximate 
solvability conditions of the composite fuzzy relational equations are considered 
in [2, 8, 9]. While the theoretical foundations of fuzzy relational equations are well 
developed, they call for more efficient use of their potential in system modeling. 
The non-optimizing approach [10] is widely used for fuzzy relational 
identification. Such adaptive recursive techniques are of interest for the most of 
on-line applications [11 – 13]. Under general conditions, an optimization 
environment is the convenient tool for fuzzy relational identification [14]. An 
approach for identification of fuzzy relational models by fuzzy neural networks is 
proposed in [15 – 17]. 

The genetic algorithm as a tool to solve the fuzzy relational equations was 
proposed in [18]. The genetic algorithm [19 – 21] allows us to solve the inverse 
problem which consists of the restoration of the unknown values of the vector of 
the unobserved parameters through the known values of the vector of the observed 
parameters and the known fuzzy relational matrix. In this chapter, the genetic 
algorithm [19 – 21] is adapted to identify the relational matrix for the given 
inputs-outputs data set. The algorithm for fuzzy relation matrix identification is 
accomplished in two stages. At the first stage, parameters of membership 
functions included in the fuzzy knowledge base and rules weights are defined 
using the genetic algorithm [22]. In this case, proximity of linguistic 
approximation results and experimental data is the criterion of extracted relations 
quality. It is shown here that in comparison with [22] the non-unique set of IF-
THEN rules can be extracted from the given data. Following [18 – 21], at the 
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second stage the obtained null solution allows us to arrange the genetic search for 
the complete solution set, which is determined by the unique maximum matrix and 
a set of minimum matrices. After linguistic interpretation the resulting solution 
can be represented as a set of possible rules collections, discovering the structure 
of the given data.  

The approach proposed is illustrated by the computer experiment and the 
example of medical diagnosis. This chapter is written on the basis of [23]. 

8.1   “Multiple Inputs – Multiple Outputs” Object 

Let us consider an object 
 

( )f=Y X                                                               (8.1) 
 

with n inputs 1 2( , ,..., )nx x x=X  and m outputs 1 2( , ,..., )my y y=Y , for which the 

following is known: 

- intervals of inputs and outputs change 

[ , ]ii ix x x∈ , 1,i n= ; [ , ]j jj
y y y∈ , 1,j m= ; 

 

- classes of decisions jpe  for evaluation of output variable jy , 1,j m= , formed 

by digitizing the range [ , jj
y y ] into jq  levels 

 

[ , jj
y y ] = [

1

1,

j

jj

e

y y
�	


)∪…∪[ ,

jp

jpjp

e

y y
��	�


)∪…∪[ ,
j

jq j

jjq

e

y y
��	�


]; 

- training data in the form of L pairs of “inputs-outputs” experimental data 
 

ˆ ˆ,s sX Y ,  1,s L= , 
 

where 1 2
ˆ ˆ ˆ ˆ( , ,..., )s s s

s nx x x=X  and 1 2
ˆ ˆ ˆ ˆ( , ,..., )s s s

s my y y=Y  are the vectors of the values of 

the input and output variables in the experiment number s.  
It is necessary to transfer the available training data into the following system 

of IF-THEN rules [7]: 

Rule l :      IF      1x = 1la   AND … ix = ila    AND … nx = nla   

       THEN 1y = 1lb   AND … jy = jlb   AND … my = mlb , 1,l N= ,         (8.2) 

where ila  is the fuzzy term describing a variable ix  in rule l , 1,i n= ; 

     jlb  is the fuzzy term describing a variable jy  in rule l , 1,j m= ; 

     N  is the number of rules.  
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8.2   Fuzzy Rules, Relations and Relational Equations 

This fuzzy rule base is modelled by the fuzzy relational matrix presented in Table 8.1.  

Table 8.1. Fuzzy knowledge base 

IF inputs THEN outputs 

 

1x  … ix  … nx  

1y  … jy  … my  

11e … 11qe … 1je … jjqe … 1me … mmqe  

1E … kE … ME  

1C  11a  … 1ia  … 1na  11r … 1kr … 1Mr  

… … …  … … … … … … … 

lC  1la  … ila  … nla  1lr … lkr … lMr  

… … …  … … … … … … … 

NC  1Na  … iNa  … nNa  1Nr … Nkr … NMr  

 
This relational matrix can be translated as a set of fuzzy IF-THEN rules 

Rule l : IF lC=X  THEN jy = jpe  with weight ,l jpr ,                  (8.3) 

where lC  is the combination of input terms in rule l , 1,l N= ;  

,l jpr  is the relation l jpC e× , 1,j m= ,  1, jp q= , interpreted as the rule weight. 

We shall redenote the set of classes of output variables as 

1 2{ , ,..., }ME E E ={
111 12 1 1 2, ,..., ,..., , ,...,

mq m m mqe e e e e e }, where 1 2 ... mM q q q= + + + .  

In the presence of relational matrix  
 

l kC E⊆ ×R =[ lkr , 1,l N= , 1,k M= ] 
 

the “inputs-outputs” dependency can be described with the help of Zadeh’s 
compositional rule of inference [6] 

 ( )Eμ Y = ( )Cμ X  D  R ,                                           (8.4)      

where ( )Cμ X = 1 2( , ,..., )NCC Cμ μ μ  is the vector of  membership degrees of vector 

X to input combinations lC ; 

( )Eμ Y = 1 2( , ,..., )ME E Eμ μ μ  is the vector of membership degrees of variables 

jy  to classes  jpe ; 

D  is the operation of max-min composition [6]. 
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The system of fuzzy relational equations is derived from relation (8.4):  

( )jpe

jyμ = 1 2
1, 2, ,( ( ) ) ( ( ) ) ... ( ( ) )NCC C

jp jp N jpr r rμ μ μ∧ ∨ ∧ ∨ ∨ ∧X X X , 

where 

( )lCμ X = 1 2
1 2( ) ( ) ... ( )l l nla a a

nx x xμμ μ∧ ∧ ∧ , 1,l N= ; 
or 

( )jpe

jyμ = ,
1,1,

(( ( )) )ila
i l jp

i nl N
x rμ

==
∨ ∧ ∧ .                           (8.5) 

 

Here  

( )ila
ixμ  is a membership function of a variable ix  to the fuzzy term ila ; 

    ( )jpe

jyμ  is a membership function of a variable jy  to the class jpe . 
 

Taking into account the fact that operations ∨ and ∧ are replaced by max and 
min in fuzzy set theory, system (8.5) is rewritten in the form 

( )jpe

jyμ = ( ),
1,1, 

max min min[ ( )] ,ila
i l jp

i nl N
x rμ

==

⎛ ⎞⎜ ⎟
⎝ ⎠

 .                        (8.6) 

We use a bell-shaped membership function model of variable u to arbitrary 
term T in the form [22]: 

                               
2

1
( ) ,

1

T u
u

μ
β

σ

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

                                          (8.7)  

where β  is a coordinate of function maximum, ( ) 1Tμ β = ; σ
 
is a parameter of 

concentration.  
The operation of defuzzification is defined in [22] as follows: 

1

1

( )

( )

j

jp

j

jp

q
e

jjp
p

j q
e

j
p

y y

y

y

μ

μ

=

=

⋅
=
∑

∑
  .                                            (8.8) 

Relationships (8.6) – (8.8) define the generalized fuzzy model of an object (8.1) 
as follows: 

                                   
( , , , ),RF=Y X R Β Ω

                                             
(8.9)

     
where 1 2( , ,.., )Kβ β β=Β  and 1 2( , ,..., )Kσ σ σ=Ω  are the vectors of

 
β - and σ - 

parameters for fuzzy terms membership functions in (8.3);  
K is the total number of fuzzy terms; 

RF  is the operator of inputs-outputs connection, corresponding to formulae (8.6)–(8.8). 



8.3   Optimization Problem for Fuzzy Relations Extraction 239 

8.3   Optimization Problem for Fuzzy Relations Extraction 

Let us impose limitations on the knowledge base (8.2) volume in the following 
form: 

N N≤ , 

where N  is the maximum permissible total number of rules.  

So as content and number of linguistic terms ila  ( 1,i n= , 1,l N= ) used in 

fuzzy knowledge base (8.2) are not known beforehand then we suggest to interpret 

them on the basis of membership functions (8.7) parameter values ( ilaβ , ilaσ ). 

Therefore, knowledge base (8.2) synthesis is reduced to obtaining the matrix of 
parameters shown in Table 8.2 [22].  

Table 8.2. Knowledge base parameters matrix 

IF inputs THEN outputs 
 

1x  … nx  

1y  … jy  … my  

11e … 11qe … 1je … jjqe … 1me … mmqe  

1E … kE … ME  

1C  ( 11aβ , 11aσ ) … ( 1naβ , 1naσ ) 11r … 1kr … 1Mr  

… … … … … … … … … 

lC  ( 1laβ , 1laσ ) … ( nlaβ , nlaσ ) 1lr … lkr … lMr  

… … … … … … … … … 

NC  ( 1Naβ , 1Naσ ) … ( nNaβ , nNaσ ) 1Nr … Nkr … NMr  

 
This problem can be formulated as follows. It is necessary to find such a matrix 

(Table 8.2), which satisfies the limitations imposed on knowledge base volume and 
provides the least distance between model and experimental outputs of the object: 

 

2

, ,
1

ˆ ˆ[ ( , , , ) ] min
L

R s s
s

F
=

− =∑
R Β Ω

X R Β Ω Y  .                                (8.10) 

If 0R  is a solution of the optimization problem (8.10), then 0R  is the exact 

solution of the composite system of fuzzy relational equations: 

ˆ Aμ ( ˆ
sX ) D R = ˆ Bμ ( ˆ

sX ),                                          (8.11) 
 

where the experimental input and output matrices 



240 Chapter 8 Fuzzy Relations Extraction from Experimental Data 

1

1

1 1
ˆ ˆˆ ˆ( ) ... ( )

ˆ ... ... ...

ˆ ˆˆ ˆ( ) ... ( )

N

N

CC

A

CC
L L

μ μ

μ μ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

X X

μ

X X

 , 

1

1

1 1
ˆ ˆˆ ˆ( ) ... ( )

ˆ ... ... ...

ˆ ˆˆ ˆ( ) ... ( )

M

M

E E

B

E E
L L

μ μ

μ μ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

X X

μ

X X

 

are obtained for the given training data. 

Following [2], the system (8.11) has a solution set S ( ˆ Aμ , ˆ Bμ ), which is 

determined by the unique maximal solution R  and the set of minimal solutions 
*S ( ˆ Aμ , ˆ Bμ )= { , 1, }I I T=R : 

 

                                   *S  ( ˆ Aμ , ˆ Bμ ) =
*

[ , ]
I

I

S∈R

R R∪ .                                 (8.12) 

Here R =[ ]lkr  and IR =[ I
lkr ] are the matrices of the upper and lower bounds of 

the fuzzy relations lkr , where the union is taken over all I ∈R *S ( ˆ Aμ , ˆ Bμ ). 

The problem of solving fuzzy relational equations (8.11) is formulated as 

follows [19 – 21]. Fuzzy relation matrix [ ]lkr=R ,  1,l N= ,  1,k M= , should 

be found which satisfies the constraints [0,1]lkr ∈  and also provides the least 

distance between model and experimental outputs of the object; that is, the 
minimum value of the criterion (8.10). 

Following [19 – 21], formation of the intervals (8.12) is accomplished by way 
of solving a multiple optimization problem (8.10) and it begins with the search for 

its null solution 0
0 [ ]lkr=R , where 0

lklkr r≤ ,  1,l N= ,  1,k M= . The upper 

bound ( lkr ) is found in the range 0[ ,1]lkr . The lower bound ( I
lkr ) for 1I =  is found 

in the range 0[0, ]lkr , and for 1I >  in the range [0, ]lkr , where the minimal 

solutions JR , J I< , are excluded from the search space. 

Let ( ) [ ( )]lkt r t=R  be some t-th solution of optimization problem (8.10), that is 

0( ( )) ( )F t F=R R , since for all ∈R S ( ˆ Aμ , ˆ Bμ ) we have the same value of 

criterion (8.10). While searching for upper bounds lkr  it is suggested that 

( ) ( 1)lk lkr t r t≥ − , аnd while searching for lower bounds I
lkr  it is suggested that 

( ) ( 1)lk lkr t r t≤ −  (Fig. 8.1).   

The definition of the upper (lower) bounds follows the rule: if ( ) ( 1)t t≠ −R R , 

then lkr  ( I
lkr )= ( )lkr t . If ( ) ( 1)t t= −R R , then the search for the interval solution 

[ , ]IR R  is stopped. Formation of intervals (8.12) will go on until the condition 

I J≠R R , J I< , has been satisfied.  

The hybrid genetic and neuro approach is proposed for solving optimization 
problem (8.10).  
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 0                   1

                                                        0
lkr     1

lkr    ….     t
lkr          

 
a) 
 

0                   1 

                    t
lkr     …   1

lkr              0
lkr                                   

 
b) 
 

   
 0                   1 

         t
lkr        I

lkr        …      1
lkr      0

lkr                 lkr                 

 
c) 

Fig. 8.1. Search for the upper (а) and lower bounds of the intervals for 1I =  (b) and  
 1I > (c) 

8.4   Genetic Algorithm for Fuzzy Relations Extraction 

To describe the chromosome for the parameters matrix (Table 8.2), we use the 
string shown in Fig. 8.2, where lC  is the code of IF-THEN rule with number l , 

1,l N= . The chromosome needed in the genetic algorithm for solving fuzzy 

relational equations (8.11) includes only the codes of parameters lkr ,   1,l N= , 

  1,k M= . Parameters of membership functions are defined simultaneously with 
the null solution.  

The crossover operation is defined in Fig. 8.3, and is carried out by way of 

exchanging chromosomes parts inside each rule lC  ( 1,l N= ) and inside matrix of 

rules weights R . The total number of exchange points is equal to 1N + . 
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A mutation operation ( Mu ) implies random change (with some probability) of 
chromosome elements: 

( ) ([0, 1])lkMu r RANDOM= , 

( ) ([ , ])ila
iiMu RANDOM x xβ = , ( ) ( [ , ] )

ililil
aaaMu RANDOMσ σ σ= , 

where ([ , ])RANDOM x x  denotes a random number within the interval [ , ]x x . 

The fitness function is evaluated on the basis of criterion (8.10). 

If ( )P t  are chromosomes-parents and ( )C t  are chromosomes-offsprings on a 

t -th iteration, then the genetic procedure of optimization will be carried out 
according to the following algorithm [24, 25]: 

 
begin 
    t:=0;  
    To set the initial population ( )P t ; 

    To evaluate the ( )P t  for the null solution using criterion (8.10); 

    while (no condition of null solution formation) do 
       To generate the C(t) by operation of cross-over with  P(t); 
       To evaluate the ( )C t  for the null solution using criterion (8.10); 

       To select the population ( 1)P t +  from ( )P t  and ( )C t ;   

       t:=t+1; 
   end 
   while (no condition of interval set formation) do 
       To generate the C(t) by operation of cross-over with  P(t); 
       To evaluate the ( )C t  for the bounds of intervals (8.12) using 

criterion (8.10); 
       To select the population ( 1)P t +  from ( )P t  and ( )C t ;  

       t:=t+1; 
    end 
end  
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Fig. 8.2. Coding of parameters matrix  

 



8.5   Neuro-fuzzy Network for Fuzzy Relations Extraction 243 

 

 
… 

  
… 

  

    

   

      

   

 

 

 

 1C  lC  NC  

      

 ... 
 

... 

la1a1  la1a
 ilaia ilaa

 nlana
 nlaa

 

 

   
... 

     
... 

   . . .  . . . 

exchange 
points la1a1  la1a

 ilaia
 ilaa

 nlana
 nlaa

 

1C  lC  NC  
11r  

 
... NMr  1Nr  

 
... 

 
... Mr1  

11r  
 

... NMr  1Nr  
 

... Mr1  
  

... 

 

1C  lC  NC  

   
... 

     
... 

   
... 

     
... 

 . . .  . . . 

   ...  . . . 

la1a1  la1a
 ilaia

 ilaa
 nlana

 nlaa
 

la1a1  la1a
 

ilaia
 ilaa

 nlana
 nlaa

 

1C  lC  NC  

11r  
 

... NMr  1Nr  

11r  
 

... NMr  1Nr  

 
... 

 
... 

 
... 

 
... 

Mr1  

Mr1  

 

Fig. 8.3. Crossover operation ( ,  - chromosomes-parents, ,    - chromosomes-
offsprings ) 

8.5   Neuro-fuzzy Network for Fuzzy Relations Extraction 

Let us impose limitations on the knowledge base (8.2) volume in the following 
form: 

1 1k k≤ , 2 2k k≤ , ..., n nk k≤ , 

where ik  is the maximum permissible total number of fuzzy terms describing a 

variable ix , 1,i n= . 

This allows embedding system (8.2) into the special neuro-fuzzy network, 
which is able to extract knowledge [16, 21]. The neuro-fuzzy network for 
knowledge extraction is shown in Fig. 8.4, and the nodes are presented in 
Table 3.1.  
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Fig. 8.4. Neuro-fuzzy network for knowledge extraction   

As is seen from Fig. 8.4 the neuro-fuzzy network has the following structure:  

layer 1 for object identification inputs (the number of nodes is equal to n),  
layer 2 for fuzzy terms used in the knowledge base (the number of nodes is 

equal to 1 2 ... nk k k+ + + ),  

layer 3 for strings-conjunctions (the number of nodes is equal to 1 2 ... nk k k⋅ ⋅ ⋅ ),  

layer 4 for fuzzy rules making classes (the layer is fully connected, the number 
of nodes is equal to the number of output classes M ), 

layer 5 for a defuzzification operation for each output.  
 
To train the parameters of the neuro-fuzzy network, the recurrent relations 

 

( 1) ( )
( )
t

lk lk
lk

r t r t
r t

εη ∂
+ = −

∂
 ; 

( 1) ( )
( )

il il

il

a a t
a

t t
t

εβ β η
β
∂

+ = −
∂

;   ( 1) ( )
( )

il il

il

a a t
a

t t
t

εσ σ η
σ
∂

+ = −
∂

,  (8.13) 
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are used which minimize the criterion  

21
ˆ( )

2t t ty yε = − , 

where ˆty
 
and ty  are the experimental and the model outputs of the object at the t-

th step of training;  

( )lkr t  are fuzzy relations at the t-th step of training; 
ilaβ (t), ilaσ (t) are parameters for the fuzzy terms membership functions   at the 

t-th step of training. 

η is a parameter of training [26].  
 

The partial derivatives appearing in recurrent relations (8.13) can be obtained 
according to the results from Section 7.8. 

8.6   Computer Simulations 

Experiment 1 

The aim of the experiment is to generate the system of IF-THEN rules for the 
target “input ( x ) – output ( y )” model presented in Fig. 8.5.  

 

(1.8 0.8)(5 1.1)(4 2.9)(3 2.1)(9.5 9.5)(3 0.05) 20

80

x x x x x x
y

+ − − − − − += .   (8.14) 

The training data in the form of the interval values of input and output variable 
is presented in Table 8.3.  

 

y  

x
 

Fig. 8.5. Input-output model-generator 
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Table 8.3. Training data ( ˆsx , ˆsy ) 

s  
Input Output 

1x  1y  

1 [0, 0.1] [0.22, 0.32] 
2 [0.1, 0.2] [0.32, 0.27] 
3 [0.2, 0.3] [0.27, 0.17] 
4 [0.3, 0.4] [0.17, 0.12] 
5 [0.4, 0.5] [0.12, 0.14] 
6 [0.5, 0.6] [0.14, 0.21] 
7 [0.6, 0.7] [0.21, 0.25] 
8 [0.7, 0.8] [0.25, 0.22] 
9 [0.8, 0.9] [0.22, 0.14] 

10 [0.9, 1.0] [0.14, 0.25] 
 

The total number of fuzzy terms for the input variable is limited to six. The 
total number of classes for the output variable is limited to four. 

The classes for output variable evaluation are formed as follows: 
 

 [ ,y y ] = [

11

0.10, 0.15
e

��	�
 )∪ [

12

0.15, 0.20)
e

��	�
 ]∪ [

13

0.20, 0.25
e

��	�
 ]∪ [

14

0.25, 0.35
e

��	�
 ], 

The null solution 0R  presented in Table 8.4 together with the parameters of the 

knowledge matrix is obtained using the genetic algorithm. 

Table 8.4. Fuzzy relational matrix (null solution) 

IF input x  
THEN output y  

11e  12e  13e  14e  

1C  (0, 0.14) 0.3 0.9 0.7 0.1 

2C  (0.09, 0.14) 0.2 0.2 0.4 0.9 

3C  (0.40, 0.12) 0.8 0.3 0.3 0.1 

4C  (0.72, 0.12) 0.1 0.3 0.9 0.2 

5C  (0.92, 0.11) 0.9 0.6 0.2 0.3 

6C  (1.0, 0.07) 0.3 0.9 0.6 0.1 
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The obtained null solution allows us to arrange for the genetic search for the 

solution set of the system (8.11), where the matrices ˆ ˆ( )A
sxμ  and ˆ ˆ( )B

sxμ  for the 

training data take the following form: 

 
  1ˆ Cμ  2ˆ Cμ  3ˆ Cμ  4ˆ Cμ  5ˆ Cμ  6ˆ Cμ  

 1̂x  [0.67, 1.0] [0.75, 1.0] [0.09, 0.14][0.03, 0.04][0.01, 0.02] [0, 0.01] 

 2x̂ [0.33, 0.67] [0.62, 0.98] [0.14, 0.26][0.04, 0.05] 0.02 0.01 

 3x̂  [0.18, 0.33] [0.31, 0.62] [0.26, 0.59][0.05, 0.08][0.02, 0.03] 0.01 

ˆ Aμ = 
4x̂ [0.11, 0.18] [0.17, 0.31] [0.59, 1.0] [0.08, 0.17][0.03, 0.04] 0.01 

5x̂  [0.07, 0.11] [0.10, 0.17] [0.59, 1.0] [0.17, 0.30][0.04, 0.06][0.01, 0.02] 

 6x̂ [0.05, 0.07] [0.07, 0.10] [0.25, 0.59][0.30, 0.50][0.06, 0.11][0.02, 0.03] 

 7x̂ [0.04, 0.05] [0.05, 0.07] [0.17, 0.26][0.50, 0.97][0.11, 0.20][0.03, 0.05] 

 8x̂  [0.03, 0.04] [0.04, 0.05] [0.08, 0.17] [0.69, 1.0] [0.20, 0.46][0.05, 0.11] 

 9x̂ [0.02, 0.03] [0.03, 0.04] [0.05, 0.08][0.33, 0.69][0.46, 0.97][0.11, 0.33] 

 10x̂ 0.02 [0.02, 0.03] [0.04, 0.05][0.16, 0.33] [0.70, 1.0] [0.33, 1.0] 

 

  1ˆ Eμ  2ˆ Eμ  3ˆ Eμ  4ˆ Eμ  

 1̂x  0.30 [0.67, 0.90] [0.67, 0.70] [0.75, 0.90] 

 2x̂  0.30 [0.33, 0.67] [0.40, 0.67] [0.62, 0.90] 

 

ˆ Bμ = 

3x̂  [0.30, 0.59] [0.30, 0.33] [0.31, 0.40] [0.31, 0.62] 

4x̂  [0.59, 0.80] 0.30 [0.30, 0.31] [0.17, 0.31] 

5x̂  [0.59, 0.80] 0.30 0.30 [0.17, 0.20] 

 6x̂  [0.26, 0.59] 0.30 [0.30, 0.50] 0.20 

 7x̂  [0.17, 0.26] 0.30 [0.50, 0.90] 0.20 

 8x̂  [0.20, 0.46] [0.30, 0.46] [0.69, 0.90] [0.20, 0.30] 

 9x̂  [0.46, 0.90] [0.46, 0.60] [0.33, 0.69] 0.30 

 10x̂  [0.70, 0.90] [0.60, 0.90] [0.33, 0.60] 0.30 

 
The complete solution set for the fuzzy relation matrix is presented in Table 

8.5, where input x  is described by fuzzy terms Low (L), lower than Average (lA), 
Average (A), higher than Average (hA), lower than High (lH), High (H); output y  

is  described by fuzzy terms higher than Low (hL), lower than Average (lA),  
Average (A), High (H).  
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Table 8.5. Fuzzy relational matrix (complete solution set) 

IF input x  
THEN output y  

hL lA A H 

1C  L 0.30 0.90 0.70 [0, 0.75] 

2C  lA 0.30 0.30 0.40 0.90 

3C  A 0.80 0.30 0.30 [0, 0.20] 

4C  hA [0, 0.26] 0.30 [0.69, 0.90] 0.20 

5C  lH 0.90 0.60 [0.33, 0.60]∪ [0, 0.60] 0.30 

6C  H [0, 0.70] [0.60, 0.90] [0, 0.60]∪ [0.33, 0.60] [0, 0.30] 

 
The obtained solution provides the approximation of the object shown in Fig. 8.6. 

 
y  

x  
 

Fig. 8.6. Input-output model extracted from data 

The resulting solution can be linguistically interpreted as the set of the two 
possible rules bases (See Table 8.6), which differ in the fuzzy terms describing 
output y  in rule 6 with overlapping weights. 
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Table 8.6. System of IF-THEN rules 

Rule IF x  THEN y  

1 L lA 
2 lA H 
3 A hL 
4 hA A 
5 lH hL 
6 H hL or  lA 

 
Experiment 2 

The aim of the experiment is to generate the system of IF-THEN rules for the 

target “two inputs ( 1 2,x x ) – two outputs ( 1 2,y y )” model presented in Fig. 8.7: 

           1 1 1 2

1
( , ) (2 0.9)  (7 1)  (17 19)  (15 2)

10
y f x x z z z z= = − − − − ,              (8.15) 

2 2 1 2 1

1
( , ) 1

2
y f x x y= = − + , 

where 
2 2

1 2( 3.0) ( 2.5)

40

x x
z

− + −
= . 

The training data in the form of the interval values of input and output variables 
is presented in Table 8.7.  

 

 

y  

2x  

1x  

1y  

2y  

 

Fig. 8.7. Inputs-outputs model-generator     
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Table 8.7. Training data ( ˆ
sX , ˆ

sY ) 

s 

Inputs  Outputs 

1x  2x  1y  2y  

1 [0.2, 1.2] [0.3, 1.6] [0, 1.0] [0.5, 1.0] 
2 [0.2, 1.2] [1.3, 4.0] [0, 0.8] [0.6, 1.0] 
3 [0.7, 3.0] [0.3, 1.6] [0, 2.3] [-0.15, 1.0] 
4 [0.7, 3.0] [1.3, 4.0] [0, 3.4] [-0.7, 1.0] 
5 [3.0, 5.3] [0.3, 1.6] [0, 2.3] [-0.15, 1.0] 
6 [3.0, 5.3] [1.3, 4.0] [0, 3.4] [-0.7, 1.0] 
7 [4.8, 5.8] [0.3, 1.6] [0, 1.0] [0.5, 1.0] 
8 [4.8, 5.8] [1.3, 4.0] [0, 0.8] [0.6, 1.0] 

 
The total number of fuzzy terms for input variables is limited to three. The total 

number of combinations of input terms is limited to six. 
The classes for output variables evaluation are formed as follows:  

[ 11
,y y ] = [N

11

0, 0.2
e

)∪ [

12

0.2,1.2)
e

��	�
 ]∪ [

13

1.2, 3.4
e

�	
 ],    

[ 22
,y y ] = [

21

0.7, 0
e

−�	
 )∪ [N
22

0, 1.2
e

]. 

The null solution 0R  presented in Table 8.8 together with the parameters of the 

knowledge matrix is obtained using the genetic algorithm. 

Table 8.8. Fuzzy relational matrix (null solution) 

  IF inputs 
THEN outputs 

1y  2y  

 
1x  2x  11e  12e  13e  21e  22e  

C1 (0.03, 0.72) (0.01, 1.10) 0.15 0.78 0.24 0.52 0.48 

C2 (3.00, 1.77) (0.02, 1.14) 0.85 0.16 0.02 0.76 0.15 

C3 (5.96, 0.71) (0.04, 0.99) 0.10 0.92 0.27 0.50 0.43 

C4 (0.00, 0.75) (2.99, 2.07) 0.86 0.04 0.30 0.80 0.30 

C5 (3.02, 1.80) (2.97, 2.11) 0.21 0.11 0.10 0.15 0.97 

C6 (5.99, 0.74) (3.02, 2.10) 0.94 0.08 0.30 0.75 0.30 
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The obtained null solution allows us to arrange for the genetic search for the 

solution set of the system (8.11), where the matrices ˆˆ ( )A
sμ X  and ˆˆ ( )B

sμ X  for the 

training data take the following form: 
 

  1ˆ Cμ  2ˆ Cμ  3ˆ Cμ  4ˆ Cμ  5ˆ Cμ  6ˆ Cμ  

 1X̂ [0.16, 0.74][0.16, 0.52] 0 
[0.33, 
0.61] 

[0.28, 0.52] 0 

 2X̂ [0.21, 0.46][0.21, 0.46] 0 
[0.35, 
0.90] 

[0.28, 0.52] 0 

 3X̂ [0, 0.50] [0.16, 0.74] 0 [0, 0.50] [0.33, 0.61] 0 

ˆ Aμ  = 
4X̂ [0, 0.46] [0.21, 0.46] 0 [0, 0.50] [0.37, 0.95] 0 

5X̂ 0 [0.16, 0.74] [0, 0.50] 0 [0.33, 0.61] [0, 0.50] 

 6X̂ 0 [0.21, 0.46] [0, 0.46] 0 [0.34, 0.95] [0, 0.50] 

 7X̂ 0 [0.16, 0.52][0.16, 0.74] 0 [0.28, 0.52][0.33, 0.61] 

 8X̂ 0 [0.21, 0.46][0.21, 0.46] 0 [0.28, 0.52][0.35, 0.90] 

 

  1ˆ Eμ  2ˆ Eμ  3ˆ Eμ  4ˆ Eμ  5ˆ Eμ  

 1X̂  [0.33, 0.61] 
[0.16, 
0.74] 

[0.30, 
0.52] 

[0.33, 0.61] [0.30, 0.52] 

 2X̂ [0.35, 0.86] 
[0.21, 
0.46] 

[0.30, 
0.52] 

[0.35, 0.80] [0.30, 0.52] 

 

ˆ Bμ = 

3X̂  [0.21, 0.74] 
[0.16, 
0.50] 

[0.33, 
0.61] 

[0.16, 0.74] [0.33, 0.61] 

4X̂ [0.21, 0.46] 
[0.16, 
0.46] 

[0.37, 
0.95] 

[0.21, 0.50] [0.37, 0.95] 

5X̂  [0.21, 0.74] 
[0.16, 
0.50] 

[0.33, 
0.61] 

[0.16, 0.74] [0.33, 0.61] 

 6X̂ [0.21, 0.50] 
[0.16, 
0.46] 

[0.34, 
0.95] 

[0.21, 0.50] [0.34, 0.95] 

 7X̂ [0.33, 0.61] 
[0.16, 
0.74] 

[0.30, 
0.52] 

[0.33, 0.61] [0.30, 0.52] 

 8X̂  [0.35, 0.90] 
[0.21, 
0.46] 

[0.30, 
0.52] 

[0.35, 0.75] [0.30, 0.52] 

 
The complete solution set for the fuzzy relation matrix is presented in Table 8.9, 

where input 1x  is described by fuzzy terms Low (L), Average (A), High (H); input 
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2x  is described by fuzzy terms Low (L), High (H); output 1y  is described by fuzzy 

terms higher than Low (hL), lower than Average (lA), High (H); output 2y  is 

described by fuzzy terms Low (L), lower than Average (lA).  

Table 8.9. Fuzzy relational matrix (complete solution set) 

IF inputs 
THEN outputs 

y1 y2 

 1x  2x  hL lA H lA  L 

C1 L L [0, 0.21] [0.74, 1.0] [0, 0.30] [0.33, 0.61] [0, 0.52] 

C2 A L [0.74, 1.0] 
[0, 0.16] 

∪ 0.16 
[0, 0.30] [0.74, 1.0] [0, 0.30] 

C3 H L [0, 0.21] [0.74, 1.0] [0, 0.30] [0.33, 0.61] [0, 0.52] 

C4 L H 0.86 [0, 0.16] 0.30 0.80 0.30 

C5 A H 0.21 
0.16∪  

[0, 0.16] 
[0.95, 1.0] [0, 0.16] [0.97, 1.0] 

C6 H H [0.90, 1.0]  [0, 0.16] 0.30 0.75 0.30 

 
The obtained solution provides the approximation of the object shown in Fig. 8.8. 
 

y  

2x  

1x  

1y  

2y  

 

Fig. 8.8. Inputs-outputs model extracted from data 
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The resulting solution can be linguistically interpreted as the set of the four 
possible rules bases (See Table 8.10), which differ in the fuzzy terms describing 
output 2y  in rule 1 and rule 3 with overlapping weights. 

Table 8.10. System of IF-THEN rules 

Rule 
IF inputs THEN outputs 

1x  2x  1y  2y  

1 L L lA lA or L 
2 A L hL lA 
3 H L lA lA or L 
4 L H hL lA 
5 A H H L 
6 H H hL lA 

8.7   Example 7: Fuzzy Relations Extraction for Heart Diseases 
Diagnosis  

The aim is to generate the system of IF-THEN rules for diagnosis of heart 
diseases. Input parameters are (variation ranges are indicated in parentheses):  
 

1x – aortic valve size (0.75 – 2.5 cm 2); 

2x – mitral valve size (1 – 2 cm 2);  

3x – tricuspid valve size (0.5 – 2.7 cm 2);    

4x – lung artery pressure (65 – 100 mm Hg).  
 

Output parameters are:  
 

1y – left ventricle size (11–14 mm);  

2y – left auricle size (40–70 mm); 

3y – right ventricle size (36–41 mm);  

4y – right auricle size (38–45 mm). 
  

The training data obtained in the Vinnitsa Clinic of Cardiology is represented in 
Table 8.11 [27]. 

In current clinical practice, the number of combined heart diseases (aortic-mitral, 

mitral-tricuspid, mitral with lung hypertension etc.) is limited to six ( 6N = ). 
The classes for output variables evaluation are formed as follows:  

[ 11
,y y ] = [N

11

11, 12
e

)∪ [N
12

13, 14
e

],    [ 22
,y y ] = [N

21

41, 50
e

)∪ [N
22

50, 70
e

], 

[ 33
,y y ] = [N

31

36, 38
e

)∪ [N
32

38, 41
e

],   [ 44
,y y ] = [N

41

38, 40
e

)∪ [N
42

40, 45
e

]. 
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Table 8.11. Training data 

 
s 

Input parameters Output parameters 

1x  2x  3x  4x  1y  2y  3y  4y  

1 0.75-2 2 2 65-69 12-14 41-44 36 38 
2 2.0-2.5 2 2 65-69 11-13 40-41 36 38 
3 2.0-2.5 1-2 2 71-80 11 40 38-40 40-45 
4 2.0-2.5 2 2 71-80 11 50-70 37-38 38-40 
5 2.0-2.5 2 0.5-2 72-90 11-12 60-70 40-41 40-45 
6 2.0-2.5 1-2 2-2.7 80-90 11-12 40 40-41 38 
7 2.0-2.5 2 2 80-100 11 50-60 36 38 
8 2.0-2.5 1-2 2-2.7 80-100 11 40 40-41 38-40 

 
 

In clinical practice these classes correspond to the types of diagnoses 1je  low 

inflation and 2je  dilation (hypertrophy) of heart sections 1 4y y÷ . The aim of the 

diagnosis is to translate a set of specific parameters 1 4x x÷  into decision jpe  for 

each output 1 4y y÷ . 

The null solution 0R  presented in Table 8.12 together with the parameters of 

the knowledge matrix is obtained using the genetic algorithm. 

Table 8.12. Fuzzy relational matrix (null solution) 

IF inputs THEN outputs 

1x  2x  3x  4x  
1y  2y  3y  4y  

11e  12e  21e  22e  31e  32e  41e  42e  

(0.75, 
1.30) 

(2.00, 
0.63)

(2.35, 
0.92) 

(65.54, 
8.81) 

0.21 0.95 0.76 0.16 0.95 0.10 0.90 0.10 

(2.50, 
0.95) 

(2.00, 
0.65)

(2.44, 
1.15) 

(64.90, 
9.57) 

0.40 0.63 0.93 0.15 0.90 0.12 0.85 0.06 

 (2.52, 
1.04) 

(1.00, 
0.82)

(2.32, 
0.88) 

(69.32, 
10.23) 

0.92 0.20 0.86 0.08 0.31 0.75 0.14 0.82 

(2.55, 
0.98) 

(2.00, 
0.72)

(2.36, 
0.90) 

(95.07, 
21.94) 

0.90 0.15 0.24 0.59 0.55 0.02 0.64 0.26 

(2.51, 
1.10) 

(1.92, 
0.75)

(0.50, 
0.90) 

(100.48,
26.14) 

0.85 0.18 0.12 0.95 0.10 0.90 0.21 0.93 

(2.55, 
0.96) 

(1.00, 
0.94)

(2.30, 
1.20) 

(95.24, 
22.46) 

0.80 0.37 0.76 0.31 0.22 0.88 0.75 0.14 
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The obtained null solution allows us to arrange for the genetic search for the 

solution set of the system (8.11), where the matrices ˆ Aμ ( ˆ
sX ) and ˆ Bμ ( ˆ

sX ) for the 

training data take the following form: 
 

  1ˆ Cμ  2ˆ Cμ  3ˆ Cμ  4ˆ Cμ  5ˆ Cμ  6ˆ Cμ  

 1X̂  [0.62, 0.94] [0.32, 0.74] [0.30, 0.40] [0.09, 0.31] [0.07, 0.35] [0.08, 0.29] 

 2X̂  [0.35, 0.62] [0.74, 0.90] 0.40 [0.09, 0.31] [0.07, 0.35] [0.08, 0.29] 

 3X̂  [0.21, 0.54] [0.2, 0.52] [0.22, 0.56] [0.31, 0.72] 0.35 [0.29, 0.77] 

ˆ Aμ = 
4X̂  [0.21, 0.54] [0.2, 0.52] [0.22, 0.40] [0.31, 0.72] 0.35 [0.29, 0.41] 

5X̂  [0.1, 0.54] [0.08, 0.52] [0.07, 0.56] [0.31, 0.86] [0.35, 0.89] [0.29, 0.41] 

 6X̂  [0.1, 0.21] [0.08, 0.21] [0.07, 0.22] [0.72, 0.86] [0, 0.35] [0.41, 0.85] 

 7X̂  [0, 0.21] [0, 0.21] [0, 0.22] [0.72, 0.90] 0.35 0.41 

 8X̂  [0, 0.21] [0, 0.21] [0, 0.22] [0.72, 0.90] [0, 0.35] [0.41, 1.0] 

 
  1Eˆ Eˆ  2Eˆ Eˆ  3Eˆ Eˆ  4Eˆ Eˆ  5Eˆ Eˆ  6Eˆ Eˆ  7Eˆ Eˆ  8Eˆ Eˆ  

 1X̂  [0.32, 0.40] [0.62, 0.94] [0.62, 0.76] [0.16, 0.35] [0.62, 0.94] [0.30, 0.40] [0.62, 0.90] [0.30, 0.40] 

 2X̂  0.40 0.63 [0.74, 0.90] [0.16, 0.35] [0.74, 0.90] 0.40 [0.74, 0.85] 0.40 

 3X̂  [0.35, 0.77] [0.21, 0.54] [0.29, 0.76] [0.35, 0.59] [0.31, 0.55] [0.35, 0.77] [0.31, 0.75] [0.35, 0.56] 

Bμ̂ = 
4X̂  [0.35, 0.72] [0.21, 0.54] [0.29, 0.54] [0.35, 0.59] [0.31, 0.55] [0.35, 0.41] [0.31, 0.64] [0.35, 0.4] 

5X̂  [0.35, 0.89] [0.10, 0.54] [0.29, 0.56] [0.35, 0.89] [0.31, 0.55] [0.35, 0.89] [0.31, 0.64] [0.35, 0.89] 

 6X̂  [0.72, 0.86] 0.37 [0.41, 0.76] 0.59 0.55 [0.41, 0.85] [0.64, 0.75] [0.26, 0.35] 

 7X̂  [0.72, 0.90] 0.37 0.41 0.59 0.55 0.41 0.64 0.35 

 8X̂  [0.72, 0.90] 0.37 [0.41, 0.76] 0.59 0.55 [0.41, 0.88] [0.64, 0.75] [0.26, 0.35] 

  
 
The complete solution set for the fuzzy relation matrix is presented in Table 

8.13, where, according to current clinical practice, the valve sizes 1 3x x÷  are 

described by fuzzy terms stenosis (S) and insufficiency (I); pressure 4x  is 

described by fuzzy terms normal (N) and lung hypertension (H).  
The obtained solution provides the results of diagnosis presented in Table 8.14 

for 57 patients. Heart diseases diagnosis obtained an average accuracy rate of 90% 
after 10000 iterations of the genetic algorithm (100 min on Intel Core 2 Duo 
P7350 2.0 GHz). 

The resulting solution can be linguistically interpreted as the set of the four 
possible rules bases (See Table 8.15), which differ in the fuzzy terms describing 
outputs 1y  and 3y  in rule 3 with overlapping weights.  
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Table 8.13. Fuzzy relational matrix (complete solution set) 

IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  
L D L D L D L D 

S I I N [0, 0.40] [0.94, 1.0] 0.76 0.16 [0.94, 1.0] [0, 0.30] 0.90 [0, 0.30] 

I I I N 0.40 0.63 [0.90, 1.0] [0, 0.35] [0.90, 1.0] [0, 0.30] 0.85 [0, 0.30] 

I S I N [0.40, 1.0] [0, 0.54] [0.56, 1.0] [0, 0.35] [0, 0.55] [0.40, 1.0] [0, 0.31] [0.56, 1.0] 

I I I H [0.90, 1.0] 
[0, 0.37] 

0.37 [0, 0.41] 0.59 0.55 [0, 0.41] 0.64 
0.26  
[0, 0.26] 

I I S H [0.89, 1.0] [0, 0.54] [0, 0.56] [0.89, 1.0] [0, 0.55] [0.89, 1.0] [0, 0.31] [0.89, 1.0] 

I S I H [0.77, 0.90] 
0.37  
[0, 0.37] 

0.76 [0, 0.59] [0, 0.55] [0.85, 1.0] 0.75 
[0, 0.26] 

0.26 
 

Table 8.14. Genetic algorithm efficiency characteristics  

Output 
parameter 

Type of 
diagnosis 

Number  
of cases 

Probability 
of the correct diagnosis 

1y  
11e  20 17 / 20 = 0.85 

12e  37 34 / 37 = 0.92 

2y  
21e   26 23 / 26 = 0.88 

22e  31 28 / 31 = 0.90 

3y  
31e   28 25 / 28 = 0.89 

32e  29 27 / 29 = 0.93 

4y  
41e   40 37 / 40 = 0.92 

42e  17 15 / 17 = 0.88 

       

Table 8.15. System of IF-THEN rules 

Rule  
IF inputs THEN outputs 

1x  2x  3x  4x  1y  2y  3y  4y  

1 S I I N D L L L 
2 I I I N D L L L 
3 I S I N L or D L L or D D 
4 I I I H L D L L 
5 I I S H L D D D 
6 I S I H L L D L 
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Chapter 9 
Applied Fuzzy Systems 

Data processing not only in physics and engineering, but also in medicine, biology, 
sociology, economics, sport, art, and military affairs, amounts to the different state-
ments of identification problems. Fuzzy logic is mistakenly perceived by many spe-
cialists in mathematical simulation as a mean of only approximate decisions making 
in medicine, economics, art, sport and other different from physics and engineering 
humanitarian domains, where the high level of accuracy is not required. Therefore, 
one of the main goals of the authors is to show that it is possible to reach the accu-
racy of modeling, which does not yield to strict quantitative correlations, by tuning 
fuzzy knowledge bases. Only objects with discrete outputs for the direct inference 
and discrete inputs for the inverse inference were considered in the previous chap-
ters. Such a problem corresponds to the problem of automatic classification arising 
in particular from medical and technical diagnosis. The main idea which the authors 
strive to render is that while tuning the fuzzy knowledge base it is possible to identi-
fy nonlinear dependencies with the necessary precision. 

The use of the fuzzy expert information about the nonlinear object allows us to 
decrease the volume of experimental researches that gives the significant advan-
tage in comparison with the known methods of identification with the growth of 
the number of the input variables of the object. Besides that, the fuzzy knowledge 
base easily interprets the structure of the object, while it is not always possible at 
the use of known methods. 

Numerous examples considered in this chapter testify to wide possibilities of the 
intellectual technologies of modeling in the different domains of human activity.  

9.1   Dynamic System Control 

A dynamic system is traditionally considered as one quantitative description of 
which can be given by the language of differential or other equations [1]. Classical 
automatic control theory suggests that such equations can be constructed from the 
laws of physics, mechanics, thermodynamics, and electromagnetism [2]. Con-
struction of dynamic equations requires a deep understanding of the processes and 
needs good physico-mathematical training [3]. On the other hand, a person can 
control a complicated object without compiling or solving any equations. We re-
call for example how easily a driver parks an automobile. Even a novice sitting for 
the first time in the driver seat can control an automobile by executing the verbal 
commands from his instructor sitting next to him. 
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A unique feature of man is his capacity to learn and to evaluate the observed 
parameters in natural language: low velocity, large distance, and so on. Fuzzy set 
theory makes it possible to formalize natural language statements. Here we show 
that one can adjust a fuzzy knowledge base and use it to control a dynamic object 
no less effectively than with classical control theory. This section is written on the 
basis of work [4].  

9.1.1   Control Object 

We consider an inverted pendulum (Fig. 9.1), i. е., a rod fixed on a trolley that can 
oscillate in the longitudinal vertical plane. 

The task of the control system is to maintain the inverted pendulum in the ver-
tical position by displacing the trolley. A more ordinary form of this task is to 
maintain a rod on a finger in the vertical position. In [2] it has been shown that this 
is the class of problems in simulating the motion of a rocket, a supersonic aircraft, 
or a set of barges pushed by a tug, all of which are objects in which the centre of 
mass does not coincide with the point of application of the force.  

 

mg
l

M ux

y G

fx

f y

G

 
Fig. 9.1. Inverted pendulum 

Before we consider the differential equations describing the motion of the pendu-
lum, we note that the rod or the finger is kept vertical by applying simple rules:  

 

If the angle of deviation from the vertical is large, one needs rapid movement in 
the same direction; 

If the angle of deviation is small, one makes a small movement in the same direction; 
If the angle of deviation is zero, no movement is made. 
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9.1.2   Classical Control Model 

Following [5], we introduce the following symbols in Fig. 9.1: l – pendulum 
length, m  – pendulum mass, M  – trolley mass, g  – acceleration due to gravity, 

u  –control for supply to trolley, xf  and yf  – horizontal and vertical components 

of the forces acting on the pendulum, θ  – the angular deviation of the pendulum 
from vertical, and I  – the second moment of the pendulum in the plane of oscilla-

tion, which for a rectilinear thin rod is given by 
2

3
mlI = . 

The equation of motion for an inverted pendulum as a control object may be 
written as follows [5]: 

turning moment about the point G 
  

cos sinx yI f l f lθ θ θ= +��  ; 
  

displacement of the projection of G on the y axis 
 

2

2

2( cos ) ( sin cos )d
y dt

f mg m l mlθ θ θ θ θ− = = − +�� �  ;  
 

displacement of the projection of G on the x axis 
 

2

2

2( sin ) ( cos sin )d
x dt

f m x l mx mlθ θ θ θ θ= − = − −�� ���  ;  
 

and displacement of the trolley parallel to the x axis 

xu f Mx− = ��  ,  
in which θ�  is the rate of change in angle θ , θ��  is the angular acceleration of the 
pendulum, and x��  is the acceleration of the trolley along the x axis. 

A linear approximation is used for these equations subject to the condition that 

θ  varies over a fairly narrow range ( cos 1θ ≈ , sinθ θ≈ , 0θθ ≈� , 2 0θ ≈� ), 
which gives us the differential equation of motion as: 

3 ( ) 3
(4 ) (4 )
g M m u

M m l M m lθ θ+
+ += +��     .                          (9.1) 

 

To maintain the pendulum vertical with an ordinary control system with feed-
back, we represent the control variable as: 

 

u αθ βθ= + �   ,                                   (9.2) 
 

which corresponds to a proportional-differential regulator having proportionality 
coefficients α  and β . 

To provide stability, we take the coefficients as: 
 

10α = −  , 2β = − , 
which gives negative values for the roots 

 

1 2.98λ = −   ,  2 16.99λ = −  
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in the characteristic equation 
 

3 ( ) 332
(4 ) (4 ) 0g M m

M m l M m l
αβλ λ + +

+ +− − = , 

 
corresponding to (9.1). 

To keep it vertical, we can thus use the control input  
 

10 2u θ θ= − − �                                                      (9.3) 
 

in which the equation for the stable motion is: 
 

6 3 ( ) 30

(4 ) (4 )

g M m

M m l M m l
θ θ θ+ −= − +

+ +
�� � .                              (9.4) 

 

Table 9.1 gives the behaviour of θ (in rad) and θ� (rad/sec) from (9.4) with 
various initial conditions: 1γ , 2γ  and 3γ . In solving equation (9.4) we have used 

the following parameter values: 
 

0.035m = kg, 0.5M = kg, 30l =  cm, 9.8g =  m/seс2 . 
 

In what follows, Table 9.1 will be used as the training set for adjusting the 
fuzzy control model. 

Table 9.1. Behavior of an inverted pendulum under regulator control 

1γ  2γ  3γ  
t  θ  θ�  θ θ�  θ θ�  

0.0 0.175 0.0000 0.105 0.0000 0.035 0.0000 
0.1 0.150 -0.3523 0.090 -0.2114 0.030 -0.0705 
0.2 0.115 -0.3261 0.069 -0.1957 0.023 -0.0652 
0.3 0.086 -0.2540 0.052 -0.1524 0.017 -0.0508 
0.4 0.064 -0.1908 0.039 -0.1145 0.013 -0.0382 
0.5 0.048 -0.1421 0.029 -0.0852 0.010 -0.0284 
0.6 0.035 -0.1056 0.021 -0.0633 0.007 -0.0211 
0.7 0.026 -0.0784 0.016 -0.0470 0.005 -0.0157 
0.8 0.020 -0.0582 0.012 -0.0349 0.004 -0.0116 
0.9 0.015 -0.0432 0.009 -0.0259 0.003 -0.0086 
1.0 0.011 -0.0321 0.006 -0.0193 0.002 -0.0064 
1.1 0.008 -0.0238 0.005 -0.0143 0.002 -0.0048 
1.2 0.006 -0.0177 0.004 -0.0106 0.001 -0.0035 
1.3 0.004 -0.0131 0.003 -0.0079 0.001 -0.0026 
1.4 0.003 -0.0098 0.002 -0.0059 0.001 -0.0020 
1.5 0.002 -0.0072 0.001 -0.0043 0.000 -0.0014 
1.6 0.002 -0.0054 0.001 -0.0032 0.000 -0.0011 
1.7 0.001 -0.0040 0.001 -0.0024 0.000 -0.0008 
1.8 0.001 -0.0030 0.001 -0.0018 0.000 -0.0006 
1.9 0.001 -0.0022 0.000 -0.0013 0.000 -0.0004 
2.0 0.001 -0.0016 0.000 -0.0010 0.000 -0.0003 
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9.1.3   Fuzzy Control Model 

The dependence of the control u  on the variables θ  and θ�  is represented as a 
knowledge base formed from 25 expert rules as follows: 

 

IF iAθ =  AND iBθ =� , THEN ju C= , 1,5i = , 1,7j = . 
 

These rules form a 5 5× matrix: 

 
              Rate of change, θ�   

  hN N Z P hP  
 hN vhN vhN hN N Z  

Deviation N vhN hN N Z P  
angle, Z hN N Z P hP (9.5) 
θ  P N Z P hP vhP  

 hP Z P hP vhP vhP  
 

where variables θ  and θ�  are evaluated by means of five terms: 

1 1A B=  = high negative (hN), 2 2A B=  = negative (N), 3 3A B=  = zero (Z), 

4 4A B=  = positive (P), 5 5A B=  = high positive (hP). 

and variable u  is evaluated by means of seven terms: 

1C  - very high negative (vhN), 2C  - high negative (hN), 3C  - negative (N),        4C  

- zero (Z), 5C  - positive (P), 6C - high positive (hP), 7C  - very high positive (vhP). 

As the training set for tuning the control model (9.5), we use the Table 9.1 data 
and equation (9.3). The task of adjustment consists in selecting parameters for the 

membership functions in the terms iA and iB  ( 1,5i = ) and rule weights in (9.5) 

such as to produce the minimum discrepancy between the theoretical equations 
(knowledge base (9.5)) on the one hand and the experimental equations (Table 9.1 
and formula (9.3)) on the other.  

The adjustment is performed by the method described in Section 3. The ob-
tained membership functions are presented in Fig. 9.2. The weights of the fuzzy 
rules after adjustment correspond to the elements in the following matrix: 

 
  Rate of change, θ�  

  hN N Z P hP 

 hN 0.9837 0.3490 0.7902 0.8841 0.9015 
Deviation N 0.3490 0.9111 0.3901 0.7509 0.2199 

angle, Z 0.7902 0.3901 0.7981 0.6381 0.5594 
θ  P 0.8841 0.7509 0.6381 0.3690 0.5114 

 hP 0.9015 0.2199 0.5594 0.5114 0.8708 
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Fig. 9.3 compares the behaviour of θ  for the classical model and the fuzzy model 
with various initial conditions ( 1γ , 2γ , 3γ ); after the fuzzy control system is adjusted, it 

provides the same results as a traditional proportional-differential regulator. 
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Fig. 9.2. Membership functions for fuzzy levels of variables θ  and θ�  evaluation 
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Fig. 9.3. Comparison of fuzzy and classical control systems after tuning 

9.1.4   Connection with Lyapunov’s Functions 

It is shown here, that Lyapunov’s functions known in stability theory can be used 
to synthesize fuzzy rules for control of a dynamic system. 

The second or direct Lyapunov’s method [3] allows us to study the stability of 
solutions of the nonlinear differential equations without solving these equations. 
The stability criterion was developed by Lyapunov on the basis of the following 
simple physical conception of equilibrium position: equilibrium position of the 
system is asymptotically stable, if all the trajectories of the process, beginning 
fairly near from the equilibrium point, stretch in such a way, that a properly de-
fined “energetic” function is converged to the minimum, where position of the 
local minimum of energy corresponds to this point of equilibrium. 

Let us consider the application of this criterion relative to the generalized 
nonlinear equation: 

 

( )x f x=�  ,  0(0)x x=   ,                                            (9.6) 

where x  is the vector of the system condition. 
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We assume, that (0) 0f =  and function  f is continuous in the neighbourhood 

of the origin of coordinates. 
 

Definition of Lyapunov’s function. Function ( )V x  is called Lyapunov’s func-

tion (an energetic function) of system (9.6), if: 
 

1) (0) 0V =  , 

2) ( ) 0V x >  for all 0x ≠  in the neighbourhood of the origin of coordinates, 

3) 
( )

0
V x

t

∂ <
∂

 along the trajectory of system (9.6). 

 

The main result, obtained by Lyapunov, was formulated as the theorem of stability. 
 

Lyapunov’s Theorem of Stability. The equilibrium position 0x =  of system 
(9.6) is asymptotically stable, if Lyapunov’s function ( )V x of the system exists. 

We stress that Lyapunov’s method requires derivation of the system dynamics 
equations. We are interested in the case with a lack of such equations. 

Let us consider the inverted pendulum (Fig. 9.1) in the assumption, that only 
the following a priori information is known: 

 

а) the system condition is defined by the coordinates 1x θ=  and 2x θ= � ; 

b) 2x�  is proportional to control u, i.е., if u increases (decreases), then 2x�  in-

creases (decreases). 
 

To apply Lyapunov’s  theorem to the inverted pendulum, the following func-
tion is selected as a Lyapunov’s function candidate: 

 

2 2
1 2 1 2

1
( , ) ( )

2
V x x x x= +  .                                        (9.7) 

 

If (0,0) 0V =  and 1 2( , ) 0V x x >  then to assign 1 2( , )V x x  as a Lyapunov’s func-

tion, it is necessary to provide the condition: 
 

1 2
1 1 2 2 1 2 2 2

( , )
0

V x x
x x x x x x x x

t

∂ = + = + <
∂

� � � .                      (9.8) 

 

A fuzzy knowledge base about control 1 2( , )u u x x= can be formulated as the 

condition of inequality (9.8) implementation. We consider three cases: 
 

IF 1x  and 2x  have the opposite signs, then 1 2 0x x <  and inequality (9.8) will be 

implemented for 2 2 0x x =� . 

IF 1x  and 2x  are positive, then (9.8) will be implemented for 2 1x x< −� . 

IF 1x  and 2x  are negative, then (9.8) will be implemented for 2 1x x> −� . 
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Using the above mentioned reasoning and priori information relative to the fact 
that 2x  is proportional to u, we obtain four fuzzy rules for stable control the in-

verted pendulum: 
 

IF 1x  positive AND 2x  negative,  THEN u zero, 

IF 1x  negative AND 2x  positive,  THEN u zero, 

IF 1x  positive AND 2x  positive,   THEN u high negative, 

IF 1x  negative AND 2x  negative, THEN u high positive. 
 

Adjustment of this knowledge base consists of the selection of membership 
functions for the corresponding terms. 

The essential differences between the classical and fuzzy control systems are 
given in Table 9.2. 

Table 9.2. Control System Comparison 

System type Advantages Disadvantages 

Classical 
 

If there is a model that adequately 
describes the dynamics, one can 
operate without adjusting it 

Difficult to derive differential 
equations adequately describing 
the dynamics in the presence of 
nonlinear perturbations 

Fuzzy 

Differential equations not  
necessary, and dynamic model is 
readily written in terms of  
linguistic rules 

 
Requires linguistic model  
adjustment 

9.2   Inventory Control   

Minimization of the inventory storage cost in enterprises and trade firms stocks in-
cluding raw materials, stuffs, supplies, spare parts and products, is the most impor-
tant problem of management. It is accepted that the theory of inventory control re-
lates to operations research [6]. The models of this theory [7, 8] are built according 
to the classical scheme of mathematical programming: goal function is minimizing 
storage cost; controllable variables are time moments needed to order (or distribute) 
corresponding quantity of the needed stocks. Construction of such models requires 
definite assumptions, for example, of orders flows, time distribution laws and others. 
Therefore, complex optimization models may produce solutions that are quite in-
adequate to the real situation. 

On the other hand, experienced managers very often make effective administra-
tive decisions on the common sense and practical reasoning level. Therefore, the 
approach based on fuzzy logic can be considered as a good alternative to the clas-
sical inventory control models. This approach elaborated in works [9 – 12] re-
quires neither complex mathematical models construction nor search for optimal 
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solutions on the basis of such models. It is based on a simple comparison of the 
demand for the stock of the given item at the actual time moment with the quantity 
of the stock available in the warehouse. Dependent upon this, inventory action is 
formed consisting of increasing or decreasing corresponding stocks and materials.  

“Quality” of a control fuzzy model strongly depends on the “quality” of fuzzy 
rules and “quality” of membership functions describing fuzzy terms. The more 
successfully the fuzzy rules and membership functions are selected, the more ade-
quate the control action will be. However, no one can guarantee that the result of 
fuzzy logical inference will coincide with the correct (i.e. the most rational) con-
trol. Therefore, the problem of the adequate fuzzy rules and membership functions 
construction should be considered as the most actual one while developing control 
systems on fuzzy logic.  

In this chapter it is suggested to build the fuzzy model of stocks and materials 
control on the grounds of the general method of nonlinear dependencies identifica-
tion by means of fuzzy knowledge bases [13]. The proposed method is special due 
to the tuning stage of the fuzzy inventory control model using “demand - supply” 
training data. Owing to this tuning stage it is possible to select such fuzzy rules 
weights and such membership functions forms which provide maximal proximity 
of the results of fuzzy logical inference to the correct managerial decisions.    

To substantiate for the expediency to use this fuzzy approach relative to inven-
tory control, we resort to help of analogy with the classical problem of a dynamic 
system (turned-over pendulum) control which can be successfully solved using 
fuzzy logic [4].  

9.2.1   Analogy with Turned-Over Pendulum 

The approach to inventory control suggested here is similar to turned-over pendu-
lum control with the aim of retaining it in a vertical position by pushing the cart to 
the left or to the right (Fig. 9.4). A rather habitual version of such a problem is 
demonstrated by vertically retaining a stick on the finger. The simplest rules for 
the problem solution can be represented in the following way: 

 
IF the angle of deflection of the stick from the vertical position is big, 
THEN the finger should quickly move in the same direction to keep the stick up; 
IF the angle of deflection of the stick from the vertical position is small, 
THEN the finger should  slowly move in the same direction to keep the stick up; 
IF the angle of deflection of the stick is equal to zero, 
THEN the finger should stay motionless. 
 
Keeping the speed of the car constant by the driver takes place in analogy to it; 

if the speedometer needle drops down, then the driver presses the accelerator 
down; if the speedometer needle goes up, then the driver reduces the speed. It is 
known that experienced driver retains some given speed (for example, 90 
km/hour) in spite of the quickly changing nonlinear road relief.   
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force

angle

 

Fig. 9.4. Control system of the turned-over pendulum 

Returning to the inventory control system it is not difficult to understand that 
the actions of the manager must be similar to the actions of the car driver regulat-
ing of the vehicle’s speed.  

9.2.2  Method of Identification 

The method of nonlinear objects identification by fuzzy knowledge bases [14] 
serves as the theoretical basis for the definition of the dependency between control 
actions and the current state of the control system. The method is based on the 
principle of fuzzy knowledge bases two-stage tuning. According to this principle 
the construction of the “inputs – output” object model can be performed in two 
stages which, in analogy with classical methods [15], can be considered as stages 
of structural and parametrical identification.  

The first stage is traditional for fuzzy expert systems [16]. Formation and rough 
tuning of the object model by knowledge base construction using available expert 
information is accomplished at this stage. The higher the professional skill level of 
an expert, the higher the adequacy of the built fuzzy model at the rough tuning 
stage will be. However, as was mentioned in the introduction, no one can guaran-
tee the coincidence of the results of fuzzy logic inference (theory) and correct 
practical decisions (experiment). Therefore, the second stage is needed, at which 
fine tuning of the model is done by way of training it using experimental data.  

The essence of the fine tuning stage consists in finding such fuzzy IF-THEN 
rules weights and such fuzzy terms membership functions parameters which 
minimize the difference between desired (experimental) and model (theoretical) 
behaviour of the object. Fine tuning stage is formulated as nonlinear optimization 
problem which can be effectively solved by some combination of genetic algo-
rithms and neural networks [14].  
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9.2.3   Fuzzy Model of Control  

Let us present the inventory control system in the form of the object with two in-
puts ( 1( )x t , 2 ( )x t )  and single output ( ( )y t  ), where: 
 

1( )x t  is demand, i.e. the number of units of the stocks of the given brand, 

which is needed at time moment t; 

2 ( )x t  is stock quantity-on-hand,  i.e. the number of units of the stocks of the 

given brand, which is available in the warehouse at moment  t; 
( )y t  is an inventory action at moment  t, consisting in increasing – decreasing 

the stocks of the given brand. 
 

System state parameters 1( )x t , 2 ( )x t  and inventory action ( )y t  are considered 

as linguistic variables [17], which are estimated with the help of verbal terms on 
five and seven levels: 

 
falling (F)     
decreased (D)
steady (S)   
increased (I)

rising up (R)

)(1 tx =

    

minimal (M)
low (L)
adequately sufficient (A)
high (H)
excessive (E)

)(2 tx =

 
 

1d  – to decrease the stock sharply 

2d – to decrease the stock moderately 

3d  – to decrease the stock minimally 

4d – do nothing 

5d  – to increase the stock minimally 

6d  – to increase the stock moderately 

7d – to increase the stock sharply 

 
Let us note that term “adequately sufficient” in variable 2 ( )x t  estimation depicts 

the rational quantity of the stock on the common sense level, and does not pretend to 
be contained within the mathematically strong concept of optimality which envis-
ages the presence of goal function, controllable variables and area of constraints. 

Functional dependency 

1 2( ) ( ( ), ( ))y t f x t x t=                                      (9.9) 
 

is defined by the table presented in Fig. 9.5. 
This table is defined in an expert manner and depicts the complete sorting out 

of the (5 5 25)× =  terms combinations in the triplets 1 2( ), ( ), ( )x t x t y t . 

y(t)=
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Grouping these triplets by inventory actions types, we shall form a fuzzy knowl-
edge base, presented in Table. 9.3. 

This fuzzy knowledge base defines a fuzzy model of the object in the form of 
the following rules, e.g.: 

IF demand is falling AND stock is excessive, OR demand is falling AND stock is high, 
OR demand is decreased AND stock is excessive,      
THEN it is necessary to decrease the stock sharply. 
 

)(2 tx  

E 1d  1d  2d  3d  4d  

H 1d  2d  3d  4d  5d  

A 2d  3d  4d  5d  6d  

L 3d  4d  5d  6d  7d  

M 4d  5d  6d  7d  7d  

 F D S I R )(1 tx  
 

Fig. 9.5. Dependency between state parameters and inventory actions 

Fuzzy logical equations correspond to the fuzzy knowledge base (Table 9.3). They 
establish the connection between membership functions of the variables in correlation 
(9.9). Let ( )j uμ  be membership function of variable u to term j. Let us go on from the 

fuzzy knowledge base (Table 9.3) to the system of fuzzy logical equations: 
 

1
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )d F E F H D Eу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅ ; 

2
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )d F A D H S Eу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅ ; 

3
1 2 1 2( ) ( ) ( ) ( ) ( )d F L D Aу х х х хμ μ μ μ μ= ⋅ ∨ ⋅ ∨ 1 2 1 2( ) ( ) ( ) ( );S H I Eх х х хμ μ μ μ⋅ ∨ ⋅  

4
1 2 1 2( ) ( ) ( ) ( ) ( )d F M D Lу х х х хμ μ μ μ μ= ⋅ ∨ ⋅  

1 2 1 2( ) ( ) ( ) ( )S A I Hх х х хμ μ μ μ∨ ⋅ ∨ ⋅ 1 2( ) ( );R Eх хμ μ∨ ⋅     
5

1 2 1 2( ) ( ) ( ) ( ) ( )d D M S Lу х х х хμ μ μ μ μ= ⋅ ∨ ⋅ 1 2 1 2( ) ( ) ( ) ( );I A R Hх х х хμ μ μ μ∨ ⋅ ∨ ⋅  
6

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( );d S M I L R Aу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅  
7

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ),d I M R M R Lу х х х х х хμ μ μ μ μ μ μ= ⋅ ∨ ⋅ ∨ ⋅                     (9.10) 

where  ( •  ) is operation AND (min); ∨  is operation OR (max). 
The algorithm of decision making on the basis of fuzzy logical equations con-

sists of the following: 
 

1o. To fix the demand 1( )x t  and stock quantity-on-hand 2 ( )x t  values at the 

time moment t=t0. 
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Table 9.3. Fuzzy knowledge base 

IF THEN 

Demand  1( )x t  Stock  quantity-on-hand  2 ( )x t  Inventory action  у(t) 

F 
F 
D 

E 
H 
E 

1d  

F 
D 
S 

A 
H 
E 

2d  

F 
D 
S 
I 

L 
A 
H 
E 

3d  

F 
D 
S 
I 
R 

M 
L 
A 
H 
E 

4d  

D 
S 
I 
R 

M 
L 
A 
H 

5d  

S 
I 
R 

M 
L 
A 

6d  

I 
R 
R 

M 
M 
L 

7d  

  
2o.To define the membership degrees of 1( )x t  and 2 ( )x t  values to the corre-

sponding terms with the help of membership functions. 

3o. To calculate the membership degree of the inventory action ( )y t  at the time t = 

t0  to each of the 1 2 7, ,...,d d d  decisions classes with the help of fuzzy logical equations.  

4o. The term with maximal membership function, obtained at step 3o should be 

considered as inventory action ( )y t  at the time t=t0. For obtaining the quantitative 
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( )y t value at the time t=t0 it is necessary to perform the “defuzzification” opera-

tion, i.e. to go on from the fuzzy term to a crisp number. According to [14] this 

operation can be performed as follows. Range [ ,y y ] of the variable ( )y t  change 

is divided into 7 classes: 

( )y t ∈[ ,y y ] = [
N

1

1,
d

y y )∪ [N
2

1 2,
d

y y )∪…∪[N
7

6 ,
d

y y ] . 

The crisp value of the inventory action ( )y t  at the time t=t0   is defined by formula: 

71 2

71 2

1 6( ) ( ) ... ( )
( ) .

( ) ( ) ... ( )

dd d

dd d

y y y y y y
y t

y y y

μ μ μ
μ μ μ

+ + +
=

+ + +
                            (9.11) 

9.2.4   Fuzzy Model Tuning 

Relations (9.10), (9.11) define the functional dependency (9.9) in the following form 

1 2 1 1 2 2( ) ( ( ), ( ), , , , , )y t F x t x t= W B C B C , 

where 1 2 25( , ,..., )w w w=W  is the vector of weights in the fuzzy knowledge base 

(Table 9.3); 

1 1 1 1 1 1( , , , , )vD D St I vIb b b b b=B , 2 2 2 2 2 2( , , , , )vL L S B vBb b b b b=B  are the vectors of centers 

for variables 1( )x t  and 2 ( )x t  membership functions to the corresponding terms; 

1 1 1 1 1 1( , , , , )vD D St I vIc c c c c=C , 2 2 2 2 2 2( , , , , )vL L S B vBc c c c c=C  are the vectors of concen-

tration parameters for variables 1( )x t  and 2 ( )x t  membership functions to the cor-

responding terms; 
F is the operator of “inputs – output” connection corresponding to formulae 

(9.10), (9.11). 
It is assumed that some training data sample in the form of M pairs of experi-

mental data can be obtained on the ground of successful decisions about inventory 
control   

 

1 2ˆ ˆ ˆ( ), ( ), ( )x t x t y t , 1,t M= , 
 

where 1 2ˆ ˆ( ), ( )x t x t  are the inventory control system state parameters at time mo-

ment t, ˆ( )y t  is the inventory action at time moment t. 

The essence of the inventory control model tuning consists of such membership 
functions parameters (b-, c-) and fuzzy rules weights (w-) finding, which provide 
for the minimum distance between theoretical and experimental data: 

2

1 2 1 1 2 2 , ,
1

ˆ ˆ ˆ[ ( ( ), ( ), , , , , ) ( )] min ,
i i

M

t

F x t x t y t
=

− =∑
W B C

W B C B C  1, 2i = .        (9.12) 

It is expedient to solve the nonlinear optimization problem (9.12) by a combina-
tion of the genetic algorithm and gradient methods. 
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9.2.5   Example of Fuzzy Model Tuning 

Fuzzy model of inventory control was constructed for the district food-store 
house, selling some definite kind of agricultural production (buckwheat). The 
ranges of the input and output variables change consisted of: 

 

1 ( )x t ∈[0, 200]*102  kg;  2 ( )x t ∈ [70, 170]*102  kg;  ( )y t ∈[-100, 100]*102  kg. 
 

Inventory control at the enterprise is done once per day. Therefore [1...365]t∈  

days. The triplets demand 1( )x t , stock quantity-on-hand 2 ( )x t , inventory ac-

tion ( )y t  values, corresponding to the experienced manager actions, for which 

the demand for the produce was satisfied while the permissible produce inventory 
level in store was minimal where taken as training data sample. Training data 
sample is presented in Fig. 9.6,a-c in the form of the dynamics of the input and 
output variables change on time t according to 2001 year data. For example, at 
moments 120t =  and 230t =  the control consisted of stock quantity-on-hand 
increasing by 25*102 kg and reducing by 15*102 kg, respectively. Thus the pro-
duce remainder in store after control ( )tε = 2 ( )x t + ( )y t – 1( )x t   consists of  

2*102 kg and 53*102  kg, respectively. These values do not exceed the permissible 
inventory level, which is equal to 70*102 kg. The dynamics of the produce re-
mainder after control ( )tε change, presented in Fig. 9.6,d is indicative of the con-

trol stability, i.e. of the tendency of index ( )tε  approaching a zero value. Mem-

bership functions of fuzzy terms for variables 1( )x t  and 2 ( )x t , and also their pa-

rameters (b- , c-) before and after training are presented in Fig. 9.7, 9.8 and Tables 
9.4, 9.5 respectively. Rules weights included in the fuzzy knowledge base before 
and after training are presented in Table 9.6.  

Table 9.6. Rules weights before (after) training 

2 ( )x t  

E 1 (0.954) 1 (0.755) 1 (0.999) 1 (0.967) 1 (0.578)

H 1 (0.986) 1 (0.711) 1 (0.897) 1 (0.679) 1 (0.953)

A 1 (0.695) 1 (0.538) 1 (0.854) 1 (0.968) 1 (0.680)

L 1 (0.842) 1 (0.943) 1 (0.799) 1 (0.869) 1 (0.947)

M 1 (0.857) 1 (0.851) 1 (0.859) 1 (0.995) 1 (0.867)

 F D S I R 

1 ( )x t  
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Comparison of model and reference control before and after fuzzy model training is 
presented in Fig. 9.9 and 9.10. Comparison of the produce remainder ( )tε  value in 

store after control before and after fuzzy model training is shown in Fig. 9.11 and 9.12. 
The proposed approach can find application in the automated management sys-

tems of enterprises and trade firms. Further development of this approach can be 
done in the direction of creating adaptive inventory control models, which are 
tuned with the acquisition of new experimental data about successful decisions. 
Besides that with the help of supplementary fuzzy knowledge bases factors influ-
encing the demand and quantity-on-hand values (seasonal prevalence, purchase 
and selling praises, delivery cost, plant-supplier power and others) can be taken 
into account.    

Table 9.4. Membership functions parameters of variable 1( )x t  fuzzy terms before (after) 

training 

Linguistic assessments  
of 1( )x t  variable 

Parameter 

b c  
falling (F) 0  (1.95) 70  (44.11) 

decreased (D) 50  (30.54) 70  (42.85) 

steady (S) 100  (105.77) 70  (35.68) 

increased (I) 150  (170.04) 70  (40.12) 

rising up (R) 200  (199.43) 70  (47.55) 

 

Table 9.5. Membership functions parameters of variable 2 ( )x t  fuzzy terms before (after) 

training 

Linguistic assessments   
of 2x (t) variable 

Parameter 

b c  
minimal (M) 70  (75.46) 35  (18.76) 

low (L) 95  (85.12) 35  (22.12) 

adequately sufficient (A) 120  (125.15) 35  (16.75) 

high (H) 145  (157.99) 35  (14.54) 

excessive (E) 170  (168.63) 35  (12.69) 
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a)

b)

c)

d)  
Fig. 9.6. Training data а) change of the demand for the produce in 2001 b) stock quantity-
on-hand change in 2001 c) inventory action in 2001 d) change of the produce remainder in 
store after control in 2001  
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Fig. 9.7. Fuzzy terms membership functions before training 
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Fig. 9.8. Fuzzy terms membership functions after training 
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Fig. 9.9. Inventory action generated by fuzzy model before training  
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Fig. 9.10. Inventory action generated by fuzzy model after training  
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Fig. 9.11. Produce remainder in store after control before fuzzy model training  
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Fig. 9.12. Produce remainder in store after control after fuzzy model training  

9.3   Prediction of Football Games Results 

The possibilities of the method of non-linear dependencies identification by fuzzy 
IF-THEN rules [14] are illustrated by an example of the problem of forecasting 
the results of football games, which is a typical representative of complex fore-
casting problems that require adaptive model tuning.  

Football is a most popular sport attracting hundreds of millions of fans. Predic-
tion of football matches results arouses interest from two points of view: the first 
one is demonstration of the power of different mathematical methods [18, 19], the 
second one is the desire of earning money by predicting beforehand any winning 
result. Models and PC–programs of sport prediction are already being developed 
for many years (see, for example, http://dmiwww.cs.tut.fi/riku). Most of them use 
stochastic methods of uncertainty description: regressive and autoregressive 
analysis [20 – 22], Bayessian approach in combination with Markov chains and 
the Monte-Carlo method [23 – 26]. The specific features of these models are: suf-
ficiently great complexity, a lot of assumptions, and the need for a great number of 
statistical data. Besides that, the models cannot always be easily interpreted. Some 
several years passed before some models using neural networks for the results of 
football games prediction appeared [27 – 29]. They can be considered as universal 
approximators of non-linear dependencies trained by experimental data. These 
models also need a lot of statistical data and do not allow us to define the physical 
meaning of the weights between neurons after training. 
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In the practice of prediction making the football experts and fans usually make 
good decisions using simple reasoning on the common sense level, for example:   
 

IF         team  1T   constantly won in previous matches 

AND    team  2T  constantly lost in previous matches 

AND    in previous matches between teams  1T  and  2T   team  1T   won,  

THEN  win of team 1T  should be expected.  
 

Such expressions can be considered as concentration of accumulated experts’ 
experiences and can be formalized using fuzzy logic. That is why it is quite natu-
ral to apply such expressions as a support for building a model of prediction.  

The process of modeling has two phases. In the first phase we define the fuzzy 
model structure, which connects the football game result to be found with the re-
sults of previous games for both teams. The second phase consists of fuzzy model 
tuning, i.e., of finding optimal parameters using tournament tables data. For tuning 
we use a combination of a genetic algorithm and a neural network. The genetic 
algorithm provides a rough finding of the area of global minimum of distance be-
tween model and experimental results. We use the neural approach for the fine 
model parameters tuning and for their adaptive correction while new experimental 
data is appearing. 

9.3.1   The Structure of the Model 
The aim of modeling is to calculate the result of match between teams 1T  and 2T  , 

which is characterized as the difference of scored and lost goals y . We assume 

that [ , ] [ 5,5]y y y∈ = − .
 
For prediction model building we will define the value 

of y on the following five levels:  
 

1d  is a big loss (BL), 5, 4, 3y = − − − ;    

2d  is a small loss (SL),  2, 1y = − − ;  

3d  is a draw ( D), y=0;  

4d  is a small win (SW),  y = 1, 2;  

5d  is a big win (BW),  3, 4,5y = . 

Let us suppose that the football game result  (y) is influenced by the following 
factors:  

1 2 5, ,...,x x x  are the results of  five previous games for team 1T ;  

6 7 10, ,...,x x x  are the results of  five previous games for team 2T ;  

11x , 12x  are the results of two previous games between teams 1T  and 2T . 

It is obvious, that values of factors 1 2 12, ,...,x x x  are changing in the range from –5 

to 5. 
The hierarchical interconnection between output variable y and input variables 

1 2 12, ,...,x x x  is represented as a tree shown in Fig. 9.13.  
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Fig. 9.13. Structure of the Prediction Model 

This tree is equal to the system of correlations 

3 1 2 11 12( , , , )y f z z x x= ,                                            (9.13)               

1 1 1 2 5( , ,..., )z f x x x= ,                                               (9.14)  

           2 2 6 7 10( , ,..., )z f x x x= ,                                              (9.15) 

where 1z  ( 2z ) is the football game prediction for team 1T  ( 2T ) based on the previ-

ous results  1 2 5, ,...,x x x  ( 6 7 10, ,...,x x x ).  

The variables 1 2 12, ,...,x x x , as well as 1z  ( 2z ) will be considered as linguistic 

variables [17], which can be evaluated using above mentioned fuzzy terms: BL, 
SL, D, SW and BW. 

To describe the correlations (9.13) - (9.15) we shall use the expert matrices of 
knowledge (Tables 9.7, 9.8). These matrices correspond to fuzzy IF-THEN rules 
received on the common sense and practical reasoning level. An example of one 
of these rules for Table 9.7 is given below:  
 

IF     ( 11x =BW)    AND   ( 12x =BW)   AND   ( 1z =BW)  AND   ( 2z =BL) 

OR   ( 11x =SW)    AND   ( 12x =BW)   AND   ( 1z =SW)   AND   ( 2z =D) 

OR   ( 11x =BW)   AND   ( 12x =D)     AND   ( 1z =BW)   AND    ( 2z =SL) 

THEN   y = 5d . 
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Table 9.7. Knowledge about correlations (9.14) and (9.15) 

x1(x6) x2(x7) x3(x8) x4(x9) x5(x10) z1(z2) 
BL 
BW 
SW 

BL 
SL 
BL 

BL 
BL 
SL 

BL 
SL 
SL 

BL 
BW 
SW 

BL 

SL 
D 

SW 

SL 
SL 
D 

SL 
SL 
SL 

SL 
D 
SL 

SL 
D 

SW 
SL 

D 
SL 
D 

D 
SW 
D 

D 
SW 
SW 

D 
D 

SW 

D 
SL 
D 

D 

SW 
D 
SL 

SW 
BW 
SW 

SW 
BW 
SW 

SW 
SW 
BW 

SW 
D 
SL 

SW 

BW 
SL 
BL 

BW 
BW 
SW 

BW 
SW 
BW 

BW 
BW 
SW 

BW 
SL 
BL 

BW 

Table 9.8. Knowledge about correlation (9.13) 

11x  12x  1z  2z  y  

BL 
BW 
SW 

BL 
D 
BL 

BL 
BL 
SL 

BW 
D 
SL 

1d  

SW 
D 

SW 

SL 
SL 
D 

D 
SL 
SL 

SL 
D 
SL 2d  

D 
SL 
SL 

D 
SW 
D 

D 
SW 
SW 

D 
D 

SW 3d  

SL 
D 
SL 

SW 
BW 
SW 

SW 
BW 
SW 

BW 
SW 
BW 

4d  

BW 
SW 
BW 

BW 
BW 
D 

BW 
SW 
BW 

BL 
D 
SL 

5d  

9.3.2   Fuzzy Model of Prediction 

Using the generalized fuzzy approximator [14] and the tree of evidence 
(Fig. 9.13), the prediction model can be described in the following form: 

1 2 12 1 1 1 2 2 2 3 3 3( , ,..., , , , , , , , , , )yy F x x x= W B C W B C W B C ,             (9.16) 

where yF   is the operator of inputs-output connection, corresponding to correla-

tions  (9.13) – (9.15), 
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11 13 51 53
1 1 1 1 1(( ,..., ),..., ( ,..., ))w w w w=W , 11 13 51 53

2 2 2 2 2(( ,..., ),..., ( ,..., ))w w w w=W , 

11 13 51 53
3 3 3 3 3(( ,..., ),..., ( ,..., ))w w w w=W  are the vectors of rules weights in the correla-

tions  (9.13), (9.14), (9.15), respectively; 

1 1 5 1 5 1 5 1 5 1 5( , , , , )BL SL D SW BWb b b b b− − − − −=B  , 2 6 10 6 10 6 10 6 10 6 10( , , , , )BL SL D SW BWb b b b b− − − − −=B  , 

3 11,12 11,12 11,12 11,12 11,12( , , , , )BL SL D SW BWb b b b b=B  are the vectors of centres for variables 

1 2 5, ,...,x x x , 6 7 10, ,...,x x x  and 11 12,x x  membership functions to terms BL, SL,…, 

BW; 

1 1 5 1 5 1 5 1 5 1 5( , , , , )BL SL D SW BWc c c c c− − − − −=C , 2 6 10 6 10 6 10 6 10 6 10( , , , , )BL SL D SW BWc c c c c− − − − −=C ,  

3 11,12 11,12 11,12 11,12 11,12( , , , , )BL SL D SW BWc c c c c=C  are the vectors of  concentration parameters for 

variables  1 2 5, ,...,x x x , 6 7 10, ,...,x x x  and 11 12,x x  membership functions to terms  

BL, SL,…, BW . 

In model (9.16) we assume that for all of variables 1 2 5, ,...,x x x  fuzzy terms BL, 

SL,…, BW  have  the same membership functions. Same assumption we made for 
variables 6 7 10, ,...,x x x  and variables 11 12,x x  (See. Fig. 9.14).  

9.3.3   Genetic and Neuro Tuning 

The reasonable results of simulation can be reached by fuzzy rules tuning using 
tournament tables data. Training data in the form of M pairs of experimental data 
assumed to be obtained with use of tournament tables   

ˆ ˆ,l lyX , 1,l M= , 

where 1 2 5 6 7 10 11 12
ˆ {( , ,... ), ( , ,... ), ( , ) }l l l l l l l l

l x x x x x x x x=X  are the previous matches 

results for teams T1 and T2 in the experiment number l ,  

ˆly  is the game result between teams T1 and T2 in experiment number l . 

The essence of the prediction model tuning consists of such membership func-
tions parameters (b-, c-) and fuzzy rules weights (w-) finding, which provide for 
the minimum distance between theoretical and experimental results: 

 

2
1 2 12 , ,

1

ˆ ˆ ˆ ˆ( ( , ,..., , , , ) ) min ,
i i i

M
l l l

y i i i l
l

F x x x y
=

− =∑
W B C

W B C     1,2,3i = . 

 

To solve this non-linear optimization problem we propose a genetic algorithm 
and neural network combination. The genetic algorithm provides for a rough off-
line finding of the area of global minimum, while the neural network is used for 
on-line improvement of unknown parameters values. 
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For the fuzzy model tuning we used the results from tournament tables of the 
Finland Football Championship characterized by a minimal number of sensations. 
Our training data included results of 1056 matches for the last 8 years from 1994 
to 2001. The results of the fuzzy model tuning are given in Tables 9.9 – 9.12 and 
in Fig. 9.14. 

 

Table 9.9. Fuzzy rules 
weights in correlation (9.13) 

Genetic   
algorithm 

Neuro- 
fuzzy 

network 
1.0 
1.0 
1.0 

0.989 
1.000 
1.000 

0.8 
0.5 
0.8 

0.902 
0.561 
0.505 

0.6 
1.0 
0.5 

0.580 
0.613 
0.948 

1.0 
0.9 
0.6 

0.793 
0.868 
0.510 

0.6 
0.5 
0.5 

0.752 
0.500 
0.500 

 

 Table 9.10. Fuzzy rules 
weights in correlation (9.14) 

Genetic   
algorithm 

Neuro-
fuzzy 

network
0.7 
0.9 
0.7 

0.926 
0.900 
0.700 

0.9 
0.7 
1.0 

0.954 
0.700 
1.000 

0.9 
1.0 
0.6 

0.900 
1.000 
0.600 

1.0 
0.7 
1.0 

1.000 
0.700 
1.000 

0.8 
0.5 
0.6 

0.990 
0.500 
0.600 

 

 Table 9.11. Fuzzy rules 
weights in correlation (9.15) 

Genetic   
algorithm 

Neuro- 
fuzzy 

network 
0.7 
0.8 
1.0 

0.713 
0.782 
0.996 

0.5 
0.5 
0.5 

0.500 
0.541 
0.500 

0.5 
0.5 
0.6 

0.500 
0.522 
0.814 

1.0 
0.6 
1.0 

0.903 
0.503 
0.677 

1.0 
0.5 
1.0 

0.515 
0.514 
0.999 

 

Table 9.12. b- and c- parameters of membership functions after tuning 

Terms 

Genetic Algorithm Neuro-Fuzzy Network  

1 2 5, ,...,x x x  6 7 10, ,...,x x x 11x , 12x  1 2 5, ,...,x x x 6 7 10, ,...,x x x 11x , 12x  

b- c- b- c- b- c- b- c- b- c- b- c- 

BL -4.160 9 -5.153 9 -5.037 3 -4.244 7.772 -4.524 9.303 -4.306 1.593 

SL -2.503 1 -2.212 5 -3.405 1 -1.468 0.911 -1.450 5.467 -2.563 0.555 

D -0.817 1 0.487 7 0.807 1 -0.331 0.434 0.488 7.000 0.050 0.399 

SW 2.471 3 2.781 9 2.749 7 1.790 1.300 2.781 9.000 2.750 7.000 

BW 4.069 5 5.749 9 5.238 3 3.000 4.511 5.750 9.000 3.992 1.234 
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51 xx x  106 xx x  1211, xx  

   

-5                 0                   5 -5                 0                  5 -5                   0                 5  

Fig. 9.14. Membership functions after tuning    

To test the prediction model we used the results of 350 matches from 1991 to 
1993. The fragment of testing data and prediction results are shown in Table 9.13, 
where: 

1T  , 2T   are teams’ names, 

ŷ , d̂  are real (experimental) results, 

Gy , Gd  are results of prediction after genetic tuning of the fuzzy model, 

Ny , Nd  are results of prediction after neural tuning of the fuzzy model. 

Symbol * shows no coincidences of theoretical and experimental results. 
 
The efficiency characteristics of fuzzy model tuning algorithms for the testing 

data are shown in Table. 9.14.  

Table 9.14. Tuning algorithms efficiency characteristics 

Efficiency characteristics  Genetic Tuning Neural Tuning 
Tuning Time  52 min 7 min 

Number of iterations 25000 5000 

Probability 
of correct  
prediction  

for different  
decisions 

1d  – big loss 30 / 35 = 0.857 32 / 35 =0.914 

2d  – small loss 64 / 84 = 0.762 70 / 84 = 0.833 

3d  – draw 38 / 49 = 0.775 43 / 49 = 0.877 

4d  – small win 97 / 126 = 0.770 106 / 126 = 0.841 

5d  – big win 49 / 56 = 0.875 53 / 56 = 0.946 

 
 

Table 9.14 shows, that the best prediction results we can receive for the marginal 
decision classes (the loss and win with big score 1d  and 5d ), and the worst results of 

prediction we can receive for the small loss and small win ( 2d  and 4d ). 

The future improvement of fuzzy prediction model can be done by taking into 
account some additional factors in fuzzy rules such as: the game on host/guest 
field, number of injured players, different psychological effects.  
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Table 9.13. Fragment of the prediction results 
  

№ T1 T2 Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Score ŷ  d̂  yG dG yN dN 
1 Kuusysi Reipas 1991 2 1 2 0 1 -1 0 1 -2 -3 2 1 2-0 2 d4 1 d4 1 d4 
2 Ilves PPT 1991 1 3 -1 1 0 0 2 -1 -2 0 0 0 2-1 1 d4 0 d3* 0 d3* 
3 Haka Jaro 1991 -1 2 0 -1 1 1 0 -2 -1 -2 -1 1 1-1 0 d3 0 d3 0 d3 
4 MP OTP 1991 3 1 2 0 2 -1 -2 1 -2 -3 1 3 4-0 4 d5 3 d5 3 d5 
5 KuPS HJK 1991 -1 -3 -4 1 -3 1 0 2 0 0 -2 0 1-3 -2 d2 -1 d2 -1 d2 
6 TPS RoPS 1991 3 1 2 -2 0 2 0 1 -1 1 0 -1 1-0 1 d4 0 d3* 0 d3* 
7 PPT Jaro 1991 0 -5 -1 0 1 1 2 -2 -1 1 1 -3 0-1 -1 d2 -1 d2 -1 d2 
8 Haka Reipas 1991 2 -1 3 1 4 2 -2 0 -1 0 -1 2 3-0 3 d5 2 d4* 2 d4* 
9 OTP Kuusysi 1991 -1 -2 -3 -2 0 1 3 4 -1 2 -2 -1 1-4 -3 d1 -3 d1 -3 d1 

10 HJK  TPS 1991 1 1 1 0 2 0 1 -1 2 -3 0 2 2-0 2 d4 2 d4 2 d4 
11 MyPa Jaro 1992 -3 1 2 1 0 2 1 -2 -1 0 -2 0 0-0 0 d3 0 d3 0 d3 
12 Jazz Ilves 1992 2 2 1 -1 0 3 4 -1 0 1 1 -1 2-1 1 d4 0 d3* 1 d4 
13 Haka RoPS 1992 -2 -2 0 1 1 -1 1 1 1 0 1 3 1-1 0 d3 1 d4* 1 d4* 
14 HJK  Oulu 1992 2 3 0 0 1 0 -5 1 -2 -1 -1 2 4-0 4 d5 2 d4* 3 d5 
15 MP Kuusysi 1992 0 1 -2 -1 -1 3 1 2 0 1 0 -2 0-3 -3 d1 -3 d1 -3 d1 
16 KuPS HJK 1992 -2 -1 -3 1 -2 4 2 1 2 1 -2 -3 0-5 -5 d1 -4 d1 -4 d1 
17 Kuusysi MP 1992 0 -1 3 2 -1 -3 2 -1 -2 0 1 0 3-1 2 d4 1 d4 1 d4 
18 TPS Haka 1992 -1 2 3 -1 -2 0 -1 0 3 1 -1 1 2-2 0 d3 0 d3 0 d3 
19 RoPS MyPa 1992 -2 -1 2 0 -1 1 -1 1 1 -2 1 -1 1-2 -1 d2 0 d3* 0 d3* 
20 Jazz Ilves 1992 -2 1 -3 5 -1 1 1 -2 0 -1 2 0 1-0 1 d4 1 d4 1 d4 
21 TPS Jaro 1992 -2 -1 2 -1 -3 1 0 2 -1 3 1 -2 0-2 -2 d2 -1 d2 -1 d2 
22 Haka MyPa 1992 1 1 -1 0 1 0 3 2 1 -1 -1 -3 0-1 -1 d2 -2 d2 -2 d2 
23 HJK  RoPS 1992 1 2 0 -1 1 -1 2 2 -1 1 0 0 2-1 1 d4 0 d3* 0 d3* 
24 MP Kuusysi 1992 1 -1 -2 -3 1 1 -1 -2 2 3 -2 1 0-2 -2 d2 -1 d2 -1 d2 
25 Ilves Kups 1992 3 0 -2 2 -2 1 1 -1 0 -2 1 0 1-0 1 d4 1 d4 1 d4 
26 Haka HJK 1992 0 -2 -1 -1 0 2 3 -1 0 3 -1 -2 0-3 -3 d1 -3 d1 -3 d1 
27 Jaro MyPa 1992 -1 -1 1 2 1 -3 1 2 1 0 1 1 1-1 0 d3 1 d4* 0 d3 
28 RoPS TPS 1992 -1 1 -1 1 4 -5 -2 3 -1 -2 5 1 2-0 2 d4 2 d4 1 d4 
29 MP Ilves 1992 1 2 -1 1 0 0 1 0 0 -1 1 -2 2-3 -1 d2 -1 d2 -1 d2 
30 Kuusysi KuPS 1992 2 2 0 3 1 -1 -1 1 -3 0 2 3 4-1 3 d5 3 d5 3 d5 
31 Jazz MP 1993 2 2 2 0 3 -2 -1 0 -1 -3 4 3 5-0 5 d5 4 d5 4 d5 
32 Kuusysi TPS 1993 1 -1 0 -1 1 -2 2 0 -1 1 0 1 0-0 0 d3 0 d3 0 d3 
33 MyPa RoPS 1993 -1 -1 2 2 3 2 -1 1 2 -2 3 -1 2-0 2 d4 1 d4 1 d4 
34 Haka HJK 1993 -3 -1 -2 1 0 1 4 1 2 0 -1 -2 1-3 -2 d2 -1 d2 -1 d2 
35 Jaro Ilves 1993 2 0 -1 0 -1 -2 -1 -2 2 1 2 0 2-1 1 d4 1 d4 1 d4 
36 Ilves HJK 1993 1 -2 -1 -1 1 3 1 2 0 1 -1 -1 0-2 -2 d2 -1 d2 -1 d2 
37 Jazz Jaro 1993 2 1 0 1 5 -1 -2 -2 1 -1 2 1 3-0 3 d5 2 d4* 2 d4* 
38 MyPa MP 1993 1 3 1 -1 1 -1 0 2 -1 1 1 0 1-0 1 d4 1 d4 1 d4 
39 Kuusysi Haka 1993 -1 -2 1 1 2 -1 -3 1 -5 2 3 -1 3-1 2 d4 1 d4 1 d4 
40 TPS RoPS 1993 -1 1 -2 1 2 1 2 -1 1 -2 1 1 1-0 1 d4 1 d4 1 d4 
41 MP HJK 1993 -1 -1 0 2 -1 2 3 1 -1 1 -2 1 1-2 -1 d2 0 d3* 0 d3* 
42 Kuusysi Jaro 1993 2 2 -2 1 2 0 -1 2 -2 0 1 2 2-1 1 d4 1 d4 1 d4 
43 Jazz Haka 1993 2 3 2 -1 1 -1 -3 -4 -2 0 2 2 4-0 4 d5 3 d5 3 d5 
44 FinnPa MyPa 1993 -1 1 -2 -1 2 1 -2 -1 1 0 -1 -1 1-2 -1 d2 -1 d2 -1 d2 
45 TPS Ilves 1993 2 1 2 1 -1 2 2 -2 1 -3 0 2 2-0 2 d4 1 d4 1 d4 
46 RoPS Jazz 1993 -1 -1 2 -2 -1 4 1 5 0 2 1 -3 2-5 -3 d1 -3 d1 -3 d1 
47 MyPa Ilves 1993 5 0 2 1 1 -3 -1 -2 1 -2 3 0 5-1 4 d5 3 d5 3 d5 
48 TPV Kuusysi 1993 -2 -1 0 1 0 -1 0 2 -1 0 0 1 0-0 0 d3 0 d3 0 d3 
49 RoPS HJK 1993 -1 -1 1 -2 0 3 1 -2 1 1 -2 1 0-2 -2 d2 0 d3* -1 d2 
50 TPS Jaro 1993 -1 -1 1 2 2 -2 -1 1 -2 1 3 1 1-0 1 d4 1 d4 1 d4  
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9.4   Identification of Car Wheels Adhesion Factor with a Road 
Surface 

The task of car wheels adhesion factor (AF) evaluation with a road surface arises 
with an execution of a technical expert’s examination during an investigation of 
traffic accidents (TA). The objectivity of decision making relative to guilt or inno-
cence of the driver who caused the TA depends on the precision of the AF defini-
tion (for example, run over a pedestrian). The existing technique [30, 31] allows 
determining of only some range of possible AF values depending upon a series of 
the influencing factors. Therefore, its final evaluation is determined by the auto 
engineering expert, subjectively taking into account the additional factors and 
conditions which are not involved in this technique.  

Decision making relative to the cause of the accident is very sensitive to the 
value of AF: the subjective choice of the lower or upper value of AF can decide 
the fate of the accident participants. 

The purpose of this research, the results of which are presented in this chapter, 
is to develop a mathematical model of AF evaluation taking into account all ac-
cessible information about the influencing factors, and at the expense of the AF 
magnitude improvement to raise a solution’s objectivity.  

This section is based on materials of [32]. 

9.4.1   Technique of Identification 

The model of AF evaluation was developed on the basis of fuzzy rule-based 
methodology of identification described in [14]. The model was created in two 
stages: first – structural identification; second – parametrical identification. At the 
first stage the structure of the AF dependence upon the influencing factors was 
built by expert IF-THEN rules. At the second stage we selected such parameters of 
membership functions and such weights of fuzzy rules which allow us to minimize 
the difference between model and experimental results. 

9.4.2   Structural Identification 

The structure of the suggested model is shown in Fig. 9.15 in the form of a tree, 
whose trailing tops are the factors influencing AF.  

The characteristic of the model consists of the fact that it takes into account 
both of the traditional factors, which are generalized by the integrated index Q , 
and additionally entered factors: S , H , P , N , V . All the influencing factors 
shown in Table 9.15 are considered as linguistic variables given using the appro-
priate universal sets and are estimated by fuzzy terms. 
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Fig. 9.15. The model structure for AF definition  

The integrated index Q  included in Table 9.15 depends on the factors: 1D  – 
road surface type; 2D  – road surface condition; T  – tires type. The recommenda-
tions for the evaluation of the integrated index Q  are given in Table 9.16 accord-
ing to the known technique [30]. 

The expert knowledge base necessary for AF evaluation is shown in Table 9.17 
(experts V. Rebedailo, А. Kashkanov). The application of the model of fuzzy logic 
inference to the knowledge base (Table 9.17) allows us to predict AF in some 
practical range of its modification. However, the exact evaluation of this factor 
depends on the choice of parameters for the model tuning. 

9.4.3   Parametrical Identification 

The tuning of the model was realized using training data, which represents the popula-
tion of pairs “influencing factors – adhesion factor”. To provide this training data a 
specially organized experiment with the automobile “Moskvich – 412” was carried 
out. In this experiment we used the car braking with different motion speeds on the 
horizontal road. Values of the factors which influence on AF were registered together 
with the values of car brake distances and values of brake initial velocity [31]. 
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Table 9.15. The factors influencing AF 

Factor Universal set Terms for estimations 
 

Q  – Integrated  

index 
 “type of tires –  

road” 

 
(0 – 9)  

conditional unit 

Low ( 1Q ), 

Below average ( 2Q ), 

Average ( 3Q ), 

Above average ( 4Q ), 

High ( 5Q ) 

S  – Degree of tires 
slip   (0 – 100)% 

Rolling with slip ( 1S ), 

Skid ( 2S ) 

 
H  – Wear of tires 

 
(0 – 100)% 

New ( 1H ), 

Within admissible range ( 2H ), 

Worn tire ( 3H ) 

 
P  – Pressure in tires 

 
(0.1 – 0.325) MPa

Reduced ( 1P ), 

Normal ( 2P ), 

Higher than normal ( 3P ) 

 
N  – Load on a 

wheel 

 
(0 – 100)% 

Without load ( 1N ), 

Average ( 2N ), 

Full load ( 3N ) 

 
V  – Velocity of the 

car 

 
(0 – 130) kms/h 

Low ( 1V ), 

Below average ( 2V ), 

Average ( 3V ), 

Above average ( 4V ), 

High ( 5V ) 
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Table 9.16. Recommendations for evaluation of the integrated index Q  

Road surface Index Q  for a type of tires ( T ) 

Type ( 1D ) Condition ( 2D ) High  
pressure 

Low 
pressure 

High  
permeability 

Asphalt, 
Bitumen 

Dry 5.63 – 7.88 7.88 – 9  7.88 – 9  

Rain moisture 3.1 – 4.33 4.33 – 4.95 4.33 – 4.95 

Wet  3.94 – 5.06 5.06 – 6.19 5.63 – 6.75 

Covered with a dirt 2.81 – 5.06 2.81 – 4.5 2.81 – 5.06 

Wet snow (t>0°C) 2.1 – 3.4 2.1 – 4.2 2.1 – 4.2 

Ice (t<0°C) 0.9 – 1.69 1.13 – 2.25 0.56 – 1.13 

 
Cobble 

Dry 4.5 – 5.63 5.63 – 6.19 6.75 – 7.88 

Wet 2.7 – 3.75 3.75 – 4.43 4.5 – 6.19 

 
Metal 

Dry 5.63 – 6.75 6.75 – 7.88 6.75 – 7.88 

Wet 3.38 – 4.5 4.5 – 5.63 4.5 – 6.19 

Ground road Dry 4.5 – 5.63 5.63 – 6.75 5.63 – 6.75 

 Rain moisture 2.25 – 4.5 3.38 – 5.06 3.94 – 5.63 

 Time of bad roads 1.68 – 2.81 1.68 – 2.81 2.25 – 3.38 

Virgin soil  
in summer: 

Sand 

 
 

Dry 

 
 

2.25 – 3.38

 
 

2.48 – 4.5 

 
 

2.25 – 3.38 
Damp 3.94 – 4.5 4.5 – 5.63 4.5 – 5.63 

Clayed soil Dry 4.5 – 5.63 5.06 – 6.19 4.5 – 5.63 

 Humidified  
up to a plastic state 

2.25 – 4.5 2.81 – 4.5 3.38 – 5.06 

 Humidified  
up to a fluid state 

1.69 – 2.25 1.69 – 2.81 1.69 – 2.81 

Virgin soil  
in winter: 

Snow 

Mellow 2.25 – 3.38 2.25 – 4.5 2.25 – 4.5 

Smooth 1.69 – 2.25 2.25 – 2.81 3.38 – 5.63 

 
The total volume of the training sample included 60 pairs of “influencing fac-

tors – AF” data.  
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After tuning we received the membership functions shown in Fig. 9.16. Pa-
rameters of centres ( b ) and concentration ( c ) of the tuned membership functions 
presented in Table 9.18. Weights of the fuzzy rules obtained after tuning are given 
in the right side of Table 9.17. 

Table 9.17. Fuzzy knowledge base 

Q  S  H  P  N  V  φ  Weight 

1Q  2S  2H  2P  1N  
1V   1.000 

1Q  1S  1H  1P  3N  
1V  1φ  0.700 

1Q  1S   3H  3P  2N  
2V   0.999 

2Q  2S  2H  2P  2N  
3V   0.700 

1Q  1S  2H  1P  2N  
2V  2φ  0.700 

2Q  1S  1H  3P  3N  
3V   0.998 

2Q  1S  2H  2P  3N  
5V   0.700 

2Q  1S  1H  3P  2N  
3V  3φ  0.400 

2Q  2S  2H  3P  1N  
2V   0.300 

2Q  1S  2H  2P  1N  
2V   0.400 

3Q  2S  2H  2P  2N  
3V  4φ  0.997 

3Q  1S  1H  1P  1N  
5V   0.400 

4Q  2S  1H  2P  3N  
2V   0.999 

3Q  1S  1H  3P  1N  
1V  5φ  1.000 

4Q  2S  3H  2P  1N  
3V   0.400 

4Q  2S  2H  2P  1N  
1V   0.999 

4Q  1S  2H  1P  3N  
2V  6φ  0.400 

4Q  2S  1H  2P  1N  
3V   0.400 

4Q  1S  1H  2P  1N  
2V   0.699 

5Q  1S  1H  2P  3N  
5V  7φ  1.000 

5Q  2S  2H  1P  2N  
4V   1.000 

5Q  2S  2H  2P  3N  
2V   1.000 

5Q  2S  2H  2P  1N  
3V  8φ  1.000 

5Q  1S  1H  2P  1N  
4V   0.600 
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Table 9.18. Parameters of membership functions after tuning 

Term b  c  Term b  c Term b  c  

1Q  0.90 0.97 
1H  21.36 24.33 

2N  64.48 28.92 

2Q  2.50 0.40 
2H  57.15 38.68 

3N  85.92 20.31 

3Q  4.63 0.59 
3H  90.21 26.55 

1V  10.40 14.74 

4Q  6.23 0.42 
1P  0.14 0.04 

2V  10.40 30.06 

5Q  8.58 0.75 
2P  0.20 0.04 

3V  14.07 42.26 

1S  24.88 41.76 
3P  0.32 0.07 

4V  64.65 5.82 

2S  98.93 41.95 
1N  0.10 38.98 

5V  119.99 13.48 
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Fig. 9.16. Fuzzy terms membership functions after tuning 

 

 



9.4   Identification of Car Wheels Adhesion Factor with a Road Surface 291 

 

Table 9.19. Comparison of decisions  

Factors Adhesion factor 
Q  S  H  P  N  V  Tabular  1) 2) 

6,15 100   62   0,2 15   20   0.45 – 0.55 0,55 0,54 
4,45 100   65   0,2 15   60   0.25 – 0.4 0,33 0,35 
4,7 100   65   0,18 20   40   0.30 – 0.45 0,39 0,39 
3,4 90   45   0,17 95   120   0.22 – 0.40 0,26 0,26 
3,7 64   95   0,25 45   72   0.20 – 0.40 0,28 0,29 
3,9 84   81   0,27 67   65   0.25 – 0.45 0,32 0,31 
8,1 67   72   0,25 20   58   0.60 – 0.70 0,68 0,68 
3,4 65   80   0,14 15   15   0.25 – 0.40 0,27 0,28 
3,6 40   75   0,18 20   45   0.30 – 0.45 0,34 0,31 
3,9 100   35   0,29 45   110   0.20 – 0.40 0,29 0,29 
7,4 35   70   0,19 60   90   0.60 – 0.70 0,62 0,62 
5,3 30   5   0,26 90   35   0.40 – 0.50 0,45 0,45 
8,6 100   60   0,2 15   20   0.70 – 0.80 0,76 0,75 
6,15 100   62   0,2 15   40   0.45 – 0.55 0,52 0,52 
6,3 100   65   0,18 20   20   0.50 – 0.60 0,56 0,54 
4,7 100   65   0,18 20   60   0.30 – 0.45 0,36 0,38 
4,8 15   55   0,21 62   32   0.40 – 0.50 0,42 0,41 
5 37   15   0,18 17   25   0.40 – 0.50 0,44 0,42 
6,8 70   28   0,16 90   52   0.50 – 0.70 0,55 0,54 
7,3 41   37   0,2 50   65   0.60 – 0.70 0,62 0,62 
6,7 80   55   0,12 56   62   0.50 – 0.60 0,52 0,54 
4,8 100   20   0,23 10   80   0.35 – 0.50 0,39 0,38 
3,3 50   90   0,3 50   85   0.25 – 0.40 0,24 0,24 
2,1 20   55   0,23 70   40   0.15 – 0.20 0,16 0,15 
8,6 100   60   0,2 15   40   0.70 – 0.80 0,74 0,74 
6,15 100   62   0,2 15   60   0.45 – 0.55 0,48 0,51 
6,3 100   65   0,18 20   40   0.50 – 0.60 0,53 0,52 
7,2 70   70   0,19 15   60   0.60 – 0.70 0,63 0,62 
1,7 35   30   0,16 74   34   0.10 – 0.20 0,16 0,15 
1,3 72   35   0,15 70   33   0.08 – 0.15 0,12 0,13 
2,25 62   21   0,31 85   64   0.20 – 0.25 0,17 0,18 
4,5 32   75   0,19 90   80   0.35 – 0.50 0,35 0,36 
7,5 75   25   0,18 71   67   0.60 – 0.70 0,64 0,63 
2,6 65   50   0,16 60   55   0.20 – 0.30 0,22 0,20 
5 70   20   0,17 100   25   0.40 – 0.50 0,39 0,40 
0,7 100   75   0,18 20   10   0.05 – 0.10 0,06 0,06 
8,6 100   60   0,2 15   60   0.70 – 0.80 0,70 0,70 
4,45 100   65   0,2 15   20   0.25 – 0.40 0,40 0,38 
6,3 100   65   0,18 20   60   0.50 – 0.60 0,51 0,52 
5,6 100   75   0,2 25   100   0.45 – 0.55 0,46 0,44 
2,9 48   25   0,24 51   68   0.20 – 0.40 0,22 0,21 
2,85 56   75   0,29 40   40   0.20 – 0.30 0,20 0,22 
5,5 53   98   0,18 100   35   0.40 – 0.50 0,42 0,43 
5,2 78   20   0,17 38   129   0.40 – 0.55 0,41 0,41 
8,2 15   10   0,2 100   115   0.70 – 0.80 0,67 0,66 
8,3 100   30   0,17 80   40   0.70 – 0.80 0,71 0,71 
4,3 90   10   0,13 10   120   0.35 – 0.40 0,33 0,33 
8,6 100   62   0,2 15   80   0.70 – 0.80 0,67 0,68 
4,45 100   65   0,2 15   40   0.25 – 0.40 0,36 0,38  
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1) Experimental 
2) On suggested models 

 
The comparison of the model with the experimental results of the AF evaluation 

shown in Table 9.19 testifies the adequacy of the obtained model for practical use. 

9.4.4   Example and Comparison with the Technique in Use Now 

The case of the run over a pedestrian by the automobile “GAZ-24” is discussed. 
The traffic accident protocol information: 
 

• type of road surface ( 1D ) – asphalt;  

• condition of road surface ( 2D ) – covered by dirt; 

• type of tires (T ) – low pressure; 
• tires slip degree ( S ) – rolling with slip; 
• wear of tires ( H ) – in admissible limits (about 50%); 
• pressure in tires ( P ) – normal (0.2MPa); 
• load on a wheel ( N ) – low (about 10%); 
• car velocity (V ) – 55 km/h.  

 
We consider the horizontal road strip. After the run-over and up to the full 

stoppage automobile GAZ – 24 in the state of employed brakes run the distance of 
9.2 m. From the moment when the motion barrier occurred and up to the moment 
of the pedestrian run-over he walked 5 m with the velocity of 4.5 km/h. The pe-
destrian was knocked-down by the front part of the car.  

The results of the AF calculations as follows: 

а)  using the conventional technique [30]: ϕ = 0.25 – 0.4; 

b)  using the suggested technique: ϕ = 0.35. 
The results using all the known information are presented in Table 9.20. The last 
column of this table shows the significance of the exact AF knowledge for the 
relevant decision making.  

Table 9.20. Calculation results for decision making 

Technique
Adhesion  

factor 
Car braking 

distance 

Distance up to the 
 obstacle at the  

moment of dangerous 
situation  

Decision making 
about the possibility 

to avoid collision 

In use 
0.25 68.8 m 46.2 m Impossible 
0.4 51.0 m 55.3 m Possible 

Suggested 0.35 55.3 m 53.3 m Impossible 
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9.5   Innovative Projects Creditworthiness Evaluation 

Estimation of innovation project quality level is an important task of any invest-
ment firm. An instant and correct solution of this problem that can generally be 
accomplished only by specialist economists allows one to manage financial re-
sources optimally. In this connection it is necessary to design computer based in-
formation system providing intelligent support for investment firm’s personnel in 
decision making.  

The expert system suggested here was developed to the order of Ukraine Inno-
vation Fund. Expert IF-THEN rules were obtained from a group of analysts under 
the leadership of Vinnitsa Chapter of Ukraine Innovation Fund Director Prof. N. 
Petrenko.  

This chapter is written on the basis of the work [33]. 

9.5.1   Types of Decisions and Partial Figures of Quality 

Innovation project quality estimation is used for making one of the following 
decisions: 1d  - to finance, 2d  - to finance after retrofit, 3d  - to finance when 

means are available, 4d  - to reject. 

Let us use letter D  to designate the integral figure of innovation project qual-
ity. To estimate this figure we will use the following information: 

X  - level of the enterprise-applicant, which is estimated using the following 
partial figures: 1x  - level of enterprise  leader, 2x  - enterprise assets, 3x  - enter-

prise liabilities, 4x  - enterprise balance profit, 5x  - enterprise debt receivables, 

6x  - enterprise indebtedness under credits. To estimate enterprise leader level 

we take into account the following figures: 1a  - sociability, 2a  - fidelity, 3a  - 

education, 4a  - leader work experience, 5a  - comfort; 

Y  - technical economic level of the project, in point for which estimation 
the following partial figures are used: 1y  - project scale, 2y  - project novelty, 

3y  - development trend priority, 4y  - degree of perfection, 5y  - juridical pro-

tection, 6y  - ecology level;  

V  - expected sales level; 
Z  - financial level of the enterprise-applicant, which is estimated using the fol-

lowing partial figures: 1z  - ratio of internal funds to innovation funds, 2z  - inno-

vation fund means return. 
The task of estimation is in bringing one of the decisions 1 4d d÷  into corre-

spondence with some innovation project with known partial figures. 
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9.5.2   Fuzzy Knowledge Bases 

A hierarchy diagram of accepted innovation project quality figures is shown in 
Fig. 9.17 in the form of a fuzzy logic inference tree, to which this system of rela-
tions corresponds: 

 

( , , , )DD f X Y V Z=  ,                                                (9.17) 
  

1 2 3 4 5 6( , , , , , )XX f x x x x x x=  ,                                   (9.18) 
 

11 1 2 3 4 5( , , , , )xx f a a a a a= ,                                         (9.19) 
 

1 2 3 4 5 6( , , , , , )YY f y y y y y y=  ,                                   (9.20) 

 

1 2( , )ZZ f z z=  .                                                        (9.21) 
 

Partial figures in point 1 6x x÷ , 1 5a a÷ , 1 6y y÷ , V , 1z  and 2z , and also 

enlarged figures X , Y , Z  are considered as linguistic variables. To estimate the 
introduced linguistic variables we will use the unitary scale of qualitative terms: 
vL – very Low, L - Low, lA – lower than average, A - average, hA – higher than 
average, H - High, vH – very high. 

Each of these terms represents some fuzzy set preset using the following mem-
bership function model. Using introduced quality terms let us represent relations 
(9.17) - (9.21), in the knowledge base form by Tables 9.21-9.25. 

Table 9.21. Knowledge about relation (9.17) 

X  Y  V  Z  D  
H H H H  
hA H H H 

1d  

H H H hA  
hA hA hA hA  
hA H H hA 

2d  

hA hA H A  
H H A A  
H A A A 

3d  

H A hA A  
L L L L 

4d  

A L L L  
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Fig. 9.17. Fuzzy logic evidence tree  
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Table 9.22. Knowledge about relation (9.18) 

1x  2x  3x  4x  5x  6x  X  

L L L L L H L 

H H H lA lA lA lA 

H H H A A lA A 

H H H hA hA A hA 

H H H H H L H 
H H H A hA L  

Table 9.23. Knowledge about relation (9.19) 

1a  2a  3a  4a  5a  1x  

vL vL vL vL vL vL 

L L L L L L 

lA A lA A lA lA 

A A A A A A 

hA H hA H A hA 

H H H H H H 

vH vH vH vH vH vH 

 

Table 9.24. Knowledge about relation (9.20)  Table 9.25. Knowledge about 
relation (9.21) 

1y  2y  3y  4y  5y  6y  Y  

vL  vL vL vL vL vL L 
L L L L L L  

A A L L L A lA 

A A A A A A A 

H H H H H H hA 

vH vH vH vH vH vH H 
 

 
1z  2z  Z  

vL vL L 

A L lA 

A A A 

hA H hA 

vH vH H 

   

9.5.3   Evaluation Examples 

Some of the partial figures have a qualitative character; that is, they have no precise 
quantitative measurement. Therefore, while making estimations of the same figure 
by several experts there can be various opinions. In addition, the expert is not always 
capable of making an estimation of the partial figure using words though he intui-
tively feels its level. To overcome these difficulties we can estimate partial figures 
using the thermometer principle [14]. Convenience of such an approach is in the fact 
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that various sense partial figures are defined as linguistic variables given on the uni-
tary universal set [0, 100]U = , which is the scale of a thermometer. Parameters ( b ) 

and ( c ) of membership functions are introduced in Table 9.26. 

Table 9.26. Membership functions parameters 

Term vL L lA A hA H vH 

b  0.0 16.7 33.3 50.0 66.7 83.3 100 

c  15 15 15 15 15 15 15 

 
Examples of three innovation projects’ estimations by the suggested fuzzy 

model are represented in Table 9.27. Results of decision making are well in accor-
dance with expert assessments of quality. 

Table 9.27. Examples of innovation projects quality estimation 

Partial 
figure 

Project 1 Project 2 Project 3 

a1     
a2     
a3     
a4     
a5     
x2     
x3     
x4     
x5    
x6     
y1     
y2     
y3     
y4     
y5     
y6     
z1    
z2     
V     

Decision To finance with means 
available 

To finance To finance  
after retrofit 
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9.6   System Reliability Analysis 

Probabilistic models of reliability of technological processes and systems were 
considered in [34 – 39]. The application of these models presumes the availability 
of statistical data on probabilities of correct execution of elements of algorithmic 
process, i. e., technological operations. To take into account influencing factors, it 
is expedient to use experiment planning theory and regression models. It is very 
difficult to provide the equal conditions of experiment reiteration necessary for the 
statistical methods’ correct application while evaluating the probabilities of cor-
rect (noncorrect) performance of the system and its elements’ functioning process. 
From the other side an experiment and statistical data processing is too compli-
cated because of the many factors influencing the reliability such as environment 
task conditions; psychological stress and the degree of fatigue of an operator etc.  
It is relatively easy and natural to take into account such a factor’s influence lin-
guistically, e.g., “if the degree of fatigue of an operator is low, environment task 
conditions is good, psychological stress is low then human reliability is high”.  

The active research on fuzzy logic using in reliability theory began in the 10th 
decade of the last century. The first approaches to the fuzzy reliability theory crea-
tion have been proposed in monographs [40, 41]. The overwhelming majority of 
known works uses for the system reliability analysis the descriptive possibilities of 
fuzzy logic in combination with probability theory and descriptive possibilities of 
Boolean algebra [42 – 45]. In this chapter, we consider basic principles, mathe-
matical models and the example of application of the new method of complex 
systems reliability analysis on the basis of algebra of algorithms [46, 47] and 
fuzzy logic [48]. Here we present the results of simulation of the bioconversion 
technological process reliability. In reliability modeling of a technological system 
it is necessary to take into account not only the structure of the technological proc-
ess but also the influencing factors, connected with the quality of raw material, the 
technological equipment and the operator, controlling the process. 

This chapter is written on the basis of the works [49, 50]. 

9.6.1   Basic Principles 

The approach proposed in [49, 50] is based on the following principles:  
 

1. Principle of algorithmization 
This principle, adopted from theory of reliability of man-machine systems [35], 
envisages construction of the reliability model on the basis of the algorithmic de-
scription of the events, connected with the occurring, detecting and removal of the 
failures (faults, defects, errors) in the system. To depict the algorithm, we use 
graph-schemes or the language of V.M. Glushkov’s algorithmic algebra [46, 47], 
in which any regular algorithm can be built with the help of the three structures: 
 

a) linear ( B -structure): 1 2A A B= , producing the operator B , which is equiva-

lent to the consecutive performance of the operators 1A  and 2A ; 
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b) alternative ( C -structure): 1 2( )A A C
α

∨ = , producing the operator C , such that  

1

2

, ( 1)

, ( 0)

A if condition is true
C

A if condition is fault

α α
α α

=⎧
= ⎨ =⎩

   ; 

 

c) iterative ( D -structure):  { }A D
α

= , producing the operator D , which is 

equivalent to repeated implementation of operator A  till the condition α  has 
become true  ( 1)α = . 

 
2. Principle of fuzzy correctness  

Conception of the crisp boarder between “correct” (1) and “noncorrect” (0) results 
of the system and its elements functioning lacking underlies this principle. For the 
formal evaluation of the level of operator A  correct performance, we use the mul-
tidimensional membership function 1

1 2( , ,..., )A nx x xμ , which depends on the meas-

ured parameters (input variables). Correctness of each of the parameters is defined 
by the membership function 1( )ixμ , which can be interpreted as a parameter ix

 
values’ correctness distribution.  

 
3. Principle of linguistic evaluation of control quality 

The system functioning process control is accomplished with the help of the 
checking and correction operations. If the checking operation is performed by a 
human, then the 1st type error (false alarm or rejection of “good” result) can be 
connected with the level of “objectivity – preconception” of the inspector, and the 
2nd type error (acceptance of defective goods), – with the level of “vigilance – neg-
ligence” of the inspector.  

This principle envisages the possibility of evaluation of the checking and cor-
rection operations using verbal terms: low (average, high) tendency of man-
operator to commit the 1st and 2nd type errors; low (average, high) repair quality, 
etc. Membership functions, necessary for these terms formalization, are formed 
with the help of extension-compression operations [48], which underlie the idea of 
Soft Computing – computing with words. 

 
4. Principle of fuzzy identification 
This principle emphasizes that the problem of system reliability evaluation 
amounts to the problem of “multiple inputs – single output” object identification 
with the help of fuzzy knowledge bases [14].  

Inputs of the object are the measured parameters of the quality of raw material, 
equipment and man-operator. Output of the object is the discrete double-throw 
switch: 1 - correct; 0 - noncorrect. Because of the lack of the crisp border between 
1 and 0 results, the degrees of membership of the vector of input parameters to the 
levels 1 and 0 are calculated during system reliability modeling.  

Fuzzy knowledge bases, i.e., IF-THEN rules, necessary for solving the identifi-
cation problem, are determined by B -, C - and D - structures, from which the 
algorithmic model of reliability is built. 
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9.6.2   Fuzzy-Algorithmic Elements 

The fuzzy-algorithmic model of system reliability is built using the following 
elements (Fig. 9.18): 

 
 

AX  

a)

α  

Y S  

1
αk

0
αk

0

1 

c) b)

R

AX  

Ar

 

Fig. 9.18. Elements of reliability model 

Working operator A  (Fig. 9.18а) is the element of the model, describing oc-
curring abnormalities in the system functioning process. Quality of the working 
operator A  performance depends on the vector of measured parameters 

1 2( , ,..., )nx x x=X , where ( )i ix x t= , i.e., parameters values depend on time.  

Correctness of the working operator A  performance is defined by the formula: 
 

1 1

1

( ) ( ),
n

A i
i

xμ μ
=

=∏X                                              (9.22) 

 

where  1 ( )Aμ X  is the multidimensional membership function of the vector of pa-

rameters X to the term “correct performance of the operator A ”,  
1( )ixμ  is the membership function, which describes the distribution of  pa-

rameter ix  , 1,2,...,i n= , values’ correctness. 

Correction operator R  (Fig. 9.18b) is the element of the model, which describes 
removal of abnormalities, occurred while performing the working operator A .  

Different kinds of repair and updating included in the system functioning algo-
rithm can be described by the correcting operator R . 

Correctness of the correction operator R  performance is defined by the formula:  
 

1 1( ) 1 [1 ( )] Ar
R Aμ μ= − −X X ,                                   (9.23)  

 

where   
1 ( )Aμ X  is defined by formula (9.22), 

       Ar  is the parameter, which characterizes the quality of correction: 

       1,3,5,7,9Ar = , if the quality of correction is low (1), lower than average 

(3), average (5), higher than average (7), high (9).  
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If, for example, a working operator A has correctness 1 ( ) 0.5Aμ =X , then the cor-

rectness of the correcting operator R  is increased with the growth of parameter Ar : 

 

Ar  1 3 5 7 9 

1 ( )R Xμ  0.5 0.875 0.967 0.992 0.9998 

        
Correctness of algorithm AR , i.e., “work ( A ) – correction ( R )”, performance 

is defined by formula: 
 

1 1 1 1( ) ( ) [1 ( )] ( )AR A A Rμ μ μ μ= + − ⋅X X X X ,                          (9.24) 
 

from which it is shown, that if 1 ( ) 1Rμ =X , then 1 ( ) 1ARμ =X . 

Logical condition α  (Fig. 9.18с) is the element of the model, which describes 
correctness checking for the vector of parameters

 1 2( , ,..., )ly y y=Y . This vector 

of parameters can correspond to the condition of the system components: the raw 
material, the equipment, the man-operator or the results of functioning process 
implementation. In particular, the diagnostic and functional checking which are 
used in reliability theory of man-machine systems [35] can be described by logical 
condition α .  

While performing condition α  the two results are possible: 
 

1α = , if all the parameters of vector Y
 
are correct,  

0α = , if at least one of the parameters of vector Y
 
is noncorrect.  

Correctness of condition α  performance is defined as follows: 
11( )αμ Y

 
is the possibility distribution of the condition α

 
performance for result 

1, i.е., without 1st type errors, when real correctness (1) is subjectively recognized 
as true (1), 

00 ( )αμ Y is the possibility distribution of the condition α
 
performance for result 

0, i.е., without 2nd type errors, when false (0) is subjectively recognized as false (0). 
These distributions are defined by the formulae: 
 

11( )αμ Y =
11[ ( ) ] kα

αμ Y ,                                                 (9.25) 
00 ( )αμ Y =

01[1 ( ) ] kα
αμ− Y ,

                                             (9.26) 

1 ( )αμ Y = 1

1

( )
l

i
i

yμ
=
∏ ,                                                  (9.27) 

 

where 1( )iyμ  is the correctness distribution of the parameter iy , 1, 2,...,i l= . 
1kα  and 0kα  are the coefficients, describing the tendency of the checking opera-

tion α  to the 1st and 2nd type errors, respectively ( 1 1kα ≥ , 0 1kα ≥  ).  
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If 1 1kα =  and 0 1kα = , then the 1st and 2nd type errors are absent. The increase of 

these coefficients results in compression of the membership functions in (9.25) 
and (9.26), and, respectively, lowering down of the level of correctness of check-
ing condition α  performance for results 1 and 0. This is equivalent to the growth 
of the 1st and 2nd type errors levels.  

For calculations on the basis of linguistic assessments one can use: 
1 1kα = , if the 1st type errors are absent (if the inspector is objective),  
1 2kα = , for small tendency to the 1st type errors (if the inspector is somewhat 

preconceived),  
1 3kα = , for sufficient tendency to the 1st type errors (if the inspector is precon-

ceived),  
i.e. with the growth of the inspector preconception (or with the lowering down 

of  his/her objectivity) the possibility of the 1st type error is increased. 

For the 2nd type errors: 
0 1kα = , if the 2nd type errors are absent (if the inspector is vigilant), 
0 2kα = , for small tendency to the 2nd type errors (if the inspector is somewhat 

negligent),  
0 3kα = , for sufficient tendency to the 2nd type errors (if the inspector is negligent),  

i.e., with the lowering down of the inspector vigilance (or with the growth of 
his/her negligence) the possibility of the 2nd type error is increased. 

9.6.3   Fuzzy-Algorithmic Structures 

Each of the algorithmic structures produces the mathematical model, which allows 
us to calculate the correctness of this structure implementation depending on the 
correctness of the included operators and conditions implementation. Such models 
are obtained in [50] on the basis of the graphs of events, taking place while per-
forming each of the structures (Fig. 9.19). Necessary formulae are given below. 

 
 

2A  

1A  1X  

2X  

a) 

 ω

X  A

U

1
ωk

0

1

0
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b)

ν

Y S
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c)

1
νk

0
νk

Sr  0

1

 

Fig. 9.19. Algorithmic structures 



9.6   System Reliability Analysis 303 

 

Linear structure (Fig. 9.19а) is given by algorithm  
 

1 2B A A= ,                                                        (9.28) 
 

in which the working operators 1A  and 2A  depend on the vectors of parameters 
1 1 1

1 1 2( , ,..., )nx x x=X
 
and 2 2 2

2 1 2( , ,..., )nx x x=X , respectively. 

Fuzzy correctness of the equivalent operator B  performance in (9.28) is de-
fined by the formula: 

 
1 1 1

1 2 1 2( , ) ( ) ( )Bμ μ μ= ⋅X X X X ,                                     (9.29) 
 

where 
1

1 1 1
1

1

( ) ( )
n

i
i

xμ μ
=

=∏X , 
2

1 1 2
2

1

( ) ( )
n

j
j

xμ μ
=

=∏X .  

Alternative structure (Fig. 9.19b) is given by algorithm 
 

( )C A E U
ω

= ∨ ,                                              (9.30) 

 

in which ω  is the logical condition, verifying during the checking of the correct-
ness of the working operator A  implementation, where 
 

1, ,

0, .

if vector of parameters is normal

otherwise
ω ⎧
= ⎨
⎩

X
 

 

E  is the identical operator, corresponding to the checking operation ω  results 
fixation,  

U  is the operator correcting the parameters of the working operator A , 
1kω  , 0kω  and Ar  are the parameters of  condition ω  and operator U  implemen-

tation quality, respectively. 
Structure (9.30) corresponds to the process “work – checking  – correction 

without feedback” [35].  
Fuzzy correctness of the equivalent operator C  performance in (9.30) is de-

fined by the formula: 
 

1 1 0 1 11 1 11 1 00 1( , , , ) [ (1 ) (1 ) ]A Uk k rω ω ω ω ω ω ω ωμ μ μ μ μ μ μ μ= ⋅ + − + −XC  ,            (9.31) 
 

where 1 1

1

( )
n

i
i

xωμ μ
=

=∏ , 
111 1( )k

A
ω

ωμ μ=  ,  
000 0(1 )k

A
ω

ωμ μ= − , 

1 11 (1 ) Ar
U Aμ μ= − − , 
1( )ixμ  is the correctness distribution of the parameter ix  1, 2,...,i n= , 
1kω  , 0kω  and Ar  are the numbers (1,2,3,…), which define the quality of check-

ing ω  and correcting U  operators, respectively.  
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Iterative structure (Fig. 9.19с) is given by algorithm 
 

{ }D S R
ν

= ,                                                  (9.32) 

 

in which ν  is the logical condition, verifying during the checking of the parame-
ters of the working operator S , where 

 

1, ,

0, .

if vector of parameters is normal
v

otherwise

⎧
= ⎨
⎩

Y
 

 

R  is the operator correcting parameters of the working operator S , 
1kν  , 0kν  and Sr  are the parameters of condition ν and operator R  implementa-

tion quality, respectively. 
Structure (9.32) describes the process “diagnostics – repair with feedback” [35] 

when the equipment is diagnosed. 
In the general case, operator S  corresponds to the equipment functioning, the 

raw material preparation or the man-operator work.  
Fuzzy correctness of the equivalent operator D  performance in (9.32) is de-

fined by the formula: 
 

1
1

1

1
( )

1D a ba
b

μ = + ⋅
−

Y ,                                         (9.33) 

 

where 1 11a ν νμ μ= ⋅ , 1 11
1 Ra νμ μ= ⋅ ,  

( ) ( )1 11 1 001 1 ,b ν ν ν νμ μ μ μ= − + −  ( ) ( )1 11 1 00
1 1 1R Rb ν νμ μ μ μ= − + − ⋅ , 

1 1

1

( )
m

l
l

yνμ μ
=

=∏ , ( )
1

11 1 kν

ν νμ μ=  ,  ( )
0

00 11
kν

ν νμ μ= − , 

( )1 11 1
r

R

ν

νμ μ= − − , 
1( )lyμ  is the correctness distribution of the parameter ly , 1, 2,...,l m= , 
1kν  , 0kν  and Sr  are the numbers (1,2,3,…), which define the quality of check-

ing ν  and correcting R  operators, respectively. 

9.6.4   Example of Technological System Reliability Analysis  

Let us consider the bioconversion technological process (BCTP), the algorithmic 
model of which (Fig. 9.20) is defined by the formula: 

 

{ } ( )F S R A E U
ν ω

= ∨  ,                                            (9.34) 

 

where S  is the working operator, corresponding to the raw material preparation;  
ν  is the raw material parameters checking ( ho  - homogeneity, Ph - hydrogen 

factor, hu  - humidity); 
R is the operator of the raw material parameters correction; 
A  is the working operator, corresponding to the process performance; 
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ω  is the process parameters checking (V – rate of mixing, 0t -temperature); 
E  is the identical operator, corresponding to the checking operation ω  results 

fixation;      
1kν  , 0kν , Sr , 1kω  , 0kω  and Ar  are the parameters of the process control quality, 

shown in Fig. 9.20.  
 

ω

V, 0t
A

U

1
ωk

0

1

0
ωk

Ar

 ν  

ho, Ph, hu 
S

R

1
νk

0
νk

Sr
0

1

 

Fig. 9.20. Algorithmic model of the bioconversion process reliability 

The parameters correctness distributions are presented in Table 9.28. 
Algorithm (9.34) is presented as follows 

F D C= ⋅ ,    { }D S R
ν

= ,    ( )C A E U
ω

= ∨ . 

Therefore, the problem of reliability analysis is reduced to the consecutive ap-
plication of the models of B-, C- and D- structures: 

 
1 1 1( , , , , ) ( , , ) ( , )F D Chu Ph ho V t hu Ph ho V tμ μ μ= ⋅ , 

where 1 (...)Fμ  is the process (9.34) performance correctness distribution; 
1 (...)Dμ is the operator D  performance correctness distribution calculated by 

formula (9.33) for ( , , )hu Ph ho=Y , 
1 (...)Cμ  is the operator C  performance correctness distribution calculated by 

formula (9.31) for ( , )V t=X . 
The tree of inference, which defines the interconnection of the fuzzy-

algorithmic structures in identifying the process (9.34) reliability level, is shown 
in Fig. 9.21, where double circles are the models of B-, C- and D- structures;  

single circles are the operators and conditions, appearing in algorithm (9.34); 
output arrow is the process performance correctness level, which is defined by 

the membership function 1
Fμ ; 

input arrows are the variables, influencing the correctness level 1
Fμ .  
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Table 9.28. Parameters correctness distributions 

Parameter Membership function 

 
 
 
 

Homogeneity (ho, %) 
 
 

 1 
   ( )ho1μ  

 ho  
80 0 90 

 
 
 
 
 

Humidity (hu, %) 
 
 
 

0 

1 

 ( )hu1μ  

 hu  
80 91 94 

 
 
 
 
 

Hydrogen factor (Ph, c.u.)  
 
 

 

0 

1 
 ( )Ph1μ  

 Ph  
6.5 7 7.5 8.0 

 
 
 
 

Rate of mixing  
(V, rpm)  

 
 

 

0 

1 
 ( )V1μ  

 V  
0.5 1 1.5 

 
 
 
 
 

Temperature ( 0t C ) 

 
 
 

 

0 

1 
 ⎟

⎠
⎞⎜

⎝
⎛ 01 tμ  

 0t  

32.99 33 33.01 
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Ar 0
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1
ωk

0t V Sr
0
νk

1
νk Ph hohu

 

Fig. 9.21. Tree of inference 

The aim of simulation consisted of the construction of three-dimensional cor-

rectness distributions ( )1 0,F V tμ  for different combinations of the raw material 

quality levels (Table 9.29) and the process control quality levels (Table 9.30). The 
nine three-dimensional distributions were obtained.  

Table 9.29. Values of the raw material parameters 

 
Raw material  
parameters 

 
Quality levels  

Low  Average  High  

ho (%) 83 87 91 

hu (%) 83 87 91 

Ph (c.u.) 6.6 6.8 7.1 
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The three distributions ( )1 0,F V tμ , which correspond to high level of raw mate-

rial quality and low (а), average (b) and high (с) levels of the process control qual-
ity are shown in Fig. 9.22. 

 

Table 9.30. Processes control parameters values 

Control 
element 

 
Parameters of checking 

and correcting  
operations 

 

Control quality levels 

Low  Average  High  

ν  

1kν  5 3 1 

0kν  9 5 1 

R  Sr  1 5 9 

ω  

1kω  5 3 1 

0kω  9 5 1 

U  Ar  1 5 9 

 
The correctness distributions ( )1 0,F V tμ  allow us to obtain the regions of pa-

rameters change (V and 0t ), which provide the required level of the process per-
formance correctness. Let call them zones (cross-sections) of μ - working capac-

ity, [0, 1]μ ∈ . Such zones for levels 1 0( , ) 0.9,0.8,0.7,0.6F V tμ =  are presented in 

Table 9.31. The obtained zones of μ - working capacity provide the possibility of 

optimization of the system reliability with taking into account the restrictions of 
the region of permissible parameters change [51]. 
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⎟
⎠
⎞⎜

⎝
⎛ 0,1 tVFμ

  

V  0t

a)  

⎟
⎠
⎞⎜

⎝
⎛ 0,1 tVFμ

  

V  0t

b)  

⎟
⎠
⎞⎜

⎝
⎛ 0,1 tVFμ

  

V  0t

c)  
 

Fig. 9.22. Process performance correctness distributions for low (а), average (b) and high 
(с) control quality levels 
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Table 9.31. Working capacity zones for process performance (0.6, 0.7, 0.8, 0.9)-correctness 
levels  

Control 
quality 

Raw material quality 

Low Average High 

 
Low 

 

Zone is 
absent 

Zone is absent 

0t   

V  
0.6 

0.9 

 

 
 
 

Average 
 
 

 

Zone is 
absent 

Zone is absent 

0t   

V  
0.6 

0.9 

 

 
 
 

High 
 
 
 

Zone is 
absent 

0t   

V  

0.6

0.7 

0t   

V  
0.6 

0.7 

0.8 0.9
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