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Abstract. A new method to find representative phrases from a musical score is 
given in this paper. It is based on the computation and use of a fuzzy proximity 
relation on a set of phrases. This relation is computed as a conjunction of values 
given by a W-indistinguishability on a set of variation of notes in the phrases, 
where W is the Lukasiewicz t-norm. Different fuzzy logics are used and com-
pared in order to show their influence on the final decision. The proposed me-
thod to find the most representative phrase has been proved successful on  
different musical scores. 

1 Introduction 

The concept of musical “motif” stands for a short musical phrase on which a compos-
er develops the whole musical score. The “motif” is a melodic element that is impor-
tant throughout the work and that can be varied to generate more musical phrases. 
This work uses a practical approximation to the criteria of Overill [8] for searching 
musical motifs based on the analysis of the different phrases. The motif of a score is 
found using a “fuzzy pattern machine model” that uses indistinguishability operators 
and proximity fuzzy relations to compare the phrases. 

In [8] the author discusses the importance in music analysis of establishing the  
occurrences of a musical motif and its variants. He presents it as a tedious and time-
consuming process; therefore, it is a task that can be carried out by a computer using 
several models that must include the design of which variants are to be included in the 
search. The number of variants that are considered have been found to have a pro-
found effect on the computer time required. He presents two models that are based on 
recurrence relations and closed analytic expression of fuzzy pattern matching. 

Each one of the Overill [8] models assumes the existence of an atomic exact 
matching operation that can be represented in a formula to be evaluated and tabulated 
as a function of some independent parameters. These results allow a prior estimation 
of the relative run times of different music searches. Both proposed models are also 
equally capable of handling inversion, retrogradation or inverted retrogradation of a 
motif [1]. Nevertheless, both models are only concerned with pitch, without taking 
into account other musical issues such as the duration. 

Finally, Overill concludes that from the music analysis, the traditional approaches 
such as the two models analyzed in his paper, have many drawbacks and limitations, 
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mainly due to the complexity and the computer time they require, which makes them 
less useful for practical applications. 

Some other approaches present a method to find representative phrases from a 
musical score [3][4]. They are based on the computation of a fuzzy proximity relation 
on the set of phrases. Two musical phrases can be considered ‘similar’ when the vari-
ations between the first and the second notes are ‘equivalent’, AND the variations 
between the second and the third notes are ‘equivalent’, AND …, so on and so forth. 
That is, two phrases are similar if the conjunction of the distances between couples of 
consecutive notes are similar. This conjunction can be modeled using different ma-
thematical operators, specifically triangular norms. Therefore, two phrases can be 
similar even if the starting tone is different, because the comparison system works by 
evaluating relative distances between notes allowing transportations on the scale.  

Once the fuzzy relation “proximity” has been computed on a set of phrases, a  
method that automatically selects some phrases is defined by computing a fuzzy set 
representing the characteristic of being ‘similar to the other phrases’ on the set of 
phrases. The chosen representative phrase is the one with highest membership degree 
in such fuzzy set. As an example, this method is applied to find the representative 
phrase of the musical score shown in Figure 1. 

 

Fig. 1. A few phrases of Invention # 1 of J. Bach 

This chapter is organized as follows. Section 2 includes some preliminaries about 
fuzzy logic and decision making in uncertain environments with imprecise informa-
tion. Also the concepts of proximity and similarity which are basis for the proposed 
searching methodology are defined. Section 3 presents the concept of specificity mea-
surement that is used to evaluate the reliability of results produced by the decision 
method. The definitions that are used to compute the distance between consecutive 
notes of a phrase are described in section 4. It is also proven that the negation of a 
distance is a W-indistinguishability operator. This is applied to the variations of con-
secutive notes for each couple of phrases in order to compute the proximity on the set 
of phrases. It is then possible to obtain how similar the phrases sound. The experi-
mental procedure, step by step experiments and results are explained in sections 5 to 
8. An example to show how the algorithm for searching musical motifs performs  
 



 7   Searching Musical Representative Phrases Using Decision Making 127 

starts in section 5. The details on how to build a proximity relationship on the set of 
phrases using 3 different t-norms and the OWA operator with 3 levels of tolerance are 
shown in section 6, in order to compare different aggregations’ operators. 

Section 7 details the method to choose a representative phrase, and finally, section 
8 includes the last step of the application related to the calculation of the specificity 
measurement. The chapter finalizes with the conclusions in section 9. 

2 Fuzzy Logic in Decision Making with Uncertainty 

Fuzzy logic is useful when dealing with vague, uncertain, and complex environments. 
The imprecise information that characterizes the elements of a universe can be  
interpreted as a linguistic variable and modeled with fuzzy sets.  

Given a universe of discourse E, a fuzzy set [13] is a mapping μ: E → [0, 1] gives 
a membership degree to every element of E in the interval [0, 1]. 

A semantic label is assigned to this fuzzy set and its membership degree is used to 
measure a characteristic of the elements of the universe E. 

It is also well known that an algebra on fuzzy sets allows to define an extension of 
the logic operators AND, OR, and NOT,  using triangular norms (t-norms), triangular 
conorms (t-conorms) and negation operators respectively [7]. The t-norm can be  
defined as follows [9][10], 

For all x, y, z in [0,1], a binary operation T: [0, 1] × [0, 1] → [0, 1] is a t-norm if it 
satisfies the following axioms: 

T(1, x) = x, T(0, x) = 0 for all x in [0, 1] (1) 

T(x, y) = T(y, x) –symmetry- (2) 

T(x, T(y, z)) = T(T(x, y), z) –associativity- (3) 

If x ≤ x’ and y ≤ y’ then T(x, y) ≤  T(x’, y’) –monotonicity- (4) 

The t-conorm operator can be defined in a similar way, but having S(1, x) = 1,  
S(x, 0) = x, and similar axioms (2), (3), and (4). 

The most common continuous logic operators are shown in Table 1. 

Table 1. Most used t-norms and t-conorms in fuzzy logic 

Logic t-norm t-conorm 
Zadeh min(x,y) max(x,y) 

Product x*y x + y - xy 

Łukasiewicz max(0, x+y-1) min(1, x+y) 



128 E. Castañeda, L. Garmendia, and M. Santos 

The usual negation operator is defined as a mapping N: [0, 1] → [0, 1] with N(x)  
= 1-x for any x ∈ [0, 1]. It is possible to define the fuzzy set “NOT A” from a fuzzy 
set “A” and a negation operator N as follows:  

μ ΝΟ Τ   Α (x)   =  Ν( μ Α (x))  for every x in E. (5) 

When it is necessary to gather several concepts, informations or fuzzy sets  in a single 
fuzzy set, aggregation operators are useful. For example, operators between t-norms 
and t-conorms, such as averages, are aggregation operators [2]. 
On the other hand, fuzzy relations R: E×E→ [0, 1] have many applications to make 
fuzzy inference with uncertain, imprecise, or incomplete knowledge. For example, it 
can be used to model similarity or implication relations in order to generate rules and 
therefore to infer some conclusions [13]. A fuzzy rule can be expressed as, 

IF “x is A” THEN “y is B” 

where A and B are fuzzy sets (may be defined as a conjunction, aggregations or dis-
junction of other fuzzy sets), and x and y are measurable variables of the elements of 
the universe E. The main characteristic of the approximate reasoning is that from the 
knowledge of “x is A’ ”, for example ‘x is almost A’, and the rule stated above, and 
by applying the compositional rule of inference it is possible to learn that “y is B’ ” 
[14], for example, inferring that  “x is almost B”. 

2.1 Proximity and Similarity 

Let E = {e1, ..., en} be a finite set and R a fuzzy relation on E. The relation degree for 
every pair of elements ei and ej in E is denoted eij. So eij = R(ei, ej). Some common 
fuzzy relations properties are the following: 

• A fuzzy relation R is reflexive if eii = 1 for all 1 ≤ i ≤ n. 
• A fuzzy relation R is α -reflexive if eii ≥ α, for all 1 ≤ i ≤ n. 
• The relation R is symmetric if eij = eji for all 1 ≤ i, j ≤ n. 

 

A reflexive and symmetric fuzzy relation is called a fuzzy proximity relation. 
Let T be a t-norm [9]. A fuzzy relation R: E× E → [0, 1] is T-transitive if and only 

if T(R(a, b), R(b, c)) ≤ R(a, c) for every a, b, c in E. So R is T transitive if T(eik, ekj) 
≤ eij for every 1 ≤ i, j, k ≤ n. 

A T-indistinguishability relation is a reflexive, symmetric and T-transitive fuzzy 
relation. 

Finally, a fuzzy similarity is a reflexive, symmetric and min-transitive fuzzy relation. 
Similarities are therefore particular cases of T-indistinguishabilities, where the  

t-norm is the minimum [11]. 
It is possible to establish the following proposition: Let d be a normalized distance 

in E. Let N: [0, 1] → [0, 1] be the usual negation operator. Then S: E× E →  [0, 1] 
defined as S(x, y) = N(d(x, y)) is a W-indistinguishability, where W is the 
Łukasiewicz t-norm. 
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Proof 

If d is a distance, 

d(x, x) = 0 for all x in E (6) 

d(x, y) = d(y, x) for all x, y in E. (7) 

d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality) (8) 
 
Then S is a W-indistinguishability because: 

S(x, x) = N(d(x, x)) = N(0) = 1 for all x in E (S is reflexive)  (9) 

S(x, y) = N(d(x, y)) = N(d(y, x)) = S(y, x) for all x, y in E (symmetry) (10) 

By the triangular inequality of d, d(x, y) ≤ W*(d(x, z), d(z, y)) (11) 

where W* is the Łukasiewicz t-conorm, that is, the dual t-conorm of W [9]. Then  
applying the operator N, 

N(d(x, y)) ≥ N(W*(d(x, z), d(z, y))) = W(N(d(x, z)),N(d(z, y))) (12) 

and then 

S(x, y) ≥ W(S(x, z), S(z, y) ) for all x, y, z in E. (13) 
 
Then S is W-transitive and therefore is a W-indistinguishability. 

3 Measure of Specificity on Fuzzy Sets 

The concept of specificity provides a measurement of the degree of having just one 
element in a fuzzy set or a possibility distribution. It is strongly related to the inverse 
of the cardinality of a set. 

Specificity values were introduced by Yager showing their usefulness as a measure 
of “tranquility” when making a decision. Yager stated the specificity-correctness tra-
deoff principle. The output information of an expert system or any other knowledge 
based system should be both specific and correct if it is to be useful. Yager suggested 
the use of specificity in default reasoning, in possibility qualified statements and in 
data mining processes, giving several possible manifestations of this measure. 

Let X be a set with elements {xi} and let [0, 1]X be the class of fuzzy sets of X. A 
measure of specificity [12] is a mapping Sp: [0, 1]X →[0, 1] such that: 

 

Sp(μ) = 1 if and only if μ is a singleton (μ = {x1}) (14) 

Sp(∅) = 0 (15) 

If μ and η are normal fuzzy sets in X and μ ⊂ η, then Sp(μ) ≥ Sp(η) (16) 
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Given a measurement of specificity Sp on a fuzzy set and given a T-indistinguishability 
S, the expression Sp(μ/S) is a measure of specificity under T-indistinguishabilities [6] 
when it verifies the following four axioms: 

Sp({x} / S) = 1 (17) 

Sp(∅ / S) = 0 (18) 

Sp(μ / Id) = Sp(μ) (19) 

Sp(μ / S) ≥ Sp(μ) (20) 

Yager introduced the linear measurement of specificity on a finite space X as: 
 

Sp(μ) = a1 − ∑
=

n

2j
wj aj 

(21) 

 
where aj is the jth greatest membership degree of μ and {wj} is a set of weights that 
verifies, 

wj ∈ [0, 1] ∑
=

n

2j
wj = 1 

(22) 

wj ≥ wi for all 1< j<i. 
 
This is the operator which is going to be applied to musical composition to know how 
useful the decision of choosing a phrase is. If there is only one representative phrase, 
the specificity of the fuzzy set “similar to other phrases” is maximal. By adding some 
more information on the proximity on phrases, some groups of similar phrases can be 
clustered in just one phrase. 

4 Intelligent Algorithm for Searching Musical Motifs 

A first step to find musical motifs is to separate a musical score into phrases. Then, 
the phrases are compared to each other in order to evaluate the proximity degree of 
every couple of phrases. From the proximity and the concept “similar to other phras-
es’ defined in a fuzzy set, it is possible to identify the motifs from the set of candidate 
phrases [5].  

An approximation of the pre-searching method described by [8] is used as a starting 
point for searching the musical motifs. The algorithm in pseudo code can be written as: 

a) A score is separated into phrases. 
b) The proximity degree of every couple of phrases is computed. 
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c) A fuzzy set ‘candidate to be a motif’ is computed on the set of phrases by aggregating 
the proximity degree of each phrase with other phrases. 
d) The most representative phrase is the one with highest membership degree on the 
fuzzy set ‘candidate to be a motif’. 
 
The selection of the set of phrases can be done in different ways. The whole process 
depends on the chosen way of separation of phrases. 

The pre-searching method takes into account the following criteria: 

1) The variation of tones into a phrase. 
2) The distance of the intervals between notes into a phrase. 

The following definitions are given to establish a notation and a description of the 
given methodology. 

4.1 Phrases and Variation Points 

A phrase of a score is a sorted set of notes. For each couple of consecutive notes there is 
a measurable variation. It is possible to define a point for each couple of consecutive 
notes represented by (x, y). 

A variation point for a note is the pair pi = [tone, variation], where the tone is 
represented using the positive integer in the standard MIDI for the respective note, and 
the variation is the difference between two tones (number of semitones of difference with 
the next note). 

4.2 Distance between Ordered Notes 

Let Pn = { p1, p2, …, pn} be a set of notes, that is, a musical phrase. 
A function that computes the n-1 distances between consecutive notes is defined as 

follows: 

D(Pn ) = [ d(p1, p2 ), d( p2, p3 ), …,d( pn-1,pn ) ] (23) 

where d is a distance, for example, the Euclidean distance. 

4.3 A W-Indistinguishability S of Consecutive Notes 

Let Sr be a W-indistinguishability operator Sr : R × R → [0,1] defined by 

Sr (a , b) = ( rmax – d( | a – b | ) / rmax  where the range rmax is | amax – bmax | (24) 

A function of real numbers Sv: Rn x Rn → Rn is used to compute the  
W-indsitinguishabilities between the (n-1) variation points of two phrases X and Y. It 
is defined as follows, 

Sv({x1,x2,...,xn1},{y1,y2,...yn1})={Sr(x1,y1),Sr(x2,y2), ..., Sr(xn, yn) } (25) 
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To define a proximity degree S: Pn × Pn’ → [0,1] of two musical phrases Pn and Pn , a 
conjunction operator T on the W-indistinguishability degrees of the distances between 
variation points given by D is computed as follows. 

S ( Pni , Pnj ) = T( Sv ( D(Pni), D(Pnj) ) ) (26)

Note that T is an n-ary t-norm operator (a conjunction operator) defined from a binary 
t-norm through the associative property: 

T(x1, x2, ..., xn) = T(x1,T(x2,T(...,T(...,xn)))) (27) 

4.4 Choosing Operators for Different Meanings of “Representative Phrases” 

Once a proximity relationship on the set of phrases is obtained, it is necessary to translate 
it into musical concepts. The way in which a fuzzy set describing the representative con-
cept on the set of phrases based on the proximity relation can be done using different  
operators. Depending on how is it understood the concept of representative phrase: 

• If a phrase is representative when it is similar to ALL other phrases, it is possible 
to define the representativeness of a phrase by using a conjunction of the proximi-
ty values with the rest of phrases through a t-norm. So a phrase is representative 
when it is similar to a phrase 1 AND it is similar to phrase 2 AND…it is similar 
to phrase n.  

• If the phrase is representative when it is similar to ANY other phrase, then it is 
possible to use a disjunction, for example, the MAX t-conorm.  So a phrase is 
representative when it is similar to a phrase 1 OR it is similar to phrase 2 
OR…it is similar to phrase n (all other phrases but itself).  

• If the phrase is representative when it is similar to SOME other phrase, it is 
possible to use aggregation operators, which are in between conjunction and 
disjunctions. For example, an Ordered Weighted Averaging function (OWA), 
or an average. 

R. R. Yager´s Ordered weighted averaging functions (OWAs) are also a class of averag-
ing aggregation functions. The difference in the weighted arithmetic mean  is that the 
weights are not associated with the inputs but with the magnitude. In some applications 
all inputs are equivalent, and the importance of one specific input is determined by its  
absolute value. 

5 Experiments and Results 

In this section, a step by step example is developed to show how the proposed algo-
rithm performs. The eight first notes of Figure 1 are considered to evaluate if there is 
a possible motif. The score is divided into phrases of 8 notes. 

The first phrase Pn
1 includes the first 8 notes in the score; the initial silence is omit-

ted. The rest of the phrases Pn’
i are formed taking 8 consecutive notes starting from the 

9th note in the superior line (first voice); then it is shifted a note for every phrase for 
the two voices separately until there are 10 more phrases. All the resulted phrases  
after the normalization of the durations of their notes  are shown in Figure 2. 
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= [ (C5 , 2) , (D5 , 2) , (E5 ,  1) , (F5 , -3) , (D5,  2) , (E5 , -4) , (C5 ,  7) , (G5 ,  0) ]

= [ (C6 , -1) , (B5 , 1) , (C6 ,  2) , (D6 , -7) , (G5,  2) , (A5 ,  2) , (B5 ,  1) , (C6 , -3) ]

= [ (B5 , 1) , (C6 , 2) , (D6 , -7) , (G5 ,  2) , (A5 ,  2) , (B5 ,  1) , (C6 , -3) , (A5 ,  0) ]

= [ (C6 , 2) , (D6 , -7) , (G5 ,  2) , (A5 ,  2) , (B5 ,  1) , (C6 , -3) , (A5 , 2) , (B5 , 0) ]

= [ (D6 , -7) , (G5 , 2) , (A5 ,  2) , (B5 ,  1) , (C6, -3) , (A5 ,  2) , (B5 , -4) , (G5 , 0) ]

= [ (G5 , 2) , (A5 , 2) , (B5 ,  1) , (C6 , -3) , (A5 ,  2) , (B5 , -4) , (G5 ,  7) , (D6 , 0) ]

= [ (C4 , 2) , (D4 , 2) , (E4 ,  1) , (F4 , -3) , (D4,  2) , (E4 , -4) , (C4 ,  7) , (G4 , 0) ]

= [ (D4 , 2) , (E4 , 1) , (F4 , -3) , (D4 ,  2) , (E4 , -4) , (C4 ,  7) , (G4 , -12), (G3 , 0) ]

= [ (E4 , 1) , (F4 , -3) , (D4 ,  2) , (E4 , -4) , (C4,  7) , (G4 , -12 , (G3 , -) , (- ,  0) ]

= [ (F4 , -3) , (D4 , 2) , (E4 , -4) , (C4 ,  7) , (G4, -12) , (G3 , -) , (- , -) , (- ,  0) ]

= [ (D4 , 2) , (E4 , -4) , (C4 ,  7) , (G4 , -12), (G3, -) , (- , -) , (- , -) , (G4 ,  0) ]

P
n
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n
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n
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n
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n
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n
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n
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Note that in same way that the models described in [8], this method is concerned 
only with pitch, without taking into account the real duration of the notes in order to 
simplify the pre-searching. On the other hand, based on the combination of tools and 
techniques, this method is capable of handling inversion, retrogradation and inverted 
retrogradation of motifs. 

 

 

Fig. 2. Normalized phrases of invention #1 

The 8 notes represented by their scale and duration of the 11 phrases are: 
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In this case, only eleven of the initial phrases for the two voices are analyzed in or-
der to simplify the example and to show some details. This procedure can be applied 
to the whole musical score (more than 400 phrases), using different lengths to find the 
best motif. 

The variation points of the eleven normalized phrases of Invention # 1 of J. Bach 
(Figure 2) are represented in the following matrix using the traditional musical nota-
tion for the different classes of pitch, with the first seven letters of the Latin alphabet 
and a number after the letter which represents the octave. The selected phrases  
include notes between 4 th  and 6 th octaves. 

The n-1 distances D(Pn) between the variation points of every phrase are calculated 
and shown in the following Table 2: 

Table 2. Distance D(Pn) between notes of every phrase 

= [ 2,00 2,24 4,12 5,83 6,32 11,70 15,65 ]

= [ 2,24 1,41 9,22 11,40 2,00 2,24 1,41 ]

= [ 1,41 9,22 11,40 2,00 2,24 4,12 5,83 ]

= [ 9,22 11,40 2,00 2,24 4,12 5,83 2,24 ]

= [ 11,40 2,00 2,24 4,12 5,83 6,32 11,70 ]

= [ 2,00 2,24 4,12 5,83 6,32 11,70 15,65 ]

= [ 2,00 2,24 4,12 5,83 6,32 11,70 15,65 ]

= [ 2,24 4,12 5,83 6,32 11,70 20,25 22,47 ]

= [ 4,12 5,83 6,32 11,70 20,25 16,97 9,00 ]

= [ 5,83 6,32 11,70 20,25 16,97 0,00 10,00 ]

= [ 6,32 11,70 20,25 16,97 0,00 0,00 7,00 ]
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The next step is to normalize Table 2 using the maximum distance, which in this 
case is 22.47 (see row 8, last column). The normalized table is shown in Table 3. 

Table 3. Normalized distances D(Pn) between notes of every phrase 

Phrase Normalized Values 
1 0,09 0,1 0,18 0,26 0,28 0,52 0,7 
2 0,1 0,06 0,41 0,51 0,09 0,1 0,06 
3 0,06 0,41 0,51 0,09 0,1 0,18 0,26 
4 0,41 0,51 0,09 0,1 0,18 0,26 0,1 
5 0,51 0,09 0,1 0,18 0,26 0,28 0,52 
6 0,09 0,1 0,18 0,26 0,28 0,52 0,7 
7 0,09 0,1 0,18 0,26 0,28 0,52 0,7 
8 0,1 0,18 0,26 0,28 0,52 0,9 1 
9 0,18 0,26 0,28 0,52 0,9 0,76 0,4 
10 0,26 0,28 0,52 0,9 0,76 0 0,45 
11 0,28 0,52 0,9 0,76 0 0 0,31 

The next step is to compute the W-indistinguishability of every phrase with respect 
to the other 10 phrases. This is obtained by computing the distance of every variation 
point of the phrases (values of Table 3) and the other 10 rows, and applying the usual 
negation operator N(x) = 1 – x of distances, to obtain W-indistinguishabilities  
between variation points of different phrases. 
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For example, Table 4 shows the proximity of phrase 6 with the rest of the phrases  
using different continuous conjunction operators (t-norms of Table 1). Every value in the 
rows of Table 4 is calculated using the negation operator N(x) = 1 – x to the subtraction 
of 2 values from Table 3. Those are obtained by comparing phrase by phrase and varia-
tion point by variation point for each one of the eleven phrases. For example, the value in 
column 1 and row 5 of Table 4 (0.58) is computed using the negation N(x) = 1 – x, 
where x= (0.09-0.51), normalized values of the first variations points of phrases 6 and 5 
respectively (Table 3). 

The last 3 columns of Table 4 are the values for every t-norm of Table 1 (product, min-
imum, Łukasiewicz) applied to each one of the rows. For example, the value obtained by 
the t-norm product for the phrase 5 (0.299) is the product of (0.58 * 0.99 * 0.92 * 0.92 * 
0.98* 0.76 * 0.82), that is, the multiplication of all the values of the corresponding row. 

Table 4. W-indistinguishabilities of the variation points of Phrase 6 with the other phrases 

 Phrase 6 product min w 
1 1 1 1 1 1 1 1 1 1 1 
2 0,99 0,96 0,77 0,75 0,81 0,58 0,37 0,095 0,366 0,000 
3 0,97 0,69 0,68 0,83 0,82 0,66 0,56 0,115 0,563 0,000 
4 0,68 0,59 0,91 0,84 0,9 0,74 0,4 0,082 0,403 0,000 
5 0,58 0,99 0,92 0,92 0,98 0,76 0,82 0,299 0,582 0,000 
7 1 1 1 0,92 1 1 1 1 1 1 
8 0,99 0,92 0,92 0,92 0,76 0,62 0,7 0,254 0,620 0,000 
9 0,91 0,84 0,9 0,92 0,38 0,77 0,7 0,130 0,380 0,000 

10 0,83 0,82 0,66 0,92 0,53 0,48 0,75 0,078 0,479 0,000 
11 0,81 0,58 0,28 0,92 0,72 0,48 0,61 0,026 0,282 0,000 

6 Building a Proximity Relationship on the Set of Phrases 

Two phrases can be considered ‘similar’ when the variation between the first and the 
second notes are ‘similar’, AND the variation between the second and the third notes 
are ‘similar’, AND …, so on and so forth. Such concept of ‘similar’ is replaced by 
‘W-indistinguible’ in this paper's proposal. 

The calculation of the conjunction of W-indistinguishabilities of the variation 
points for each phrase regarding the others defines a proximity relationship on the set 
of phrases. The final values of the proximity on the set of phrases are shown in Tables 
5, 6 and 7 where the conjunction (AND) is implemented by the three different t-norms 
of Table 1. Tables 8, 9 and 10 also show the proximity values using the OWA opera-
tor with different percentages. Table 8 shows the OWA operator at 85%, taking out 
the least significant variation point, Table 9 shows the OWA operator at 71% taking 
out the two least significant variation points, and finally, Table 10 shows the OWA  
operator at 57%, taking out the three least significant variation points. 

These three cases are equivalent to using a vector of weighs, Wi=1/6, for the 6 
highest membership degrees values of each one of the phrases. The second case 
would correspond to using a vector of weighs Wi=1/5 for the 5 highest membership 
degree values of every phrase, and the last case uses a vector Wi=1/4 for the 4 highest  
membership degree values of every phrase. 
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Table 5. Proximity of phrases using the t-norm minimum 

 1 2 3 4 5 6 7 8 9 10 11 
1 1 0,366 0,563 0,403 0,582 1 1 0,620 0,380 0,358 0,282
2 0,366 1 0,582 0,556 0,542 0,366 0,366 0,063 0,188 0,334 0,509
3 0,563 0,582 1 0,582 0,556 0,563 0,563 0,259 0,198 0,188 0,334
4 0,403 0,556 0,582 1 0,579 0,403 0,403 0,100 0,282 0,198 0,188
5 0,582 0,542 0,556 0,579 1 0,582 0,582 0,380 0,358 0,282 0,198
6 1 0,366 0,563 0,403 0,582 1 1 0,620 0,380 0,358 0,282
7 1 0,366 0,563 0,403 0,582 1 1 0,620 0,380 0,358 0,282
8 0,620 0,063 0,259 0,099 0,380 0,620 0,620 1 0,400 0,099 0,099
9 0,380 0,188 0,198 0,282 0,358 0,380 0,380 0,400 1 0,245 0,099

10 0,358 0,334 0,188 0,198 0,282 0,358 0,358 0,099 0,245 1 0,245
11 0,282 0,509 0,334 0,188 0,198 0,282 0,282 0,099 0,099 0,245 1

The proximity values using the t-norm minimum are in the range of 0.063 to 1, with an 
average value of 0.46; t-norm minimum gives the highest values in the set of proximities. 

Table 6. Proximity of phrases using the t-norm product 

 1 2 3 4 5 6 7 8 9 10 11 
1 1 0,095 0,115 0,082 0,299 1 1 0,269 0,104 0,030 0,014
2 0,095 1 0,240 0,113 0,099 0,095 0,095 0,004 0,027 0,066 0,105
3 0,115 0,240 1 0,241 0,113 0,115 0,115 0,019 0,024 0,030 0,098
4 0,082 0,113 0,241 1 0,249 0,082 0,082 0,007 0,027 0,015 0,027
5 0,299 0,099 0,113 0,249 1 0,299 0,299 0,059 0,050 0,033 0,016
6 1 0,095 0,115 0,082 0,299 1 1 0,269 0,104 0,030 0,014
7 1 0,095 0,115 0,082 0,299 1 1 0,269 0,104 0,030 0,014
8 0,269 0,004 0,019 0,007 0,059 0,269 0,269 1 0,133 0,007 0,002
9 0,104 0,027 0,024 0,027 0,050 0,104 0,104 0,133 1 0,085 0,004

10 0,030 0,066 0,030 0,015 0,033 0,030 0,030 0,007 0,085 1 0,084
11 0,014 0,105 0,098 0,027 0,016 0,014 0,014 0,002 0,004 0,084 1

The proximity values using the t-norm product are in the interval 0.002 to 1 with 
an average value of 0.23; t-norm product gives medium values of proximities. 

Table 7. Proximity of phrases using the t-norm Lukasiewicz 

  1 2 3 4 5 6 7 8 9 10 11 
1 1 0,000 0,000 0,000 0,000 1 1 0,000 0,000 0,000 0,000
2 0,000 1 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
3 0,000 0,000 1 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
4 0,000 0,000 0,000 1 0,000 0,000 0,000 0,000 0,000 0,000 0,000
5 0,000 0,000 0,000 0,000 1 0,000 0,000 0,000 0,000 0,000 0,000
6 1 0,000 0,000 0,000 0,000 1 1 0,000 0,000 0,000 0,000
7 1 0,000 0,000 0,000 0,000 1 1 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1 0,000 0,000 0,000
9 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1 0,000 0,000
10 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1 0,000
11 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1
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The proximity values calculated by the t-norm of Lukasiewicz are only 0s and 1s. 
It gives the lowest values of proximities. 

Table 8. Proximity of phrases using OWA 85% 

  1 2 3 4 5 6 7 8 9 10 11 
1 1 0,579 0,663 0,592 0,761 1 1 0,697 0,704 0,479 0,479 
2 0,579 1 0,653 0,592 0,592 0,579 0,579 0,198 0,344 0,606 0,542 
3 0,663 0,653 1 0,653 0,592 0,663 0,663 0,282 0,428 0,344 0,606 
4 0,592 0,592 0,653 1 0,582 0,592 0,592 0,358 0,504 0,428 0,344 
5 0,761 0,592 0,592 0,582 1 0,761 0,761 0,521 0,526 0,504 0,428 
6 1 0,579 0,663 0,592 0,761 1 1 0,697 0,704 0,479 0,479 
7 1 0,579 0,663 0,592 0,761 1 1 0,697 0,704 0,479 0,479 
8 0,697 0,198 0,282 0,358 0,521 0,697 0,697 1 0,620 0,380 0,311 
9 0,704 0,344 0,428 0,504 0,526 0,704 0,704 0,620 1 0,620 0,245 

10 0,479 0,606 0,344 0,428 0,504 0,479 0,479 0,380 0,620 1 0,620 
11 0,479 0,542 0,606 0,344 0,428 0,479 0,479 0,311 0,245 0,620 1 

The proximity values obtained by applying the OWA 85% are in the range of 
0.198 to 1, with an average of 0.608. It eliminates the first level of the lowest values. 

Table 9. Proximity of phrases using OWA 71% 

  1 2 3 4 5 6 7 8 9 10 11 
1 1 0,752 0,676 0,679 0,824 1 1 0,761 0,739 0,526 0,504 
2 0,752 1 0,803 0,679 0,676 0,752 0,752 0,568 0,662 0,618 0,751 
3 0,676 0,803 1 0,840 0,679 0,676 0,676 0,579 0,568 0,803 0,781 
4 0,679 0,679 0,840 1 0,903 0,679 0,679 0,663 0,579 0,568 0,741 
5 0,824 0,676 0,679 0,903 1 0,824 0,824 0,592 0,663 0,579 0,568 
6 1 0,752 0,676 0,679 0,824 1 1 0,761 0,739 0,526 0,504 
7 1 0,752 0,676 0,679 0,824 1 1 0,761 0,739 0,526 0,504 
8 0,761 0,568 0,579 0,663 0,592 0,761 0,761 1 0,761 0,445 0,358 
9 0,739 0,662 0,568 0,579 0,663 0,739 0,739 0,761 1 0,761 0,380 
10 0,526 0,618 0,803 0,568 0,579 0,526 0,526 0,445 0,761 1 0,761 
11 0,504 0,751 0,781 0,741 0,568 0,504 0,504 0,358 0,380 0,761 1 

The proximity values using the OWA operator at 71% gives values between 0.36 
and 1 with an average value of 0.71, OWA 71%. This operator eliminates the first and 
second levels of the lowest values. 

Table 10. Proximity of phrases using OWA 57% 

  1 2 3 4 5 6 7 8 9 10 11 
1 1 0,773 0,689 0,739 0,916 1 1 0,916 0,766 0,663 0,579 
2 0,773 1 0,903 0,689 0,689 0,773 0,773 0,774 0,803 0,781 0,752 
3 0,689 0,903 1 0,903 0,739 0,689 0,689 0,752 0,774 0,814 0,817 
4 0,739 0,689 0,903 1 0,916 0,739 0,739 0,676 0,699 0,655 0,788 
5 0,916 0,689 0,739 0,916 1 0,916 0,916 0,739 0,676 0,719 0,719 
6 1 0,773 0,689 0,739 0,916 1 1 0,916 0,766 0,663 0,579 
7 1 0,773 0,689 0,739 0,916 1 1 0,916 0,766 0,663 0,579 
8 0,916 0,774 0,752 0,676 0,739 0,916 0,916 1 0,854 0,739 0,479 
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Table 10. (continued) 

9 0,766 0,803 0,774 0,699 0,676 0,766 0,766 0,854 1 0,854 0,739 
10 0,663 0,781 0,814 0,655 0,719 0,663 0,663 0,739 0,854 1 0,854 
11 0,579 0,752 0,817 0,788 0,719 0,579 0,579 0,479 0,739 0,854 1 

The proximity values obtained by OWA 57% are in the range of 0.48 to 1 with an av-
erage value of 0.79, OWA 57%. This operator eliminates the first, second, and third le-
vels of the lowest values. 

7 A Method to Choose a Representative Phrase 

Once all the previous measurements have been calculated, the proposed method tries to 
find the representative phrases from the information of Tables 5, 6, 7, 8, 9 and 10. By the 
aggregation of every row in the proximity matrix and by using the arithmetic mean, a 
fuzzy set: ‘proximity with the rest of phrases’ is defined on the set of phrases. Then, the 
phrase or phrases with certain membership degree (that exceed a threshold), are chosen 
as the most representative phrases. The normalized mean values are presented in Tables 
11 and 12 and Figures 3 and 4. 

Table 11. Fuzzy set “proximity with other phrases” on the set of phrases using t-norms 

Phrase Avg Product Avg Min Avg W 
1 0,301 1,000 0,555 1,000 0,200 1,000 
2 0,094 0,312 0,387 0,697 0,000 0,000 
3 0,111 0,369 0,439 0,790 0,000 0,000 
4 0,093 0,308 0,369 0,665 0,000 0,000 
5 0,152 0,504 0,464 0,835 0,000 0,000 
6 0,301 1,000 0,555 1,000 0,200 1,000 
7 0,301 1,000 0,555 1,000 0,200 1,000 
8 0,104 0,345 0,326 0,587 0,000 0,000 
9 0,066 0,220 0,291 0,524 0,000 0,000 
10 0,041 0,137 0,267 0,480 0,000 0,000 
11 0,038 0,125 0,252 0,453 0,000 0,000 

Table 12. Fuzzy set “proximity with other phrases” on the set of phrases using OWAs 

Phrase Avg OWA85% Avg 
OWA71% 

Avg 
OWA57% 

1 0,695 1,000 0,746 1,000 0,804 1,000 
2 0,526 0,757 0,701 0,940 0,771 0,959 
3 0,555 0,798 0,708 0,949 0,777 0,966 
4 0,524 0,753 0,701 0,939 0,754 0,938 
5 0,603 0,867 0,713 0,956 0,794 0,988 
6 0,695 1,000 0,746 1,000 0,804 1,000 
7 0,695 1,000 0,746 1,000 0,804 1,000 
8 0,476 0,685 0,625 0,837 0,776 0,965 
9 0,540 0,777 0,659 0,883 0,770 0,957 
10 0,494 0,711 0,611 0,819 0,740 0,921 
11 0,453 0,652 0,585 0,785 0,688 0,856 
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Fig. 3. Fuzzy set “proximity of every phrase i with the rest of phrases”, using t-norms  
connectives 

 

Fig. 4. Fuzzy set “proximity of every phrase i with the rest of phrases”, using OWAs  
aggregations 

It is possible to conclude that the representative phrases in this case are 1, 6, and 7, 
with mean values over 30%, 55% and 20% respectively for each t-norm. These phras-
es are shown in Figure 5. 

It is also possible to identify the second set of representative phrases, 3 and 5, by 
looking at Tables 11 and 12. They are also representative with values over 40% and 
10% for the t-norms Min and Product respectively. A musical representation of phras-
es 3 and 5 is shown in Figure 6. 

The case using OWAs is similar to the t-norms, but in this case, the membership 
degrees for each phrase have undergone a big increment that is inversely proportional 
to the percentage of the OWA. This is because the elements with lower values are 
taken off from the calculations. In the case of OWA 85% the representative phrases 
are still 1, 6, and 7; phrases 3 and 5 are an additional subset of representative phrases 
with values over 79%. In the cases of OWA 71% and OWA 57% all of the values are 
over 78% as they tend to 1, so the important differences have been lost especially for 
the range of phrases between 1 and 7. 
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Fig. 5. A musical representation of phrases 1, 6 and 7 

 

Fig. 6. A musical representation of phrases 3 and 5 

Phrase 7 is descending an octave and phrase 6 is ascending in 7 semitones (see 
how they confirm proximity relations in Tables 5, 6, 7). On the other hand, phrases 3 
and 5 have a high level of proximity, and in practice, it is easy to see that these  
phrases contain an important part of representative phrases 1, 6 and 7. 

8 Computing the Specificity Measure of the Fuzzy Set “Similar 
to Other Phrases” and the Inference Independent Sets Using 
the Proximity on Phrases 

After choosing the representative phrases, following the presented procedure, the next 
step consists in computing  the specificity measure of every one of the fuzzy sets  
obtained in section 7 (Table 11 and Table 12). This is a mechanism to evaluate the 
decision's reliability from the perspective of the data that have been used in the selec-
tion of phrases. When the specificity is one, there is just one representative phrase to 
choose.  

Figure 7 shows all the fuzzy sets obtained in section 7. Every fuzzy set is obtained 
by the aggregation of the proximity values of each one of the t-norm tables (Tables 5 
to 7) and each one of the OWA tables (Tables 8 to 10). 

Table 13 shows the 11 values for every one of the 6 fuzzy sets and their calculated 
values of specificity (last column), using the formula of lineal specificity (21). 
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Fig. 7. Fuzzy set of values of proximity of phrases, OWA and t-norm cases 

Table 13. Normalized membership degree “proximity with other phrases” on the set of phrases, 
OWA and t-norm cases 

  1 2 3 4 5 6 7 8 9 10 11Sp 
owa85 1,00 0,75 0,79 0,75 0,86 1,00 1,00 0,68 0,77 0,71 0,65 0,2
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,83 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04
w 1,00 0,00 0,00 0,00 0,00 1,00 1,00 0,00 0,00 0,00 0,00 0,8
prod 1,00 0,31 0,36 0,30 0,50 1,00 1,00 0,34 0,22 0,13 0,12 0,56
min 1,00 0,69 0,79 0,66 0,83 1,00 1,00 0,58 0,52 0,48 0,45 0,29

The inference independent sets [6] aims to gather in one class all the similar phras-
es, so the decision is easier, as we now choose between a few cases representing some 
similar phrases. Those sets of phrases are calculated for every one of the initial fuzzy 
sets that are shown in Table 13. For each case, one of the proximity matrixes of Table 
5 to 10 is used. The result is a table of 6 new fuzzy sets obtained from the original 
fuzzy sets that in some cases have changes in their values. 

Table 14 is the result of computing the proximity values from Table 8 with the 
fuzzy sets in Table 13. This is how the inference independent sets for the OWA 85% 
case are obtained. A graphical view of the results is shown in Figure 8. These results 
should be compared with Figure 7. In this specific case, all the values begin with at 
least 25%. This is a special case where the fuzzy sets obtained by product t-norm and 
Lukasiewicz t-norm have the same membership degrees. 
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Table 14. New membership degree “proximity with other phrases” on the set of phrases for 
OWA 85% 

  1 2 3 4 5 6 7 8 9 10 11Sp 
owa85 1,00 0,75 0,79 0,75 0,86 1,00 1,00 0,69 0,77 0,71 0,65 0,19
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,83 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04
w 1,00 0,57 0,66 0,59 0,76 1,00 1,00 0,69 0,70 0,47 0,47 0,30
prod 1,00 0,57 0,66 0,59 0,76 1,00 1,00 0,69 0,70 0,47 0,47 0,30
min 1,00 0,69 0,79 0,66 0,83 1,00 1,00 0,69 0,70 0,48 0,47 0,26

 

Fig. 8. New fuzzy sets of values of proximity under OWA 85% proximity 

Table 15 and Figure 9 show the results of computing the proximity values from 
Table 9 with the fuzzy sets in Table 13 for the OWA 71% operator. In this case, all 
values are over 50%. Again, the fuzzy sets of product t-norm and Lukasiewicz t-norm 
have the same membership degrees. 

Table 15. New membership degree “proximity with other phrases” on the set of phrases under 
OWA 71% proximity 

 1 2 3 4 5 6 7 8 9 10 11 Sp 
owa85 1,00 0,75 0,79 0,77 0,86 1,00 1,00 0,76 0,77 0,71 0,65 0,19
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,83 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04

w 1,00 0,75 0,67 0,67 0,82 1,00 1,00 0,76 0,73 0,52 0,50 0,25
prod 1,00 0,75 0,67 0,67 0,82 1,00 1,00 0,76 0,73 0,52 0,50 0,25
min 1,00 0,75 0,79 0,73 0,83 1,00 1,00 0,76 0,73 0,59 0,57 0,22
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Fig. 9. New fuzzy sets of values of proximity under OWA 71% proximity 

 
Table 16 and Figure 10 show the result of computing the proximity values from 

Table 10 with the fuzzy sets in Table 13 for the OWA 57% case. All the values are 
over 57%; again they are special cases where the fuzzy sets of product t-norm and 
Lukasiewicz t-norm have the same membership degrees. 

 

Table 16. New membership degree “proximity with other phrases” on the set of phrases under 
OWA 57% proximity 

 1 2 3 4 5 6 7 8 9 10 11 Sp 
owa85 1,00 0,77 0,79 0,78 0,91 1,00 1,00 0,91 0,77 0,71 0,65 0,16
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,91 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04
W 1,00 0,77 0,68 0,73 0,91 1,00 1,00 0,91 0,76 0,66 0,57 0,19
prod 1,00 0,77 0,68 0,73 0,91 1,00 1,00 0,91 0,76 0,66 0,57 0,19
min 1,00 0,77 0,79 0,75 0,91 1,00 1,00 0,91 0,76 0,66 0,60 0,18
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Fig. 10. New fuzzy sets of values of proximity under OWA 57% proximity 

 
 

Table 17 and Figure 11 show the result of computing the proximity values from 
Table 7 with the fuzzy sets in Table 13 for the Lukasiewicz t-norm case. The values 
are still the same, distributed between 0 and 1. 
 
 

Table 17. New membership degree “proximity with other phrases” on the set of phrases under 
Lukasiewicz t-norm % proximity 

 1 2 3 4 5 6 7 8 9 10 11 Sp 
owa85 1,00 0,75 0,79 0,75 0,86 1,00 1,00 0,68 0,77 0,71 0,65 0,20
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,83 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04
W 1,00 0,00 0,00 0,00 0,00 1,00 1,00 0,00 0,00 0,00 0,00 0,80
prod 1,00 0,31 0,36 0,30 0,50 1,00 1,00 0,34 0,22 0,13 0,12 0,56
min 1,00 0,69 0,79 0,66 0,83 1,00 1,00 0,58 0,52 0,48 0,45 0,29
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Fig. 11. New fuzzy sets of values of proximity under Lukasiewicz t-norm proximity 

Table 18 shows the results of computing the proximity values from Table 6 with 
the fuzzy sets in Table 13 for the product t-norm proximity. The fuzzy sets are shown 
in Figure 12. The values are distributed between 0 and 1. Note that in this case the 
only fuzzy set that changes is the Lukasiewicz t-norm. 

 

Table 18. New membership degree “proximity with other phrases” on the set of phrases under 
product t-norm % proximity 

 1 2 3 4 5 6 7 8 9 10 11 Sp 
owa85 1,00 0,75 0,79 0,75 0,86 1,00 1,00 0,68 0,77 0,71 0,65 0,20
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,83 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04
W 1,00 0,09 0,11 0,08 0,29 1,00 1,00 0,26 0,10 0,03 0,01 0,69
prod 1,00 0,31 0,36 0,30 0,50 1,00 1,00 0,34 0,22 0,13 0,12 0,56
Min 1,00 0,69 0,79 0,66 0,83 1,00 1,00 0,58 0,52 0,48 0,45 0,29
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Fig. 12. New fuzzy sets of values of proximity under Product t-norm proximity 

 
Table 19 and Figure 13 summarize the proximity values obtained from Table 5 

with the fuzzy sets in Table 13 for the minimum t-norm proximity. The values in this 
case are distributed between 29% and 100%. Again, the fuzzy sets of product t-norm 
and Lukasiewicz t-norm have same membership degrees. 

 

Table 19. New membership degree “proximity with other phrases” on the set of phrases under 
min t-norm % proximity 

 

 1 2 3 4 5 6 7 8 9 10 11 Sp 
owa85 1,00 0,75 0,79 0,75 0,86 1,00 1,00 0,68 0,77 0,71 0,65 0,20
owa71 1,00 0,94 0,94 0,93 0,95 1,00 1,00 0,83 0,88 0,81 0,78 0,08
owa57 1,00 0,95 0,96 0,93 0,98 1,00 1,00 0,96 0,95 0,92 0,85 0,04
W 1,00 0,36 0,56 0,40 0,58 1,00 1,00 0,62 0,38 0,35 0,28 0,44
prod 1,00 0,36 0,56 0,40 0,58 1,00 1,00 0,62 0,38 0,35 0,28 0,44
Min 1,00 0,69 0,79 0,66 0,83 1,00 1,00 0,62 0,52 0,48 0,45 0,29

 
Additional information is the number of times that every of the membership de-

grees has increased during each one of the inference independent sets calculation. It 
allows us to identify the most susceptible elements to be inferred from the proximity 
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Fig. 13. New fuzzy sets of values of proximity under Minimum t-norm proximity 

relations and other elements in the fuzzy set. Those elements are considered suscepti-
ble to be inferred because their increments are part of an inference independent set. 

The phrase with the highest number of variations is phrase 8 with a total of 17 var-
iations, followed by the set of phrases 2, 9 and 11 with 12 variations. The set com-
posed by phrases 5 and 10 has 11 variations, and phrase 3 with just 9 variations. All 
of these are listed in Table 20. 

Figure 14 is a graphical representation of the number of variations of every phrase 
for every case of inference independent set calculation process and an accumulate 
total of variations per phrase. 

Table 20. Number of variations in the calculation of inference independent sets 

Num of Variations 1 2 3 4 5 6 7 8 9 10 11 
owa85 0 2 2 2 2 0 0 4 3 2 3 
owa71 0 3 2 4 2 0 0 4 3 3 3 
owa57 0 4 2 4 4 0 0 5 3 3 3 
w 0 0 0 0 0 0 0 0 0 0 0 
pro 0 1 1 1 1 0 0 1 1 1 1 
min 0 2 2 2 2 0 0 3 2 2 2 
Total 0 12 9 13 11 0 0 17 12 11 12 

 



148 E. Castañeda, L. Garmendia, and M. Santos 

 

Fig. 14. Variations in membership degrees during inference independent sets calculation 

9 Conclusions and Remarks 

A method to search musical representative phrases using a W-indistinguishability  
operator and fuzzy proximity relations on a set of phrases is proposed and illustrated. 

An algorithm for searching musical motifs is followed step by step. A musical 
score is separated in phrases, six cases of proximity relations are calculated, six fuzzy 
set of phrases candidates to be a motif are computed by aggregating the proximities 
with different operators. Finally, the results are evaluated by the calculation of the 
independent inference sets to choose among classes of similar phrases, instead of 
choosing single phrases, by the determination of the specificity measurements under 
the knowledge of the proximities. Three of the proximities are computed using t-
norms and the other three were computing using different OWA operators. 

On the other hand, Yager's specificity measure of fuzzy sets is considered in order 
to evaluate the reliability in the decisions of selecting the representative phrases. Dif-
ferent fuzzy logic operators were applied to compute each one of the proximities, and 
the determination of the representative phrases process was successfully carried out. 

References 

1. Andreatta, M.: On group-theoretical methods applied to music: some compositional and 
implementational aspects. In: Mazzola, G., Noll, T., Lluis-Puebla, E. (eds.) Perspectives in 
Mathematical and Computational Music Theory, pp. 169–193. Electronic Publishing  
Osnabrück, Osnabrück (2004) 



 7   Searching Musical Representative Phrases Using Decision Making 149 

2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation functions: a guide for practitioners.  
Studies in fuzziness and soft computing. Springer, Heidelberg (2007) 

3. Castañeda, E., Garmendia, L., Santos, M.: Searching musical representative phrases using 
W-indistinguishabilities and proximities. In: Proc. EUROFUSE 2009 Workshop Prefe-
rence Modeling and Decision Analysis, pp. 213–218 (2009b) 

4. Castañeda, E., Garmendia, L., Santos, M.: Intelligent System for Computer Aided Musical 
Composition. In: Intelligent Decision Making Systems, pp. 13–18. World Scientific 
(2009a) 

5. Castañeda, E., Garmendia, L.: Searching musical representative phrases using similarities. 
In: International Conference on the Logic of Soft Computing and 5th Workshop of the 
ERCIM Working Group of Soft Computing. LCS-ERCIM2006 satellite International Con-
gress of Mathematicians, ICM (2006) 

6. Garmendia, L., Yager, R.R., Trillas, E., Salvador, A.: Measures of Specificity of Fuzzy 
Sets Under T-Indistinguishabilities. IEEE Transactions on Fuzzy Systems 14(4), 568–572 
(2006) 

7. Klement, E., Mesiar, R., Pap, E.: Triangular norms. Kluwer, Dordrecht (2000) 
8. Overill, R.E.: On the combinatorial complexity of fuzzy pattern matching in music analy-

sis. Computers and the Humanities 27(2), 105–110 (1993) 
9. Schweizer, B., Sklar, A.: Probabilistic metric spaces. North-Holland, Amsterdam (1983) 

10. Trillas, E., Valverde, L.: On mode and implication in approximate reasoning. In: Gupta, 
M.M., et al. (eds.) Approximate Reasoning in Expert Systems. Elsevier, North-Holland, 
Amsterdam (1985) 

11. Valverde, L.: On the structure of F-indistinguishability operators. Fuzzy Sets and Sys-
tems 17, 313–328 (1985) 

12. Yager, R.R.: Ordinal measures of specificity. International Journal of General Systems 17, 
57–72 (1990) 

13. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965) 
14. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. 3, 177–200 (1971) 
15. Zadeh, L.A.: The concept of linguistic variable and its application to approximate  

reasoning, parts I, II, III. Inform. Sci. 8, 199–249; 8, 301–357; 9, 43–48 (1975) 


	Searching Musical Representative Phrases
Using Decision Making Based on Fuzzy Similarities
	Introduction
	Fuzzy Logic in Decision Making with Uncertainty
	Proximity and Similarity

	Measure of Specificity on Fuzzy Sets
	Intelligent Algorithm for Searching Musical Motifs
	Phrases and Variation Points
	Distance between Ordered Notes
	A W-Indistinguishability S of Consecutive Notes
	Choosing Operators for Different Meanings of “Representative Phrases”

	Experiments and Results
	Building a Proximity Relationship on the Set of Phrases
	A Method to Choose a Representative Phrase
	Computing the Specificity Measure of the Fuzzy Set “Similar to Other Phrases” and the Inference Independent Sets Using the Proximity on Phrases

	Conclusions and Remarks
	References




