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Abstract. The portfolio optimization theory targets the optimal resource allocation 
between sets of securities, available at the financial markets. Thus, the investment 
process is a task, which targets the maximization of the portfolio return and  
minimization of the portfolio risk. Because such an optimization problem becomes 
multi-criterion optimization one it lacks an unique solution. A balance between the 
portfolios risk and portfolio return has to be integrated in a common scalar criterion 
for the risk management. The book chapter considers a bi-level optimization para-
digm for the investment process. The optimization process evaluates the optimal 
Sharp ratio of risk versus the return to identify the parameter of the investor’s pre-
ferences to risk at the upper level. At the lower level of optimization the optimal 
portfolio is evaluated using the upper level defined investor’s preferences. In that 
manner, the portfolio optimization results in an unique solution, which is deter-
mined according to the objective considerations and it is not based on subjective 
assumptions of the portfolio problem. As a result, the portfolio risk is minimized 
according to two arguments: the content of the portfolio with appropriate assets and 
by the parameter of investor’s preferences to risk.   

1 Introduction 

The estimation and the forecast of the financial risk is currently one of the major tasks 
of the investment’s process management. This problem is in the scope of statistics and 
probability modelling. The financial risk is always related with the portfolio manage-
ment [20]. The uncertainty about future events makes the market behaviour unpre-
dictable and prevents the assessment of the parameters of the financial markets under 
dynamical changes. The analysis of the market is performed under predefined as-
sumptions, which are taken into consideration when allocating financial resources. 
Generally, such assumptions concern uncertainty in ideal mathematical behavior, 
constant and not changing environment influences. The formal models in investment 
apply mathematical analytical tools, which formalize both the behavior of the market 
players and future events associated with financial markets. The allocation of invest-
ment resources is formalized and the resulting mathematical methods strongly  
influence the working practice of financial institutions [4]. 
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According to the portfolio theory the decision maker makes his decisions taking in-
to account the risk of the investment. The risk has a meaning of uncertainty. The term 
“risk” is used when the future is not determined and predictable. Currently, the portfo-
lio optimization models are based on probability theory. However, the probabilistic 
approaches cannot fully formalize the real market behaviour. Another attempt for 
handling uncertainty of the financial market is the application of the fuzzy set theory 
[4, 21]. 

The most monumental contribution for the application of the modern mathematical 
models in finance and particularly in risk assessment gives the work of Markowitz 
[9]. The portfolio selection is the most impact-making development in modern ma-
thematical finance management. The Markowitz theory of portfolio management 
deals with the individual investor. This theory makes combination of the probability 
theory and optimization. The investor’s goal is to maximize the return and to minim-
ize the risk of the investment decisions. The investor’s return is formalized as the 
mean value of a random behaved function of the portfolio securities returns. The risk 
is formalized as a variance of these portfolio securities. These mathematical represen-
tations of return and risk allow defining a simple optimization problem which  
formalizes the portfolio management. The two important goals of the investor are to 
maximize the profit and to minimize the risk of the investment. The exact portfolio 
solution depends on the level of risk the investor can bear in comparison with the 
level of portfolio return. Thus, the relation between return and risk is always a major 
parameter, which has to be identified by the investor for practical utilization of the 
portfolio theory. In that manner, the decision making process of the investment is 
generally managed by the subjective assumptions of the investor for the risk/return 
relation of the portfolio. A decreasing of the subjective influence of the investment 
process can be achieved if the unknown investor’s coefficient for undertaking risk is 
calculated according to the optimization problem. A formal model proposing a new 
bi-level optimization problem for the portfolio optimization is presented in the book 
chapter. The upper level evaluates the parameter of the investor’s risk preference. 
Then, this parameter is used for the optimal resource allocation by minimizing risk 
and maximizing the portfolio return. Thus, in a common formal problem the portfolio 
management is performed with a lack of subjective influence in the process of  
resource allocation. The portfolio risk is minimized according to two types of argu-
ments: the portfolio content and the parameter of the investor’s risk preference.                          

2 Taxonomy of the Risk 

The content of the term “risk” is hidden in the uncertainty of the future process, which 
influences the return or costs of the financial assets. The term “risk” is addressed to 
several categories of the financial world [3]. 

Market Risk. It is defined as a risk to financial portfolio, related to the dynamical 
changes of the market prices of equity, foreign exchange rates, interest rates, com-
modity prices. The financial firms generally take a market risk to receive profits. Par-
ticularly, they try to take a risk they intent to have and they actively manage the  
market risk.  
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Liquidity risk is defined as the particular risk from conducting transactions in  
markets with low liquidity as evidence low trading volume and large bid-ask spread. 
Under such conditions the attempt to sell assets may push prices lower and the assets 
have to be sold below their fundamental values or within a time frame, which is  
longer than expected.  

Operational risk is defined as a risk of loss due to physical catastrophe, technical 
failure and human error in the operation of the firm. 

Credit risk is defined as the risk that counterparty may become less likely to fulfill 
its obligations upon date.  

Business risk is defined as the risk that changes in variables of a business plan. It 
will destroy that plan, including quantifiable risks for business cycle and demands, 
changes in the competitive behaviour and/or technology. 

The term of the risk that is usually employed and easily formalized is the variance 
of the dynamically changed costs of the financial assets. Introduced by Markovitz, the 
assets characteristics are defined by their average return Ei  and their risk, evaluated as 
the variance iτ . The book chapter considers the market risk, which results in different 
values of the variances of the average returns. As an example, data for the rates of 
three currencies, USD, GBP and CHF, taken from the Bulgarian site http://econ.bg for 
a period of 15 days is given in Fig.1.   

 
 

 
 

Fig. 1. Rates of USD, GBP CHF currency, taken from http://econ.bg  

 
 



94 T. Stoilov and K. Stoilova 

The data is employed to define the portfolio problem (see Table 1; BGN is the 
Bulgarian currency).   

Table 1. Daily returns of three currencies 

DATE 

Rate of 
USD 
[BGN] 

Rate of 
GBP 
[BGN] 

Rate of 
CHF 
[BGN] 

R1  - daily 
return     
USD % 

R2  - daily 
return  
GBP % 

R3  - daily 
return  
CHF % 

30.9.2008 1,3630 2,4574 1,2344 2,029 -0,142 0,219 
29.9.2008 1,3359 2,4609 1,2317 0,406 -0,348 0,408 
26.9.2008 1,3305 2,4695 1,2267 -0,068 0,045 0,049 
25.9.2008 1,3314 2,4684 1,2261 0,279 0,341 -0,163 
24.9.2008 1,3277 2,4600 1,2281 -3,363 -0,974 0,31 
23.9.2008 1,3739 2,4842 1,2243 1,868 0,902 -0,858 
19.9.2008 1,3487 2,4620 1,2349 -1,913 0,094 0,521 
18.9.2008 1,3750 2,4597 1,2285 0,299 0,294 0,-615 
17.9.2008 1,3709 2,4525 1,2361 -0,81 -0,688 0,512 
16.9.2008 1,3821 2,4695 1,2298 -0,6 0,529 0,392 
15.9.2008 1,3905 2,4565 1,2225    

These initial values are noted as Ri (i=1,n; n=3), where i is the index of the asset. It 

is necessary to evaluate the average return Ei and the risk iτ  for each asset. The eval-

uation of the average return is found as the weighted sum t
i

t

t
i RPE ∑= , where tP  is 

the probability that i has a return  t
iR  at time t [17]. The values t

iR  for the USD cur-

rency are assumed to be probably equal to the probability 
N

Pt 1=  = 0,1;  

N=10 – number of days, used for the currency rate. Hence, the average return of the 
USD currency is calculated as  

1873,0)6,0...406,0029,2(1,01 −=−++=E . 

In the same fashion,   

0053,0)529,0...348,0142,0(1,02 =++−−=E    
15544,0)392,0...408,0219,0(1,03 =+++=E , 

and the return vector of the three assets is  

1544,00053,01873,0−=TE . 

The risk of each asset is defined by the variance of the daily returns [3]: 

∑ −=
t

i
ti

t
i REP 22 )(τ

, 

which results in 4147,05357,05355,1=T
iτ .  
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These data are the input for the definition of the portfolio optimization problem. The 
average values Ei represent the mean value around which the daily returns Ri fluctuate. 

The risk iτ  is a quantitative assessment of the diapason in which Ri varies. Larger 

diapasons imply higher risk levels. 
 

3 Portfolio Optimization Problem 

The portfolio theory was developed as a decision support tool for the allocation of 
investments for the sells of financial assets (securities, bounds) from the stock  
exchange [1]. Such an allocation is called “investment” decision making. The investor 
treats each asset as a prospect for future income. Thus, the better combination of fi-
nancial assets (securities) in the portfolio, the better return for the investor. The port-
folio contains a set of securities. The portfolio optimization problem is defined as 
problem for optimal allocation of financial resources for trading financial assets. The 
problem of portfolio optimization targets the optimal resource allocation in the in-
vestment process [12]. The resource allocation is done by investing capital in finan-
cial assets (or goods), which will generate return for the investor after a period of 
time. The objective of the investment process is to maximize the return while keeping 
risk at minimum [11]. In 1952, Harry Markowitz suggested a simple and powerful 
approach to quantify risk. According to the portfolio theory [12] the analytical  
relations between the portfolio risk Vp, portfolio return Ep and the values of the  
investment per type of assets xi are  

   xExEE T
i

n

i
ip == ∑

=1

 

   xxjixxV T
j

n

j

n

i
ip cov(.)),cov(

1

==∑∑
=

 , 

where 
Ei  - average value of the return of asset  i ; 

T
n

T EEE ),...,( 1=  - vector with dimension 1 x n;  

cov(i,j) – co-variation coefficient between the assets  i  and  j . 
The component xxV T

p cov(.)=  formalizes the quantitative assessment of the 

portfolio risk. The component xEE T
p =  is the quantitative evaluation of the portfo-

lio return. The portfolio problem solutions xi , i=1,n  determine the relative amounts 
of the investment per security   i .  

The co-variation is calculated from previously available statistical data for the  
returns of assets i and j and it takes the form of a symmetrical matrix  
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The components cov(i,j) are evaluated from the values )(2)1( ,,, N
iii RRR and 

)(2)1( ,,, N
jjj RRR , which concern the profit of assets i and j for discrete time moments  

(1), (2),…, (N). The co-variation coefficient between assets i and j is calculated as   
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where  

[ ])()2()1(1 N
iiii RRR

N
E +++=

  ,  
[ ])()2()1(1 N

jjjj RRR
N

E +++=
 

are the average profits of the assets  i  and  j  for the period ],....,2,1[ NT = . Particu-

larly, the value  2),cov( iii τ=  gives the variation of the return of asset i. The portfo-

lio theory defines the so-called “standard” problem of optimization [12]: 

   
]cov(.)

2

1
[min xExx TT

x
σ−

 ,   (1) 

          xT.1 = 1 , 

where  cov(.) – a symmetric positively defined n x n square matrix,  
E –  a (n x 1) vector of the average profits of the assets for the period of time   

],....,2,1[ NT =  ; 

1

1

1 =  , is a unity vector, n × 1; 

σ – a parameter of the investor’s preferences to undertake a risk in the investment 
process. 

The constraint of the optimization problem presents the equation 
121 =+++ nxxx , which formalizes the fact that the investment is not partly im-

plemented and the full amount of the resources are devoted for the investments. If the 
right side of the constraint is less than 1, this means that the amount of the investment 
is not effectively used. The investment per different assets has to be performed for the 
total amount of the available investment resources, numerically presented as a relative 
value of 1. The solutions xi , i=1, 2, …, n give the relative values of the investment, 
which are allocated for the assets  i,  i=1, 2, …, n.  
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The component of the target function   xxV T
p cov(.)=  is the quantitative assess-

ment of the portfolio risk. The component  xEE T
p =  is the quantitative value of the 

portfolio return. The target function of problem (1) aims to minimize the portfolio risk 
Vp and also maximize its return Ep. The parameter σ has a numerical value from the 
range [0, + ∞ ]. This coefficient quantitatively formalizes the investor’s ability to 
undertake risk. If σ =0, the investor is very cautious (even a coward) and his general 
task is to decrease the risk of the investment, ]cov(.)[min xxT

x
. If σ=+ ∞ , the  

investor has forgotten the existence of the risk in the investments. His target is to 
obtain a maximal return from the investment. For that case, the relative weight of the 
return in the target function is most important, and then the optimization problem has 
an analytical form:   ][max][min xExЕ T

x

T

x
≡−σ . 

Thus, in the portfolio problem a new unknown parameter σ is introduced , which 
assesses the investor’s preferences for undertaking risk in decision making. This  
parameter influences the portfolio problem, making it a parametric one. Respectively, 
for a new value of σ , the portfolio problem (1) has to be solved again. The trivial 
case when σ  is not properly estimated the optimization problem has to be solved for 
a set of σ .  The values σ  introduce strong subjective influence to the solutions of 
the portfolio problem. Additionally, for practical reasons, the portfolio problem has to 
be solved multiple times with a set of values for the coefficient of the investor’s  
preferencesσ  to undertake risk. Thus, for real time applications of investment, the 
estimation of σ  and the solution of (1) become quite important. 

The numerical assessment of σ  is a subjective task for the financial analyzer. This 
coefficient strongly influences the definition and respectively the solutions of the 
portfolio problem. Respectively, σ  also changes the final investment decision.  

The portfolio theory uses the space risk-return   Vp=Vp(Ep) for the assessment of the 
portfolio characteristics found as combinations of admissible assets. The investors 
have to choose optimal portfolios from the upper set of admissible solutions named 
“efficiency frontier”. This “efficiency frontier” is not evidently found. Points from 
this curve can be found by solving the portfolio optimization problem with different 
values of the parameterσ .  The “efficient frontier” is evaluated point by point  
according to an iterative numerical procedure: 

1. An initial value of σ for the investor’s preferences is chosen. The zero value 
σ =0  is a good starting point and this corresponds to the case of an investor, 
who is not keen on risky decisions; 

2. the portfolio problem is solved with the chosen σ   

]cov(.)
2

1
[min xExx TT

x
σ−

 
         xT×1 = 1   

and the optimal solution  x(σ) is found; 
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3. evaluation of the portfolio risk and portfolio return:  

)(cov(.))( σσ TT
p xxV =  , )(σxEE T

p = . 

These values give a point into the space )( ppp EVV = , which belongs to the efficient 

frontier;  
4.  new value of  σnew=σold+Δ  is chosen, where   Δ  is determined by considera-

tions for completeness in moving into the set   σ = [0,+∞]. Then, go to point 2. 
 
Hence, for each solution of the portfolio optimization problem one point into the 
space    )( ppp EVV =  , belonging to the curve of the efficiency frontier is found  

(see Fig.2).  
 
 

 
 
 

 
 

 
 
 

Fig. 2. Efficiency frontier of the portfolio optimization 

For practical cases of individual investor, problem (1) is solved with a set of values 
ofσ . Having a set of solutions x(σ )  the final value of  σ * for that investor  is em-
pirically estimated, which gives also the final optimal portfolio solution  x(σ *) as 
well.  However, such an approach generates a contradiction between the manner of 
quantitative definition of problem (1) and the final decision for the investment. The 
portfolio theory insists that the value of σ * has to be estimated before solving the 
problem. However, in practice σ * is estimated after evaluating a set of portfolio 
problems (1) with different values for σ . Respectively, the subjective influence in 
definition of σ * is quite obvious. 

The formal model, which is developed in this book chapter targets at the decrease 
of the subjective influence in evaluating and assessing the parameter of investor’s 
preference to risk σ . The idea of the model is to formalize the decision making 
process by two hierarchically interconnected optimization problems (Fig.3). 

The optimization problem for evaluating σ  is stated at the upper hierarchical lev-
el. This problem can be defined from considerations, which are not subjectively influ-
enced. For example, this optimization problem, can target the evaluation of such a σ , 
which consequently will result in a “well” ratio between the portfolio risk and return.  

On the lower hierarchical level the standard portfolio optimization problem is 
solved usingσ , estimated from the upper optimization problem. Unfortunately, both 

Vp 

Efficient frontier 
Ep 
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optimization problems are interconnected by their arguments. The solution of the 
upper level problem influences as parameter the corresponding low level optimization 
problem and vice versa. Hence, a bi-level optimization problem is stated, which 
represent the decision making process in portfolio optimization. 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Definition of bi-level portfolio optimization problem 

4 Bi-level Hierarchical Optimization Problems 

A general peculiarity of bi-level optimization problems is that by solving an appropri-
ate optimization problem on the upper level, the evaluated solutions are used to define 
a set of parameters in the lower level optimization problems. The solutions of the last 
in turn define a set of parameters for the upper level problem. Thus, an interrelation 
between the solutions at the upper and lower level optimization problems influence 
the exact form of the optimization problems.   

The general bi-level hierarchical optimization problem is made by the formulation 
of the Stackelberg game [16]. The Stackelberg problem can be interpreted as a game 
between two players, each of them making decisions [13, 14, 15]. The decisions of 
the leader (upper level problem) answer the questions: which is the best strategy for 
the leader, if he knows the goal function and the constraints of the follower (lower 
level problem) and how the leader has to choose his next decisions? When the leader 
evaluates his decisions, the follower chooses his own strategy for decision making for 
minimization of his target function. Respectively, the follower solves an optimization 
problem of mathematical programming form.  

The formal presentation of the Stackelberg game in bi-level hierarchical forms is 
given as interconnected optimization sub-problems. The lower level optimization 
problem is in the form  

         ),(min yxf
Yy∈

                (2) 

        0),( ≤yxg ,                 (3) 

where nRx ∈  is a coordination parameter, defined from the solutions of the  

upper level optimization problem, mRYy ⊆∈   is the solution of the lower level 

Problem for finding   σ 

Standard portfolio optimization problem (1) 

σ x(σ) 
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optimization sub-problem, 1: RRRf mn →×  and qmn RRRg →×: . This sub-

problem is parameterized by the values of x. Let  P(x) denotes the optimal solution of  
problem (2) for given  x : 

{ }0),(),,(min),(|)()( *** ≤=∈=
∈

yxgyxfyxfxSyxP
Yy ,

 

where   

{ }0),(|)( ≤∈= yxgYyxS  . 

The optimal problem of the upper level for given lower level solution )(* xPy ∈  is 

),(min *yxF
Xx∈

                     (4) 

     0),( * ≤yxG                 (5) 

  )(* xPy ∈                                    (6) 

where  npmnmn RXRRRGRRRF ⊆→×→× ,:,: 1  .  

This problem is solved by the leader. The bi-level hierarchical problem, titled as 
Stackelberg game, is formulated as hierarchical system with two levels. The optimiza-
tion sub-problem (2-3) is a slave one to the coordination problem (4)-(6). The particu-
lar constraint P(x) determines the rational set of reactions of the slaver player. The 
feasible area of the coordination (4)-(6) is non-explicitly analytically defined  

{ })(,0),(|),( *** xPyyxGyxIR ∈≤=  . 

The reaction of the slaver is evaluated from the set of rational reactions P(x), while  
IR represents the feasible set for the decisions of the leader, among which he can 
search the optimal solution.  

The book chapter considers a special form of the Stackelberg’s problem: 

{ }0),(/),(min **

, *
≤

∈
yxGyxF

yXx

                (7) 

 { }0),(),,(min),(|)()( **** ≤=∈=∈
∈

yxgyxfyxfxSyxPy
Yy

,           (8) 

where the upper level is influenced by the reaction of the lower level by the minimal 
function w(x), defined as 

    ),(min)( yxfxw
Yy∈

=                  (9) 

satisfying the definition set 

    0),( ≤yxg .                (10) 
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For this model the notation w(x) refers to the minimal value of the goal function of the 
lower level f(x,y), where the optimization is performed towards the argument  y. The 
upper level problem can be formulated in a way, excluding y, substituting it in the 
target function and constraints explicitly with the minimal valued function w(x): 

    ))(,(min xwxF
Xx∈

                              (11) 

    0))(,( ≤xwxG ,                              (12) 

where  11: RRRF n →×   and  pn RRRG →× 1:  . By the combination of rela-
tions (9)-(10) and (11)-(12) the bi-level hierarchical optimization problem is stated in 
the form  

    ))(,(min xwxF
Xx∈

                (13) 

    0))(,( ≤xwxG                  (14) 

    ),(min)( yxfxw
Yy∈

=                 (15) 

    0),( ≤yxg .                 (16) 

Both (7)-(8) and (13)-(16) are general nonlinear optimization problems. Due to me-
thodological difficulties for the solution of hierarchically interconnected optimization 
problems, the classical application of the portfolio theory currently lacks a solution of 
the bi-level optimization problems. The portfolio problem is solved by quantitative 
assessment of σ * in advance, without applying interconnected hierarchical optimiza-
tion. The value of σ * is estimated intuitively or empirically by an expert. Here, a 
methodology for the solution of bi-level portfolio problem is applied, derived as non-
iterative coordination [17, 19]. The methodology for non-iterative coordination in 
hierarchical systems defines analytical approximations of the inexplicit function w(x), 
used by the upper and lower optimization problems. Thus, analytical relations be-
tween the investor’s preferences for the risk σ  and the solutions xi are derived [18]. 
Such relations support fast solution of the bi-level problem and respectively support 
real time decision making.  The upper level problem is defined with a target function, 
which minimizes the Sharp ratio: portfolio risk versus portfolio return. The argument 
of this optimization problem is the investor’s preferences for the riskσ . Applying the 
non-iterative methodology [17, 19] analytical relations between the portfolio prob-
lem’s parameters Ep, Vp , the portfolio solutions xi and the parameter of the investor’s 
preferenceσ  are derived. These relations speed up the decision making process and 
the investment decisions can be made in real time.  
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5 Solution of Portfolio Bi-level Problem 

The solutions of the initial problem (1) xi have to be described as analytical functions 
of the σ  parameter. For that case the initial problem (1) is rewritten in the form  

]
2

1
[min xRQxx TT

x
+

                           (17) 

         CAx =  , 

where the correspondence between problems (1) and (17) is:  

Q=cov(.),  R=-σ E , A=1 , C=1 . 

If the value of the coefficient σ  is asserted, problem (1) has a solution, denoted like 
x(σ ). For the case when σ  changes, the solution of the portfolio problem x is an 
inexplicit analytical function ofσ : 

x=x(σ ). 

The portfolio risk   

)(cov(.))()( σσσ xxV T
p =  

and the portfolio return    

)()( σσ xEE T
p =  

are also implicit functions ofσ . 
Problem (2) can be solved using the method of the non-iterative coordination, 

which gives possibility to derive approximations of the implicit analytical relations of 
the portfolio parameters )(),(),( σσσ xEV pp   towards the argumentσ . Using  

relation (15) from [19], the analytical solution of problem (2) is 

  )]()([ 1111 CRAQAAQARQx TTopt +−−= −−−−
.                (18) 

Using this relation, the analytical descriptions of the portfolio risk and return become   

[ ]{ }
[ ]{ })()(

))((
1111

1111

CRAQAAQARQ

QQRAAAQAQRC

QxxV

TT

TTTTT

optTopt
p

+−−

+−+−=

==

−−−−

−−−−

.

 

After several transformations it follows 

[ ] CAAQCRQAAAQARQRV TTTTT
p

111111 )()( −−−−−− +−= . 
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The analytical relation of the portfolio return is obtained as the linear relation towards 
xopt  or  

[ ]{ }
CAAQAQRRAQAAQARQR

CRAQAAQARQRxRxEE
TTTTTT

TTToptTT
p

1111111

1111

)(])([

)()(
−−−−−−−

−−−−

+−−=

=+−−===

 

Finally 

[ ] CAAQCRQAAAQARQRV TTTTT
p

111111 )()( −−−−−− +−=              (19)  

CAAQAQRRAQAAQARQRE TTTTTT
p

1111111 )(])([ −−−−−−− +−−=           (20) 

Relations (19) and (20) can be expressed in terms of the initial portfolio problem (1). 
Thus, explicit analytical relations for the portfolio risk Vp , portfolio return Ep  and the 
optimal solution of the portfolio problem  xopt  are derived towards the coefficient of 
the investor’s risk preference σ .  For the current problem (1), taking into account the 
correspondence between problems (1) and (17), it follows   

 [ ] })()({)( 111111 CAAQAEAQAAQAEQx TTTTopt −−−−−− +−= σσ              (21) 

 CAAQCEQAAAQARQEV TTTTT
p

1121111 )(])([)( −−−−−− +−= σσ            (22) 

 [ ]{ }CAAQAEQAAAQARQExEЕ TTTTToptT
p

111111 )()()()( −−−−−− +−== σσσ  .          (23) 

To simplify the notations, the following coefficients are introduced: 

 [ ] EQAAAQARQE TTT 1111 )( −−−− −=α                  (24) 

      CAAQC TT 11 )( −−=β  

           CAAQAQE TTT 111 )( −−−=γ   , 

where the parameters α, β and γ are scalars. Relations (22) and (23) become 

 βασσ += 2)(pV ,   γασσ +=)(pE .             (25) 

The new derived relations (21)-(24) describe in analytically explicit form the func-
tional relations between the portfolio parameters for risk, return and optimal solution 
towards the coefficient of the investor’s preferences to riskσ . Hence, the solution of 
the portfolio problem (1) is calculated using relations (21)-(23) without the imple-
mentation of optimization algorithms for the solution of the low level optimization 
problem. This considerably speeds up the problem solution of (1). Hence, the portfo-
lio optimization problem can be solved in real time, with no iterative calculations, 
which benefits the decision making in the fast dynamic environment of the stock 
exchange. 
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On the upper optimization level it is necessary to evaluate the parameter of inves-
tor’s preferences σ, under which the better (minimal) value of Sharp ratio (the relation 
Risk/Return) is optimized.  The problem for the evaluation of σ in a formal way is 
stated as 
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According to relation (25) the analytical form of the problem is   
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This problem evaluates the parameter of the investor’s preferences σ  according to 
objective considerations. Thus, the portfolio optimization problem is stated as bi-level 
optimization procedure (Fig. 4). The advantage for the evaluation of  σ  comes from 
the fact that the estimation of σ  is done by overcoming the subjective influences of 
the investor, and it is found from a real optimization problem.  

 The solution   σopt  of such a problem is found according to the relations  
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For the particular case when the value of C is a digital number (С=1 for relative  
assessment of the investment), then 
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This relation gives analytical way of calculation of the optimal parameter for risk prefe-
rences of the investor. For that reason the solution of the upper level optimization  

problem is reduced to analytical relation (28), applied for the calculation of optσ . 

6 Assessment of the Bi-level Calculations 

An illustration of the solution of a set of bi-level optimization problems is given below. A 
set of optimization problems is defined with a maximal amount of 13 securities, traded at 
the Bulgarian stock exchange, n=13. The portfolio optimization problems has been de-
fined and solved with variable number of securities n (n=2, 3, …,13). Respectively, the 
corresponding matrices for the portfolios problems were chosen from the largest matrices  

1313| xQ   and
113| xE  , which were defined from the Bulgarian stock exchange data as  

 

Q13=  [0.786167      -0.162559       -0.071959       -0.164858       0.047331         
-0.603850       0.166243        -1.047479       -0.539301     -0.603588       
-0.891402        0.008453        -0.133797; 
 

-0.162559       2.986604          0.793027        0.007331       0.026117         
 0.098366        0.045948        -0.111006       0.655404       -0.071133        
 0.035753       -0.293635       -0.410321; 
 

 -0.071959      0.793027          0.555667         0.039004        -0.008898       
 0.174713        0.013785        -0.060925         0.161520         0.066703         
 0.170407        -0.029705      -0.249643; 
 
 -0.164858        0.007331        0.039004        0.848372        -0.727659       
  0.746201        0.241088        -1.953395       -1.625136       -0.313008        
 -1.802728       -0.786455         0.865357; 

 

  0.047331         0.026117        -0.008898       -0.727659       1.819902        
  -1.231908        0.170827        -1.672948       -0.841580       -1.216701       
  -1.527534        0.263455        -0.134094; 

 

 -0.603850        0.098366        0.174713         0.746201        -1.231908          
 5.813142          0.356443       0.135327        -1.384723        -0.966858        
 0.370034         1.723733        -0.238691; 
 

 0.166243         0.045948         0.013785        0.241088        0.170827         
 0.356443        1.200181          0.075195        0.246796        0.080846          
 1.063820        0.504612        -0.220170; 
 
 -1.047479      -0.111006       -0.060925       -1.953395        -1.672948        
  0.135327        0.075195        12.288469       0.077632        -0.607134        
  3.229930        -1.407467       -0.200097; 
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 -0.539301       0.655404        0.161520        -1.625136       -0.841580        
 -1.384723       0.246796        0.077632        5.300921        1.053221         
 2.486395        1.651404        -3.039378; 
 

 -0.603588      -0.071133       0.066703        -0.313008       -1.216701        
 -0.966858       0.080846        -0.607134       1.053221        2.517762         
 0.653272        -0.035333       -0.194460; 
 

 -0.891402       0.035753        0.170407        -1.802728       -1.527534        
 0.370034        1.063820        3.229930        2.486395        0.653272         
 29.446252       1.644501        0.462070; 
 

 0.008453       -0.293635       -0.029705       -0.786455       0.263455         
 1.723733        0.504612        -1.407467       1.651404        -0.035333        
 1.644501        11.792594       1.208723; 
 

 -0.133797      -0.410321       -0.249643       0.865357        -0.134094        
 -0.238691       -0.220170       -0.200097       -3.039378       -0.194460        
 0.462070        1.208723        16.782235]; 

 

  TE13  =  [  1.147143    1.805000    1.084717    1.239130    1.713784  

     2.571667    1.099146    2.230377    1.554639    1.217075  
     2.512333    2.510000    1.844951]. 

The problems with lower dimension  n<13  are defined by sequential removal of the 
leading row and column from Q. Respectively, the lower order matrices Е were  
generated by removal of the leading component of vector E.  

The target of the experiments was to evaluate 30 points of the efficient frontier for 
each optimization problem. Then, having the efficient frontier, the optimization  
procedure continues with finding the portfolio, which has minimal Sharp ratio (risk 
versus return). For that case the parameter of the investor’s preferences for risk σ opt 
is calculated, using (28). 

The sequence of the solution of the portfolio problem is the following:  

- Analytical definition of the portfolio problem (1) with n=13; 
- Evaluation of the scalar values of the intermediate parameters α(n), β(n), γ(n) 

from (24); 
- Starting the calculations of the efficient frontier with initial value   σ*=0; 
- Evaluation of the portfolio parameters Vp=Vp(σ*, α(n), β(n), γ(n),  

Ep=Ep(σ*, α(n), β(n), γ(n)), according to (25). Thus, one point from the efficient  
frontier in the space risk/return )( **

pp EV is found; 

- New value of the coefficient σ is chosen, σ**=σ*+1/30.   

These steps are performed for 30 points of the graphics )( ppp EVV = . 
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Following problem (26), the optimal value of the parameter of the investor’s prefe-
rences   σopt  is identified, evaluated as a solution of an upper level optimization  
problem: 
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where x(σ) is an implicit function, defined by the solution of the portfolio optimiza-
tion problem (1) for different values of σ. Problem (29) introduces an objective crite-
rion for the choice and estimation of the coefficient of the investor’s preferences. This 
problem makes advantages for the estimation of σ in comparison with its subjective 
choice from the financial analyzer, which is performed according to the classical 
model of the portfolio optimization. 

The optimal value of σ opt is numerically calculated using (28). 
Figure 4 presents the graphics 

)(

)(

σ
σ

p

p

E

V  for different optimization problems with  

varying dimensions n=2,3,..7. These graphics explicitly demonstrate the minimum 
(towards σ ) of the ratio of portfolio risk versus return. The corresponding value σopt 
is found according to objective considerations, coming from the upper level  
optimization problem for minimization of Sharp ratio: 
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Problem (30) uses objective target function, which is the Sharp ratio. Thus, the argu-
ment σ is calculated as a solution of a well defined and consistent optimization prob-
lem. In comparison with the classical portfolio theory the value of σ is not assessed 
by subjective consideration of the financial analyzer, which is an advantage of the  
bi-level portfolio problem. The solution of problem (30) can be expressed also  
analytically, according to relation (28). 
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Fig. 4. Relation of the ratio risk/return from  σ  for different problem dimensions (n=2, 3, …, 7)  
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As illustration the corresponding values of risk Vp(x(σopt)), portfolio return 

Еp(x(σopt)) and its optimal value ratio 
)(

)(

σ
σ

p

p

E

V  are given in figures 5-7. For the case of 

portfolio problems with dimensions n=[2; 3; 4; 5; 6; 7 ], the optimal values of σ opt, 
risk Vp and return Ep are the following  

σopt  = [ 0.2161; 0.1307; 0.0851; 0.0464; 0.0406; 0.0384]; 

)( opt
pV σ  = [ 0.5715;  0.2903; 0.197;  0.1199; 0.1118;  0.1083]; 

)( opt
pE σ  = [1.3223; 1.1103; 1.1568; 1.292; 1.3767; 1.4091]; 

)/( pp EV = [0.4322; 0.2614; 0.1703; 0.0928; 0.0812; 0.0769]. 

The graphical interpretation of these results is given in figures 5 - 8, where the  
notation sigma-opt is used for the value   σopt .  
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These results prove the consistency of the definition of the portfolio optimization 
problem as a bi-level optimization one. On the upper level the optimal value of the 
parameter of the investor’s preferences is calculated, according to objective optimiza-
tion criteria. In the current case it an optimization problem for the minimization of the 
ratio risk/return (Sharpe Ratio) has been chosen. The optimal value of the parameter σ 
was derived analytically as a solution of the upper level optimization problem. This 
overcomes the weakness of the classical definition of the portfolio optimization  
problem, which assumes subjective estimation of σ. 

7 Conclusion 

The book chapter developed a new formal model of the portfolio problem, which was 
presented as bi-level optimization one. The risk of the investment was minimized twice 
by optimal content of portfolio securities and optimal assessment of the parameter of risk 
preference. The classical description of the portfolio problem is like single level optimi-
zation with predefined parameter for risk preference σ. This parameter has to be  
estimated by the financial analyzer and the portfolio theory insists σ to be given before 
solving the portfolio problem. The estimation of σ is a source of subjective influence for 
the problem definition and the evaluated optimal solution. Currently, the portfolio prob-
lem is solved for a set of values of σ by means to estimate the influence of σ to the prob-
lem solutions. In this research the process of decision making was presented as a two 
level optimization system. The upper level defined the optimal value of the parameter of 
risk preferences of the investor  σ by minimizing the Sharp ratio (portfolio risk versus 
portfolio return). The lower optimization level used σ and solved the portfolio optimiza-
tion problem. The bi-level formalism defined in an unique way the most appropriate 
value of σ by optimizing the Sharp ratio. In that manner, the bi-level formalism achieved 
two benefits: suppressed the subjective assessment of the investor’s risk preferences and 
calculated and applied the optimal value of σ by minimizing the Sharp ratio. These two  
outcomes considerably improved the bi-level definition of the portfolio problem in  
comparison with the classical single level optimization problem.  

Additionally, this work developed and applied a special method for solving the op-
timization problem, titled non-iterative coordination.  It allowed to define explicitly 
and analytically the upper level optimization problem for solving σ and to derive 
explicit analytical relations between the portfolio problem solutions and σ, x(σ). 
These relations speed up the optimal problem solution and the definition of the  
efficient frontier of portfolios. Thus, the decision making process can be performed in 
real time which can respond to the fast dynamic changes of the security market and 
reduce the risk of the investment.   
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