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Abstract. Pandemic influenza has great potential to cause large and rapid in-
creases in deaths and serious illness. The objective of this paper is to develop an 
agent-based model to simulate the spread of pandemic influenza (novel H1N1) 
in Egypt. The proposed multi-agent model is based on the modeling of individ-
uals' interactions in a space-time context. The proposed model involves differ-
ent types of parameters such as: social agent attributes, distribution of Egypt 
population, and patterns of agents' interactions. Analysis of modeling results 
leads to understanding the characteristics of the modeled pandemic, transmis-
sion patterns, and the conditions under which an outbreak might occur. In addi-
tion, the proposed model is used to measure the effectiveness of different  
control strategies to intervene the pandemic spread. 

Keywords: Pandemic Influenza, Epidemiology, Agent-Based Model, Biological 
Surveillance, Health Informatics. 

1 Introduction 

The first major pandemic influenza H1N1 is recorded in 1918-1919, which killed 20-40 
million people and is thought to be one of the most deadly pandemics in human history. 
In 1957, a H2N2 virus originated in China, quickly spread throughout the world and 
caused 1-4 million deaths world wide. In 1968, an H3N2 virus emerged in Hong Kong 
for which the fatalities were 1-4 million [16]. In recent years, novel H1N1 influenza has 
appeared. Novel H1N1 influenza is a swine-origin flue and is often called swine flue by 
the public media. The novel H1N1 outbreak began in Mexico, with evidence that there 
had been an ongoing epidemic for months before it was officially recognized as such. It 
is not known when the epidemic will occur or how sever it will be. Such an outbreak 
would cause a large number of people to fall ill and possibly die.  

In the absence of reliable pandemic detection systems, computer models and sys-
tems have become important information tools for both policy-makers and the general 
public [15]. Computer models can help in providing a global insight of the infectious 
disease outbreaks' behavior by analyzing the spread of infectious diseases in a given 
population, with varied geographic and demographic features [12]. Computer models 
promise an improvement in representing and understanding the complex social  
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structure as well as the heterogeneous patterns in the contact networks of real-world 
populations determining the transmission dynamics [4]. One of the most recent ap-
proaches of such sophisticated modeling is agent-based modeling [3]. Agent-based 
modeling of pandemics recreates the entire populations and their dynamics  
through incorporating social structures, heterogeneous connectivity patterns, and 
meta-population grouping at the scale of the single individual [3].  

In this paper we propose a stochastic multi-agent model to mimic the daily person-to-
person contact of people in a large scale community affected by a pandemic influenza in 
Egypt. The proposed model is used to: (i) assess the understanding of transmission dy-
namics of pandemic influenza, (ii) assess the potential range of consequences of pan-
demic influenza in Egypt, and (iii) assess the effectiveness of different pandemic control 
strategies on the spread of the pandemic. We adopt disease parameters and the recom-
mended control strategies from WHO [16]. While, we use Egypt census data of 2006 [7] 
to create the population structure, and the distribution of social agent attributes. Section 2 
reviews different epidemiological modeling approaches: mathematical modeling, cellular 
automata based modeling, and agent based modeling. While, section 3 reviews related 
multi-agent models in literature. Section 4 discusses the proposed model, and section 5 
validates the proposed model. Section 6 discusses the pandemic control strategies and 
their effect on the spread of the pandemic. Section 7 presents the modeling experiments 
and analysis of results, and then we conclude in Section 8. 

2 Epidemiological Modeling Approaches 

The search for an understanding of the behavior of infectious diseases spread has 
resulted in several attempts to model and predict the pattern of many different com-
municable diseases through a population [5]. The earliest account was carried out in 
1927 by Kermack and McKendrick [9]. Kermack and McKendrick created a mathe-
matical model named SIR (Susceptible-Infectious-Recovered) based on ordinary dif-
ferential equations. Kermack and McKendrick started with the assumption that all 
members of the community are initially equally susceptible to the disease, and that a 
complete immunity is conferred after the infection. The population is divided into 
three distinct classes (see Fig 1): the susceptible (S) healthy individuals who can catch 
the disease; the infectious (I) those who have the disease and can transmit it; and the 
recovered (R) individuals who have had the disease and are now immune to the infec-
tion (or removed from further propagation of the disease by some other means). 

 

Fig. 1. SIR (Susceptible–Infectious–Recovered) Model 

Let ( )tS , ( )tI , and ( )tR  be the number of susceptible, infected and recovered in-

dividuals, respectively, at time t, and N is the size of the fixed population, so we have:  

( ) ( ) ( )tRtItSN ++=                           (1) 
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Upon contact with an infected a susceptible individual contracts the disease with 
probability β , at which time he immediately becomes infected and infectious (no 

incubation period); infectious recover at an individual rate γ  per unit time. Based on 
mentioned assumptions; Kermack and McKendrick derived the classic epidemic SIR 
model as follows:  

         
SI

dt

dS β−=
 

ISI
dt

dI γβ −=
              (2) 

                                                   
I

dt

dR γ=
 

From equations (1) and (2), we found that SIR model is deterministic and doesn't 
study the nature of population vital dynamics (handling newborns and deaths). Fol-
lowing Kermack and McKendrick, other physicians contributed to modern mathe-
matical epidemiology; extending SIR model with more classes and supporting vital 
dynamics such as: SEIR (Susceptible–Exposed–Infectious–Recovered), and MSEIR 
(Immunized–Susceptible–Exposed–Infectious–Recovered) models [9]. However, 
mathematical models had not taken into account spatial and temporal factors such as 
variable population structure, and dynamics of daily individuals' interactions which 
drive more realistic modeling results [1].  

The second type of developed models is cellular automata based models, which in-
corporate spatial parameters to better reflect the heterogeneous environment found in 
nature [13]. Cellular automata based models are an alternative to using deterministic 
differential equations, which use a two-dimensional cellular automaton to model loca-
tion specific characteristics of the susceptible population together with stochastic 
parameters which captures the probabilistic nature of disease transmission [2].  Typi-
cally a cellular automaton consists of a graph where each node is a cell. This graph is 
usually in the form of a two-dimensional lattice whose cells evolve according to a 
global update function applied uniformly over all the cells [13]. Cell state takes one of 
the SIR model states, and is calculated based on cell present state and the states of the 
cells in its interaction neighborhood. As the Cellular automata based model evolves, 
cells states will determine the overall behavior of a complex system [2]. However, 
cellular automata based models neglect the social behavior and dynamics interactions 
among individuals in the modeled community. Therefore, cellular automata gave the 
way to a new approach; Agent-based models. 

Agent-based models (ABM) are similar to cellular automata based models, but lev-
erage extra tracking of the effect of the social interactions of individual entities [1]. 
Agent-based model consists of a population of agents, an environment, and set of 
rules managing agents' behavior [12]. Each agent has two components: a state and a 
step function. Agent state describes every agent attributes values at the current state. 
The step function creates a new state (usually stochastically) representing the agent 
attributes at the next time step. The great benefit of agent-based models is that these 
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models allow epidemiological researchers to do a preliminary "what-if" analysis with 
the purpose of assessing systems' behavior under various conditions and evaluating 
which alternative control strategies to adopt in order to fight epidemics [12]. 

3 Multi-agent Related Models 

This section discusses the risk-based decision making process which includes the 
main risk-based decision making activities, the types of decision making process and 
the decision support technology for risk-based decision making. The decision support 
technology discussed briefly as this chapter focusing on the five main elements of 
risk-based decision making framework for investment in real estate industry. 

3.1 Main Risk-Based Decision Making Activity 

Related agent-based models are Perez-Dragicevi model, BIOWar, and EpiSims. 
Perez-Dragicevi [12] had developed a multi-agent model to simulate the spread of a 
communicable disease in an urban environment using measles outbreak in an urban 
environment as a case study. The model uses SEIR (Susceptible–Exposed–Infectious–
Recovered) model and makes use of census data of Canada. The goal of this model is 
to depict the disease progression based on individuals' interactions through calculation 
of ratios of susceptible/infected in specific time frames and urban environments. 
BIOWar [10] is a computer model that combines computational models of social 
networks, communication media, and disease transmission with demographically 
resolved agent models, urban spatial models, weather models, and a diagnostic error 
model to produce a single integrated model of the impact of a bioterrorist attack on an 
urban area. BIOWar models the population of individual agents as they go about their 
lives. BIOWar allows the study of various attacks and containment policies as re-
vealed through indicators such as medical phone calls, insurance claims, death rates, 
over-the counter pharmacy purchases, and hospital visit rates, among others. EpiSims 
[8] is an agent-based model, which combines realistic estimates of population mobil-
ity, based on census and land-use data of USA, with configurable parameters for 
modeling the progress of a disease. EpiSims involves a way to generate synthetic 
realistic social contact networks in a large urban region. 

However, the proposed agent-based model will differ from the above models for: 
(i) usage of census data of Egypt, (ii) proposed extension to SIR model, (iii) and 
studying the effect of different control strategies on the spread of the disease. This 
study is considered very important which incorporate Egypt population structure in 
modeling process. We have adopted Egypt census data of 2006 for creating realistic 
social contact networks such as home, work and school networks. While, the pro-
posed extension to SIR model encompasses new classes; modeling the real pandemic 
behavior and control states such as (in contact, quarantined, not quarantined, dead, 
and immunized). In addition, we involve the study of the effect of different control 
strategies on the spread of the pandemic influenza. We plan in future work to inte-
grate the proposed model with different simulation tools and models such as weather 
models, transportation models, and decision support models to build a complete  
system for pandemic management in Egypt.  
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4 Proposed Model 

In what follows, we propose an extension to SIR model. Then we propose the multi-
agent model based on the proposed extension of SIR model states. Finally, we  
validate the proposed multi-agent model by aligning with the classical SIR model.  

4.1 Proposed Extension to SIR Model 

We propose an extension to SIR model by adding extra classes to represent more realistic 
agent states (see Fig 2). In addition, we adopt stochastic approach to traverse among 
agent states using normal distribution. Agents are grouped based on the proposed exten-
sion to SIR model into nine classes. The first class is the (S) Susceptible agents, who are 
not in contact with infectious agents and are subject to be infected. At the start of the 
modeling, all agents fall in the (S) Susceptible class. The second class is the (C) in Con-
tact agents, who are in direct contact with other infectious agents. The third class is the 
(E) Exposed agents, who are infected agents during the incubation time (latent) of the 
disease. The fourth class is the (I) Infectious agents, who are contagious. The fifth class is 
the (Q) Quarantined agents, who are infected agents quarantined by the health care au-
thorities. The sixth class is the (NQ) Not Quarantined agents, who are infected agent but 
not quarantined. The seventh class is the (D) Dead agents. The eighth class is the (R) 
Recovered agents. The ninth class is the (M) Immunized agents, who are immunized 
against the disease infection. 

 

Fig. 2. State chart of proposed extension to SIR model. (S) Susceptible, (C) in  
Contact, (E) Exposed, (I) Infectious, (Q) Quarantined, (NQ) Not Quarantined, (D) Dead, (R) 
Recovered, and (M) Immunized. 

Fig 3 presents flow chart which explains in details the sequence of the state chart of 
the proposed extension to SIR model. All population members are born susceptible then 
may contact contagious agents (move into in-contact class). In-contact agents may ac-
quire the infection (move into the exposed class) based on given distribution. Exposed 
agents remain non-contagious for given latent time. At the end of the latent time, agents 
will become contagious (move into the infectious class). Infected agents may ask for 
doctor help and thus become quarantined by health care authorities (move into quaran-
tined class), or ignore disease symptoms (move to non-quarantined class) based on given  
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distribution. Non-quarantined agents are the main source of disease in this model. Non-
quarantined agents may ask for doctor help and thus become quarantined, or die (move to 
dead class) based on given distribution. Quarantined agents may response to disease 
drugs and become recovered (move to recovered class) or die (move to dead class) based 
on given distribution. Recovered agents may become immunized (move to immunized 
class) based on given distribution, or become susceptible again.  

Fig. 3. Flow chart of the proposed extension to SIR model 

4.2 Proposed Multi-agent Model 

The proposed multi-agent based model attempts to realistically represent the behavior of 
individuals' daily activities, and the natural biological process of the pandemic influenza 
spread among individuals as a result of individuals' interactions. Proposed agent-based 
model involves (i) population agents, (ii) agents' rules which govern the behavior of the 
agents, (iii) and the infection transmission patterns following the proposed extension to 
SIR model. Agents represent human population, in which each agent is involved in a 
sequence of daily basis activities according to the agent social type. These daily activities 
allow agents to interact themselves in groups or even travel and join other groups.  The 
daily activities of working, travelling, and public gathering are modeled, while agents' 
states are calculated on discrete time steps during agent life time. 
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Proposed multi-agent model has several parameters such as: simulation parameters, 
disease model parameters, agents' attributes, and population distribution based on census 
data. First: simulation parameters which include (i) number of days to be simulated, (ii) 
random seed for the gaussian random number generator, (iii) population size, (iv) and 
initial agents. Second: disease model parameters which include: (i) incubation time 
which is the average time of infected agent before being contagious, (ii) percentage of 
recovered infected agents after treatment, (iii) percentage of immunized agents after the 
recovery, (iv) percentage of dead agents, (v) average minimum and maximum time re-
quired to recover infected agent, and finally (vi) percentage of quarantined infected 
agents (see Table 1 for parameters default values). Third: agent attributes which are cru-
cial for describing the nature of the pandemic and control the behavior of agent among 
time and space. Agent attributes includes: (i) health state (based on proposed extension to 
SIR Model states), (ii) social activities level (High, Moderate, Low), (iii) daily move-
ment, (iv) spatial location, (v) infection time, (vi) social type (SPOUSE, PARENT, 
SIBLING, CHILD, OTHERFAMILY, COWORKER, GROUPMEMBER, 
NEIGHBOR, FRIEND, ADVISOR, SCHOOLMATE, OTHER), and (vii) agent social 
networks. Social activities level controls the number of daily contacts of the agent, which 
proportionally affect the number of in-contact agents interacting with the infected agent. 
Increasing number of in-contact agents adds more chance to the reproduction number to 
increase which means epidemic outbreak [4]. Reproduction number (R) can be defined as 
the average number of secondary agents infected by a primary agent case [16]. We have 
distributed number of daily infected cases based on the social activities level as follow-
ing: Low: 2 agents, Moderate: 3 agents, and High 4 agents. Social type distribution is 
based on Egypt Census data of 2006 [7]. Egypt census data has classified population into 
five classes (see Table 2). The distribution of social types based on census data leads to 
different social network structure. All involved distributions are assumed to be Gaussian 
distribution with mean of 0 and standard deviation of 1. Distributions are subject to be 
replaced in future work according to the availability of more information about Egypt 
population. 

At the beginning of the system startup, configurations are loaded and user is required 
to set up initial agents. The simulation runs in a loop for a pre-specified number of days. 
When the simulation starts, the first step is to create the initial agents instances. Next, 
agents start practicing their natural daily activities. During each day, every member of the 
agent community moves around, and communicates with their social network agents or 
with public agents. See Fig 4 for the spatial representation of agents moving and contact-
ing each other, and their health states represented with different icons. Daily moved dis-
tance by agents and the number of contacted agents are randomly determined by each 
agent attributes. During the day activities, simulation keeps track of the social networks 
of each agent which can be at work, home, or school. 

Selection of contact agents is random and most likely results in contacting new 
agents who are created at runtime. Newly created agents are initially susceptible, and 
are placed randomly across the landscape. Agent social types are drawn from normal 
distribution based on the population structure of census data of Egypt 2006. Agent 
health state and disease clock are changed according to the proposed extension to SIR 
model. Infected agent will affect all agents in his social networks to be exposed. Thus, 
probability of agent to be infected increases according to the number of infected 
agents in his social networks. 



212 K.M. Khalil et al. 

 
 
 

Table 1. Default values of model parameters 

Parameter Default Value 
Number of simulated days 50 
Random Seed 0 
Population Size 72798031* 
Agents Initial agents 
Incubation Time (latent) 2 days** 
Percentage of immunized agents 0.95** 
Percentage of recovered agents 0.9** 
Percentage of dead agents 0.14** 
Min. time to be recovered 5 day*s* 
Max. time to be recovered 14 days** 
Percentage of quarantined agents 0.1 
       *   Egypt census data of 2006 [7]. 
       ** WHO [16] values for novel H1N1 pandemic. 

 

Table 2. Age distribution of Egypt 

 
 
 
 
 

Age 
(years)  

Percen-
tage 

Possible social types 

< 4 10.60 % SIBLING, CHILD, OTHER 
05–14   21.10 % SIBLING, CHILD, OTHERFAMILY, 

COWORKER, GROUPMEMBER, NEIGHBOR, 
FRIEND, SCHOOLMATE, OTHER 

15–44   49.85 % SPOUSE, PARENT, SIBLING, OTHERFAMILY, 
COWORKER, GROUPMEMBER, NEIGHBOR, 
FRIEND, ADVISOR, SCHOOLMATE, OTHER 

45–59  12.36 % SPOUSE, PARENT, SIBLING, OTHERFAMILY, 
COWORKER, GROUPMEMBER, NEIGHBOR, 
FRIEND, ADVISOR, OTHER 

> 59 6.08 % SPOUSE, PARENT, SIBLING, OTHERFAMILY, 
GROUPMEMBER, NEIGHBOR, FRIEND, OTHER 
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Fig. 4. Snapshot displays agents with different health states moving & contacting each others 

5 Proposed Model Validation 

It is often very difficult to validate epidemiological simulation models due to the lack 
of reliable field data, and the lack of real geographical location of the individual cases 
occurred. We have to validate the proposed multi-agent model against other available 
models that have been validated such as SIR model [14]. SIR Model has a long his-
tory and has proved to be a plausible model for real epidemics. The proposed model 
should be aligned with the SIR model at least for some simplified scenarios. In order 
to align the proposed model to SIR model, we have evaluated SIR model using 
Mathematica [11] based on given parameters (basic reproduction number R0 =3, du-
ration of Infection = 9.5, initially immunized = 0, initially infected = 0.01% - see Fig 
5) and we have evaluated the same model parameters in the proposed multi-agent 
model (see Fig 6). Two graphs are not a perfect match, but the proposed multi-agent 
model graph match the general behavior of SIR model graph. Two graphs differ by 
the magnitude and the smoothness of the curves. The source of difference of curves 
behavior is confined in the following factors: (i) the heterogeneous structure of the 
population, (ii) different reproduction numbers which are calculated for each agent 
independently, (iii) and the usage of random variable for infection time instead of 
deterministic values in SIR model. 
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Fig. 5. Mathematica SIR Model. Parameters: R0=3, Duration of Infection=9.5, initially immunized 
= 0, initially infected = 0.01%. 

 

Fig. 6. Proposed multi-agent model. Parameters: 3 infected agents – Population Size: 300 
agents – Duration: 50 days. 

6 Pandemic Control Strategies 

Control strategies are useful for the development of an action plan to control disease 
outbreak. Controlling outbreak is related to the peak of infectious and the time required 
reaching the peak. Time required reaching the peak is helpful for giving time for different 
control strategies to be effective. Without a properly planned strategy, the pandemic 
chaos might be disastrous causing large-scale fatalities and substantial economic damage. 
A proven control strategy would incorporate increasing awareness of population, vacci-
nation, social distancing, and quarantining decisions [16] [6]. The proposed multi-agent  
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model permits injection of control strategies to study different scenarios for controlling 
the outbreak. User can determine control strategies and the coverage percentage applied 
to the population. Control strategies will affect the agent health states, and the agent daily 
activities. Increasing awareness will increase the number of doctors' visit and the number 
of quarantined infected agents. Vaccination moves susceptible and in-contact agents to 
be immunized. Social distancing and quarantining reduce the number of possible contacts 
among individual agents. In experiments we will run different scenarios of applied  
control strategies. 

7 Experiments and Analysis of Results 

The proposed multi-agent model was programmed using Java programming language 
and run on AMD Athlon 64 X2 Dual 2.01 GHz processor with 1GB memory. To 
demonstrate the model behavior, we have run five scenarios of pandemic influenza in 
a closed population of 1000 agents, and initially three infected agents. Each run takes 
about eight minutes to be completed. Simulated scenarios are: (i) population with no 
deployed control strategies, (ii) population with deployed 50% of increasing aware-
ness control strategy, (iii) population with deployed 50% of vaccination control strat-
egy, (iv) population with deployed 50% of social distancing control strategy, and (v) 
population with deployed 50% of quarantining control strategy. We display suscepti-
ble, infectious and removed curves of each scenario to be compared with each other. 
In the first scenario with no deployed control strategies, we have found that epidemic 
has a steep infection curve which reaches its peak (608 infected agents – 60.8% of the 
population is infected) on day 10 (see Fig 7). At the end of the simulation, we have 
analyzed the distribution of health states among social types. Mortality rate is high 
among schoolmates, neighbors, and advisors. Numbers of immunized agents are close 
for schoolmates, and parents, while equals zero with child agents (see Fig 8).  

 

Fig. 7. Scenario 1: pandemic peak is at day 10 
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Fig. 8. Scenario 1: distribution of health states to social types 

We have a pandemic peak at day 10. Thus, we choose to apply control strategies 
from day 8 to day 12 in the rest of the scenarios to study the effect of the control strat-
egy on the pandemic peak. In the second scenario, we found that the number of in-
fected agents is reduced during the deployment period of increase awareness control 
strategy to reach it is minimum value of 67 infected agents (6.7 % of the population) 
at day 12 (see Fig 9.a). This is because agents are asking for doctor help when they 
have influenza symptoms. 

In the third scenario, we found that the number of infected agents is reduced to 320 
agents (32% of the population) at day 9 (see Fig 9.b). In the fourth and the fifth scenarios, 
we found that the number of infected agents is increased to 614 (61.4% of the popula-
tion) at day 10 (see Fig 9.c - d). This means that there are control strategies which not 
affect the pandemic spread when applied on given outbreak duration such as: social dis-
tancing and quarantining through the outbreak peak. Finally, we conclude that the aggre-
gate attack rate is exponentially increasing without any deployed control strategies. At-
tack rate is controlled by different factors such as: the daily travelling distance of agents, 
and the percentage of vaccinated agents. As a result, proper combination of deployed 
control strategies can be effective to decrease the pandemic damage. 

a.  

Fig. 9. a: Scenario 2, b: Scenario 3, c: Scenario 4, d: Scenario 5 
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b.  

c.  

d.  

Fig. 9. (continued) 

8 Conclusion 

The field of computational epidemiology has arisen as a new branch of epidemiology to 
understand epidemic transmission patterns, and to help in planning precautionary meas-
ure. For this reason a spatially explicit agent-based epidemiologic model of pandemic 
contagious disease is proposed in this paper. The methodology for this paper involves the 
development of a multi-agent model of pandemic influenza in Egypt. The proposed mod-
el simulates stochastic propagation of pandemic influenza outbreaks, and the impact of 
the decisions made by the healthcare authorities in population with millions of agents. 
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We have proposed extension to SIR model, in which we have investigated the agent 
attributes. The model can be easily customized to study the pandemic spread of any other 
communicable disease by simply adjusting the model parameters. We have simulated the 
spread of novel H1N1 pandemic in Egypt. Experiments are run in a closed population of 
1000 agents, and initially 3 infected agents.  Modeled novel H1N1 reaches infection peak 
(608 agents) with in 10 days without deployment of control strategies. Number of dead 
agents reaches its peak at the end of the simulation with mortality of 658 dead agents. 
Deployment of proper combination of control strategies can limit the pandemic chaos 
and reduce the fatalities and substantial economic damage. Further work on proposed 
model includes: agents with additional attributes that allow a better realistic model (e.g., 
ages, gender, etc), as well as finding optimal combination of control strategies to manage 
the pandemic outbreak waves. 
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