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Abstract. Behavior capture is a popular experimental approach used to obtain 
human-like AI-controlled game characters through learning by observation and 
case-based reasoning. One of the challenges related to the development of 
behavior capture-based AI is the choice of appropriate data structure for agents’ 
memory. In this paper, we consider the advantages of acting graph as a memory 
model and discuss related techniques, successfully applied in several 
experimental projects, dedicated to the creation of human-like behavior. 

Keywords: Behavior capture, learning by observation, case-based reasoning, 
knowledge representation. 

1 Building Believable Game Characters with Behavior Capture 

1.1 Believable Behavior: A Key Feature of Game AI 

Modern computer games and simulation-and-training applications are often 
characterized as “virtual worlds”. This name emphasizes the growing complexity of 
game/simulation environments that are able to create higher sense of immersion than 
ever. This is done not only through hi-quality audiovisual technologies and detailed 
interactive physical models, but also with the help of modern AI methods. 

Many virtual worlds are inhabited both by human-controlled characters and AI 
agents that serve as world’s neutral “native population”, allies or enemies. For 
example, in Unreal Tournament game (Deathmatch mode), independent players try to 
kill each other in a 3D map, and each player can be controlled either by human or by a 
computer (in this case it is usually called “a bot”). In general, computer-controlled 
characters are found in a variety of video games and training simulators. A good 
example of such simulator (or a “serious game”) that involves computer-controlled 
opponents is Virtual Battle Space 2. This software is a variation of 3D world, 
specially designed for initial training of soldiers, and includes numerous training 
scenarios, ranging from vehicle driving in dangerous conditions and team combat to 
cultural-aware interaction with local population [1, 2]. 

                                                           
* Supported in part by the Fukushima Prefectural Foundation, Project F-23-1, FY2011. 
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Detailed and realistic virtual worlds set high demands on the quality of AI-
controlled characters. Relatively simple game environments provide limited acting 
options for an AI engine, so handcrafted finite-state machine-based scripted decision 
making systems usually work well. Complex virtual worlds allow computer-
controlled agents to exhibit complex behavior patterns, thus making the design of 
realistic human-like AI behavior an increasingly difficult task. 

This trend is well known to both academic researchers and game creators. First, it 
is widely emphasized that today’s AI-controlled game characters should be 
believable, i.e. human-like and virtually indistinguishable from human-controlled 
characters, in order to increase the overall enjoyability of a game [3, 4, 5]. Second, it 
is admitted that handcrafted AI systems are hardly able to provide believable 
behavior: scripted AI is easily recognized by experienced players, especially in 
complex virtual worlds. For example, even the best systems, participated in 2K 
BotPrize believability competition among Unreal Tournament bots were unable to 
deceive human judges [6]. 

1.2 Behavior Capture 

In today’s research projects human-like believable behavior is typically constructed 
by means of analyzing actual human behavior patterns and subsequently 
implementing them in AI system. Among them, most interest is evoked by the 
methods that can automatically construct agents’ knowledge by observing behavior of 
human players. This process is known as behavior capture [7]. Behavior capture was 
used, for example, to build Unreal Tournament bots [8, 9], computer-controlled 
boxers [10, 11], and an AI system for a real-time strategy game [12]. 

While general principles of behavior capture can be described as simply as “watch 
what the user does and try to reproduce the same patterns” (see Fig. 1), every 
particular game world sets own challenges. In our works [10, 11, 13] we identified 
several difficulties, related to practical implementation of behavior capture, common 
to a wide variety of computer games, and tried to address them in our AI architecture. 
Currently, our implementation is distributed as a set of tools and libraries under the 
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Fig. 1. Learning and acting of a behavior capture-based AI character 
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name of Artificial Contender [14]. Below we will introduce the method of 
representing agents’ knowledge in Artificial Contender. 

2 Knowledge Representation with Acting Graph 

2.1 Addressing Challenges and Requirements 

Our system was designed with the following goals in mind [15]: 

• complex, non-repetitive behavior of AI agents; 
• distinct personalities of AI characters, exhibiting a variety of skill levels and 

playing styles; 
• the capability to design, edit and adjust AI’s behavior (for a game designer). 

These requirements served as a basis for our decision to use a variation of finite-state 
machine that we call acting graph as a primary data structure of an AI agent’s 
knowledgebase (see Fig. 2; a similar solution was used in [9]). 

The nodes of this graph correspond to 
game situations. Game situation is a 
unique description of the current state of 
the game world, represented with a set of 
numerical attributes, defined by the game 
designer. For example, for the game of 
boxing such attributes may include the 
coordinates of both opponents, their 
directions (where opponents look), body 
position (standing, leaning, blocking, 
etc.), health state of each player, and  
so on. 

The edges of the graph correspond to 
the observed character’s actions that 
introduce changes into the game states. 
For example, a simple action “move 
left” connects two game situations that 

have a difference in character’s horizontal coordinate. There are no restrictions on 
incoming and outgoing connections: (a) one action may lead to several new game 
states (e.g., due to random factors involved in a game, the same action may yield 
different results); (b) different actions may lead to the same game state; and (c) 
distinct actions may connect the same pair of game situations (if a character is 
blocked between two walls, both “move forward” and “move backward” actions yield 
the same result). Each edge also has an associated probability: while a certain game 
situation may have numerous outgoing actions, not all of them may be equally 
preferable. 

 
 

Fig. 2. Acting graph 
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The ready acting graph represents a complete knowledgebase of a computer-
controlled character. Normally it is being constructed automatically during learning 
by observation phase. A human expert plays the game, and the computer system 
builds the acting graph on the fly according to the following procedure: 

wait for the next user action (A) 

S = (current game situation) 

WHILE game is not finished 

   wait for the next user action (A’) 

   S’ = (current game situation) 

   find graph nodes for S and S’  

   (if a node does not exist, create it) 

   establish a link between S and S’, and label it with A 

   (if this link exists already, increase action probability) 

   A = A’; S = S’ 

END LOOP 

Let us now consider how the selected data structure helps to achieve the stated 
goals. The acting graph stores all behavioral patterns, demonstrated by human 
players. Unlike many knowledge representation mechanisms, such as neural 
networks, it does not eliminate the noise: even if a certain sequence of actions 
occurred only once during the training session, it will be still preserved in the graph. 
Thus an AI agent acquires all idiosyncratic elements of its trainer’s style. By asking 
different human experts to train individual game characters, we obtain separate AI 
agents with different styles of acting [10]. 

Another significant advantage of acting graph is the possibility of manual 
modification. Acting graph can be visualized (we do it with AT&T’s GraphViz 
tool [16]) and edited by the game designer. It is possible to remove unwanted or 
unintentional sections, to create artificial acting sequences, and to join separate graphs 
into a single knowledgebase. 

Acting graph also lets the AI system to analyze the consequences of applied 
actions. The game designers might want to increase AI agent’s skill level by means of 
automatic reward-and-punishment schemes (the use of reinforcement learning in 
behavior capture-based AI is discussed in [11]) or with the help of a heuristic action 
evaluation function. Such a function can traverse a graph, discover that a certain 
action is always weak (e.g., it always leads to game states with lower health level of 
the character), and discard it. 

In general, clear and understandable structure of acting graph leaves enough room 
for new experiments. For example, in one of our research projects we tried to improve 
adaptivity of AI agents as follows. The agent is programmed to constantly learn new 
acting sequences from its current opponent. Each action is marked with a timestamp 
(when it was learned by the system). After certain time interval, old actions are 
removed from the graph. With this technique, we were able to obtain highly adaptive 
behavior: an agent tries to learn its opponent’s tactics, and quickly changes behavioral 
patterns when the opponent decides to try another style. 
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2.2 Decision Making System 

While automatic building of a knowledgebase is a rather straightforward process, the 
use of agent’s knowledge for decision making involves more complicated techniques. 
In order to follow human player’s style of behavior, the AI system has to perform 
case-based reasoning: it needs to identify a node in the acting graph that matches the 
current game situation, and to apply one of the actions, found in outgoing edges. The 
complications are caused by heuristic nature of matching algorithm: perfect matches 
are rare, so the system needs to be able to relax matching conditions gradually until an 
approximate match is found. 

Our system allows the game designer to specify the sequence of search operations 
and their types, used to find an approximate match. There are two basic options: exact 
search with attribute exclusion (static generalization) and search with attribute 
variations (dynamic generalization). 

Exact search finds a node that perfectly matches the given game situation. Since 
game situations are coded with numbers, this is done in O(log n) time for a graph, 
stored as a binary search tree. Attribute exclusions add more flexibility: the game 

designer can specify game 
situation attributes that are not 
taken into account while 
matching. So if the exact match 
is not found, we can repeat the 
search with relaxed conditions. 
In order to implement this 
feature, we require the game 
designer to define all searchable 
combinations of attributes in 
compile time. During learning 
by observation, the system 
builds additional acting graphs 
with reduced nodes, and stores 
them in separate binary search 
trees (see Fig. 3). 

Dynamic generalization is a 
wrapper around basic search 
routine. It allows the designer to 
specify an admissible matching 
range for each attribute instead 

of its exact value. For example, if the current game situation is represented with a 
tuple of three attributes (a0, b0, c0), the use of dynamic generalization on two first 
attributes with a range [-1…1] will match the following nine tuples:  

(a0 – 1, b0 – 1, c0)  (a0, b0 – 1, c0)  (a0 + 1, b0 – 1, c0) 

(a0 – 1, b0, c0)      (a0, b0, c0)      (a0 + 1, b0, c0) 

(a0 – 1, b0 + 1, c0)  (a0, b0 + 1, c0)  (a0 + 1, b0 + 1, c0) 

Fig. 3. Static generalization levels 
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This technique is useful when a certain attribute is important and thus cannot be 
excluded, but its exact value may slightly vary (as in case of game characters’ 
coordinates). Currently, dynamic generalizations indeed rely on multiple calls to the 
basic search routine, thus potentially leading to combinatorial explosion of searches. 
However, in our practical experiments we were able to obtain satisfactory results with 
minimal use of dynamic generalizations. As a future work, we plan to implement 
dynamic generalizations with kd-trees, which should result in much lower O(n1 – 1/k + 
m) time for each range search, where m is the number of reported points, and k is the 
dimension of kd-tree [17]. 

The resulting set of actions, associated with the matching graph nodes, can be 
further re-ranked or filtered by additional heuristic functions. We use many such 
functions, both universal and game-dependent. The most important universal ranking 
function extracts the actions that continue the currently executed acting chain (i.e. the 
actions outgoing from the target graph node of the last used action). As a rule, such 
actions should be preferred by the AI. Also, we use weighted random choice in order 
to take into account action probability, stored in the graph. 

3 3D Boxing: An Example Architecture 

Our experiments with behavior capture-based AI for a 3D boxing game are described 
in the papers [10] and [11]. Here we will only discuss basic knowledge configuration 
for the 3D boxing AI, in order to provide a practical example of a graph-based 
decision-making system. 

3.1 Game State Attributes 

Original game states of the boxing game2 are represented with a set of more than 60 
numeric and Boolean attributes for each of the competing players. The most important 
attributes include: 

• the identifier of a boxer’s current animation sequence (this attribute describes an 
actual pose of a boxer); 

• distance between the opponents; 
• is-player-close-to-knockout-state Boolean flag; 
• is-player-on-ropes Boolean flag; 
• the direction to nearest ropes (boxing ring edge); 
• health and energy values of a player; 
• the identifier of a current boxer’s animation sequence on the previous frame. 

Each action is characterized with the following elements: 

• action identifier (a type of an action) — one of 50 built-in action types, such as 
“move left”, “move right”, “right jab” or “right-hand high block”; 

• action duration (in frames). 
                                                           
2 We used a full-fledged commercial boxing game engine. 
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Not all of game state attributes were considered important, so we have selected a set 
of 28 most valuable attributes to be stored in the 
knowledgebase. Additionally, we have performed 
necessary discretization to ease further retrieval. 
For example, “distance between the opponents” is 
measured in pixels, and thus can have hundreds of 
distinct values. We have scaled this attribute into a 
range of seven values only (“very far”, “far”, “not 
far”, “medium”, “almost close”, “close”, “very 
close”). The same operation was performed with 
other continuous attributes, such as boxer’s health 
and energy levels. 

3.2 Generalizations 

For the system of static generalizations, we have 
selected six different sets of attributes. The most 
accurate set contains all 28 values, while the least 
accurate set is represented with 9 attributes only 
(see Table 1 and Fig. 4). So the AI system can find 
a match for the current game situation on any of 
these six levels of abstraction. 

 
For the system of dynamic generalizations, the following attributes were chosen: 

• distance between the opponents; 
• identifier of a boxer’s current animation sequence (it can be generalized to possible 

“neighboring” sequences — e.g., a boxer can be in lean state, then in stand state, or 
in stand state, then in make-punch state, but it cannot move to the make-punch 
state directly from lean state); 

• (same as above) animation identifier, belonging to the opponent. 

Table 1. Configuration of abstraction levels 

Level Attributes 

 

Level Attributes 

0 28 3 15 

1 22 4 12 

2 17 5 9 

3.3 Decision Making 

As mentioned above, the game designer can specify any sequence of calls to graph 
search function in order to achieve desired AI performance. In general, actions found 
with fewer generalizations, and actions that continue the current acting chain are more 
preferable. 

Fig. 4. Acting graph of 3D 
boxing game (actual fragment 
of level 2 graph, visualized 
with GraphViz) 
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In our case, the system uses at most 22 invocations of the graph search function. 
Each invocation is parameterized with: (a) level (numerical identifier) of chosen static 
generalization; (b) Boolean flag indicating whether dynamic generalizations are used; 
(c) Boolean flag indicating whether the system should extract actions of the current 
acting chain only (see Table 2). 

These 22 parameterizations roughly correspond to different “confidence levels” of 
case-based reasoning decision maker. The system searches for suitable actions, 
sequentially relaxing searching conditions according to confidence levels. The first 
acceptable action is returned as a result. 

The 20th confidence level is reserved for a special heuristics: if no actions were 
found on levels 1-19, the system generates “do nothing” action. The rationale for this 
decision is simple: if no highly confident actions are available, it might be better just 
to do nothing and to give the agent the second chance to find a better action on the 
next request than to proceed directly to less confident “safety levels” 21 and 22. 

To make AI less predictable, we also experimented with a slightly modified 
version of this algorithm. In this version, when the action selection subsystem finds an 
applicable action, it first extracts all other applicable actions at the current confidence 
level, and then returns a random action from this actions list. 

Table 2. Confidence levels3 

L S D C 

 

L S D C 

1 1 off True 12 3 off false 

2 1 on True 13 3 on false 

3 2 off True 14 4 off true 

4 2 on True 15 4 on true 

5 3 off True 16 4 off false 

6 3 on True 17 4 on false 

7 0 off false 18 5 off true 

8 1 off false 19 5 on true 

9 1 on false 20 WAIT 

10 2 off false 21 5 off false 

11 2 on false 22 5 on false 

3.4 Heuristic Filters 

As noted earlier, before an action is considered acceptable, it is analyzed with a set of 
ranking/filtering functions. In our system, we used only four such filters: 
                                                           
3 L = confidence level, S = static generalization’s abstraction level, D = dynamic 

generalizations, C = “extract chain actions only” flag. 
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• “Stumble on ropes”. This filter analyzes backward move actions, leading to 
stumble-on-ropes state (normally they are considered weak), and marks an action 
as acceptable only if the original move action in the knowledgebase resulted in a 
similar stumble-on-ropes state in the human-played game (i.e. it really was a 
human player’s intention). 

• “Stumble on opponent”. Analogously, stumbling on opponent (cinch) is usually a 
disadvantaged situation, and should not be encouraged. Actions, leading to clinch, 
are allowed only if the human player tried to initiate clinch in the original learning 
session. 

• “Repeating actions”. An action is ranked as weak, if it matches one of the last N (in 
our experiments, N = 8) used actions. This filter makes boxer’s behavior less 
predictable and less repetitive. Note though, that “same action” means “same 
action object in the knowledgebase”. The boxer can make two identical actions in a 
row, but they should correspond to distinct objects in the acting graph. 

• “Defer non-punches”. Punch actions are considered stronger than non-punches. 
This filter marks all non-punch actions as weak, so punch actions will always be 
preferred to alternative actions at the same confidence level. 

4 Conclusion 

The feasibility of our approach has been evaluated and proven in a series of 
experiments, involving the games of 3D boxing and soccer. We obtained believable 
and effective characters, able to exhibit human-like behavior style (almost 
indistinguishable from human actions) and to beat human-controlled opponents. 

Our method does not implement reasoning capabilities and long-term planning, so 
its applicability to virtual worlds that demand these features is still an open question. 
We believe that our system can be used, at least, as a tactical AI decision maker, 
while high-level strategic reasoning can be supplied by another AI solution. 

The representation of AI agent’s knowledge as a game graph provides us with two 
major advantages: the agent keeps track of all behavioral patterns of its human trainer, 
and the obtained knowledge is easy to visualize and edit. While the latter point might 
not seem major from the theoretical point of view, it is an important factor for game 
developers, who are responsible for AI quality and prefer to have more control over 
system configuration. 

In addition, our case-based reasoning algorithm is fast. We keep a minimal set of 
expensive operations and achieve our goals with fast search routines. Since game AI 
systems have to work in realtime conditions, speed and robustness of decision making 
algorithms are usually among key requirements, set by the game designers. 
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