Hiding Data and Structure
in Workflow Provenance

Susan Davidson, Zhuowei Bao, and Sudeepa Roy

Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA, USA
{susan, zhuowei, sudeepa}@cis.upenn.edu

Abstract. In this paper we discuss the use of views to address the prob-
lem of providing useful answers to provenance queries while ensuring that
privacy concerns are met. In particular, we propose a hierarchical work-
flow model, based on context-free graph grammars, in which fine-grained
dependencies between the inputs and outputs of a module are explicitly
specified. Using this model, we examine how privacy concerns surround-
ing data, module function, and workflow structure can be addressed.

1 Introduction

Provenance in scientific workflows is of increasing interest, as evidenced by sev-
eral recent workshops, tutorials, and surveys on the topic [GI6/18/23]. A number
of tools for capturing provenance have been developed in workflow systems such
as myGrid/Taverna [19], Kepler [7] and VisTrails [I3], and a standard for prove-
nance representation called the Open Provenance Model (OPM) [I7] has been
designed. By maintaining information about the sequence of module executions
(processing steps) used to produce a data item, as well as the parameter settings
and intermediate data items passed between module executions, the validity and
reliability of data can be better understood and results can be made reproducible.

A repository that includes workflow specifications, executions and provenance
information — provenance-aware workflow information — is clearly useful in many
ways. For example, scientists who wish to perform new analyses may search by
keyword to find specifications of interest to reuse or modify. They may also
search executions associated with a specification to understand the meaning of
the workflow, or to correct/debug an erroneous specification. Finding erroneous
or suspect data, a user may then wish to ask structural provenance queries to
determine what downstream data might have been affected, or to understand
how the process failed that led to creating the data.

However, authors/owners of workflows may wish to keep some of this prove-
nance information private. For example, intermediate data within an execution
may contain sensitive information, such as the social security number, a med-
ical record, or financial information about an individual. Although users with
the appropriate level of access may be allowed to see such confidential data,
making it available to all users through a workflow repository, even for scientific

S. Kikuchi et al. (Eds.): DNIS 2011, LNCS 7108, pp. 41 2011.
© Springer-Verlag Berlin Heidelberg 2011



42 S. Davidson, Z. Bao, and S. Roy

purposes, is an unacceptable breach of privacy. Beyond data privacy, a module
itself may be proprietary, and hiding its description may not be enough: users
without the appropriate level of access should not be able to infer its behavior
if they are allowed to see the inputs and outputs of the module. Finally, details
of how certain modules in the workflow are connected may be proprietary, and
therefore showing how data is passed between modules may reveal too much of
the structure of the workflow. There is thus an inherent tradeoff between
the utility of the information shown in response to a search/query and
the privacy guarantees that authors/owners desire.

One technique that can be used to hide details of a workflow is to create
composite modules which encapsulate subworkflows. Composite modules can be
combined to create views of a workflow and its associated executions, showing
users a subset of provenance information and hiding the rest within unexpanded
composite module executions. Originally proposed in [4] as a technique for focus-
ing user attention on relevant provenance, views can also be used to hide private
information, which may include the intermediate data and modules within a
composite module as well as the dependencies between the inputs and outputs
of the composite module.

In this paper, we examine the use of views to implement workflow provenance
privacy. We start in Sec. Pl by describing a model for workflow specifications,
executions, and views. We continue in Sec. 3] by describing initial results on
module and structural privacy, and discuss the connection to views. We close by
pointing to future directions for research.

2 Workflow Model

Our workflow model has several components: specifications, runs, execution
graphs, port dependencies, and provenance graphs. A workflow specification de-
scribes the design of a workflow, while a workflow run (together with information
about the data and processes) describes a particular execution of the given spec-
ification. Following [3], a specification is given by a context-free graph grammar
and the runs corresponding to the specification are given by the graphs in the
language generated by that grammar. Port dependencies are used in the defini-
tion of data provenance graphs, and model fine-grained dependencies between
the inputs and outputs of a module. Rather than giving full details of the model,
we illustrate via an example (see [2] for a more formal treatment).

Workflow Specifications. A sample workflow specification is given in Fig. [l
The workflow estimates disease susceptibility based on genome-wide SNP array
data for an individual as well as information about lifestyle, family history, and
physical symptoms, and outputs a prognosis for the patient along with recom-
mended lifestyle changes [25]. In the graph, boxes labeled MO, ... , M16 indicate
modules with input ports indicated by solid circles and output ports indicated by
open circles; and the labeled arrows between output and input ports of different
modules indicate potential data flow. Some of the modules in this workflow are
atomic (M5, ... ,M16). The rest of the modules (MO, ... ,M4) are composite,



(lifestyle, family history,
physical symptoms)

SNPs

Discover
Prognosis
9

lifestyle change

prognosis

SNPs.

(Rec.) Expand
SNP Set

Hiding Data and Structure in Workflow Provenance

(lifestyle, family history,
physical symptoms)

N‘l,]i Geneticsfus:eptlb ity

disorders

Evaluate
_ Disorder Risk

lifestyle change prognosis

disorders

Combine
Disorder Sets

43

(lifestyle, family history,

physical symptoms) disorders

0
b 4

Generate

m10 ~Queries -

query
Search
Search PubMed Central
Private Datasets
. result

notes _Reformat

It
Update resu

M12 Private Datasets

Summarize
Articles

Combine

M16 Notes and Summary

4 |
SNPs disorders lifestyle change prognosis
Fig. 1. Disease Susceptibility Workflow Specification
d1 dz

Fig. 2. Sample Workflow Execution

di8 di19

* %
di8 d19

Fig. 3. View of Provenance Graph, V'1



44 S. Davidson, Z. Bao, and S. Roy

and their expansion to a subworkflow is shown by dotted edges labeled f; (the
name of the production rule). In particular, the root of the workflow is MO,
which expands via fy to W1. The correspondence between inputs/outputs of
a composite module and the subworkflow to which it expands is indicated in
this figure by reusing names. For example, the initial inputs to the workflow
are (lifestyle,...) and SNPs, and the final outputs are lifestyle change
and prognosis, indicated by double arrows into and out of MO, and those
names are reused within W1. There is also intermediate data within subwork-
flows W1,... W5, e.g. disorders, query, and result.

Note that composite module M3 is recursive, indicated by a cycle, and that
therefore in an execution the atomic module M5 may be executed multiple
times. For simplicity, we have dropped from the figure the alternate termination
condition for this expansion (M3 —f5 M5).

Workflow Executions. The set of all possible runs of a specification is modeled
as the graph language of the corresponding graph grammar. More precisely, it
consists of all simple workflows that can be derived from the start module and
contain only atomic module. A workflow execution is a run in which each module
is given a unique process id and data flows over the edges. One execution of our
sample specification is given in Fig. 2] in which we reuse the name of the module
as the process id unless the module occurs multiple times in the run, e.g. we
use M5.1 and M5.2 for the two executions of module M5. Data items represent
instances of the abstract data in the specification, e.g. d1 represents the initial
input of SNPs.

Provenance Graphs. Data provenance in workflows is typically considered to
be coarse-grained [9], i.e., the data coming out of each output port of a mod-
ule depends on the data that entered all input ports of the module. However,
the ability to capture fine-grained dependencies is increasingly important in a
number of workflow systems, e.g., Taverna 2 [24] and COMAD-Kepler [22], so
we allow the modeling of fine-grained provenance. That is, as part of the speci-
fication we assume that each atomic module has an associated port dependency
matriz 6(M) showing which inputs are connected to which outputs. This is illus-
trated in our sample execution in Fig. 2l as an edge between input/output ports
within a module execution, which we will call a dependency edge. For example,
in M 11 the output d12 depends only on d10 as there is no edge from d2 to d12.
The information contained in an execution allows us to capture provenance for
data items (such as d18 and d19), so we will call them provenance graphs. Note
that the provenance graph for this relatively simple workflow is already complex.
Note also that dependency matrix for composite modules in an execution can be
inferred from the dependency matrices of atomic modules as paths of dependency
and dataflow edges between input and output ports for the composite module.
A provenance query such as “What data does d18 depend on?” can be an-
swered by finding all data items at the origin of a path of dependency and data
flow edges that ends at d18. For our example, this would include data items
dl, d2,..., d10, but not d11,..., d17. In contrast, d19 depends on all data



Hiding Data and Structure in Workflow Provenance 45

items (d1,d3,..., d17) but not d2, since there is no dependency between the
first input port and second output port in M11.

Views. As noted earlier, certain modules in this execution are composite, in-
dicated by boxes containing subworkflow executions (e.g., M0, M1, M2). Con-
trolling the expansion to subworkflows can be used to create views, such as the
one of our sample workflow execution in Fig.[3l In this view (V'1), users can only
see the expansion of M0 and therefore have no access to any intermediate data
except for d9, and cannot see what modules were executed in the implementa-
tion of modules M1 and M2. For example, the answer to the provenance query
“Does the prognosis d19 depend on the output of a PubMed search?” (where
PubMed search matches modules M8 and M13) would be “yes” with respect
to the full provenance graph of Fig. 2l but “no” with respect to V1 since these
modules are not visible .

Views may also alter fine-grained dependencies between the input and output
ports of a module, as illustrated by module M2 in Fig. Bl Here, there is a
dependency between the first input port and second output port (the given
dependency matrix for M2 in the view) that does not exist as a path within
M2 in Fig.[2l In this view, the output of the provenance query “What data does
d19 depend on?” would therefore include d2 and exclude all intermediate data
except for d9 (i.e., d1, d2, d9).

Finally, we may hide data on edges in a view of an execution (for data privacy)
or delete connections between modules in a specification and its executions (for
structural privacy).

3 Privacy

Privacy concerns are tied to the workflow components: data, modules, and the
structure of a workflow. To illustrate them, consider again the sample workflow
in Fig. [

Data Privacy. Certain data in a workflow execution may be confidential. For
example, the output of M1, i.e. the genetic disorder the patient is susceptible to,
should not be revealed with high probability, in any execution, to users without
the required access privilege. Such data masking is a fairly standard requirement
in privacy-aware database systems, and a variety of well known techniques can be
applied, e.g. access control [21]. A key question to consider is whether access to
aggregated provenance data (e.g. the most frequent genetic disorder) is allowed
and, if so, whether some standard notion of privacy like differential privacy (see,
for instance, [12]) used in statistical databases is appropriate for our application.
For example, often random noise is added to the output of a statistical query to
achieve differential privacy in statistical databases, but adding random noise to
the data values may prohibit repeatability of scientific experiments performed
using a workflow.

Module Privacy. Module privacy requires that the functionality of a private
module — that is, the mapping it defines between inputs and outputs — is not



46 S. Davidson, Z. Bao, and S. Roy

revealed to users without the required access privilege. Returning to our exam-
ple, assuming that M1 implements a function f;, module privacy with respect
to M1 requires that no adversarial user should be able to guess the output
f1(SNP, ethnicity) with high probability for any SNP and ethnicity input.
From a patient’s perspective, this is important because they do not want some-
one who may happen to have access to their SNP and ethnicity information to
be able to determine what disorders they are susceptible to. From the module
owner’s perspective, they do not want the module to be simulated by competitors
who capture all input-output relationships. It is easy to see that if information
about all intermediate data is repeatedly given for multiple executions of a work-
flow on different initial inputs, then partial or complete functionality of modules
may be revealed. The approach that we take in [TI/I0] is to hide a carefully
chosen subset of intermediate data, thereby limiting the amount of provenance
data shown to the user and guaranteeing some desired level of privacy. Since
there may be several different subsets of intermediate data whose hiding yields
the desired level of privacy, and certain data may be more useful utility-wise to
users than other data, this becomes an interesting optimization problem.

Note that there is an interesting connection between data and module privacy:
If a module is public (i.e. its function is known), then its output can be simulated
if the inputs are public. Therefore, hiding the output of a public module may
also require hiding some of its input. Furthermore, if a module is invertible then
its input can be simulated if the outputs are known. Again, hiding the input of
a public module may also require hiding some of its outputs.

Structural Privacy. The goal of structural privacy is to keep private the in-
formation that some module M contributes to the generation of a data item d,
output by another module M’. For instance, in the execution of the workflow
W3, we may wish to hide the fact that the reformatted data from PubMed Cen-
tral (module M13) contributes to updating the private DB (module M12), and
hence to the output of module M12. One possible approach is to delete edges
and vertices from both the visible specification and its execution so as to elim-
inate all paths from M to M’; for instance, in this example we can delete the
edge M13 — M14. However, by doing so, we may hide additional provenance
information that does not need be hidden (e.g. the existence of a path from
M13 to M15). Another approach would be to avoid altering the structure of
the workflow and instead find a view in which M13 and M 12 are hidden in a
composite module P, so that the reachability of any pair (u,v) in P is no longer
externally visible, but in this case we may introduce some new paths that did not
exist before. Since there may be many different views of the same workflow, each
of which has a different composite module structure and different dependency
matrices, we may need to choose the “best” view. Once again one faces a chal-
lenging optimization problem: guaranteeing an adequate level of privacy while
minimizing unnecessary loss of information or introduction of spurious informa-
tion. Techniques from preserving the privacy of social networks [TATI20/8T6]
may also be useful.



Hiding Data and Structure in Workflow Provenance 47

4 Conclusion

We have presented a model of workflows based on context free graph grammars
in which fine-grained dependencies between inputs and outputs of an atomic
(non-expandable) module can be explicitly specified. Using this model, a view
can be defined using several techniques, including: 1) hiding data in an exe-
cution; 2) hiding substructure within composite modules, e.g. enabling only a
subset of the workflow productions, thereby allowing only some composite mod-
ules expansions; 3) hiding data flow edges in the specification. We also discussed
privacy concerns in workflow provenance — data, module and structure. Applying
a view to an execution yields a subset of the provenance information, in which
module executions and intermediate data of non-expandable modules are not
visible, and hidden data or data flow are not revealed. Note that hiding data
flow edges may introduce false negatives (data that actually is in the provenance
of a given data item is not returned in a provenance query) while using com-
posite modules may introduce false positives (data that is not actually in the
provenance of a given data item is returned) and/or false negatives, depending
on the fine-grained dependency graph associated with the composite module.
The utility of a view to a user can be measured by the number of false positives
or false negatives introduced in the view used to answer provenance queries.

Our approach of using a view to answer provenance queries while ensuring
privacy of the workflow components is quite different from that used in other
areas (statistical databases, data mining, social networks) where random noise is
added or other randomized mechanisms are applied to guarantee privacy. These
approaches do not seem to be directly applicable to our problem; provenance
queries are quite different in nature from aggregate queries, and results of scien-
tific experiments performed using a workflow are expected to be repeatable and
accurate over different executions. The chief challenge is have a formal analysis
of privacy and a utility guarantee of the solutions we provide, which leads to
numerous new research directions. In our initial research for module privacy, we
used a weaker notion of privacy called ¢-diversity [15]. In our current work we
are studying whether stronger notion of privacy (such as differential privacy)
can be applied meaningfully to our application.

References

1. Backstrom, L., Dwork, C., Kleinberg, J.M.. Wherefore art thou r3579x7:
anonymized social networks, hidden patterns, and structural steganography. In:
WWW, pp. 181-190 (2007)

2. Bao, Z., Davidson, S., Milo, T.: A Fine-Grained Workflow Model with Provenance-
Aware Security Views. In: Proceedings of TaPP (2011)

3. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
Proceedings of the 32nd International Conference on Very Large Data Bases, pp.
343-354 (2006)

4. Biton, O., Boulakia, S.C., Davidson, S.B., Hara, C.S.: Querying and Managing
Provenance through User Views in Scientific Workflows. In: ICDE, pp. 1072-1081
(2008)



48

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

S. Davidson, Z. Bao, and S. Roy

. Bose, R., Foster, 1., Moreau, L.: Report on the International Provenance and An-

notation Workshop. SIGMOD Rec. 35(3) (2006)

. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM

Comp. Surveys 37(1), 1-28 (2005)

. Bowers, S., Ludéscher, B.: Actor-oriented design of scientific workflows. In: Int.

Conf. on Concept. Modeling, pp. 369-384 (2005)

. Campan, A., Truta, T.M.: A clustering approach for data and structural anonymity

in social networks. In: PinKDD (2008)

. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludéscher, B., McPhillips, T.M., Bowers,

S., Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data
Eng. Bull. 30(4), 44-50 (2007)

Davidson, S.B., Khanna, S., Milo, T., Panigrahi, D., Roy, S.: Provenance views
for module privacy. In: Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 175-186 (2011)

Davidson, S.B., Khanna, S., Panigrahi, D., Roy, S.: Preserving module privacy in
workflow provenance (2010) (manuscript), http://arxiv.org/abs/1005.5543
Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1-12. Springer, Heidelberg (2006)
Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing Rapidly-Evolving Scientific Workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 10-18. Springer, Heidelberg (2006)

Korolova, A., Motwani, R., Nabar, S.U., Xu, Y.: Link privacy in social networks.
In: CIKM, pp. 289-298. ACM, New York (2008)

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)
Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommen-
dations: accurate or private. Proc. VLDB Endow. 4, 440-450 (2011)

Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The
Open Provenance Model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.)
IPAW 2008. LNCS, vol. 5272, pp. 323-326. Springer, Heidelberg (2008)

Moreau, L., Ludéscher, B. (eds.): Concurrency and Computation: Practice and
Experience — Special Issue on the First Provenance Challenge. Wiley (2007),
http://twiki.ipaw.info/bin/view/Challenge/

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R., Carver, K.,
Pocock, M.G., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 20(1), 3045-3054 (2003)

Rastogi, V., Hay, M., Miklau, G., Suciu, D.: Relationship privacy: output pertur-
bation for queries with joins. In: PODS, pp. 107-116 (2009)

Samarati, P., De Capitani di Vimercati, S., Paraboschi, S.: Access control: princi-
ples and solutions. Software—Practice and Experience 33(5), 397-421 (2003)
Shawn Bowers, B.L., McPhillips, T.M.: Provenance in collection-oriented scientific
workflows. Concurrency and Computation: Practice and Experience 20(5), 519-529
(2008)

Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31-36 (2005)

Sroka, J., Hidders, J., Missier, P., Goble, C.A.: A formal semantics for the Taverna
2 workflow model. J. Comput. Syst. Sci. 76(6), 490-508 (2010)

Stoyanovich, J., Pe’er, I.: MutaGeneSys: estimating individual disease susceptibil-
ity based on genome-wide SNP array data. Bioinformatics 24(3), 440-442 (2008)


 http://arxiv.org/abs/1005.5543
http://twiki.ipaw.info/bin/view/Challenge/

	Hiding Data and Structure 
in Workflow Provenance
	Introduction
	Workflow Model
	Privacy
	Conclusion
	References




