
Design and Implementation of the Workflow

of an Academic Cloud

Abhishek Gupta, Jatin Kumar, Daniel J. Mathew, Sorav Bansal,
Subhashis Banerjee, and Huzur Saran

Indian Institute of Technology, Delhi
{cs1090174,cs5090243,mcs112576,sbansal,suban,saran}@cse.iitd.ernet.in

Abstract. In this work we discuss the design and implementation of
an academic cloud service christened Baadal. Tailored for academic and
research requirements, Baadal bridges the gap between a private cloud
and the requirements of an institution where request patterns and in-
frastructure are quite different from commercial settings. For example,
researchers typically run simulations requiring hundreds of Virtual Ma-
chines (VMs) all communicating through message-passing interfaces to
solve complex problems. We describe our experience with designing and
developing a cloud workflow to support such requirements. Our workflow
is quite different from that provided by other commercial cloud vendors
(which we found not suited to our requirements).

Another salient difference in academic computing infrastructure from
commercial infrastructure is the physical resource availability. Often, a
university has a small number of compute servers connected to shared
SAN or NAS based storage. This may often not be enough to service the
computation requirements of the whole university. Apart from this in-
frastructure, universities typically have a few hundred to a few thousand
“workstations” which are commodity desktops with local disk-attached-
storage. Most of these workstations remain grossly underutilized. Our
cloud infrastructure utilizes this idle compute capacity to provide higher
scalability for our cloud implementation.

Keywords: Virtualization, Hypervisors.

1 Introduction

Cloud Computing is becoming increasingly popular for its better usability, lower
cost, higher utilization, and better management. Apart from publicly available
cloud infrastructure such as Amazon EC2, Microsoft Azure, or Google App En-
gine, many enterprises are setting up “private clouds”. Private clouds are in-
ternal to the organization and hence provide more security, privacy, and also
better control on usage, cost and pricing models. Private clouds are becoming
increasingly popular not just with large organizations but also with medium
sized organizations which run a few tens to a few hundreds of IT services.

An academic institution (university) can benefit significantly from private
cloud infrastructure to service its IT, research, and teaching requirements.

S. Kikuchi et al. (Eds.): DNIS 2011, LNCS 7108, pp. 16–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Design and Implementation of the Workflow of an Academic Cloud 17

In this paper, we discuss our experience with setting up a private cloud in-
frastructure at the Indian Institute of Technology (IIT) Delhi, which has around
8000 students, 450 faculty members, more than 1000 workstations, and around
a hundred server-grade machines to manage our IT infrastructure. With many
different departments and research groups requiring compute infrastructure for
their teaching and research work, and other IT services, IIT Delhi has many
different “labs” and “server rooms” scattered across the campus. We aim to con-
solidate this compute infrastructure by setting up a private cloud and providing
VMs to the campus community to run their workloads. This can significantly
reduce hardware, power, and management costs, and also relieve individual re-
search groups of management headaches.

We have developed a cloud infrastructure with around 30 servers, each with
24 cores, 10 TB shared SAN-based storage, all connected with 10Gbps Fibre
Channel. We run virtual machines on this hardware infrastructure using KVM[1]
and manage these hosts using our custom management layer developed using
Python and libvirt[2].

1.1 Salient Design Features of Our Academic Cloud

While implementing our private cloud infrastructure, we came across several
issues that have previously not been addressed by commercial cloud offerings.
We describe some of the main challenges we faced below:

Workflow: In an academic environment we are especially concerned about
simplicity and usability of the workflow for researchers (e.g., Ph.D. students, re-
search staff, faculty members) and administrators (system administrators, policy
makers and enforcers, approvers for resource usage).

For authentication, we integrate our cloud service with a campus-wide Ker-
beros server to leverage existing authentication mechanisms. We also integrate
the service with our campus-wide mail and LDAP servers.

A researcher creates a request which should be approved by the concerned
faculty member before it is approved by the cloud administrator. Both the fac-
ulty member and cloud administrator can change the request parameters (e.g.,
number of cores, memory size, disk size, etc.) which is followed by a one-click
installation of the virtual machine. As soon as the virtual machine is installed,
the faculty member and the students are informed about the same with a VNC
console password that they can use to remotely access the virtual machine.

Cost and Freedom: In an academic setting, we are most concerned about both
cost and freedom to tweak the software. For this reason, we choose to rely solely
on free and open-source infrastructure. Enterprise solutions like those provided
by VMware are both expensive and restrictive.

Our virtualization stack comprises of KVM[1], libvirt[2], and Web2py[3] which
are open-source and available freely.



18 A. Gupta et al.

Workload Performance: Our researchers typically need large number of VMs
executing complex simulations communicating with each other through message-
passing interfaces like MPI[4]. Both compute and I/O performance is critical for
such workloads. We have arranged our hardware and software to provide the
maximum performance possible. For example, we ensure that the bandwidths
between the physical hosts, storage arrays, and external network switches are
the best possible with available hardware. Similarly, we use the best possible
emulated devices in our virtual machine monitor. Whenever possible, we use
para-virtual devices for maximum performance.

Maximizing Resource Usage: We currently use dedicated high-performance
server-class hardware to host our cloud infrastructure. We use custom scheduling
and admission-control policies to provide maximal resource usage. In future, we
plan to use the idle capacity of our lab and server rooms to implement larger
cloud infrastructure at minimal cost. We discuss some details of this below.

A typical lab contains tens to a few hundred commodity desktop machines,
each having one or more CPUs, a few 100 GBs of storage, connected over
100Mbps or 1Gbps ethernet. Often these clusters of computers are also connected
to a shared Network-Attached Storage (NAS) device. For example, there are
around 150 commodity computers in the Computer Science department alone.
Typical utilization of these desktop computers is very low (1-10%). We intend to
use this “community” infrastructure for running our cloud services. The VMs will
run in background, causing no interference to the applications and experience of
the workstation user. This can significantly improve the resource utilization of
our lab machines.

1.2 Challenges

Reliability: In lab environments, it is common for desktops to randomly get
switched off or disconnected from network. These failures can be due to several
reasons including manual reboot, network cable disconnection, power outage, or
hardware failure. We are working on techniques to have redundant VM images
to be able to recover from such failures.

Network and Storage Topology: Most cloud offerings use shared storage
(SAN/NAS). Such shared storage can result in a single point of failure. Highly-
reliable storage arrays tend to be expensive. We are investigating the use of disk-
attached-storage in each computer to provide a high-performance shared storage
pool with built-in redundancy. Similarly, redundancy in network topology is
required to tolerate network failures.

Scheduling: Scheduling of VMs on server-class hardware has been well-studied
and is implemented on current cloud offerings. We are developing scheduling al-
gorithms for commodity hardware where network bandwidths are lower, storage
is distributed, and redundancy is implemented. For example, our scheduling al-
gorithm maintains redundant copies of a VM in separate physical environments.



Design and Implementation of the Workflow of an Academic Cloud 19

Encouraging Responsible Behaviour: Public clouds charge their users for
CPU, disk, and network usage on per CPU-hour, GB-month, and Gbps-month
metrics. Instead of a strict pricing model, we use the following model which relies
on good community behaviour:

– Gold: The mode is meant for virtual machines requiring proportionally more
CPU resources than other categories and are well suited for compute-intensive
applications. We follow a provisioning ratio of 1:1 that is we don’t overprovi-
sion as it is expected that the user will be using all the resources that he/she
has asked for.

– Silver: This mode is required for moderately heavy jobs. We typically follow
a overprovisioning ratio of 2:1 which means that we typically allocate twice
as much as resources as the server should ideally host.

– Bronze: The mode is meant for virtual machines with a small amount of
consistent CPU resources typically required when we are working on some
code and before the actual run of the code. We follow a 4:1 provisioning ratio
which means that we typically allow the resources to be overprisioned by a
factor of four.

– Shutdown: In this mode user simply shuts down the virtual machine and is
charged minimally.

The simplicity and the effectiveness of the model lies in the fact that user can
switch between the modes with the ease of a click without any reboot of the
virtual machine.

The rest of this paper is structured as follows: in Section 2 we talk about
our experiences with other Cloud Offerings. Section 3 describes key aspects of
our design and implementation. Section 4 evaluates the performance of some
relevant benchmarks on our virtualization stack over a range of VMs running
over different hosts. Section 5 reviews related work, and Section 6 discusses
future work and concludes.

2 Experiences with Other Cloud Offering

We tried some off-the-shelf cloud offerings before developing our own stack. We
describe our experiences below.

2.1 Ubuntu Enterprise Cloud

Ubuntu Enterprise Cloud[5] is integrated with the open source Eucalyptus pri-
vate cloud platform, making it possible to create a private cloud with much less
configuration than installing Linux first, then Eucalyptus. Ubuntu/Eucalyptus
internal cloud offering is designed to be compatible with Amazon’s EC2 public
cloud service which offers additional ease of use.

On the other side, there is a need to familiarize with both Ubuntu and Euca-
lyptus, as we were frequently required to search beyond Ubuntu documentation



20 A. Gupta et al.

following the Ubuntu Enterprise Cloud’s dependence on Eucalyptus. For exam-
ple, we observed that Ubuntu had weak documentation for customizing images,
which is an important step in deploying their cloud. Further even though the
architecture is quite stable, it doesn’t support the level of customization required
for an academic/research environment like ours.

2.2 VMware vCloud

VMware vCloud[6] offers on demand cloud infrastructure such that end users can
consume virtual resources with maximum agility. It offers consolidated datacen-
ters and an option to deploy workloads on shared infrastructure with built-in
security and role-based access control. Migration of workloads between different
clouds and integration of existing management systems using customer exten-
sions, APIs, and open cross-cloud standards serve as one of the most convincing
arguments to use the same for a private cloud.

Despite these features and one of the most stable cloud platforms VMware
vCloud might not be an ideal solution to be deployed by an academic institution
owing to the high licensing costs attached to it, though it might prove ideal for
an enterprise with sufficiently good budget.

3 Baadal: Our Workflow Management Tool for Academic
Requirements

Currently Baadal is based on KVM as the hypervisor and the Libvirt API which
serves as a toolkit to interact with the virtualization capabilities of a host. The
choice of libvirt is guided by the fact that libvirt can work with a variety of
hypervisors including KVM, Xen, and VMWare.[2] Thus, we can switch the
underlying hypervisor technology at a later stage with minimal efforts.

Fig. 1. Virtualization Stack

We export our management software in two layers - web-based and command-
line interface (CLI). While our web based interface is built using web2py, a
MVC based Python framework, we continue to use Python for the command



Design and Implementation of the Workflow of an Academic Cloud 21

line interface as well. The choice of the Python as the primary language for
the entire project is supported by the excellent support and documentation by
libvirt and Python community alike.

3.1 Deconstructing Baadal

Baadal consists of four components:

Web Server: The web server provides a web-based interface for management
of the virtual machines. Our implementation is based on web2py.

Fig. 2. List of VMs in Baadal’s database along with their current status and some
quick actions

Hosts: Multiple hosts are configured and registered in the Baadal database
using the web server interface. The hosts run virtual machines and a common
storage based on NAS provides seamless storage to allow live migration of VMs.

Client: Any remote client which can access the virtual machine using Remote
Desktop Protocol (Windows) or ssh.

VNC Server: This server receives requests from clients for VNC console access.
Port forwarding has been set up so that the requests that come to the server are
forwarded to the appropriate hosts, and consequently served from there. This
server can be same or different from the web server based on the traffic that
needs to be handled.

3.2 Workflow

Client requests a VM from Baadal using the web/command-line interface. The
request, once approved by administrator leads to spawning of a VM on any of the
hosts. The host selected for spawning is determined by the scheduling algorithm
as described in the following section.

Once the VM has been setup it can be administered by the user which includes
changing the runlevel of the VM apart from normal operations like shutting down
and rebooting the VM.



22 A. Gupta et al.

Table 1. Some tests performed on different kinds of hardware infrastructure

Test1 KVM+Desktop2 KVM+Server3 VMware+Server4

Empty Loop(10000000) 21840µs 44321µs 44553µs

Fork(1000000) 29.72 s 6.88 s 3.97 s

Wget(685.29 MB) 54.09 s 20.36 s 9.5 s

cp(685.29 MB) 71.97 s 11.65 s 26.07 s

iscp(685.29 MB) 29.64 s 52.34 s 4.75 s

oscp(685.29 MB) 73.54 s 83.68 s 4.86 s

Ping Hypervisor .2886 s .3712 s .1204 s

Note:
1. Each VMs is allocated 1GB RAM, 1 vCPU and 10 GB Harddisk.
2. Desktops used are lab machines with typical configuration as 4GB RAM, C2D,
500GB hard disk and on a 1Gbps Network
3. KVM+Server refers to KVM hypervisor running on HP Proliant BL460c G7 (16GB
RAM, 24 CPU, 10Gbps Network)
4. VMware+Server refers to VMWare as hypervisor running on Dell PowerEdge R710
(24GB RAM, 16 CPU, 10Gbps Network)

4 Implementation

While designing Baadal the following have been implemented and taken care of:

4.1 Iptables Setup

For accessing the graphical console of the VM users can use VNC console. Due
to migrations of VMs the host of a VM may change and it can be troublesome if
we provide a fixed combination of host IP address and port for connecting to the
VNC console. Baadal uses Iptables and thus setup port forwarding connections
to the VNC server. Clients can connect to the VNC console with the IP address of
the VNC Server and a dedicated port which will be forwarded to the appropriate
host which is currently hosting the user’s VM. In case of migration we change the
port forwarding tables in background without causing any kind of inconvenience
or delays to the user. So the user always connects to the VNC server with a fixed
port number and the IP of the VNC server. The packets from user are forwarded
by the VNC server to the appropriate host and thus all requests are served from
there.

4.2 Cost Model

We have been observing that in an academic environment some people tend to
reserve VMs with high resources which are never used in an optimal fashion. To
reduce such number of occurrences we have implemented a cost model accounting
for the usage case put up by the user (which can be dynamically changed by
him) and the time the machine is running. We have defined three levels 1,2,3



Design and Implementation of the Workflow of an Academic Cloud 23

Fig. 3. Baadal workflow

with 1:1, 1:2, 1:4 as the over-provisioning ratios respectively and have associated
a decreasing order of cost with each of them. The user is expected to switch
between different runlevels according to his requirement. The overall process is
defined in a way leading to better utilization without any need for policing. Since
the runlevels are associated with cost factors users tend to follow the practice.

4.3 Scheduler

When the runlevel for any VM is switched by the user we need to schedule
his VM into an appropriate host. So we use a scheduling algorithm which uses
the greedy strategy for finding the host satisfying the given constraints (VM
run-level and configuration of the hosts and the VM).

As a general observation it is hardly the case that all the VMs are optimally
used. The usage is reduced further during the off-peak hours when we can prob-
ably save on our costs and energy by trying to condense the number of hosts
actually running and switching off the others. While doing this proper care is
taken so as to ensure that the VM doesn’t see a degradation of the services
during these hours.

5 Cost and Performance Comparisons

As both libvirt and KVM have undergone a rigorous testing phase before they
are released as stable releases (which we are using), we need not do rigorous
benchmark tests against the standard tests. We have subjected our scheduling
algorithms to rigorous testing in an order to see if they are behaving as intended.



24 A. Gupta et al.

The testing has also lead us to further optimization of the algorithms as we are
sometimes introduced to some cases that we didn’t take proper care of.

A second part of testing/experimentation involved the identification of the
constants responsible for overprovisioning of the resources. The constants may
vary from institution to institution but generally tends to be in proximity with
1, 2 and 4 respectively for an academic/research environment like ours.

6 Future Work and Conclusions

6.1 Future Work

In a laboratory setup of any academic institution, resource utilization is gen-
erally observed to be as low as 1-10%. Thus quite a few of the resources go
underutilized. If we can run a community based cloud model on these under-
utilized community infrastructure we would be able to over-provision resources
(like providing each student with his own VM), thereby improving the overall
utilization of the physical infrastructure without compromising on the user’s ex-
perience with the desktop. A significant rise as high as from 1-10% to 40-50% is
expected in the utilization of the resources in the mentioned scheme.

It is common in such environments for desktops to randomly be rebooted/
switched-off/disconnected. Also, hardware/disk failure rates are higher in these
settings as compared to tightly-controlled blade server environments. Being able
to support VMs with a high degree of reliability is a challenge. The solution
we intend to investigate is to run redundant copies of VMs simultaneously to
provide much higher reliability guarantees, than what the physical infrastruc-
ture can provide and seamlessly switching between them. We at IIT Delhi have
implemented Record/Replay feature in Linux/KVM (an open source Virtual Ma-
chine Monitor) which allows efficient synchronization of virtual machine images
at runtime. We intend to use this implementation to provide higher reliability
guarantees to cloud users on community infrastructure.

Currently, we support VMs that run atop the KVM hypervisor, but plan to
add support for Xen, VMware, and others in the near future. Also, we plan to
optimize the software with storage specific plugins. For example, if one is using
storage provided by Netapp he can take advantage of the highly optimized copy
operation provided by Netapp rather than using the default copy operation.

Due to the diversity in hardware characteristics and network topologies, we
expect new challenges in performance measurements and load balancing in this
scenario.

6.2 Conclusions

Baadal, our solution for private cloud for academic institutions, will allow ad-
ministrators and researchers to deploy an infrastructure where users can spawn
multiple instances of VMs and control them using a web-based or command
line interface atop existing resources. The system is highly modular, with each



Design and Implementation of the Workflow of an Academic Cloud 25

module represented by a well-defined API, enabling researchers to replace com-
ponents for experimentation with new cloud-computing solutions.

To summarize, this work illustrates an important segment of cloud computing
that has been filled by Baadal by providing a system that is easy to deploy atop
existing resources, that lends itself to experimentation by the modularity that is
inherent in the design of Baadal and the virtualization stack that is being used
in the model.

Acknowledgments. Sorav Bansal would like to thank the NetApp Inc.,
Bangalore for their research grant which was used to partially support this work.

References

1. Laor, D., Kivity, A., Kamay, Y., Lublin, U., Liguori, A.: kvm: the linux virtual ma-
chine monitor. Virtualization Technology for Directed I/O. Intel Technology Jour-
nal 10, 225–230 (2007)

2. Libvirt, the virtualization api, http://www.libvirt.org
3. Di Pierro, M.: Web2py Enterprise Web Framework, 2nd edn. Wiley Publishing

(2009)
4. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J.M.,

Sahay, V., Kambadur, P., Barrett, B.W., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra,
J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004)

5. Ubuntu enterprise cloud - overview,
http://www.ubuntu.com/business/cloud/overview

6. Vmware vcloud director - deliver infrastructure as a service without compromise,
http://www.vmware.com/products/vcloud-director/features.html

http://www.libvirt.org
http://www.ubuntu.com/business/cloud/overview
http://www.vmware.com/products/vcloud-director/features.html

	Design and Implementation of the Workflow 
of an Academic Cloud
	Introduction
	Salient Design Features of Our Academic Cloud
	Challenges

	Experiences with Other Cloud Offering
	Ubuntu Enterprise Cloud
	VMware vCloud

	Baadal: Our Workflow Management Tool for Academic Requirements
	Deconstructing Baadal
	Workflow

	Implementation
	Iptables Setup
	Cost Model
	Scheduler

	Cost and Performance Comparisons
	Future Work and Conclusions
	Future Work
	Conclusions

	References




