Secure Data Management in the Cloud

Divyakant Agrawal, Amr El Abbadi, and Shiyuan Wang

Department of Computer Science, University of California at Santa Barbara
{agrawal,amr,sywang}@cs.ucsb.edu

Abstract. As the cloud paradigm becomes prevalent for hosting var-
ious applications and services, the security of the data stored in the
public cloud remains a big concern that blocks the widespread use of the
cloud for relational data management. Data confidentiality, integrity and
availability are the three main features that are desired while providing
data management and query processing functionality in the cloud. We
specifically discuss achieving data confidentiality while preserving prac-
tical query performance in this paper. Data confidentiality needs to be
provided in both data storage and at query access. As a result, we need
to consider practical query processing on confidential data and protect-
ing data access privacy. This paper analyzes recent techniques towards a
practical comprehensive framework for supporting processing of common
database queries on confidential data while maintaining access privacy.

1 Introduction

Recent advances in computing technology have resulted in the proliferation of
transformative architectural, infrastructural, and application trends which can
potentially revolutionize the future of information technology. Cloud Comput-
ing is one such paradigm that is likely to radically change the deployment of
computing and storage infrastructures of both large and small enterprises. Ma-
jor enabling features of the cloud computing infrastructure include pay per use
and hence no up-front cost for deployment, perception of infinite scalability, and
elasticity of resources. As a result, cloud computing has been widely perceived
to be the “dream come true” with the potential to transform and revolutionize
the IT industry [1]. The Software as a Service (SaaS) paradigm, such as web-
based emails and online financial management, has been popular for almost a
decade. But the launch of Amazon Web Services (AWS) in the second half of
2006, followed by a plethora of similar offerings such as Google AppEngine, Mi-
crosoft Azure, etc., have popularized the model of “utility computing” for other
levels of the computing substrates such as Infrastructure as a Service (IaaS) and
Platform as a Service (PaaS) models. The widespread popularity of these models
is evident from the tens of cloud based solution providers [2] and hundreds of
corporations hosting their critical business infrastructure in the cloud [3]. Recent
reports show that many startups leverage the cloud to quickly launch their busi-
nesses applications [4], and over quarter of small and medium-sized businesses
(SMBs) today rely on or plan to adopt cloud computing services [5].

S. Kikuchi et al. (Eds.): DNIS 2011, LNCS 7108, pp. 1-[15] 2011.
© Springer-Verlag Berlin Heidelberg 2011

2 D. Agrawal, A. El Abbadi, and S. Wang

With all the benefits of storing and processing data in the cloud, the secu-
rity of data in the public cloud is still a big concern [6] that blocks the wide
adoption of the cloud for data rich applications and data management services.
In most cases and especially with Platform-as-a-Service (PaaS) and Software-
as-a-Service (SaaS), users cannot control and audit their own data stored in the
cloud by themselves. As the cloud hosts vast amount of valuable data and large
numbers of services, it is a popular target for attacks. At the network level, there
are threats of IP reuse, DNS attacks, Denial-of-Service (DoS) and Distributed
Denial-of-Service (DDoS) attacks, etc [7]. At the host level, vulnerabilities in
the virtualization stack may be exploited for attack. Resource sharing through
virtualization also gives rise to side channel attacks. For example, a recent vul-
nerability found in Amazon EC2 [§] makes it possible to cross virtual machine
boundary and gain access to another tenant’s data co-located on the same phys-
ical machine [9]. At application level, vulnerabilities in access control could let
unauthorized users access sensitive data [7]. Even if the data is encrypted, partial
information about the data may be inferred by monitoring clients’ query access
patterns and analyzing clients’ accessed positions on the encrypted data. The
above threats could compromise data confidentiality, data integrity, and data
availability.

To protect the confidentiality of sensitive data stored in the cloud, encryp-
tion is the widely accepted technique [I0]. To protect the confidentiality of the
data being accessed by queries, Private Information Retrieval (PIR) [11] can
completely hide the query intents. To protect data integrity, Message Authenti-
cation Codes (MAC) [12], unforgeable signatures [I3] or Merkle hash trees can
validate the data returned by the cloud. To protect data availability and data
integrity in case of partial data corruption, both replication and error-correcting
mechanisms [14] [I5] [T6] are the potential solutions. Replication, however, po-
tentially offers attackers multiple entry points for unauthorized access to the
entire data. In contrast, error-correcting mechanisms that split data into pieces
and distribute them in different places [17, [18, 19, 15} [16] enhance data security
in addition to data availability. These techniques have been implemented in a
recently released commercial product of cloud storage [20] as well as in Google
Apps Service for the City of Los Angeles [21].

Integrating the above techniques, however, cannot deliver a practical secure
relational data management service in the cloud. For data confidentiality specif-
ically, practical query processing on encrypted data remains a big challenge.
Although a number of proposals have explored query processing on encrypted
data, many of them are designed for processing one specific query (e.g. range
query) and are not flexible to support another kind of query (e.g. data up-
dates), yet some other approaches lose balance between query functionality and
data confidentiality. In Section 2, we discuss the relevant techniques and present
a framework based on secure index that targets to support multiple common
database queries and strikes a good balance between functionality and confi-
dentiality. As for data confidentiality at query access, PIR provides complete
query privacy but is too expensive in terms of computation and communication.

Secure Data Management in the Cloud 3

As a result, alternative techniques for protecting query privacy are explored in
Section [3l The ultimate goal of the proposed research is to push forward the
frontier on designing practical and secure relational data management services
in the cloud.

2 Processing Database Queries on Encrypted Data

Data confidentiality is one of the biggest challenges in designing a practical
secure data management service in the cloud. Although encryption can provide
confidentiality for sensitive data, it complicates query processing on the data. A
big challenge to enable efficient query processing on encrypted data is to be able
to selectively retrieve data instead of downloading the entire data, decoding and
processing them on the client side. Adding to this challenge are the individual
filtering needs of different queries and operations, and thus a lack of a consistent
mechanism to support them. This section first reviews related work on query
processing on encrypted data, and then presents a secure index based framework
that can support efficient processing of multiple database queries.

2.1 Related Work

To support queries on encrypted relational data, one class of solutions proposed
processing encrypted data directly, yet most of them cannot achieve strong data
confidentiality and query efficiency simultaneously for supporting common rela-
tional database queries (i.e., range queries and aggregation queries) and database
updates (i.e., data insertion and deletion). The study of encrypted data pro-
cessing originally focused on keyword search on encrypted documents [22], [23].
Although recent work can efficiently process queries with equality conditions on
relational data without compromising data confidentiality [24], they cannot of-
fer the same levels of efficiency and confidentiality for processing other common
database queries such as range queries and aggregation queries. Some proposals
trade off partial data confidentiality to gain query efficiency. For example, the
methods that attach range labels to bucketized encrypted data [25] 26] reveal the
underlying data distributions. Methods relying on order preserving encryption
[27, 28] reveal the data order. These methods cannot overcome attacks based
on statistical analysis on encrypted data. Other proposals sacrifice query effi-
ciency for strong data confidentiality. One example is homomorphic encryption,
which enables secure calculation on encrypted data [29] [30], but requires expen-
sive computation and thus is not yet practical [31]. Predicate encryption can
solve polynomial equations on encrypted data [32], but it uses public key cryp-
tographic system which is much more expensive than symmetric encryption used
above.

Instead of processing encrypted data directly, an alternative is to use an en-
crypted index which allows the client to traverse the index and to locate the data
of interest in a small number of rounds of retrieval and decryption [33, 34} 35, [36].
In that way, both confidentiality and functionality can be preserved. The other al-
ternative approach that preserves both confidentiality and functionality is to use

4 D. Agrawal, A. El Abbadi, and S. Wang

a secure co-processor on the cloud server side and to put a database engine and
all sensitive data processing inside the secure co-processor [37]. That apparently
requires all the clients to trust the secure co-processor with their sensitive data,
and it is not clear that how the co-processor handles large numbers of clients and
large amount of data. In contrast, a secure index based approach [33] 34, 35, [36]
does not have to rely on any parties other than the clients, and thus we believe
that it is promising to be a practical and secure framework. In the following, we
discuss our recent work [36] on using secure index for processing various database
queries.

2.2 Secure Index Based Framework

Let I be a B+-tree [38] index built on a relational data table T. Each tuple
t has d attributes, Ay, Ag, ..., Ag. Assume each attribute value (and each index
key) can be mapped to an integer value taken from a certain range [1, ..., M AX].
Each leaf node of I maintains the pointers to the tuple units where the tuples
with the keys in this leaf node are stored. The data tuples of T" and indexes
I are encoded under different secrets C', which are then used for decoding the
data tuples and indexes respectively. Each tree node of the index and a fixed
number of tuples are single units of encoding. We require that these units have
fixed sizes to ensure that the encoded pieces have fixed sizes. The encoded pieces
are then distributed on servers hosted by external cloud storage providers such
as Amazon EC2 [8]. Queries and operations on the index key attribute can be
efficiently processed by locating the leaf nodes of I that store the requested keys
and then processing the corresponding tuple units pointed by these leaf nodes.

Fig. [l demonstrates the high-level idea of our proposed framework. The data
table T is organized into a tuple matrix T'D. The index I is organized into an
index matrix I D. Each column of T'D or ID is an encoding unit. I D is encoded
into IE and T'D is encoded into TE. Then IE and TFE are distributed in the
cloud.

Encoding Choices. Symmetric key encryption such as AES can be used for
encoding [33,[34], as symmetric key encryption is much more efficient than asym-
metric key encryption. Here we consider using Information Dispersal Algorithm
(IDA) [17] for encoding, as IDA naturally provides data availability and some
degrees of confidentiality.

Using IDA, we encode and split data into multiple uninterpretable pieces. IDA
encodes an m x w data matrix D by multiplying an n x m (m < n) secret dis-
persal matrix C' to D in Galois filed, i.e. E = C'- D. The resulting n x w encoded
matrix F is distributed onto n servers by dispersing each row onto one server. To
reconstruct D, only m correct rows are required. Let these m rows form an m x w
sub-matrix F* and the corresponding m rows of C' form an m x m sub-matrix C*,
D = C*~'. E*. In such a way, data is intermingled and dispersed, so that it is
difficult for an attacker to gather the data and apply inference analysis. To vali-
date the authenticity and correctness of a dispersed piece we apply the Message
Authentication Code (MAC) [12] on each dispersed piece.

Secure Data Management in the Cloud 5

n Al A2 Ad
o D: Tuples -

D g0y IE E(n,) Eln,) TE (Eitc,) ite,) LT ™ 4

Fig. 1. Secure Cloud Data Access Framework

Since IDA is not proved to be theoretically secure [I7], to prevent attackers’
direct inference or statistical analysis on encoded data, we propose to add salt
in the encoding process [39] so as to randomize the encoded data. In addition
to the secret keys C' for encoding and decoding, a client maintains a secret seed
ss and a deterministic function fs for producing random factors based on ss
and input data. Function fs can be based on pseudorandom number generator
or secret hashing. The generated random values are added to the data values
before encoding, and they can only be reconstructed and subtracted from the
decoded values by the client.

Encoding Units of Index. Let the branching factor of the B+4-tree index I
be b. Then every internal node of I has [[b/2],b] children, and every node of T
has [[(b—1)/2],b— 1] keys. To accommodate the maximum number of children
pointers and keys, we fix the size of a tree node to 2b+ 1, and let the column size
of the index matrix I D, m be 2b+ 1 for simplicity. We assign each tree node an
integer column address denoting its column in /D according to the order it is
inserted into the tree. Similarly, we assign a data tuple column of T'D an integer
column address according to the order its tuples are added into T'D.

A tree node of I, node, or the corresponding column in ID, ID, 4, can be
represented as

(isLeaf, coly, coly, key, cola, keya, ..., coly_1, keyp—1, coly) (1)

where isLeaf indicates if node is an internal node (isLeaf = 0), or a leaf node
(isLeaf = 1). key; is an index key, or 0 if node has less than i keys. For an
internal node, coly = 0, col; (1 < i < b) is the column address of the ith child
node of node if key;_1 exists, otherwise col; = 0. For existing keys and children,
(a key in child column col;) < key; < (akey in child column col; 1) < key; 1. For
a leaf node, coly and colp are the column addresses of the predecessor/successor

6 D. Agrawal, A. El Abbadi, and S. Wang

leaf nodes respectively, and col;(1 < i < b—1) is the column address of the tuple
with key;.

We use an Employee table shown in Fig. [as
an example. Fig. gives an example of an in-

dex built on Perm No of the Employee table (the PermMNo | Salary | Age
upper part) and the corresponding index matrix o | s I ae |
ID (the lower part). In the figure, the branching t,| 10002 | sooo | 28
factor of the B+-tree b = 4, and the column size E: :Eggi :ggg ;:
of the index matrix m = 9. The keys are inserted t; | 10005 | 6000 | 30
into the tree in ascending order 10001, 10002, ... :: 13322 2333 if

10007. The numbers shown on top of the tree
nodes are the column addresses of these nodes.
The numbers pointed to by arrows below the keys
of the leaf nodes are the column addresses of the
data tuples with those keys.

Fig. 2. An Employee Table

Encoding Units of Data Tuples. Let the column size of the tuple matrix T'D
also be m. To organize the existing d-dimensional tuples of D into T'D initially,
we sort all the data tuples in ascending order of their keys, and then pack every
p tuples in a column of T'D such that p-d < m and (p+1)-d > m. The columns
of T'D are assigned addresses of increasing integer values. The p tuples in the
same column have the same column address, which are stored in the leaf nodes
of the index that have their keys. Fig. gives an example of organizing tuples
in Employee table into a tuple matrix 7D, in which two tuples are packed in
each column.

Selective Data Access. To enable selective access to small amount of data,
the cloud data service provides two primitive operations to clients, i.e. storing
and retrieving fixed sizes of encoding units. Since each encoding unit or each
column of ID or T'D has an integer address, we denote these two operations
as store unit(D, i) and retrieve unit(E,), in which ¢ is the address of the unit.
store unit(D, i) encodes data unit 4, adds salt into it on the client side and then
stores it in the cloud. retrieve unit(F,) retrieves the encoded data unit ¢ from
the cloud, and then decodes the data unit and subtracts salt on the client side.

2.3 Query Processing

We assume that the root node of the secure index is always cached on the client
side. The above secure index based framework is able to support exact, range
and aggregation queries involving index key attributes, as well as data updates,
inserts and deletes efficiently. These common queries form the basis for general
purpose relational data processing.

Exact Queries. Performing an exact query via the secure B+-tree index is
similar to performing the same query on a plaintext B-+-tree index. The query is
processed by traversing the index downwards from the root, and locating the keys
of interests in leaf nodes. However, each node retrieval calls retrieve unit(IE, 1)

Secure Data Management in the Cloud 7

1 3 4 3
10001 | 10002 | I—) 10003 1M04‘ I—) 10005 | 10006 | 10007
> 1 By > 2 B2 >3 B3 ba
1 2 3 4
D 1 o 1 1 > Server,
0 4] 1 3 > Server;
1 1 2 3
10001 10003 10003 10005
1 3 2 3
10002 10005 10004 10006
0 4 0 a4
0] 0 10007
3 o 4 o / :
*> Server,
(a) Index Matrix of Employee Table
Perm No | Salary Age
Tuples
t, | 10001 4000 25
ty 10002 5000 28
ty | 10003 4000 25
ty 10004 4000 26
ts | 10005 6000 30
te | 10006 5500 28
ty 10007 G000 31
1 2 3 4
T/ 10001 10003 10005 moor\ —> Server,
4000 4000 6000 6000 —* Server;
25 25 30 31 -
10002 10004 10006 0 TE=C-TD
5000 4000 5500] 5
28 26 28 1]
k- h_-_\ eksumi(t,t,) ck (et} ck [t}
0 0 0 0
V] Q 4] 0 -
j 3 Server,

(b) Tuple Matrix of Employee Table

Fig. 3. Encoding of Index and Data Tuples of Employee Table

and the result tuple retrieval is through retrieve unit(7T'E, 7). Fig.[illustrates the
recursive procedure for processing an exact query at a tree node. When an exact
query for key x is issued, the exact query procedure on the root node, ID. root,
is called first. At each node, the client locates the position ¢ with the smallest key
that is equal to or larger than z (Line 1), or the rightmost non-empty position
i if x is larger than all keys in node (Line 2-4).

Range Queries. To find the tuples whose index keys fall in a range [z, 2], we
locate all qualified keys in the leaf nodes, get the addresses of the tuple matrix
columns associated with these keys, and then retrieve the answer tuples from
these tuple matrix columns. The qualified keys can be located by performing
an exact query on either x; or x,, and then following the successor links or
predecessor links at the leaf nodes. Note that since tuples can be dynamically
inserted and deleted, the tuple matrix columns may not be ordered by index

8 D. Agrawal, A. El Abbadi, and S. Wang

Define: =, search key.
Define: t. the tuple with index key .
Define: nkeys(node), number of keys in node.
1: Find the smallest i s.t. r < node.key; N i < nkeys(node)
2: if not exist i then

3 i «— nkeys(node) + 1

4: if node.isLeaf = 0 then

5 ID, node.colyey — retrieve-unit(/E, node.coli+1)
6: exact.query(/ D, node, col i + T process_on_not._ found)
7. else

8 if i < nkeys(node) A r = node.key; then

9 TD; node.col; +— retrieve_unit(TE, node.col;)
10: Locate t with key = in T'D, node.col,
13 Return (. node.col;. node).
12: else
13: t does not exist

Fig. 4. Algorithm exact query(node, x)

keys, thus we cannot directly retrieve the tuple matrix columns in between the
tuple matrix columns corresponding to x; and z,.

Aggregation Queries. An aggregation query involving selection on index key
attributes can be processed by first performing a range query on the index key
attributes and then performing aggregation on the result tuples of the range
query on the client side. Some aggregation queries on index key attributes can
be directly done on the index on the server side, such as finding the tuples with
MAX, MIN keys in a range [z, z;,].

Data Updates, Insertion and Deletion. Data update without change on
index keys can be easily done by an exact query to locate the unit that has the
previous values of the tuple, a local change and a call of store unit(7TD,i) to
store the updated unit. Data update with change on index keys is similar to
data insertion, which is discussed below.

Data insertion is done in two steps: tuple insertion and index key insertion.
Data deletion follows a similar process, with the exception that the tuple to
delete is first located via an exact query of the tuple’s key. Note that the order
that the tuple unit is updated before the index unit is important, since the
address of the tuple unit is the link between the two and needs to be recorded
in the index node.

We allow flexible insertion and deletion of data tuples. An inserted tuple is
appended to the last column or added to a new last column in T'D regardless of
the order of its key. A deleted tuple is removed from the corresponding column
by leaving the d entries it occupied previously empty. Index key insertion and
deletion are always done on the leaf nodes, but node splits (correspondingly
adding an index unit for the new node and updating an index unit for the split
node) or merges (correspondingly deleting a tuple unit for the deleted node and
updating an index unit for the node to merge with) may happen to maintain a
proper B-+-tree.

Secure Data Management in the Cloud 9

Boosting Performance at Accesses by Caching Index Nodes on Client.
The above query processing relies heavily on index traversals, which means that
the index nodes are frequently retrieved from servers and then decoded on the
client, resulting in a lot of communication and computation overhead. Query
performance can be improved by caching some of the most frequently accessed
index nodes in clear on the client. Top level nodes in the index are more likely
to be cached.

3 Protecting Access Privacy

In a secure data management framework in the cloud, even if the data is en-
crypted, adversaries may still be able to infer partial information about the data
by monitoring clients’ query access patterns and analyzing clients’ accessed po-
sitions on the encrypted data. Protecting query access privacy to hide the real
query intents is therefore needed for ensuring data confidentiality in addition
to encryption. One of the biggest challenge in protecting access privacy is to
strike a good balance between privacy and practical functionality. Private Infor-
mation Retrieval (PIR) [11] seems a right fit for protecting access privacy, but
the popular PIR protocols relying on expensive cryptographic operations are not
yet practical. On the other hand, some lightweight techniques such as routing
query accesses through trusted proxies [36] or mixing real queries with noisy
queries [40] have been proposed, but they cannot quantify and guarantee the
privacy levels that they provide. In this section, we first review relevant work
on protecting access privacy, and then discuss hybrid solutions that combine
expensive cryptographic protocols with lightweight techniques.

3.1 Related Work

The previous work on protecting access privacy can be categorized as Private
Information Retrieval and query anonymization or obfuscation using noisy data
or noisy queries.

Private Information Retrieval (PIR) models the private retrieval of public data
as a theoretical problem: Given a server which stores a binary string x = z1...x,
of length n, a client wants to retrieve x; privately such that the server does
not learn ¢. Chor et al. [I1] introduced the PIR problem and proposed solutions
for multiple servers. Kushilevitz and Ostrovsky followed by proposing a single
server, computational PIR solution [4I] which is usually referred to as ¢cPIR. Al-
though it has been shown that multi-server PIR solutions are more efficient than
single-server PIR solutions [42], multi-server PIR does not allow communication
among all the servers, thus making it unsuitable to use in the cloud. On the
other hand, ¢PIR and its follow-up single-server PIR proposals [43], however,
are criticized as impractical because of their expensive computation costs [44].
Two alternatives were later proposed to make single-server PIR practical. One
uses oblivious RAM, and it only applies to a specific setting where a client re-
trieves its own data outsourced on the server [45, [46], which can be applied in the

10 D. Agrawal, A. El Abbadi, and S. Wang

cloud. The other bases the foundation of its PIR protocol based on linear alge-
bra [47] instead of the number theory which previous single-server PIR solutions
base on. Unfortunately, the latter lattice based PIR scheme cannot guarantee
that its security is as strong as previous PIR solutions, and it incurs a lot more
communication costs.

Query anonymization is often used in privacy-preserving location based ser-
vices [48], which is implemented by replacing a user’s query point with an enclos-
ing region containing k — 1 noisy points of other users. A similar anonymization
technique which generates additional noisy queries is employed in a private web
search tool called TrackMeNot [40]. The privacy in TrackMeNot, however, is bro-
ken by query classification [49], which suggests that randomly extracted noise
alone does not protect a query from identification.

To generate meaningful and disguising noise words in private text search, a
technique called Plausibly Deniable Search (PDS) is proposed in [50, [51]. PDS
employs a topic model or an existing taxonomy to build a static clustering of
cover word sets. The words in each cluster belong to different topics but have
similar specificity to their respective topics, thus are used to cover each other in
a query.

3.2 Hybrid Query Obfuscation

It is hard to quantify privacy provided in a query anonymization approach. Since
the actual query data and noisy data are all in plaintext, the risk of identifying
the actual query data could still be high. k-Anonymity in particular has been
criticized as a weak privacy definition [52], because it does not consider the
data semantic. A group of k plaintext data items may be semantically close, or
could be semantically diverse. In contrast, traditional PIR solutions can provide
complete privacy and confidentiality. We hence consider hybrid solutions that
combine query anonymization and PIR/cryptographic solutions.

A hybrid query obfuscation solution can provide access privacy, data confi-
dentiality and practical performance. PIR/cryptographic protocols ensure access
privacy and data confidentiality, while query anonymization upon these proto-
cols reduce computation and communication overheads, thus achieving practical
performance. Such hybrid query obfuscation solutions have been used in preserv-
ing location privacy in location-based services [53, [b4] and in our earlier work
on protecting access privacy in simple selection queries [55].

Bounding-Box PIR. Our work is built upon single-server ¢PIR protocol [41].
It is a generalized private retrieval approach called Bounding-Boxz PIR (bbPIR).
We describe how bbPIR works using a database / data table as illustration.
For protecting access privacy in the framework given in the last section, we can
consider an index nodes, an index / tuple column as a data item and treat the
collection of them as a virtual database for access.

cPIR works by privately retrieving an item from a data matrix for a given
matrix address [41]. So we consider a (key, address, value) data store, where each
value is a b-bit data item. The database of size n is organized in an s X ¢ matrix

Secure Data Management in the Cloud 11

M (s =t = [y/n] by default). Each data item 2 has a numeric key K A that
determines the two dimensional address of x in M. For example, the column
address of an index / tuple column can be the key for identifying the index /
tuple column.

A client can specify her privacy requirement and desired charge budget (p, 1),
where p is a privacy breach limit (the upper bound probability that a requested
item can be identified by the server), and p is a server charge limit (the upper
bound of the number of items that are exposed to the client for one requested
tuple). The basic idea of bbPIR is to use a bounding box BB (an r X ¢ rectangle
corresponding to a sub-matrix of M) as an anonymized range around the ad-
dress of item x requested by the client, and then apply ¢PIR on the bounding
box. bbPIR finds an appropriately sized bounding box that satisfies the privacy
request p, and achieves overall good performance in terms of communication
and computation costs without exceeding the server charge limit p for each re-
trieved item. The area of the bounding box determines the level of privacy that
can be achieved, the larger the area, the higher the privacy, but with higher
computation and communication costs.

The above scheme retrieves data by the exact address of the data. To en-
able natural retrieval by the key of data, we simply let the server publish a
one-dimensional histogram, H, on the key field K A and the dimensions of the
database matrix M, s and t. The histogram is only published to authorized
clients. The publishing process, which occurs infrequently, is encrypted for se-
curity. When a client issues a query, she calculates an address range for the
queried entry by searching the bin of H where the query data falls. In this way,
she translates a retrieval by key to a limited number of retrievals by addresses,
while the latter multiple retrievals can be actually implemented in one retrieval
if they all request the same column addresses of the matrix.

Further Consideration on Selecting Anonymization Ranges. In current
bbPIR, we only require that an anonymization range bounding box encloses the
requested data, and although the dimensions of the bounding box are fixed,
the position of the bounding box can be random around the requested data.
In real applications, the position of the bounding box could also be important
to protecting access privacy. Some positions may be more frequently accessed
by other clients and less sensitive, while some positions may be rarely accessed
by other clients and easier to be identified as unique access patterns. These
information, if incorporated into the privacy quantification, should result in a
bounding box that provides better privacy protection under the constraints of the
requested data and the dimensions. One idea is to incorporate access frequency
in privacy probability, but we should be cautious that a bounding box cannot
include all frequent accessed data but the requested data, since in this case the
requested data may be also easily filtered out.

12 D. Agrawal, A. El Abbadi, and S. Wang
4 Concluding Remarks

The security of the data stored in the public cloud is one of the biggest concerns
that blocks the realization of data management services in the cloud, especially
for sensitive enterprise data. Although numerous techniques have been proposed
for providing data confidentiality, integrity and availability in the context and for
processing queries on encrypted data, it is very challenging to integrate them into
a practical secure data management service that works for most database queries.
This paper has reviewed these relevant techniques, presented a framework based
on secure index for practical secure data management and query processing, and
also discussed how to enhance data confidentiality by providing practical access
privacy for data in the cloud. We contend that the balance between security
and practical functionality is crucial for the future realization of practical secure
data management services in the cloud.

Acknowledgement. This work is partly funded by NSF grant CNS 1053594
and an Amazon Web Services research award. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

References

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A.; Stoica, 1., Zaharia, M.: Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report 2009-28, UC Berkeley (2009)

[2] Amazon: AWS Solution Providers (2009), http://aws.amazon.com/solutions/
solution-providers/

[3] Amazon: AWS Case Studies (2009), http://aws.amazon.com/solutions/
case-studies/

[4] Li, P.: Cloud computing is powering innovation in the silicon valley (2010),
http://www.huffingtonpost.com/ping-1i/cloud-computing-is-poweri_b_
570422 .html

[5] Business Review USA: Small, medium-sized companies adopt cloud com-
puting (2010), http://www.businessreviewusa.com/news/cloud-computing/
small-medium-sized-companies-adopt-cloud-computing

[6] InfoWorld: Gartner: Seven cloud-computing security risks (2008),
http://wuw.infoworld. com/d/security-central/
gartner-seven-cloud-computing-security-risks-8537page=0, 1

[7] Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy. O’Reilly
Media, Inc., Sebastopol (2009)

[8] Amazon: Amazon elastic compute cloud (amazon ec2), http://aws.amazon. com/
ec2/

[9] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: ACM Conference
on Computer and Communications Security, pp. 199-212 (2009)

[10] NIST: Fips publications, http://csrc.nist.gov/publications/PubsFIPS.html

http://aws.amazon.com/solutions/solution-providers/
http://aws.amazon.com/solutions/solution-providers/
http://aws.amazon.com/solutions/case-studies/
http://aws.amazon.com/solutions/case-studies/
http://www.huffingtonpost.com/ping-li/cloud-computing-is-poweri_b_570422.html
http://www.huffingtonpost.com/ping-li/cloud-computing-is-poweri_b_570422.html
http://www.businessreviewusa.com/news/cloud-computing/small-medium-sized-companies-adopt-cloud-computing
http://www.businessreviewusa.com/news/cloud-computing/small-medium-sized-companies-adopt-cloud-computing
 http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-security-risks-853?page=0,1
 http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-security-risks-853?page=0,1
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
 http://csrc.nist.gov/publications/PubsFIPS.html

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Secure Data Management in the Cloud 13

Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965-981 (1998)

Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1-15.
Springer, Heidelberg (1996)

Agrawal, R., Haas, P.J., Kiernan, J.: A system for watermarking relational
databases. In: Proc. of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, pp. 674-674 (2003)

Plank, J.S., Ding, Y.: Note: Correction to the 1997 tutorial on reed-solomon cod-
ing. Softw. Pract. Exper. 35(2), 189-194 (2005)

Bowers, K.D., Juels, A., Oprea, A.: Hail: a high-availability and integrity layer
for cloud storage. In: CCS 2009: Proceedings of the 16th ACM Conference on
Computer and Communications Security, pp. 187-198 (2009)

Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: Racs: a case for cloud stor-
age diversity. In: SoCC 2010: Proceedings of the 1st ACM Symposium on Cloud
Computing, pp. 229-240 (2010)

Rabin, M.O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM 36(2), 335-348 (1989)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Agrawal, D., Abbadi, A.E.: Quorum consensus algorithms for secure and reliable
data. In: Proceedings of the Sixth IEEE Symposium on Reliable Distributed Sys-
tems, pp. 44-53 (1988)

CleverSafe: Cleversafe responds to cloud security challenges with clever-
safe 2.0 software release (2010), http://www.cleversafe.com/news-reviews/
press-releases/press-release-14

InfoLawGroup: Cloud providers competing on data security & privacy contract
terms (2010),
http://wuw.infolawgroup.com/2010/04/articles/cloud-computing-1/
cloud-providers-competing-on-data-security-privacy-contract-terms
Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: SP 2000: Proceedings of the 2000 IEEE Symposium on Security and
Privacy, pp. 44-55 (2000)

Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Re-
mote Encrypted Data. In: Toannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442-455. Springer, Heidelberg (2005)

Yang, Z., Zhong, S., Wright, R.N.: Privacy-Preserving Queries on Encrypted Data.
In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 479-495. Springer, Heidelberg (2006)

Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database service provider model. In: SIGMOD Conference (2002)
Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proc. of the 30th Int’l Conference on Very Large Databases VLDB, pp. 720-731
(2004)

Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: SIGMOD 2004: Proceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 563-574 (2004)

Emekci, F., Agrawal, D., Abbadi, A.E., Gulbeden, A.: Privacy preserving query
processing using third parties. In: ICDE (2006)

Ge, T., Zdonik, S.B.: Answering aggregation queries in a secure system model. In:
Proceedings of the 33rd International Conference on Very Large Data Bases, pp.
519-530 (2007)

 http://www.cleversafe.com/news-reviews/press-releases/press-release-14
 http://www.cleversafe.com/news-reviews/press-releases/press-release-14
http://www.infolawgroup.com/2010/04/articles/cloud-computing-1/cloud-providers-competing-on-data-security-privacy-contract-terms
http://www.infolawgroup.com/2010/04/articles/cloud-computing-1/cloud-providers-competing-on-data-security-privacy-contract-terms

14

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]

[47]
(48]

[49]

[50]

D. Agrawal, A. El Abbadi, and S. Wang

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp.
169-178 (2009)

Schneier, B.: Homomorphic encryption breakthrough (2009), http://www.
schneier. com/blog/archives/2009/07/homomorphic_enc.html

Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146-162. Springer, Heidelberg (2008)

Damiani, E., di Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Bal-
ancing confidentiality and efficiency in untrusted relational dbmss. In: ACM Con-
ference on Computer and Communications Security, pp. 93-102 (2003)

Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Designing secure indexes for
encrypted databases. In: Proceedings of the IFIP Conference on Database and
Applications Security (2005)

Ge, T., Zdonik, S.B.: Fast, secure encryption for indexing in a column-oriented
dbms. In: ICDE, pp. 676-685 (2007)

Wang, S., Agrawal, D., Abbadi, A.E.: A Comprehensive Framework for Secure
Query Processing on Relational Data in the Cloud. In: Jonker, W., Petkovi¢, M.
(eds.) SDM 2011. LNCS, vol. 6933, pp. 52-69. Springer, Heidelberg (2011)
Bajaj, S., Sion, R.: Trusteddb: a trusted hardware based database with privacy
and data confidentiality. In: Proceedings of the 2011 International Conference on
Management of Data, SIGMOD 2011, pp. 205-216 (2011)

Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121-137 (1979)
Robling Denning, D.E.: Cryptography and data security. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1982)

Howe, D.C., Nissenbaum, H.: TrackMeNot: Resisting surveillance in web search.
In: Lessons from the Identity Trail: Anonymity, Privacy, and Identity in a Net-
worked Society, pp. 417-436. Oxford University Press (2009)

Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS, pp. 364-373 (1997)
Olumofin, F.G., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: Financial Cryptography (2011)

Gentry, C., Ramzan, Z.: Single-database private information retrieval with con-
stant communication rate. In: Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming, pp. 803-815 (2005)

Sion, R., Carbunar, B.: On the computational practicality of private information
retrieval. In: Network and Distributed System Security Symposium (2007)
Williams, P.; Sion, R.: Usable private information retrieval. In: Network and Dis-
tributed System Security Symposium (2008)

Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: ACM Conference on
Computer and Communications Security, pp. 139-148 (2008)

Melchor, C.A., Gaborit, P.: A fast private information retrieval protocol. In: IEEE
Internal Symposium on Information Theory, pp. 1848-1852 (2008)

Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: A privacy-aware location-
based database server. In: ICDE, pp. 1499-1500 (2007)

Peddinti, S.T., Saxena, N.: On the Privacy of Web Search Based on Query Obfus-
cation: A Case Study of Trackmenot. In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 19-37. Springer, Heidelberg (2010)

Murugesan, M., Clifton, C.: Providing privacy through plausibly deniable search.
In: SDM, pp. 768-779 (2009)

 http://www.schneier.com/blog/archives/2009/07/homomorphic_enc.html
 http://www.schneier.com/blog/archives/2009/07/homomorphic_enc.html

[51]

[52]

[53]

[54]

[55]

Secure Data Management in the Cloud 15

Pang, H., Ding, X., Xiao, X.: Embellishing text search queries to protect user
privacy. PVLDB 3(1), 598-607 (2010)

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in
Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006)

Olumofin, F.G., Tysowski, P.K., Goldberg, I., Hengartner, U.: Achieving Efficient
Query Privacy for Location Based Services. In: Atallah, M.J., Hopper, N.J. (eds.)
PETS 2010. LNCS, vol. 6205, pp. 93-110. Springer, Heidelberg (2010)

Ghinita, G., Kalnis, P., Kantarcioglu, M., Bertino, E.: A Hybrid Technique for Pri-
vate Location-Based Queries with Database Protection. In: Mamoulis, N., Seidl,
T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp.
98-116. Springer, Heidelberg (2009)

Wang, S., Agrawal, D.; El Abbadi, A.: Generalizing PIR for Practical Private Re-
trieval of Public Data. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Se-
curity and Privacy XXIV. LNCS, vol. 6166, pp. 1-16. Springer, Heidelberg (2010)

	Secure Data Management in the Cloud

	Introduction
	Processing Database Queries on Encrypted Data
	Related Work
	Secure Index Based Framework
	Query Processing

	Protecting Access Privacy
	Related Work
	Hybrid Query Obfuscation

	Concluding Remarks
	References

