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Abstract Diatoms play a key role in the functioning of streams, and their sensitiv-

ity to many environmental factors has led to the development of numerous diatom-

based indices used in water quality assessment. Although diatom-based monitoring

of metal contamination is not currently included in water quality monitoring

programs, the effects of metals on diatom communities have been studied in many

polluted watersheds as well as in laboratory experiments, underlying their high

potential for metal contamination assessment. Here, we review the response of
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diatoms to metal pollution from individual level (e.g. size, growth form, and

morphological abnormalities) to community structure (replacement of sensitive

species by tolerant ones). These potential effects are then tested using a large,

multi-country database combining diatom and metal information. Metal contami-

nation proved to be a strong driver of the community structure, and enabled for the

identification of tolerant species like Cocconeis placentula var. euglypta, Eolimna
minima, Fragilaria gracilis, Nitzschia sociabilis, Pinnularia parvulissima, and
Surirella angusta. Among the traits tested, diatom cell size and the occurrence of

diatom deformities were found to be good indicators of high metal contamination.

This work provides a basis for further use of diatoms as indicators of metal pollution.

Keywords Deformities • Metals • Periphytic diatoms • Rivers • Species

distribution • Species traits
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1 Introduction

Biomonitoring has been increasingly used to assess water quality due to the more

time-integrative characteristic of the approach compared with punctual chemical

measurements. Among the tools used in biomonitoring, diatoms are cosmopolitan

aquatic organisms, and are a major component of benthic biofilms. Because

diatoms are at the basis of the trophic chain, these microscopic algae respond

quickly to environmental changes and are considered good indicators of environ-

mental conditions [1, 2]. They are included in numerous water quality monitoring

programs worldwide, and river diatom-based indices have been developed in

numerous countries [3–8]. Diatom species distribution is driven by environmental

factors acting at different scales, from local (general water quality) to larger scale

determinants (biogeography). Therefore, biological monitoring is best achieved

considering both local and larger scales. Diatom-based indices developed to assess

ecosystems’ health often include these different scales of variability. For example,

geology has a strong influence on water chemistry, which in turn affects diatom

community structure [9–11]. To overcome the natural variability associated with

the geological characteristics of the region, diatom-based indices must include

larger scale determinants to effectively provide information on the local environ-

ment. This explains the fact that diatom-based water quality monitoring is usually

country- or even ecoregion-dependent (e.g. [8, 11, 12]). Diatom indices assess the

biological status of streams, with reference to trophy, acidity, conductivity, etc., but

generally do not take into account toxic pollution. Field studies dealing with metal

contaminations in various regions and countries showed quite consistent responses

of diatom communities such as higher abundances of small-sized species [13, 14],

increasing proportions of metal-tolerant species or significantly higher occurrences

of valve deformities.

The main research results dealing with diatoms exposed to metals are reviewed

in the first part of this chapter. The impacts most frequently observed on periphytic

algae are addressed at different organization levels (from the individual cell to the

community structure). Diatom communities may respond similarly to metal pollu-

tion, regardless of the region investigated. Consequently, we built a database with

diatom species composition and corresponding information on water metal content

from six different countries (France, Switzerland, Spain, Vietnam, China and

Canada) to investigate the relationships between diatom communities and metal

contamination, without considering other determinants (nutrient bioavailability,

geographical location, seasonality, stream order, etc). The main goals of this case

study based on a multi-country dataset were (1) to investigate how metal exposure

drives diatom community patterns in a comparable way among countries, (2) to

assess the information brought by nontaxonomical indicators (diatom deformations,

cell size and diatom growth forms) for the monitoring of metal pollution, and (3) to

determine the indicative value of the most representative species occurring with

significant abundances in the studied streams.
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2 Effects of Metals on Freshwater Diatom Communities

Metal toxicity on diatoms is linked to different steps in the circulation of the

toxicant (Fig. 1) across the membrane (especially uptake mechanisms) and inside

the cell, inducing perturbations in the normal functioning of structural/functional

intracellular components. Diatom communities exposed to metals have, therefore,

variable capacities to tolerate the stress caused by the toxicant. Tolerance

(or resistance) is developed at the individual scale (with different levels of sensitivity

among species) and also at the community scale where the biofilm acts as a coherent

and protective matrix.

Fig. 1 Metal circulation in the cell and resulting potentially harmful effects at the cellular level.

Metal influx can alter the membrane permeability; once in the cell, metals can induce an oxidative

stress, affect the photosynthetic apparatus or mitochondria, and modify genetic expression,

eventually leading to apoptosis. Several mechanisms are known to protect the cell against these

toxic effects, such as metal binding by intracellular ligands, active expulsion, or EPS production

for intracellular binding of the metals
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2.1 Community Size Reduction

Exposure to metals leads to malfunction of cell metabolic processes (primary

productivity, respiration, nutrient and oligoelement fluxes) (e.g. [15–17]), and

reproductive characteristics (vegetative versus sexual reproduction) [13, 18], as

well as increase in cell mortality [19]. Community size may be impaired through

three complementary ways: (1) reduction of cell number, (2) selection for small-

sized species, and (3) diminution of cell sizes within a given species.

Diatoms can accumulate high amounts of metals [20–24], which affects phos-

phorus metabolism [16], photosynthesis by production of reactive oxygen species

[25] or by alteration of the functioning of the xanthophyll cycle [15, 26, 27], and

homeostasis [28]. Thus, diatom growth can be delayed, or inhibited, leading to a

reduction of diatom biomass [16, 29, 30]. In addition to lower survival and growth

rates [31, 32], changes in emigration/immigration strategies [33] could also be

responsible for the reduction in diatom cell densities and biomass [34].

Metal uptake depends on cell surface area exposed to the medium [35, 36], and

can be reduced by physical protection offered by the exopolysaccharidic matrix

[37] within the biofilm. This mechanical protection can be more effective for small-

sized species, and thus this might be a mechanistic explanation for their positive

selection under heavy metal pollution [18, 38, 39].

Reduction of cell size within taxa with metal exposure is probably linked to the

mitotic division peculiar to diatoms, an important feature distinguishing these

organisms from other algae. Hence, each division results in two daughter cells,

one of which has the same size as the mother cell, and the other being smaller. As a

consequence, average cell size at the population level is reduced with each succes-

sive round of mitosis [40]. Because the vegetative reproduction is the dominant

mode of multiplication in diatoms [41], the decrease in size of many taxa observed

in metal-contaminated environments [14, 42–44] could be a result of higher cell

division rate inherent to organisms inhabiting in stressed ecosystems [45, 46].

Altogether, these combined effects of metal stress on diatom community would

explain the significantly lower diatom biomass that is often observed in metal-

contaminated environments.

2.2 Selection of Diatom Growth Forms

Metal exposure may modify the three-dimensional architecture of the diatom

community by favouring some growth forms and constraining the development of

others. Species colonization/growth strategies are driven by metal levels [47]: the

communities that develop in such heavily impacted environments are dominated,

even over long-term periods, by pioneer, substrate-adherent species that are more

metal tolerant according to Medley and Clements [38]. It is the case, for example, of

the cosmopolitan diatom Achnanthidium minutissimum frequently dominating in

lotic environments exposed to toxic events, and considered as an indicator of metal

Consistency in Diatom Response to Metal-Contaminated Environments 121



pollution [48, 49]. Subsequent colonizers are generally stalked or filamentous, even

motile species, and constitute the external layers of the biofilm under undisturbed

conditions. Their development is less important in case of metal exposure, which

results in the formation of thinner biofilms [50–52].

2.3 Diatom Teratologic Forms

The appearance of abnormal individuals is among the most striking effects of

metals on diatom metabolism and has been widely reported in highly contaminated

environments (see review in [53]). The deformities can affect the general shape of

the frustule, and/or its ornamentations, which led Falasco et al. [54] to the descrip-

tion of seven types of abnormalities (Table 1). The most frequently observed are

distortions of the cell outline (in particular in Araphid diatoms) [53–56], and

changes in striation patterns. Deformities can be initiated at different stages

throughout the diatom life cycle, and the processes leading to abnormal cell

formation are yet unsolved. Current knowledge of diatom morphogenesis suggests

direct and indirect effects consecutive to metal uptake on many cytoplasmic

components involved in valve formation. The most documented negative effects

of metal contamination on diatoms are nucleus alterations (e.g. [57]) and/or poi-

soning of the microtubular system involved in the transport of silica towards silica

deposition vesicles [58].

Although no standard based on diatom teratologies has yet been established,

many authors suggested using their occurrence as potential indicators of high metal

pollution [48, 59–62].

2.4 Selection of Tolerant Species

Diatom species composition is driven by several environmental factors. Among

the chemical parameters, the exposure to toxic agents such as metals can be a

major determinant. Metal contamination selects for species able to tolerate metal-

related stresses, whereas sensitive species tend to decrease in number or ultimately

disappear. This is the conceptual basis of the Pollution-Induced Community Toler-

ance (PICT) concept developed by Blanck et al. [63], where the structure of a

stressed community is rearranged in a manner that increases the overall community

tolerance to the toxicant. Because the impacts specifically caused by metals are

generally difficult to separate from other stressors, there is no agreement on the

sensitivity or tolerance for some particular species. The influence on biofilm

structure of other environmental parameters such as physical characteristics, nutri-

ent availability or even biological interactions [64–68] may be one of the major

reasons of these contradictory results.

A list of the presumptive sensitivity or tolerance of species based on those

reported in the literature to occur, or disappear, in metal-contaminated

122 S. Morin et al.



Table 1 Types of diatom deformities (from [54]). Scale bar: 10 mm
Teratology Description Example of normal vs.

deformed individuals

Type 1 Deformed valve outline (loss of symmetry,

pentagonal or trilobate shapes, abnormal outline)

Surirella angusta, Charest
river, Canada

Type 2 Changes in striation pattern, costae and septae

Caloneis bacillum, Nant
d’Avril river, Switzerland

Type 3 Changes in shape, size and position of the

longitudinal and central area (e.g. displaced,

doubled, abnormally enlarged, absent)

Planothidium
frequentissimum, Riou
Mort river, France

Type 4 Raphe modifications (split, sinuate or fragmented,

changes in orientation, occasionally absent)

(continued)
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Table 1 (continued)

Teratology Description Example of normal vs.

deformed individuals

Gomphonema micropus
(SEM), Riou-Mort river,

France

Type 5 Raphe canal system modifications (distorted,

displaced, stretched out fibulae)

Nitzschia dissipata, Osor river,
Spain

Type 6 Unusual arrangement of the cells forming colonies

Type 7 Mixed type in which one valve shows more than one

kind of teratology

Gomphonema truncatum,
Deûle river, France
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environments [13, 14, 21, 29, 38, 39, 52, 56, 60, 61, 64–67, 69–125] is presented in

Table 2. This table includes only the species that were cited in at least five papers;

species that were found in both categories (either to tolerate or to be sensitive,

depending on the references) are also listed. The diatoms Eolimna minima,

Table 2 List of species that are described in the literature to disappear or be favoured in metal-

contaminated environments

Species Decrease/disappear

with metals

Increase/still present

with metals

Achnanthidium minutissimum (K€utzing) Czarnecki ++ ++++

Asterionella formosa Hassall ++

Cocconeis placentula Ehrenberg var. placentula ++ +

Cyclotella meneghiniana K€utzing + ++

Diatoma vulgaris Bory + +

Encyonema minutum (Hilse in Rabhenhorst)

D.G. Mann

+ ++

Eolimna minima (Grunow) Lange-Bertalot ++++

Eunotia exigua (Brébisson ex K€utzing) Rabenhorst ++

Fragilaria capucina Desmazières var. capucina + +++

Fragilaria capucina Desmazières var. vaucheriae
(K€utzing) Lange-Bertalot

++

Fragilaria crotonensis Kitton + ++

Fragilaria rumpens (K€utzing) G.W.F.Carlson + +

Gomphonema parvulum (K€utzing) K€utzing var.

parvulum
+ ++++

Mayamaea permitis (Hustedt) Bruder & Medlin + ++

Melosira varians Agardh +++ +

Navicula lanceolata (Agardh) Ehrenberg + +

Navicula tripunctata (O.F.M€uller) Bory + ++

Naviculadicta seminulum (Grunow) Lange Bertalot + +++

Nitzschia dissipata (K€utzing) Grunow var. dissipata ++ ++

Nitzschia linearis (Agardh) W.M.Smith var.

linearis
+ ++

Nitzschia palea (K€utzing) W.Smith ++++

Pinnularia parvulissima Krammer ++

Planothidium frequentissimum (Lange-Bertalot)

Lange-Bertalot

+ ++

Planothidium lanceolatum (Brébisson ex K€utzing)
Lange-Bertalot

++

Staurosira construens Ehrenberg ++ +

Surirella angusta K€utzing +++

Surirella brebissonii Krammer & Lange-Bertalot

var. brebissonii
+ ++

Tabellaria flocculosa (Roth) K€utzing ++

Ulnaria ulna (Nitzsch) Compère ++ +++

Cited: +: more than once, ++: in more than five references, +++: in more than 10 references,

++++: in more than 20 references
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Gomphonema parvulum or Nitzschia palea are described as metal tolerant in a

number of studies, whereas the sensitivity of species seems to be more difficult to

determine, with only Melosira varians cited more than ten times to disappear in

metal-contaminated environments. For some controversial species, such as Ulnaria
ulna, Duong et al. [78] found different sensitivities that they ascribed to seasonal

variability. The species Achnanthidium minutissimum, frequently dominant in

lotic environments subjected to toxic events, is generally considered as indicator

of metal pollution [14, 48, 49], but also indicates good general water quality

(e.g. [3, 8]). Indeed, this species has been found to remain in highly metal-polluted

conditions but to disappear with increasing trophy [61, 126, 127].

2.5 Tolerance Mechanisms

Diatoms present constitutive (phenotypic) and adaptative mechanisms to cope

with elevated metal concentrations [128]. Defence and detoxification mechanisms

mitigate perturbations in cell homeostasis caused by metal exposure. Regulation of

metal fluxes through the cell may be driven by limitation of the influx, storage of the

metal in the cytosol in insoluble form, neutralization of oxidative stress and active

expulsion out of the cell (Fig. 1).

The limitation of the amount of metal entering the cell is linked to the decrease in

free, i.e. bioavailable, ion concentration. Exposure enhances the production of

polysaccharidic exudates (e.g. extracellular polymeric substances, EPS) able to

bind metals outside of the cell [37, 106], in general proportionally to the concen-

tration of metal exposed [129], thus leading to immobilization of the complexes

outside the cell in a less bioavailable form. Recent studies indicate that frustulines,

membrane-bound peptides linked to the diatom frustule resistance, may also play a

role in metal binding [130]. Other regulation mechanisms have been described to

occur at the cell surface. Some of the metals may be entrapped by iron or manga-

nese hydroxides covering the cell wall [32]. Pokrovsky et al. [108] described the

saturation of ligands (phosphoryl, sulfydryl) on diatom surfaces in highly polluted

environments, leading to reduced adsorption capacities. Alterations of the mem-

brane during metal internalization can lead to a decrease in membrane permeability

[131, 132].

Internal mechanisms of storage contribute to efficient tolerance to metals.

Metal induces the production of thiol-rich polypeptides known as phytochelatins

[133, 134] or polyphosphate bodies [135], which are polymers that sequester

intracellularly the excess of metal in a stable, detoxified form [27, 136, 137].

Resulting tolerance is variable among diatom species [138] and metals: sequestra-

tion capacities of the metal/protein complex depend, for example, on their valence

characteristics [22, 137].

Cell defence against harmful effects of oxidative stress caused by metals relies

on two main mechanisms. Increase in the production of proline [139, 140] and low-

molecular-weight thiols (especially glutathione) [141–143] plays an antioxidant

126 S. Morin et al.



and detoxifying role. Metal exposure also induces activation of enzymes like

superoxide-dismutase [142, 144] that convert superoxide anions into a less toxic

form.

Excretion mechanisms of complexing compounds contribute to tolerance to

toxicants [145]. Exposure to metals leads to increasing production of polysaccharides,

which can bind metals externally after being exported in the extracellular environ-

ment [106]. Moreover, Lee et al. [146] described efflux of phytochelatin/cadmium

complexes in Thalassiosira weissflogii exposed to high cadmium concentrations.

Active expulsion by ATPase pumps as described in bacteria could also play a role

in detoxification and survival of phytoplankton species [147].

The protective role of the matrix towards metals has been attributed to many

features of the biofilm: metal-binding capacities of the polysaccharidic secretions

[106, 148], local pH and hypoxia conditions in the internal layers of thick biofilms

[149, 150], species interactions [151] and reduction of the exchanges between the

inner cells and the environment [93, 152] partially linked to the presence of a

superficial layer of dead cells [145].

As presented in this literature review, many studies generally performed at the

watershed scale described the effects of metal contamination on cell size, growth

forms, cell morphology, as well as diatom community structure. The second part of

this chapter consists in assessing the relevance of these endpoints on a larger scale,

using a multi-country dataset of diatom samples.

3 Case Study: A Multi-Country Database

3.1 Sites Studied

The diatom database consists of 202 samples of mature biofilms collected from hard

substrates in rivers of circumneutral pH between 1999 and 2009. At each sampling

unit, benthic diatoms were scraped from randomly collected substrates to form one

composite sample, and preservatives (formaldehyde 4% or concentrated Lugol’s

iodine) were added to stop cell division and prevent organic matter decomposition.

Most of them come from different parts of Europe: France (61 samples),

Switzerland (15 samples) and Spain (71 samples); data from Eastern Canada

(23 samples), Vietnam (18 samples) and China (14 samples) were also included.

Some of the data have already been published for other purposes [12, 39, 61, 77, 90,

126, 153–155].

3.2 Diatom Analyses

Periphytic samples were cleaned of organic material before mounting permanent

slides with Naphrax® (Brunel Microscopes Ltd, UK) for diatom identification based
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on observation of the frustule. Transects were scanned randomly under light micros-

copy at a magnification of�1,000 until at least 400 valves were identified. Taxa were

identified to the lowest possible taxonomical level, according to standard floras

[156–162] and recent nomenclature updates that are listed in https://hydrobio-dce.

cemagref.fr/en-cours-deau/cours-deau/Telecharger/indice_biologique_diatomee-ibd/.

The diatom database was harmonized for taxonomy, leading to a final list of 640 taxa.

3.3 Determination of Metal Exposure

The metal data used come from surveys conducted simultaneously with diatom

sampling. The water samples were collected in streams from various watersheds,

where diatom communities were exposed to mixtures of dissolved metals (mainly

Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se and Zn) in variable concentrations.

To facilitate data interpretation, we used an estimate of metal concentration

and toxicity developed by [163] and already used to investigate the responses of

aquatic organisms to metals [163, 90, 91]. The CCU (cumulative criterion unit) is a

score based on the sum of the ratios between metal concentrations measured in

filtered waters and the corresponding criterion value (US EPA’s National

Recommended Water Quality Criteria, http://www.epa.gov/waterscience/criteria/

wqctable/). Four categories of CCU were used following the thresholds determined

by Guasch et al. [90]. CCU below 1.0 corresponded to background levels (B), low

metal category (L) was characterized by CCUs between 1.0 and 2.0, and interme-

diate metal category (M) by CCUs between 2.0 and 10.0. For scores above 10.0, we

added a high metal category (H) to Guasch´s classification.

Metals in the water samples ranged from undetectable concentrations (leading to

CCU values of 0.0) to CCU scores higher than 1,000 (Spain, Rio Cea, June 2007).

The distribution of the samples according to CCU categories in the different

countries is given in Table 3, showing a balanced repartition of the samples in the

different categories. The four CCU classes were all found in samples from France,

Spain and Switzerland, but were unequally distributed among the other countries.

Globally, CCU scores were due to various metals that were different between

countries. Indeed, in some cases, we found two main metals contributing to CCU

scores, such as in the samples from China (Cr > Pb), France (Cd > Zn), Switzerland

(Cu > Zn) and Vietnam (Cd > Pb). On the contrary, much more metals were found

in Canada (Zn > Cd > Al > Pb) and Spain (Se > Ni > Zn > Pb > Al, with one

different dominant contributor in most of the samples). Metals were also unequally

distributed between CCU categories. The highest values (H) were generally due to

Cd, Zn, and to a lower extent, Pb, whereas in the L and M categories contributions

were quite balanced and mostly involved Se, Pb, Cu and Cd.
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3.4 Non Taxonomical Indicators

Traits like diatom cell size, distribution of growth forms and postures (diatoms

forming filaments, clumps or solitary forms including erected, prostrate and not

attached cells) and proportion of valve abnormalities were investigated. Those

descriptors present the major interest of being independent of the biogeographical

variability of the natural communities. They strongly suggested in many cases to be

indicative of perturbations such as toxicant exposure [13, 14, 38, 39, 60, 61], and

were thus tested using the complete dataset based on the exhaustive list of 640 taxa.

Specific biovolumes were calculated from the average dimensions provided in the

floras for each taxon and using the formulae of Hillebrand et al. [164] established

for the different geometrical shapes. The proportion of valve abnormalities was

directly inferred from the taxonomical counts, by adding up the relative abundances

of the individuals that had unusual shape and/or ornamentation of the frustule, and

expressed in ‰. The distribution of growth forms and postures (in the case of

solitary cells) was determined for each genera or occasionally species, according to

the observations of Hoagland et al. [165], Hudon and Bourget [166], Hudon et al.

[167], Katoh [168], Kelly et al. [169] and Tuji [170].

The patterns of those traits in the four CCU categories were compared using

1-way ANOVA (Statistica v5.1, StatSoft Inc., Tulsa, USA) after checking for

normality of the data. Statistically significant probability level was set at p < 0.01.

Spjotvoll/Stoline HSD tests for unequal sample sizes were performed for post hoc

comparisons.

Valve abnormalities. Abnormal diatoms are generally observed in very low

relative abundances, and authors agree that an average value of 10‰ is a significant

threshold for metal-induced teratologies [14, 60, 61, 78, 171]. Indeed, occurrences

of 3.5 � 0.5‰ (i.e. values recorded in the B, L and M metal categories that were

not discriminated by post hoc tests) can be considered as naturally occurring, or

“background” levels. Previous laboratory experiments with Cd demonstrated that

the percentage of valve abnormalities was not linearly correlated with metal

concentration, but could be attributable, when above 10‰, to toxicity caused by

concentrations above a given threshold [21, 100]. Thus we can suppose that

teratologies occur in nature when a certain level of metal contamination is reached.

When examining the distribution of abnormalities of this dataset along CCU scores

(Fig. 2), statistical tests separated two sets of data: CCU values higher than 7.0 with

average abnormalities frequency reaching values of about 10‰, and CCU values

below 7.0 with average abnormalities frequency of ca. 3.5‰. This field-based

evidence allowed us to refine the arbitrary threshold of the H category (CCU ¼
10.0) to a new threshold value of 7.0 that was used further on in the study.

When considering the type of diatom deformities, most of the cases concerned

both global shape and ornamentation. In the Canadian samples, however, only the

outline of the frustules was affected (Type 1 deformities as defined by [54]). The

contribution of metals to the final CCU score was also different between the four

countries where values higher than 7.0 were found. In most cases, deformities were
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estimated to be caused by a “dominant” metal, as reflected by diversity indices

based on metal contributions (metal diversity ¼ 0.44 � 0.06), whereas in Canada

CCU scores were explained by a more balanced contribution of different metals

(metal diversity ¼ 1.31 � 0.12; [172]). The calculation of CCUs is based upon the

assumption that the adverse effects of metals are additive. However, the nature of

the deformities observed indicates that there are differences in effects that could be

linked to the balance between the metals contributing to the CCU scores, suggesting

that alternative methods are needed to explain differences between the types of

deformities. Guanzon et al. [22] evidenced competition between the metals that

coexist in the medium, for the fixation on membrane binding sites. In their experi-

mental exposures to binary and ternary mixtures of Cu, Zn and Cd, the diatom

Aulacoseira granulata adsorbed and accumulated reduced quantities when com-

pared to single-metal exposures. Since deformity formation is likely to be provoked

by the metals absorbed, we can thus suppose that metal toxicities are not purely

additive (in the particular case of abnormalities induction), with lower “terato-

genic” power in the case of mixtures, or that some metals are more “teratogenic”

than others and can also have different pathways. On the other hand, deformities

have been widely described in long-term cultures [173, 174], and have been

ascribed to somatic alterations linked to artificial conditions. The balance between

metals was not taken into consideration, as metal concentrations in the culture

medium were generally low. However, the consumption by the cultured cells of

some of the oligoelements may modify, in the long term, the balance between

essential and non-essential metals in the environment, which could be an alternative

explanation of the occurrence of teratology in laboratory cultures.
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Fig. 2 Distribution of valves abnormalities within the CCU ranges. n ¼ number of samples per

CCU range. Statistically different from CCU range [9–10]: *: p < 0.05; **: p < 0.01
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Cell biovolumes. It has been demonstrated that small-sized species dominate in

metal-contaminated environments (Sect. 2.1). Using this large database, we tried to

link mean community biovolume with the gradient in CCUs, but there was no

significant trend of cell size reduction with increasing metal pollution (Table 3).

Diatom mean biovolume was, moreover, significantly higher in the M metal

category than in the other ones, linked to higher abundances of larger taxa.

Medium-sized taxa were found in higher abundances in the B and L metal

categories, and a quite significant increase in small-sized taxa abundances was

observed in the H categories. Indeed, there is not necessarily a decrease in average

community cell size with increasing metal pollution, but higher amounts of small-

sized taxa, which could in many cases not be sufficient to result in a significant

decrease in mean biovolume.

Growth forms. Diatom growth forms’ distribution was highly variable within

CCU groups, somehow more than between categories. Samples were dominated by

motile, non-attached species. In the high metal categories (M and H), these species

tended to be more abundant (47.4 � 2.9 % vs. 43.1 � 2.8 % in B and L categories),

although this trend was not statistically significant. Some studies evidenced that

motile species would be less disfavoured than attached ones in metal-stressed

environments [175]; however, we were unable to demonstrate this clearly using

our database. Mitigation of the effects of metals by the environmental conditions

[68, 70] should also be considered and we can suppose that, in a given watershed,

this estimate is a good indicator of increasing metal pollution. However, changes in

the community structure and thus in growth forms depend on the pool of species

present (i.e. constrained by environmental drivers). The results from this study

suggest that general environmental differences are likely to have stronger effects

than species selection by metal contaminations. For this reason, the use of growth

forms for biomonitoring metal pollution would not represent a reliable approach

applicable in a large-scale context.

3.5 Global Patterns of Diatom Communities in Response
to Metal Contamination

To investigate the common patterns in diatom communities between countries, the

taxa that were only present in one country were removed from the analysis to

exclude species that are either endemic or identified differently by operators/

countries, and to reduce errors associated with the morphological approach to

diatom identification, especially in the case of ambiguous species (e.g. [176]).

Moreover, rare species (i.e., those that were observed in less than 5% of the samples

and/or that had maximal relative abundances < 1%) were not included in the

analysis. This selection of data led to a final set of 152 taxa out of the initial list

of 640. Prior to analysis, diatom counts were log-transformed, centred and scaled.

A linear discriminant analysis (LDA) was then performed using the ade4 package
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[177] implemented in the R statistical software [178]. The LDA was used to classify

the dataset into exclusive groups corresponding to the four CCU categories as

described above, using a M/H boundary of 7.0. The IndVal method of Dufrêne

and Legendre [179] was used to identify the indicator value of each species to

determine the most structuring ones for each CCU category.

Among the 640 taxa, 16 were found in the six countries covered in this study (see

Fig. 3b), and 56 were observed in at least five of the countries, pointing out high

“cosmopolitanism”. An overall decrease in community complexity, i.e. declining

species richness (ANOVA, p < 0.001) and diversity (p ¼ 0.0077), was observed in

the H metal category. Indeed, in the most contaminated cases, communities were

dominated by one single species, representing on average 43.3% relative

abundances and reaching in many cases values higher than 90%. The concomitant

loss of sensitive species with development of more resistant species allowed for a

clear discrimination by the LDA of three subsets of data, grouping B and L

communities together, and separating them from M and H categories (Fig. 3).

The species that were found in at least three countries and that had highly signifi-

cant IndVals (p < 0.05) are given in Table 4. The tolerant indicator species

identified were generally not those that showed most deformities, and many

taxa that were not structuring the dataset also exhibited teratologies. Globally, the

taxa characterizing M and H categories were in accordance with literature data

(see Table 2), whereas contradictory results were found for some of the B and L

categories. For example Encyonema minutum, Mayamea permitis and Plano-
thidium lanceolatum are generally described as tolerant taxa, but were mostly

found in the B and L categories. The extinction of sensitive species would be a

strong signal to use for biomonitoring purposes; however, it seems that sensitivity

to metals is more difficult to unequivocally determine than tolerance, maybe

because of the importance of other environmental factors. Indeed, under non-

contaminated conditions, competition for resource utilization selects for the species

best adapted to their specific environment, whereas in metal-polluted conditions

sensitive taxa tend to disappear leading to reduced competitive exclusion among

species and the selective development of tolerant species, whatever their resource-

competitive abilities. Diatom-based monitoring of metal pollutions would then be

more relevant using the occurrences of metal-tolerant species than using a metric

combining both sensitivities and tolerances of all species in the community.

The high cosmopolitanism observed indicates that metal-tolerant species

derived from this study could be used to develop metal pollution diatom indices

with a broad geographical application. Moreover, the specific information obtained

in each non-taxonomical endpoint (e.g. relative abundances of small-sized species,

of morphological abnormalities) could be used to improve sensitivity of such

indicator for regional applications.
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Fig. 3 Linear Discriminant Analysis of diatom community structure, constrained by CCU

categories. (a) Projection of the samples, grouped by CCU category; (b) diatom species with

highest indicative values (in bold) and the taxa common to the six countries (in italics). Species
abbreviations: ADMI Achnanthidium minutissimum, FCVA Fragilaria capucina var. vaucheriae,
NCRY Navicula cryptocephala, NVEN N. veneta, NVDS Naviculadicta seminulum, NAMP

Nitzschia amphibia, NFON N. fonticola, UULN Ulnaria ulna and see Table 4
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Table 4 Main structuring species of the different metal categories

Species Abbreviation CCU category IndVal (%) p-value

Amphora pediculus* APED B-L 28.5 0.029

Cocconeis placentula* CPLA B-L 29.5 0.003

Cocconeis pseudolineata COPL B-L 10.7 0.039

Encyonema minutum ENMI B-L 31.2 0.010

Fragilaria virescens FVIR B-L 9.8 0.018

Gomphonema gracile GGRA B-L 16.3 0.039

Gomphonema pumilum GPUM B-L 14.0 0.027

Mayamaea permitis* MPMI B-L 28.7 0.005

Navicula gregaria NGRE B-L 40.5 0.001

Navicula lanceolata NLAN B-L 27.3 0.005

Navicula notha NNOT B-L 12.0 0.033

Navicula reichardtiana NRCH B-L 20.3 0.038

Nitzschia hantzschiana NHAN B-L 9.4 0.044

Nitzschia inconspicua* NINC B-L 25.9 0.010

Parlibellus protracta PPRO B-L 13.6 0.019

Planothidium lanceolatum* PTLA B-L 32.2 0.004

Reimeria sinuata* RSIN B-L 23.4 0.037

Rhoicosphenia abbreviata* RABB B-L 25.3 0.015

Achnanthidium subatomus* ADSU M 15.0 0.016

Aulacoseira ambigua AAMB M 13.4 0.007

Aulacoseira granulata AUGR M 44.9 0.001

Bacillaria paxillifera BPAX M 11.7 0.017

Cocconeis pediculus CPED M 21.3 0.022

Cyclotella fottii CFOT M 32.4 0.001

Cyclotella meneghiniana* CMEN M 26.5 0.026

Cyclostephanos invisitatus CINV M 12.1 0.034

Cymbella tumida CTUM M 12.9 0.024

Cymbella turgidula CTGL M 12.0 0.003

Diadesmis confervacea DCOF M 19.8 0.001

Discostella pseudostelligera DPST M 11.3 0.031

Discostella stelligera DSTE M 19.2 0.001

Gomphonema lagenula GLGN M 15.8 0.007

Gyrosigma obtusatum GYOB M 33.2 0.001

Halamphora montana HLMO M 31.1 0.001

Lemnicola hungarica* LHUN M 12.3 0.002

Luticola mutica LMUT M 11.9 0.016

Navicula catalanogermanica NCAT M 13.5 0.018

Navicula cryptotenelloides NCTO M 19.0 0.008

Navicula recens* NRCS M 31.8 0.001

Navicula trivialis NTRV M 27.2 0.001

Nitzschia filiformis NFIL M 9.5 0.049

Nitzschia gracilis NIGR M 15.2 0.004

Nitzschia intermedia NINT M 30.9 0.001

Nitzschia linearis var. subtilis NLSU M 16.5 0.001

Nitzschia palea* NPAL M 36.3 0.007

Nitzschia umbonata* NUMB M 28.5 0.001

(continued)
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4 Conclusions

Diatoms are ubiquitous and often predominant constituents of the primary

producers in streams, and are sensitive to many environmental changes including

metal concentrations. Even if many other environmental factors have a predomi-

nant influence on diatom community structure, the broad-scale patterns observed

proved that diatom-based approaches are adequate for the monitoring of metal

pollution, bringing ecological relevance based on specific sensitivities/tolerances at

the community level.

The effects of metals can be observed at different levels, from the individual

(deformations of the frustule) to the structure of the community. From a literature

review and the analysis of indicator values determined from our large database, we

provide lists of species that are likely to disappear, or to develop,with increasingmetal

contamination, thus providing a basis for the development of monitoring methods.

The CCU approach used in this study offers a satisfactory alternative for assessing

the relationships between diatom communities and complex mixtures of metals in

the field. A further stepwould be the development of indices taking into account metal

diversity and potential toxicity to improve metal assessment in the field.

Finally, we can observe that, on the contrary to what was expected, the responses

of diatoms were markedly different between rivers with intermediate and high

metal pollution. In particular the increasing percentage of valve deformities pro-

posed by many authors to be indicative of metal pollutions is, in fact, observed

above all in cases of high metal contamination (H category). Our database allowed

for the determination of a naturally occurring, or “background”, abundance of

deformed cells (3.5 � 0.5‰) in environmental samples. A significant increase of

abnormal cells was used to re-define a new threshold value for the H category from

CCU ¼ 10 to 7.

Table 4 (continued)

Species Abbreviation CCU category IndVal (%) p-value

Sellaphora bacillum SEBA M 17.6 0.001

Sellaphora pupula SPUP M 24.1 0.006

Surirella brebissonii SBRE M 28.7 0.010

Surirella linearis SLIN M 20.1 0.001

Surirella minuta SUMI M 12.5 0.003

Tabularia fasciculata TFAS M 13.2 0.003

Cocconeis placentula var. euglypta CPLE H 20.2 0.002

Eolimna minima* EOMI H 35.3 0.006

Fragilaria gracilis* FGRA H 12.3 0.032

Nitzschia sociabilis NSOC H 12.3 0.015

Pinnularia parvulissima* PPVS H 18.2 0.003

Surirella angusta* SANG H 26.6 0.039

*Species for which deformities were observed
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In the natural environment, conditions corresponding to the H category are

expected to happen less and less frequently, especially with the development of

sustainable practices of industries and of site remediation. However, worldwide,

many rehabilitation programs are being implemented in historical mining sites, and

there is public demand for the evaluation of restoration success. Multiple abiotic

and biotic criteria can be used to qualify/quantify the changes in “stream health”

during and after rehabilitation programs. Diatom-based indicators would thus be an

appropriate tool for assessing the success of rehabilitation actions and justify,

through a recovery of the aquatic biota, the rehabilitation programs undergone

and corresponding investments.
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the Natural Sciences and Engineering Research Council of Canada (NSERC), the Direction
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Genève, p 29

110. Ruggiu D, Luglie A, Cattaneo A, Panzani P (1998) Paleoecological evidence for diatom

response to metal pollution in Lake Orta (N. Italy). J Paleolimnol 20(4):333–345

111. Sabater S (2000) Diatom communities as indicators of environmental stress in the Guadiamar

River, S-W. Spain, following a major mine tailings spill. J Appl Phycol 12(2):113–124

112. Sanders JG, Riedel GF (1998) Metal accumulation and impacts in phytoplankton. In:

Langston W, Bebianno M (eds) Metal metabolism in aquatic environments. Chapman and

Hall, London, pp 59–76

113. Say PJ (1978) Le Riou-Mort, affluent du Lot pollué par les métaux. I. Etude préliminaire de la
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