
Occurrence and Elimination of Pharmaceuticals

During Conventional Wastewater Treatment
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Abstract Pharmaceuticals have an important role in the treatment and prevention

of disease in both humans and animals. Since they are designed either to be highly

active or interact with receptors in humans and animals or to be toxic for many

infectious organisms, they may also have unintended effects on animals and

microorganisms in the environment. Therefore, the occurrence of pharmaceutical

compounds in the environment and their potential effects on human and environ-

mental health has become an active subject matter of actual research.

There are several possible sources and routes for pharmaceuticals to reach the

environment, but wastewater treatment plants have been identified as the main

point of their collection and subsequent release into the environment, via both

effluent wastewater and sludge. Conventional systems that use an activated sludge

process are still widely employed for wastewater treatment, mostly because they

produce effluents that meet required quality standards (suitable for disposal or

recycling purposes), at reasonable operating and maintenance costs. However,
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Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona,

18-26, 08034 Barcelona, Spain

Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain

King Saud University (KSU), P.O. Box 2455, 11451 Riyadh, Saudi Arabia

H. Guasch et al. (eds.), Emerging and Priority Pollutants in Rivers,
Hdb Env Chem (2012) 19: 1–24, DOI 10.1007/978-3-642-25722-3_1,
# Springer-Verlag Berlin Heidelberg 2012

1

mailto:aljqam@cid.csic.es


this type of treatment has been shown to have limited capability of removing

pharmaceuticals from wastewater. The following chapter reviews the literature

data on the occurrence of these microcontaminants in wastewater influent, effluent,

and sludge, and on their removal during conventional wastewater treatment.
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1 Introduction

Pharmaceuticals are a large and diverse group of compounds designed to prevent,

cure, and treat disease, and improve health. Hundreds of tons of pharmaceuticals

are dispensed and consumed annually worldwide. The usage and consumption are

increasing consistently due to the discoveries of new drugs, the expanding popula-

tion, and the inverting age structure in the general population, as well as due to

expiration of patents with resulting availability of less expensive generics [1]. After

intake, these pharmaceutically active compounds undergo metabolic processes in

organisms. Significant fractions of the parent compound are excreted in unmetabo-

lized form or as metabolites (active or inactive) into raw sewage and wastewater

treatment systems. Municipal sewage treatment plant effluents are discharged to

water bodies or reused for irrigation, and biosolids produced are reused in agricul-

ture as soil amendment or disposed to landfill. Thus body metabolization and

excretion followed by wastewater treatment are considered to be the primary

pathway of pharmaceuticals to the environment. Disposal of drug leftovers to

sewage and trash is another source of entry, but its relative significance is unknown

with respect to the overall levels of pharmaceuticals in the environment [2].
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Continual improvements in analytical equipment and methodologies enable the

determination of pharmaceuticals at lower concentration levels in different envi-

ronmental matrices. Pharmaceuticals and their metabolites in surface water and

aquatic sediment were subject of numerous studies concerning pharmaceuticals in

the environment [3–5]. Several studies investigated the occurrence and distribution

of pharmaceuticals in soil irrigated with reclaimed water [6–8] and soil that

received biosolids from urban sewage treatment plants [9, 10]. These studies

indicated that the applied wastewater treatments are not efficient enough to remove

these micropollutants from wastewater and sludge, and as a result they find their

way into the environment (Fig. 1). Once they enter the environment, pharmaceuti-

cally active compounds can produce subtle effects on aquatic and terrestrial

organisms, especially on the former since they are exposed to long-term continuous

influx of wastewater effluents. Several studies investigated and reported on it

[11–13]. No evidence exists linking the presence of pharmaceuticals in the envi-

ronment to human health risks; still complex mixtures may have long-term unseen

effects, especially on tissues other than those on which the pharmaceuticals were

designed to act.

Therefore, the occurrence of pharmaceutical compounds in the environment and

their potential effects on human and environmental health, as well as the extent to

which they can be eliminated during wastewater treatment, have become active

subject matter of actual research. Since the concern about the discharge of

pharmaceuticals (and other emerging contaminants, as well) into wastewater is

relatively recent, it is not strange that they are not yet covered by the currently

existing regulation.
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2 Activated Sludge Process for Treatment of Wastewater

Wastewater treatment systems that use activated sludge processes have been

employed extensively throughout the world, mostly because they produce effluents

that meet required quality standards (suitable for disposal or recycling purposes), at

reasonable operating and maintenance costs. Figure 1 shows a schematic diagram

of a conventional wastewater treatment. All design processes include preliminary

treatment consisting of bar screen, grit chamber, and oil and grease removal unit

[14], typically followed by primary gravity settling tank, in all but some of the

smaller treatment facilities. The primary-treated wastewater enters into a biological

treatment process—usually an aerobic suspended growth process—where mixed

liquor (i.e., microorganisms responsible for the treatment, along with biodegradable

and nonbiodegradable suspended, colloidal, and soluble organic and inorganic

matter) is maintained in liquid suspension by appropriate mixing methods. During

the aeration period, adsorption, flocculation, and oxidation of organic matter occur.

After enough time for appropriate biochemical reactions, mixed liquor is trans-

ferred to a settling reactor (clarifier) to allow gravity separation of the suspended

solids (in form of floc particles) from the treated wastewater. Settled solids are then

returned to the biological reactor (i.e., return activated sludge) to maintain a

concentrated biomass for wastewater treatment. Microorganisms are continuously

synthesized in the process; thus some of suspended solids must be wasted from the

system in order to maintain a selected biomass concentration in the system.Wasting

is performed by diverting a portion of the solids from the biological reactor to solid-

handling processes. The most common practice is to waste sludge from the return

sludge line because return activated sludge is more concentrated and requires

smaller waste sludge pumps. The waste sludge can be discharged to the primary

sedimentation tanks for co-thickening, to thickening tanks, or to other sludge-

thickening facilities, in order to increase the solid content of sludge by removing

a portion of the liquid fraction. Through the subsequent processes such as digestion,

dewatering, drying, and combustion, the water and organic content is considerably

reduced, and the processed solids are suitable for reuse or final disposal. To achieve

better effluent water quality, further treatment steps - tertiary treatment - can be

added to the above outlined generla process, e.g. activated carbon adsorption,

additioanl nutrient removal etc.

3 Occurrence of Pharmaceuticals During Conventional

Wastewater Treatment

3.1 Occurrence of Pharmaceuticals in Wastewater
Influent and Effluent

More than 10,000 prescription and over-the-counter pharmaceuticals are registered

and approved for usage today, with around 1,300 unique active ingredients (Orange
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book, FDA). This is a versatile group of compounds that differ in the mode of

action, chemical structure, physicochemical properties, and metabolism. They are

typically classified using the Anatomical Therapeutic Chemical Classification

System (ATC system) according to their therapeutic application and chemical

structure. Because of the volume of prescription, the toxicity, and the evidence

for presence in the environment, nonsteroidal anti-inflammatory drugs (NSAIDs),

antibiotics, beta-blockers, antiepileptics, blood lipid-lowering agents, antidepres-

sants, hormones, and antihistamines were the most studied pharmaceutical

groups [15].

Even though a number of research publications have been focused on the

occurrence, fate, and effects of pharmaceuticals in the environment, we have data

on the occurrence of only 10% of the registered active compounds, and very little

information on their effects in the environment. There is even less information

regarding the occurrence and fate of the transformation/degradation products

(active or not) of pharmaceuticals. Both the qualitative and the quantitative analysis

of pharmaceuticals in the environmental matrices are definitely a starting point for

the establishment of new regulations for the environmental risk assessment of

pharmaceutical products.

The pharmaceuticals find their way to the environment primarily via the dis-

charge of raw and treated sewage from residential users or medical facilities.

Through the excretion via urine and feces, extensively metabolized drugs are

released into the environment. But the topically applied pharmaceuticals (when

washed off) along with the expired and unused ones (when disposed directly to

trash or sewage) pose a direct risk to the environment because they enter sewage in

their unmetabolized and powerful form [2]. Even though the production of drugs is

governed by rigorous regulations, pharmaceutically active substances are fre-

quently released with the waste from drug manufacturing plants [16–18].

The occurrence of the pharmaceutical compounds in wastewater treatment

plants has been investigated in several countries around the world (Austria, Canada,

England, Germany, Greece, Spain, Switzerland, USA, etc). More than 150

pharmaceuticals belonging to different therapeutic groups have been detected in

concentration ranging up to the mg/L level in sewage water. Their environmental

occurrence naturally depends on the rate of production, the dosage and frequency of

administration and usage, the metabolism and environmental persistence, as well as

the removal efficiency of wastewater treatment plants (WWTPs). Figures 2 and 3

show the occurrence of the selected, most investigated pharmaceuticals in waste-

water influent and effluent, as found in the literature.

NSAIDs are the most used class of drugs for the treatment of acute pain and

inflammation. They are administered both orally and topically and available as

prescription and over-the-counter (nonprescription) drugs. High consumption and

way of administration of NSAIDs result in elevated concentration reported in the

effluent from WWTPs. Among the most studied NSAIDs during wastewater

treatments are ibuprofen, diclofenac, naproxen, ketoprofen, and mefenamic acid

[19]. The compounds usually detected in the highest concentrations in the influent

of WWTPs are ibuprofen, naproxen, and ketoprofen (in range of some mg/L)
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[20–22]. Even though the concentrations of these compounds are markedly lowered

at the effluent, they are far from negligible. Heberer et al. [23] identified diclofenac

as one of the most important pharmaceuticals in the water cycle, with low mg/L
concentrations in both row and treated wastewater (3.0 and 2.5 mg/L at the influent

and effluent, respectively).
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Fig. 3 Concentrations of the pharmaceuticals in wastewater effluent (25th, median, and 75th

percentile, for the values found in the literature)
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Beta-blockers are another very important class of prescription drugs. They are

very effective in treating cardiovascular diseases. As NSAIDs, beta-blockers are

not highly persistent, but they are present in the environmental due to their high

volume of use. Due to same mode of action of beta-blockers, it has been found that

the mixture of beta-blockers showed concentration addition indicating a mutual

specific nontarget effect on algae [24]. These compounds are generally found in

aqueous phase because of their low sorption affinity and elevated biodegradability

[25]. Atenolol, metoprolol, and propranolol have been frequently identified in

wastewaters, where atenolol was detected in the highest concentrations, in some

cases ranging up to 1 mg/L [26–28]. As a result of the incomplete removal during

conventional wastewater treatment, these compounds were also found in surface

waters in the ng/L to low mg/L range ([29, 30]; Ternes et al. 1998; [27]).

Lipid-lowering drugs, with statins and fibrates particularly, are used in the

treatment and prevention of cardiovascular disease. In the last decade, statins

became the drug of choice to lower cholesterol levels and their usage is increasing.

According to the National Center for Health Statistics of USA [32], from

1988–1994 to 2003–2006, the use of statin drugs by adults aged 45 years and

over increased almost tenfold, from 2 to 22%. Among lipid-lowering drugs and

pharmaceuticals, in general, clofibric acid is one of the most frequently detected

in the environment and one of the most persistent drugs with an estimated persis-

tence in the environment of 21 years [15]. It has been detected in the ng/L range

concentrations in influent, without big difference in the concentrations at the

effluent. Many analogues of clofibrate, such as gemfibrozil, bezafibrate, and fenofi-

brate, were detected in the samples of sewage plants in concentrations up to low mg/L
at the influent [20, 27, 33]. Among statins, atorvastatin, mevastatine, and prevastatine

were detected in various environmental matrices including raw and treated

wastewater as well as surface water near the points of discharge [20, 30, 34–36].

Antibiotics are destined to treat diseases and infection caused by bacteria.

They are among the most frequently prescribed drugs for humans and animals in

modern medicine. Beta-lactams, macrolides, sulfonamides, fluoroquinolones, and

tetracyclines are the most important antibiotic groups used in both human and

veterinary medicine. High global consumption of up to 200,000 tons per year

[37] and high percentage of antibiotics that may be excreted without undergoing

metabolism (up to 90%) result in their widespread presence in the environment

[38]. Unmetabolized pharmaceutically active forms of antibiotics concentrated in

raw sludge may promote the development of bacterial resistance. Bacteria in raw

sludge are more resistant than bacteria elsewhere [39]. Many active antibiotic

substances were found in raw sewage matrices, including both aqueous and solid

phase. Beta-lactams are among the most prescribed antibiotics. Despite their

high usage, they readily undergo hydrolysis, and thus have been detected in very

low concentrations in treated wastewater, or not at all detected [40]. Sulfonamides,

fluoroquinolone, and macrolide antibiotics show the highest persistence and are

frequently detected in wastewater and surface waters [38]. Sulfamethoxazole is

one of the most detected sulfonamides [41–45] that was reported with various

concentrations and up to ca. 8mg/L (in raw influent in China) [46]. Sulfamethoxazole
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is often administrated in combination with trimethoprim, and commonly analyzed

together [47]. Trimethoprim exhibits high persistence with little removal being

effected byWWTPs, and thus is ubiquitously detected in ranges from very low ng/L

to 1 mg/L in wastewater influent and effluent [41, 48]. Fluoroquinolone antibiotics

ciprofloxacin and norfloxacin have been frequently detected in various streams in

low mg/L [22, 41, 49, 50]. Even though it is greatly reduced during treatment,

ciprofloxacin was found to be present in effluent wastewater at average concentra-

tion from 0.1 to 0.6 mg/L [48, 51, 52]. The class of tetracyclines, widely used broad-

spectrum antibiotics, with chlortetracycline, oxytetracycline, and tetracycline as

mostly used, was detected in raw and treated sewage in many studies in the ng/L

[53] to mg/L concentrations [54]. Tetracyclines and fluoroquinolones form stable

complexes with particulates and metal cations, showing the capacity to be more

abundant in the sewage sludge [55, 56]. Some of the most prescribed antibiotics—

macrolides clarithromycin, azithromycin, roxithromycin, and dehydro-erythromy-

cin—were found in various environmental matrices in a variety of concentrations

from very low ng/L to few mg/L [57–59]. High effluent concentrations were

reported for dehydro-erythromycin, i.e., up to 2.5 mg/L [51, 54, 60]. In the final

US EPA report CCL-3 from September 2009, erythromycin was one of three

pharmaceuticals included as priority drinking water contaminant, based on health

effects and occurrence in environmental waters [61].

According to the National Center for Health Statistics of USA [32], the usage of

antidiabetic drugs by adults aged 45 years and over increased about 50%, from 7%

in 1988–1994 to 11% in 2003–2006, as a consequence of an increase in the

detection of antidiabetics in the environment over time. Still, only few data are

reported on the occurrence and fate of antidiabetics. Glyburide (also glibenclamide)

was found to be ubiquitous in both aqueous and solid phase of sewage treatment

[20, 30, 62].

Histamine H2-receptor antagonists are used in the treatment of peptic ulcer and

gastro-esophageal reflux disease. Certain preparations of these drugs are available

OTC in various countries. Among H2-receptor antagonists, cimetidine and raniti-

dine have been frequently detected in wastewater and sludge. As for all the other

pharmaceuticals, the reported concentration varies from very low ng/L to a few mg/L
[20, 21, 63].

While antiepileptic carbamazepine is one of the most studied and detected

pharmaceuticals in the environment, there is not much information on the occur-

rence and fate of other of psychoactive drugs in WWTPs. Carbamazepine is one of

the most widely prescribed and very important drug for the treatment of epilepsy,

trigeminal neuralgia, and some psychiatric diseases (e.g., bipolar affective disorders

[64, 65]. In humans, following oral administration, it is metabolized to pharmaco-

logically active carbamazepine-10,11-epoxide, which is further hydrolyzed to

inactive carbamazepine-10, 11-trans-dihydrodiol, and conjugated products which

are finally excreted in urine. Carbamazepine is almost completely transformed by

metabolism with less than 5% of a dose excreted unchanged [66]. Still, glucuronide

conjugates of carbamazepine can presumably be cleaved during wastewater treat-

ment, so its environmental concentrations increase [27]. In fact, carbamazepine and

its metabolites have been detected in both wastewaters and biosolids [67].

8 A. Jelić et al.



Carbamazepine is heavily or not degraded during wastewater treatment and many

studies have found it ubiquitous in various environment matrices (groundwater, river,

soil) [34, 62, 68–71]. The concentrations of carbamazepine vary from one plant to

another, and they are usually around hundreds ng/L, and in some cases also few mg/L
[27, 72].

3.2 Occurrence of Pharmaceuticals in Sewage Sludge

Sludge, originating from the wastewater treatment processes, is the semisolid

residue generated during the primary (physical and/or chemical), the secondary

(biological), and the tertiary (often nutrient removal) treatment. In the last years the

quantities of sludge have been increasing in EU because of the implementation of

the Directive 91/271/EEC on urban wastewater treatment. There was nearly nine

million tons of dry matter produced in 2005 in EU Member states. Similar regula-

tion in USA was introduced by US EPA regulations 40 Code of Federal Regulations

Part 503 (40 CFR 503) that established the minimum national standards for the use

and disposal of domestic sludge. By this regulation, sludge was classified into two

different microbiological types according to the extent of pathogen removal

achieved by the sludge treatment process, i.e., Class A (usage without end-use

restrictions) and Class B (controlled/limited disposal). The amount of sludge

generated in 2006 was estimated to be more than eight million tons of which 50%

were land applied [73].

Due to the physical–chemical processes involved in the treatment, the sludge

tends to concentrate heavy metals and poorly biodegradable trace organic

compounds as well as potentially pathogenic organisms (viruses, bacteria, etc.)

present in waste waters. Sludge is, however, rich in nutrients such as nitrogen and

phosphorous and contains valuable organic matter that is useful when soils are

depleted or subject to erosion. It has been used in agriculture over a long time. In

EU, since 1986, the utilization of sewage sludge has been ruled by the EU Directive

(86/278/EEC), which encouraged the use of sludge regulating its use with respect to

the quality of sludge, the soil on which it is to be used, the loading rate, and the

crops that may be grown on treated land. None of the regulations cover the question

of pharmaceuticals and other emerging pollutants that may be transported to soil

after land application of biosolids, having the potential to enter surface water, leach

into groundwater, or be accumulated by vegetation or other living organisms.

Most of the studies on the fate of pharmaceuticals in WWTPs focused only on

the aqueous phase, and concentrations of the compounds in sludge were rarely

determined mainly due to the demanding efforts required in the analysis in this

difficult matrix. Out of 117 publications studied by Miege et al. [19], only 15

reported the concentrations of pharmaceuticals in sludge and 1 in suspended solid,

and none of these papers reported the removal obtained taking into account both

aqueous and solid phases of WWTPs. Still, the screening of sewage sludge showed

that these micropollutants are very present in this medium [74–77]. High aqueous-

phase removal rates for some compounds would suggest very good removal of

Occurrence and Elimination of Pharmaceuticals 9



these compounds during the wastewater treatment. But only a certain percent of

the total mass of input is really lost (i.e., biodegradaded) during the treatment.

The rest accumulates in sludge or ends up discharged with the effluent. As shown in

Fig. 4, sorption of some pharmaceuticals analyzed in the study of Jelic et al. [20]
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(e.g., atorvastatin, clarithromycin) contributed to the elimination from the aqueous

phase with more than 20% related to the amount of these compounds at the influent.

In the figure, term liquid removal indicates a difference in the loads of pharmaceuti-

cals between influent and effluent wastewater, and overall removal, a difference in
the loads that enter (i.e., influent) and exit (including both effluent and sludge loads)

the plants. The difference between overall and liquid removal is the fraction that

sorbed to sludge matter.This example clearly indicates the importance of the

analysis of sludge when studying wastewater treatment performances.

The sorption behavior of pharmaceuticals can be very complex and difficult to

assess. These compounds can absorb onto bacterial lipid structure and fat fraction

of the sewage sludge through hydrophobic interactions (e.g., aliphatic and aromatic

groups), adsorb onto often negatively charged polysaccharide structures on the

outside of bacterial cells through electrostatic interactions (e.g., amino groups),

and/or they can bind chemically to bacterial proteins and nucleic acids [78].

Also the mechanisms other than hydrophobic partitioning, such as hydrogen

bonding, ionic interactions, and surface complexation, play a significant role in

the sorption of pharmaceuticals in sludge. Therefore, also the compounds with

low LogKow and LogKd values may easily sorb onto sludge. Despite their negative

Kow, fluoroquinolones have a high tendency for sorption because of their zwitterionic

character (pKaCOOH ¼ 5.9 � 6.4, pKaNH2 ¼ 7.7 � 10.2) [49]. These antibiotics

were reported to be present in the highest concentration in sewage sludge samples

from various WWTPs [50, 74, 79]. Also tetracycline and sulfonamides exhibit strong

sorption onto sludge particles, higher than expected based on their hydrophobicity.

In general, data on the occurrence of pharmaceuticals in sludge are sparse, where

the group of antibiotics was mostly analyzed and found to be the most abundant.

Kinney et al. [7] measured erythromycin-H2O, sulfamethoxazole, and trimethoprim

in microgram per kilogram concentrations in nine different biosolids. Out of the 72

pharmaceuticals and personal care products targeted in the study of EPA in its 2001
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National Sewage Sludge Survey, 38 (54%) were detected at concentrations ranging

from the low ng/g to the mg/g range. All the analyzed antibiotics constituted about

29% of the total mass of pharmaceuticals per sample [76]. Only few studies

reported data on the occurrence of anti-inflammatories and some other therapeutic

classes (psychoactive drugs, lipid-lowering drugs, etc.) [20, 79–82]. Figure 5

summarizes some literature data on the occurrence of several pharmaceuticals in

sewage sludge in various WWTPs.

4 Removal of Pharmaceuticals During Conventional

Wastewater Treatment

Municipal wastewater treatment plants were basically designed to remove

pathogens and organic and inorganic suspended and flocculated matter. Even

though the new treatment technologies have been developed to deal with health

and environmental concerns associated with findings of nowadays research, the

progress was not as enhanced as the one of the analytical detection capabilities and

the pharmaceutical residues remain in the output of WWTPs. When speaking about

pharmaceuticals, the term removal refers to the conversion of a pharmaceutical to a

compound different than the analyzed one (i.e., the parent compound). Thus, it

accounts for all the losses of a parent compound produced by different mechanisms

of chemical and physical transformation, biodegradation, and sorption to solid

matter. All these processes (mainly biodegradation, sorption, and photode-

gradation) are limited in some way for the following reasons: (a) pharmaceuticals

are designed to be biologically stable; (b) the sorption depends on the type and

properties of the suspended solids (sludge); (c) and even though they are

photoactive, because many of them have aromatic rings, heteroatoms, and other

functional groups that could be susceptible to photodegradation; they may also give

the products of environmental concern.

Removal, as difference in the loads between influent and effluent, has negative

values in some cases. The explanation for this could be found in sampling protocols

[83], not only because they could be inadequate, but because of the nature of disposal

of pharmaceuticals. The fact is that the substances arrive in a small number of

wastewater packets to the influent of WWTP, in unpredictable amounts and time

intervals; thus the influent loads, especially, are easily systematically underestimated.

Even though the analysis of effluent and sludge yields more certain results,

because they come from stabilization processes, the sampling in general may result

in underestimated and even negative removals. Furthermore, the negative removal

can be explained by the formation of unmeasured products of human metabolism

and/or transformation products (e.g., glucuronide conjugate, methylates, and

glycinates) that passing through the plant convert back to the parent compounds.

This can be considered as a reasonable assumption since the metabolites and some

derivates of pharmaceuticals are well known (e.g., hydroxy and epoxy-derivatives

of carbamazepine, 4-trans-hydroxy and 3-cis-hydroxy derivatives of glibenclamide,
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ortho- and parahydroxylated derivatives of atorvastatin, etc.) [67, 84, 85].

During complex metabolic processes in human body and biochemical in wastewa-

ter treatment, various scenarios of transformation from parent compound to metab-

olite and derivatives and vice versa can occur. Generally speaking, metabolites tend

to increase the water solubility of the parent compound. Two different strategies are

followed to achieve that objective: chemical modification of the parent molecule

through addition of polar groups like OH, COOH, etc.; alternatively, the parent

structures can be linked reversibly to polar highly soluble biological molecules,

such as glucuronic acid, forming the so-called conjugates. Metabolites can be just

as active as their parent compounds. Therefore, the occurrence of metabolites and

transformation products and pathways should be included in the future studies in

order to obtain accurate information on the removal of pharmaceuticals during

treatment and to determine treatment plant capabilities.

The extent to which one compound can be removed during wastewater treatment

is influenced by chemical and biological properties of the compound, but also of

wastewater characteristics, operational conditions, and treatment technology used.

Therefore, as shown in the following examples, high variations in elimination may

be expected, and no clear and definitive conclusion can be made on the removal of

any particular compound, and even less on the fate of a therapeutic group. Some

operating parameters such as hydraulic retention time (HRT), solid retention time

(SRT), redox conditions, and temperature may affect removal of pharmaceuticals

during conventional treatment [127]. Of all the operating parameters, SRT is the

most critical parameter for activated sludge design as SRT affects the treatment

process performance, aeration tank volume, sludge production, and oxygen

requirements. It has been proved that longer SRT, especially, influences and

improves the elimination of most of the pharmaceuticals during sewage treatment

[43, 68, 86]. WWTPs with high SRTs allow the enrichment of slowly growing

bacteria and consequently the establishment of a more diverse biocoenosis with

broader physiological capabilities (e.g., nitrification or the capability for certain

elimination pathways) than WWTPs with low SRTs [68].

NSAIDs have been the most studied group in terms of both occurrence and

removal during wastewater treatment. As noted, the pharmaceuticals are grouped

according to the therapeutic applications; thus high variations in removal rates were

observed within the group due to the differences in chemical properties. While

ibuprofen and naproxen are generally removed with very high efficiency,

diclofenac is only barely removable during conventional treatment. The removal

rates of ibuprofen and naproxen are commonly higher than 75% and 50%, respec-

tively [87–92]. Diclofenac shows rather low and very inconsistent removal rates,

between 0 and 90% [88, 89, 91, 92]. Its persistence is attributed to the presence of

chlorine group in the molecule. Some studies on removal during wastewater

treatment showed no influence of SRT on the removal of diclofenac [68, 93, 94].

The removal of ibuprofen, ketoprofen, indomethacin, acetaminophen, and

mefenamic acid is reported to be very high (>80%) or even complete for SRT

typical for nutrient removal (10 < SRT < 20 days) [88, 90, 94].
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Beta-blockers were reported to be only partially eliminated by conventional

biological treatment [128, 26, 27, 31]). The data on their removal are very incon-

sistent and the removal rates vary from less than 10% up to 95% depending on the

treatment. Maurer et al. proved that the elimination of beta-blockers in WWTPs

depends on the HRT, which could be a good explanation for the variable removal

reported in the literature. The highest average elimination rates can be observed for

atenolol and sotalol (around 60%). But for the same compounds low removals were

reported as well. Maurer et al. [95] and Wick et al. [96] reported removal rates

lower than 30% for sotalol, and Castiglioni et al. [87] reported a removal of 10% for

atenolol during the winter months. In the same study, atenolol achieved better

elimination in summer (i.e., 55%) due to a higher microbial activity [87]. In most

cases, metoprolol showed very low removal rates, i.e., 10–30% [26, 31, 97]. The

occurrence and microbial cleavage of conjugates are well known to influence the

mass balance in WWTPs [98–100]. The microbial cleavage of conjugates of

metoprolol could be responsible for an underestimation of its removal efficiency.

For propranolol as well, various removal rates, mostly moderately low [96, 101],

were observed. This compound is by far the most lipophilic beta-blocker and the

only one with a bioaccumulation potential. Sludge–water partition coefficients were

found to be less than 100 L/kgss for sotalol and atenolol, and 343 L/kgss for

propanolol [95]. For Kd,s values less than 500 L/kgss the removal by sorption in a

WWTP with a typical sludge production of 0.2 gss/L is less than 10% [102] and

hence does not significantly contribute to the removal of beta-blockers in activated

sludge units [96]. Therefore, the partial removal of beta-blockers can be assumed to

be due to biotransformation.

No significant to medium removal was reported for all the lipid regulators.
Zorita et al. [22] reported a medium removal of 61% during primary and biological

treatment, where during the latter one no removal was observed. Lower

removal rates were reported by some other authors, <35% [87, 103, 104]. No or

low removal of clofibric acid was observed in different WWTPS of Berlin [105].

Winkler et al. [106] found no evidence for biotic degradation of clofibric acid.

Radjenovic et al. [36] showed that clofibric acid may be removed more efficiently

with MBR (72–86%) compared to the activated sludge process (of 26–51%). The

removal rates of fibrates bezafibrate, fenofibrate, and gemfibrozil vary between 30

and 90% [88, 94, 107]. Various removal rates during biological treatment in ten

WWTPs in Spain were reported in the studies of Jelic et al. [20] and Gros et al. [30].

It was found that sorption to sludge particulate contributes to the removal values

with ca. 20% [20].

Results from various studies showed that anticonvulsant carbamazepine is

recalcitrant to biological treatment and it is not removed during either conventional

wastewater treatment or membrane bioreactor treatments [34, 62, 69, 71, 91, 108].

Physicochemical processes such as coagulation-flocculation and flotation did not

give better results concerning its degradation [109–111]. It was constantly found at

higher concentrations at the effluent of WWTPs. Knowing that the activated sludge

has glucuronidase activity, which allows the cleavage of the glucorinic acid moiety

inWWTP [112], rational explanation for the increase in concentration is conversion
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of CBZ glucorinides and other conjugated metabolites to the parent compound by

enzymatic processes in a WWTP. No influence of SRT on the removal of CBZ

during conventional wastewater treatment was noticed [68, 93]. Except for carba-

mazepine, information on the occurrence and fate of other psychoactive drugs in

WWTPs is very scarce. This is probably because of the low therapeutic dose

resulting generally in low concentrations in the environment [63, 113, 114]. Con-

ventional treatment achieves a removal lower than 10% in case of diazepam [72].

Zorita et al. [22] reported very high removal efficiency in case of fluoxetine and its

active metabolite norfluoxetine. Still, the lowest observed effect concentration of

fluoxetine for zooplankton and benthic organisms is close to the maximal measured

WWTP effluent concentrations [115]. Low effluent concentrations can be due to the

fact that fluoxetine rapidly passes to solid phase where it appears to be very

persistent [116, 117]. Additionally, it was found that it has a high bioaccumulation

potential when detected in wild fish [118].

The removal of several other drugs such as the histamine H2-receptor
antagonists cimetidine, famotidine, and ranitidine varied from low to very high.

Radjenovic et al. [36] reported rather poor and unstable removal of histamines

during conventional treatment (15–60%). Castiglioni et al. [87] found that the

removal of ranitidine depends on season, and showed 39% removal in winter and

84% in summer. High removal of ranitidine during activate sludge treatment (89%)

was observed in a study of Kasprzyk-Hordern et al. [21].

Antibiotics cover a broad range of chemical classes, and it is very difficult to

characterize their behavior during activated sludge process due to varying removal

efficiencies reported from studies undertaken worldwide. Due to their limited

biodegradability and sorption properties, sulfonamides and trimethoprim appear

to be only partially removed by conventional wastewater treatment. The removal of

these antibiotics has been reported to vary significantly [41–44, 97, 119]. The

explanation could be found in different operational parameters such as HRT,

SRT, and temperature and also in the fact that sulfonamides are easily transformed

from their parent compounds to their metabolites and vice versa; thus the removal

efficiencies may be easily or underestimated or overestimated. In case of trimetho-

prim, only minor removal was noticed during primary and biological treatment, but

the advanced treatment [43] and nitrification organisms appear to be capable of

degrading trimethorpim [120, 121]. This suggests an important role for aerobic

conditions for the biotransformation of trimethoprim. Consistent with this, removal

efficiency of trimethoprim appears to be enhanced by long SRT during biological

treatment, which is conducive to nitrification [122]. Also macrolide antibiotics are

often incompletely removed during biological wastewater treatment. Studies from

different conventional WWTPs have revealed that the removal of macrolides varied

from high but negative values, to around 50% [43, 88]. Karthikeyan and Meyer [59]

found that 43 to 99% of erythromycin was removed by activated sludge process and

aerated lagoons. In the study of Kobayashi et al. [123], 50% of clarithromycin and

azithromycin were removed from three conventional WWTPs. Gobel et al. [43]

proposed gradual release of the macrolides (e.g., clarithromycin) from feces

particles during biological treatment as an explanation for the possible negative
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removal rates for these antibiotics. Sorption of macrolides to wastewater biomass is

attributed to hydrophobic interactions (high partitioning coefficient). But knowing

that the surface of activated sludge is predominantly negatively charged , and under

typical wastewater conditions, the basic dimethylamino group (pKa > 8.9) is

protonated, sorption could occur due to cation exchange interaction as well [124].

Greater adsorption of azithromycin to biomass compared to clarithromycin has

been reported [123]. Varying removal was reported for fluoroquinolone antibiotics,

as well. [125] found that norfloxacin and ciprofloxacin were removed with 78% and

80%, respectively, where around 40%was removed during the biological treatment.

Similar removal was reported by Zorita et al. [22] during secondary and tertiary

treatment. The predominant removal mechanism of fluoroquinolones has been

suggested to be adsorption to sludge and/or flocs rather than biodegradation [22,

49, 122, 125]. Ciprofloxacin and norfloxacin sorbed to sludge independently of

changes in pH during wastewater treatment, and more than 70% of the total amount

of these compounds passing through the plant was ultimately found in the digested

sludge [125]. These findings indicated sludge as the main reservoir of

fluoroquinolones that may potentially release the antibiotics into the environment

when applied to agricultural land. Karthikeyan and Meyer [59] reported removal

efficiency of 68% for tetracycline, and Yang et al. [45] have reported removals of

78 and 67% for chlortetracycline and doxycycline, respectively, during activated

sludge processes. Also some tetracyclines have significant potential for absorption

onto solids due to a combination of non-hydrophobic mechanisms, such as ionic

interactions, metal complexation, hydrogen bond formation, or polarization [126].

Their removal is not so affected by HRT, but SRT appears to significantly influence

the removal during biological treatment [53].

5 Conclusion

Various studies showed that even though the conventional WWTPs meet the

regulatory requirements for wastewater treatment (Directive 91/271/EEC), they

are only moderately effective in removing pharmaceuticals. The removal of

pharmaceuticals will naturally depend on their chemical and biological properties,

but also on wastewater characteristics, operational conditions, and treatment tech-

nology used. Thus, high variations in removal may be expected, and no clear and

definitive conclusion can be made on the removal of any particular compound. Of

all the operating parameters, the solid retention time (SRT) is the most critical

parameter for activated sludge process and it has been proved that longer SRT

improves the elimination of most of the pharmaceuticals during sewage treatment.

Estimation of removal rates may be underestimated due to at least three factors:

removal efficiency was calculated from the mean concentration values; the

metabolites and transformation products of pharmaceuticals and their amounts

were not defined; and the time-proportional sampling may not be perfectly suitable

for pharmaceutical analysis, especially on influent. Still, the fact is that a number of
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pharmaceuticals were detected in effluent wastewater and sludge samples. These

pharmaceuticals cover a wide range of physical-chemical properties and biological

activities. Although the chronic toxicity effects of such a mixture are unknown

and thus the risk that it could pose to the environment could not be fully assessed,

their presence must not be ignored. More information on quality, quantity, and

toxicity of pharmaceuticals and their metabolites is definitely needed especially

when attempting to reuse wastewater and dispose sludge to agricultural areas and

landfills.
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pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chroma-

tography tandem mass spectrometry. J Chromatogr A 1217:2471–2483

6. Gielen GJHP, Heuvel MRvd, Clinton PW, Greenfield LG (2009) Factors impacting on

pharmaceutical leaching following sewage application to land. Chemosphere 74:537–542

7. Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution of waste-

water-derived pharmaceuticals in soil irrigated with reclaimed water. Environ Toxicol Chem

25:317–326

8. Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Irrigation of treated

wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk

fragrances. Chemosphere 66:894–904
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