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Abstract. The principle aim of this paper is to explore the existence of
periodic solution of a predator-prey model with functional response and
impulsive perturbations. Sufficient and realistic conditions are obtained
by using Mawhin’s continuation theorem of the coincidence degree. Fur-
ther, some numerical simulations show that our model can occur in many
forms of complexities including periodic oscillation and chaotic strange
attractor.
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1 Introduction

In this paper, we will consider the following T -periodic Holling-type functional
response predator-prey system [1,2,3,4] with diffusion and impulsive effects:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x1(t)(b1(t) − d1(t)x1(t)) − a1(t)y(t)
α(t)x1(t)

N(t)+x1(t)

+D1(t)(x2(t) − x1(t)),
ẋ2(t) = x2(t)(b2(t) − d2(t)x2(t)) +D2(t)(x1(t) − x2(t)),
ẏ(t) = y(t)(b3(t) − d3(t)y(t)) + a2(t)y(t)

α(t)x1(t)
N(t)+x1(t)

,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t �= tn,

x1(t+n ) = (1 + h1n)x1(tn),
x2(t+n ) = (1 + h2n)x2(tn),
y(t+n ) = (1 + gn)y(tn),

⎫
⎬

⎭
t = tn, n ∈ Z+.

(1)

where x1(t) and y(t) are the densities of prey species and predator species in
patch I at time t, x2(t) is the density of prey species in patch II, prey species
x1(t), x2(t) can diffuse between two patches while the predator species y(t) is
confined to patch I. a1(t) is the maximum of prey that can be eaten by a predator
per unit of time, a2(t) a conversion efficiency, bi(t) (i = 1, 2, 3) intrinsic growth
rate, di(t) (i = 1, 2, 3) the rate of intra-specific competition, Di(t) (i = 1, 2) the
dispersal rate of prey species, and hin and gn represent the annual birth pulse
of population xi(t), y(t) at tn (i = 1, 2), n ∈ Z+. In this paper, we will assume
that the following conditions are fulfilled:
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(A1) ai(t), Di(t), bi(t), di(t) (i = 1, 2, 3) and α(t), N(t) are continuous positive
T -periodic functions;

(A2) h1n, h2n, gn are constants and there exists a positive integer q such that
h1(n+q) = h1n, h2(n+q) = h2n, gn+q = gn, tn+q = tn + T .

With model (1) we can take into account the possible exterior effects under which
the population densities change very rapidly. For instance, impulsive reduction of
the population density of a given species is possible after its partial destruction
by catching, a natural constraint in this case is 1+h1n > 0, 1+h2n > 0, 1+gn >
0, n ∈ Z+.

2 Notations and Preliminaries

Let J ⊂ R, denote by PC(J,R) the set of functions ψ : J → R , which are piece-
wise continuous in [0, T ], have points of discontinuity tn ∈ [0, T ], where they
are continuous from the left. Let PC1(J,R) denote the set of functions ψ with
derivative ψ̇(t) ∈ PC(J,R). Throughout this paper we deal with the Banach
space of T -periodic functions

PCT = {ψ ∈ PC([0, T ], R)|ψ(0) = ψ(T )}

with the supremum norm:

‖ψ‖PCT = sup{|ψ(t)| : t ∈ [0, T ]}

and

PC1
T =

{
ψ ∈ PC1([0, T ], R)|ψ(0) = ψ(T )

}

with the supremum norm:

‖ψ‖PC1
T

= max{‖ψ‖PCT , ‖ψ̇‖PC1
T
}.

we will also consider the product space PCT ×PCT which is also a Banach space
with the norm

‖(ψ1, ψ2)‖PC = ‖ψ1‖PC + ‖ψ2‖PC .

Moreover, for any y ∈ CT or y ∈ PCT , define average value of y as follows:

y :=
1
T

∫ T

0

y(t)dt

and the minimum, maximum of y respectively are:

yL := min
t∈[0,T ]

y(t), yM := max
t∈[0,T ]

y(t).
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Give α, β ∈ PCT , β > 0, we consider the following Logistic equation with
impulsive effects.

{
ω̇(t) = α(t)ω(t) − β(t)ω2(t), t �= tn, n ∈ Z+,
ω(t+) = (1 + cn)ω(tn), t = tn, n ∈ Z+.

(2)

where cn(n ∈ Z+) is constant, there exists an integer q > 0 such that cn+q = cn,
tn+q = tn + T , and assume that 1 + cn > 0 (n ∈ Z+).

Lemma 1. System (2) admits a unique positive solution if and only if ᾱ +
1
T

∑q
n=1 ln(1 + cn) > 0.

Let θ[α,β] denote the unique positive periodic solution to (2). Dividing θ̇[α,β] =
αθ[β,β] − βθ2[α,β] by θ[α,β] and integrating over intervals (0, T ], we have

ᾱ+
1
T

q∑

n=1

ln(1 + cn) =
1
T

∫ T

0

βθ[α,β]dt = βθ[α,β].

To shorten notation, we rewrite θα := θ[α,β].
We denote by Φ[a,b](t, t0, ω0) the unique solution of Cauchy problem

⎧
⎨

⎩

ω̇(t) = α(t)ω(t) − β(t)ω2(t), t ≥ t0(t �= tn),
ω(t+n ) = (1 + cn)ω(tn), t = tn,
ω(t+0 ) = ω0.

(3)

Lemma 2. Give α, β ∈ PCT , with β > 0, for any ω0 > 0 we have

lim
t→∞ |Φ[a,b](t, t0, ω0) − θα| = 0

provided that ᾱ+ 1
T

∑q
n=1 ln(1 + cn) > 0 and 1 + cn > 0 for n ∈ Z+.

Lemma 3. Given a positive x0 ∈ R, consider two functions a, b ∈
PC((t0,∞), R) with b > 0, suppose that x(t) ∈ PC1

T such that
⎧
⎨

⎩

ẋ(t) ≥ ax(t) − bx2(t), t ≥ t0(t �= tn),
x(t+n ) ≥ (1 + cn)x(tn), t = tn,
x(t+0 ) ≥ x0.

(4)

Then x(t) ≥ Φ[a,b](t, t+0 , x0) for all t ≥ t0. Similarly x(t) ≤ Φ[a,b](t, t+0 , x0) for
all t ≥ t0 if all the sign of inequalities in (4) are converse.

In order to obtain the existence of positive T -periodic solution to system (1), we
must use the following lemma, named as the continuation theorem of coincidence
degree theory [5].

Let X , Z be normed vector spaces, L : DomL ⊆ X → Z be a linear mapping,
N : X → Z be a continuous mapping. If dimKerL = comdimImL < +∞ and
ImL is closed in Z, then the mapping L will be called a Fredholm mapping of
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index zero. If L is a Fredholm mapping of index zero, there exist continuous
projects P : X → X and Q : Z → Z such that ImP = KerL, ImL = KerQ =
Im(I−Q). It follows that L|DomL

⋂
KerP : (I−P )X → ImL has an inverse which

is denoted by KP . If Ω is an open bounded subset of X , the mapping N will
be called L-compact on Ω provided that QN(Ω) is bounded and Kp(I −Q)N :
Ω → X is compact. Since ImQ is isomorphic to KerL there exists an isomorphism
F : ImQ→ KerL.

Lemma 4. Let L be a Fredholim mapping of index zero and N be L-compact
on Ω. Suppose that

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx such that x /∈ ∂Ω;
(b) QNx �= 0 for each x ∈ KerL

⋂
∂Ω;

(c) deg {FQN,Ω⋂
KerL, 0} �= 0.

Then the equation Lx = Nx has at least one solution lying in DomL
⋂
Ω.

3 Existence of Positive Periodic Solution

In this section, we study the existence of positive periodic solution to (1).

Theorem 1. If system (1) satisfies

1. b+ 1
T

∑q
n=1 ln(1 +mn) > 0, b̄3 + 1

T

∑q
n=1 ln(1 + gn) > 0,

2. bi(t) > Di(t)(i = 1, 2), b̄2 − D̄2 + 1
T

∑q
n=1 ln(1 + h2n) > 0.

here b = max{bM1 , bM2 }, mn = max{1 + h1n, 1 + h2n}, d = min{dL
1 , d

L
2 }.

Then system (1) has at least one T -periodic positive solution.

Proof. Let x1(t) = eu1(t), x2(t) = eu2(t), y(t) = eu3(t) then system (1) is refor-
mulated as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = b1(t) − D1(t) − d1(t)e
u1(t) − a1(t)α(t)eu3(t)

N(t)+eu1(t) + D1(t)e
u2(t)−u1(t),

u̇2(t) = b2(t) − D2(t) − d2(t)e
u2(t) + D2(t)e

u1(t)−u2(t),

u̇3(t) = b3(t) − d3(t)e
u3(t) a2(t)α(t)eu1(t)

N(t)+eu1(t) ,

⎫
⎪⎪⎬

⎪⎪⎭

t �= tn,

u1(t
+
n ) = u1(tn) + ln(1 + h1n),

u2(t
+
n ) = u2(tn) + ln(1 + h2n),

u3(t
+
n ) = u3(tn) ln(1 + gn),

⎫
⎬

⎭
t = tn.

(5)

If system (5) has a T -periodic solution (u1(t), u2(t), u3(t))T , then

(eu1(t), eu2(t), eu3(t))T = (x∗1(t), x
∗
2(t), y

∗(t))

is a positive T -periodic solution to system (1). So, in the following,we discuss
the existence of T -periodic solution to system (5).

In order to use Lemma 2.4, we set u = (u1(t), u2(t), u3(t))T . Define
X =

{
x ∈ PC(R,R3) : x(t+ T ) = x(t)

}
, Z = X × R3q, then it is standard

to show both X and Z are Banach space when they are endowed with the
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norms ‖x‖c = sup
t∈[0,ω]

|x(t)| and ‖(x, c1, c2, c3)‖ = (‖x‖2
c + |c1|2 + |c2|2 + |c3|2)1/2.

Let DomL ⊂ X =
{
x ∈ C1 [0, ω; t1, ..., tm]

∣
∣ x(0) = x(ω)

}
, L: DomL → Z,

Lu = (u′, Δu(t1), ..., Δu(tq)); N : X → Z, N : DomL → Z, Nu =
(u′, Δu(t1), ..., Δu(tq)). It is easy to prove that L is a Fredholm mapping of
index zero.

Consider the operator equation

Lu = λNu, λ ∈ (0, 1). (6)

Integrating (6) over the interval [0, T ], we obtain
⎧
⎪⎪⎨

⎪⎪⎩

B1 =
∫ T

0 [d1(t)eu1(t) + a1(t)α(t)eu3(t)

N(t)+eu1(t) −D1(t)eu2(t)−u1(t)]dt,

B2 =
∫ T

0
[d2(t)eu2(t) −D2(t)eu1(t)−u2(t)]dt,

B3 =
∫ T

0 [d3(t)eu3(t) − a2(t)α(t)eu1(t)

N(t)+eu1(t) ]dt,

(7)

here Bi = b̄iT − D̄iT +
∑q

n=1 ln(1 + hin)(i = 1, 2),
B3 = b̄3 +

∑q
n=1 ln(1 + gn).

From (6) and (7), we have
∫ T

0

|u̇1(t)|dt≤2(b̄1 − D̄1)T +

∣
∣
∣
∣
∣

q∑

n=1

ln(1 + h1n)

∣
∣
∣
∣
∣
, (8)

∫ T

0

|u̇2(t)|dt≤2(b̄2 − D̄2)T +

∣
∣
∣
∣
∣

q∑

n=1

ln(1 + h2n)

∣
∣
∣
∣
∣
, (9)

∫ T

0

|u̇3(t)|dt≤2b̄3T +

∣
∣
∣
∣
∣

q∑

n=1

ln(1 + gn)

∣
∣
∣
∣
∣
. (10)

Since ui(t) ∈ PCT , there exist ξi, ηi ∈ [0, T ](i = 1, 2, 3) such that

ui(ξi) = min
t∈[0,T ]

ui(t), ui(ηi) = max
t∈[0,T ]

ui(t). (11)

Let v(t) = max{u1(t), u2(t)}, then v(t) ∈ PCT , moreover

1. if u1(t) ≥ u2(t) but u̇1(t) ≥ u̇2(t), then v(t) = u1(t) and u̇1(t) ≤ λ(b1(t) −
d1(t)eu1(t)) ≤ λ(bM1 − dL

1 e
u1(t)),

2. if u2(t) ≥ u1(t) but u̇2(t) ≥ u̇1(t), then v(t) = u2(t) and u̇2(t) ≤ λ(b2(t) −
d2(t)eu2(t)) ≤ λ(bM2 − dL

2 e
u2(t)).

Denote b = max{bM1 , bM2 }, d = min{dL
1 , d

L
2 }, mn = max{h1n, h2n}, then

{
D+v(t) ≤ λ(b− dev(t)), t �= tn,
Δv(tn) ≤ λ ln(1 +mn), t = tn.

(12)

Integrating (12) over [0, T ], we have

−
q∑

n=1

ln(1 +mn) ≤ bT − d

∫ T

0

ev(t)dt,
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therefore,

∫ T

0

eui(ξi)dt ≤
bT +

q∑

n=1
ln(1 +mn)

d
(i = 1, 2),

so

ui(ξi) ≤ ln

⎡

⎢
⎢
⎣

bT +
q∑

n=1
ln(1 +mn)

dT

⎤

⎥
⎥
⎦ (i = 1, 2),

then

ui(t)≤ui(ξi) +
∫ T

0

|u̇i(t)|dt+

∣
∣
∣
∣
∣

q∑

n=1

ln(1 + hin)

∣
∣
∣
∣
∣

≤ln

⎡

⎢
⎢
⎣

bT +
q∑

n=1
ln(1 +mn)

dT

⎤

⎥
⎥
⎦ + 2(b̄i − D̄i)T

+2

∣
∣
∣
∣
∣

q∑

n=1

ln(1 + hin)

∣
∣
∣
∣
∣
= Mi (i = 1, 2). (13)

From (7) and (11), we have

∫ T

0

d2(t)eu2(η2)dt ≥
∫ T

0

d2(t)eu2(t)dt ≥ B2,

∫ T

0

d3(t)eu3(η3)dt ≥
∫ T

0

d3(t)eu3(t)dt ≥ B3.

that is

u2(η2) ≥ ln
(
B2

d̄2T

)

; u3(η3) ≥ ln
(
B3

d̄3T

)

.

Then

u2(t)≥ u2(η2) −
∫ T

0
|u̇2(t)|dt−

∣
∣
∣
∣

q∑

n=1

ln(1 + h2n)
∣
∣
∣
∣

≥ ln
(

B2
d̄2T

)
− 2(b̄2 − D̄2)T − 2

∣
∣
∣
∣

q∑

n=1
ln(1 + h2n)

∣
∣
∣
∣ = M3,

u3(t)≥ u3(η3) −
∫ T

0 |u̇3(t)|dt−
∣
∣
∣
∣

q∑

n=1
ln(1 + h3n)

∣
∣
∣
∣

≥ ln
[

B3
d̄3T

]
− 2(b̄3 − D̄3)T − 2

∣
∣
∣
∣

q∑

n=1
ln(1 + h3n)

∣
∣
∣
∣ = M4.
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So we have

B3 ≥
∫ T

0

[d3(t)eu3(ξ3) − a2(t)α(t)eM1

N(t) + eM1
]dt = d̄3Te

u3(ξ3) −
(

a2αeM1

N(t) + eM1

)

T,

that is

u3(ξ3) ≤ ln

⎡

⎢
⎣
B3 +

(
a2(t)α(t)eM1

N(t)+eM1

)
T

d̄3T

⎤

⎥
⎦ ,

Then

u3(t)≤ u3(ξ3) +
∫ T

0
|u̇3(t)|dt +

∣
∣
∣
∣

q∑

n=1
ln(1 + gn)

∣
∣
∣
∣

≤ ln

⎡

⎣
B3+

(
a2(t)α(t)eM1

N(t)+eM1

)

T

d̄3T

⎤

⎦ + 2b̄3T + 2
∣
∣
∣
∣

q∑

n=1
ln(1 + gn)

∣
∣
∣
∣

= M5.

Similarly,

B3≥
∫ T

0 [d3(t)eM5 − a2(t)α(t)eu1(η1)

N(t) ]dt,

that is

u1(η1) ≥ ln

[
d̄3e

M5T −B3
(

a2α
N

)
T

]

,

then

u1(t)≥ u1(η1) −
∫ T

0 |u̇1(t)|dt −
∣
∣
∣
∣

q∑

n=1
ln(1 + h1n)

∣
∣
∣
∣

≥ ln
[

d̄3eM5T−B3

( a2α

N )T

]

− 2(b̄1 − D̄1)T − 2
∣
∣
∣
∣

q∑

n=1
ln(1 + h1n)

∣
∣
∣
∣ = M6.

Thus, we have

sup
t∈[0,T ]

|u1(t)| ≤ max{|M1|, |M6|} = N1,

sup
t∈[0,T ]

|u2(t)| ≤ max{|M2|, |M3|} = N2,

sup
t∈[0,T ]

|u1(t)| ≤ max{|M4|, |M5|} = N3.

Obviously, there exists a constant N4 > 0 such that max{|u1|, |u2|, |u3|} < N4.
Take r > N1+N2+N3+N4, Ω = {x ∈ X |‖x‖c < r}, then N is L-compact on Ω.
So, for ∀ u = (u1, u2, u3)T ∈ ∂Ω

⋂
KerL, we have QNu �= 0. Let J : ImQ → x,

(d, 0, . . . , 0) → d. Then when u ∈ Ω
⋂

KerL, in view of the assumptions in
Mawhin’s continuation theorem, one obtains, deg{FQN,Ω⋂

KerL, 0} �= 0. By
now we have proved that Ω satisfies all the requirements in Mawhin’s continua-
tion theorem. Hence, (5) has at least one T -periodic solution in DomL ∩Ω. 
�
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4 Some Simulations

In this section, we shall discuss an example to illustrate main results. For system
(1), we take: tn = nω, b1(t) = 1 + 0.2 sin(t), d1(t) = 0.8 + 0.2 sin(t), a1(t) =
1 + 0.8 cos(t), α(t) = 1 + 0.2 sin(t), N(t) = 2 + sin(t), D1(t) = 0.2 + 0.1 sin(t),
b2(t) = 1 + 0.1 cos(t), d2(t) = 0.9 + 0.1 cos(t), D2(t) = 1 + 0.2 sin(t), b3(t) =
1+0.2 cos(t), d3(t) = 0.8+0.2 cos(t), a2(t) = 1+0.6 sin(t), h1n = 0.2, h2n = 0.2,
gn = 0.2. Obviously, all conditions of Theorem 1 are satisfied.

If ω = π/2, then system (1) under the above conditions has a unique 2π-
periodic solution (In Fig.1-Fig.4, we take [x1(0), x2(0), y(0)]T = [0.5, 0.6, 1]T ).
We find the occurrence of sudden changes in the figures of the time-series and
phase portrait. The influence of pulse is obvious.

If ω = 2, then (A2) is not satisfied. Periodic oscillation of system (1) under
the above conditions will be destroyed by impulsive effect. Numeric results (see
Fig.5) show that system (1) under the above conditions has Gui chaotic strange
attractor [6].
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0.7

x1(t)

0 50 100 150 200

t

Fig. 1. Time-series of x1(t) evolved in system (1) with ω = π/2
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Fig. 2. Time-series of x2(t) evolved in system (1) with ω = π/2
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Fig. 3. Time-series of y(t) evolved in system (1) with ω = π/2
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Fig. 4. Phase portrait of 2π-periodic solution of system (1) with ω = π/2
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Fig. 5. Phase portrait of chaotic strange attractor of system (1) with ω = 2
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