
Y. Wang and T. Li (Eds.): Knowledge Engineering and Management, AISC 123, pp. 559–565. 
springerlink.com                                   © Springer-Verlag Berlin Heidelberg 2011 

Study of Spatial Data Index Structure Based  
on Hybrid Tree 

Yonghui Wang1,2,3, Yunlong Zhu1, and Huanliang Sun3 

1 Shenyang Inst . of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
2 Graduate Sch. of Chinese Academy of Sciences, Beijing 100039, China 

3 School of Information and Control Engineering, Shenyang Jianzhu University,  
Shenyang 110168, China 

yonghuiwang@188.com 

Abstract. In order to improve the efficiency of spatial data access and retrieval 
performance, an index structure is designed, it solves the problem of low query 
efficiency of the single index structure when there are large amount of data. 
Through the establishment of correspondence between the logical records and 
physical records of the spatial data, the hybrid spatial data index structure is de-
signed based on 2K –tree and R-tree. The insertion, deletion and query algorithm 
are implemented based on the hybrid tree, and the accuracy and efficiency are 
verified. The experimental results show that the hybrid tree needs more storage 
space then R-tree, but with the data volume increasing the storage space needed 
declining relatively, and the hybrid tree is better than the R-tree in the retrieval 
efficiency, and with the data volume increasing the advantage is more obvious. 

Keywords: Spatial indexing, Index structure, 2K –tree, R-tree, hybrid tree. 

1   Introduction 

The spatial data index technology has been a key technology in spatial database sys-
tems, which directly influences the efficiency of accessing spatial data and the re-
trieval performance of the spatial index. A spatial data index describes spatial data 
stored in the media, establishing the logic records of spatial data and facilitating the 
correspondence among physical records, in order to improve the spatial efficiency of 
both data access and retrieval. The basic method of spatial data indexing is to divide 
the entire space into different search-areas, searching the spatial entities in these areas 
by a certain order. The usual spatial data indexing methods can be divided into two 
categories: one is a single index structure, such as the B tree , K-D tree , K-D-B trees, 
quad tree [1], R-tree[2-3] and its variant trees, the grid index, etc., in the case of large 
amounts of data, the retrieval efficiency of such indexes technology are relatively 
low; The other is to make use of hybrid index structure, such as the QR-tree [4], QR*-
tree and PMR tree etc., which adopts the strategy of four equal divisions of spatial da-
ta or super nodes. Therefore, when data distribution is non-uniform, production of the 
spatial index quad-tree will form serious imbalances, in other words, the height of the 
tree will increase greatly, which will seriously affect the speed of the query. This pa-
per aims to resolve this problem, integrating 2K -tree and R-tree, in accordance with 



560 Y. Wang, Y. Zhu, and H. Sun 

the conditions of data distribution; meanwhile, the goal is to make the overlap among 
intermediate nodes is as small as possible,  which establishes a kind of spatial data 
indexing structure based on a hybrid tree. In this structure, the segmentation of data 
space is based upon the conditions of the spatial data contained within; the height of 
the tree is log4n, which will serve to increase the speed of queries. 

2   Quad-Tree and R*-Tree 

2.1   Quad-Tree 

A quad-tree [1] is a kind of important hierarchical data structure, mainly used to ex-
press spatial hierarchy in two-dimensional coordinates. In fact, a 1-dimensional bi-
nary tree extended in 2-dimensional space which essentially is a 2K-tree (Unless oth-
erwise indicated, all 2K-tree are quad-trees) in which K is the dimension of spatial 
data. A quad tree with a root, in which each non-leaf node has four children (NE, 
NW, SW, SE), each node of quad tree corresponds to a rectangular area. Fig.1 shows 
an example of a quad-tree (a) and the corresponding spatial division (b).  
 

          

Fig. 1. Quad-tree (a) and its place division (b)    Fig. 2.  R*- tree (a) and its Space division (b) 

A quad-tree (2K-tree) is a distinct data structure in which hierarchical data structure 
can be set up easily. Not only does it the ability to apply denotation to the spatial targets; 
but, because of its ability to aggregate spatial objects, it can improve the performance of 
spatial searches. The index structure of quad-trees (2K-tree) have problems: The first oc-
curs when there are large amounts of index data – if levels of the quad tree are too small 
it will lead to a decrease in the search properties. The second occurs if levels of the quad 
tree are so large that it will lead to the increase in duplicate storage, thereby increasing 
the consumption of space, which will affect the search performance. 

2.2   R*-Tree 

In 1990, Beckmann proposed the R*-tree [5-6] by optimizing the R-tree. R*- tree has 
the same data structure with the R-tree, it is a highly balanced tree, which is made up of 
the intermediate nodes and leaf nodes, the minimum bounding rectangle of the actual 
object is stored in the leaf nodes and the intermediate node is made up by gathering the 
index range of  lower nodes (external rectangular). The number of child nodes hold by 
each node in R*- tree have the (M) under (m) limit, the (m) limit ensures the index to 
use the disk space effectively, the number of child nodes will be deleted if they are less 
than the (m) limit and the number of child nodes of nodes will be adjusted if they are 



 Study of Spatial Data Index Structure Based on Hybrid Tree 561 

greater than the (M) limit, if necessary, the original node will be divided into two new 
nodes. Fig.2 shows the R*-tree spatial division (a) and schematic (b). 

When the amount of target data increase, the depth of the R*-tree and the overlap 
of spatial index will increase, and searching is always starting from the root, finding 
the number of branches visited, as a result with the number of nodes increase corres-
pondingly and the finding performance will decline. And because of there is overlap 
among the regions, the spatial index may get the final result after searching several 
paths, which is inefficient in the case of large amount of data. 

3   Spatial Data Based on Hybrid Tree Index Structure 

Firstly, the quad dividing is carried out in the index space, according to the specific 
situation to determine the number of layers of quad division; then determining where 
the each objects included in index space is, constructing the R-tree corresponding to 
the index space for the objects included in index space [7-8]. A space object belongs 
to index space can fully contain the smallest space of index space. Therefore, the dif-
ferent ranges of space objects will be divided into different layers of the index space 
after a division, which is divided into different R-trees, these intermediate nodes with-
in the R-tree overlap will be reduced as much as possible, which effectively reduces 
the multi-redundancy operation of R-tree structure to improve retrieval performance 
in the case of massive data[9-10]. 

3.1   Hybrid Tree Structure 

A hybrid tree with depth of d from the macro view is a d-layer quad-tree, all the child-
ren space of the same floor where each of two disjoints and all of them together form 
the whole index space S0, the index space between father and son nodes is the rela-
tionship of inclusion, four children nodes corresponding to the index space is also 
each of two disjoints and they all together constitute index space of father nodes. Hy-
brid tree from the micro view totally contain the R-tree with the number ( n ൌ∑ 4௜ௗିଵ௜ୀ଴  ), in which each node of quad-tree has an R-tree corresponded, the R-tree is 
compliant with the classic R-tree structure completely [2-3]. 

When constructing hybrid tree, which the R-tree should be inserted into by the 
space object, follow the rules: For the space target r, supposed to locate in all levels of 
sub-index space divided by “Quad-tree”, the smallest index space completely sur-
rounds MBRr is Si, so the r should be inserted into the Ri of R-tree corresponded to 
Si. Fig.3 shows an example of spatial distribution to illustrate hybrid tree structure of 
depth 2: the smallest index space surrounding r1, r5, r9 r10 is S1 (Note: Although the 
S0 can also completely surround r1, it is not the “minimum”), they are inserted into 
R-tree R1 corresponding to S1, in the same way, r3, r4, r8, corresponding to the index 
space are: S2, S4 and S3, respectively. Therefore they are inserted into the R2, R4 and 
R3, which can completely contain the minimum index space of r2, r7, r11, r6 is R0, as 
a result  they correspond to the index space is R0, constructing a hybrid tree structure 
shown in Fig.4.  



562 Y. Wang, Y. Zhu, and H. Sun 

       

   Fig. 3. The Space division of hybrid tree           Fig. 4. The structure of hybrid tree 

3.2   Hybrid Tree Algorithm Description 

The insertion, deletion and search algorithms of Hybrid tree are to find the spatial 
goal at first, then call the corresponding R-tree algorithm operation. Supposed that the 
Root is the root node of hybrid tree, MBRobj is the minimum bound rectangle of the 
inserted object obj, CS as the given query space. 
 

Algorithm 1: Hybrid Tree Insertion Algorithm 
INSERT (Root, MBRobj)  
Input: Root is the root of the hybrid tree, MBRobj is the minimum bound rectangle 

of the object to be inserted obj; 
Output:  
BEGIN  
STEP 1: If the Root is leaf node, go to STEP 4;  
STEP 2: Traverse the child nodes of Root, if the index range of all child nodes can-

not surround MBRobj completely; Go to STEP 4; 
STEP 3: A child node can fully contain MBRobj as the new Root, go to STEP 1;  
STEP 4: Get the R-tree corresponding Root;  
STEP 5: Call the R-tree insertion algorithm to the insert MBRobj into the hybrid 

tree.  
END 

Algorithm 2: Hybrid tree Deletion Algorithm 
DELETE (Root, Obj)  
BEGIN  
STEP 1: If the Root is leaf node, go to STEP 4;  
STEP 2: Traverse the child nodes of Root, if the index range of all child nodes can-

not surround MBRobj completely; Switch to STEP 4; 
STEP 3: A child node can fully contain MBRobj as the new Root, go to STEP 1; 
STEP 4: Root access to the corresponding R-tree;  
STEP 5: Call the R-tree deletion algorithm, the data will be removed from the  

hybrid data.  
END 

 

 

 



 Study of Spatial Data Index Structure Based on Hybrid Tree 563 

Algorithm 3: Hybrid Tree Search Algorithm 
SEARCH (Root, CS)  
BEGIN  
STEP 1: If the Root index space corresponding to no overlap with the CS, go to 

STEP 4;  
STEP 2: If the Root is leaf node, and receive the R-tree corresponding Root, call 

the search algorithm of R-tree to find it;  
STEP 3: Traverse all the child nodes of Root, call SEARCH (Root-> Children, CS) 

followed by the recursive;  
STEP 4: End query.  
END 

4   Experiment Analyses 

     
       (a) Storage space comparison         (b) Disk pages comparison for insertion 
 

   
(c) Disk pages comparison for deletion     (d) Disk pages comparison for search 

Fig. 5. Result for 2D Random Data 

In order to verify the correctness and efficiency of mixed trees, using Visual C + + 6.0 
as a development tool to achieve the experiment process of R-tree and mixed tree, in 
the Windows Server 2003 Chinese operating system environment with a 2.4GHz Pen-
tium Ⅳ CPU, 1GB RAM, using both random and real data to test space overhead and 
the inserting, deleting,  and finding the visited disk number of pages of the mixed 
tree with different layers. The results are shown in Fig.5 & 6, which L_i (2 ≤ i ≤ 5) on 

32

34

36

38

40

42

44

46

0 100 200 300 400 500 

S
to

ra
ge

 s
pa

ce
 c

os
t (

B
yt

e)

Dataset size (x103)

R-Tree

L_2

L_3

L_4

L_5

1

2

3

4

0 100 200 300 400 500 

D
is

k 
ac

ce
ss

 p
ag

es
 (

pa
ge

)

Dataset size (x103)

R-Tree

L_2

L_3

L_4

L_5

D
is

k 
ac

ce
ss

 p
ag

es
 (

pa
ge

)

Dataset size (x103)

D
is

k 
ac

ce
ss

 p
ag

es
 (

pa
ge

)

Dataset size (x103)



564 Y. Wang, Y. Zhu, and H. Sun 

behalf of hybrid tree with depth (layers) of i. The amount of data in the figure refers 
to the number of spatial objects. From the figure we can see the results: the consumed 
space of the hybrid tree is generally larger than that of the R-tree. The amount of data 
is smaller in the hybrid tree structure under the lower space utilization, which will re-
sult in a waste of storage space; With the increasing of the amount of hybrid data, the 
space utilization of the mixed tree structure increases gradually, in the case of a large 
amount of data, mixed tree has a little space utilization, and is equal to R-tree space 
utilization. Because of the efficiency in the search algorithm, the hybrid tree index 
structure is always better than the R-tree, and the larger the amount of data and the 
deeper the layers of hybrid tree, the more obvious the advantages become. 
 

 
       (a) Storage space comparison          (b) Disk pages comparison for insertion 

    
(c) Disk pages comparison for deletion    (d) Disk pages comparison for search 

Fig. 6. Result for 2D Factual Data 

5   Conclusions 

The hybrid spatial data indexing structure based on 2K -tree and R-trees, which solves 
the problems of a single index structure with large amounts of data queried with a rela-
tively low efficiency. Deletion and search algorithms have been designed based on the 
analysis of the key technologies of spatial database systems. The experiments show that 
the accuracy and efficiency of the structure and algorithm of a hybrid tree index struc-
ture can carry out a quick search of spatial data and achieve satisfactory results. 
 

 
 

S
to

ra
ge

 s
pa

ce
co

st
(B

yt
e)

Dataset size

D
is

k 
ac

ce
ss

 p
ag

es
 (

pa
ge

)

Dataset size

D
is

k 
ac

ce
ss

 p
ag

es
 (

pa
ge

)

Dataset size

D
is

k 
ac

ce
ss

 p
ag

es
 (

pa
ge

)

Dataset size



 Study of Spatial Data Index Structure Based on Hybrid Tree 565 

Acknowledgments. The work is supported by National Natural Science Foundation 
of China (61070024), The National Key Technology R&D Program (2008BAJ08B08-
05) and Liaoning Provincial Natural Science Foundation of China under grant 
(20092057). 

References 

1. Samet, H.: The Quadtree and Related Hierarchical Data Structures. ACM Comp. Surveys, 
47–57 (1984) 

2. Guttman, A.: R-Tree: A Dynamic Index Structure for Spatial Searching. In: Proc ACM 
SIGMOD (June 1984) 

3. Brakatsoulas, S., Pfoser, D., Theodoridis, Y.: Revisiting R-tree construction principles. In: 
Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, p. 149. Springer, Hei-
delberg (2002) 

4. Li, G., Li, L.: A Hybrid Structure of Spatial Index Based on Multi-Grid and QR-Tree. In: 
Proceedings of the Third International Symposium on Computer Science and Computa-
tional Technology, pp. 447–450 (August 2010) 

5. Beckmann, N., Kriegel, H.P., Schnieider, R., et al.: The R*-tree: An Efficient and Robust 
Access Method for Points and Rectangles. In: Proc ACM SIGMOD, Atlantic City, USA, 
pp. 300–350 (1990) 

6. Seeger, B.: A revised r*-tree in comparison with related index structures. In: Proceedings 
of the 35th SIGMOD International Conference on Management of Data, pp. 799–812. 
ACM (2009) 

7. Gao, C., Jensen, C.S.: Efficient retrieval of the top-k most relevant spatial web objects. 
Proceedings of the VLDB Endowment 2(1), 337–348 (2009) 

8. Luaces, M.R., Paramá, J.R., Pedreira, O., Seco, D.: An ontology-based index to retrieve 
documents with geographic information. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 
2008. LNCS, vol. 5069, pp. 384–400. Springer, Heidelberg (2008) 

9. Luaces, M.R., Places, Á.S., Rodríguez, F.J., Seco, D.: Retrieving documents with geo-
graphic references using a spatial index structure based on ontologies. In: Song, I.-Y., Piat-
tini, M., Chen, Y.-P.P., Hartmann, S., Grandi, F., Trujillo, J., Opdahl, A.L., Ferri, F., Gri-
foni, P., Caschera, M.C., Rolland, C., Woo, C., Salinesi, C., Zimányi, E., Claramunt, C., 
Frasincar, F., Houben, G.-J., Thiran, P. (eds.) ER Workshops 2008. LNCS, vol. 5232, pp. 
395–404. Springer, Heidelberg (2008) 

10. Shen, H.T., Zhou, X.: An adaptive and dynamic dimensionality reduction method for high-
dimensional indexing. The International Journal on Very Large Data Bases 16(2), 219–234 
(2007) 


	Study of Spatial Data Index Structure Based 
on Hybrid Tree
	Introduction
	Quad-Tree and R*-Tree
	Quad-Tree
	R*-Tree

	Spatial Data Based on Hybrid Tree Index Structure
	Hybrid Tree Structure
	Hybrid Tree Algorithm Description

	Experiment Analyses
	Conclusions
	References




