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Abstract. Clustering with background information is highly desirable in many 
business applications recently due to its potential to capture important 
semantics of the business/dataset. Must-Link and Cannot-Link constraints 
between a given pair of instances in the dataset are common prior knowledge 
incorporated in many clustering algorithms today. Cop-Kmeans incorporates 
these constraints in its clustering mechanism. However, due to rapidly 
increasing scale of data today, it is becoming overwhelmingly difficult for it to 
handle massive dataset. In this paper, we propose a parallel Cop-Kmeans 
algorithm based on MapReduce- a technique which basically distributes the 
clustering load over a given number of processors. Experimental results show 
that this approach can scale well to massive dataset while maintaining all 
crucial characteristics of the serial Cop-Kmeans algorithm. 

Keywords: Parallel Clustering, Cop-Kmeans Algorithm, MapReduce. 

1   Introduction 

Clustering algorithms are often useful in applications in various fields such as data 
mining, machine learning and pattern recognition. They conduct a search through a 
space of a dataset, grouping together similar objects while keeping dissimilar objects 
apart, as much as possible. Normally this search proceeds in an entirely unsupervised 
manner. For some domains, however, constraints on which instances must (ML) or 
cannot (CL) reside together in the same cluster either are known or are computable 
automatically from background knowledge [1]. Cop-Kmeans is one popular clustering 
algorithm which has incorporated these instance based constraints in its clustering 
mechanism [2]. The approach in this algorithm has been shown to be successful in 
guiding the clustering process toward more accurate results. However this algorithm 
only works satisfactorily with relatively small dataset, when the size of the dataset is 
very large it becomes terribly slow. 

With the rapid development of information technology, data volumes processed by 
typical business applications are very high today which in turn pushes for high 
computational requirements. To process such massive data, a highly efficient, parallel 
approach to clustering needs to be adopted. Recently, several attempts have been 
made to improve the applicability of K-Means algorithm for massive applications 
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through parallelization [3-5]. To our knowledge though, widely used semi-supervised 
clustering algorithms are serial and can only run on a single computer. This greatly 
hinders their capability to handle very large dataset. 

Cop-Kmeans is probably the most popular semi-supervised clustering algorithm 
that has been used in a variety of applications [2]. Due to its popularity, we believe 
that proposing a parallel version based on MapReduce can be of significant use to the 
clustering community. MapReduce is a parallel programming model for processing 
huge dataset using large numbers of distributed computers (nodes), collectively 
known as a cluster [6]. The major contributions of this work are two folds. First is to 
address the issue of constraint-violation in Cop-Kmeans by emphasizing a sequenced 
assignment of cannot-link instances after conducting a Depth-First Search of the 
cannot-link set. Second is to reduce the computational complexities of Cop-Kmeans 
by adopting a MapReduce Framework.  

The rest of the paper is organized as follows; Section 2 introduces the underlying 
mechanism of Depth-First Search and further illustrates its role in solving constraint-
violation in Cop-Kmeans. Section 3 presents our approach and the proposed parallel 
Cop-Kmeans algorithm based on MapReduce framework. Section 4 presents our 
experimental results as well as evaluation for the proposed algorithm. Finally we draw 
our conclusions and future work in Section 5. 

2   Parallel Cop-Kmeans Algorithm Based on MapReduce 

2.1   Depth-First Search 

Depth-First Search (DFS) is a general technique for traversing a graph whose 
principal is “going forward (in depth) while there is such possibility, otherwise 
backtrack”. The mechanism is about choosing a starting vertex and then explore as far 
as possible along each branch before backtracking. Fig. 1 illustrates the process of 
Depth-First Search. 

 

 
 

Fig. 1. Depth-First Search 

 
The overall depth first search algorithm will simply initializes a set of markers so 

we can tell which vertices are visited, chooses a starting vertex A, initializes a tree T 
to A, and calls DFS(A). Then, we traverse the graph by considering an arbitrary edge 
(A, B) from the current vertex A. If the edge (A, B) takes us to a visited vertex B, then 
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we back down to the vertex A. On the other hand, if edge (A, B) takes us to an 
unvisited vertex B, then we paint the vertex B and make it our current vertex, and 
repeat the above computation. When we get to a point where all the edges from our 
current vertex take us to visited vertices, we then backtrack along the edge that 
brought us to that point. We take the immediate visited vertex that we find on the way 
back, make it our current vertex and start the computations for any edge that we 
missed earlier. When the depth-first search has backtracked all the way back to the 
original source vertex, A, it has built a DFS tree of all vertices reachable from that 
source. 

2.2   Solving Constraint-Violation in Cop-Kmeans Algorithm 

Whereas clustering with pairwise constraints is generally proven to enhance the 
conventional K-Means, it is often associated with a problem of constraint-violation; 
this brings about failure in hard-constrained clustering algorithms like Cop-Kmeans 
[2] when an instance has got at least a single cannot-link in every cluster. For this to 
occur, it can be caused by two situations: either there is no feasible solution for that 
particular clustering or a wrong decision about the assignment order of instances to 
clusters was made. 

Definition 1. Feasibility Problem [7]: Given a dataset X, a collection of constraints 
C, a lower bound Kℓ and an upper bound Ku on the number of clusters, does there 
exists a partition of X into k groups such that Kℓ ≤ k ≤ Ku and all the constraints in C 
are satisfied?   

Definition 2 [7]: A feasibility problem instance is β-easy if a feasible solution can be 
found by an algorithm β given the ordering of instances in the training set which 
determines the order they will be assigned to clusters. 

From definitions 1 and 2, we can see that much as there could be a feasible 
solution for a particular clustering, it may not be necessarily easy to find one. As it is 
interpreted in Brook’s theorem [7], that it is only when the number of CL constraints 
involving on instance is less than K (number of clusters), that one is assured of a 
feasible solution regardless of the order in which instances are assigned to clusters. 
Since this condition is not always the case, previous work [8, 9] have studied the 
problem of constraint-violation and used different approaches to solve it in Cop-
Kmeans Algorithm. 

The solution in this work capitalizes on re-arranging the CL-set (before 
assignment) in a sequence such that any CL instance will have at least one cluster for 
assignment. This kind of sequence is produced by the Depth-First Search function in 
Algorithm 1 below. In the Depth-Search mechanism, clustering under CL constraints 
is looked at as traversing a graph. The vertices represent the CL-Instances, edges 
representing the CL between any two instances while the path of traversing it 
represents the order of assigning the CL-Instances to clusters. 

For simplicity let’s illustrate this process using Fig. 1 above: where {C ≠ (A, B),  
C ≠ (A, C), C ≠ (A, D), C ≠ (A, E), C ≠ (B, C), C ≠ (C, D), C ≠ (C, E)}. From this 
CL-Set we can observe that the maximum number of CL involving one instance, Δ is 
4. Assuming K is 4 and taking Brook’s theorem into consideration, a conventional 
Cop-Kmeans could easily fail due to constraint-violation. Since it has no clear 
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mechanism for sequencing CL instances before assignment, it is possible to assign 
{A, D, B, E, C} in that order, supposing that A, D, B and E are each assigned to a 
different cluster, then C will have no feasible cluster for assignment. On the other 
hand, using the depth-first search to traverse this CL-Set (graph), the CL instances 
will be sequenced in a stack produced by a specific path depending on the first CL 
instance encountered. For example if we consider the path in Fig. 1 the following 
stack will be produced {A, B, C, A, D, A, E, A} in which case all red-colored 
instances represent back edged vertices. Note that since the principal of a stack is 
“Last-in-First-out”, these CL-instances will be assigned in the order {A, E, D, C, B} 
in which case even if (worst scenarios) A, E, D and C are each assigned to a different 
cluster, B could still be assigned in either D or E and there could not be any 
constraint-violation and hence no failure of the algorithm. Although back edged 
vertices (instances) may appear more than once in the stack, they can only be assigned 
once in the cluster as shown in the order above. Note that the DFS mechanism ensures 
that while the first CL instance encountered may be randomly selected, instances with 
the highest degree (highest number of CL involving a single instance) are always 
among the first to be assigned. This means that most of those instances involved in 
CL with these higher degree instances could have a high chance of being assigned 
together in the same cluster since most of them may not necessarily have CL ties 
among themselves. 

3   Parallel Cop-Kmeans Algorithm Based on MapReduce 

In this section, we present the proposed parallel Cop-Kmeans algorithm, but prior to 
that, we introduce the underlying mechanism of the core approach used in this 
algorithm namely: MapReduce.  

3.1   The MapReduce Framework 

MapReduce is a programming model introduced by Google to support distributed 
computing of large dataset on clusters of computers. The name “MapReduce” was 
inspired by the “map” and “reduce” functions in the functional programming. Users 
specify the computations in terms of “map” and “reduce” functions and the 
underlying runtime system automatically parallelizes the computation across a large 
cluster of computers, handles machine failures and schedules inter-computer 
communication to make efficient use of the network and the disks. This enables 
programmers with no experience with distributed systems to easily utilize the 
resources of a large distributed system. 

In MapReduce [3], the Map function processes the input in the form of key/value 
pairs to generate intermediate key/value pairs, and the Reduce function processes all 
intermediate values associated with the same intermediate key generated by the Map 
function. Fig. 2 below illustrates the different phases of MapReduce model. 
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Fig. 2. The MapReduce model 

3.2   The Proposed Cop-Kmeans Algorithm Based on MapReduce 

The underlying idea behind the original Cop-Kmeans algorithm is to assign each 
instance in the dataset to the nearest feasible cluster center. We can see that the 
algorithm involves typically three steps: calculating the shortest distance between 
each instance and the cluster centers, assigning instance while avoiding constraint-
violation and updating cluster centers. From the serial point of view, all these steps 
are handled by a uniprocessor and all the concerned data is kept in its local memory. 
However, in order to incorporate these tasks in MapReduce model, some crucial 
modifications must be made.  

Map-Function. Ideally, since the task of distance computations is so bulky and 
would be independent of each other, it is reasonable to execute it in parallel by the 
Map function. The challenge about this is that the next task of assigning the instance 
to the cluster center with which it has the shortest distance takes into consideration 
constraint-violation. This would mean dependence on assignment of instances in other 
mappers which could have a ML or CL with the instance in question. To overcome 
this issue and simplify, we generate constraints from the partial dataset allocated to 
each mapper. This would ensure that distance computations and considerations of ML 
and CL are purely independent of other mappers. This map function outputs 
intermediate data to be used in the Reduce function. 

Algorithm 1 shows the map function of our proposed parallel Cop-Kmeans. 
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Algorithm 1: Map Function 

Input: Partial dataset X (Key, Value), K Global initial centers  
Output: (Key, Value) pairs where the value is the instance information, while the  
key represents its closest center 
(1)  Generate ML and CL constraints from the partial dataset X 
(2)  For every randomly selected instance xi in X; 
      (a) if xi is a CL-instance, create an empty stack S, then Depth- First Search  
(xi, CL) is implemented. 
      (b) else assign it to the nearest cluster Cj such that Violate-constraints (xi, 
Cj, ML,  CL) returns false. If no such cluster is found, return {}.                   
(3)  Take index of closest cluster as Key 
(4)  Take the instance information as value 
(5)  Return (Key, Value) pair 
 
 Depth-First Search  (xi, CL) 
(1) Visit xi;  
(2)  Insert xi into S. 
(3)  For each child wi of xi 
       if wi is unvisited (not in S) 
        { 
          Depth-First Search (wi, CL); 
          Add edge (xi,wi) to tree T; 
          } 
(4)  For every instance Si in S (Last-in First-out), assign it to the nearest cluster Cj 
such that Violate-constraints (Li, Cj,ML, CL) returns false. If no such cluster is 
found, return {}. 
 
Violate-constraints (object xi, cluster C, must-link constraints ML, cannot-link 
constraints CL) 
(1)  If xc is already in cluster C and (xi, xc) ϵ CL, return true. 
(2)  If xm is already assigned to another cluster other than C and (x, xm) ϵ ML,  
return true. 

 
Reduce Function. The Reduce Function gets its input from the Map Function of each 
mapper (host). As shown in algorithm 1 above, in every mapper, the map function 
outputs a list of instances each labeled with its closest center. Therefore it follows 
that, in each mapper, all instances labeled with same current cluster center are sent to 
a single reducer. In the reduce function, the new cluster center can be easily computed 
by averaging all the instances in the reducer. Algorithm 2 details the Reduce Function 
of the parallel Cop-Kmeans.  
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Algorithm 2: Reduce Function (Key, L) 
Input: Key is the index of a particular cluster, L is the list of instances assigned to 
the cluster from different mappers  
Output: (Key, Value) where, key is the index of the cluster, Value is the 
information representing the new centre 

 
(1)  Compute the sum of values for each dimension of the instances assigned to 

the particular cluster. 
(2)  Initialize the counter  to record the number of instances assigned to the 

cluster                 
(3)  Compute the average of values of the instances assigned to the cluster to 

get coordinates of the new centre. 
(4)  Take coordinates of new cluster centre as value. 
(5)  Return (Key, Value) pair 
 

 
As shown in the algorithm 2, the output of each reducer is consequently the cluster 

index (key) and its new coordinates (value). The new centers are then fed back to the 
mappers for the next iteration and this goes on until convergence.  

4   Experiments 

4.1   Experimental Methodology 

To evaluate the performance of the improved Cop-Kmeans, we have compared it with 
original Cop-Kmeans with respect to their proportions of failure (constraint-violation) 
and F-measures. For this purpose, we used four UCI numerical dataset namely: Iris 
(150, 4, 3), Wine (178, 13, 3), Zoo (101, 16, 7) and Sonar (208, 60, 2).The figures in 
the brackets indicate the number of instances, number of attributes and number of 
classes for each dataset respectively. In this set of experiments, for a given number of 
constraints, each of the two algorithms was run 100 times on a dataset. Note that in 
both algorithms, initial cluster centers and all pairwise constraints are randomly 
generated from the dataset. Also note that both algorithms are designed to return an 
empty partition (fail) whenever constrain-violation arises. With increasing number of 
constraints as inputs, we generated corresponding average proportions of failure and 
F-measure for each algorithm running on a given dataset (see Fig. 3 and Fig. 4). 

In the second set of experiments, we evaluate the efficiency of the proposed 
parallel Cop-Kmeans with respect to Speedup and Sizeup characteristics. Note that 
the idea behind this algorithm is to intelligently distribute the computational workload 
across a cluster of computer nodes. In this set of experiment therefore we don’t 
evaluate accuracy but rather efficiency of the parallel Cop-Kmeans in processing 
massive dataset. The experiments were run on Hadoop MapReduce platform of four 
nodes; each having 2.13 GHz of processing power and 2GB of memory. And in this 
part, we use USCensus1990 dataset (823MB) which owns 68 categorical attributes. 
Many of the less useful attributes in the original dataset have been dropped, the few 
continuous variables have been discretized and the few discrete variables that have a 
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large number of possible values have been collapsed to have fewer possible values. 
For comparison purposes, we divided the dataset into 4 groups of files, approximately 
having 200MB, 400MB, 600MB and 800MB in that order.  

Speedup of a parallel system is defined by the following formula:  

Speedup (p) = T1/TP (1) 

Where p is the number of nodes, T1 is the execution time on one node and TP is the 
execution time on p nodes. To measure the Speedup of a parallel system, we keep the 
dataset constant while increasing the number of nodes in the system. In the 
experiment, we compared the Speedup performances produced when dataset of 
varying sizes are given as inputs.  

On the other hand, the Sizeup metric is defined by formula (2): 

Sizeup (D, p) = TSP/TS1  (2) 

where D is the size of the dataset, p is the multiplying factor of the dataset, TSP is the 
execution time for p * D, TS1 is the execution time for D. To measure the Sizeup of a 
system, we keep the number of nodes in the system constant while growing the size of 
the dataset by p. For our experiment, we compared the Sizeup performances produced 
by fixing the number of nodes in the system to 1, 2, 3, and 4. 

4.2   Experimental Results 

Fig. 3 below depicts the average proportion of failures out of the 100 runs for both the 
original Cop-Kmeans and the improved Cop-Kmeans at a given number of constraints 
as input. It can be observed from the Fig. 3 (left) that in Cop-Kmeans, the proportion 
of failure worsens as more constraints are given. On the other hand, when the Depth-
First Search mechanism is used to sequence CL-instances before assignment in the 
improved Cop-Kmeans, there is no single case of failure as shown in the Fig. 3 
(right). The improvement also extends in terms of accuracy where Fig. 4 below shows 
relatively higher instances of average F-measures in our improved Cop-Kmeans 
compared to the original Cop-Kmeans on two dataset. The results at each point on the 
curve are obtained by averaging the F-measures over the 100 runs for a given number 
of constraints. Note that in both algorithms, initial cluster centers and all pairwise 
constraints are generated randomly from the dataset. 

Fig. 5 reports the Speedup and Sizeup evaluations for our proposed parallel Cop-
Kmeans Algorithm. As shown in the Fig. 5 (left), for each dataset, we increase the 
number of nodes in the system while reporting corresponding Speedup for that 
dataset. It can be noted that the results show a good Speedup performance for our 
proposed parallel Cop-Kmeans. Further more, it can be noted that as the size of the 
dataset increases, also Speedup performance increases; an indication that indeed our 
parallel algorithm can efficiently handle massive dataset. Sizeup evaluation also 
shows good performance of the parallel Cop-Kmeans. From the results (see Fig. 5 
(right)), we can observe that as we increase the number of nodes in the system, we get 
better results for Sizeup. 
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Fig. 3. Proportion of Failure for Cop-Kmeans and Improved Cop-Kmeans 

 

Fig. 4. The Average F-measures for Cop-Kmeans and Improved Cop-Kmeans 

 

Fig. 5. Speedup and Sizeup evaluations of parallel Cop-Kmeans algorithm 

5   Conclusion 

In this paper, we proposed a parallel Cop-Kmeans Algorithm based on MapReduce 
Framework. This Algorithm adopts two crucial mechanisms: Depth-First Search and 
MapReduce. Inspired by the sensitivity to assignment order of instances, DFS 
capitalizes on sequencing CL-instances in a way that will not allow constraint-
violation to happen. Results from our experiments confirm that this improvement 
enhances the accuracy of Cop-Kmeans without a single case of failure. Parallelizing 
the algorithm on a MapReduce Framework also gave positive results in term of 
speeding up and sizing up the computational processes and hence our proposed 
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algorithm confirmed efficient applicability to massive dataset typical to today’s 
business applications. 
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