
Partial Key Exposure: Generalized Framework

to Attack RSA

Santanu Sarkar

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
sarkar.santanu.bir@gmail.com

Abstract. In the domain of modern public key cryptography, RSA is
the most popular system in use. Efficient factorization of the RSA mod-
ulus N , constituted as a product of two primes p, q of ‘large’ bitsize, is a
challenging problem in RSA cryptanalysis. The solution to this factoriza-
tion is aided if the attacker gains partial knowledge about the decryption
exponent of RSA. This line of attack is called the Partial Key Exposure
attack, and there exists an extensive literature in this direction.

In this paper, we study partial key exposure attacks on RSA where
the number of unexposed blocks in the decryption exponent is more
than one. The existing works have considered only one unexposed block
and thus our work provides a generalization of the existing attacks. We
propose lattice based approaches to factorize the RSA modulus N = pq
(for large primes p, q) when the number of unexposed blocks is n ≥ 1.
We also analyze the ISO/IEC 9796-2 standard signature scheme (based
on CRT-RSA) with partially known messages.

Keywords: Factorization, ISO/IEC 9796-2 Signature, Lattice, Partial
Key Exposure, RSA.

1 Introduction

RSA cryptosystem, publicly proposed in 1978 and named after its inventors Ron
Rivest, Adi Shamir and Len Adleman, is the most popular Public Key Cryp-
tosystem till date. One can describe the RSA scheme in a nutshell as follows [15].

Cryptosystem 1 (RSA). Let us define N = pq where p and q are primes. By
definition of the Euler totient function, φ(N) = (p− 1)(q − 1).

– KeyGen: Choose integer e co-prime to φ(N) and find d = e−1 mod φ(N).
– KeyDist: Publish public key 〈N, e〉 and keep private key 〈N, d〉 secret.
– Encrypt: For message M ∈ ZN , ciphertext C = M e mod N .
– Decrypt: For ciphertext C, message M = Cd mod N .

For encryption and decryption in RSA cryptosystem, one needs modular expo-
nentiation. To reduce the cost of encryption, one can take a small e. In such a
case, d becomes quite large, i.e., of the order of N , and the decryption process

D.J. Bernstein and S. Chatterjee (Eds.): INDOCRYPT 2011, LNCS 7107, pp. 76–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Partial Key Exposure: Generalized Framework to Attack RSA 77

will be much less efficient than the encryption. Consider that one likes to make
the decryption process faster. Then the secret decryption exponent d has to be
made small. However, Wiener [17] showed that when d < 1

3N
0.25, one can fac-

tor N efficiently, thus making RSA insecure. This result has been improved by
Boneh and Durfee [3] to provide the upper bound d < N0.292.

Attacks Based on Partial Knowledge of d. Kocher [13] proposed a new
attack on RSA to obtain the private exponent d. He showed that an attacker
can get a few bits of d by timing characteristic of an RSA implementing device.
In [2], it has been studied how many bits of d need to be known to mount an
attack on RSA. The constraint in the work of [2] was the upper bound on e which
is
√
N . The study attracted interest and the idea of [2] has been improved in [1]

where the bound of e was increased upto N0.725. Then the work of [7] improved
the result for full size public exponent e. These attacks require knowledge of
contiguous blocks of bits of the RSA secret keys. The results of Ernst et al. [7]
are as follows:

Theorem 1. Let N = pq be an RSA modules with p, q are of same bit size. Let
e be of full bit size and d ≤ N δ. Then given (δ − γ) logN Most Significant Bits
of d, one can factor N in polynomial time if

– γ < 5
6 − 1

3

√
1 + 6δ or

– γ < β
3 + 1

2 − 1
3

√
4β2 + 6β where β = max{γ, δ − 1

2}

Attacks on a CRT-RSA signature scheme. CRT-RSA is used to devise
one of the most popular digital signature schemes. To sign a message m, one
first needs to calculate

sp = mdp mod p and sq = mdq mod q.

Now the signature s for modulus N = pq can be computed using CRT with sp
and sq. Boneh et al. [4] showed that CRT-RSA implementations are vulnerable
due to fault attacks. Suppose the attacker is able to induce a fault while sq is
being calculated, such that sq �= mdq mod q. Then using the faulty signature s,
the attacker can factor N as gcd(se−m,N) = p. The attack of Boneh et al. also
works for any deterministic RSA encoding or any probabilistic signature scheme
where some randomness is used to generate the signature and is also sent as
a part of the signature. However, if some part of the message is unknown, the
attack of Boneh et al. does not work any more. Recently Coron et al. [5,6] showed
how to use the same idea in such a situation, and their attack was illustrated
against ISO/IEC 9796-2 standards [11]. In ISO/IEC 9796-2, the encoded message
is of the form

μ(m) = 6A16 || m[1] || H(m) || BC16,

where m = m[1] || m[2] is split into two parts. Note that H(m), the hash value
of m is unknown to the attacker. Coron et al. proved that when unknown part of
m[1] is small, one can factor N efficiently, thus making the scheme vulnerable.

78 S. Sarkar

1.1 Our Contribution

Motivated by the work of [8], we consider the situation where a few contiguous
blocks of the RSA secret exponent d are unknown, and the encryption exponent
e is of full bit size. In such a situation, the reconstruction idea of [9] will not work
as e is of full bit size. We propose a lattice based approach to handle the situation.
In [7], authors analyzed the case when number n of unknown contiguous blocks
is one. We prove that when the number n of unknown blocks increases, one needs
more bits to be known for polynomial time factorization of N .

We prove the apparently surprising result that even for an arbitrary n number
of blocks, only (δ + 1

2

√
1 + 4δ − 1) logN bits of d(= N δ) are sufficient to recon-

struct the complete d in the case when d < N0.75. Note that as long as δ < 0.275,
δ + 1

2

√
1 + 4δ − 1 is less than zero. Although the runtime of our reconstruction

algorithm is polynomial in logN , it is exponential in the number of unknown
blocks n. So, in case n = O(poly(log logN)), our algorithm is a poly(logN) time
algorithm.

Next, we consider the case when a large block MSBs of d is exposed. Using
these known MSBs of d, we propose another lattice based approach. We prove
that if attacker knows d0 such that |d− d0| < N δ− 1

2 , the knowledge of
√

2

(
δ − 1

2

)2

+

(
δ − 1

2

)
· logN

many bits of d is sufficient for the factorization of N in time polynomial in logN
but exponential in n.

Finally, we turn our attention to the CRT-RSA signature scheme, and consider
the case where two faults occur for the two different primes individually. That
is attacker inject a fault modulo p for one signature, and a fault modulo q for
another signature. Let the sizes of the unknown blocks for each of the messages
for two faulty signatures be δ1 logN, · · · , δn logN and the size of hash value be
γ logN . We prove when

δ1 + · · ·+ δn + γ <
n+ 2

2(2n+ 3)
,

one can factor N in time polynomial in logN but exponential in n. For the case
n = 1, i.e., if the size of the unknown block of each of the messages is δ logN
and the size of the hash value is γ logN , the approach of Coron et al. [5] works
if δ + γ < 0.167. Putting n = 1 in our bound, we obtain the upper bound as
0.30. The idea of using Coppersmith’s method to improve on the bound 0.167,
was already suggested in [5].

Organization. In summary, our work in this paper is stated and organized as
follows.

– In Section 2, we study partial key exposure attacks when more than one
block of d is unknown. In Section 3, we consider the case when a large block
of MSBs of d is known.

Partial Key Exposure: Generalized Framework to Attack RSA 79

– In Section 4, we present our attack on ISO/IEC 9796-2 standard signature
scheme with partially known messages.

Our approaches are based on the technique of [12], which itself follows from the
idea of [10]. For all the results that we obtain in this paper related to lattice
based techniques, we need the following assumption. For brevity, we do not refer
to this assumption in each of the results, though it should be considered implied
in each of them.

Assumption 1. Let lattice reduction be executed using the idea of LLL [14]
algorithm leading to polynomials in u variables. Consider that LLL outputs
the polynomials f1, f2, . . . , fi, i ≥ u, that have a common root. Then one can
efficiently compute this root from f1, f2, . . . , fi using techniques like calculation
of resultants of these polynomials or finding a Gröbner basis.

We have implemented all the programs in SAGE 3.1.1 over Linux Ubuntu
8.04 on a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB
RAM and 2 MB Cache. In all cases except in Section 4 we take a 1024-bit RSA
modulus N . In Section 4, we consider both 1024-bit and 2048-bit RSA moduli.

2 General Attacks Based on Partial Knowledge of d

In this section we consider the scenario when certain blocks of the decryption
exponent d are known (exposed) and naturally the other parts are unknown
(unexposed). Figure 1 provides a pictorial view of the attack model.

d

Known/Unknown Unknown Known Unknown · · · · · · · · · · · ·
· · · · · ·

Known/Unknown

Fig. 1. Exposed and unexposed blocks of d

Before proceeding further, let us state the following technical result [16] that
we will be using later.

Proposition 1. For any fixed positive integer r ≥ 1, and a large integer m,

m∑

t=1

tr =
mr+1

r + 1
+ o(mr+1).

Theorem 2. Let e be O(N) and d ≤ N δ. Suppose the bits of d are exposed
except n many blocks, each of size γi logN bits for 1 ≤ i ≤ n. Then one can
factor N in polynomial in logN but exponential in n time if

n∑

i=1

γi < 1− 1

2(n+ 2)
− n+ 1

2(n+ 2)

√

4δ + 1 +
4δ

n+ 1
.

80 S. Sarkar

Proof. Since d is unknown for n many blocks, one can write d = a0+a1y1+ . . .+
anyn, where y1, y2, . . . , yn are unknown. Now from ed = 1 + k(N + 1 − p − q),
so we have ea0 + ea1y1 + . . .+ eanyn − 1− k(N + 1− p− q) = 0. Hence, we are
interested to find the root of the polynomial

f(x1, . . . , xn+1, xn+2) = ea0 + ea1x1 + . . .+ eanxn − 1 +Nxn+1 + xn+1xn+2.

Clearly, f (y1, . . . , yn,−k, 1− p− q) = 0. Let, Xi = Nγi for 1 ≤ i ≤ n,Xn+1 =
N δ, Xn+2 = N0.5. Clearly, X1, . . . , Xn+2 is the upper bound of absolute value of
y1, . . . , yn,−k, 1−p− q, neglecting small constants. Using the extended strategy
of [12, Section 2.2], we define

S =
⋃

0≤j≤t

{xi1
1 xi2

2 . . . x
in+2+j
n+2 : xi1

1 xi2
2 . . . x

in+2

n+2 is a monomial of fm}

M = {monomials of xi1
1 xi2

2 . . . x
in+2

n+2 f : xi1
1 xi2

2 . . . x
in+2

n+2 ∈ S}

where m, t are non-negative integers. To use Coppersmith’s method, it suffices
to find at least n+ 1 more polynomials f1, f2, . . . fn+1 that share the same root
(y1, . . . , yn,−k, 1− p− q) over the integers.

Considering a fixed n, we know from [12] that these polynomials can be found
by LLL [14] algorithm in poly(logN) time if

Xs1
1 Xs2

2 · · ·Xsn+2

n+2 < W s

for sj =
∑

x
i1
1 ···xin+2

n+2 ∈M\S ij with j = 1, . . . , n+ 2, s = |S|, and

W = ||f(x1X1, . . . xn+2Xn+2)||∞ ≥ NXn+1 = N1+δ.

The calculation’s of s, s1, . . . , sn+2 are quite tedious and those are presented
Appendix A. From the structure of the polynomial f , it is clear that s1, . . . , sn
are equal. We get,

s ≈ mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
,

s1 = · · · = sn ≈ mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
,

sn+1 ≈ 2mn+2

(n+ 2)!
+ t

mn+1

(n+ 1)!
,

sn+2 ≈ mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
+

t2mn

2n!

Consider t = τm, where τ ≥ 0 is a real number. Now putting values of
X1, . . . , Xn+2 and s1, . . . , sn+2, s, and the lower bound of W in

Xs1
1 Xs2

2 . . .X
sn+2

n+2 < W s,

Partial Key Exposure: Generalized Framework to Attack RSA 81

we get

(
1

4
n2 +

3

4
n+

1

2

)
τ2+

(

n

n∑

i=1

γi + 2

n∑

i=1

γi − 1

2
n− 1

)

τ+

(
n∑

i=1

γi + δ − 1

2

)

< 0.

(1)

The optimal value of τ is
1−2

∑n
i=1 γi

n+1 . Putting this optimal value of τ in Equa-
tion (1), we get

n∑

i=1

γi <
(2n2 + 3n)−√

4n4δ + n4 + 12n3δ + 2n3 + 8n2δ + n2

2(n2 + 2n)
.

From which we have the required condition.
Using the strategy of [12, Section 2.2], one can construct a lattice L from

S,M . The bit size of the entries of L is poly(logN), and

dim(L) = |M | = (m+ 1)n+2

(n+ 2)!
+

t(m+ 1)n+1

(n+ 1)!
+ o((m + 1)n+2).

The running time of our algorithm is dominated by the LLL algorithm run on
L, which takes time polynomial in the dimension of the lattice and in the bitsize
of the entries. Since the lattice dimension in our case is exponential in n, so
the total running time for this method is polynomial in logN but exponential
in n.
�
Note that when n = 1 i.e, number of unknown block is one, then the situation
is analyzed in [7].

Now putting n = 1 in our Theorem 2, we get γ1 < 5
6 − 1

3

√
1 + 6δ, same bound

as in the first result of the Theorem 1. However, since we assume bits of d are
known from any position, we can not get any partial information of k. This is
the reason we can not obtain other result of Theorem 1. Also note that total

number of unknown bits of d is

n∑

i=1

γi logN . Now from Theorem 2

n∑

i=1

γi < 1− 1

2(n+ 2)
− n+ 1

2(n+ 2)

√

4δ + 1 +
4δ

n+ 1
.

Also when n increases, then upper bound of

n∑

i=1

γi decreases, i.e, one needs

much number of bits

(

δ −
n∑

i=1

γi

)

logN to be known. In Table 1, we present

few numerical values of the upper bound of unknown bits.

Now we have,

lim
n→∞ 1− 1

2(n+ 2)
− n+ 1

2(n+ 2)

√

4δ + 1 +
4δ

n+ 1
= 1−

√
1 + 4δ

2
.

82 S. Sarkar

Table 1. Numerical upper bound of unknown bits of d for different n

δ n = 1 n = 2 n = 3 n = 4

0.30 0.275 0.270 0.267 0.266

0.35 0.246 0.240 0.237 0.234

0.40 0.219 0.211 0.207 0.205

0.45 0.192 0.183 0.179 0.176

0.50 0.167 0.157 0.152 0.148

0.55 0.142 0.131 0.125 0.122

0.60 0.118 0.106 0.100 0.096

0.65 0.095 0.082 0.075 0.071

0.70 0.073 0.059 0.051 0.047

0.75 0.051 0.036 0.028 0.023

0.80 0.030 0.014 0.005 0.000

Fig. 2. Partial Key Exposure Attack for d. Plot of f(δ) = 1 +
√

1+4δ
2δ

− 1
δ
vs. values

of δ.

So, when
√
1 + 4δ < 2, i.e., when δ < 0.75, knowledge of

(
δ +

√
1+4δ
2 − 1

)
logN

many bits of d is sufficient to factor N irrespective of their position in time
polynomial in logN and exponential in number of unknown blocks n. So we can
formally state the formally the following result.

Corollary 1. Let e be full bit size and d ≤ N δ with δ < 0.75. Then knowledge
of (

δ +

√
1 + 4δ

2
− 1

)
logN

many bits of d is sufficient to factor N in time polynomial in logN and expo-
nential in number of unknown blocks of d.

Figure 2, represents the proportion of bits of d need to be known irrespective
of their position such that one can factor N in time polynomial in logN and
exponential in number of unknown blocks of d.

In our experiments, Assumption 1 always holds and we have successfully col-
lected the desired root. We present the experimental results in Table 2. LD

Partial Key Exposure: Generalized Framework to Attack RSA 83

Table 2. Experimental results for n = 2 and n = 3

n δ

n∑

i=1

γi (m, t) LD Time (Sec.)

2 0.30 0.200 (2,1) 55 99.69

2 0.35 0.145 (2,1) 55 107.94

2 0.40 0.095 (2,1) 55 114.12

2 0.45 0.060 (2,1) 55 122.82

2 0.50 0.045 (2,1) 55 114.23

2 0.55 0.010 (2,1) 55 99.68

3 0.30 0.195 (2,1) 91 911.31

3 0.35 0.140 (2,1) 91 901.11

3 0.40 0.090 (2,1) 91 1002.15

3 0.45 0.040 (2,1) 91 914.22

denotes the lattice dimension. First we take n = 2,m = 2, t = 1. In this case
lattice dimension will be 55. When δ = 0.30 i.e., bit size of d is 308, factoring
N requires knowledge of (0.30− 0.20) × 1024 i.e., 103 many bits of d. When
δ = 0.40 and n = 2, we need the knowledge of (0.40− 0.095)× 1024 = 313 many
bits of d. For larger values of δ or n, we need more number of bits to be known
for efficient factorization.

3 Attacks Using the Partial Knowledge of k

Now consider the situation when few MSBs of d are known. Figure 3 provides a
pictorial view of this case. In this situation one can also find an approximation
of k.

d

Known Unknown Known Unknown · · · · · · · · · · · ·
· · · · · ·

Known/Unknown

Fig. 3. Exposed and unexposed blocks of d

Theorem 3. Let e be full bit size and d ≤ N δ. Suppose one knows an approx-
imation d0 of d such that |d− d0| < Nλ. Also assume that attacker knows bits
of d except n many blocks and size of each such block is γi logN for 1 ≤ γi ≤ n.
Then he/she can factor N in time polynomial in logN and exponential in n if

n∑

i=1

γi <
(1 + βn+ n

2)−
√
(2n2 + 2n)β2 + (n2 + 3n+ 2)β

n+ 2

where β = max{λ, δ − 1
2}.

84 S. Sarkar

Proof. Since attacker knows an approximation d0 of d, he/she can also find an
approximation k0 =

⌊
ed0−1

N

⌋
of k. In [1], it is proved that |k − k0| < Nβ where

β = max{λ, δ− 1
2} when e is of full bit size. Let, k1 = k−k0. Since, d is unknown

for nmany blocks, so one can write d = a0+a1y1+· · ·+anyn, where y1, y2, . . . , yn
are unknown. Now from ed = 1 + k(N + 1− p− q), we have

ea0 + ea1y1 + · · ·+ eanyn − 1− (k0 + k1) (N + 1− p− q) = 0.

Hence, we are interested to find the root of the polynomial

f(x1, . . . , xn+2) = (ea0 − k0N − 1) + ea1x1 + · · ·+ eanxn +Nxn+1

− k0xn+2 + xn+1xn+2.

Clearly, f(y1, . . . , yn,−k1, 1− p− q) = 0.
LetXi = Nγi , for 1 ≤ i ≤ n. Further, supposeXn+1 = Nβ andXn+2 = N0.5.

Clearly, X1, . . . , Xn+2 are the upper bounds of absolute values of y1, . . . , yn,
−k1, 1 − p − q, neglecting small constants. Using the extended strategy of [12,
Section 2.2], we define

S =
⋃

0≤j≤t

{xi1
1 xi2

2 . . . x
in+1+j
n+1 x

in+2

n+2 : xi1
1 xi2

2 . . . x
in+2

n+2 is a monomial of fm}

M = {monomials of xi1
1 xi2

2 . . . x
in+2

n+2 f : xi1
1 xi2

2 . . . x
in+2

n+2 ∈ S}

where t is a non-negative integer.
Apart from f , we need to find at least n+1 more polynomials f1, f2, . . . fn+1

that share the same root (y1, . . . , yn,−k1, 1− p− q) over the integers.
Considering a fixed n, we know that these polynomials can be found by

LLL [14] algorithm if

Xs1
1 Xs2

2 · · ·Xsn+2

n+2 < W s

for sj =
∑

x
i1
1 ···xin+2

n+2 ∈M\S ij with j = 1, . . . , n+ 2, s = |S|, and

W = ||f(x1X1, . . . xn+2Xn+2)||∞ ≥ NXn+1 = N1+β.

From the structure of the polynomial f , it is clear that s1, . . . , sn are equal.
Using similar kind computation as in Theorem 2, We get

s ≈ 2mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
,

s1 = · · · = sn ≈ 2mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
,

sn+1 ≈ 3mn+2

(n+ 2)!
+ t

2mn+1

(n+ 1)!
+ t2

mn

2n!
,

sn+2 ≈ 3mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!

Partial Key Exposure: Generalized Framework to Attack RSA 85

Table 3. Numerical upper bound of unknown bits of d for different n using the partial
knowledge of k

δ β γ1

2∑

i=1

γi

3∑

i=1

γi

0.30 0.25 0.1424 0.1408 0.1400

0.40 0.25 0.1424 0.1408 0.1400

0.60 0.25 0.1424 0.1408 0.1400

0.75 0.25 0.1424 0.1408 0.1400

0.80 0.30 0.1101 0.1092 0.1087

0.85 0.35 0.802 0.0797 0.0794

0.90 0.40 0.0521 0.0519 0.0518

0.95 0.45 0.0255 0.0254 0.0254

Now consider t = τm, where τ ≥ 0 is a real number. Putting the values of X1,
X2, . . . , Xn+2, s1, . . . , sn+2, s, and the lower bound of W in the condition

Xs1
1 Xs2

2 . . .X
sn+2

n+2 < W s,

we get

(
n2β

2
+

3nβ

2
+ β

)
τ2 +

(

n

n∑

i=1

γi + 2

n∑

i=1

γi + nβ + 2β − n

2
− 1

)

τ

+2

n∑

i=1

γi + β − 1

2
< 0.

The optimal value of τ is
1
2−

∑n
i=1 γi−β

nβ+β .

Putting this optimal value of τ in Equation (2),

n∑

i=1

γi <
(1 + βn+ n

2)−
√
(2n2 + 2n)β2 + (n2 + 3n+ 2)β

n+ 2
.

�
Putting n = 1 in Theorem 3, we get γ1 < 1

2+
β
3 − 1

3

√
4β2 + 6β. This bound is the

same as the second result of Theorem 1. In Table 3, we present a few numerical
values of the upper bound of unknown bits. In all cases we take λ = 0.25.

Now,

lim
n→∞

(1 + βn+ n
2)−

√
(2n2 + 2n)β2 + (n2 + 3n+ 2)β

n+ 2
= β +

1

2
−
√
2β2 + β.

(2)

Hence, knowledge of
(
δ − β − 1

2 +
√
2β2 + β

)
logN many bits of d is suf-

ficient to factor N in time polynomial in logN and exponential in number
of unknown blocks of d. When λ < δ − 1

2 , value of β will be β = δ − 1
2 .

86 S. Sarkar

Table 4. Experimental results for n = 2

δ
2∑

i=1

γi (m, t) LD Time (Sec.)

0.38 0.116 (2,0) 50 224.28

0.38 0.120 (2,1) 70 831.55

0.40 0.093 (2,0) 50 276.32

0.40 0.098 (2,1) 70 727.19

0.45 0.058 (2,0) 50 225.38

0.45 0.065 (2,1) 70 956.81

0.50 0.040 (2,0) 50 211.85

0.50 0.044 (2,1) 70 1005.91

0.55 0.012 (2,0) 50 187.43

0.55 0.016 (2,1) 70 984.42

0.56 0.004 (2,0) 50 194.51

0.56 0.008 (2,1) 70 1155.82

So from Equation (2), we can say that in this case

n∑

i=1

γi should less than

δ −
√
2(δ − 1

2)
2 + (δ − 1

2) as n → ∞.

Thus, knowing
(√

2(δ − 1
2)

2 + (δ − 1
2)
)
logN many bits of d is sufficient to

factor N in time polynomial in logN and exponential in n when λ < δ − 1
2 .

In Table 4, we present some experimental results for different sizes of d. In all
cases, we assume λ = 0.25 i.e., (δ − 0.25)× 1024 many MSBs of d to be known.
For larger values of δ, we need more number of bits to be known for efficient
factorization.

4 Attack on ISO/IEC 9796-2

Recall that in ISO/IEC 9796-2 [11], the encoded message is of the form

μ(m) = 6A16 || m[1] || H(m) || BC16,

where m = m[1] || m[2] is split into two parts. Let the message m = m[1] || m[2]
be of the form m[1] = α1 || r1 || · · · || αn || rn || αn+1 and m[2]=data, where
r1, r2, · · · , rn are unknown and α1, α2, · · · , αn+1 are known to the attacker, while
the attacker may or may not knowm[2], and does not know the hash valueH(m).
Coron et al. [5] first studied the case when faults are injected for the same prime.
Next, they considered the case when two faulty signatures occur for two different
primes. In this section, we consider two faults for two different primes. We first
assume that after injecting a fault, the attacker obtains a faulty signature s such
that

se = μ(m) mod p and se �= μ(m) mod q.

Partial Key Exposure: Generalized Framework to Attack RSA 87

Hence we have se = a0+a1r1+ · · ·+anrn+an+1H(m) mod p. So in this case the
attacker needs to find the root (r1, · · · , rn, H(m)) of a polynomial of the form

b0 + b1x1 + · · ·+ bnxn + bn+1xn+1

in Zp.
Now suppose that another faulty signature, which is incorrect modulo p but

correct modulo q, and n different blocks in the first part of the message are
unknown. So here we have

se1 = c0 + c1r
′
1 + · · ·+ cnr

′
n + cn+1H(m′) mod q.

Thus one needs to find the root (r′1, · · · , r′n, H(m′)) of a polynomial of the form

d0 + d1x1 + · · ·+ dnxn + dn+1xn+1

in Zq. Hence when two faults occur, one in modulo p and the other in modulo
q, we have

(b0 + b1r1 + · · ·+ bnrn + bn+1H(m)) × (d0 + d1r
′
1 + · · ·+ dnr

′
n + dn+1H(m′))

= 0 mod N.

So in this case the attacker needs to calculate the root of

fN (z1, . . . , zn+1, zn+2, . . . , z2n+2) = (b0 + b1z1 + · · ·+ bnzn + bn+1zn+1)×
(d0 + d1zn+2 · · ·+ d2n+2z2n+2)

in ZN .
Let Xi = Xn+1+i = N δi for 1 ≤ i ≤ n be the upper bounds of the absolute

values of r1, r
′
1, r2, r

′
2 · · · , rn, r′n respectively. Also let Xn+1 = X2n+2 = Nγ be

the upper bound of H(m) and H(m′).
Using the strategy [12, Section 2.1], we define

Mk = {zi11 zi22 · · · zi2n+2

2n+2 | zi11 zi22 · · · zi2n+2

2n+2 is a monomial of fm
N

&
zi11 · · · zi2n+2

2n+2

lk
is a monomial of fm−k

N },

where m is a non-negative integer and l = z1zn+2 for 0 ≤ k ≤ m. It follows that

zi11 zi22 · · · zi2n+2

2n+2 ∈ Mk ⇔
{
0 ≤ i1 + · · ·+ in+1 ≤ m, and k ≤ i1 ≤ m
0 ≤ in+2 + · · ·+ i2n+2 ≤ m and k ≤ in+2 ≤ m

For fixed n and using the idea of [12, Section 2.1], the root of fN can be found
in time polynomial in logN but exponential in n if

Xs1
1 · · ·Xs2n+2

2n+2 < Ns

88 S. Sarkar

Table 5. Experimental results when two faults occur with p and q

logN n δ logN γ logN m LD Time (Sec)

1024 1 74 160 2 36 21.71

2048 1 278 160 2 36 98.18

2048 1 180 256 2 36 95.05

for sk =
∑

z
i1
1 ···zi2n+2

2n+2 ∈M0
ik with k = 1, · · · , 2n + 2, s =

∑m
t=1 |Mt|. One can

check easily that

|Mt| = (m− t)2n+2

((n+ 1)!)2
+ o((m− t)2n+2).

Hence s ≈ ∑m
t=1

(m−t)2n+2

(((n+1)!)2 = m2n+3

((n+1)!)2(2n+3)) . Also it can be easily checked that

s1 = · · · = s2n+2 ≈ m2n+3

(n+ 1)!(n+ 2)!
.

Putting the values of X1, X2, . . . , X2n+2, s1, . . . , s2n+2, s in the condition

Xs1
1 Xs2

2 · · ·Xs2n+2

2n+2 < Ns,

and neglecting the terms of o(m2n+3) we get the condition
∑n

i=1 δi+γ < n+2
2(2n+3) .

So, when n → ∞, one gets the upper bound 0.25. In the presence of a single
fault in this situation the upper bound was 0.153 [5, Section 2.2]. Now, when
n = 1, we get the upper bound 0.30. Using a lattice of dimension 9, Coron et
al. [5, Section 2.3] obtained the upper bound 0.167. Hence we achieve a better
upper bound than the work of [5]. We use Coppersmith’s idea to obtain better
bound than [5].

In Table 5, we present some experimental results. We first consider the case
when the hash function is SHA-1. Hence γ logN = 160. Coron et al. [5, Table
2] presented the value of δ1 logN to be 13 and 158 for 1024-bit and 2048-bit
RSA respectively for one faulty signature. Also using the approach of Coron et
al. [5, Section 2.3], for faults of two different factors, we obtain an upper bound
of δ1 as 0.167 − 0.156 = 0.011 for 1024-bit-RSA and 0.167 − 0.078 = 0.089 for
2048-bit-RSA. Hence upper bounds of δ1 logN will be 12 and 182 for 1024-bit
and 2048-bit RSA respectively. In our experiments, δ1 logN is 71 and 278 for
1024-bit and 2048-bit RSA respectively. We also consider the case when SHA
256 is used for 2048-bit-RSA. In this case N can be factored given two faulty
signatures of two different factors containing 180 random bits in less than 2
minutes.

5 Conclusion

So far, all the existing partial key exposure attacks on RSA assume a sin-
gle contiguous block of unknown bits of the secret exponent when encryption

Partial Key Exposure: Generalized Framework to Attack RSA 89

exponent e is large. However, in practice, it is more likely that the attacker
obtains certain bits of the secret exponent in fragmented blocks. In such a case,
none of the existing methods work towards any significant cryptanalysis of the
ciphers. We address this issue in our current work and generalize the above
attacks, when the number of unexposed blocks can be more than one. We also
study an ISO/IEC 9796-2 standard signature scheme with two faulty signatures,
one modulo p and another modulo q. More than one faulty signature with same
modulo was studied by Coron et al. [5]. So, it would be interesting to study the
factorization of N with more than 2 signatures, some faulty modulo p and others
faulty modulo q.

Acknowledgment. The authors would like to thank Prof. Subhamoy Maitra
and the anonymous Indocrypt reviewers for their detailed comments on the
technical issues of this paper. The authors are also grateful to Dr. Goutam
Kumar Paul and Mr. Sourav Sen Gupta for their editorial contribution towards
the presentation of this paper.

References

1. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

2. Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. Journal of Cryptology 14(2), 101–119 (2001)

5. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault Attacks on
RSA Signatures with Partially Unknown Messages. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009)

6. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault Attacks Against emv Signatures.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer,
Heidelberg (2010)

7. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on
RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

8. Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factoring
Given Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

9. Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key
Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

10. Howgrave-Graham, N.: Finding small roots of univariate modular equations
revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

11. ISO/IEC 9796-2, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 2: Mechanisms using a hash-function (1997)

90 S. Sarkar

12. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

13. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

14. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 513–534 (1982)

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of ACM 21(2), 158–164 (1978)

16. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with more than one Decryption
Exponent. Information Processing Letters 110(8-9), 336–340 (2010)

17. Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

Appendix A: Detailed Calculations Related to Theorem 2

Here we present the detailed calculations for s, s1, s2, sn+2.

Calculation of s

One may note that s is the number of solutions of 0 ≤ i1 + · · · + in+1 ≤ m,
0 ≤ in+2 ≤ in+1 + t. Thus,

s =

m∑

r=0

(
r + n− 1

r

)(
(m− r)2

2
+ t(m− r)

)

≈
m∑

r=0

rn−1

(n− 1)!

(
(m− r)2

2
+ t(m− r)

)

(neglecting the lower order terms)

≈ mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!

(using Proposition 1 and neglecting the lower order terms).

Calculation of s1

s1 =

m+1∑

i1=0

m−i1+1∑

r=0

m+1−i1−r∑

in+1=0

in+1+t∑

in+2=0

(
r + n− 2

r

)
i1

−
m∑

i1=0

m−i1∑

r=0

m−i1−r∑

in+1=0

in+1+t∑

in+2=0

(
r + n− 2

r

)
i1.

Partial Key Exposure: Generalized Framework to Attack RSA 91

Now,

m∑

i1=0

m−i1∑

r=0

m−i1−r∑

in+1=0

in+1+t∑

in+2=0

(
r + n− 2

r

)
i1

≈
m∑

i1=0

m−i1∑

r=0

m−i1−r∑

in+1=0

rn−2

(n− 2)!
(in+1 + t)i1

(neglecting the lower order terms)

≈
m∑

i1=0

m−i1∑

r=0

m−i1−r∑

in+1=0

rn−2

(n− 2)!
i1

(
(m− i1 − r)2

2
+ t(m− i1 − r)

)

(using Proposition 1 and neglecting the lower order terms).
Let r1 = m− i1. Then∑m
i1=0

∑m−i1
r=0

∑m−i1−r
in+1=0

∑in+1+t
in+2=0

(
r+n−2

r

)
i1

≈
m∑

i1=0

r1∑

r=0

rn−2

(n− 2)!
i1

(
(r1 − r)2

2
+ t(r1 − r)

)

≈ 1
(n+1)!

m∑

i1=0

i1(m− i1)
n+1 +

t

n!

m∑

i1=0

i1(m− i1)
n

. ≈ mn+3

(n+3)! +
t

(n+2)!m
n+2

So s1 ≈ (m+ 1)n+3

(n+ 3)!
+

t

(n+ 2)!
(m+ 1)n+2

− mn+3

(n+ 3)!
+

t

(n+ 2)!
mn+2

≈ mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
.

From the structure of the polynomial f , we have s1 = s2 = · · · = sn.
Calculation of sn+1

Let us now consider sn+1. We have,

sn+1 =

m+1∑

in+1=0

in+1+t∑

in+2=0

m+1−in+1∑

r=0

in+1

(
n− 1 + r

r

)

−
m∑

in+1=0

in+1+t∑

in+2=0

m−in+1∑

r=0

in+1

(
n− 1 + r

r

)
.

Now,
∑m

in+1=0

∑in+1+t
in+2=0

∑m−in+1

r=0 in+1

(
n−1+r

r

)

≈ ∑m
in+1=0

∑in+1+t
in+2=0

∑m−in+1

r=0
rn−1

(n−1)! in+1

92 S. Sarkar

≈ ∑m
in+1=0

(m−in+1)
n

n! in+1(in+1 + t)

(using Proposition 1 and neglecting lower order terms)

≈ 2mn+3

(n+3)! +
tmn+2

(n+2)! .

Hence, s2 ≈ 2mn+2

(n+ 2)!
+

tmn+1

(n+ 1)!
.

Calculation of sn+2

sn+2 =

m+1∑

in+1=0

in+1+t∑

in+2=0

m+1−in+1∑

r=0

in+1

(
n− 1 + r

r

)

−
m∑

in+1=0

in+1+t∑

in+2=0

m−in+1∑

r=0

in+1

(
n− 1 + r

r

)

Now,
∑m

in+1=0

∑in+1+t
in+2=0

∑m−in+1

r=0 in+1

(
n−1+r

r

)

≈ ∑m
in+1=0

(m−in+1)
n

n!
(in+1+t)2

2

≈ mn+3

(n+3)! + t mn+2

(n+2)! + t2 mn+1

(n+1)!2 .

Hence, sn+2 ≈ mn+2

(n+ 2)!
+ t

mn+1

(n+ 1)!
+ t2

mn

n!2
.

	Partial Key Exposure: Generalized Frameworkto Attack RSA
	Introduction
	Our Contribution

	General Attacks Based on Partial Knowledge of d
	Attacks Using the Partial Knowledge of k
	Attack on ISO/IEC 9796-2
	Conclusion
	References

