
Supervised Learning Linear Priority Dispatch

Rules for Job-Shop Scheduling

Helga Ingimundardottir and Thomas Philip Runarsson

School of Engineering and Natural Sciences, University of Iceland
{hei2,tpr}@hi.is

Abstract. This paper introduces a framework in which dispatching
rules for job-shop scheduling problems are discovered by analysing the
characteristics of optimal solutions. Training data is created via ran-
domly generated job-shop problem instances and their corresponding
optimal solution. Linear classification is applied in order to identify good
choices from worse ones, at each dispatching time step, in a supervised
learning fashion. The method is purely data-driven, thus less problem
specific insights are needed from the human heuristic algorithm designer.
Experimental studies show that the learned linear priority dispatching
rules outperforms common single priority dispatching rules, with respect
to minimum makespan.

1 Introduction

Hand crafting heuristics for NP-hard problems is a time-consuming trial and
error process, requiring inductive reasoning or problem specific insights from
their human designers. Furthermore, within a problems class, such as job-shop
scheduling, it is possible to construct problem instances where one heuristic
would outperform another. Given the ad-hoc nature of the heuristic design
process there is clearly room for improving the process. Recently a number of
attempt have been made to automate the heuristic design process. Here we
focus on the job-shop problem. Various learning approaches have been applied
to this task such as, reinforcement learning [1], evolutionary learning [2], and
supervised learning [3,4]. The approach taken here is a supervised learning
classifier approach.

In order to find an optimal (or near optimal) solution for job-shop scheduling
problem (JSSP) one could either use exact methods or heuristics methods. Exact
methods guarantee an optimal solution, however, JSSP is NP-hard [5]. Any
exact algorithm generally suffers from the curse of dimensionality, which impedes
the application in finding the global optimum in a reasonable amount of time.
Heuristics are generally more time efficient but do not necessarily attain the
global optimum. A common way of finding a good feasible solution for the JSSP
is by applying heuristic dispatching rules, e.g., choosing a task corresponding
to longest/shortest operation time; most/least successors; or ranked positional
weight, i.e., sum of operation times of its predecessors. Ties are broken in an
arbitrary fashion or by another heuristic rule. Recently it has been shown that

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 263–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



264 H. Ingimundardottir and T.P. Runarsson

combining dispatching rules is promising [2], however, there is large number of
rules to choose from and so combinations requires expert knowledge or extensive
trial-and-error. A summary of over 100 classical dispatching rules can be found
in [6].

The alternative to hand-crafting heuristics for the JSSP, is to implement an
automatic way of learning heuristics using a data driven approach. Data can
be generated using a known heuristic, such an approach is taken in [3], where a
LPT-heuristic is applied. Then a decision tree is used to create a dispatching rule
with similar logic. However, this method cannot outperform the original LPT-
heuristic used to guide the search. For instruction scheduling this drawback
is confronted in [4,7] by using an optimal scheduler, computed off-line. The
optimal solutions are used as training data and a decision tree learning algorithm
applied as before. Preferring simple to complex models, the resulting dispatching
rules gave significantly more optimal schedules than using popular heuristics in
that field, and a lower worst-case factor from optimality. A similar approach is
taken for timetable scheduling in [8] using case based reasoning. Training data
is guided by the two best heuristics for timetable scheduling. The authors point
out that in order for their framework to be successful, problem features need
to be sufficiently explanatory and training data need to be selected carefully so
they can suggest the appropriate solution for a specific range of new cases.

In this work we investigate an approach based on supervised learning on opti-
mal schedules and illustrate its effectiveness by improving upon well known dis-
patch rules for job-shop scheduling. The approach differs from previous studies,
as it uses a simple linear combination of features found using a linear classifier.
The method of generating training data is also shown to be critical for the
success of the method. In section 2 priority dispatch rules for the JSSP problem
are discussed, followed by a description of the linear classifier in section 3. An
experimental study is then presented in section 4. The paper concludes with a
summary of main findings.

2 Priority Dispatch Rules for Job-Shop Scheduling

The job-shop scheduling task considered here is where n jobs are scheduled
on a set of m machines, subject to the constraint that each job must follow a
predefined machine order and that a machine can handle at most one job at
a time. The objective is to schedule the jobs so as to minimize the maximum
completion times, also known as the makespan.

Each job j has an indivisible operation time on machine a, p(j, a), which is
assumed to be integral, where j ∈ {1, .., n} and a ∈ {1, .., m}. Starting time of
job j on machine a is denoted xs(a, j) and its completion time is denoted xf and

xf (a, j) = xs(a, j) + p(j, a) (1)

Each job has a specified processing order through the machines, it is a permu-
tation vector, σ, of {1, .., m}. Representing a job j can be processed on σ(j, a)
only after it has been completely processed on σ(j, a − 1), i.e.,



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 265

xs(σ(j, a), j) ≥ xf (σ(j, a − 1), j) j ∈ {1, .., n}, a ∈ {2, .., m} (2)

The disjunctive condition that each machine can handle at most one job at a
time is the following:

xs(a, i) ≥ xf (a, j) or xs(a, j) ≥ xf (a, i) (3)

for all i, j ∈ {1, .., n} and a ∈ {1, .., m}. The time in which machine a is idle
between jobs j and j − 1 is called slack time,

s(a, j) = xs(a, j) − xf (a, j − 1). (4)

The makespan is the maximum completion time

z = max{xf (j, m) | j = 1, .., n}. (5)

Dispatching rules are of a construction heuristics, where one starts with an
empty schedule and adds on one job at a time. When a machine is free the
dispatching rule inspects the waiting jobs and selects the job with the highest
priority. The priority may depend on which job has the most work remaining
(MWKR); least work remaining (LWKR); shortest immediate processing time
(SPT); and longest immediate processing time (LPT). These are the most ef-
fective dispatching rules. However there are many more available, e.g. randomly
selecting an operation with equal possibility (RND); minimum slack time (MST);
smallest slack per operation (S/OP); and using the aforementioned dispatching
rules with predetermined weights. A survey of more than 100 of such rules was
given in 1977 by [6]. It has recently been shown that a careful combination of
basic dispatching rules can perform significantly better [9].

In order to apply a dispatching rule a number of features of the schedule
being built must be computed. The features of particular interest were obtained
from inspecting the aforementioned single priority-based dispatching rules. Some
features are directly observed from the partial schedule. The temporal scheduling
features applied in this paper for a job j to be dispatched on machine a are: 1)
processing time for job j on its next machine a; 2) work remaining for job j;
3) start-time of job j; 4) end-time of j; 5) when machine a is next free; 6)
current makespan for all jobs; 7) slack time for machine a; 8) slack time for all
machines; and 9) slack time weighted w.r.t number of number of jobs already
dispatched. Fig. 1 shows an example of a temporal partial schedule for a six
job and six machine job-shop problem. The numbers in the boxes represent the
job identification j. The width of the box illustrates the processing times for a
given job for a particular machine Mi (on the vertical axis). The dashed boxes
represent the resulting partial schedule for when a particular job is scheduled
next. As one can see, there are 17 jobs already scheduled, and 6 potential jobs
to be dispatched next. If the job with the shortest processing time were to be
scheduled next then job 4 would be dispatched. A dispatch rule may need to
perform a one-step look-ahead and observes features of the partial schedule to
make a decision, for example by observing the resulting temporal makespan.



266 H. Ingimundardottir and T.P. Runarsson

Fig. 1. A schedule being built, the dashed boxes represent six different possible jobs
that could be scheduled next using a dispatch rule

These resulting observed features are sometimes referred to as an after-state
or post-decision state. Other dispatch rules use features not directly observable
from the current partial schedule, for example by assigning jobs with most total
processing time remaining.

Problem instances are generated stochastically by fixing the number of jobs
and machines and sampling a discrete processing time from the uniform distri-
bution U(R, 100). The machine order is a random permutation. Two different
processing times were explored, namely U(50, 100) and U(1, 100) for all ma-
chines. For each processing time distribution 500 instances were generated for
a six job and six machine job-shop problem. Their optimal solution were then
found using the GNU linear programming kit [10]. The optimal solutions are
used to determine which job should be dispatched in order to create an optimal
schedule and which ones are not. When a job is dispatched the features of the
partial schedule change. The aim of the linear learning algorithm, discussed in
the following section, is to determine which features are better than others. That
is, features created when a job is scheduled in order to build the known optimal
solution as opposed to features generated by dispatching jobs that will result in
a sub-optimal schedule.

3 Logistic Regression

The preference learning task of linear classification presented here is based on
the work presented in [11,12]. The modification relates to how the point pairs
are selected and the fact that a L2-regularized logistic regression is used.



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 267

Let φ(o) ∈ R
d denote the post-decision state when the job dispatched cor-

responds to an optimal schedule being built. All post-decisions states corre-
sponding to suboptimal dispatches are denoted by φ(s) ∈ R

d. One could label
which feature sets were considered optimal, zo = φ(o) − φ(s), and suboptimal,
zs = φ(s) − φ(o) by yo = +1 and ys = −1 respectively. Note, a negative example
is only created as long as the job dispatched actually changed the resulting
makespan, since there can exist situations in which more than one choice can be
considered optimal.

The preference learning problem is specified by a set of preference pairs:

S =
{{

φ(o) − φ
(s)
j , +1)

}�

k=1
,
{
φ

(s)
j − φ(o),−1)

}�

k=1
| ∀j ∈ J (k)

}
⊂ Φ × Y (6)

where Φ ⊂ R
d is the training set of d features, Y = {−1, +1} is the outcome

space, � = n×m is the total number of dispatches and j ∈ J (k) are the possible
suboptimal dispatches at dispatch (k). In this study, there are d = 9 features,
and the training set is created from known optimal sequences of dispatch.

Now consider the model space h ∈ H of mappings from points to preferences.
Each such function h induces an ordering � on the points by the following rule:

φ(o) � φ(s) ⇔ h(φ(o)) > h(φ(s)) (7)

where the symbol � denotes “is preferrred to”. The function used to induce the
preference is defined by a linear function in the feature space:

h(φ) =
d∑

i=1

wiφi. (8)

Let z denote either φ(o) − φ(s) with y = +1 or φ(s) − φ(o) with y = −1
(positive or negative example respectively). Logistic regression learns the optimal
parameters w ∈ R

d determined by solving the following task:

min
w

1
2

〈
w · w〉

+ C

l∑
i=1

log
(

1 + e−yi

〈
w·zi

〉)
(9)

where C > 0 is a penalty parameter, and the negative log-likelihood is due to the
fact the given data points z and weights w are assumed to follow the probability
model:

P (y = ±1|z,w) =
1

1 + e−y
〈
w·z

〉 . (10)

The logistic regression defined in (9) is solved iteratively, in particular using Trust
Region Newton method [12], which generates a sequence {w(k)}∞k=1 converging
to the optimal solution w∗ of (9).

The regulation parameter C in (9), controls the balance between model com-
plexity and training errors, and must be chosen appropriately. It is also important



268 H. Ingimundardottir and T.P. Runarsson

to scale the features φ first. A standard method of doing so is by scaling the
training set such that all points are in some range, typically [−1, 1]. That is,
scaled φ̃ is

φ̃i = 2(φi − φ
i
)/(φi − φ

i
) − 1 i = 1, . . . , d (11)

where φ
i
, φi are the maximum and minimum i-th component of all the feature

variables in set Φ. Scaling makes the features less sensitive to process times.
Logistic regression makes optimal decisions regarding optimal dispatches and

at the same time efficiently estimates a posteriori probabilities. The optimal
w∗ obtained from the training set, can be used on any new data point, φ, and
their inner product is proportional to probability estimate (10). Hence, for each
feasible job j that may be dispatched, φj denotes the corresponding post-decision
state. The job chosen to be dispatched, j∗, is the one corresponding to the highest
preference estimate, i.e

j∗ = argmax
j

h(φj) (12)

where h(·) is the linear classification model (lin) obtained by the training data.

4 Experimental Study

In the experimental study we investigate the performance of the linear dispatch-
ing rules trained on problem instance generated using production times according
to distributions U(1, 100) and U(50, 100). The resulting linear models is referred
to as linU(1,100) and linU(50,100), respectively. These rules are compared with the
single priority dispatching rules mentioned previously. The goal is to minimize
the makespan, here the optimum makespan is denoted μopt, and the makespan
obtained from a dispatching rule by μDR. Since the optimal makespan varies
between problem instances the following performance measure is used:

ρ =
μDR

μopt
(13)

which is always greater or equal to 1.
There were 500 problem instances generated using six machines and six jobs,

for both U(1, 100) and U(50, 100) processing times distributions. Throughout
the experimental study, a Kolmogorov-Smirnov goodness-of-fit hypothesis test
with a significance level 0.05 is used to check if there is a statistical difference
between the models in question.

4.1 Data Generation

An optimal sequence of job dispatches is known for each problem instance.
The sequence indicates in which order the jobs should be dispatched. A job
is placed at the earliest available time slot for its next machine, whilst still
fulfilling constraints (2) and (3). Unfinished jobs are dispatched one at a time
according to the optimal sequence. After each dispatch the schedule’s current



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 269

features are updated based on the half-finished schedule. This sequence of job
assignments is by no means unique. Take for instance Fig. 1, let’s say job #1
would be dispatched next, and in the next iteration job #2. Now this sequence
would yield the same schedule as if job #2 would have been dispatched first
and then job #1 in the next iteration. In this particular instance one could not
infer that choosing job #1 is optimal and #2 is suboptimal (or vice versa) since
they can both yield the same optimal solution, however the state of the schedule
has changed and thus its features. Care must be taken in this case that neither
resulting features are labeled as undesirable. Only the resulting features from a
dispatch resulting in a suboptimal solution should be labeled undesirable. This
is the approach taken here. Nevertheless, there may still be a chance that having
dispatched a job resulting in a different makespan would have resulted in the
same makespan if another optimal scheduling path were to have been chosen.
That is, there are multiple optimal solutions to the same problem instance. We
will ignore this for the current study, but note that our data may be slightly
corrupted for this reason. In conclusion, at each time step a number of feature
pair are created, they consist of the features resulting from optimal dispatch
versus features resulting from suboptimal dispatches.

When building a complete schedule n × m dispatches must be made sequen-
tially. At each dispatch iteration a number of data pairs are created which can
then be multiplied by the number of problem instance created. We deliberately
create a separate data set for each dispatch iterations, as our initial feeling is
that dispatch rules used in the beginning of the schedule building process may
not necessarily be the same as in the middle or end of the schedule. As a result
we will have n × m linear scheduling rules for solving a n × m JSSP.

4.2 Training Size and Accuracy

Of the 500 schedule instances, 20% were devoted solely to validation, in order to
optimize the parameters of the learning algorithm. Fig. 2 shows the ratio from
optimum makespan, ρ in (13), of the validation set as a function of training size
for both processing time distributions considered. As one might expect, a larger
training set yields a better result. However, a training size of only 200 is deemed
sufficient for both distributions, and will be used here on after, yielding the
remaining unused 200 instances as its test set. The training accuracy reported
by the lin-model during training with respect to choosing the optimal job at each
time step is depicted in Fig. 3 for both data distribution considered. The models
obtained from using the training set corresponding to U(1, 100) and U(50, 100)
data distributions are referred to as linU(1,100) and linU(50,100), respectively. The
training accuracy, that is the ability to dispatch jobs according to an optimal
solution, increases as more jobs are dispatched. This seems reasonable since the
features initially have little meaning and hence are contradictory. It becomes
easier to predict good dispatches towards the end of the schedule. This illustrates
the care needed in selecting training data for learning scheduling rules.



270 H. Ingimundardottir and T.P. Runarsson

Fig. 2. Ratio from optimum makespan, ρ, for the validation set as a function of size of
training set. Solid line represents model linU(1,100) and dashed line represents model
linU(50,100)

5 10 15 20 25 30 35
60

65

70

75

80

85

90

95

100

Sequence of dispatch decision

A
cc
u
ra
cy

%

Training accuracy

linU(1,100)
linU(50,100)

Fig. 3. Training accuracy as a function of sequence of dispatching decisions. Solid line
represents model linU(1,100) and dashed line represents data distributions linU(50,100)



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 271

Table 1. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, using the test sets U(1, 100) (top) and
U(50, 100) (bottom)

U(1, 100) mean std med min max

linU(1,100) 1.0842 0.0536 1.0785 1.0000 1.2722
SPT 1.6707 0.2160 1.6365 1.1654 2.2500
MWRM 1.2595 0.1307 1.2350 1.0000 1.7288
LWRM 1.8589 0.2292 1.8368 1.2907 2.6906

U(50, 100) mean std med min max

linU(50,100) 1.0724 0.0446 1.0713 1.0000 1.2159
SPT 1.7689 0.2514 1.7526 1.2047 2.5367
MWRM 1.1835 0.0994 1.1699 1.0217 1.5561
LWRM 1.9422 0.2465 1.9210 1.3916 2.6642

4.3 Comparison with Single Priority Dispatching Rules

The performance of the two learned linear priority dispatch rules, (linU(1,100),
linU(50,100)), are now compared with the three most common single priority-
based dispatching rules from the literature, which dispatch according to: opera-
tion with shortest processing time (SPT ), most work remaining (MWRM), and
least work remaining (LWRM). Their ratio from optimum, (13), is depicted in
Fig. 4, and corresponding statistical findings are presented in Table 1. Clearly
model linU(R,100) outperforms all conventional single priority-based dispatching
rules, but of them MWRM is the most successful. It is interesting to note
that for both data distributions, the worst-case scenario (right tail of the dis-
tributions) for model linU(R,100) is noticeably better than the mean obtained
using dispatching rules SPT and LWRM , so the choice of an appropriate single
dispatching rule is of paramount importance.

4.4 Robustness towards Data Distributions

All features are scaled according to (11), which may enable the dispatch rules
to be less sensitive to the different processing time distributions. To examine
this the dispatch rules linU(1,100) and linU(50,100) are tested on both U(1, 100)
and U(50, 100) test sets. The statistics for ρ are presented in Table 2. There
is no statistical difference between series #1 and #4, implying that when the
dispatch rules are tested on their corresponding test set, they perform equally
well. It is also noted that there is no statistical difference between series #2 and
#4, implying that rule linU(50,100) performed equally well on both test sets in
question. However, when observing at the test sets, then in both cases there is
a statistical difference between applying model linU(1,100) or linU(50,100), where
the latter yielded a better results. This implies that the rules are actually not
robust towards different data distributions in some cases. This is as one may
have expected.



272 H. Ingimundardottir and T.P. Runarsson

Table 2. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, for the test sets U(1, 100) and
U(50, 100), on both models linU(1,100) and linU(50,100)

model test set mean std med min max

#1 linU(1,100) U(1, 100) 1.0844 0.0535 1.0786 1.0000 1.2722
#2 linU(50,100) U(1, 100) 1.0709 0.0497 1.0626 1.0000 1.2503
#3 linU(1,100) U(50, 100) 1.1429 0.1115 1.1158 1.0000 1.5963
#4 linU(50,100) U(50, 100) 1.0724 0.0446 1.0713 1.0000 1.2159

Table 3. Feature description and mean weights for models linU(1,100) and linU(50,100)

Weight linU(1,100) linU(50,100) Feature description

w̄(1) -0.6712 -0.2220 processing time for job on machine
w̄(2) -0.9785 -0.9195 work remaining
w̄(3) -1.0549 -0.9059 start-time
w̄(4) -0.7128 -0.6274 end-time
w̄(5) -0.3268 0.0103 when machine is next free
w̄(6) 1.8678 1.3710 current makespan
w̄(7) -1.5607 -1.6290 slack time for this particular machine
w̄(8) -0.7511 -0.7607 slack time for all machines
w̄(9) -0.2664 -0.3639 slack time weighted w.r.t. number of

operations already assigned

Table 4. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, on models linU(1,100), linU(50,100) ,
linU(1,100),fixed w and linU(50,100),fixed w for corresponding test sets

model test set mean std med min max

#1 linU(1,100) U(1, 100) 1.0844 0.0535 1.0786 1.0000 1.2722
#2 linU(1,100),fixed w U(1, 100) 1.0862 0.0580 1.0785 1.0000 1.2722
#3 linU(50,100) U(50, 100) 1.0724 0.0446 1.0713 1.0000 1.2159
#4 linU(50,100),fixed w U(50, 100) 1.0695 0.0459 1.0658 1.0000 1.2201

4.5 Fixed Weights

Here we are interested in examining the sensitivity of the weights found for our
linear dispatching rules. The weights found for each feature at each sequential
dispatching step for models linU(1,100) and linU(50,100) are depicted in Fig. 5.
These weights are averaged and listed along side their corresponding features in
Table 3. The sign and size of these weights are similar for both distributions,
but with the exception of features 5 and 1. The average weights are now used
throughout the sequence of dispatches, these models are called linU(1,100),fixed w

or linU(50,100),fixed w, respectively.



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 273

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35

40
F
re
q
u
en
cy

Ratio from optimal makespan, ρ

Histogram for test data U(1, 100)

linU(1,100)

SPT
MWRM
LWRM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35

F
re
q
u
en
cy

Ratio from optimal makespan, ρ

Histogram for test data U(50, 100)

linU(50,100)
SPT
MWRM
LWRM

Fig. 4. Histogram of ratio ρ for the dispatching rules linU(R,100), SPT , MWRM and
LWRM for models linU(1,100) (top) and linU(50,100) (bottom)



274 H. Ingimundardottir and T.P. Runarsson

5 10 15 20 25 30 35
-4

-3

-2

-1

0

1

2

3

4

Sequence of dispatch decision

W
ei
gh

t

Weights for model linU(1,100)

w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)
w(8)
w(9)

5 10 15 20 25 30 35
-4

-3

-2

-1

0

1

2

3

4

Sequence of dispatch decision

W
ei
gh

t

Weights for model linU(50,100)

w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)
w(8)
w(9)

Fig. 5. Weights of features as a function of sequence of dispatching decisions, for test
data U(1, 100) (top) and U(50, 100) (bottom)



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 275

Table 5. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, for the test sets U(1, 100) and
U(50, 100), on both fixed weight models linU(1,100),fixed w and linU(50,100),fixed w

model test set mean std med min max

#1 linU(1,100),fixed w U(1, 100) 1.0862 0.0580 1.0785 1.0000 1.2722
#2 linU(50,100),fixed w U(1, 100) 1.0706 0.0493 1.0597 1.0000 1.2204
#3 linU(1,100),fixed w U(50, 100) 1.1356 0.0791 1.1296 1.0000 1.5284
#4 linU(50,100),fixed w U(50, 100) 1.0695 0.0459 1.0658 1.0000 1.2201

Experimental results in Table 4 indicate that the weights could be held con-
stant since there is no statistical difference between series #1 and #2 and series
#3 and #4, i.e. no statistical difference between using varied or fixed weights for
both data distributions. Hence, a simpler model using fixed weights should be
preferred to the one of varied weights. The experiment described in section 4.4
is also repeated for fixed weights, and its results are listed in Table 5. As for
varied weights (cf., Table 2), there is no statistical difference between models
#2 and #4. However, unlike using varied weights, there exists a statistical
difference between series #1 and #4. Again, looking at the test sets, in both
cases there is statistical difference between applying model linU(1,100),fixed w or
linU(50,100),fixed w, where the latter yielded again the better result.

5 Summary and Conclusion

In this paper, a supervised learning linear priority dispatch rules (lin) is investi-
gated to find optimal schedules for JSSP w.r.t. minimum makespan. The lin-
model uses a heuristic strategy such that jobs are dispatched corresponding to
the feature set that yielded the highest proportional probability output (12). The
linear priority dispatch rules showed clear superiority towards single priority-
based dispatch rules. The method of generating training data is critical for the
framework’s robustness.

The framework is not as robust with respect to different data distribution in
some cases, and thus cannot be used interchangeably for training and testing
and still maintain satisfactory results. Most features were of similar weight
between the two data distributions (cf., Table 3), however, there are some slight
discrepancies between the two distributions, e.g. w̄(5), which could explain the
difference in performance between linU(1,00) and linU(50,100).

There is no statistical difference between using the linear model with varied or
fixed weights when using a corresponding test set, so it is sufficient to apply only
the mean varied weight, no optimization of the weight parameters is needed. It
is noted that some of the robustness between data distribution is lost by using
fixed weights. Hence, when dealing with a test set of known data distributions,
it is sufficient to use the simpler fixed model linU(R,100),fixed w, however when



276 H. Ingimundardottir and T.P. Runarsson

the data distribution is not known beforehand, it is best to use the slightly more
complex varied weights model, and inferring from the experimental data rather
use linU(50,100) to linU(1,100).

It is possible for a JSSP problem to have more than one optimal solution. How-
ever for the purpose of this study, only one optimal solution used for generating
training data is sufficient. But clearly the training data set is still corrupted
because of multiple ways of representing the same or different (yet equally
optimal w.r.t minimum makespan) optimal schedule. One way of overcoming
this obstacle is applying mixed integer programming for each possible suboptimal
choice, with the current schedule as its initial value to make it absolutely certain
that the choice is indeed suboptimal or not.

The proposed approach of discovering learned linear priority dispatching rules
introduced in this study, are only compared with three common single priority-
based dispatching rules from the literature. Although they provide evidence
of improved accuracy, other comparisons of learning approaches, e.g. genetic
programming, regression trees and reinforcement learning, need to be looked
further into.

Another possible direction of future research is to extend the obtained results
to different types of scheduling problems, along with relevant features. The
efficiency of this problem solver will ultimately depend on the skills of plausible
reasoning and how effectively the features extrapolate patterns yielding rules
concerning optimal solutions, if they exist.

The main drawback of this approach is in order for the framework to be
applicable one needs to know optimal schedules and their corresponding features
in order to learn the preference, which may be difficult if not impossible to
compute beforehand for some instances of JSSP using exact methods.

References

1. Zhang, W., Dietterich, T.G.: A Reinforcement Learning Approach to Job-shop
Scheduling. In: Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pp. 1114–1120. Morgan Kaufmann, San Francisco (1995)

2. Tay, J., Ho, N.: Evolving dispatching rules using genetic programming for solving
multi-objective flexible job-shop problems. Computers & Industrial Engineer-
ing 54(3), 453–473 (2008)

3. Li, X., Olafsson, S.: Discovering Dispatching Rules Using Data Mining. Journal of
Scheduling 8(6), 515–527 (2005)

4. Malik, A.M., Russell, T., Chase, M., Beek, P.: Learning heuristics for basic block
instruction scheduling. Journal of Heuristics 14(6), 549–569 (2007)

5. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1(2), 117–129 (1976)

6. Panwalkar, S., Iskander, W.: A Survey of Scheduling Rules. Operations Re-
search 25(1), 45–61 (1977)

7. Russell, T., Malik, A.M., Chase, M., van Beek, P.: Learning Heuristics for the
Superblock Instruction Scheduling Problem. IEEE Transactions on Knowledge and
Data Engineering 21(10), 1489–1502 (2009)



Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 277

8. Burke, E., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling
problems. Journal of Scheduling 9(2), 115–132 (2006)

9. Jayamohan, M.: Development and analysis of cost-based dispatching rules for job
shop scheduling. European Journal of Operational Research 157(2), 307–321 (2004)

10. Makhorin, A.: GNU linear programming kit. Moscow Aviation Institute, Moscow,
Russia, 38 (May 2009), Software available at
http://www.gnu.org/software/glpk/glpk.html

11. Fan, R.e., Wang, X.r., Lin, C.j.: LIBLINEAR: A Library for Large Linear
Classification. Corpus 9, 1871–1874 (2008), Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear

12. Lin, C.j., Weng, R.C.: Trust Region Newton Method for Large-Scale Logistic
Regression. Journal of Machine Learning Research 9, 627–650 (2008)

http://www.gnu.org/software/glpk/glpk.html
http://www.csie.ntu.edu.tw/~cjlin/liblinear

	Supervised Learning Linear Priority Dispatch 
Rules for Job-Shop Scheduling
	Introduction
	Priority Dispatch Rules for Job-Shop Scheduling
	Logistic Regression
	Experimental Study
	Data Generation
	Training Size and Accuracy
	Comparison with Single Priority Dispatching Rules
	Robustness towards Data Distributions
	Fixed Weights

	Summary and Conclusion
	References




