

Lecture Notes in Computer Science 6683
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Carlos A. Coello Coello (Ed.)

Learning
and Intelligent
Optimization
5th International Conference, LION 5
Rome, Italy, January 17-21, 2011
Selected Papers

13

Volume Editor

Carlos A. Coello Coello
Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional
(CINVESTAV-IPN)
Departmento de Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D.F. 07360, México
E-mail: ccoello@cs.cinvestav.mx

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25565-6 e-ISBN 978-3-642-25566-3
DOI 10.1007/978-3-642-25566-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941277

CR Subject Classification (1998): F.2, F.1, I.2, G.1.6, C.2, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

LION 5, the 5th International Conference on Learning and Intelligent Optimiza-
tioN, was held during January 17–21 in Rome, Italy. This meeting, which con-
tinues the successful series of LION conferences, aimed at exploring the intersec-
tions and uncharted territories between machine learning, artificial intelligence,
mathematical programming and algorithms for hard optimization problems. The
main purpose of the event was to bring together experts from these areas to dis-
cuss new ideas and methods, challenges and opportunities in various application
areas, general trends and specific developments.

As in previous years, three different paper categories were available for sub-
mission: (1) regular papers on original and unpublished work, (2) short papers
on original and unpublished work, and (3) works for oral presentation only. Ac-
cepted papers from the first two categories are published in the proceedings. A
total of 99 submissions were received, from which 79 fell into the first category,
18 into the second one, and only 2 into the last one. After a thorough review
process, 43 regular papers and 6 short papers were accepted for publication in
the proceedings (the overall acceptance rate was 49%). None of the submissions
from the third category was accepted for presentation.

These 49 contributions that were accepted for presentation cover the general
track as well as the following four special sessions that were organized:

– IMON: Intelligent Multiobjective OptimizatioN
Organizers: Dario Landa-Silva, Qingfu Zhang, David Wolfe Corne, Hui Li

– LION-PP: Performance Prediction
Organizers: Kate Smith-Miles, Leo Lopes

– Self* EAs: Self-Tuning, Self-Configuring and Self-Generating Evolutionary
Algorithms
Organizers: Gabriela Ochoa, Marc Schoenauer

– LION-SWAP: Software and Applications
Organizers: Mauro Brunato, Youssef Hamadi, Silvia Poles, Andrea Schaerf

The conference program was further enriched by the following tutorials, given
by respected scientists in their respective domains. Carlos A. Coello Coello,
from CINVESTAV-IPN (México), spoke about “Metaheuristics for Multiobjec-
tive Optimization,” Yaochu Jin, from the University of Surrey (UK), talked
about “A Systems Approach to Evolutionary Aerodynamic Design Optimiza-
tion,” Silvia Poles, from EnginSoft (Italy), gave a tutorial on “Multiobjective
Optimization for Innovation in Engineering Design,” and Roberto Battiti, from
the University of Trento (Italy) spoke about “Reactive Business Intelligence and
Data Mining.”

The technical program also featured two invited talks by Benjamin W. Wah
from the University of Illinois at Urbana-Champaign in USA (title: “Planning

VI Preface

Problems and Parallel Decomposition: A Critical Look”) and Edward Tsang
from the University of Essex in UK (title: “Intelligent Optimization in Finance
and Economics”). Additionally, there was also a steering talk by Xin Yao, from
the University of Birmingham in the UK, with the title: “Evolving and Designing
Neural Network Ensembles.”

Finally, we would like to express our sincere thanks to the authors for submit-
ting their papers to LION 5, and to all the members of the Program Committee
for their hard work. The organization of such an event would not be possible
without the voluntary work of the Program Committee members. Many thanks
also go to the invited speakers and tutorial speakers and to Thomas Stützle,
for serving as the scientific liaison with Springer. Special thanks go to Marco
Schaerf and Laura Palagi from the Sapienza Università di Roma who dealt with
the local organization of this event. Final thanks go to Franco Mascia, the Web
Chair of LION 5.

Last but not least, we would also like to acknowledge the contribution of our
sponsors: the Associazione Italiana per lIntelligenza Artificiale, IEEE Compu-
tational Intelligence Society, Microsoft Research, Sapienza Università di Roma,
and University of Trento for their technical co-sponsorship, as well as the indus-
trial sponsor EnginSoft S.P.A.

April 2011 Carlos A. Coello Coello

Organization

Conference General Chair

Xin Yao The University of Birmingham, UK

Local Organization Co-chairs

Marco Schaerf Sapienza Università di Roma, Italy
Laura Palagi Sapienza Università di Roma, Italy

Technical Program Committee Chair

Carlos A. Coello Coello CINVESTAV-IPN, México

Program Committee

Hernan Aguirre Shinshu University, Japan
Ethem Alpaydin Bogazici University, Turkey
Julio Barrera CINVESTAV-IPN, Mexico
Roberto Battiti University of Trento, Italy
Mauro Birattari Université Libre de Bruxelles, Belgium
Christian Blum Universitat Politècnica de Catalunya, Spain
Juergen Branke University of Warwick, UK
Mauro Brunato Università di Trento, Italy
David Corne Heriot-Watt University, UK
Carlos Cotta Universidad de Málaga, Spain
Luca Di Gaspero Università degli Studi di Udine, Italy
Karl F. Doerner University of Vienna, Austria
Marco Dorigo Université Libre de Bruxelles, Belgium
Andries Engelbrecht University of Pretoria, South Africa
Shaheen Fatima Loughborough University, UK
Antonio J. Fernández Leiva Universidad de Málaga, Spain
Álvaro Fialho Microsoft Research - INRIA Joint Centre,

France
Valerio Freschi University of Urbino, Italy
Deon Garrett Icelandic Institute for Intelligent Machines,

Iceland
Michel Gendreau École Polytechnique de Montréal, Canada
Martin Charles Golumbic CRI Haifa, Israel

VIII Organization

Walter J. Gutjahr University of Vienna, Austria
Youssef Hamadi Microsoft Research, UK
Jin-Kao Hao University of Angers, France
Richard Hartl University of Vienna, Austria
Geir Hasle SINTEF Applied Mathematics, Norway
Alfredo G. Hernández-Dı́az Pablo de Olavide University, Spain
Francisco Herrera University of Granada, Spain
Tomio Hirata Nagoya University, Japan
Frank Hutter University of British Columbia, Canada
Matthew Hyde University of Nottingham, UK
Márk Jelasity University of Szeged, Hungary
Yaochu Jin University of Surrey, UK
Narendra Jussien Ecole des Mines de Nantes, France
Zeynep Kiziltan University of Bologna, Italy
Oliver Kramer International Computer Science Institute, USA
Dario Landa-Silva University of Nottingham, UK
Guillermo Leguizamón Universidad Nacional de San Luis, Argentina
Khoi Le University of Nottingham, UK
Hui Li Xi’an Jiaotong University, China
Leo Lopes Monash University, Australia
Eunice López Camacho ITESM, México
Manuel López-Ibáñez Université Libre de Bruxelles, Belgium
Antonio López-Jaimes CINVESTAV-IPN, México
Vittorio Maniezzo University of Bologna, Italy
Francesco Masulli University of Genoa, Italy
Jorge Maturana Universidad Austral de Chile, Chile
Juan J. Merelo Guervós University of Granada, Spain
Bernd Meyer Monash University, Australia
Zbigniew Michalewicz University of Adelaide, Australia
Nenad Mladenovic Brunel University, UK
Marco A. Montes de Oca IRIDIA, Université Libre de Bruxelles, Belgium
Pablo Moscato University of Newcastle, Australia
Gabriela Ochoa University of Nottingham, UK
Yew-Soon Ong Nanyang Technological University, Singapore
Djamila Ouelhadj University of Portsmouth, UK
Panos M. Pardalos University of Florida, USA
Andrew Parkes University of Notthingham, UK
Marcello Pelillo University of Venice, Italy
Vincenzo Piuri Università degli Studi di Milano, Italy
Silvia Poles Enginsoft Srl, Italy
Rong Qu University of Nottingham, UK
Günther R. Raidl Vienna University of Technology, Austria
Franz Rendl Alpen-Adria University Klagenfurt, Austria
Celso C. Ribeiro Universidade Federal Fluminense, Brazil
Maŕıa Cristina Riff Universidad Técnica Federico Santa Maŕıa, Chile

Organization IX

Andrea Roli Alma Mater Studiorum Università di Bologna,
Italy

Eduardo Rodŕıguez-Tello CINVESTAV-Tamaulipas, México
Rubén Ruiz Garćıa Universidad Politécnica de Valencia, Spain
Wheeler Ruml University of New Hampshire, USA
Ilya Safro Argonne National Laboratory, USA
Horst Samulowitz National ICT Australia, Australia
Frédéric Saubion University of Angers, France
Andrea Schaerf University of Udine, Italy
Marc Schoenauer INRIA Saclay, France
Meinolf Sellmann Brown University, USA
Yaroslav D. Sergeyev Università della Calabria, Italy
Patrick Siarry Université Paris-Est Créteil, France
Kate Smith-Miles Monash University, Australia
Christine Solnon Université de Lyon, France
Thomas Stützle Université Libre de Bruxelles, Belgium
Ke Tang University of Science and Technology of China,

China
Hugo Terashima ITESM - Centre for Intelligent Systems, México
Marco Tomassini University of Lausanne, Switzerland
Gregorio Toscano-Pulido CINVESTAV-Tamaulipas, México
Pascal Van Hentenryck Brown University, USA
Sebastien Verel INRIA Lille-Nord Europe and

University of Nice Sophia-Antipolis, France
Stefan Voß University of Hamburg, Germany
Toby Walsh NICTA and UNSW, Australia
David L. Woodruff University of California, Davis, USA
Qingfu Zhang University of Essex, UK

Additional Referees

Manuel Blanco Abello Stefano Benedettini Muneer Buckley
Samuel Rota Bulò Ethan Burns Marco Caserta
Camille Combier Sabrina de Oliveira Adam Ghandar
Stephane Gosselin Jean-Philippe Hamiez Franco Mascia
Eddy Parkinson Nicola Rebagliati Jordan Thayer

IMON Special Session Chairs

Dario Landa-Silva University of Nottingham, UK
Qingfu Zhang University of Essex, UK
David Wolfe Corne Heriot-Watt University, UK
Hui Li Xi’an Jiaotong University, China

X Organization

LION-PP Special Session Chairs

Kate Smith-Miles Monash University, Australia
Leo Lopes Monash University, Australia

Self* EAs Special Session Chairs

Gabriela Ochoa University of Nottingham, UK
Marc Schoenauer INRIA Saclay - Ile-de-France and

Microsoft/INRIA Joint Center, Saclay, France

LION-SWAP Special Session Chairs

Mauro Brunato University of Trento, Italy
Youssef Hamadi Microsoft Research, Cambridge, UK
Silvia Poles EnginSoft, Italy
Andrea Schaerf University of Udine, Italy

Web Chair

Franco Mascia University of Trento, Italy

Steering Committee

Roberto Battiti University of Trento, Italy
Holger Hoos University of British Columbia, Canada
Mauro Brunato University of Trento, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
Christian Blum Universitat Politècnica de Catalunya, Spain
Martin Charles Golumbic CRI Haifa, Israel

Technical Co-sponsorship

Associazione Italiana per lIntelligenza Artificiale
http://www.aixia.it/

IEEE Computational Intelligence Society
http://www.ieee-cis.org/

Microsoft Research
http://research.microsoft.com/en-us/

Organization XI

Sapienza Università di Roma, Italy
http://www.uniroma1.it/

University of Trento, Italy
http://www.unitn.it/

Industrial Sponsorship

EnginSoft S.P.A.
http://www.enginsoft.com/

Local Organization Support

Reactive Search S.R.L.
http://www.reactive-search.com/

Table of Contents

Main Track (Regular Papers)

Multivariate Statistical Tests for Comparing Classification
Algorithms . 1

Olcay Taner Yıldız, Özlem Aslan, and Ethem Alpaydın

Using Hyperheuristics under a GP Framework for Financial
Forecasting . 16

Michael Kampouridis and Edward Tsang

On the Effect of Connectedness for Biobjective Multiple and Long Path
Problems . 31

Sébastien Verel, Arnaud Liefooghe, Jérémie Humeau,
Laetitia Jourdan, and Clarisse Dhaenens

Improving Parallel Local Search for SAT . 46
Alejandro Arbelaez and Youssef Hamadi

Variable Neighborhood Search for the Time-Dependent Vehicle Routing
Problem with Soft Time Windows . 61

Stefanie Kritzinger, Fabien Tricoire, Karl F. Doerner, and
Richard F. Hartl

Solving the Two-Dimensional Bin Packing Problem with a Probabilistic
Multi-start Heuristic . 76

Lukas Baumgartner, Verena Schmid, and Christian Blum

Genetic Diversity and Effective Crossover in Evolutionary
Many-objective Optimization . 91

Hiroyuki Sato, Hernán E. Aguirre, and Kiyoshi Tanaka

An Optimal Stopping Strategy for Online Calibration in Local
Search . 106

Gianluca Bontempi

Analyzing the Effect of Objective Correlation on the Efficient Set of
MNK-Landscapes . 116

Sébastien Verel, Arnaud Liefooghe, Laetitia Jourdan, and
Clarisse Dhaenens

Instance-Based Parameter Tuning via Search Trajectory Similarity
Clustering . 131

Lindawati, Hoong Chuin Lau, and David Lo

XIV Table of Contents

Effective Probabilistic Stopping Rules for Randomized Metaheuristics:
GRASP Implementations . 146

Celso C. Ribeiro, Isabel Rosseti, and Reinaldo C. Souza

A Classifier-Assisted Framework for Expensive Optimization Problems:
A Knowledge-Mining Approach . 161

Yoel Tenne, Kazuhiro Izui, and Shinji Nishiwaki

Robust Gaussian Process-Based Global Optimization Using a Fully
Bayesian Expected Improvement Criterion . 176

Romain Benassi, Julien Bect, and Emmanuel Vazquez

Hierarchical Hidden Conditional Random Fields for Information
Extraction . 191

Satoshi Kaneko, Akira Hayashi, Nobuo Suematsu, and
Kazunori Iwata

Solving Extremely Difficult MINLP Problems Using Adaptive
Resolution Micro-GA with Tabu Search . 203

Asim Munawar, Mohamed Wahib, Masaharu Munetomo, and
Kiyoshi Akama

Adaptive Abnormality Detection on ECG Signal by Utilizing FLAC
Features . 218

Jiaxing Ye, Takumi Kobayashi, Tetsuya Higuchi, and Nobuyuki Otsu

Gravitational Interactions Optimization . 226
Juan J. Flores, Rodrigo López, and Julio Barrera

On the Neutrality of Flowshop Scheduling Fitness Landscapes 238
Marie-Eléonore Marmion, Clarisse Dhaenens, Laetitia Jourdan,
Arnaud Liefooghe, and Sébastien Verel

A Reinforcement Learning Approach for the Flexible Job Shop
Scheduling Problem . 253

Yailen Mart́ınez, Ann Nowé, Juliett Suárez, and Rafael Bello

Supervised Learning Linear Priority Dispatch Rules for Job-Shop
Scheduling . 263

Helga Ingimundardottir and Thomas Philip Runarsson

Fine-Tuning Algorithm Parameters Using the Design of Experiments
Approach . 278

Aldy Gunawan, Hoong Chuin Lau, and Lindawati

MetaHybrid: Combining Metamodels and Gradient-Based Techniques
in a Hybrid Multi-Objective Genetic Algorithm . 293

Alessandro Turco

Table of Contents XV

Designing Stream Cipher Systems Using Genetic Programming 308
Wasan Shakr Awad

GPU-Based Multi-start Local Search Algorithms . 321
Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi

Active Learning of Combinatorial Features for Interactive
Optimization . 336

Paolo Campigotto, Andrea Passerini, and Roberto Battiti

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method
for Trap Escaping . 351

Madalina Raschip and Cornelius Croitoru

Greedy Local Improvement of SPEA2 Algorithm to Solve the
Multiobjective Capacitated Transshipment Problem 364

Nabil Belgasmi, Lamjed Ben Said, and Khaled Ghedira

Hybrid Population-Based Incremental Learning Using Real Codes 379
Sujin Bureerat

Pareto Autonomous Local Search . 392
Nadarajen Veerapen and Frédéric Saubion

Transforming Mathematical Models Using Declarative Reformulation
Rules . 407

Antonio Frangioni and Luis Perez Sanchez

Learning Heuristic Policies – A Reinforcement Learning Problem 423
Thomas Philip Runarsson

Continuous Upper Confidence Trees . 433
Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska,
Olivier Teytaud, and Nicolas Bonnard

Main Track (Short Papers)

Towards an Intelligent Non-Stationary Performance Prediction of
Engineering Systems . 446

David J.J. Toal and Andy J. Keane

Local Search for Constrained Financial Portfolio Selection Problems
with Short Sellings . 450

Luca Di Gaspero, Giacomo di Tollo, Andrea Roli, and Andrea Schaerf

Clustering of Local Optima in Combinatorial Fitness Landscapes 454
Gabriela Ochoa, Sébastien Verel, Fabio Daolio, and Marco Tomassini

XVI Table of Contents

Special Session: IMON

Multi-Objective Optimization with an Adaptive Resonance
Theory-Based Estimation of Distribution Algorithm: A Comparative
Study . 458

Luis Mart́ı, Jesús Garćıa, Antonio Berlanga, and José M. Molina

Multi-Objective Differential Evolution with Adaptive Control of
Parameters and Operators . 473

Ke Li, Álvaro Fialho, and Sam Kwong

Distribution of Computational Effort in Parallel MOEA/D 488
Juan J. Durillo, Qingfu Zhang, Antonio J. Nebro, and Enrique Alba

Multi Objective Genetic Programming for Feature Construction in
Classification Problems . 503

Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi

Special Session: LION-PP

Sequential Model-Based Optimization for General Algorithm
Configuration . 507

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

Generalising Algorithm Performance in Instance Space: A Timetabling
Case Study . 524

Kate Smith-Miles and Leo Lopes

Special Session: Self* EAs

A Hybrid Fish Swarm Optimisation Algorithm for Solving Examination
Timetabling Problems . 539

Hamza Turabieh and Salwani Abdullah

The Sandpile Mutation Operator for Genetic Algorithms 552
C.M. Fernandes, J.L.J. Laredo, A.M. Mora, A.C. Rosa, and
J.J. Merelo

Self-adaptation Techniques Applied to Multi-Objective Evolutionary
Algorithms . 567

Saúl Zapotecas Mart́ınez, Edgar G. Yáñez Oropeza, and
Carlos A. Coello Coello

Analysing the Performance of Different Population Structures for an
Agent-based Evolutionary Algorithm . 582

J.L.J. Laredo, J.J. Merelo, C.M. Fernandes, A.M. Mora, M.G.
Arenas, P.A. Castillo, and P. Garcia-Sanchez

Table of Contents XVII

Special Session: LION-SWAP

EDACC - An Advanced Platform for the Experiment Design,
Administration and Analysis of Empirical Algorithms 586

Adrian Balint, Daniel Diepold, Daniel Gall, Simon Gerber,
Gregor Kapler, and Robert Retz

HAL: A Framework for the Automated Analysis and Design of
High-Performance Algorithms . 600

Christopher Nell, Chris Fawcett, Holger H. Hoos, and
Kevin Leyton-Brown

Hyperion – A Recursive Hyper-Heuristic Framework 616
Jerry Swan, Ender Özcan, and Graham Kendall

The Cross-Domain Heuristic Search Challenge – An International
Research Competition . 631

Edmund K. Burke, Michel Gendreau, Matthew Hyde,
Graham Kendall, Barry McCollum, Gabriela Ochoa,
Andrew J. Parkes, and Sanja Petrovic

Author Index . 635

Multivariate Statistical Tests for Comparing

Classification Algorithms

Olcay Taner Yıldız1, Özlem Aslan2, and Ethem Alpaydın2

1 Dept. of Computer Engineering, Işık University, TR-34980, Istanbul, Turkey
2 Dept. of Computer Engineering, Boğaziçi University, TR-34342, Istanbul, Turkey

Abstract. The misclassification error which is usually used in tests to
compare classification algorithms, does not make a distinction between
the sources of error, namely, false positives and false negatives. Instead
of summing these in a single number, we propose to collect multivariate
statistics and use multivariate tests on them. Information retrieval uses
the measures of precision and recall, and signal detection uses true pos-
itive rate (tpr) and false positive rate (fpr) and a multivariate test can
also use such two values instead of combining them in a single value, such
as error or average precision. For example, we can have bivariate tests for
(precision, recall) or (tpr, fpr). We propose to use the pairwise test based
on Hotelling’s multivariate T 2 test to compare two algorithms or multi-
variate analysis of variance (MANOVA) to compare L > 2 algorithms. In
our experiments, we show that the multivariate tests have higher power
than the univariate error test, that is, they can detect differences that
the error test cannot, and we also discuss how the decisions made by
different multivariate tests differ, to be able to point out where to use
which. We also show how multivariate or univariate pairwise tests can
be used as post-hoc tests after MANOVA to find cliques of algorithms,
or order them along separate dimensions.

1 Introduction

For a typical machine learning application, there are multiple candidate algo-
rithms and we need to choose one among many. In supervised learning, this is
typically done by comparing errors, and in classification with two classes, the
misclassification error is the sum of false positives and false negatives (see Ta-
ble 1(a)). However, misclassification error does not make a distinction between
false positives and false negatives, and various other measures have been pro-
posed depending on the type of error we focus on (see Table 1(b)). In information
retrieval, the two measures used are precision and recall, and in signal detection,
they are true positive rate (tpr) and false positive rate (fpr). People also use
curves of these or areas under such curves. These different set of measures have
different uses, as we will discuss later.

In comparing classification algorithms, we use statistical tests to make sure
that the difference is significant, that is, big enough that it could not have
happened by chance, or in other words, very unlikely to have been caused by

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

Table 1. (a) 2×2 confusion matrix for two classes. (b) Different performance measures.

(a) (b)

Predicted class
True class Positive Negative Sum

Positive tp fn p
Negative fp tn n

Sum p’ n’

Name Formula

error (fp+fn)/(p+n)
accuracy (tp+tn)/(p+n)

tpr tp/p
fpr fp/n

precision tp/p’
recall tp/p

chance – the so-called p-value of the test. To be able to measure the effect of
chance (e.g., variance due to small changes in the training set), typically, one does
training and validation a number of times, possibly by resampling using cross-
validation. For example, with k training and validation dataset pairs, we train
the classification algorithms on the k training sets and obtain the k confusion
matrices on the validation sets. From these, we can for example calculate the
k misclassification error values and to compare two algorithms, we can use a
pairwise statistical test [1] to see whether the two algorithms lead to classifiers
with equal expected error. When there are more than two to compare, one can
use analysis of variance (ANOVA) to check if all have equal expected error.
It is critical that such tests are paired, that is, we use the same training and
validation data with all algorithms so that whatever difference we observe is due
to the algorithm, and not due to any randomness in resampling the data.

We note the disadvantage of using error here; such tests cannot make a dis-
tinction between false positives and false negatives. Two classifiers may have the
same error but one may have all its error due to false positives, the other all
due to false negatives, and we will not be able to detect this difference if our
comparison metric is simply the error; see Figure 1 for an example.

In this paper, we propose multivariate tests that can do comparison using
multiple measures and not just a single one, i.e., error. That is, from the k con-
fusion matrices, we will collect multivariate statistics such as a two-dimensional
vector of (tpr, fpr) or (precision, recall), and do a bivariate test. We can also do
a four-variate test using the whole 2× 2 confusion matrix or any other vector of
measurements. Statistical tests in the machine learning literature are all univari-
ate; to the best of our knowledge, our use of multivariate tests in performance
comparison of machine learning algorithms is the first.

The need to combine different measures have been noticed before. Average
precision combines precision and recall, for example, Caruana et al. (2004) [2]
compared different performance metrics such as accuracy, lift, F-Score, area un-
der the ROC curve, average precision, precision/recall break-even point, squared
error, cross entropy, and probability calibration; they showed that these metrics
are correlated and proposed a new measure SAR as the average of Squared error,
Accuracy and Roc area. Seliya et al. (2009) [3] calculated different measures too
and going one step further proposed to combine them taking the correlation into

Multivariate Statistical Tests for Comparing Classification Algorithms 3

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(a)

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1
(b)

threshold

er
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c)

fpr

tp
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(d)

recall

pr
ec

is
io

n

Fig. 1. Example showing that error is not the best measure in comparison. The neg-
ative and positive instances are normally distributed with their means at 2 and 3
respectively; both have standard deviation 0.3. In (a), we see the two densities, the
posterior probabilities and 100 instances sampled from each. We have a classifier that
chooses the positive class if the input is greater than a threshold (corresponding to
a threshold on the posterior of the positive class) and what we then do, is move this
threshold of decision gradually from 2 to 3 (corresponding to increasing the posterior
threshold from 0 to 1). As we see in (b), the error does not change; the number of
false positives decreases but the number of false negatives increase in equal amount.
In (c) and (d), we see that if we use (tpr, fpr) and (precision, recall) as measures of
performance, the values differ as the threshold is changed. As the threshold increases,
the number of true positives decrease which decreases tpr and recall; but because false
positives decrease, fpr decreases and precision increases. Note that in (c) and (d), as
we increase the threshold, we move from the right to the left along the curves. (Tpr,
fpr) and (precision, recall) can detect a difference due to different thresholds because
they make a distinction between false positives and false negatives. For example, if we
had two classifiers one with threshold at 2 and another with threshold at 3, a pairwise
test on error would not be able to detect any difference between them, but tests on
(tpr, fpr) or (precision, recall) would. The aim of this paper is the discussion of such
tests.

4 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

account. Note however that these are for reporting performances only and they
include no statistical methodology for testing or comparison, as we do here.

This paper is organized as follows: To compare two algorithms, we discuss the
pairwise univariate test and the proposed multivariate test in Section 2. When
there are L > 2 algorithms to compare, we can use univariate and multivariate
ANOVA, as discussed in Section 3. We give our experimental results in Section 4
and conclude in Section 5.

2 Pairwise Comparison

Let us say we have two classification algorithms. We train and validate the
two algorithms on k training/validation data folds and calculate the resulting k
separate 2 × 2 confusion matrices Mij , i = 1, 2, j = 1, . . . , k, on the validation
sets in the same format as shown in Table 1(a).

2.1 Univariate Case

If we want to compare in terms of error, for both algorithms and all k folds, we
calculate eij = fpij + fnij and then the paired difference between the errors

dj = e1j − e2j

and we test if these differences come from a population with zero mean:

H0 : μd = 0 vs. H1 : μd �= 0

For the univariate paired t test, we calculate the average and the standard
deviation:

d =
k∑

j=1

dj/k , sd =

∑
j(dj − d)2

k − 1

Under the null hypothesis that the two algorithms have the same expected
error, we know that

t′ =
√

k
d

sd
(1)

is t distributed with k − 1 degrees of freedom. We reject H0 if |t′| > tα/2,k−1

with (1 − α)100 % confidence.

2.2 Multivariate Case

If we do not want to reduce to a single statistic and want to use a set of values
in comparison, we need a test that can use vectors instead of scalars. In such
a case, we want to compare the means of two p-dimensional populations, that
is, we want to test for the null hypothesis H0 : µ1 − µ2 = 0. If we want to
compare in terms of (tpr, fpr) or (precision, recall), then p = 2. Note that using
the same setting, it is also possible to define a multivariate test on (sensitivity,
specificity), or consider all four entries in the confusion matrix, in which case

Multivariate Statistical Tests for Comparing Classification Algorithms 5

p = 4. As before, we train and validate both algorithms with the same folds and
use a paired test, except that now the test is multivariate.

Let us say xij ∈ �p is the performance vector containing p performance values.
For the multivariate paired Hotelling’s test, we calculate the paired difference
vectors

dj = x1j − x2j

and check if they come from a p-variate Gaussian with zero mean:

H0 : µd = 0 vs. H1 : µd �= 0

We calculate the average vector and the covariance matrix:

d =
k∑

j=1

dj/k , Sd =
1

k − 1

∑
j

(dj − d)(dj − d)T

Under the null hypothesis that the two algorithms have the same expected
behavior, we know that [4]

T ′2 = kd
T
S−1

d d (2)

is Hotelling’s T 2 distributed with p and k − 1 degrees of freedom. We reject
the null hypothesis if T ′2 > T 2

α,p,k−1. Hotelling’s T 2(p, m) can be approximated
using F distribution via the formula(

m − p + 1
mp

)
T 2

p,m ∼ Fm,m−p+1 (3)

Note that we calculate our measures such as tpr, precision, and so on, from
entries in the 2 × 2 confusion matrix; these are counts of indicator random
variables (they are 0/1 Bernoulli random variables) caused by the same event
(the trained classifier) and the total counts are then dependent binomial random
variables. We know from the central limit theorem that the binomial converges
to the Gaussian unless the sample (here, the validation set size) is very small and
hence the assumption of joint multivariate normality makes sense. Remember
that all parametric tests based on error also use the same assumption.

When p = 1, this multivariate test reduces to the univariate t test of Section
2.1. Just like d/sd of (1) measuring the normalized distance in one dimension,
d

T
S−1

d d of (2) measures the (squared) normalized distance in p dimensions.
If the multivariate test rejects, we can do p post-hoc univariate tests to check

which one(s) of the variates cause(s) a rejection. For example, if a multivariate
test on (precision, recall) rejects, we may want to check if the difference is due
to a significant difference in precision, recall, or both. For testing difference in
variate l, we use the univariate test in (1) and calculate

t′l =
√

k
dl

Sd,ll
(4)

and reject H0 : μd,l = 0 if |t′l| > tα/2,k−1.

6 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

Note that it may be the case that none of the univariate differences is signifi-
cant whereas the multivariate one is, and the linear combination of variates that
cause the maximum difference can be calculated as

w = S−1
d d (5)

We can then see the effect of the different univariate dimensions by looking at
the corresponding elements of w. The fact that this is the Fisher’s LDA direction
is not accidental—we are looking for the direction that maximizes the separation
of two groups of data.

3 Analysis of Variance

If we have L > 2 algorithms to compare, we test whether they have the same
expected performance. In the univariate case, we reduce the confusion matrices
to error values and compare them; in the multivariate case, we compare vectors
of performance values.

3.1 Univariate Case

Given L populations, we test for

H0 : μ1 = μ2 = · · · = μL vs. H1 : μr �= μs for one pair r, s

Let us say that eij , i = 1, . . . , L, j = 1, . . . , k, denotes the error of algorithm i
on validation fold j. ei· =

∑
j eij/k denotes the average error of algorithm i, and

e·· =
∑

i ei,·/L denotes the overall average. The univariate ANOVA calculates

F ′ =
MSH

MSE
=

SSH/(L − 1)
SSE/L(k − 1)

=
(
∑

i e2
i·/k − e··/Lk)(L − 1)

(
∑

i,j e2
ij −

∑
i e2

i·/k)/L(k − 1)
(6)

which, under the null hypothesis, is F distributed with L−1 and L(k−1) degrees
of freedom. We reject H0 if F ′ > Fα,L−1,L(k−1).

If ANOVA rejects and we know that there is at least one pair that is signifi-
cantly different, we can use the pairwise test of Section 2.1 as a post-hoc test on
all pairs r, s to check which pair(s) lead(s) to the significant difference in error.

3.2 Multivariate Case

Given L populations, we test for

H0 : µ1 = µ2 = · · · = µL vs. H1 : µr �= µs for one pair r, s.

Multivariate Statistical Tests for Comparing Classification Algorithms 7

Let us say that xij , i = 1, . . . , L, j = 1, . . . , k denotes the p-dimensional per-
formance vector of algorithm i on validation fold j. The multivariate ANOVA
(MANOVA) calculates the two matrices of between- and within-scatter:

H = k

L∑
i=1

(xi· − x··)(xi· − x··)T

E =
L∑

i=1

k∑
j=1

(xij − xi·)(xij − xi·)T

Then

Λ′ =
|E|

|E + H| (7)

is Wilks’ Λ distributed with p, L − 1, L(k − 1) degrees of freedom [4]. We reject
H0 if Λ′ ≤ Λα,p,L−1,L(k−1). Note that rejection is for small values of Λ′: If the
sample mean vectors are equal, we expect H to be 0 and Λ′ to approach 1;
as the sample means become more spread, H becomes “larger” than E and Λ′

approaches 0.
Wilks’ Λ can be approximated using χ2 distribution via the formula(

p − n + 1
2

− m

)
log Λp,m,n ∼ χ2

np (8)

If MANOVA rejects, we can do p separate univariate ANOVA on each of the
individual variates as we discussed in Section 3.1, or the difference may be due to
some linear combination of the variates: The mean vectors occupy a space whose
dimensionality is given by s = min(p, L− 1); its dimensions are the eigenvectors
of E−1H and we have

Λ =
s∏

i=1

1
1 + λi

where λi are the corresponding sorted eigenvalues. The analysis of the eigenval-
ues and the corresponding variates of the eigenvectors allow us to pinpoint the
causes if MANOVA rejects. For example, if λ1/

∑
i λi > 0.9, there is collinearity,

i.e., the means lie on a single discriminant, z = wT x, where w is the eigenvector
with the largest eigenvalue λ1.

We can also do a set of pairwise multivariate tests as we have discussed in
Section 2.2 after MANOVA rejects, to see which pairs (or groups) of algorithms
have comparable performance vectors.

4 Experiments

4.1 Setup

We use a total of 36 two-class datasets where 27 of them (artificial, australian,
breast, bupa, credit, cylinder, german, haberman, heart, hepatitis, horse, irono-
sphere, krvskp, magic, mammographic, monks, mushroom, parkinsons, pima,

8 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

polyadenylation, promoters, satellite47, spambase, spect, tictactoe, transfusion,
vote) are from the UCI repository [5], three (ringnorm, titanic, twonorm) are
from the Delve repository [6], and six (acceptors, ads, dlbcl, donors, musk2,
prostatetumor) are Bioinformatics datasets [7]. We use 10-fold cross-validation
and five algorithms: (1) c45: C4.5 decision tree. (2) svm: Support vector ma-
chine (SVM) with a linear kernel [8].(3) lda: Linear discriminant classifier. (4)
qda: Quadratic discriminant classifier. (5) knn: k-nearest neighbor with k = 20.

4.2 Results

Univariate vs. Multivariate testing. In the first part of our experiments,
we compare the univariate k-fold paired t test (k = 10) on error which we name
UniErr, with our proposed multivariate pairwise test using (tpr, fpr), which we
name MultiTF.

Figure 2 shows the example where the univariate test fails to reject and Mul-
tiTF rejects the null hypothesis that the two classifiers lda and qda have the same
mean on the breast dataset. Figure 2(a) shows the (tpr, fpr) scatter plots of the
ten runs each of the two methods and the isoprobability contours of the fitted
bivariate Gaussians. We see that LDA has higher fpr whereas QDA has lower
tpr, that is, higher false negative rate. We see in Figure 2(b) that the classifiers
have comparable overall error histograms: LDA has more false positives, QDA
has more false negatives, but overall they have comparable error. We see in Fig-
ure 2(c) that the contour plot of the covariance matrix of the paired differences
has its mean far from (0,0) and that is why the multivariate test rejects the null
hypothesis that the means are the same, whereas in Figure 2(d), we see that
histogram of the differences of errors has its mean close to 0 and the univariate
test fails to reject the null hypothesis that the means are equal.

MultiTF vs. MultiPR. In the second part of our experiments, we see the
effect of different measures on the multivariate test and compare MultiTF with
the multivariate test using (precision, recall) that we name MultiPR; this will
help us identify which one to use in which context.

Figure 3 shows an example where MultiTF rejects and MultiPR fails to reject
the null hypothesis that c45 and qda have the same mean on the pima dataset.
In Figures 3(a) and (b), the x axes are the same because tpr and recall are the
same; the two differ in the y axes and that helps us understand why the two
decisions are different. Although with respect to (tpr, fpr), the mean of c45 and
qda seem to be close to each other (Fig. 3(a)), their difference is significantly
large compared to their standard deviations and this causes a rejection. They
are close enough in the (precision, recall) space (Fig. 3(b)) and hence MultiPR
does not reject. In calculating precision, we divide by p′, and in calculating fpr,
we divide by n; here, n is larger than p′ and hence, the variance of fpr is smaller,
which makes the difference significant.

We can also see this by comparing Figures 3(d) and (e): In (d), we see that
(0,0) lies on the outermost contour indicating that the probability that we see a
difference as large is small and hence we reject the null hypothesis; in (e), (0,0)

Multivariate Statistical Tests for Comparing Classification Algorithms 9

(a) (b)

TPR

FP
R

0.9 1.00.0

0.2
lda
qda

x

x

x

x

x

x

x

x

x xo

o ooo

o

o o

o o

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.............
..............

..............
.........

.............
...............

......
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................
...........
.......
....
..
.....
........

.............
.............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

......................................

.
.........

.......................................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

breast
E

rr
or

lda qda0.0
0.9
1.7
2.6
3.5
4.3
5.2
6.1
7.0
7.8
8.7

(c) (d)

TPR Difference

FP
R

 D
if

fe
re

nc
e

0.0 0.10.0

0.1

x

x

x

x

x

x x x

x

x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...........

..............
..............

..............
..

..............
..............

..............
......

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........
........
.......
......
.....
....
....
...
..
..
..
...
....
.....
.....
......

.......
........

.........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

E
rr

or
 D

if
fe

re
nc

e

breast

-7.2
-6.2
-5.2
-4.2
-3.2
-2.2
-1.2
-0.2
0.8
1.8
2.9

Fig. 2. The example case where the univariate test fails to reject and MultiTF rejects
the null hypothesis that lda and qda have the same mean on the breast dataset. (a)
shows the isoprobability contour plots of the Gaussians fitted to performance data from
two algorithms and (c) shows the distribution of their paired difference; (b) and (d)
show the corresponding error histograms and the histogram of paired error differences
respectively. Roughly speaking, the multivariate test rejects if the mean of the differ-
ences is far from (0,0), compared to the scale of the covariance matrix of differences;
just as the univariate test rejects if the mean of the differences is far from 0, compared
to the standard deviation of differences.

is close enough to the center of the contours and the probability that we see such
a difference is not small and hence we do not reject.

If the univariate post-hoc tests are performed, we see that the algorithms are
significantly different in terms of fpr with a p-value of 0.006. The corresponding
elements of w (equation 5) are (tpr : 0.499, fpr : −25.898) and (precision : 2.014,
recall : −4.374), which shows that fpr is the important one.

10 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

(a) (b) (c)

TPR

FP
R

0.0 1.00.0

0.3
c45
qda

xx

x

xx

o

o

o

o

o

o

o

o

o

o

x

x

x

x

x
.

.

.

.......
.................................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
......
.....
.....
....
...
...
.....
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

................................

...............
...............
...............
..........

.

..
................

...............
.......

............

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
..
..
.
.
..
...
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...........

..............
..............

....
..............

...................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recall
Pr

ec
is

io
n

0.0 1.00.0

1.0
c45
qda

x

o

o

o

o

o
o

o

o
o

o

x

x
x

x

x

x
x
x

x

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........
.......
......
.....
....
...
..
....
.........

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................................

..............
..............

..............
.

..............
..............

...................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.............
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

.

..

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

.

..

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

........
....
......
.......
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

..

..

.

..

..

.

..

...

..

...

..

...

..

..

.....

..

.......

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

.....

..

...

..

..

...

..

..

...

..

...

..

...

..

...

..

..

.

..

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............

.............

pima

E
rr

or

c45 qda20.8
22.2
23.6
25.1
26.5
27.9
29.4
30.8
32.2
33.6
35.1

(d) (e) (f)

TPR Difference

FP
R

 D
if

fe
re

nc
e

-1 0 1-1

0 x x

x
x

x
x

x
x

x
x

. ..
..

...

...

.

...

...

.

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

...

..

..

..

...

..

..

...

..

...

..

...

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

....................
..........
.................

...

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

....

....

....

....

....

....

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

...

...

...

...

...

...

...

....

...

.......

.......

.......

.......

.......

.......

.......

.............................
..
..
.
..
.
..
.
..
.
..
.
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

..

.

..

.

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..
.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.....

.....

.....

.....

.....

.....

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

...

...

...

.

..

.....................
........

Precision Difference

R
ec

al
l D

if
fe

re
nc

e

-1 0 1-1

0

1

x

x
x

x
xx

x

x

x

x

.

.
.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

..

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

...

.

..

.

.

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

............
........
.....
..................

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

..

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

...

.

.

...

.

.

...

.

.

...

.

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

..

...

..

..

.....

..

.......

.......

.......

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

.......

.......

...

....

...

....

...

..

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

..

.

..

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

..

.

..

..

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.....................
..............

.
..
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
..
.

.

.

.

E
rr

or
 D

if
fe

re
nc

e

pima

-10.4
-8.6
-6.8
-4.9
-3.1
-1.3
0.5
2.3
4.2
6.0
7.8

Fig. 3. An example case where MultiTF rejects and MultiPR fails to reject the null
hypothesis that the two classifiers, c45 and qda, have the same mean on the pima
dataset. (a) and (d) show the isoprobability contour plots of the fitted Gaussians and
of the difference with respect to (tpr, fpr); (b) and (e) show the same with respect to
(precision, recall); (c) and (f) show the corresponding histogram of the error rates and
the differences in the error rates.

The error distributions of the algorithms are also similar to each other and
the univariate test also fails to reject the null hypothesis that the error rates of
those algorithms are equal (see Figs. 3(c) and (f)).

(Precision, recall) and (tpr, fpr) metric pairs have different application areas.
In (precision, recall), we are basically interested in how well we classify the
positive examples, whereas in (tpr, fpr), in trying to minimize fpr, we also want
to increase the true negatives. To show the difference between them, we did two
experiments: In Figure 4(a), we simply add more and more true negatives to a
classifier. In such a case, we see that this has no effect on precision and recall,
but decreases fpr. When compared with the classifier without any additional true
negatives, MultiPR does not reject but MultiTF starts rejecting after a point.

It is known that (precision, recall) is sensitive to class skewness [9], whereas
(tpr, fpr) is not. In Figure 4(b)), we slowly change the ratio p/n, and we see
that because precision uses values from both rows, it changes; however (tpr,
fpr) do not change since they use values from only one row. Compared with the
classifier with the original ratio, MultiTF does not reject (because the rates do
not change), but MultiPR starts rejecting after a point.

Multivariate Statistical Tests for Comparing Classification Algorithms 11

(a) (b)

λPr
ob

. o
f

fa
ili

ng
 to

 r
ej

ec
t t

he
 n

ul
l h

yp
ot

he
si

s

.05 .11 .16 .22 .27 .33 .38 .44 .50 .55.0
.1
.2
.3
.4
.5
.6

.7

.8

.9
1.0

(TPR,FPR)
(Precision,Recall)

αPr
ob

. o
f

fa
ili

ng
 to

 r
ej

ec
t t

he
 n

ul
l h

yp
ot

he
si

s

.02 .05 .07 .10 .12 .15 .17 .20 .22 .25.0
.1
.2
.3
.4
.5
.6

.7

.8

.9
1.0

(TPR,FPR)
(Precision,Recall)

Fig. 4. In (a), when we add more and more true negatives (tn ← tn (1 +λ)), precision
and recall do not change, but fpr (=fp / (n +λ tn)) decreases and MultiTF test starts

rejecting the null hypothesis. In (b), we change the ratio p
n

= (tp+fn)(1−α)
(fp+tn)(1+α)

while keeping

tpr and fpr the same (tp← tp (1−α), fn← fn (1−α), fp← fp (1+α), tn← tn (1+α)), we
see that precision changes and MultiPR starts rejecting. Plotted values are proportions
of failures to reject in 100 independent runs.

If we are doing an information retrieval task with a query such as, “Find me
all images of tigers,” adding additional non-tiger images to the database does not
have any effect on our measure of performance (as long as we have no difficulty
in recognizing them as non-tigers and do not retrieve them), and hence we use
precision and recall. If we want to differentiate between two types of targets, for
example, cars and tanks, our accuracy on these different targets is important,
and we use tpr and fpr.

Comparison of multiple algorithms. In the third part of our experiments,
we use the univariate and multivariate tests to compare L > 2 classification
algorithms. For the univariate case, if ANOVA rejects, we can do L(L − 1)/2
pairwise univariate tests to find difference between pairs and also cliques, i.e.,
subsets of algorithms in which all pairwise tests fail to reject.

In the case of a univariate test, we can also write down an order by comparing
the means. For this, we sort the algorithms in terms of average error in ascend-
ing order and then try to find groups where there is no statistically significant
difference between the smallest and largest means in the group, which we check
by applying a pairwise univariate test to these two at the ends. If this the case,
we underline the group. We first try all five, if there is a difference between the
first and the fifth, we try the two groups of four leaving out the two extremes,
and so on.

If MANOVA rejects, similarly, we can do the pairwise multivariate tests and
find cliques. We can also do univariate tests on the dimensions separately and

12 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

TPR

FP
R

0.8 1.00.0

0.2
c45
knn
lda
qda
svm

x

x

x

x

++

++ +

+

+ ++

+

#

##

#

#

#

##

#

%

%%

%

%

%

%

% %

%

x

x

x

xx

x

o

oo

o

o

o

o

o o

o

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...........
.........
.......
......
...
.
....
.........

.....................
....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......................................

.......................
.......................

......
.......................

....

.

.

................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
....
...
..
.

..
...
....
.....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...............

.......................
........
.......................

...
..................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
....

......
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.................

..............
..............

............
..............

...........

.

.........................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...........
......
..
...
......

.........
.......

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

........................

.
......

.

...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
....
...
...
..
.

..

...
....
....
...

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................

.
..............
............

..

.

.

.

.

.
..

.

Precision
R

ec
al

l

0.9 1.00.8

1.0
c45
knn
lda
qda
svm

x

xx

x

x

x

o

o

o

o

o

o

o o

o

o +

+

+

+

+

+

+

+

+

+

#

#

#

#

#

#

##

#

%

%

%

%

%

%

% %

%

%

x

x

x

x

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.........................
..............
........
...
..
...
.....
......
........
..........

............
.......

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..............
.............

............
..............

..........
...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..........................
......

...........................
......

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

...

...............
..

.

.......................................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..........................
..........
...
.......
..............

.................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

..

......................................

..............
....

.........................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................

..............
...........

........

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

................
...

.

breast

E
rr

or

c45 knn lda qda svm0.00
1.16
2.32
3.48
4.64
5.80
6.96
8.12
9.28

10.43
11.59

(a) (b) (c)

Fig. 5. Comparison of five algorithms on breast. (a) and (b) show the isoprobability
contour plots of the fitted bivariate Gaussians with respect to (tpr, fpr) and (precision,
recall) respectively; (c) shows the corresponding histogram of the error rates.

Table 2. Tabular representation of post-hoc univariate and MultiTF/MultiPR test
results on breast dataset. 1 stands for a failure to reject the null hypothesis.

c45 lda qda svm knn

c45 0 0 0 0
lda 0 1 1 1
qda 0 1 1 1
svm 0 1 1 1
knn 0 1 1 1

c45 lda qda svm knn

c45 0 0 0 0
lda 0 0 1 1
qda 0 0 0 0
svm 0 1 0 1
knn 0 1 0 1

try to find orderings, as discussed above for error. For example, if MANOVA
on (precision, recall) on five algorithms reject, we can try to find groups and
orderings in terms of precision and recall separately.

Figure 5 shows the first example case on breast dataset. Both ANOVA and
MANOVA reject the null hypothesis. According to post-hoc test results, the
univariate test finds a single clique of four algorithms (knn, lda, qda, svm). On
the other hand, both multivariate post-hoc tests (MultiTF and MultiPR) find a
single clique of three algorithms (knn, lda, svm). Table 2 shows the results of all
pairwise tests between five algorithms.

The univariate orderings found are as follows:

error knn svm lda qda c45
tpr, recall lda knn svm qda c45
fpr qda knn svm c45 lda
precision qda knn svm c45 lda

The clique found by multivariate tests (knn, lda, svm) appears as a single
group with respect to tpr and recall. Although (knn, svm) appear together, lda
is separate from that group when the criterion is fpr or precision. We see that
these different measures are able to detect differences that error cannot, and that
the differences vary depending on what performance measure we concentrate on.

Multivariate Statistical Tests for Comparing Classification Algorithms 13

TPR

FP
R

0.0 1.00.0

0.4
c45
knn
lda
qda
svm

x

xx

+

+

+

+

+

+

++++

#

###

#

#

#

###

%

%

%

%

%

%

%

%%

% x

xx

xx

x

oo

x

oo

o

o oo

oo

. .

.
.

..................
..................

..

...........
..............

.........

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.............
............

...........
.........
.......
......
...
.....
...................

......................................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

......

. . ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................

.................
.......

....

....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........
......
...
....
........

........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...............
........
.....
..
...
.....
.......

.........
.....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................

...............
.............

.
..............

.

.....................
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

..

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..............
......
........

.............
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

..

..

.

..

..

.

.

.

...

.

.

...

.

.

..

.

..

...

..

...

..

...

..

...

..

...

..

..

...

..

.

.

...

..

..

....

...

...

.

...

...

.

.

..

...

.

.

..

...

.

...

...

.

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

...

.

...

...

.

...

...

..

..

...

..

..

...

..

..

...

..

..

..

.

..

..

...

..

...

..

...

..

...

..

...

..

..

.

..

...

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....................

......

.

.................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...........
.....
....
.....
........

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................

.............
.......

.....
...

Precision
R

ec
al

l
0.0 1.00.0

1.0
c45
knn
lda
qda
svm

x

xx

+

+

+

+

+

+

+++

+

#

####

#

##

#

%

%% %%

%

% %

%%

x

x

x

x

xx

x

o

o

ooo

o

oo

o

o

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........
........
.......
......
......
....
...
......

.....................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............

.
..............

..............
........

......

...
...........................

...........
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
..
....
.......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..............
......

..

.................
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.....
.....
....
.
................

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................
..............
..............
.

..............
.................................

..

..................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...............
...

.................
..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.................................

...............
.......

.....

.....................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...............
...........
.......
..
........

.........................
...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....................................

..............
......

....

spect

E
rr

or

c45 knn lda qda svm7.14
11.07
15.00
18.93
22.86
26.79
30.71
34.64
38.57
42.50
46.43

(a) (b) (c)

Fig. 6. Comparison of five algorithms on spect. (a) and (b) show the isoprobability
contour plots of the fitted bivariate Gaussians with respect to (tpr, fpr) and (precision,
recall) respectively; (c) shows the corresponding histogram of the error rates.

Table 3. Tabular representation of post-hoc MultiTF and MultiPR test results on
spect dataset. 1 stands for failing to reject the null hypothesis.

c45 lda qda svm knn

c45 0 1 1 0
lda 0 0 0 1
qda 1 0 1 0
svm 1 0 1 0
knn 0 1 0 0

c45 lda qda svm knn

c45 0 0 0 0
lda 0 0 0 1
qda 0 0 1 0
svm 0 0 1 0
knn 0 1 0 0

Figure 6 shows the second example case where we compare all algorithms on
spect. Again, both ANOVA and MANOVA reject the null hypothesis. According
to the post-hoc tests, the univariate test finds five different cliques (one clique of
three and four cliques of two algorithms): (c45, qda, svm), (knn c45), (lda, c45),
(lda, knn), (svm, knn). On this dataset, the decisions of the two multivariate
tests, MultiTF and MultiPR, are different from each other. MultiTF finds two
cliques: (c45, qda, svm) and (lda, knn), whereas MultiPR finds the same cliques
except c45 is missing in one clique: (qda, svm) and (lda, knn). Table 3 shows the
results of the multivariate pairwise tests between five algorithms.

The univariate ordering of the five classifiers are as follows:

error qda svm c45 knn lda
tpr, recall knn lda svm qda c45
fpr qda c45 svm knn lda
precision qda svm knn lda c45

The first clique found by MultiTF (c45, qda, svm) appears as a single group
with respect to both tpr and fpr, whereas the second clique (lda, knn) form a
group only with respect to fpr. Similarly, the first clique found by MultiPR (qda,
svm) appears as a single group with respect to recall and precision, whereas the
second clique (lda, knn) form a group only with respect to precision.

14 O. Taner Yıldız, Ö. Aslan, and E. Alpaydın

Using the full 2×2 confusion matrix. Instead of using (tpr, fpr) or (pre-
cision, recall), one can also use the full 2 × 2 confusion matrix using the same
multivariate test in four dimensions. Note however that though the matrix con-
tains four numbers, because p and n are fixed, the degree of freedom is two and
that going to four dimensions is unnecessary. In our pairwise comparison exper-
iments, we see that in 2582 cases out of 2740, the rank of the 2 × 2 confusion
matrix Sd is indeed 2. Only in 98 cases, the rank is 1: This case occurs if the ratio
tp / tn is the same for all folds, and in 60 cases, the rank is 4: This case occurs
if the number of positive and/or negative instances is not exactly divisible by
k, resulting in a difference between the positive and/or negative instances going
from one fold to another.

It can be shown that when we use the 2×2 confusion matrix, the test statistic
calculated will be the same as that of MultiTF. The other values fn and tn are
fixed because we have (p = tp + fn) and (n = fp + tn) and they do not change
going from one fold to another due to stratification, reducing the dimensionality
to two, and it can be shown that MultiTF uses scaled versions of the counts
used by Multi 2 × 2 but both return the same value. As explained above, there
are cases when the stratification is not exact, but such cases are rare and do not
affect the overall result.

5 Conclusions

In this paper, we propose to use multivariate tests to compare the performances
of classification algorithms. Doing this, we can consider entries in the confusion
matrix separately without needing to sum them up in a cumulative measure such
as error or accuracy, which may hide certain differences in the behavior of the
algorithms. Though multivariate pairwise tests and multivariate ANOVA have
been known in the statistical literature, to the best of our knowledge, their use
in performance comparison of machine learning algorithms is new.

There are a number of advantages to testing p variables multivariately rather
than p separate univariate testing [4], as has also been shown in our experimental
results above: (1) The use of p univariate tests inflates the type I error rate,
unless we do some sort of correction (which in turn decreases power). (2) The
univariate tests ignore correlations between variables, whereas the multivariate
test uses the covariance information. (3) The multivariate test has higher power:
Sometimes the p univariate tests may fail to detect a difference whereas the
multivariate difference may be significant. (4) The multivariate test (pairwise
test or MANOVA) constructs linear combinations of variables that reveals how
the variables unite to reject the hypothesis.

The use of k-fold cross-validation to obtain k set of performance values comes
with a caveat. Because all k training/validation sets are resampled from the same
set, they overlap, and these k set of measurements are not really independent.
This is true both for the univariate t test [1] and the multivariate test. Nadeu
and Bengio (2003) [10] and Bouckaert and Frank (2004) [11] discuss a variance-
correction term. We note that the resampling procedure used to generate the k

Multivariate Statistical Tests for Comparing Classification Algorithms 15

data folds is orthogonal to the test which uses these results and that our proposed
multivariate test can be used with any improved resampling procedure.

We calculate (tpr, fpr) or (precision, recall) values for a specific threshold
value. To have an overall comparison, for example, we can use s different thresh-
olds (as done in a ROC curve) and calculate a pair for each value and get an
overall 2s dimensional vector and again use the multivariate test. This is an inter-
esting research direction. In this paper, we discuss how two or more algorithms
can be compared on a single dataset. Demsar (2006) [12] discusses the compari-
son of algorithms over multiple datasets and an interesting future direction will
be to extend our proposed multivariate test for this.

Acknowledgments

This work has been supported by TÜBİTAK 109E186.

References

1. Dietterich, T.G.: Approximate statistical tests for comparing supervised classifica-
tion learning classifiers. Neural Computation 10, 1895–1923 (1998)

2. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from
libraries of models. In: Proceedings of the International Conference on Machine
Learning, ICML 2004, pp. 137–144 (2004)

3. Seliya, N., Khoshgoftaar, T.M., Hulse, J.V.: Aggregating performance metrics for
classifier evaluation. In: Proceedings of the 10th IEEE International Conference on
Information Reuse and Integration (2009)

4. Rencher, A.C.: Methods of Multivariate Analysis. Wiley and Sons, New York (1995)
5. Blake, C., Merz, C.: UCI repository of machine learning databases (2000)
6. Hinton, G.H.: Delve project, data for evaluating learning in valid experiments

(1996)
7. Statnikov, A., Aliferis, C., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive

evaluation of multicategory classification methods for microarray gene expression
cancer diagnosis. Bioinformatics 21, 631–643 (2005)

8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)
9. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.

In: Proceedings of the 23rd International Conference on Machine Learning, vol. 148,
pp. 233–240 (2006)

10. Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning 52,
239–281 (2003)

11. Bouckaert, R., Frank, E.: Evaluating the replicability of significance tests for com-
paring learning algorithms. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004.
LNCS (LNAI), vol. 3056, pp. 3–12. Springer, Heidelberg (2004)

12. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

Using Hyperheuristics under a GP Framework

for Financial Forecasting

Michael Kampouridis1 and Edward Tsang2

1 School of Computer Science and Electronic Engineering, University of Essex,
Wivenhoe Park, CO4 3SQ, UK

mkampo@essex.ac.uk

http://kampouridis.net
2 Centre for Computational Finance and Economic Agents, University of Essex,

Wivenhoe Park, CO4 3SQ, UK
edward@essex.ac.uk

http://www.bracil.net/edward/

Abstract. Hyperheuristics have successfully been used in the past for a
number of search and optimization problems. To the best of our knowl-
edge, they have not been used for financial forecasting. In this paper we
use a simple hyperheuristics framework to investigate whether we can
improve the performance of a financial forecasting tool called EDDIE 8.
EDDIE 8 allows the GP (Genetic Programming) to search in the search
space of indicators for solutions, instead of using pre-specified ones; as a
result, its search area is quite big and sometimes solutions can be missed
due to ineffective search. We thus use two different heuristics and two
different mutators combined under a simple hyperheuristics framework.
We run experiments under five datasets from FTSE 100 and discover
that on average, the new version can return improved solutions. In addi-
tion, the rate of missing opportunities reaches it’s minimum value, under
all datasets tested in this paper. This is a very important finding, be-
cause it indicates that thanks to the hyperheuristics EDDIE 8 has the
potential of missing less forecasting opportunities. Finally, results sug-
gest that thanks to the introduction of hyperheuristics, the search has
become more effective and more areas of the space have been explored.

Keywords: Hyperheuristics, Genetic Programming, Financial
Forecasting.

1 Introduction

Financial forecasting is an important area in computational finance [29]. There
are numerous works that attempt to forecast the future price movements of a
stock; several examples can be found in [10,7]. A number of different methods
have been used for forecasting. Such examples are for instance, Support Vector
Machines [25], Fuzzy Logic [15] and Neural Networks [6]. Genetic Programming
[18,24] (GP) is an evolutionary technique that has widely been used for financial

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://kampouridis.net
http://www.bracil.net/edward/

Using Hyperheuristics under a GP Framework for Financial Forecasting 17

forecasting. Some recent examples are [26,6,1,12], where GP was used for time
series forecasting.

In a previous paper [16], we presented EDDIE 8 (ED8), which was an ex-
tension of the financial forecasting tool EDDIE (Evolutionary Dynamic Data
Investment Evaluator) [27,28]. EDDIE is a machine learning tool that uses Ge-
netic Programming to make its predictions. The novelty of ED8 was in its ex-
tended grammar, which allowed the GP to search in the space of indicators to
form its Genetic Decision Trees. In this way, ED8 was not constrained in us-
ing pre-specified indicators, but it was left up to the GP to choose the optimal
ones. We then proceeded to compare ED8 with its predecessor, which used in-
dicators that were pre-specified by the user. Results showed that thanks to the
new grammar, ED8 could find new and improved solutions. However, those re-
sults also suggested that ED8’s performance could have been compromised by
the enlarged search space. With the old grammar, which was also discussed in
[16], EDDIE used 6 indicators from technical analysis with two pre-specified pe-
riod lengths. For instance, if one of the indicators was Moving Average, then
the two period lengths used would be 12 and 50 days. On the contrary, ED8
could use any period within a given parameterized range, which for our exper-
iments was set to 2-65 days. Thus, the GP could come up with any indicator
within that range, and not just with 12 and 50 days. As we can see, the search
space of ED8 was much bigger than the one of its predecessor. With the old
grammar, the GP would have to combine only 12 indicators (6 indicators with
2 periods each) to form trees; on the other hand, ED8 would have to combine
6 × (65 − 1) = 384 indicators. The difficulty of ED8 in making the appropriate
indicators combinations was obvious. In addition, the search space of ED8 was
also much bigger. For instance, let us assume that the training data consisted
of 1000 data points. Then, with the old grammar, the GP would have to search
in a space of 12 × 1000 = 12, 000 points. On the other hand, ED8 would have
to search in the much larger space of 384,000 data points (384 × 1000). It was
therefore obvious that we needed to find new ways that would make the search
more effective in such large search areas.

In this paper, we want to investigate if a hyperheuristics framework can ad-
dress this issue. Hyperheuristics is a well-known method that has been used
in a variety of search and optimization problems [23], such as transportation
[14], scheduling [11], and timetabling [8]. To the best of our knowledge, hyper-
heuristics have not been used before for a financial forecasting problem. We thus
use a simple framework that utilizes simple hill climbing, simulated annealing,
random mutation, and weighted random mutation. We are interested in inves-
tigating whether hyperheuristics can improve ED8’s performance, and whether
the search space can be better explored. The rest of this paper is organized
as follows: Section 2 presents the ED8 algorithm, Sect. 3 presents the hyper-
heuristics framework, along with its heuristics and operators, Sect. 4 presents
the experimental setup, Sect. 5 presents and discusses the results, and finally,
Sect. 6 concludes this paper and also discusses future work.

18 M. Kampouridis and E. Tsang

2 Presentation of EDDIE 8

EDDIE is a forecasting tool, which learns and extracts knowledge from a set of
data. The kind of question ED8 tries to answer is ‘will the price increase within
the n following days by r%’? The user first feeds the system with a set of past
data; EDDIE then uses this data and through a GP process, it produces and
evolves Genetic Decision Trees (GDTs), which make recommendations of buy
(1) or not-to-buy (0).

The set of data used is composed of three parts: daily closing price of a stock, a
number of attributes and signals. Stocks’ daily closing prices can be obtained on-
line in websites such as http : //finance.yahoo.comand also from financial statis-
tics databases like Datastream. The attributes are indicators commonly used in
technical analysis [13]; which indicators to use depends on the user and his belief
of their relevance to the prediction. The technical indicators that we use in this
work are: Moving Average (MA), Trade Break Out (TBR), Filter (FLR), Volatil-
ity (Vol), Momentum (Mom), and Momentum Moving Average (MomMA).1

The signals are calculated by looking ahead of the closing price for a time hori-
zon of n days, trying to detect if there is an increase of the price by r% [27]. For
this set of experiments, n was set to 20 and r to 4%. In other words, the GP is
trying to use some of the above indicators to forecast whether the daily closing
price iss going to increase by 4% within the following 20 days.

After we feed the data to the system, EDDIE creates and evolves a population
of GDTs. Figure 1 presents the Backus Normal Form (BNF) [4] (grammar) of
ED8. As we can see, the root of the tree is an If-Then-Else statement. The
first branch is either a boolean (testing whether a technical indicator is greater
than/less than/equal to a value), or a logic operator (and, or, not), which can
hold multiple boolean conditions. The ‘Then’ and ‘Else’ branches can be a new
GDT, or a decision, to buy or not-to-buy (denoted by 1 and 0).

As we can see from the grammar in Fig. 1, there is a function called VarCon-
structor, which takes two children. The first one is the indicator, and the second
one is the Period. Period is an integer within the parameterized range [MinP,
MaxP] that the user specifies. As a result, ED8 can return decision trees with
indicators like 15 days Moving Average, 17 days Volatility, etc. The period is
not an issue and it is up to ED8, and as a consequence up to the GP and the
evolutionary process, to decide which lengths are more valuable for the predic-
tion. A sample GDT is presented in Fig. 2. As we can observe, the periods 12
and 50 are now in a leaf node, and thus are subject to genetic operators, such
as crossover and mutation.

Depending on the classification of the predictions, we can have four cases: True
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).
As a result, we can use the metrics presented in Equations (1), (2) and (3).

1 We use these indicators because they have been proved to be quite useful in developing
GDTs in previous works like [21], [2] and [3]. Of course, there is no reason why not
use other information like fundamentals or limit order book. However, the aim of this
work is not to find the ultimate indicators for financial forecasting.

Using Hyperheuristics under a GP Framework for Financial Forecasting 19

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |

<Condition> “Or” <Condition> |
“Not” <Condition> |
VarConstructor <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period |
Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterized range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Fig. 1. The Backus Normal Form of ED8

Rate of Correctness
RC =

TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure
RF =

FP

FP + TP
(3)

The above metrics combined give the following fitness function, presented in
Equation (4):

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF respectively. These
weights are given in order to reflect the preferences of investors. For instance, a
conservative investor would want to avoid failure; thus a higher weight for RF
should be used. For our experiments, we chose to include strategies that mainly
focus on correctness and reduced failure. Thus these weights have been set to
0.6, 0.1 and 0.3 respectively.

The fitness function is a constrained one, which allows EDDIE to achieve
lower RF. The effectiveness of this constrained fitness function has been dis-
cussed in [28,20]. The constraint is denoted by R, which consists of two elements
represented by percentage, given by

R = [Cmin, Cmax],

where Cmin = Pmin

Ntr
× 100%, Cmax = Pmax

Ntr
× 100%, and 0 ≤ Cmin ≤ Cmax ≤

100%. Ntr is the total number of training data cases, Pmin is the minimum
number of positive position predictions required, and Pmax is the maximum
number of positive position predictions required.

20 M. Kampouridis and E. Tsang

Fig. 2. Sample GDT generated by EDDIE 8

Therefore, a constrained of R = [50, 65] would mean that the percentage of
positive signals that a GDT predicts2 should fall into this range. When this
happens, then w1 remains as it is (i.e. 0.6 in our experiments). Otherwise, w1

takes the value of zero.
During the evolutionary procedure, we allow three operators: crossover, muta-

tion and reproduction. After reaching the last generation, the best-so-far GDT,
in terms of fitness, is applied to the testing data.

This concludes this short presentation of ED8. In the next section we briefly
present the heuristics and operators used in our framework, and then present
the hyperheuristics framework itself.

3 Hyperheuristics Framework

3.1 Heuristics and Operators

We use two heuristics, namely simple hill climbing (SHC) and simulated an-
nealing (SA), and two GP operators, namely random mutation (Rnd Mut) and
weighted random mutation (W. Rnd Mut). However, we do not argue that the
above techniques are the optimal ones for the purposes of our experiments. Other
heuristics and operators could also be chosen. Nevertheless, the purpose of this
paper is not to look for the most effective heuristics or operators, but to in-
vestigate whether and how these heuristics combined under a hyperheuristics
2 As we have mentioned, each GDT makes recommendations of buy (1) or not-to-buy

(0). The former denotes a positive signal and the latter a negative. Thus, within the
range of the training period, which is t days, a GDT will have returned a number of
positive signals

Using Hyperheuristics under a GP Framework for Financial Forecasting 21

framework can be used to improve the performance of ED8. We leave it to fu-
ture research to investigate for even more appropriate heuristics.

Let us now start by explaining how the first heuristic is used (SHC). First of
all, a leaf which contains a period is randomly selected. Let us assume that this
period is p = 12 (days). Then the simple hill climber increases the period by 1. If
there is an improvement in the fitness, the process is completed and the period
returned to the leaf is p + 1, which in this example is 13. If, on the other hand,
there is no improvement, then the period p is reduced by 1. Again, if this has
resulted to an improvement, then the process ends and the new period is p − 1,
which in this example is 11. If again there is no improvement, then the initial
period p = 12 is returned and the process is terminated. The purpose of using
this heuristic is quite obvious: we are interested in investigating how a marginal
change in the period can affect the performance of a tree.

The motivation behind the use of the remaining three heuristics/operators
is to expand the search to other areas of the search space, and not just the
neighborhood of a selected period. The second heuristic is the classic simulated
annealing. A leaf from a tree is again randomly chosen. Then the standard
algorithm of simulated annealing is used [17,9]. We thus allow swaps among the
different periods (2-65 days). The initial temperature t is set to a value such that
around 65% of the inferior moves are accepted. The temperature is gradually
reduced according to the following formula: t = (1 − f) × t, where t denotes
the temperature and f is the annealing temperature reduction factor, which is
equal to 0.1. At each temperature a maximum of 10 iterations are executed. The
acceptance criterion is the Metropolis criterion [22].

The two operators used in our framework are Rnd Mut and W. Rnd Mut.
They both randomly select a leaf which contains a period. Random mutation
then mutates this leaf to another period. This operator is the typical GP muta-
tion operator and it allows us to randomly explore different areas of the search
space. On the other hand, weighted random mutation offers a roulette-wheel-like
selection, where the new period, which is going to replace a leaf, is probabilis-
tically selected, based on its occurrence. However, it should be highlighted that
W. Rnd Mut does not just focus on the period, but on the indicator itself. So
when we select a period p for mutation, we also take into account the accompa-
nying indicator (e.g. Moving Average). We then calculate the period occurrence
under that specific indicator. The reason for doing this is that we aim to target
indicators as a whole and not just periods. In this way, the new period p′ that
is going to replace of the old period p is a period that has a high occurrence
under this specific indicator. W. Rnd Mut therefore introduces useful indicators
to the population, rather than just introducing useful periods, like the other 3
heuristics/mutators do.

3.2 The Framework

In this simple framework, all low level heuristics are used simultaneously. The low
level heuristics include both the heuristics and operators described in the previous
section. Inspired by the Population Based Incremental Learning algorithm [5] and

22 M. Kampouridis and E. Tsang

the alike Estimation of Distribution Algorithms [19,30], all four low level heuristics
are initially given a weight w of being selected, where w = 25%. Then depending
on the result on the performance of a tree after the implication of a heuristic, the
following cases can occur:

1. Increase in performance
(a) By using a new period
(b) By using a pre-existing period

2. No change in performance
(a) By using a new period
(b) By using a pre-existing period

3. Decrease in performance

As we can see, we are not only interested in improving the performance of a
GDT. We are also interested in whether this improvement comes from a new or
from a pre-existing period. The reason for this is obvious: one of the goals of our
experiments is to have better exploration of the search space. We thus want to
reward a heuristic that allowed a new period to be invoked in the population.

Let us denote the reward/punishment after the implication of a heuristic by
r. Then the weight w for each one of the above cases (1-3) is updated as follows:

1. Increase in performance
(a) w = w + r (new period)
(b) w = w + r/2 (pre-existing period)

2. No change in performance
(a) w = w + r/5 (new period)
(b) w = w − r/5 (pre-existing period)

3. Decrease in performance
w = w − r

The highest reward is offered when there is an increase in the performance
and a new period has been used (1-a). When an improvement is caused by the
use of a period that is already being used by other GDTs, half of the reward
is offered (1-b). In the case of no change in performance, we still offer a small
reward (equal to r

5) if a new period has been used (2-a), since a new area of the
search space has been explored. If no new period has been used, then a small
punishment is invoked (equal to − r

5) (2-b). Finally, there is also a punishment
in the case of decrease in the performance (3).

4 Experimental Setup

The data we feed to ED8 consist of daily closing prices. These closing prices
are from 5 arbitrary stocks from FTSE100. These stocks are: British Petroleum
(BP), Carnival, Hammerson, Imperial Tobacco, and Xstrara. The training period
is 1000 days and the testing period 300.

The GP parameters are presented in Table 1. For statistical purposes, we
run the GP for 50 times. Thus, the process that is followed is that we create a

Using Hyperheuristics under a GP Framework for Financial Forecasting 23

Table 1. GP Parameters

GP Parameters

Max Initial Depth 6
Max Depth 8
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01
Period (EDDIE 8) [2,65]

population of 500 GDTs, which are evolved for 50 generations, over a training
period of 1000 days. At the last generation, the best performing GDT in terms
of fitness is saved and applied to the testing period. As we have already said,
this procedure is done for 50 individual runs.

In addition, we should emphasize that we require that the datasets have a
satisfactory number of actual positive signals. By this we mean that we are nei-
ther interested in datasets with a very low number of signals, neither with an
extremely high one. Such cases would be categorized as chance discovery, where
people are interested in predicting rare events, such as a stock market crash.
Clearly this is not the case in our current work, where we use EDDIE for in-
vestment opportunities forecasting. We are thus interested in datasets that have
opportunities around 50-70% (i.e. 50-70% of actual positive signals). Therefore,
we need to calibrate the values of r and n (see Sect. 2) accordingly, so that
we can obtain the above percentage from our data. For our experiments, the
value of n is set to 20 days. The value of r varies, depending on the dataset.
This is because one dataset might reach a percentage of 50-70% with r = 4%,
whereas another one might need a higher or lower r value. Accordingly, we need
to calibrate the value of the R constraint, so that EDDIE produces GDTs that
forecast positive signals in a range which includes the percentage of the actual
positive signals of the dataset we are experimenting with. R thus takes values
in the range of [−5%, +5%] of the number of positive signals that the dataset
has. For instance, if under r = 4% and n = 20 days, a dataset has 60% of actual
positive signals, then R would be set to [55,65].

Finally, Table 2 presents the parameters of the hyperheuristics framework. The
probability of applying hyperheuristics is set for this work at 35%. Thus, 35% of
the GDTs’ periods can be updated through hyperheuristics at each generation.
We did not want to set a higher probability, because this could increase the
computational times. At the moment, the initial weight and reward are set to 0.25
and 0.005, respectively. The former is set to 0.25 because we want all heuristics
to have equal chances of being selected when the process starts. The reward
is set arbitrarily. We leave it to future research to investigate whether the test
results can be affected by different parameter values.

24 M. Kampouridis and E. Tsang

Table 2. Hyperheuristics Parameters

Hyperheuristics Parameters

Hyperheuristics probability 0.35
Initial Weight 0.25
Reward/Punishment 0.005

5 Results

We ran both the traditional version of EDDIE 8 (ED8) and the one that uses
hyperheuristics (ED8-HH) for 50 individual times and present the results in this
section. As we mentioned at the beginning of this paper, the goal of our exper-
iments is twofold: (a) to investigate whether hyperheuristics can improve the
performance of the trees that ED8 uses and (b) to investigate whether hyper-
heuristics can offer better exploration of the search space.

Let us begin with the performance of the GDTs. Table 3 presents the aver-
age and optimal results over the 50 runs for both ED8 and ED8-HH for the 5
stocks. The first row of each dataset presents the ED8 average results and the
second row presents the ED8-HH ones. The third and fourth row of each dataset
present the optimal values of the metrics for ED8 and ED8-HH, respectively.
Optimal value can be either a maximum or a minimum, depending on the met-
ric. Hence, because Fitness and RC are maximization problems, optimal refers
to the maximum value of these metrics, over the 50 individual runs. On the
other hand, because RMC and RF are minimization problems, optimal refers
to the minimum value of these two metrics. In order to judge if the average
results (rows 1 and 2) are significant, we also ran Kolmogorov-Smirnov tests at
5% significance level. The p-values of the tests are presented in Table 4. Thus,
when there is a significantly better average value in Table 3, this is denoted by
bold fonts. In addition, a higher value for the optimal results is underlined.

A first observation from Table 3 is that on average, there seems to be a ‘tie’
between ED8 and ED8-HH. ED8 is doing significantly better in the average Fit-
ness and RF of BP, and in the average RMC of Hammerson. On the other hand,
ED8-HH is doing significantly better in the average values of RMC of Carnival
and Imperial Tobacco. The remaining metrics of the other stocks have insignifi-
cant differences at the 5% level. It is not very easy to draw safe conclusions by
just looking at the average results.

However, the picture gets clearer when we look at the optimal values of the
metrics. ED8-HH is doing better in 12 cases (BP: RMC; Carnival: RMC; Ham-
merson: Fitness, RC, RMC, RF; Imp. Tobacco: Fitness, RMC, RF; Xstrata: RC,
RMC), whereas ED8 is doing better only in 7 cases. What is even more inter-
esting though, is the large and consistent improvement in the minimum value of
RMC, for all 5 stocks. In fact, as we can see from Table 3, the minimum RMC
under ED8-HH is always 0. This is a very important finding, because it indicates
that ED8-HH has the potential of never missing any forecasting opportunities.

Using Hyperheuristics under a GP Framework for Financial Forecasting 25

Table 3. Average and optimal results over 50 runs for ED8 and ED8-HH for 5 FTSE
100 stocks. Each stock presents results in four rows: one for the average values of the
metrics for ED8, one for the average values for ED8-HH, one for the optimal values of
the metrics for ED8, and one for the optimal values for ED8-HH. A significantly better
value (at 5% significance level) between ED8 and ED8-HH for the average results is
presented in bold fonts, whereas a better value for the optimal results is underlined.

Stock Fitness RC RMC RF

BP (ED8 Avg) 0.2005 0.5303 0.4756 0.2338
(ED8-HH Avg) 0.1767 0.5299 0.4519 0.3203
(ED8 Opt) 0.3341 0.6900 0.2523 0.1691
(ED8-HH Opt) 0.2850 0.6500 0 0.1176

Carnival (ED8 Avg) 0.1871 0.5607 0.3531 0.3801
(ED8-HH Avg) 0.1900 0.5607 0.2892 0.3917
(ED8 Opt) 0.2511 0.6300 0.1734 0.1728
(ED8-HH Opt) 0.2470 0.6267 0 0.2414

Hammerson (ED8 Avg) 0.2488 0.6071 0.2331 0.3073
(ED8-HH Avg) 0.2164 0.5675 0.3507 0.2967
(ED8 Opt) 0.3311 0.7033 0.0340 0.2472
(ED8-HH Opt) 0.3450 0.7200 0 0.1818

Imp.Tobacco (ED8 Avg) 0.1832 0.5245 0.6488 0.2222
(ED8-HH Avg) 0.1946 0.5395 0.5910 0.2332
(ED8 Opt) 0.2790 0.6533 0.2595 0.0270
(ED8-HH Opt) 0.2959 0.6533 0 0.0222

Xstrata (ED8 Avg) 0.2419 0.5807 0.3264 0.2462
(ED8-HH Avg) 0.2359 0.5741 0.3330 0.2508
(ED8 Opt) 0.3571 0.7267 0.0664 0.0400
(ED8-HH Opt) 0.2510 0.7600 0 0.0714

Table 4. p-values of the Kolmogorov-Smirnov non-parametric tests. A p-value that is
less than 0.05 denotes significantly different distributions.

Stock Fitness RC RMC RF

BP 0.0171 0.9541 0.5077 0.0001
Carnival 0.1546 0.5077 0.0317 0.1546
Hammerson 0.1546 0.0560 0.0089 0.2408
Imp.Tobacco 0.6779 0.0560 0.0317 0.3584
Xstrata 0.3584 0.2408 0.3584 0.5077

Moreover, Figure 3 presents the average over the 50 runs of the percentage
of extinct indicators for each generation. To be more specific, the trees of each
generation use a number of indicators from the available population. As we
mentioned in Sect. 1, ED8 and ED8-HH use 384 indicators. An ‘extinct indicator’
is therefore defined as the indicator that is not currently used by any of the
GDTs in the population. From Fig. 3 we can see that at generation 0, the
percentage of extinct indicators is very low for both ED8 and ED8-HH (around
2%) for all 5 datasets. This means that very few indicators are not being used

26 M. Kampouridis and E. Tsang

(a) Percentage of Extinct Indicators: ED8

(b) Percentage of Extinct Indicators: ED8-HH

Fig. 3. Percentage of Extinct Indicators for ED8 (a) and ED8-HH (b)

by the trees at generation 0. As evolution proceeds, we can observe that the
percentage of extinct indicators increases, and thus less and less indicators are
used by the GDTs. This is normal, because it means that the GDTs have found
some useful indicators and are focusing on them. However, by the end of the
evolutionary process, we can see that the percentage of extinct indicators has
increased to around 90% for ED8. This means that the GDTs are using only
10% of the available 384 indicators, i.e. around 38 indicators, and are thus only
taking advantage of a very small area of the search space. So all 500 GDTs are
using only these indicators, which indicates very low diversity in the population.
When we look at ED8-HH’s statistics, we see that throughout the evolutionary
process, the percentage of extinct indicators is constantly lower by around 5-
10%. This indicates that ED8-HH constantly explores more areas of the search
space than ED8. By generation 50, this percentage is around 80%. ED8-HH has
thus managed to keep ‘alive’ an extra 10% (in total 20%) of the indicators. This
better exploration has of course led to more diversity in the population and could
be a reason of ED8-HH’s improved performance that we saw earlier in Table 3.

Using Hyperheuristics under a GP Framework for Financial Forecasting 27

Table 5. Performance of each heuristic. First row presents the percentage of improve-
ment to the GDTs’ performance introduced by the specific heuristic. The second row
presents the percentage of improvement that was caused by an existing indicator and
the third row the percentage of improvement caused by a new indicator. Results are
on average of 50 runs.

Stock Rnd Mut SA SHC W. Rnd Mut

(Improvement) 0.0572 0.0560 0.0522 0.0552
BP (Existing Ind.) 0.8825 0.7760 0.7068 0.8565

(New Ind.) 0.1175 0.2240 0.2932 0.1435

(Improvement) 0.0602 0.0748 0.0768 0.0536
Carnival (Existing Ind.) 0.8967 0.7988 0.7887 0.8655

(New Ind.) 0.1033 0.2012 0.2113 0.1345

(Improvement) 0.0541 0.0711 0.0777 0.0412
Hammerson (Existing Ind.) 0.8333 0.8311 0.8500 0.9062

(New Ind.) 0.1667 0.1689 0.1500 0.0938

(Improvement) 0.0339 0.0298 0.0512 0.0297
Imp. Tobacco (Existing Ind.) 0.8930 0.8450 0.8978 0.9522

(New Ind.) 0.1070 0.1550 0.1022 0.0478

(Improvement) 0.0508 0.0705 0.0728 0.0669
Xstrata (Existing Ind.) 0.9635 0.8121 0.8004 0.8778

(New Ind.) 0.0365 0.1879 0.1996 0.1222

Furthermore, Table 5 presents information about the individual heuristics.
For each stock, we present information in three rows. The first one presents the
percentage of improvement caused by the relevant heuristic, on the GDTs’ per-
formance. Results are on average of 50 runs. Thus, the first element of the table
informs us that Rnd Mut has on average improved the BP’s GDTs performance
by 5.72%. Similarly, SA, SHC and W. Rnd Mut have improved the performance
by around 5%. Same rates of improvement apply to the remaining 4 stocks, too,
varying in around 3-8%. Overall, all four heuristics seem to have equivalent con-
tribution to the GDTs’ improvement in performance. In addition, SHC seems
to be the most consistent one, always having an improvement above 5%.

The second and third row of each stock present the percentage of improve-
ments that was caused either by an existing (second row) or by a new period
(third row). Therefore, BP’s 88.25% in Rnd Mut means that 88.25% of the im-
provements came from periods that were already being used by the population
of GDTs. In other words, already-successful periods were located by the heuris-
tics and re-used by the GDTs. The remaining 11.75% of the improvements came
by new periods, which did not belong to the current GP population. As we
explained earlier, we are especially interested in this figure, because it allows di-
versity in the population. From our experiments, SA and SHC seem to be more
consistent in allowing new periods in the population, with percentages varying
in the range of 10.22-29.32%. On the other hand, the two mutators seem to be
better in re-using successful existing periods.

28 M. Kampouridis and E. Tsang

Finally, we should say that a single run of ED8 lasted approximately 3 min-
utes, whereas a single run of ED8-HH lasted approximately 13 minutes. It is
obvious that the latter is more computationally intensive. However, we consider
that the extra wait time is worthy, because of the improvements we saw in per-
formance and search effectiveness. Future work could focus on improving the
computational time of ED8-HH.

6 Conclusion

Hyperheuristics have been used in the past for several search and optimization
problems, but not for financial forecasting. In this paper we used a simple hyper-
heuristics framework to investigate whether we could improve the performance of
a financial forecasting tool called EDDIE 8 (ED8). ED8 allows the GP to search
in the search space of indicators for solutions; as a result, its search space is quite
big and sometimes solutions can be missed due to ineffective search. We thus
used two different heuristics and two GP mutators combined under a simple hy-
perheuristics framework and discovered that hyperheuristics returned improved
solutions. In addition, ED8-HH’s minimum RMC reached it’s minimum value of
0, under all 5 stocks tested in this paper. ED8-HH has thus the potential of never
missing forecasting opportunities. Finally, results suggested that thanks to the
introduction of hyperheuristics, more areas of the search space were explored,
which led to higher diversity in the GP population.

Overall, we can characterize the results as encouraging. However, tests took
place under a small sample (five stocks) and thus more experiments need to be
done under more datasets. Furthermore, as our experiments took place under a
simple hyperheuristics framework, we are interested in investigating the effects
of more complex frameworks. At the same time, we want to examine the effects
of different heuristics. Our goal is to show that under a more sophisticated
framework, and with the use of more heuristics, the search can become even
more effective, resulting to even higher performance of the GDTs.

Acknowledgments

The version has been revised in light of two anonymous referees’ very helpful
reviews, for which the authors are very grateful. The EPSRC grant with number
EP/P563361/0 is also gratefully acknowledged.

References

1. Agapitos, A., O’Neill, M., Brabazon, A.: Evolutionary learning of technical trading
rules without data-mining bias. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 294–303. Springer, Heidelberg (2010)

2. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules.
Journal of Financial Economics 51, 245–271 (1999)

Using Hyperheuristics under a GP Framework for Financial Forecasting 29

3. Austin, M., Bates, G., Dempster, M., Leemans, V., Williams, S.: Adaptive systems
for foreign exchange trading. Quantitative Finance 4(4), 37–45 (2004)

4. Backus, J.: The syntax and semantics of the proposed international algebraic lan-
guage of Zurich. In: International Conference on Information Processing, pp. 125–
132. UNESCO (1959)

5. Baluja, S.: Population-based incremental learning: a method for integrating genetic
search based function optimisation and competitive learning, technical Report,
Carnegie Mellon University (1994)

6. Bernal-Urbina, M., Flores-Méndez, A.: Time series forecasting through polynomial
artificial neural networks and genetic programming. In: Proceedings of the IEEE
Congress on Evolutionary Computation, Hong Kong, pp. 3324–3329 (June 2008)

7. Binner, J., Kendall, G., Chen, S.H. (eds.): Applications of Artificial Intelligence in
Finance and Economics, Advances in Econometrics, vol. 19. Elsevier, Amsterdam
(2004)

8. Burke, E., MacCloumn, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper
heuristic for timetabling problems. European Journal of Operational Research 176,
177–192 (2006)

9. Cerny, V.: A thermodynamical approach to the travelling salesman problem: an ef-
ficient simulation algorithm. Journal of Optimization Theory and Applications 45,
41–51 (1985)

10. Chen, S.H.: Genetic Algorithms and Genetic Programming in Computational Fi-
nance. Springer, New York (2002)

11. Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of
low level heuristics to schedule personnel, vol. 2, pp. 1214–1221 (December 2003)

12. Dempsey, I., O’Neill, M., Brabazon, A.: Live trading with grammatical evolution.
In: Proceedings of the Grammatical Evolution Workshop (2004)

13. Edwards, R., Magee, J.: Technical analysis of stock trends. New York Institute of
Finance (1992)

14. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving
heuristically driven schedule builder. Evol. Comput. 6(1), 61–80 (1998)

15. Kablan, A.: Adaptive neuro fuzzy inference systems for high frequency financial
trading and forecasting, pp. 105–110 (October 2009)

16. Kampouridis, M., Tsang, E.: EDDIE for investment opportunities forecasting: Ex-
tending the search space of the GP. In: Proceedings of the IEEE Conference on
Evolutionary Computation, Barcelona, Spain, pp. 2019–2026 (2010)

17. Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

18. Koza, J.: Genetic Programming: On the programming of computers by means of
natural selection. MIT Press, Cambridge (1992)

19. Larranaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer, Norwell (2001)

20. Li, J.: FGP: A Genetic Programming-ased Financial Forecasting Tool. Ph.D. thesis,
Department of Computer Science, University of Essex (2001)

21. Martinez-Jaramillo, S.: Artificial Financial Markets: An agent-based Approach to
Reproduce Stylized Facts and to study the Red Queen Effect. Ph.D. thesis, CFFEA,
University of Essex (2007)

22. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of calculations by fast computing machines. Journal of Chemical Physics 21,
1087–1092 (1953)

23. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis 12(1), 3–23 (2008)

30 M. Kampouridis and E. Tsang

24. Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming.
Lulu.com (2008)

25. Sapankevych, N., Sankar, R.: Time series prediction using support vector machines:
A survey. IEEE Computational Intelligence Magazine 4(2), 24–38 (2009)

26. Sharma, V., Srinivasan, D.: Evolutionary computation and economic time series
forecasting. In: Proceedings of the IEEE Conference on Evolutionary Computation,
Singapore, September 25-28, pp. 188–195 (2007)

27. Tsang, E., Li, J., Markose, S., Er, H., Salhi, A., Iori, G.: EDDIE in financial decision
making. Journal of Management and Economics 4(4) (2000)

28. Tsang, E., Markose, S., Er, H.: Chance discovery in stock index option and future
arbitrage. New Mathematics and Natural Computation 1(3), 435–447 (2005)

29. Tsang, E., Martinez-Jaramillo, S.: Computational finance. IEEE Computational
Intelligence Society Newsletter, 3–8 (2004)

30. Zhang, Q., Sun, J., Tsang, E.: Evolutionary algorithm with guided mutation for the
maximum clique problem. IEEE Transactions on Evolutionary Computation 9(2),
192–200 (2005)

On the Effect of Connectedness for

Biobjective Multiple and Long Path Problems

Sébastien Verel1,2, Arnaud Liefooghe1,3, Jérémie Humeau1,4,
Laetitia Jourdan1, and Clarisse Dhaenens1,3

1 INRIA Lille-Nord Europe, France
2 Université Nice Sophia Antipolis, I3S – CNRS, France

3 Université Lille 1, LIFL – CNRS, France
4 École des Mines de Douai, IA department, France

verel@i3s.unice.fr, arnaud.liefooghe@univ-lille1.fr,

jeremie.humeau@mines-douai.fr, laetitia.jourdan@inria.fr,

clarisse.dhaenens@lifl.fr

Abstract. Recently, the property of connectedness has been claimed
to give a strong motivation on the design of local search techniques
for multiobjective combinatorial optimization. Indeed, when connect-
edness holds, a basic Pareto local search, initialized with at least one
non-dominated solution, allows to identify the efficient set exhaustively.
However, this becomes quickly infeasible in practice as the number of ef-
ficient solutions typically grows exponentially with the instance size. As
a consequence, we generally have to deal with a limited-size approxima-
tion, ideally a representative sample of efficient solutions. In this paper,
we propose the biobjective long and multiple path problems. We show
experimentally that, on the first problem, even if the efficient set is con-
nected, a local search may be outperformed by a simple evolutionary
algorithm in the sampling of the efficient set. At the opposite, on the
second problem, a local search algorithm may successfully approximate
a disconnected efficient set. Then, we argue that connectedness is not
the single property to study for the design of multiobjective local search
algorithms. This work opens new discussions on a proper definition of
multiobjective fitness landscapes.

1 Introduction

The single-objective long path problem [1] has been introduced to show that a
problem instance can be difficult to solve for a hillclimber-like heuristic even if
the search space is unimodal, i.e. the single local optimum is the global optimum.
For such a problem, a hillclimber guarantees to reach the global optimum, but
the length of the path to get it is exponential in the dimension of the search
space. As a consequence, a hillclimbing-based heuristic cannot expect to solve
the problem in polynomial time. The ‘path length’ takes then place in the rank
of problem difficulty, on the same level as multimodality, ruggedness, deceptivity,
and so on. Rudolph [2] demonstrated that the long path problem can be solved in
a polynomial expected amount of time for a (1+1) evolutionary algorithm (EA)

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 31–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 S. Verel et al.

which is able to mutate more than one bit at a time. This (1 + 1) EA is able to
take some shortcuts on the outside of the path so that it makes the computation
more efficient. However, it does not change the argument that, even for unimodal
problems, the path length to the global optimum must be taken into account in
the design of efficient local search algorithms.

Like in single-objective optimization, the structure of the search space can
explain the difficulty for multiobjective local search methods. In multiobjective
combinatorial optimization (MoCO), the efficient set is the set of solutions which
are not dominated by any other feasible solution. It is often claimed that the
structure of this efficient set plays a crucial role for the development of efficient
local search methods [3]. Connectedness is related to the property that efficient
solutions are connected (at distance 1) with respect to a neighborhood rela-
tion [4]. This property has later been extended to the notion of cluster, where
distances can take higher values [5]. When connectedness holds, it becomes pos-
sible to find all the efficient solutions by means of the iterative exploration of
the neighborhood of the current approximation set by starting by one (or more)
solution(s) from the efficient set. This strategy coincides with the Pareto Local
Search (PLS) algorithm [6], initialized with one efficient solution, and then acts
like an exact approach. However, a common knowledge is that, for most MoCO
problems, the number of non-dominated solutions is not polynomial in the size
of the problem instance [7], so that a PLS algorithm can take an exponential
time to identify the efficient set once the later contains an exponential number
of solutions. Then, the goal of the optimization process is often to identify a
representative sample set, containing a limited number of efficient solutions.

In this work, we argue that connectedness is not the only feature which ex-
plains the difficulty of MoCO for search algorithms. Analogously to the single-
objective long path problems, where a hillclimbing algorithm is outperformed by
a simple EA, even if the search space is unimodal, we here oppose straightfor-
ward extensions of those algorithms, a hillclimbing algorithm and a simple EA,
in a multiobjective context. On one side, PLS extends a single-objective hill-
climber in terms of Pareto dominance [6]. At the opposite, we use an adaptation
of the Simple Evolutionary Multiobjective Optimization (SEMO) algorithm [8].
Both approaches are initialized with one solution from the efficient set, corre-
sponding to an extreme point of the Pareto front. In this paper, we propose the
definition of the biobjective long path problem (k-lp2) and of the biobjective
multiple path problem (k-mp2). With k-lp2, we show experimentally that, even
if the efficient set is connected, the runtime required by PLS to find a reason-
ably good approximation (in terms of hypervolume [9]) is larger than for SEMO,
and becomes computationally prohibitive for large-size instances. Furthermore,
we construct k-mp2 instances where the efficient set is completely disconnected,
but some additional shortcuts are available to walk from one non-dominated
solution to the others. In this case, we show experimentally that PLS can find a
good approximation in a significantly less amount of time than SEMO. Indeed,
both algorithms differ in the way they sample the efficient set. For k-lp2, PLS
can only follow the path defined by the connectedness property while SEMO is

Connectedness for Biobjective Multiple and Long Path Problems 33

able to take some shortcuts outside of the path. For k-mp2, PLS takes advan-
tage of the multiple paths, defined outside the efficient set, which are temporally
non-dominated and that lead to further non-dominated solutions.

The reminder of the paper is organized as follows. First, some notions re-
lated to MoCO, connectedness and long path problems are briefly presented in
the next section. Section 3 introduces the class of biobjective long path prob-
lems, for which the efficient set is fully connected and exponential in the size of
the problem instance. Next, the class of multiple path problems is presented in
Section 4. It handles an exponential number of disconnected efficient solutions.
Our experiments illustrate that PLS appears to be outperformed by SEMO for
biobjective long path problems, while more surprisingly, the opposite occurs for
multiple path problems. This work leads to further investigations on a proper
definition of fitness landscapes for MoCO, not only with regards to the efficient
set itself, but also to the way that leads to its approximation.

2 Background

2.1 Multiobjective Combinatorial Optimization

A multiobjective optimization problem can be defined by a set of m ≥ 2 objective
functions (f1, f2, . . . , fm), and a set X of feasible solutions in the decision space.
In the combinatorial case, X is a discrete set. Let Z = f(X) denote the set of
feasible outcome vectors in the objective space. To each solution x ∈ X is assigned
an objective vector on the basis of a vector function f : X → Z with f(x) =
(f1(x), f2(x), . . . , fm(x)). Without loss of generality, we here assume that all m
objective functions are to be maximized. A solution x ∈ X is said to dominate
a solution x′ ∈ X , denoted by x � x′, iff ∀i ∈ {1, 2, . . . , m}, fi(x) ≥ fi(x′) and
∃j ∈ {1, 2, . . . , m} such as fj(x) > fj(x′). A solution x ∈ X is said to be efficient
(or Pareto optimal, non-dominated) if there does not exist any other solution
x

′ ∈ X such that x
′

dominates x. The set of all efficient solutions is called the
efficient set and its mapping in the objective space is called the Pareto front.
A possible approach in MoCO is to find a minimal set of efficient solutions,
such that strictly one solution maps to each non-dominated vector. However,
generating the entire efficient set of a MoCO problem is usually infeasible for
two main reasons. First, the number of efficient solutions is typically exponential
in the size of the problem instance [7]. In that sense, most MoCO problems
are said to be intractable. Second, deciding if a feasible solution belongs to the
efficient set is known to be NP-complete for numerous MoCO problems [10], even
if none of its single-objective counterpart is NP-hard. Therefore, the overall goal
is often to identify a good efficient set approximation, ideally a subpart of the
efficient set. To this end, heuristic approaches have received a growing interest
in the last decades.

2.2 Local Search and Connectedness

A neighborhood structure is a function N : X → 2X that assigns a set of solutions
N (x) ⊂ X to any solution x ∈ X . N (x) is called the neighborhood of x, and a

34 S. Verel et al.

solution x′ ∈ N (x) is called a neighbor of x. Local search algorithms for MoCO,
like the Pareto Local Search (PLS) [6], generally combine the use of such a
neighborhood structure with the management of an archive (or population) of
mutually non-dominated solutions found so far. The basic idea is to iteratively
improve this archive by exploring the neighborhood of its own content until no
further improvement is possible, or until another stopping condition is fulfilled.

Recently, local search approaches have been successfully applied to MoCO
problems. Some structural properties of the landscape seem to allow the search
space to be explored in an effective way. Such a property, related to the efficient
set, is connectedness [3,4]. As argued by the original authors, it could provide a
theoretical justification for the design of multiobjective local search. Let us define
a graph such that each node represents an efficient solution, and an edge connects
a pair of nodes if the corresponding solutions are neighbors with respect to a
given neighborhood relation [4]. The efficient set is said to be connected if there
exists a path between every pair of nodes in the graph. Paquete and Stützle [5]
extended this notion by introducing an arbitrary distance separating two efficient
solutions (i.e. the minimal number of neighbors to visit to go from one solution
to another). Unfortunately, in the general case, rather negative results have been
reported in the literature for some classical MoCO problems [3,4]. However, in
practice, many empirical results show that efficient solutions for some MoCO
problems are strongly clustered with respect to more classical neighborhood
structures from combinatorial optimization, see for instance [5]. Indeed, in the
case of connectedness, by starting with one or more non-dominated solutions,
it becomes possible to find all the efficient solutions through a basic iterative
neighborhood exploration procedure, like PLS. However, we show in this paper
that connectedness is not the only property to deal with when searching for an
approximation of the efficient set.

2.3 The Single-Objective Long k-Path Problem

The long path problem has been introduced by Horn et al. [1] to design unimodal
landscapes where the path length to reach the global optimum is exponential
in the size of the problem instance. The long k-path is defined on bit strings of
size l. Let Pl,k be a long k-path of dimension l, and Pl,k(i) the ith solution on this
path. The long k-path of dimension 1 is only made of two solutions P1,k = (0, 1),
and the path of dimension l + k can be defined by recursion:

Pl+k,k(i)=

⎧⎨⎩
0kPl,k(i) if 0 ≤ i < sl,k

0k−j1jPl,k(sl,k − 1) if sl,k ≤ i < sl,k + k − 1 with j = i − sl,k + 1
1kPl,k(sl+k,k − 1 − i) if sl,k + k − 1 ≤ i < sl+k,k

where sl,k = |Pl,k| = 2sl−k,k + (k − 1) = (k + 1)2(l−1)/k − k + 1 is the length of
the k-path of dimension l. The fitness function of the long k-path problem (to
be maximized) is defined as follows. For all x ∈ {0, 1}l:

f(x) =
{

l + i if x ∈ Pl,k and x = Pl,k(i)
|x|0 if x �∈ Pl,k

Connectedness for Biobjective Multiple and Long Path Problems 35

where |x|0 is the number of ‘0’ in the bit string x. In the long k-path, a shortcut
can be found by flipping k consecutive bits. For a hillclimbing algorithm which
chooses the best solution in the neighborhood defined by Hamming distance 1,
the number of iterations to reach the global optimum matches the length of
the path, sl,k. The number of evaluations is then (l · sl,k) for a hillclimber. On
the contrary, a (1 + 1) EA which flips each bit with a probability p = 1/l at
each iteration is found the global optimum in polynomial expected running time
O(lk+1/k) [2]1.

3 The Biobjective Long k-Path Problem

In this section, we propose a biobjective problem where the efficient set is con-
nected, but so huge that the full enumeration of it cannot be made in polynomial
time. We define the biobjective long k-path problem to show that the required
runtime to sample a connected efficient set can be very long for a simple local
search algorithm.

3.1 Definition

The biobjective long k-path problem (k-lp2) is defined on a bit string of length l,
with an objective function vector of dimension 2. Each objective function corre-
sponds to a ‘single’ long k-path problem, which is to be maximized. The k-lp2 is
built such that the efficient set matches the path Pl,k. The objective function
vector of k-lp2 is defined as follows. For all x ∈ {0, 1}l:

f(x) = (f1(x), f2(x)) =
{

hl,k(i) if x ∈ Pl,k and x = Pl,k(i)
(|x|0, |x|0) if x �∈ Pl,k

where h is the function which associates each integer i to the point of coordi-
nates (l + i, l + sl,k − 1 − i) in the objective space. So, the first objective is the
fitness function of the single-objective long k-path problem.

The efficient set of k-lp2 corresponds to the path Pl,k (see Fig. 1). By construc-
tion, all solutions in Pl,k are neighbors with respect to Hamming distance 1, so
that the efficient set is connected. The size of Pl,k is sl,k = (k+1)2(l−1)/k−k+1,
which cannot be enumerated in a polynomial number of evaluations in the gen-
eral case. The efficient set of k-lp2 is then (i) connected and (ii) intractable.
Let us now experimentally examine the ability of search algorithms to identify
a good approximation of it.

3.2 Experimental Analysis

Ingredients. For the single-objective long path problems, existing studies are
based on the comparison of a hillclimber and of a (1 + 1) EA [2]. Then, we will

1 The lower bound of the expected runtime could be exponential when k =
√

l − 1 [11].

36 S. Verel et al.

7

0
0

7

f1

f2

29

29

1100000

0000011
0000001

0000111
0000110

0001110
0011110

0011111
0011011

0011001
0011000

0111000
1111000

1111001
1111011

1111111
1111110

1101110
1100110

1100111
1100011

1100001

0000000

Fig. 1. Objective space of the biobjective long 2-path problem of dimension l = 7

here consider straightforward multiobjective extensions of these approaches, re-
spectively a PLS- and a SEMO-like algorithm. They are both adapted to the
path problems (k-lp2 and k-mp2) introduced in this paper, and they will be
respectively denoted by PLSp and SEMOp to differentiate them from their orig-
inal implementation. A pseudo-code is given in Algorithm 1 and Algorithm 2,
respectively. At each PLSp iteration, one solution is chosen at random from
the archive. All solutions located at Hamming distance 1 are evaluated and are
checked for insertion in the archive. For the problem under study, note that at
most two neighbors are located on the long path, with one of them being already
found at a previous iteration. The current solution is then marked as visited in
order to avoid a useless revaluation of its neighborhood. At each SEMOp step,
one solution is randomly chosen from the archive. Each bit of this solution is
independently flipped with a probability p = 1/l, and the obtained solution is
checked for insertion in the archive. In PLSp, the whole neighborhood is explored
while in SEMOp, all solutions are potentially reachable with respect to differ-
ent probabilities2. In order to take advantage of the connectedness property, the
archive of both algorithms is initialized with one solution from the efficient set:
the bit string (0, 0, . . . , 0) of size l.

However, the efficient set of k-lp2 is intractable. It becomes then impracticable
to use an unbounded archive for large-size problem instances. As a consequence,
contrary to the original approaches, we here maintain a bounded archive of size M
in our implementation of the algorithms. Our attempt is not to compare different

2 In SEMO, the neighborhood operator is generally supposed to be ergodic [8].

Connectedness for Biobjective Multiple and Long Path Problems 37

Algorithm 1. PLSp

A← {0l}
repeat

select x ∈ A at random such that x is not visited
set x to visited
for all x′ such that |x− x′|1 = 1 do

updateArchive (A, x′)
end for

until I�
H − IH(A) < ε · I�

H

Algorithm 2. SEMOp

A← {0l}
repeat

select x ∈ A at random
create x′ by flipping each bit of x with a probability p = 1/l
updateArchive (A, x′)

until I�
H − IH(A) < ε · I�

H

bounded archiving techniques, but rather to limit the number of evaluations
required for computing a reasonably good approximation of the efficient set. So,
we define a nearly ideal archiving method to find such an approximation for the
particular case of k-lp2. If the Pareto front was linear, an ‘optimal’ approximation
of size M contains uniformly distributed points over the segment [(l, l + sl,k −
1), (l + sl,k − 1, l)] in the objective space. Note that, in our case, those points
do not necessarily correspond to feasible solutions in the decision space. The
distance between 2 solutions with respect to the first objective is then δ =
(sl,k−1)/(M−1). The bounded archiving technique under consideration is given
in Algorithm 3. First, dominated solutions are always discarded. If the number
of non-dominated solutions becomes too large, the solution with the lowest first
objective value which is too close from the previous one (i.e. the difference with
respect to the first objective is below δ) is removed from the archive. If this rule
does not hold for any solution, the penultimate solution (with respect to the
order defined by objective 1) is removed (not the last one). Of course, such an
archiving technique is k-lp2-specific, but it does not introduce any bias within
heuristic rules generally defined by existing diversity-based archiving approaches.

Experimental Design. The algorithms are compared in terms of the required
number of evaluations to attain a reasonable approximation of the efficient set.
The cost related to archiving is then ignored, as we want to focus on the complex-
ity of algorithms independently of the archiving strategy. The stopping criteria
is based on a percentage of hypervolume IH [9] covered by the solutions from
the archive. For k-lp2, an upper bound of the maximal hypervolume (I�

H) for an
approximation of size M can be computed by uniformly distributing M points
over the Pareto front, that is I�

H = δ2(M + 1)M/2, (l, l) being the reference

38 S. Verel et al.

Algorithm 3. Bounded archiving

updateArchive(A, x):
for all a ∈ A do

if x � a then
A← A \ {a}

end if
end for
if not ∃a ∈ A : a � x then

A← A ∪ {x}
if |A| > M then

reduceArchive(A)
end if

end if

reduceArchive(A):
Sort A in the increasing order w.r.t f1-
values: A = {a1, a2, a3, . . .}
i← 2
while |A| > M do

if i = |A| then
A← A \ {a|A|−1}

else if f1(ai)− f1(ai−1) < δ then
A← A \ {ai}

else
i← i + 1

end if
end while

point. Once the hypervolume covered by the current archive IH(A) is below an
ε-value from I�

H , the algorithm stops.
The experimental study has been conducted with k = 2 and dimensions

l = {19, 29, 39, 49, 59}. We use an archive of size M = 100, and the required
approximation to be found is less than ε = 2% of the maximal hypervolume. In
other words, at least 98% of the best-possible approximation is covered in terms
of hypervolume. The archive is initialized with a bit string where all bits are set
to ‘0’. The number of evaluations is reported over 30 independent runs.

Results and Discussion. Fig. 2 shows the average and the standard deviation
of the number of evaluations for each algorithm. The number of evaluations
required by PLSp seems to grow exponentially with the dimension l. It could be
interpreted as follows. To approximate the efficient set, PLSp follows the long
path. When the archive reaches its maximum size, the archiving technique let
one solution at an ‘optimal’ position in the objective space at every δ iteration.
So, at a given iteration i, the current hypervolume is approximately IH(A) ≈
δ2(2M + 1 − j) · j/2, where j = �i/δ�. Then, the stopping criteria is reached
at the end of the long path only, so that the number of evaluations is more
than exponential in the dimension of the problem instance (l times larger). For
SEMOp, the number of evaluations increases from 20.103 evaluations for l = 19 to
250.103 for l = 59. The computational effort required by SEMOp and by PLSp is
different of several orders of magnitude. For SEMOp, it is difficult to pretend that
the runtime is polynomial or not, nevertheless the number of evaluations remains
huge. The increase is higher than quadratic and seems to fit a cubic curve.

To summarize, SEMOp can sample the efficient set more easily than PLSp

by taking shortcuts out of the long path. From the SEMOp point of view, the
efficient set is k-connected [5]: one efficient solution can be reached by flipping
k bits of another efficient solution. The computational difference between the
two algorithms can be explained by different structures of the graph of efficient

Connectedness for Biobjective Multiple and Long Path Problems 39

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 15 20 25 30 35 40 45 50 55 60

A
vg

. n
um

be
r

of
 e

va
lu

at
io

ns

Dimension (l)

PLSp
SEMOp

Fig. 2. Average value and standard deviation of the number of evaluations for PLSp

and SEMOp on biobjective long 2-path problems (log y-scale)

solutions. For PLSp, it is linear, and for SEMOp, the distance between 2 efficient
solutions in the graph is much smaller than the distance in the objective space.
This result suggests that the connectedness property is not fully satisfactorily
to explain the degree of difficulty of the problem. The structure of the graph
of efficient solutions induced by the neighborhood relation should also be taken
into account. In the next section, we will show that the structure of this graph
is still not enough to explain all the difficulties.

4 The Biobjective Multiple k-Path Problem

In the biobjective long k-path, the efficient set is connected, intractable and
difficult to sample. In this section, we define the biobjective multiple k-path
problem (k-mp2) where the efficient set is still intractable but not connected
anymore, while easier to sample for a PLS-like algorithm.

4.1 Definition

The idea is to modify k-lp2 in order to make the efficient set disconnected (with
respect to Hamming distance 1), and to add some shortcuts out of the path that
guide the search towards efficient solutions. A k-mp2 instance of dimension l
is defined for bit strings of size l such that (l − 1)/k ∈ N, with k being an
even integer value. First, let us define the additional paths, called extra paths.
Let Dl,k and Ul,k be the extra paths of the k-path of dimension l. Let u ∈
(0k|1k)∗ be a concatenation of 1k and 0k. Dl,k(u, j, i) (resp. Ul,k(u, j, i)) is the jth

solution on the extra path from solution Pl,k(i0) = u0kPl−|u|−k,k(i) to solution
Pl,k(i1) = u1kPl−|u|−k,k(i) of the long k-path (resp. from Pl,k(i1) to Pl,k(i0)). D

40 S. Verel et al.

and U are defined like the bridges in the single-objective long path problem [1].
∀p ∈ [0.. l−1−k

k] , ∀u ∈ (0k|1k)p , ∀i ∈ [0..sl−(p+1)k,k − 1] , ∀j ∈ [1..k − 1]:{
Dl,k(u, j, i) = u0k−j1jPl−(p+1)k,k(i)
Ul,k(u, j, i) = u1k−j0jPl−(p+1)k,k(i)

The sequence of neighboring solutions (Dl,k(u, 1, i), . . . , Dl,k(u, k − 1, i)) is the
extra path to go from solution Pl,k(i0) to solution Pl,k(i1). Respectively, the
sequence (Ul,k(u, 1, i), . . . , Ul,k(u, k − 1, i)) allows to go from Pl,k(i1) to Pl,k(i0).
For k an even number, i0 and i1 have the same parity: i0 is even iff i1 is even.

In k-mp2, the efficient set corresponds to the set of solutions Pl,k(i) in the
long path where i is an even number. The efficient set is then fully disconnected
with respect to Hamming distance 1. Solutions Pl,k(2n+1) which are out of the
efficient set are translated by a vector (−0.5,−0.5) ‘under’ the solutions Pl,k(2n+
2), so that they become dominated. As a consequence, a solution Pl,k(2n +
1) leads to, but is dominated by, the efficient solution Pl,k(2n + 2). However,
Pl,k(2n + 1) and Pl,k(2n) are mutually non-dominated. In the same way, the
extra paths to go from Pl,k(i0) to Pl,k(i1) are put on the first diagonal of the
square enclosed by (xi1 − 1, yi1 − 1) and (xi1 , yi1). More formally, the fitness
function of the k-mp2 can be defined as follows. For all x ∈ {0, 1}l:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

hl,k(i) if x ∈ Pl,k and x = Pl,k(i) and i even
hl,k(i + 1) − (0.5, 0.5) if x ∈ Pl,k and x = Pl,k(i) and i odd
hl,k(i1) − (k−j

k , k−j
k) if x ∈ Dl,k and x �∈ Pl,k and

x = Dl,k(u, j, i) with Pl,k(i1) = u1kPl,k(i)
hl,k(i0) − (k−j

k , k−j
k) if x ∈ Ul,k and

x = Ul,k(u, j, i) with Pl,k(i0) = u0kPl,k(i)
(|x|0, |x|0) otherwise

Fig. 3 illustrates the extra paths starting from one solution. Fig. 4 shows the
objective space of a k-mp2 instance. For j < k − 1, solution Dl,k(u, j, i) is a
neighbor of solution Dl,k(u, j + 1, i) and is dominated by it. As well, solution
D(u, k − 1, i) is a neighbor of the efficient solution Pl,k(i1) and is dominated by
it. However, all Dl,k(u, j, i) and Pl,k(i0) are mutually non-dominated. The extra
paths D (Down) lead to a further solution in the long path, and the extra paths
U (Up) are the backward paths of the extra paths D. With those extra paths, an
algorithm based on one bit-flipping can reach an efficient solution easily, just by
following the sequence defined by the set of mutually non-dominated solutions
found so far.

4.2 Experimental Analysis

The experimental study is conducted with the same approaches and parameters
defined for the biobjective long path problem on the previous section. Fig. 5
shows the average value and the standard deviation of the number of evaluations
for each algorithm. Fig. 6 allows to compare the number of evaluations with the

Connectedness for Biobjective Multiple and Long Path Problems 41

(ε,1,6)

11 11 11 000 00 11 0 00 11 11 0 00 11 00 0

00 10 11 0 00 11 10 0

00 11 01 0

i=10i=6i=4 i=16

U(00,1,4) U(0011,1,0)

D(0011,1,0)

00 00 00 0 11 00 00 0

Long path

i=0 i=22

01 11 11 0

D (ε,1,6)

00 01 11 0

D(00,1,4)

10 11 11 0

U

Fig. 3. Extra paths linking the solution P7,2(6) of k-mp2 of dimension 7. Solutions in a
rectangle are along the long path (i.e. the efficient set). Solutions in an ellipse are in the
extra paths leading to solution P7,2(6) at the same position (12.5, 22.5) in the objective
space. The solutions in a rounded rectangle are in extra paths beginning at the solution
P7,2(6) translated by (−0.5,−0.5) in the objective space to their destination solution.
The length of extra paths is 1. Each solution is labelled by D and U .

7

0
0

7

f1

29

29

0000000

f2

0011110

0001110
0011010

1011110

0000011

0000001

0011011

0011000

1111000

1111110

1100110

1100011

0000110

1111011

1100000

0011001

0111000

1111111

1101110

1100111

1100001

0011111

1111001

1000000
0010000

0000100

0001000

0010011
1000011

0010110
1000110

0000111
0000010

0111110
1111010

0100110
1100010

1110110

1100100
1110000

0100000

0001011
1011011

0011100
1011000 1101000

1111100
0111011

1101011

0100011
1110011

Fig. 4. Objective space of the biobjective multiple 2-path problem of dimension l = 7

42 S. Verel et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 15 20 25 30 35 40 45 50 55 60

A
vg

. n
um

be
r

of
 e

va
lu

at
io

ns

Dimension (l)

SEMOp
PLSp

Fig. 5. Average value and standard deviation of the number of evaluations for PLSp

and SEMOp on biobjective multiple 2-path problems

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 15 20 25 30 35 40 45 50 55 60

A
vg

. n
um

be
r

of
 e

va
lu

at
io

ns

Dimension (l)

multiple path SEMOp
multiple path PLSp
long path SEMOp

Fig. 6. Average value and standard deviation of the number of evaluations for PLSp

and SEMOp on biobjective multiple 2-path problems compared to the SEMOp on
biobjective long 2-path

previous problem. Contrary to the results obtained for the long 2-path problem,
PLSp here clearly outperforms SEMOp which needs 3 times more evaluations for
dimension l = 49. For PLSp, the number of evaluations increases linearly with the
dimension of the problem instance. PLSp can find easily the same shortcuts than
SEMOp, and the latter now loses computational resources to explore dominated
solution and to evaluate the neighborhood of some solutions from the archive
more than once. The curves on the right show that it is much easier to sample

Connectedness for Biobjective Multiple and Long Path Problems 43

the efficient set of the multiple 2-path than for the long 2-path problem: for
dimension 49, nearly 27 times more evaluations are required between SEMOp

for k-lp2 and PLSp for k-mp2.
This is the main results of this study. The extra paths guide the search process

to efficient solutions distributed all over the Pareto front. The extra solutions
are not in the efficient set and do not appear on the graph of efficient solutions,
but they are the keys to explain the performances of local search approaches.
Indeed, efficient solutions can now be reached very quickly by following the extra
paths, this explains the good performances of the algorithms. Features from the
efficient set (connectedness, etc.) are independent of the solutions from the extra
paths. Hence, the features of the efficient set are not the only key issue to explain
the success of local search for MoCO.

5 Conclusions and Future Works

In this paper, we proposed two new classes of biobjective combinatorial opti-
mization problems, the long and the multiple path problems, in order to demon-
strate empirically that connectedness is not the only key issue that characterizes
the difficulty of a multiobjective combinatorial optimization problem. In other
words, connectedness is not the ‘Holy Grail’ of search space features when the
efficient set is intractable, and when the goal is to find a limited-size approxi-
mation. Indeed, on the long path problems, where the efficient set is intractable
and connected, our experiments show that the running time to approximate it is
exponential for a Pareto-based local search (PLS), and polynomial for a simple
Pareto-based evolutionary algorithm (SEMO). On the multiple path problems,
where the efficient set is still intractable but disconnected, PLS now outperforms
SEMO, which seems rather unexpected at first sight. This suggests two new con-
siderations to measure the difficulty of finding a good efficient set approximation:

– First, the structure of the graph of efficient solutions induced by the neigh-
borhood relation defined by the algorithm should also be taken into account.
In the long path problems, this graph is a huge line for PLS whereas it is
highly connected for SEMO. Extending the notion of cluster on the efficient
graph as defined by Paquete and Stützle [5], we should study a graph where
an edge between efficient solutions is defined as the probability to reach one
solution from the other.

– Second, the solutions outside the efficient set should also be considered. In
the multiple path problems, some solutions outside of the efficient set are
temporally non-dominated so that they are saved into the archive during the
search process. They help to approximate the (disconnected) efficient set.

In some sense, the fitness landscape of biobjective multiple path problems is uni-
modal, with a number of short paths leading to good solutions. On the contrary,
the biobjective long path problem can be characterized by a unimodal landscape
where the path to good solutions is intractable.

Clearly, following the work of Horoba and Neumann [12], the next step will
consist in leading a rigorous runtime analysis of PLS and SEMO for both the

44 S. Verel et al.

multiple and the long path problems. The actual bounded archiving method
is probably too specific, and seems very difficult to study rigorously. Then, in
order to do so, we certainly have to change this strategy with the concept of
ε-dominance, for instance. It is also possible to extend the biobjective path prob-
lems proposed in this paper to a larger objective space dimension (more than 2
objective functions), or with a larger ‘disconnectedness’ (delete more than one
solution over two). The next challenge will be to define a relevant definition of
fitness landscape in order to better understand the difficulty of multiobjective
combinatorial optimization problems. Given that the goal is here to find a set
of solutions, we believe that another way to do so would be to analyze a fitness
landscape where the search space consists of sets of solutions. A solution would
then be a set of bit strings instead of a single bit string for the problems under
study in this paper. Therefore, we plan to formally define fitness landscapes for
the recent proposal of set-based multiobjective optimization [13].

Acknowledgments. The authors are grateful to Dr. Dirk Thierens for useful sug-
gestions on the relation between intractable efficient sets and long path prob-
lems. They would also like to thank Dr. Luis Paquete for fruitful discussion on
the subject of this work.

References

1. Horn, J., Goldberg, D., Deb, K.: Long path problems. In: Davidor, Y., Männer,
R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer,
Heidelberg (1994)

2. Rudolph, G.: How mutation and selection solve long path problems in polynomial
expected time. Evolutionary Computation 4(2), 195–205 (1996)

3. Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple
objective combinatorial optimization. Technical Report 102/2006, University of
Kaiserslautern, Department of Mathematics (2006)

4. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria
combinatorial optimization. European Journal of Operational Research 97(1), 159–
166 (1997)

5. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective com-
binatorial optimization: An experimental analysis. In: Multiobjective Programming
and Goal Programming. LNEMS, vol. 618, pp. 69–77. Springer, Heidelberg (2009)

6. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Metaheuristics for
Multiobjective Optimisation. LNEMS, vol. 535, pp. 177–199. Springer, Heidelberg
(2004)

7. Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Heidelberg (2005)
8. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algo-

rithms on a simplified multiobjective knapsack problem. Natural Computing: an
International Journal 3(1), 37–51 (2004)

9. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

Connectedness for Biobjective Multiple and Long Path Problems 45

10. Serafini, P.: Some considerations about computational complexity for multiobjec-
tive combinatorial problems. In: Recent Advances and Historical Development of
Vector Optimization. LNEMS, vol. 294. Springer, Heidelberg (1986)

11. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions
with the (1 + 1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg
(1998)

12. Horoba, C., Neumann, F.: Additive approximations of pareto-optimal sets by evolu-
tionary multi-objective algorithms. In: Tenth Workshop on Foundations of Genetic
Algorithms (FOGA 2009), pp. 79–86. ACM, New York (2009)

13. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE
Transactions on Evolutionary Computation 14(1), 58–79 (2010)

Improving Parallel Local Search for SAT

Alejandro Arbelaez1 and Youssef Hamadi2,3

1 Microsoft-INRIA joint-lab, Orsay France
alejandro.arbelaez@inria.fr

2 Microsoft Research, Cambridge United Kingdom
3 LIX École Polytechnique, F91128 Palaiseau, France

youssefh@microsoft.com

Abstract. In this work, our objective is to study the impact of knowl-
edge sharing on the performance of portfolio-based parallel local search
algorithms. Our work is motivated by the demonstrated importance of
clause-sharing in the performance of complete parallel SAT solvers. Un-
like complete solvers, state-of-the-art local search algorithms for SAT
are not able to generate redundant clauses during their execution. In our
settings, each member of the portfolio shares its best configuration (i.e.,
one which minimizes conflicting clauses) in a common structure. At each
restart point, instead of classically generating a random configuration to
start with, each algorithm aggregates the shared knowledge to carefully
craft a new starting point. We present several aggregation strategies and
evaluate them on a large set of problems.

Keywords: local search, SAT solving, parallelism.

1 Introduction

Complete parallel solvers for the propositional satisfiability problem have re-
ceived significant attention recently. These solvers can be divided into two main
categories the classical divide-and-conquer model and the portfolio-based ap-
proach. The first one, typically divides the search space into several sub-spaces
while the second one lets algorithms compete on the original formula [1]. Both
take advantage of the modern SAT solving architecture [2], to exchange the
conflict-clauses generated in the system and improve the overall performance.

This push towards parallelism in complete SAT solvers has been motivated by
their practical applicability. Indeed, many domains, from software verification to
computational biology and automated planning rely on their performance. On
the contrary, since local search techniques only outperform complete ones on
random SAT instances, their parallelizing has not received much attention so
far. The main contribution on the parallelization of local search algorithms for
SAT solving basically executes a portfolio of independent algorithms which com-
pete without any communication between them. In our settings, each member of
the portfolio shares its best configuration (i.e., one which minimizes the number
of conflicting clauses) in a common structure. At each restart point, instead of

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 46–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improving Parallel Local Search for SAT 47

classically generating a random configuration to start with, each algorithm ag-
gregates the shared knowledge to carefully craft a new starting point. We present
several aggregation strategies and evaluate them on a large set of instances.

This paper is organized as follows: background material is presented in section
2. Section 3 describes previous work on parallel SAT and cooperative algorithms.
Section 4 presents our methodology and our aggregation strategies, section 5
evaluates them, and section 6 presents some concluding remarks and future
directions of research.

2 Background

2.1 The Propositional Satisfiability Problem

The Propositional Satisfiability Problem (SAT) can be represented by a pair
〈V , C〉 where, V indicates a set of boolean variables and C a set of clauses repre-
senting a propositional conjunctive-normal form (CNF).

Solving a SAT problem involves finding a solution i.e., a truth assignment for
each variable such that all clauses are satisfied, or demonstrating that no such
assignment can be found. If a solution exist the problem is stated as satisfied
and unsatisfied otherwise. Currently, there are two well established techniques
for solving SAT problems, complete and incomplete techniques [3], the former
is developed on top of the DPLL algorithm. It combines a tree-based search
with constraint propagation, conflict-clause learning, and intelligent backtrack-
ing while the latter is based on local search algorithms to quickly find a truth
assignment for a given satisfiable instance [4].

2.2 Local Search for SAT

Algorithm 1 describes a traditional local search algorithm for SAT solving, it
starts with a random truth assignment for each variable in the formula F (initial-
configuration line 2), and the key point of local search algorithms is depicted in
lines (3-9) here the algorithm flips the most appropriate variable candidate until
a solution is found or a given number of flips is reached (MaxFlips), after this
process the algorithm restarts itself with a new (fresh) random configuration.

As one may expect, a critical part of the algorithm is the variable selection
function (select-variable) which indicates the next variable to be flipped in the
current iteration of the algorithm. Broadly speaking, there are two main cat-
egories of variable selection functions, the first one motivated by the GSAT
algorithm [5] is based on the following score function:

score(x) = make(x) − break(x)

Intuitively make(x) indicates the number of clauses that are currently satisfied
but flipping x become unsatisfied, and break(x) indicates the number of clauses
that are unsatisfied but flipping x become satisfied. In this way, local search
algorithms select the variable with minimal score value (preferably with negative

48 A. Arbelaez and Y. Hamadi

value), because flipping this variable would most likely increase the chances of
solving the instance.

The second category of variable selection functions is the Walksat-based one
[6] which includes a diversification strategy in order to avoid local minimums,
this extension selects, at random, an unsatisfied clause and then picks a vari-
able from that clause. The variable that is generally picked will result in the
fewest previously satisfied clauses becoming unsatisfied, with some probability
of picking one of the variables at random.

Algorithm 1. Local Search For SAT (CNF formula F, Max-Flips, Max-Tries)
1: for try := 1 to Max-Tries do
2: A := initial-configuration(F).
3: for flip := 1 to Max-Flips do
4: if A satisfies F then
5: return A
6: end if
7: x := select-variable(A)
8: A := A with x flipped
9: end for

10: end for
11: return ’No solution found’

2.3 Refinements

This section briefly reviews the main characteristics of state-of-the-art local
search solvers for SAT solving. As pointed out above these algorithms are de-
veloped to deal with the variable selection function and are mainly devoted to
avoid getting trapped in a local minima. This way, the following list describes
several well-known mechanisms for selecting the most appropriate variable to
flip at a given state of the search.

– Novelty [7] firstly selects an unsatisfied clause c and from c selects the best
vbest and second best v2best variable candidates, if vbest is not the latest
flipped variable in c then Novelty flips this variable, otherwise v2best is flipped
with a given probability p and vbest with probability 1−p. Important exten-
sions to this algorithm can be found in Novelty+, Novelty++ and Novelty+p.

– G2WSAT [8] (G2) uses a list of promising decreasing variables to determine
the next variable to be flipped and if the list of decreasing variables is empty
the algorithm uses Novelty++ as a backup heuristic. G2WSAT+p (G2+p)
uses a similar strategy that G2WSAT however in this case the backup solver
is Novelty+p.

– Scaling and Probabilistic Smoothing (SAPS) [9] implements a multiplicative
increase rule to dynamically modify the penalty for unsatisfied clauses and
with a given probability Psmooth this penalty value is adjusted according to
a given smoothing factor ρ.

Improving Parallel Local Search for SAT 49

– Pure Additive Weighting Scheme (PAWS) [10] implements an additive in-
crease rule to dynamically modify the penalty for unsatisfied clauses and if a
given clause penalty has been changed a given number of times this penalty
value is adjusted.

– Reactive SAPS (RSAPS) [9] extends SAPS by adding an automatic tuning
mechanism to identify suitable values for the smoothing factor ρ.

– Adaptive Novelty+ (AN+) [11] uses an adaptive mechanism to properly tune
the noise parameter of Walksat-like algorithms (e.g, Novelty+)

– Adaptive G2WSAT (AG2) [12] aims to integrate an adaptive noise mecha-
nism into the G2WSAT algorithm. Similarly, Adaptive G2WSAT+p (AG2+p)
also uses an adaptive noise mechanism into the G2WSAT+p algorithm.

3 Previous Work

In this section, we review the most important contributions devoted to parallel
SAT solving and cooperative algorithms.

3.1 Complete Methods for Parallel SAT

GrADSAT [13] is a parallel SAT solver based on the zChaff solver and equipped
with a master-slave architecture in which the problem space is divided into sub-
spaces, these sub-spaces are solved by independent zChaff clients and learnt
clauses whose size (i.e., number of literals) is less or equal to a given limit are
exchanged between clients. The technique organizes load-balancing through a
work stealing technique which allows the master to push work to idle clients.

Unlike other parallel solvers for SAT which divide the initial problem space
into sub-spaces, ManySAT [1] is a portfolio-based parallel solver where inde-
pendent DPLL algorithms are launched in parallel to solve a given problem
instance. Each algorithm in the portfolio implements a different and comple-
mentary restart strategy, polarity heuristic and learning scheme. In addition,
the first version of the algorithm exchanges learnt clauses whose size is less or
equal to a given limit. It is worth mentioning that ManySAT won the 2008
SAT Race, the 2009 SAT Competition and was placed second in the 2010 SAT
Race (all these in the parallel track). Interestingly all the algorithms successfully
qualified in the 2010 parallel track were based on a Portfolio architecture.

In [14] the authors proposed a hybrid algorithm which starts with a traditional
DPLL algorithm to divide the problem space into sub-spaces. Each sub-space is
then allocated to a given local search algorithm (Walksat).

3.2 Incomplete Methods for Parallel SAT

PGSAT [15] is a parallel version of the GSAT algorithm. The entire set of vari-
ables is randomly divided into τ subsets and allocated to different processors.
In this way at each iteration, if no global solution has been obtained, the ith

processor uses the GSAT score function (see section 2) to select and flip the best

50 A. Arbelaez and Y. Hamadi

variable for the ith subset. Another contribution to this parallelization architec-
ture is described in [16] where the authors aim to combine PGSAT and random
walk, therefore at each iteration, with a given probability wp an unsatisfiable
clause c is selected and a random variable from c is flipped and with probability
1-wp. PGSAT is used to flip τ variables in parallel at a cost of reconciling partial
configurations to test if a solution has been found.

gNovelty+ (v.2) [17], belongs to the portfolio approach, this algorithm exe-
cutes n independent copies of the gNovelty+ (v.2) algorithm in parallel, until at
least one of them finds a solution or a given timeout is reached. This algorithm
was the only parallel local search solver presented in the random category of the
2009 SAT Competition1.

In [18], Kroc et al., studied the application of a parallel hybrid algorithm to
deal with the max-SAT problem. This algorithm combines a complete solver
(minisat) and an incomplete one (Walksat). Broadly speaking both solvers are
launched in parallel and minisat is used to guide Walksat to promising regions
of the search space by means of suggesting values for the selected variables.

3.3 Cooperative Algorithms

In [19] a set of algorithms running in parallel exchange hints (i.e., partial valid
solutions) to solve hard graph coloring instances. To this end, they share a
blackboard where they can write a hint with a given probability q and read a
hint with a given probability p.

In [20] the authors studied a sequential cooperative algorithm to deal with
the office-space-allocation problem. In this paper cooperation takes place when
a given algorithm is not able to improve its own best solution, at this point
a cooperative mechanism is used to explore suitable partial solutions stored
by individual heuristics. This algorithm is also equipped with a diversification
strategy to explore different regions of the search space.

Although Averaging in Previous Near Solutions [21] is not a cooperative al-
gorithm by itself, this method is used to determine the initial configuration for
the ith restart in the GSAT algorithm. Broadly speaking, the initial configura-
tion is computed by performing a bitwise average between variables of the best
solution found during the previous restart (restarti−1) and two restarts before
(restarti−2). That is, variables with same values in both configurations are re-
used, and the extra set of variables are initialized with random values. Since
overtime, configurations with a few conflicting clauses tend to become similar,
all the variables are randomly initialized after a given number of restarts.

4 Knowledge Sharing in Parallel Local Search for SAT

Our objective is to extend a parallel portfolio of state-of-the-art local search
solvers for SAT with knowledge sharing or cooperation. Each algorithm is going
to share with others the best configuration it has found so far with its respective
cost (number of unsatisfied clauses) in a shared pair 〈M, C〉.
1 http://www.satcompetition.org/2009/

http://www.satcompetition.org/2009/

Improving Parallel Local Search for SAT 51

M =

⎛⎜⎜⎜⎝
X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...
...

Xc1 Xc2 . . . Xcn

⎞⎟⎟⎟⎠ C = [C1, C2, . . . , Cc]

Where n indicates the total number of variables of the problem and c indicates
the number of local search algorithms in the portfolio. In the following we are
associating local search algorithms and processing cores. Each element Xji in
the matrix indicates the ith variable of the best configuration found so far by
the jth core. Similarly, the jth element in C indicates the cost for the respective
configuration in M .

These best configurations can be exploited by each local search to build a new
initial configuration. In the following, we propose seven strategies to determine
the initial configuration (cf. function initial-configuration in algorithm 1).

4.1 Using Best Known Configurations

In this section, we propose three methods to build the new initial configuration
init by aggregating best known configurations. In this way, we define initi for
all the variables Xi, i ∈ [1..n] as follows:

1. Agree: if there exists a value v such that v=Xji for all j ∈ [1..c] then initi=v,
otherwise a random value is used.

2. Majority: if there exists two values v and v′ such that |{Xji = v|j ∈ [1..c]}| >
|{Xji = v′|j ∈ [1..c]}| then initi=v, otherwise a random value is used.

3. Prob: initi=1 with probability pones= ones
c and initi=0 with probability 1 −

pones, where ones = |{Xji = 1|j ∈ [1..c]}|.
4.2 Weighting Best Known Configurations

In contrast with our previous methods where all best known solutions are treated
equally important, the methods proposed in this section use a weighting mech-
anism to consider the cost of best known configurations. The computation of
the initial configuration init uses one of the following two weighting systems:
Ranking and Normalized Performance, where values from better configurations
are most likely to be used.

Ranking. This method sorts the configurations of the shared matrix from worst
to best according to their cost. The worst ranked one gets weight of 1 (i.e.,
RankW1=1), and the best ranked c (i.e., RankWc=c).

Normalized Performance. This method assigns weights (NormW) consider-
ing a normalized value of the number of unsatisfied clauses of the configuration:

NormWj =
|C| − Cj

|C|
Using the previous two weighting mechanisms, we define the following four

extra methods to determine initial configurations.

52 A. Arbelaez and Y. Hamadi

To this end, we define Φ(val, Weight) =
∑

k∈{j|Xji=val} Weightk.

1. Majority RankW : if there exists two values v and v′ such that
Φ(v, RankW) > Φ(v′, RankW) then initi=v, otherwise a random value is
used.

2. Majority NormalizedW : if there exists two values v and v′ such that
Φ(v, NormW) > Φ(v′, NormW) then initi=v, otherwise a random value
is used.

3. Prob RankW : initi=1 with probability PRones= Rones
Rones+Rzeros and

initi=0 with probability 1-PRones, where Rones=Φ(1, RankW) and
Rzeros=Φ(0, RankW).

4. Prob NormalizedW : initi=1 with probability PNones= Nones
Nones+Nzeros and

initi=0 with probability 1-PNones, where Nones=Φ(1, NormW) and
Nzeros=Φ(0, NormW)

4.3 Restart Policy

As mentioned earlier on, shared knowledge is exploited when a given algorithm
is restarted. At this point the current working configuration of a given algo-
rithm is re-initialized according to a given aggregation strategy. However, it is
important to restrict cooperation since it adds overheads and more importantly
tend to generate similar configurations. In this context, we propose a new restart
policy to avoid re-initializing the working configuration again and again. This
new policy re-initializes the working configuration for a given restart (i.e., every
MaxFlips) if and only if, performance improvements in best known solutions
have been observed during the latest restart window. This new restart policy is
formally described in the following definition, where we assume that bcki is the
cost of the best known configuration for a given algorithm i up to the (k − 1)th

restart.

Definition 1. At a given restart k for a given algorithm i the working config-
uration is reinitialized iff there exists an algorithm q such that bckq �= bc(k−1)q

and q �= i.

5 Experiments

5.1 Experimental Settings

We conducted experiments using instances from the RANDOM category of the
2009 SAT competition. Since state-of-the-art local search solvers are unable to
solve UNSAT instances, we filtered out these instances. We also removed in-
stances whose status was reported as UNKNOWN in the competition. This way,
we collected 359 satisfiable instances.

We decided to build our parallel portfolio on UBCSAT-1.1, a well known local
search library which provides efficient implementation of the latest local search
for SAT algorithms [22]. We did preliminary experiments to extract from this

Improving Parallel Local Search for SAT 53

library the 8 algorithms which perform best on our set of problems. From that,
we defined the following three baseline portfolio constructions where algorithms
are independent searches without cooperation. The first one pcores-PAWS uses
p copies of the best single algorithm (PAWS), the second portfolio 4cores-No
sharing uses the best subset of 4 algorithms (PAWS, G2+p, AG2, AG2+p)
and the last one 8cores-No sharing uses all the 8 algorithms (PAWS, G2+p,
AG2, AG2+p, G2, SAPS, RSAPS, AN+). All the algorithms were used with
their default parameters, and without any restart. Indeed these techniques are
equipped with important diversification strategies and usually perform better
when the restart flag is switched off (i.e., MaxFlips=∞).

On the other hand, the previous knowledge aggregation mechanisms were built
on top of a portfolio with 4 algorithms (same algorithms as 4cores-No sharing)
and a portfolio with 8 algorithms (same algorithms as 8cores-No sharing). There,
we used the modified restart policy described in section 4.3 with MaxFlips set
to 106.

All tests were conducted on a cluster of 8 Linux Mandriva machines with 8
GB of RAM and two quad-core (8 cores) 2.33 Ghz Intel Processors. In all the
experiments, we used a timeout of 5 minutes (300 seconds) for each algorithm in
the portfolio, so that for each experiment the total CPU time was set to c× 300
seconds, where c indicates the number of algorithms in the portfolio.

We executed each instance 10 times (each time with a different random seed)
and reported two metrics, the Penalized Average Runtime (PAR) [23] which
computes the average runtime overall instances, but where unsolved instances
are considered as 10× the cutoff time, and the runtime for each instance which is
calculated as the median across the 10 runs. Overall, our experiments for these
359 SAT instances took 187 days of CPU time.

5.2 Practical Performances with 4 Cores

Fig. 1 shows the results of each aggregation strategy using a portfolio with
4 cores, comparatively to the 4 cores baseline portfolios. The x-axis gives the
number of problems solved and the y-axis presents the cumulated runtime.

As expected, the portfolio with the top 4 best algorithms (4cores-No Sharing)
performs better (309) that the one with 4 copies of the best algorithms (4cores-
PAWS) (275).

The performance of the portfolios with knowledge sharing is quite good. Over-
all, it seems that adding a weighting mechanism can often hurt the performance
of the underlying aggregation strategy. Among the weighting options, it seems
that the Normalized Performance performs better. The best portfolio implements
the Prob strategy without any weighting (329). This corresponds to a gain of 20
problems against the corresponding 4cores-No Sharing baseline.

A detailed examination of 4cores-Prob and 4cores-No Sharing is presented in
Figs. 2 and 3. These Figures show, respectively, a runtime and a best configura-
tion cost comparison. In both figures, points below (resp. above) the diagonal line
indicate that 4cores-Prob performs better (resp. worse) than 4cores-No Shar-
ing. In the runtime comparison, we observe that easy instances are correlated

54 A. Arbelaez and Y. Hamadi

Fig. 1. Number of solved instances using 4 cores in a given amount of time

as they require few steps to be solved, and for the remaining set of instances
4cores-Prob usually exhibits a better performance. On the other hand, the sec-
ond figure shows that when the instances are not solved, the median cost of the
best configuration (number of unsatisfied clauses) found by 4cores-Prob is usu-
ally better than for 4cores-No Sharing. Notice that some points are overlapped
because the two strategies reported the same cost.

All the experiments using 4 cores are summarized in Table 1, reporting for
each portfolio the number of solved instances (#solved), the median time across
all instances (median time), the Penalized Average Runtime (PAR) and the to-
tal number of instances that timed out in all the 10 runs (never solved). These
results confirm that sharing best known configurations outperforms independent
searches, for instance 4cores-Prob and 4cores-Prob NormalizedW solved respec-
tively 20 and 17 more instances than 4cores-No Sharing and all the cooperative
strategies (except 4cores-Majority RankW) exhibit better PAR. Interestingly,
4cores-PAWS exhibited the best median runtime overall the experiments with
4 cores, this fact suggests that PAWS by itself is able to quickly solve an im-
portant number of instances. Moreover, only 2 instances timeout in all the 10
runs for 4cores-Agree and 4cores-Prob NormalizedW against 7 for 4cores-No
Sharing. Notice that this Table also includes 1core-PAWS, the best sequential
local search on this set of problems. The PAR score for 1core-PAWS is lower
than the other values of the table because this portfolio uses only 1 algorithm,
therefore the timeout is only 300 seconds, while 4 cores portfolios use a timeout
of 1200 seconds.

Improving Parallel Local Search for SAT 55

Fig. 2. Runtime comparison, each point indicates the runtime to solve a given instance
using 4cores-Prob (y-axis) and 4cores-No Sharing (x-axis)

Fig. 3. Best configuration cost comparison on unsolved instances. Each point indicates
the best configuration (median) cost of a given instance using 4cores-Prob (y-axis)
and 4cores-No Sharing (x-axis)

56 A. Arbelaez and Y. Hamadi

Table 1. Overall evaluation using 4 cores

Strategy #solved median time PAR never solved

1core-PAWS 249 1.76 911.17 71

4cores-PAWS 275 1.63 2915.19 61

4cores-No Sharing 309 2.19 1901.00 7

4cores-Agree 321 2.54 1431.33 2

4cores-Majority 313 2.53 1724.94 11

4cores-Prob 329 2.51 1257.93 4

4cores-Majority RankW 304 2.47 1930.61 11

4cores-Majority NormalizedW 314 2.48 1807.42 9

4cores-Prob RankW 316 2.53 1621.33 7

4cores-Prob NormalizedW 326 2.50 1261.82 2

5.3 Practical Performances with 8 Cores

We now move on to portfolios with 8 cores. The results of these experiments are
depicted in Fig. 4 indicating the total number of solved instances within a given
amount of time. As in previous experiments, we report the results of baseline
portfolios 8cores-No Sharing and 8cores-PAWS, and in this case we focus the
experiments on Prob and Prob NormalizedW (the best two strategies using 4
cores). We can observe that the cooperative portfolios largely outperform the
non-cooperative ones.

Table 2 summarizes these results, and once again it includes the best indi-
vidual algorithm running in a single core. We can remark that 8cores-Prob and
8cores-Prob NormalizedW solve respectively 24 and 16 more instances than
8cores-No Sharing. Furthermore, it shows that knowledge sharing portfolios are
faster than individual searches, with a PAR of 3743.63 seconds for 8cores-No
Sharing against respectively 2247.97 for 8cores-Prob and 2295.99 for 8cores-
Prob NormalizedW . Finally, it is also important to note that only 1 instance
timed out in all the 10 runs for 8cores-Prob NormalizedW against 8 for 8cores-
No Sharing.

Extensive experimental results presented in this paper show that Prob (4 and
8 cores) exhibited the overall best performance. We attribute this to the fact
that the probability component of this method balances the exploitation of best
solutions found so far with the exploration of other values for the variables,
helping in this way, to diversify the new starting configuration.

5.4 Hardware Impact

In this section, we wanted to assess the inherent slowdown caused by increased
cache, and bus contingency when more processing cores are used at the same
time. To this end we decided to run our PAWS baseline portfolio where each
independent algorithm uses the same random seed on respectively 1, 4 and 8
cores. Since all the algorithms are executing the same search, this experiment

Improving Parallel Local Search for SAT 57

Fig. 4. Number of solved instances using 8 cores in a given amount of time

Table 2. Overall evaluation using 8 cores

Strategy #solved median time PAR never solved

1core-PAWS 249 1.76 911.17 71

8cores-PAWS 286 2.00 5213.84 56

8cores-No Sharing 311 2.33 3743.63 8

8cores-Prob 335 2.45 2247.97 2

8cores-Prob NormalizedW 327 2.47 2295.99 1

measures the slowdown caused by hardware limitations. The results are pre-
sented in Fig. 5.

The first case executes a single copy of PAWS with a timeout of 300 seconds,
the second case executes 4 parallel copies of PAWS with a timeout of 1200
seconds (4 × 300) and the third case executes 8 parallel copies of PAWS with a
timeout of 2400 seconds (8 × 300).

Finally, we estimate the runtime of each instance as the median across 10 runs
(each time with the same seed) divided by the number of cores. In this figure,
it can be observed that the performance overhead is almost not distinguishable
between 1 and 4 cores (red points). However, the overhead between 1 and 8 cores
is important for difficult instances (black points).

58 A. Arbelaez and Y. Hamadi

Fig. 5. Runtime comparison using parallel local search portfolios made of respectively
1, 4, and 8 identical copies of PAWS (same random seed). Red points indicate the
performance of 4 cores vs 1 core. Black points indicate the performance of 8 cores vs 1
core, points above the blue line indicate that 1 core is faster.

6 Conclusions and Future Work

In this work, our objective was to integrate knowledge sharing strategies in
parallel local search for SAT. We were motivated by the recent developments
in parallel DPLL solvers. We decided to restrict the information shared to the
best configuration found so far by the algorithms in a portfolio. From that we
defined several simple knowledge aggregation strategies along a specific lazy
restart policy which creates a new initial configuration when a fix cutoff is meet
and when the quality of the shared information has been improved.

Extensive experiments were done on a large number of instances coming from
the latest SAT competition. They showed that adding the proposed sharing
policies improves the performance of a parallel portfolio, this improvement is
exhibited in both number of solved instances and the Penalized Average Runtime
(PAR). It is also reflected in the best configuration cost of problems which could
not be solved within the time limit.

We believe that our work represents a very first step in the incorporation of
knowledge sharing strategies in parallel local search for SAT. Further work will
investigate the use of additional information to exchange, for instance: tabu-list,
the age and score of a variable, information on local minima, etc. It should also
investigate the best way to integrate this extra knowledge in the course of a given
algorithm. As said earlier, state-of-the-art local search perform better when they
do not restart. Incorporating extra information without forcing the algorithm to
restart is likely to be important.

Improving Parallel Local Search for SAT 59

Acknowledgements

We would like to thank Said Jabbour and Ibrahim Abdoulahi for helpful dis-
cussions about parallel SAT solving and the anonymous reviewers for their com-
ments which helped to improve this paper.

References

1. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation, JSAT 6, 245–262 (2009)

2. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001), pp. 530–535 (2001)

3. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional Satisfiability and Constraint
Programming: A Comparative Survey. ACM Comput. Surv. 38(4) (2006)

4. Hoos, H.H., Stützle, T.: Local Search Algorithms for SAT: An Empirical Evalua-
tion. J. Autom. Reasoning 24(4), 421–481 (2000)

5. Selman, B., Levesque, H.J., Mitchell, D.G.: A New Method for Solving Hard Sat-
isfiability Problems. In: AAAI (ed.), pp. 440–446 (1992)

6. Selman, B., Kautz, H.A., Cohen, B.: Noise Strategies for Improving Local Search.
In: AAAI, pp. 337–343 (1994)

7. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for Invariants in Local Search.
In: AAAI/IAAI, pp. 321–326 (1997)

8. Li, C.M., Huang, W.Q.: Diversification and Determinism in Local Search for Satis-
fiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172.
Springer, Heidelberg (2005)

9. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and Probabilistic Smoothing:
Efficient Dynamic Local Search for SAT. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)

10. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr, V.: Additive versus Multiplicative
Clause Weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp.
191–196. AAAI Press/The MIT Press, San Jose, California, USA (2004)

11. Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: AAAI/IAAI, pp.
655–660 (2002)

12. Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local
Search. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501,
pp. 121–133. Springer, Heidelberg (2007)

13. Chrabakh, W., Wolski, R.: GridSAT: A System for Solving Satisfiability Problems
Using a Computational Grid. Parallel Computing 32(9), 660–687 (2006)

14. Zhang, W., Huang, Z., Zhang, J.: Parallel Execution of Stochastic Search Proce-
dures on Reduced SAT Instances. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002.
LNCS (LNAI), vol. 2417, pp. 108–117. Springer, Heidelberg (2002)

15. Roli, A.: Criticality and Parallelism in Structured SAT Instances. In: Van Hen-
tenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 714–719. Springer, Heidelberg
(2002)

16. Roli, A., Blesa, M.J., Blum, C.: Random Walk and Parallelism in Local Search.
In: Metaheuristic International Conference (MIC 2005), Vienna, Austria (2005)

17. Pham, D.N., Gretton, C.: gNovelty+ (v.2). In: Solver Description, SAT Competi-
tion 2009 (2009)

60 A. Arbelaez and Y. Hamadi

18. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating Systematic and Lo-
cal Search Paradigms: A New Strategy for MaxSAT. In: Boutilier, C. (ed.) IJCAI,
Pasadena, California, pp. 544–551 (July 2009)

19. Hogg, T., Williams, C.P.: Solving the Really Hard Problems with Cooperative
Search. In: AAAI, pp. 231–236 (1993)

20. Silva, D.L., Burke, E.K.: Asynchronous Cooperative Local Search for the Office-
Space-Allocation Problem. INFORMS Journal on Computing 19(4), 575–587
(2007)

21. Selman, B., Kautz, H.A.: Domain-Independent Extensions to GSAT: Solving Large
Structured Satisfiability Problems. In: IJCAI, pp. 290–295 (1993)

22. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An Implementation and Experimenta-
tion Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidel-
berg (2005)

23. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the Empirical Evaluation of
Competing Algorithm Designs. Annals of Mathematics and Artificial Intelligence
(AMAI), Special Issue on Learning and Intelligent Optimization (2010)

Variable Neighborhood Search for the

Time-Dependent Vehicle Routing Problem with
Soft Time Windows

Stefanie Kritzinger1, Fabien Tricoire1, Karl F. Doerner1,2,
and Richard F. Hartl1

1 Department of Business Adminstration, University of Vienna,
Bruenner Strasse 72, 1210 Vienna, Austria

{stefanie.kritzinger,fabien.tricoire,karl.doerner,

richard.hartl}@univie.ac.at

http://www.univie.ac.at/bwl/prod
2 Department of Production and Logistics, Johannes Kepler University Linz,

Altenberger Strasse 69, 4040 Linz, Austria

Abstract. In this paper we present a variable neighborhood search for
time-dependent vehicle routing problems with time windows. Unlike the
well-studied routing problems with constant travel times, in the time-
dependent case the travel time depends on the time of the day. This
assumption approaches reality, in particular for urban areas where travel
times typically vary during the day, e.g., because of traffic congestion due
to rush hours. An experimental evaluation for the vehicle routing problem
with soft time windows with and without time-dependent travel times is
performed and it is shown that taking time-dependent travel times into
account provides substantial improvements of the considered objective
function.

Keywords: Vehicle routing problem, time-dependent travel times, time
windows, variable neighborhood search.

1 Introduction

Most of the vehicle routing problems (VRPs) reported in the literature assume
constant travel times although the travel time between two locations does not
only depend on the traveled distance. In fact, it depends on many other factors
including the time when the travel starts. For simulations of situations close
to real-world conditions, different factors, e.g., traffic congestion due to rush
hours, are not negligible because of their influence on travel speeds and travel
times. Routing problems considering time-dependent travel times are called time-
dependent vehicle routing problems (TD-VRPs).

The TD-VRP basically consists of finding a set of routes of minimized travel
time made by a fleet of vehicles starting from a specified depot, visiting a set of
geographically distributed customers and finishing the route at the depot in con-
sideration of capacity and tour length restrictions. The problem considered here

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 61–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.univie.ac.at/bwl/prod

62 S. Kritzinger et al.

is motivated by a logistic service in an urban area, where goods are distributed
to different customer locations. Each route must start and end within the time
window assigned to the central depot, as opposed to the customers to which
soft time windows are associated. A soft time window is characterized as: if the
vehicle arrives too early, it has to wait to start its service; if the vehicle arrives
too late, the difference between the arrival time and the latest service time, the
so called tardiness, is penalized. The cost to be minimized is a weighted sum of
the total travel time over all routes, plus the total tardiness over all customers.
This VRP is denoted as time-dependent vehicle routing problem with soft time
windows (TD-VRPSTW).

As an illustrative example, let us consider Vienna, the capital of Austria with
about 1.7 million inhabitants and an area of approximately 415 km2. As in each
other city, the traffic characteristics vary during the day. Let us compare Fig. 1
and Fig. 2. Both show a speed map of Vienna but at different times of the day.
On the left hand side a speed map at nine o’clock in the evening is displayed.
Normally it is a time where the traffic flows with no obstruction. The light grey
area in the middle shows the city center of Vienna, where vehicles are not allowed
to go faster than 30 km/h. In the dark grey area, the outer districts of Vienna,
the maximum speed is 60 km/h and in the black squares (250 meter × 250
meter), mostly the city highways, a speed higher than 60 km/h is allowed. On

< 30 km/h
< 60 km/h
> 60 km/h

Fig. 1. Speed map of Vienna at 9pm

< 30 km/h
< 60 km/h
> 60 km/h

Fig. 2. Speed map of Vienna at 8am

the right hand side a speed map at 8 o’clock in the morning during the rush hour
is presented. It can be seen that the light grey area expands: heavier traffic in
the city center implies slower speed. This fact leads us to a longer travel time for
the same distance. Therefore it makes sense to involve travel times dependent
on the time of the day in the delivery plan creation to imitate conditions close
to real-world.

The first approach to consider varying travel times for the VRP as well as
the traveling sales man problem was performed by Malandraki and Daskin [10].
They describe each arc with a step function distribution of the travel time and
propose a mixed integer programming approach and a nearest neighbor heuristic
for optimization.

VNS for the Time-Dependent VRPSTW 63

As a feature of the real-world problem, Ichoua et al. [9] introduce the First-In-
First-Out (FIFO) property. That is, if two vehicles leave from the same location
for the same destination traveling on the same path, the one that leaves first will
always arrive earlier, no matter how speed changes on the arcs during the travel.
In order to enforce FIFO, they use step functions for the travel speed within a
tabu search heuristic for the time-dependent vehicle routing problem with time
windows (TD-VRPTW). This model is also formulated in a dynamic setting,
where not all service requests are known before the start of the optimization.

As Fleischmann et al. [4] criticize, the disadvantage of models with varying
speeds and constant distances is that a potential change of the shortest path is
usually not considered. With time varying speeds, it might happen that taking
other links requires less travel time.

Besides the minimization of the total travel time, Donati et al. [3] also con-
sider the minimization of the number of routes. Here, a multi ant colony system
is modeled to solve the classic VRP and its extension for the time-dependency.
They show that when dealing with, e.g., hard delivery time windows for cus-
tomers, the known solutions for the classic case become infeasible. If there are
no hard time constraints, the classic solutions become suboptimal.

An iterated local search algorithm is developed by Hashimoto et al. [8] for
a vehicle routing problem with time windows (VRPTW) with time-dependent
traveling times and costs. As local search in the neighborhood, they consider
slight modifications of the standard neighborhood called 2-opt∗, cross exchange
and Or-opt. Additionally, they apply a filtering method that restricts the size
of the neighborhood to avoid many solutions having no expectation of improve-
ment. Hashimoto et al. [8] show that their algorithm is highly efficient for the
given data as well as for artificially generated instances.

Soler et al. [14] transform theoretically the TD-VRPTW into an asymmetric
capacitated vehicle routing problem. The time and the cost of traversing an arc
depend on the period of time at which the traversing starts.

This paper is organized as follows: in Section 2 we proceed with the prob-
lem description of the VRP with soft time windows (VRPSTW) in detail and
its extension to the time-dependent case. Section 3 explains precisely the vari-
able neighborhood search (VNS) we use for solving the VRPSTW and the TD-
VRPSTW. Section 4 is dedicated to computational results and application to a
simulated real-world setting and Section 5 concludes.

2 Problem Description

The VRPSTW is a well-known generalization of the VRP and can be stated as
follows. Let us assume that an undirected complete graph G = (V, E) is given
where V = {0, 1, . . . , n} is the set of n+1 vertices and E is the set of edges. Vertex
0 is the depot and the vertex set V ′ = V \ {0} represents the n customers. Each
customer i has a demand di. The nonnegative travel cost for each edge (i, j) ∈ E
is denoted by dij . Travel costs satisfy the triangular inequality

dij + djk ≥ dik (1)

64 S. Kritzinger et al.

for all nodes {i, j, k} ∈ V . A set of m identical vehicles of capacity Q are available
at the depot to supply the demand of all customers. A vehicle route starts from
the depot, visits a number of customers such that the total demand of the visited
customers does not exceed the vehicle capacity, and returns to the depot within
the time window assigned to the depot. Each customer i ∈ V \ {0} should be
visited in a given time window [ei, li], where ei is the earliest start of service
and li is the latest start of service. The customers have soft time windows, i.e., a
vehicle can arrive before the earliest service time ei and after the latest service
time li. If the vehicle arrives too early, it has to wait to start its service; if the
vehicle arrives too late, the tardiness is penalized in the objective function. The
objective value of solution x is:

obj(x) = c(x) + γcγ(x), (2)

where c(x) is the total travel time over all routes and cγ(x) is the total tardiness
over all customers i ∈ V \ {0} multiplied by the tardiness parameter γ. The
tardiness cγ(xi) of each customer i with arrival time ti is calculated as (ti−li)+ =
max{0, ti − li}.

The TD-VRPSTW is a generalization of the VRPSTW with time-dependency
of travel times on the time of the day. The cost of traversing an arc depends on the
period of time at which we start to traverse it. It allows stronger approximations
of the real-world conditions where travel times are subject to more variations
over time, i.e., traffic congestions. For the realization of time-dependent travel
times, the time horizon of the considered routing problem is divided into p time
intervals T1, . . . , Tp with different travel speeds.

Besides thinking of the time when the traveling starts it makes sense that
the speed has to be adapted when another time period is entered. An efficient
and simple way of calculating the travel times is introduced by Ichoua et al.
[9]. Instead of the assumption of a constant travel speed over the entire length
of an arc, the speed changes when a vehicle crosses the boundary between two
consecutive time periods. In case of time-dependency, the FIFO property has to
be fulfilled. That is, leaving a node earlier guarantees that one will arrive earlier

1. set t to t0
set d to dij

set t′ to t + d/vk

2. while (t′ > tk) do
(a) set d to d− vk(tk − t)
(b) set t to tk

(c) set t′ to t + d/vk+1

(d) set k to k + 1

3. return (t′ − t0)

Algorithm 1. Calculation of time-dependent travel times generalized in [9]

VNS for the Time-Dependent VRPSTW 65

at destination. Hence, there is no useless waiting time. The FIFO property is
assured by using a step function for the speed distribution, from which the
travel times are then calculated, instead of a step function for the travel time
distribution. The calculation of time-dependent travel times in Algorithm 1 is a
simplified version of the calculation of time-dependent travel times done in [9].

Suppose that the vehicle leaves node i at time t0 in time period Tk =]tk, tk].
In Algorithm 1, it is assumed that dij is the distance between i and j, and vk

is the travel speed associated with time period Tk. Also, t denotes the current
time and t′ denotes the arrival time. After the initialization of the current time
t and the distance d, the arrival time t′ at customer j is set to t + d/vk, where
the quotient d/vk denotes the travel time from i to j within the time period Tk.
If the boundary to the next period tk is crossed, a recalculation of the travel
time between tk and j has to be made. The total travel time from i to j is the
difference of t0 and t′.

The example in Fig. 3 shows that the travel speed changes when a boundary
between two consecutive time periods is crossed. The kilometers go on the x-axis,
the time goes on the y-axis. Each time interval is a time period. If the travel
speed is not adjusted when another time period is entered, it is possible that a
vehicle can wait if its speed will increase in the next time period, although the
vehicle could have used the current speed to get closer to its destination until
the time of speed changes. In Fig. 4 vehicle v2 is allowed to wait at node i before
starting the traveling. If the speed is not adopted when another time period is
entered, vehicle v2 arrives earlier at node j than vehicle v1, which starts traveling
immediately.

0 20 100
i j

distance in km

= 25 km/h
= 50 km/h
= 100 km/h

0

1

2

3

4

time in h

T1

T2

T3

T4
v1
v2

i1
i2 v3

Fig. 3. Changing travel speed when
a boundary between two time peri-
ods is crossed

0 20 100
i j

distance in km

= 25 km/h
= 50 km/h

0

1

2

3

4

time in h

T1

T2

T3

T4

v1
v2v2

v1= 25 km/h
= 50 km/h

v1

v2

Fig. 4. Waiting is allowed to in-
crease the speed afterwards

3 Solution Method

In this chapter we describe the VNS algorithm we use for the solution process.
VNS was first proposed in 1997 by Mladenović and Hansen [11]. In the last
years this metaheuristic has gained popularity for solving combinatorial and

66 S. Kritzinger et al.

global optimization problems and it has a widely spread field of applications,
e.g., routing and scheduling problems, industrial applications or design problems
in communication.

The basic scheme of the VNS is initialization, shaking, local search and accep-
tance decision. For initialization a finite set of pre-selected neighborhood struc-
tures Nκ, κ = 1, . . . , κmax, is defined, where Nκ+1 is typically larger than Nκ.
Further an initial solution is obtained randomly or heuristically. As stopping
condition, e.g., a limit on the CPU time, a limit on the number of iterations
or a limit on the number of iterations between two improvements is configured.
The initialization is followed by a so-called shaking step, that randomly selects
a solution from the first neighborhood of the incumbent solution. A local search
procedure starting from this created solution is performed to obtain a local op-
timum. Within the acceptance decision step it has to be decided to move or not
to the new local optimal solution. In this simplified case, if the current solution
is better than the incumbent solution, the incumbent solution is replaced by
the current solution and the search continues with the shaking step within the
first neighborhood, otherwise the search proceeds with the next neighborhood. A
more complicated acceptance decision is used in Section 3.4. For a more precise
description on VNS see Mladenović and Hansen [11] and Hansen and Mladenović
[5,6,7].

In the following subsections we describe the different components of the VNS
implemented for the TD-VRPSTW.

3.1 Initial Solution

The initial solution is obtained by a simple construction algorithm. After the
customers have been ordered with respect to the center of their time window
1
2 (ei + li), the routes are constructed by sequentially adding the customers to
the route with minimal costs. As we start with a fixed fleet size at the beginning,
the obtained initial solution allows infeasibility in capacity and route length.

3.2 Shaking

The building blocks in the VNS is the construction of the set of neighborhoods
used for shaking. The neighborhood operator is characterized by the ability
of perturbing the incumbent solution while important parts of the incumbent
solution are kept unchanged.

A popular and effective neighborhood for VRPs is based on the cross-exchange
operator introduced by Taillard et al. [16] (see Fig. 5). The guiding idea of this
exchange is to take two segments of different routes and exchange them. For
sequence inversion, the icross-exchange operator proposed in Bräysy [1] is used
(see Fig.6).

We use maximum sequence length as a parameter, in order to produce different
nested neighborhoods based on the same structure. Let Ck denote the number
of customers assigned to route k, then the maximum sequence length for each

VNS for the Time-Dependent VRPSTW 67

neighborhood κ is min(κ, Ck). Note that the maximum sequence length cannot
exceed Ck for any given route k.

For the shaking step, we randomly choose with the same probability between
the four possible variants of reinserting the segments directly or inverted as
illustrated in Fig. 5, 6 and 7.

Fig. 5. cross-exchange operator Fig. 6. icross-exchange operator

Fig. 7. Mixture of cross- and icross-exchange operators

3.3 Local Search

The solution obtained through shaking has to undergo a local search procedure
to come up with a local optimum afterwards. While the shaking steps focus on
exchanging customers between routes, the local search only searches for improve-
ments within the routes that were modified in the shaking step. We apply one of
the three different local search methods, 2-opt, 3-opt∗ and Or-opt. For detailed
description see the survey of Bräysy and Gendreau [2].

In general a 2-opt heuristic consistently inverts sequences within one route.
The 3-opt∗ heuristic moves subsequences without inversion to other positions
within one route. An Or-opt local search systematically moves subsequences up
to a sequence length of three with and without inversion to other positions within
one route.

For each iteration we use one of the mentioned local search procedures as it is
explained in Table 1. Each local search restarts immediately after an improving
move was found.

68 S. Kritzinger et al.

Table 1. Application of local search procedures

local search

(iteration mod 3) = 0 2-opt
(iteration mod 3) = 1 3-opt∗

(iteration mod 3) = 2 Or-opt

3.4 Acceptance Decision

After the shaking and the local search procedures have been performed, the ob-
tained solution has to be compared to the incumbent solution to decide to accept
it or not. The acceptance criterion in the basic VNS is to accept only improve-
ments. However, that way the search can easily get stuck in a local optimum.
Thus, in many cases it has been shown to be essential to also have a strategy of
accepting non-improving solutions under certain conditions. We implement an
approach to accept non-improving solutions based on threshold accepting (TA)
used by Polacek et al. in [12]. A solution yielding an improvement is always
accepted. Moreover ascending moves are accepted after a certain number of it-
erations counted from the last accepted move, but only if the cost increase is
below a certain threshold. This threshold is given by θ percent of the incumbent
solution.

An important characteristic of our VNS is the ability to deal with infeasible
solutions. Infeasibility occurs if the total capacity or the tour duration exceed a
specific limit or if the time windows of the customers are violated. Therefore the
solution has to be evaluated for acceptance. The evaluation function is specified
in the following way:

f(x) = obj(x) + αcα(x) + βcβ(x). (3)

The evaluation function f(x) for the solution x sums up the objective value
obj(x) (see (2)) and the penalty terms which consist of the violation value of
the capacity cα(x) and violation value of the route length cβ(x) multiplied by
the corresponding penalty parameters α and β. In order to consider hard time
windows, one must give a large value to γ.

4 Computational Results

For the computational experiments we use the Solomon’s 100-customer Eu-
clidean problems [15]. In these problems, customers are generated within a
[0, 100]2 square. The customer locations of the instance class C1 and C2 are
clustered in groups, the customer locations of the instance class R1 and R2 are
randomly generated and the customer locations of the instance class RC1 and
RC2 are a mix of clustered in groups and randomly generated customer loca-
tions. In the problem sets C1, R1 and RC1, only a few customers can be serviced
on each route due to a small time window at the depot, contrary to the problem

VNS for the Time-Dependent VRPSTW 69

sets C2, R2 and RC2, where many customers can be serviced by the same vehicle
due to a long scheduling horizon.

For evaluating the solution we set our penalty parameters α = β = 100
following Polacek et al. [12]. For dealing with hard time windows at the customer
locations we set the tardiness parameter γ also to 100. We show that in our case
a feasible final solution is guaranteed. We stop the solution process either after
106 iterations or after one hour. For TA we allow a degradation of the evaluation
function of 5% after 8000 steps without improvement. Our construction heuristic
requires a fixed fleet size, so we start in these experiments with 20 percent more
vehicles than the number of vehicles in the optimal solution. During the solution
process in the shaking step there is always one empty route available for no
restriction on the fleet size.

In Tables 2 and 3 our best solution and the average solution over 10 runs are
presented and compared with the optimal solution, if available.

Table 2. Comparison to the optimal solution on problems of instance class 1

Problem Our best Our avg. solution Optimal Best Avg.
solution over 10 runs solution gap gap

C101 10/828.94 10/828.94 10/827.3 0.20% 0.20%
C102 10/828.94 10/828.94 10/827.3 0.20% 0.20%
C103 10/828.07 10/828.07 10/826.3 0.21% 0.21%
C104 10/824.78 10/824.93 10/822.9 0.23% 0.25%
C105 10/828.94 10/828.94 10/827.3 0.20% 0.20%
C106 10/828.94 10/828.94 10/827.3 0.20% 0.20%
C107 10/828.94 10/828.94 10/827.3 0.20% 0.20%
C108 10/828.94 10/828.94 10/827.3 0.20% 0.20%
C109 10/828.94 10/828.94 10/827.3 0.20% 0.20%

Average 10/828.38 10/828.39 10/826.7 0.20% 0.21%

R101 20/1642.88 20/1647.46 20/1637.70 0.32% 0.60%
R102 18/1472.81 18/1474.53 18/1466.60 0.42% 0.54%
R103 14/1213.62 14.1/1217.08 14/1208.70 0.41% 0.69%
R104 11/976.61 11/983.43 11/971.50 0.53% 1.23%
R105 15/1360.78 15.4/1367.36 15/1355.30 0.40% 0.89%
R106 13/1241.35 13/1246.17 13/1234.60 0.55% 0.94%
R107 11/1076.23 11/1079.85 11/1064.60 1.09% 1.43%
R108 10/943.24 10.1/952.11 10/932.10 1.19% 2.15%
R109 13/1151.84 12.8/1153.90 13/1146.90 0.43% 0.61%
R110 12/1080.20 12/1085.01 12/1068.00 1.14% 1.59%
R111 12/1053.50 12/1058.89 12/1048.70 0.46% 0.97%
R112 10/959.08 10/962.50 10/948.60 1.10% 1.47%

Average 13.25/1181.01 13.28/1185.69 13.25/1173.61 0.63% 1.03%

RC101 16/1639.39 16.2/1650.02 15/1619.80 1.21% 1.87%
RC102 14/1461.49 14.3/1478.54 14/1457.40 0.28% 1.45%
RC103 11/1272.49 11.9/1280.48 11/1258.00 1.15% 1.79%
RC104 10/1136.67 10.2/1143.76 10/1132.3 0.39% 1.01%
RC105 15/1523.19 15.3/1537.06 15/1513.70 0.63% 1.54%
RC106 13/1379.99 12.9/1387.97 13/1372.7 0.53% 1.11%
RC107 12/1212.83 12/1216.49 12/1207.80 0.42% 0.72%
RC108 11/1119.84 11/1135.65 11/1114.20 0.51% 1.93%

Average 12.75/1342.86 12.98/1353.75 12.63/1334.49 0.63% 1.44%

The entry of the solution is of the form number of vehicles/objective value.

70 S. Kritzinger et al.

Table 3. Comparison to the optimal solution on problems of instance class 2

Problem Our best Our avg. solution Optimal Best Avg.
solution over 10 runs solution gap gap

C201 3/591.56 3/591.56 3/589.1 0.42% 0.42%
C202 3/591.56 3/595.33 3/589.1 0.42% 1.06%
C203 3/591.17 3/591.17 3/588.7 0.42% 0.42%
C204 3/590.60 3/596.08 3/588.1 0.42% 1.36%
C205 3/588.88 3/588.88 3/586.4 0.42% 0.42%
C206 3/588.49 3/588.49 3/586.0 0.43% 0.43%
C207 3/588.29 3/588.29 3/585.8 0.42% 0.42%
C208 3/588.32 3/588.32 3/585.8 0.43% 0.43%

Average 3/589.86 3/591.02 3/587.38 0.42% 0.62%

R201 8/1157.54 7.7/1158.25 8/1143.20 1.25% 1.32%
R202 7/1039.09 6.2/1043.71 8/1029.6 0.92% 1.37%
R203 6/874.87 5.7/883.07 6/870.8 0.47% 1.41%
R204 5/738.61 4.6/742.16 5/731.3 1.00% 1.48%
R205 5/959.19 5.4/967.09 5/949.8 0.99% 1.82%
R206 5/884.79 5.3/893.62 5/875.9 1.02% 2.01%
R207 5/818.98 4.2/824.77 3/794.0 3.15% 3.88%
R208 4/710.83 3.3/722.27 3/701.2∗ 1.37% 3.00%
R209 5/860.11 5/869.05 5/854.8 0.62% 1.67%
R210 5/914.62 5.5/919.74 6/900.5 1.57% 2.14%
R211 4/756.51 4.4/762.51 4/746.7 1.31% 2.12%

Average 5.36/883.19 5.73/889.66 5.27/872.53 1.22% 1.96%

RC201 7/1280.71 7.6/1288.28 9/1261.80 1.50% 2.10%
RC202 8/1099.54 7.5/1106.96 8/1092.30 0.66% 1.34%
RC203 6/937.68 5.4/943.91 5/923.7 1.51% 2.19%
RC204 4/790.68 4/798.86 4/783.5 0.92% 1.96%
RC205 7/1158.67 7/1162.55 7/1154.0 0.40% 0.74%
RC206 6/1057.83 6.2/1073.58 7/1051.1 0.64% 2.14%
RC207 6/968.00 5.8/976.50 6/962.9 0.53% 1.41%
RC208 5/784.03 4.6/786.58 4/776.5 0.97% 1.30%

Average 6.13/1009.64 6.01/1017.15 6.25/1000.73 0.89% 1.64%

∗ No proven optimal solution.
The entry of the solution is of the form number of vehicles/objective value.

Although we often start with an infeasible initial solution, we always end up
with a feasible one. Mostly, the infeasibility is due to time window violations at
the customer locations. The gaps between the our best solutions and the optimal
one is smaller than one percent in 73% of the instance problems. For the instance
class C, we gain good approximation of the optimal solution with an average gap
of 0.31%. Apart from one problem of instance class 1, problem RC101, we end
up at least once with the number of routes of the optimal solution without using
any vehicle minimizing operation. For problems R202, R210, RC201 and R206,
we receive solutions with less vehicles than used in the optimal solution.

As impulse to create a real-world urban setting we make use of a statistic
of the average speed of the city highways in Vienna as shown in Fig. 8. For
a more detailed data analysis see [13]. We delimit our observation to the time
horizon of a standard working day from 7am to 7pm. One can see that between
the morning and evening rush hours the speed decreases up to 8km/h compared
to the speed in the middle of the day of about 90km/h. Of course, it influences
the solution quality enormously if the difference of the speeds between rush hours

VNS for the Time-Dependent VRPSTW 71

76

78

80

82

84

86

88

90

92

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

km
/h

time

Fig. 8. Average speed of Vienna’s highways

and the middle of the day is huge. Therefore we construct different scenarios
of time-dependency to show the consequences in the solution quality. Note that
the behavior of the speed in the inner-city varies to a greater extent than on the
city highways.

Hence, we transfer the Solomon test instances to a 12 hour working day with
3 periods, the morning rush hour from 7am to 10am, the middle of the day from
10am to 4pm and the evening rush hour from 4pm to 7pm. Further, we create
four different types of scenarios as proposed in Table 4 by considering an average
speed of 1 in each row.

Table 4. Travel speed in Scenarios 1 - 4

Scenario 7am - 10am 10am - 4pm 4pm - 7pm

1 1 1 1
2 0.8 1.2 0.8
3 0.6 1.4 0.6
4 0.4 1.6 0.4

Scenario 1 is the benchmark and is assumed to have constant travel speed
over the considered time horizon - it is related to the already discussed VRPTW.
Scenario 2 has already a weak time-dependency: during the morning and evening
period the vehicles travel at a slightly slower speed than during the middle of
the day. Scenarios 3 and 4 have an increasing level of time-dependency.

With the defined scenarios we perform two different numerical tests. First, we
show that ignoring time-dependent travel times leads to poor performance. To
do this, we run VNS with Scenario 1, that means a standard VRPSTW with
constant travel times. The whole parameter setting is taken as it stands for the
evaluation of the VRPTW, except for the tardiness parameter γ which is set to 1
because we deal with soft time windows. Then, we evaluate the solutions with our
time-dependent Scenarios 2, 3 and 4. Clearly, the averages of 10 runs in Table 5,

72 S. Kritzinger et al.

where the instance class 1 is considered, and Table 6, where the instance class 2
is considered, show that the solution quality is worse. Already in Scenario 2, the
scenario with the weakest time-dependent travel times, a high rate of infeasible
solutions is evaluated. In all cases the high percentage of infeasible solutions is
due to route length violations. One can see, the stronger the time-dependent
aspect becomes, the more infeasible the solutions are and the higher the total
travel time is. This observation is due to the fact that the route length increases,

Table 5. Problems of instance class 1: Solution of Scenario 1 evaluated with time-
dependent aspect of Scenarios 2 - 4

Problem Scenario 1 Scenario 2 Scenario 3 Scenario 4

847.13 896.72 1055.10 1515.63 total travel time
0.07 10.58 52.14 506.76 tardiness

C1 847.20 907.30 1107.24 2022.39 objective value (2)
0 6.29 21.34 59.36 route length violation

0 % 50 % 61.11 % 83.33 % infeasible solutions
10.03 fleet size

1175.35 1206.53 1318.29 1576.66 total travel time
17.56 27.54 110.23 392.74 tardiness

R1 1192.91 1234.07 1428.52 1969.40 objective value (2)
0 5.48 41.20 181.28 route length violation

0 % 67.67 % 96.83 % 100 % infeasible solutions
13.36 fleet size

1341.06 1403.82 1558.12 1867.48 total travel time
19.37 54.02 196.39 536.56 tardiness

RC1 1360.43 1457.84 1754.51 2404.04 objective value (2)
0 18.02 92.37 305.54 route length violation

0 % 93.75 % 100 % 100 % infeasible solutions
13.04 fleet size

Table 6. Problems of instance class 2: Solution of Scenario 1 evaluated with time-
dependent aspect of Scenarios 2 - 4

Problem Scenario 1 Scenario 2 Scenario 3 Scenario 4

734.44 767.81 877.85 1144.87 total travel time
147.43 158.33 326.90 1126.08 tardiness

C2 881.87 926.14 1204.75 2270.95 objective value (2)
0 4.46 31.64 172.01 route length violation

0 % 18.75 % 43.75 % 93.75 % infeasible solutions
3.10 fleet size

918.16 922.34 999.05 1194.96 total travel time
2.48 3.82 19.65 80.60 tardiness

R2 920.64 926.16 1018.70 1275.56 objective value (2)
0 0.24 1.69 7.76 route length violation

0 % 0 % 0 % 9.09 % infeasible solutions
5.11 fleet size

1053.98 1056.36 1143.29 1374.75 total travel time
3.66 10.70 52.60 231.23 tardiness

RC2 1057.64 1067.06 1195.89 1605.98 objective value (2)
0 2.70 13.18 57.12 route length violation

0 % 0 % 37.50 % 62.50 % infeasible solutions
5.81 fleet size

VNS for the Time-Dependent VRPSTW 73

if the speed decreases in the morning and evening rush hour. This characteristic
does not influence route length so much, because if a vehicle arrives too early at
the customer, it has to wait to start its service until the earliest service time.

Second, we show that taking time-dependency into account improves the eval-
uation function significantly. Hence, we rerun VNS with the time-dependent
aspect for each scenario again 10 times. Compared to the solutions before we
observe substantial improvements of our solutions. In Tables 7, 8 and 9, the
results obtained in the first numerical analysis without time-dependent consid-
eration are compared to the results obtained in the second numerical analysis
with time-dependent consideration. In most of the instance classes, considering
time-dependency improves all values well. For instance class C, the tardiness
completely disappears for Scenario 2 or decreases enormously for Scenarios 3
and 4. For the instance classes R and RC, the tardiness is improved at least by
70% for all scenarios. If there are infeasible solutions, the infeasibility, again in
the route length, is small. For the instance class C1, there is no more infeasibility
in route length for all scenarios. Route length violation can still be found in R1
and RC1. This can be avoided by increasing the route length penalty β.

A result of the numerical analysis without time-dependent consideration is
that the route length violation for the problems of instance class 1 and instance
class C2 is very high. To avoid this, more vehicles are provided. Therefore, in
the numerical analysis with time-dependent considerations, the number of ve-
hicles increases for the problems of the mentioned instance classes. Conversely,
instance classes R2 and RC2 show a decreasing fleet size for analysis with time-
dependent considerations. This observation is the outcome of the partial ran-
domly distributed customers with wide spread time windows.

Knowing the travel time in advance, it makes an approximation of the real
world conditions more realistic.

Table 7. Comparison of solutions of Scenario 2

Problem without TD with TD Problem without TD with TD

896.72 916.46 767.81 679.05 total travel time
10.58 0 158.33 0 tardiness

C1 907.30 916.46 C2 926.14 679.05 objective value (2)
6.29 0 4.46 0 route length violation

50 % 0 % 18.75 % 0 % infeasible solutions
10.03 10.79 3.10 3.70 fleet size

1206.53 1199.98 922.34 900.27 total travel time
27.54 17.70 3.82 2.10 tardiness

R1 1234.07 1217.68 R2 926.16 902.37 objective value (2)
5.48 0 0.24 0 route length violation

67.67 % 0 % 0 % 0 % infeasible solutions
13.36 13.18 5.11 5.04 fleet size

1403.82 1411.01 1056.36 1029.68 total travel time
54.02 13.93 10.70 3.37 tardiness

RC1 1457.84 1424.94 RC2 1067.06 1033.05 objective value (2)
18.02 0.12 2.70 0 route length violation

93.75 % 12.50 % 0 % 0 % infeasible solutions
13.04 13.34 5.81 5.63 fleet size

74 S. Kritzinger et al.

Table 8. Comparison of solutions of Scenario 3

Problem without TD with TD Problem without TD with TD

1055.10 1073.74 877.85 771.56 total travel time
52.14 11.14 326.90 0 tardiness

C1 1107.24 1084.78 C2 1204.75 771.56 objective value (2)
21.34 0 31.64 0 route length violation

61.11 % 0 % 43.75 % 0 % infeasible solutions
10.03 11.28 3.10 4.06 fleet size

1318.29 1266.99 999.05 910.36 total travel time
110.23 41.62 19.65 3.97 tardiness

R1 1428.52 1308.61 R2 1018.70 914.33 objective value (2)
41.20 4.76 1.69 0 route length violation

96.83 % 33.33 % 0 % 0 % infeasible solutions
13.36 14.21 5.11 4.79 fleet size

1558.12 1511.30 1143.29 1074.20 total travel time
196.39 21.77 52.60 5.64 tardiness

RC1 1754.51 1533.07 RC2 1195.89 1079.85 objective value (2)
92.37 5.77 13.18 0 route length violation

100 % 30 % 37.50 % 0 % infeasible solutions
13.04 14.75 5.81 5.48 fleet size

Table 9. Comparison of solutions of Scenario 4

Problem without TD with TD Problem without TD with TD

1515.63 1481.20 1144.87 993.39 total travel time
506.76 51.98 1126.08 0.01 tardiness

C1 2022.39 1533.18 C2 2270.95 993.40 objective value (2)
59.36 0 172.01 0 route length violation

83.33 % 0 % 93.75 % 0 % infeasible solutions
10.03 12.53 3.10 4.25 fleet size

1576.66 1432.97 1194.96 998.60 total travel time
392.74 117.14 80.60 15.80 tardiness

R1 1969.40 1550.11 R2 1275.56 1014.40 objective value (2)
181.28 39.09 7.76 0 route length violation
100 % 66.67 % 9.09 % 0 % infeasible solutions
13.36 14.54 5.11 4.79 fleet size

1867.48 1659.90 1374.75 1269.63 total travel time
536.56 42.85 231.23 17.47 tardiness

RC1 2404.04 1702.75 RC2 1605.98 1287.10 objective value (2)
305.54 17.76 57.12 1.24 route length violation
100 % 50 % 62.50 % 12.50 % infeasible solutions
13.04 15.33 5.81 4.95 fleet size

5 Conclusion

This paper presents a VNS for TD-VRPSTW fit to a distribution problem
in cities. An experimental evaluation was performed with and without time-
dependent travel times. The results show that taking time-dependent travel
times into account while optimizing provides substantial improvements in the
total travel time. We have shown that in most cases the tardiness can be com-
pletely avoided and that the violation of route length is extensively minimized.

VNS for the Time-Dependent VRPSTW 75

Acknowledgments

This work is supported by the Austrian Science Fund (FWF) under grants L510-
N13 and L628-N15 (Translational Research Programs). Special thanks go to
Verena Schmid, who provided the illustrative example [13].

References

1. Bräysy, O.: A Reactive Variable Neighborhood Search for the Vehicle-Routing
Problem with Time Windows. INFORMS Journal on Computing 15(4), 347–368
(2003)

2. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows, Part
I: Route Construction and Local Search Algorithms. Transportation Science 39,
104–118 (2005)

3. Donati, A.V., Montemanni, R., Casagrande, N., Rizzoli, A.E., Gambardella, L.M.:
Time dependent vehicle routing problem with a multi ant colony system. European
Journal of Operational Research 185, 1174–1191 (2008)

4. Fleischmann, B., Gietz, M., Gnutzmann, S.: Time-Varying Travel Times in Vehicle
Routing. Transportation Science 38, 160–173 (2004)

5. Hansen, P., Mladenović, N.: Variable Neighborhood Search. In: Pardalos, P.M.,
Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 221–234. Oxford
University Press, New York (2000)

6. Hansen, P., Mladenović, N.: Variable Neighborhood Search: Principles and appli-
cations. European Journal of Operational Research 130, 449–467 (2001)

7. Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable neighborhood search:
methods and applications. Annals of Operations Research 175, 367–407 (2010)

8. Hashimoto, H., Yagiura, M., Ibaraki, T.: An iterated local search algorithm for the
time-dependent vehicle routing problem with time windows. Discrete Optimiza-
tion 5, 434–456 (2008)

9. Ichoua, S., Gendreau, M., Potvin, J.-Y.: Vehicle dispatching with time-dependent
travel times. European Journal of Operational Research 144, 379–396 (2003)

10. Malandraki, C., Daskin, M.S.: Time Dependent Vehicle Routing Problems: Formu-
lations, Properties and Heuristic Algorithms. Transportation Science 26, 185–200
(1992)

11. Mladenović, N., Hansen, P.: Variable Neighborhood Search. Computers & Opera-
tions Research 24, 1097–1100 (1997)

12. Polacek, M., Doerner, K.F., Hartl, R.F., Reimann, M.: A Variable Neighborhood
Search for the Multi Depot Vehicle Routing Problem with Time Windows. Journal
of Heuristics 10, 613–627 (2004)

13. Schmid, V., Doerner, K.F.: Ambulance location and relocation problems with time-
dependent travel times. European Journal of Operational Research 207, 1293–1303
(2010)

14. Soler, D., Albiach, J., Mart́ınez, E.: A way to optimally solve a time-dependent
Vehicle Routing Problem with Time Windows. Operations Research Letters 37,
37–42 (2009)

15. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time constraints. Operations Research 35(2), 254–265 (1987)

16. Taillard, E.D., Badeau, P., Gendreau, M., Potvin, J.Y.: A Tabu Search Heuristic for
the Vehicle Routing Problem with Soft Time Windows. Transportation Science 31,
170–186 (1997)

Solving the Two-Dimensional Bin Packing

Problem with a Probabilistic Multi-start
Heuristic�

Lukas Baumgartner1, Verena Schmid1, and Christian Blum2

1 Department of Business Administration, Universität Wien, Vienna, Austria
{lukas.baumgartner,verena.schmid}@univie.ac.at

2 ALBCOM Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
cblum@lsi.upc.edu

Abstract. The two-dimensional bin packing problem (2BP) consists in
packing a set of rectangular items into rectangular, equally-sized bins.
The problem is NP-hard and has a multitude of real world applications.
We consider the case where the items are oriented and guillotine cutting
is free. In this paper we first present a review of well-know heuristics for
the 2BP and then propose a new ILP model for the problem. Moreover,
we develop a multi-start algorithm based on a probabilistic version of the
LGFi heuristic from the literature. Results are compared to other well-
known heuristics, using data sets provided in the literature. The obtained
experimental results show that the proposed algorithm returns excellent
solutions. With an average percentage deviation of 1.8% from the best
know lower bounds it outperformes the other algorithms by 1.1%−5.7%.
Also for 3 of the 500 instances we tested a new upper bound was found.

Keywords: two-dimensional bin packing, integer linear programming,
heuristics.

1 Introduction

The two-dimensional bin packing problem (2BP) consists in packing a set of n
rectangular items j ∈ Q = {1, . . . , n} into bins of height H and width W . The
total number of bins is unlimited. Each item j is characterized by its height hj

and its width wj . Items have to be packed so that they do not overlap. The goal
is to minimize the number of used bins. Many real world applications exist for
the 2BP such as, for example, cutting glass, wood or metal and packing in the
context of transportation or warehousing (see [1] [2]).

According to Lodi et. al [3] there are four different cases of the 2BP. The
differences between these four cases are derived from two aspects: (1) the 90◦

� This work was supported by the binational grant Acciones Integradas ES16-2009
(Austria) and MEC HA2008-0005 (Spain), and by grant TIN2007-66523 (FORMAL-
ISM) of the Spanish government. In addition, Christian Blum acknowledges support
from the Ramón y Cajal program of the Spanish Government of which he is a re-
search fellow.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 76–90, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Solving the Two-Dimensional Bin Packing Problem 77

rotation of items may be allowed, or not, and (2) guillotine cutting may be
required or free. The four problem cases can be characterized as follows:

– 2BP|O|G: The items are oriented and guillotine cutting is required.
– 2BP|O|F: The items are oriented and guillotine cuttings is free.
– 2BP|R|G: The items can be rotated by 90◦ and guillotine cutting is required.
– 2BP|R|F: The items can be rotated by 90◦ and guillotine cutting is free.

In this paper we exclusively focus on the 2BP|O|F case, that is, in the re-
mainder of the paper the abbreviation 2BP will refer to this problem version.
Concerning the complexity of the 2BP, Garey and Johnson classified the problem
as NP-hard [4]. For further reading by Lodi et al. [5] [6], Lodi [7] and Dowsland
& Dowsland [8] provide a good overview over the 2BP by presenting different
models, heuristics, exact algorithms, metaheuristics, lower and upper bounds.

1.1 Organization of the Paper

The main purpose of this paper is to present a multi-start algorithm based on
a probabilistic extension of the LGFi heuristic from the literature. However,
in Section 2 we present related heuristics for solving the 2BP. In Section 3 we
first present a new ILP model for the tackled problem. Our algoritm proposal is
then presented in Section 4. Finally, an experimental evaluation is provided in
Section 5, while conclusions and an outlook to the future are given in Section 6.

2 Related Work

Concerning heuristic solution methods we mainly distinguish between one-phase
and two-phase approaches. One-phase algorithms pack the items directly into
the bins, whereas two-phase algorithms first pack the items into levels of one
infinitely high strip with width W and then stack these levels into the bins.

Level-packing algorithms place items next to each other in each level. Hereby,
the bottom of the first level is the bottom of the bin. For the next level the
bottom is a horizontal line coinciding with the tallest item of the level below.
Therefore, items can only be placed besides each other in each level, in contrast
to packing items on top of each other.

Well known level-packing algorithms are Next-Fit Decreasing Height

(NFDH), First-Fit Decreasing Height (FFDH) and Best-Fit Decreas-

ing Height (BFDH) [9]. These strategies were originally developed as algo-
rithms for the one-dimensional bin packing problem, but have also been adapted
to strip packing problems and as components of heuristics for the two-dimensional
bin packing problem, which we will present in the following. For all three heuris-
tics the items must first be sorted by non-increasing height. Then they are packed
in this order.

NFDH packs the current item in the leftmost position of the current level,
unless it does not fit. In this case, it creates a new level, which becomes the new
current level, where the item will be packed in the leftmost position. In contrast,

78 L. Baumgartner, V. Schmid, and C. Blum

FFDH packs the current item as follows. Starting from the first level (among the
currently available levels), FFDH tries to accomodate the current item, which is
finally packed into the first level in which it still fits. As in the case of NFDH,
the current item is always placed in the leftmost possible position. If no level
can accomodate the current item a new level is created. Finally, BFDH works as
follows. For the current item, BFDH chooses among the available levels the one
where the distance from the right side of the item to the right side of the bin is
the smallest. If the current item does not fit in any available level, a new level
is created. In general, NFDH is the fastest among these three heuristics, but it
produces the worst solutions. The opposite is the case for BFDH, while FFDH
is a compromise between these two.

Next we shortly describe two-phase level-packing algorithms which are based
on the three heuristics described above. Hybrid Next-Fit (HNF) [10] is based
on NFDH, Hybrid First-Fit (HFF) [11] on FFDH and Finite Best-Strip

(FBS) [12], which is also sometimes referred to as Hybrid Best-Fit, is based
on BFDH. In the first phase of all three algorithms the levels are created by the
algorithm on which they are based. Then the levels are packed into bins. This is
done using the same strategy as was used for the packing of the items into the
levels.

Further two-phase level-packing algorithms are Floor Ceiling (FC) [3] and
Knapsack Packing (KP) [3]. In the first phase of KP the levels are packed
by solving a knapsack problem. In the second phase these levels are packed into
bins. For the first phase the tallest unpacked item, say j, initializes the level.
In terms of the knapsack problem the remaining horizontal distance up to the
right bin border, W −wj , is the capacity. Moreover, the width wi of an unpacked
item i is regarded as its weight, while the items’ area wi · hi is regarded as its
value (or profit). This results in a knapsack problem which is then solved. This
procedure is repeated until all items are packed into levels. In the second phase
the remaining one-dimensional bin packing problem is solved by using a heuristic
such as Best-Fit Decreasing or an exact algorithm.

The FC algorithm can be seen as an improvement over the FBS algorithm.
Again items are packed into levels in the first phase, and these levels are packed
into bins in the second phase. First, the items are sorted by non-increasing height.
The tallest unpacked item initializes the level and a horizontal line coinciding
with the top edge of this item is the ceiling of that level. Remaining items are
packed from left to right on the floor and from right to left on the ceiling. The
first item on the ceiling must not fit on the floor of that level. FC tries to pack
the current item first on a ceiling (if allowed) following a best-fit strategy. If not
possible it tries to pack it on a floor and if that is not possible it initializes a
new level. The second phase is the same as in KP.

One-phase non-level-packing algorithms are Alternate Direction (AD) [3],
Bottom-Left Fill (BLF) [13], Improved Lowest Gap Fill (LGFi) [14] and
Touching Perimeter (TP) [3]. In the following we describe these techniques
shortly. AD sorts the items by non-increasing heights and initializes L bins,
where L is a lower bound of the two-dimensional bin packing problem. It then

Solving the Two-Dimensional Bin Packing Problem 79

fills the bottom border of the bins from left to right using a best-fit decreasing
strategy. Then one bin after another is being filled. In this context items are
packed in bands from left to right and from right to left until no items can be
packed into the current bin anymore.

BLF initializes bins by placing the first item at the bottom left corner. The
top left and bottom right corners of already placed items are positions where
new items could be inserted. BLF tries to place the items starting from the
lowest to the highest available position. When postions with an equal height are
encountered, the position closer to the left is tried first.

LGFi has a preprocessing and a packing stage. In the preprocessing stage,
items are sorted by non-increasing area as a first criterion, and in a case of tie
by non increasing absolute difference between height and width of the item. In
the packing stage a bin is initialized with the first unpacked item, which is placed
at the bottom left corner. Now items are packed on the bottom leftmost position.
If possible, an item is chosen such that either the horizontal gap, or the vertical
gap to the top, is filled. If this is not possible, the largest fitting item is placed
at this position. This is repeated until all items are packed.

TP first sorts the items by non-increasing area and initializes L bins, where L
is a computed lower bound for the related two-dimensional bin packing problem.
Furthermore, depending on a certain position, a score is associated to each item:
the percentage of the edges of the item touching either an edge of another item
or the border of the bin. Each item is now tried on different positions in the
bin and for each position the corresponding score is calculated. The item is then
placed at the position at which the score is highest.

Tabu Search (TS) [15] [5] is a meta-heuristic and therefor cannot be classi-
fied as a one- or two-phase algorithm.

Tabu Search uses lists containing moves which are considered forbidden to be
used again for a certain amount of iterations. First a starting solution is created
using a heuristic such as FBS, KP, AD...etc. and a lower bound for the problem
instance is calculated. TS then selects a target bin b, which it tries to empty.
Therefore it defines a subset S containing an item i from bin b and k other bins.
Using a heuristic, such as the ones mentioned before, it now repacks the subset
S and if it can be packed in k or less bins the move is executed and added to
the tabu list. This is repeated with all combinations of i and k, where k can
be increased up to a fixed number, until either the lower bound is reached or
the algorithms is considered stuck and has to be restarted by randomly moving
packed items into empty bins.

Extreme Point-based Heuristics for Three-Dimensional Bin Pack-

ing (C-EPBFD) [16] is a heuristic originally designed for the three-dimensional
bin packing problem.

This heuristic uses extreme points to determine all points in the bin where
items can be placed. Extreme points can either be corners of the already placed
items or points generated by the extended edges of the placed items. These
points are updated every time an item is placed into the bin. For placing the
items a modified version of BFDH is used.

80 L. Baumgartner, V. Schmid, and C. Blum

3 A New ILP Model

Inspired by the models proposed in Pisinger and Sigurd [17] and Puchinger and
Raidl [18] we present in the following a new ILP model for the 2BP. For this
purpose, we denote by Q = {1, . . . , n} the set of all items and the set of all bins.
W and H refer to the bin-width and the bin-height, while wi and hi refer to the
width and the height of item i ∈ Q. W , H , wi and hi are all integer.

The binary decision variable αik evaluates to 1 if item i is packed into bin k,
and 0 otherwise. Only variables αik where i ≥ k are created so that only n2+n

2
instead of n2 have to be initialized. Furthermore items αik indicate if bins are
opened or not. A bin is considered open if the item with the same index as the
bin is placed in that bin. For example item 1 cannot be placed in bin 3 but only
in bin 1. Item 3 can be placed in bin 3, in bin 2 in case item 2 is placed in bin
2, or in bin 1, which is always open as item 1 can only be placed in bin 1. It is
easy to see that, even with this restricted variable set, all combinations of items
packed into one bin are still possible. The integer variables xi and yi decide the
x- and y-coordinates of each item within a bin. For the overlapping constraints,
which we will introduce in the next paragraph, we need the binary variables
ulij , uaij, urij and uuij. Each one of these four variables decides if item i has to
be to the left (ulij), above (uaij), to the right (urij) or underneath (uuij) item
j. Only variables for i < j are created so that only n2−n

2 instead of n2 have to
be initialized for each variable. This can be done because if item i has to be to
the left of item j, item j automacitally has to be to the right of item i which
makes it unnecassary to initialize the corresponding variable of item j.

Z =
n∑

i=0

αii → min (1)

n∑
k=0

αik = 1 i, k ∈ Q; i ≥ k (2)

αik ≤ αkk i, k ∈ Q; i ≥ k (3)
xi + wi ≤ W i ∈ Q (4)
yi + hi ≤ H i ∈ Q (5)
ulij + uaij + urij + uuij = 1 i, j ∈ Q; i < j (6)
xi + wi ≤ xj + W · (3 − ulij − αik − αjk) i, j, k ∈ Q; k ≤ i < j (7)
yi + H · (3 − uaij − αik − αjk) ≥ yj + hj i, j, k ∈ Q; k ≤ i < j (8)
xi + W · (3 − urij − αik − αjk) ≥ xj + wj i, j, k ∈ Q; k ≤ i < j (9)
yi + hi ≤ yj + H · (3 − uuij − αik − αjk) i, j, k ∈ Q; k ≤ i < j (10)

The objective function (1) minimizes the number of bins used. The constraint
(2) ensures that each item is assigned to one bin. That an item i can only be
assigned to an open/initialized bin is ensured by (3). That each item is placed
within the bin is ensured by inequations (4) and (5). Equation (6) states that

Solving the Two-Dimensional Bin Packing Problem 81

item i has to be placed either to the left, above, to the right or underneath
item j. The last four equations (7)-(10) ensure that two items do not overlap if
assigned to the same bin.

4 The Proposed Algorithm

The algorithm that we present in this paper is a multi-start heuristic based on
a probabilistic version of LGFi, which was developed by Wong and Lee in [14].
LGFi itself is an improved version of the LGF heuristic presented by Lee in [19].
Note that LGFi is a two-stage heuristic. In the preprocessing stage items are
sorted into a list, while in the packing stage the items are packed from that
list into bins. The main difference between LGFi and our probabilistic version
of LGFi (P-LGFi) is that the items are not chosen in a deterministic way but
rather in a probalistic manner. It cannot be seen as a two-phase heuristic as it
has two stages (preprocessing and packing) but only one phase in which items
are packed (packing stage).

4.1 Probabilistic LGFi

In the following we first outline the probabilistic way of using LGFi that we
developed. This concerns in particular the preprocessing stage. Remember that
the preprocessing stage is supposed to generate an ordered list of all items. How-
ever, instead of doing that deterministically, as in LGFi, P-LGFi does that in a
probabilistic manner.

The Preprocessing Stage: First, for each item i the area (ai) and the absolute
difference between height and width (di) must be calculated:

ai = wi · hi (11)
di = |wi − hi| (12)

Then, on the basis of ai and di, a value vi is computed for each item i:

vi = (λ · ai − di)κ (13)

Hereby, λ and κ are parameters. Larger values of λ result in the fact that items
with larger areas receive higher v-values, that is, with increasing λ the impor-
tance of the area grows in comparison to the absolute difference between width
and height. Note that for the computational experiments presented in the fol-
lowing section we used λ = 100. Concerning κ, larger values of κ increase the
difference between the v-values of different items. In other words, when κ = 0.1
the v-values of all items will be very similar to each other, while when κ = 10,
for example, the v-values are characterized by large differences.

Based on the v-values, an ordered list of all items is then generated in a
probabilistic way from left to right. At each step, let I ⊆ Q be the set of items
that are not yet assigned to the list. An item i ∈ I is chosen according to

82 L. Baumgartner, V. Schmid, and C. Blum

probabilities pi (for all i ∈ I) by roulette-wheel-selection. The probabilities pi

are calculated proportional to the v-values:

pi =
vi∑

i∈I vi
(14)

The result of this process is a list of all items, which is used for the packing stage.

The Packing Stage: The first bin is initialized by placing the first item from
the list obtained in the preprocessing stage at the bottom left corner of the bin
(Figure 1(a)).

Now the bottom leftmost point in the bin, on which no item is placed, is
choosen as the current point. From this point there are two gaps, one horizontal
and one vertical. The horizontal gap is the distance between the point and the
right border of the bin or the left edge of the first item between the point and the
right border of the bin. The distance between the point and the upper border
of the bin defines the value of the vertical gap. Which ever one of those two is
smaller is the current gap (Figure 1(b)).

The current gap is compared to either the widths of the items, if the horizontal
gap is the current gap, or to the heights of the items, if the vertical gap is the
current gap. The heuristic compares the current gap against the width and height
of all unpacked items (Figure 1(c)).

If any item fills the gap completely it is packed with its bottom left corner on
the current point and the next bottom leftmost point is determined. If no item
is able to fill the gap completely the heuristic goes through the list one more
time and picks the first item whose height is less or equal than the vertical gap
and whose width is less or equal than the horizontal gap (Figure 1(d)).

If still no item fits on this position a certain area has to be declared as wastage,
which works as follows. A wastage area with the width of the horizontal gap is
created. The height of it is chosen so that the area continuously touches either
an edge of an item or the border of the bin on both sides (Figure 1(e)).

The heuristic now searches for a new point and tries to place an unpacked
item from the list again in the same way as described above. This is done until
the bin is completely filled with either items or areas declared as wastage. A new
bin is initialized with the first unpacked item placed on the bottom left corner
of the new bin. This is repeated until all items are packed into bins.

4.2 Multi-start Algorithm

As mentioned above, the P-LGFi heuristic that we developped can be used in a
simple multi-start fashion. In particular, at each iteration the multi-start algo-
rithm executes the probabilistic LGFi heuristic once. The best solution obtained
in this way is stored and provided as output of the algorithm when the stopping
criterion has been reached. In this work we used a fixed number of iterations as
stopping criterion. This algorithm is denoted in the following as Multi-start

Probabilistic Improved Lowest Gap Fill (MP-LGFi).

Solving the Two-Dimensional Bin Packing Problem 83

(a) Initializing the bin

(b) Identifying the current gap

(c) Placing a perfectly fitting item

(d) Placing the first item which fits

(e) Declaring an area wastage

Fig. 1. Differnt stages of packing

84 L. Baumgartner, V. Schmid, and C. Blum

5 Experimental Evaluation

MP-LGFi was implemented using Microsoft Visual C++ 2008. All experiments
were performed on an Intel R© Xeon R© X5500 @ 2.67 GHz with 3 GB of RAM.
The proposed algorithm was tested on instances provided in the literature. After
an initial study of the algorithm behaviour, a detailed experimental evaluation
is presented.

5.1 Problem Instances

Ten classes of problem instances for the 2BP are provided in the literature.
A first instance set, containing six classes (I-VI), was proposed by Berkey and
Wang in [12]. For each of these classes, the widths and heights of the items were
chosen uniformly at random from the intervals presented in Table 1. Moreover,
the classes differ in the width (W) and the height (H) of the bins. Instance sizes,
in terms of the number of items, are taken from {20, 40, 60, 80, 100}. Berkey and
Wang provided 10 instances for each combination of a class with an instance
size. This results in a total of 300 problem instances.

Table 1. Specification of instance classes I-VI (as provided by [12])

Class wj hj W H

I [1,10] [1,10] 10 10
II [1,10] [1,10] 30 30
III [1,35] [1,35] 40 40
IV [1,35] [1,35] 100 100
V [1,100] [1,100] 100 100
VI [1,100] [1,100] 300 300

The second instance set, consisting of classes VII-X, was introduced by
Martello and Vigo in [20]. In general, they considered four different types of
items, as presented in Table 2. The four item types differ in the limits for the
width wi and the height hi of an item. Then, based on these four item types,
Martello and Vigo introduced four classes of instances which differ in the per-
centage of items they contain from each type. As an example, let us consider
an instance of class VII. 70% of the items of such an instance are of type 1,
10% of the items are of type 2, further 10% of the items are of type 3, and
the remaining 10% of the items are of type 4. These percentages are given per
class in Table 3. As in the case of the first instance set, instance sizes are taken
from {20, 40, 60, 80, 100}. The instance set by Martello and Vigo consists of 10
instances for each combination of a class with an instance size. This results in a
total of 200 problem instances.

These alltogether 500 instances can be downloaded from http://www.or.
deis.unibo.it/research.html.

http://www.or.deis.unibo.it/research.html
http://www.or.deis.unibo.it/research.html

Solving the Two-Dimensional Bin Packing Problem 85

Table 2. Item types for classes VII-X (as introduced in [20])

Item type wj hj W H

1 [2
3
·W, W] [1, 1

2
·H] 100 100

2 [1, 1
2
·W] [2

3
·H,H] 100 100

3 [1
2
·W, W] [1

2
·H,H] 100 100

4 [1, 1
2
·W] [1, 1

2
·H] 100 100

Table 3. Specification of instance classes VII-X (as provided by [20])

Class Type 1 Type 2 Type 3 Type 4

VII 70% 10% 10% 10%
VIII 10% 70% 10% 10%
IX 10% 10% 70% 10%
X 10% 10% 10% 70%

5.2 Parameter Setting

Before conducting a full experimental evaluation of MP-LGFi, we first wanted
to understand certain aspects of the behaviour of the algorithm. More specifi-
cally, we were interested in the influence of the value of parameter κ as well as
in the run-time behaviour of the algorithm. Concerning κ, remember that rather
high values result in random sequences of all the items that are very similar to
the deterministic sequence generated by LFGi. This means that the higher the
value of κ, the less probabilistic is our version of LGFi. Intuitively, we expected
that values close to zero do not work very well, because the degree of stochas-
ticity is too high. We also expected that values that are too high do not work
very well, because the resulting sequences are too similar to the deterministic se-
quence of LGFi. In order to confirm this intuition, we applied MP-LGFi with a
limit of 100 iterations three times to each of the 500 instances. This was done for
κ ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For each κ we calculated the average per-
centage deviation of the corresponding results with respect to the optimal (re-
spectively, best known) solutions. The obtained results are graphically shown in
Figure 2. They show indeed that our initial intuition appears to be true: MP-LGFi
seems to work best for intermediate values of κ, that is, for values in {4, 5, 6}.
Therefore, we chose the setting of κ = 5 for all the remaining experiments.

As mentioned above, we also studied the run-time behaviour of the algo-
rithm. For this purpose we applied MP-LGFi (with κ = 5) thrice to each of
the 500 problem instances, using an iteration limit of 20000 iterations. The ag-
gregated results are shown graphically in Figure 3. The results show that most
improvements are obtained during the first 100 iterations. Further significant
improvements are achieved until around 5000 iterations. After that the results
almost do not improve. Given this behaviour, we chose an iteration limit of 10000
iterations for the final set of experiments.

86 L. Baumgartner, V. Schmid, and C. Blum

Fig. 2. Results averaged over all 500 instances for different values of κ (x-axis). The
y-axis provides the average percent deviation of the corresponding results with respect
to the best known lower bounds.

Fig. 3. Results averaged over all 500 instances for different iteration limits (x-axis).
The y-axis provides the average percent deviation of the corresponding results with
respect to the best known lower bounds.

5.3 Computational Results

Table 4 provides numerical results of MP-LGFi in comparison to Improved

Lowest Gap Fill (LGFi) [14] and Tabu Search (TS) [15] [5]. For each of
the three algorithms the results are shown averaged over the 10 instances for
each combination of class and instance size. The values in the columns with

Solving the Two-Dimensional Bin Packing Problem 87

heading (q) are the ratio between the obtained solution and the lower bound
of the respective two-dimensional bin packing problem. Therefore, the lower a
value in the columns with heading (q) the better. Also note that in a case in
which for all 10 instances a solution was obtained whose value matches the one
of the lower bound, the corresponding q-value is 1.000. In other words, 1.000
is the best possible q-value. In the case of MP-LGFi, where the average results
of three runs are shown, we also provide information about the corresponding
standard deviations (columns with heading σ), the average time when the best
solution was found (columns with heading tb), and the average total runtime in
seconds (columns with heading t). Moreover, the last line for each class gives
the average of each algorithm for all instance sizes. The best result(s) for each
combination of instance size and class are shown in bold.

Table 4. Numerical results for all 500 instances. The results are shown as averages
over the 10 instances for each combination of instance size and class. In addition to
the results of MP-LGFi, the table also presents the results of FC, AD, LGFi and TS.

FC AD LGFi TS MP-LGFi FC AD LGFi TS MP-LGFi
q q q q q sigma tb t q q q q q sigma tb t

Class I Class VI
20 1.120 1.120 1.110 1.060 1.000 0.000 0.0 0.1 20 1.000 1.000 1.000 1.000 1.000 0.000 0.0 0.0
40 1.080 1.090 1.060 1.060 1.000 0.000 0.0 0.3 40 1.400 1.400 1.400 1.400 1.200 0.000 10.5 124.4
60 1.070 1.070 1.050 1.040 1.017 0.000 0.0 0.5 60 1.100 1.050 1.100 1.050 1.000 0.000 9.0 4.5
80 1.060 1.060 1.040 1.050 1.004 0.000 0.0 0.4 80 1.000 1.000 1.000 1.000 1.000 0.000 0.1 0.1
100 1.060 1.050 1.030 1.040 1.000 0.000 0.0 0.8 100 1.100 1.070 1.100 1.070 1.067 0.000 0.3 234.8

Average 1.078 1.078 1.059 1.050 1.004 0.000 0.0 0.4 Average 1.120 1.104 1.120 1.104 1.053 0.000 4.0 72.8

Class II Class VII
20 1.100 1.000 1.000 1.000 1.000 0.000 0.0 0 20 1.080 1.100 1.100 1.040 1.000 0.000 0.0 9.0
40 1.100 1.100 1.100 1.100 1.000 0.000 0.0 0 40 1.090 1.100 1.070 1.060 1.020 0.000 4.3 17.0
60 1.100 1.100 1.100 1.100 1.000 0.000 0.0 0 60 1.070 1.070 1.040 1.050 1.019 0.000 0.7 38.0
80 1.070 1.070 1.030 1.070 1.000 0.000 0.0 0 80 1.060 1.060 1.060 1.040 1.037 0.000 0.0 128.4
100 1.030 1.030 1.030 1.030 1.000 0.000 0.0 0 100 1.040 1.040 1.030 1.030 1.009 0.002 43.8 63.8

Average 1.080 1.060 1.053 1.060 1.000 0.000 0.0 0 Average 1.068 1.074 1.059 1.044 1.017 0.000 9.8 51.3

Class III Class VIII
20 1.180 1.200 1.230 1.200 1.022 0.019 0.0 1.3 20 1.160 1.130 1.120 1.060 1.000 0.000 0.4 13.8
40 1.140 1.150 1.170 1.110 1.033 0.007 0.3 1.2 40 1.070 1.080 1.080 1.030 1.009 0.000 0.1 7.2
60 1.110 1.130 1.100 1.050 1.032 0.000 0.0 4 60 1.060 1.060 1.060 1.020 1.013 0.000 5.8 25.0
80 1.100 1.100 1.070 1.080 1.030 0.003 1.4 6.4 80 1.060 1.060 1.040 1.020 1.005 0.000 3.0 12.0
100 1.090 1.090 1.090 1.090 1.026 0.003 1.4 9.1 100 1.060 1.060 1.050 1.040 1.015 0.000 1.0 58.7

Average 1.124 1.134 1.131 1.106 1.029 0.006 0.6 4.4 Average 1.082 1.078 1.068 1.034 1.008 0.000 2.1 23.3

Class IV Class IX
20 1.000 1.000 1.000 1.000 1.000 0.000 0.0 0 20 1.010 1.010 1.010 1.000 1.000 0.000 0.0 0.0
40 1.000 1.000 1.000 1.000 1.000 0.000 0.0 0 40 1.020 1.020 1.010 1.010 1.000 0.000 0.0 52.4
60 1.100 1.150 1.100 1.150 1.100 0.000 0.0 5.7 60 1.020 1.020 1.010 1.010 1.000 0.000 0.0 53.2
80 1.100 1.100 1.100 1.100 1.033 0.000 0.1 3.6 80 1.020 1.020 1.010 1.010 1.000 0.000 0.1 110.0
100 1.100 1.030 1.070 1.030 1.000 0.000 2.3 1.1 100 1.010 1.010 1.010 1.010 1.000 0.000 0.1 87.9

Average 1.060 1.056 1.053 1.056 1.027 0.000 0.5 2.1 Average 1.016 1.016 1.012 1.008 1.000 0.000 0.0 60.7

Class V Class X
20 1.140 1.140 1.110 1.110 1.000 0.000 0.1 22.7 20 1.140 1.100 1.130 1.100 1.000 0.000 0.0 7.8
40 1.110 1.110 1.100 1.040 1.000 0.000 3.6 25.8 40 1.090 1.090 1.090 1.060 1.000 0.000 0.0 9.7
60 1.100 1.100 1.090 1.060 1.009 0.004 13.7 49.6 60 1.080 1.110 1.110 1.070 1.053 0.000 0.0 57.9
80 1.090 1.090 1.080 1.060 1.026 0.000 10.2 103.4 80 1.110 1.100 1.090 1.060 1.056 0.000 0.0 74.7
100 1.090 1.090 1.090 1.080 1.035 0.000 1.2 146.4 100 1.090 1.100 1.080 1.080 1.054 0.007 0.2 94.7

Average 1.106 1.106 1.092 1.070 1.014 0.001 5.8 69.6 Average 1.102 1.100 1.100 1.074 1.033 0.001 0.1 49.0

Total Average 1.084 1.081 1.075 1.061 1.018 0.001 2.3 33.4

88 L. Baumgartner, V. Schmid, and C. Blum

Table 5. Numerical results for all 500 instances. The results are shown as averages
over the 10 instances for each combination of instance size and class. In addition to
the results of MP-LGFi, the table also presents the results of C-EPBFD.

C-EPBFD MP-LGFi C-EPBFD MP-LGFi
q q q q

Class I 1.019 1.004 Class VI 1.093 1.037
Class II 1.040 1.000 Class VII 1.030 1.020
Class III 1.047 1.023 Class VIII 1.022 1.010
Class IV 1.101 1.025 Class IX 1.000 1.000
Class V 1.031 1.019 Class X 1.059 1.041

Total Average 1.023 1.012

Table 5 compares the results of MP-LGFi and Extreme Point-based

Heuristics for Three-Dimensional Bin Packing (C-EPBFD) [16]. But
unlike Table 4, where the values represent the mean of the gap to the lower
bound, the values in this Table are the gap to the lower bound of the respective
mean for each combination of class and items. Therefor only the average of the
classes are compared as the results of C-EPBFD cannot be compared to the
other heuristics.

The comparison between the different algorithms shows that MP-LGFi nearly
always outperforms the competitors. Only in a few cases concerning classes II,
IV, VI, VII, IX and X, other heuristics are able to match the results of MP-LGFi.
When averaging over the gaps for the whole instance set LGFi achieves a value
of 7.5%, TS a value of 6.1% and MP-LGFi a value of 1.8%. When calculating the
gap over the average number of bins used for the whole isntance set C-EPBFD
generates a value of 2.3% and MP-LGFi a value of 1.2%. Therefore, MP-LGFi is
clearly a new state-of-the-art algorithm for the considered instance sets. In our
opinion, MP-LGFi can be seen as a prime example for the fact that sometimes a
simple heuristic can outperform more sophisticated techniques, such as—in this
case—a tabu search metaheuristic or an extreme point-based heuristic.

Further MP-LGFi managed to find a new best upper bound for three of the
500 instances, reducing the number of instances where the upper bound does not
match the lower bound from 68 to 65. The Upper bound was lowered for instance
398 (Class 8, Instance 8, 100 Items) from 29 to 28, 197 (Class 4, Instance 7, 100
Items) from 4 to 3 and 187 (Class 4, Instance 7, Items 80) from 4 to 3.

6 Conclusions

In this paper we have dealt with the two-dimensional bin packing problem with
oriented items and free guillotine cutting (2BP|O|F). A first contribution of this
work has been the presentation of a new ILP model for this problem. Moreover,
we developed a simple multi-start algorithm based on a probabilistic version of
an existing heuristic from the literature. With an average percentage deviation of

Solving the Two-Dimensional Bin Packing Problem 89

1.8% it shows that the proposed algorithm is currently a state-of-the-art method
for the 2BP|O|F, as it outperforms other algorithms by 1.1% − 5.7% and found
3 new upper bounds for the 500 instances tested.

In the future we envisage several possible improvements of the proposed al-
gorithm. Most notably we plan to add a learning component to the algorithm in
order to take profit from the search history.

References

1. Hopper, E., Turton, B.: A genetic algorithm for a 2d industrial packing problem.
Computers and Industrial Engineering 37(1-2), 375–378 (1999)

2. Sweeney, P.E., Paternoster, E.R.: Cutting and packing problems: A categorized,
application-orientated research bibliography. The Journal of the Operational Re-
search Society 43(7), 691–706 (1992)

3. Lodi, A., Martello, S., Vigo, D.: Heuristic and metaheuristic approaches for a class
of two-dimensional bin packing problems. INFORMS Journal on Computing 11(4),
345–357 (1999)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

5. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin packing
problems. Discrete Applied Mathematics 123(1-3), 379–396 (2002)

6. Lodi, A., Martello, S., Vigo, D.: Two-dimensional packing problems: A survey.
European Journal of Operational Research 141(2), 241–252 (2002)

7. Lodi, A.: Algorithms for Two-Dimensional Bin Packing and Assignment Problems.
PhD thesis, Università degli Studio di Bologna (1996-1999)

8. Dowsland, K.A., Dowsland, W.B.: Packing problems. European Journal of Opera-
tional Research 56(1), 2–14 (1992)

9. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Comput-
ing 9(4), 808–826 (1980)

10. Frenk, J.B.G., Galambos, G.: Hybrid next-fit algorithm for the two-dimensional
rectangle bin-packing problem. Computing 39(3), 201–217 (1987)

11. Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins.
SIAM Journal on Algebraic and Discrete Methods 3(1), 66–76 (1982)

12. Berkey, J.O., Wang, P.Y.: Two dimensional finite bin packing algorithms. Journal
of the Operational Research Society 38(5), 423–429 (1987)

13. Baker, B.S., Coffman Jr., E.G., Rivest, R.L.: Orthogonal packings in two dimen-
sions. SIAM Journal on Computing 9(4), 846–855 (1980)

14. Wong, L., Lee, L.S.: Heuristic placement routines for two-dimensional bin packing
problem. Journal of Mathematics and Statistics 5(4), 334–341 (2009)

15. Lodi, A., Martello, S., Vigo, D.: Approximation algorithms for the oriented
two-dimensional bin packing problem. European Journal of Operational Re-
search 112(1), 158–166 (1999)

16. Crainic, T.G., Perboli, G., Tadei, R.: Extreme point-based heuristics for three-
dimensional bin packing. Informs Journal on Computing 20(3), 368–384 (2008)

17. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint program-
ming for solving the two-dimensional bin-packing problem. INFORMS Journal on
Computing 19(1), 36–51 (2007)

90 L. Baumgartner, V. Schmid, and C. Blum

18. Puchinger, J., Raidl, G.: Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research 183(3), 1304–1327 (2007)

19. Lee, L.S.: A genetic algorithm for two-dimensional bin packing problem. MathDi-
gest 2(1), 34–39 (2008)

20. Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing
problem. Management Science 44(3), 388–399 (1998)

Genetic Diversity and Effective Crossover in

Evolutionary Many-objective Optimization

Hiroyuki Sato1, Hernán E. Aguirre2,3, and Kiyoshi Tanaka3

1 Faculty of Informatics and Engineering, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 Japan

2 International Young Researcher Empowerment Center, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 Japan

3 Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 Japan

Abstract. In this work, we analyze genetic diversity of Pareto optimal
solutions (POS) and study effective crossover operators in evolutionary
many-objective optimization. First we examine the diversity of genes in
the true POS on many-objective 0/1 knapsack problems with up to 20
items (bits), showing that genes in POS become noticeably diverse as we
increase the number of objectives. We also verify the effectiveness of con-
ventional two-point crossover, Local Recombination that selects mating
parents based on proximity in objective space, and two-point and uniform
crossover operators Controlling the maximum number of Crossed Genes
(CCG). We use NSGA-II, SPEA2, IBEAε+ and MSOPS, which adopt
different selection methods, and many-objective 0/1 knapsack problems
with n = {100, 250, 500, 750, 1000} items (bits) and m = {2, 4, 6, 8, 10}
objectives to verify the search performance of each crossover operator.
Simulation results reveal that Local Recombination and CCG opera-
tors significantly improve search performance especially for NSGA-II and
MSOPS, which have high diversity of genes in the population. Also, re-
sults show that CCG operators achieve higher search performance than
Local Recombination for m ≥ 4 objectives and that their effectiveness
becomes larger as the number of objectives m increases.

1 Introduction

The research interest of the multi-objective evolutionary algorithm (MOEA) [1]
community has rapidly shifted to develop effective algorithms for many-objective
optimization problems (MaOPs) because more objective functions should be
considered and optimized in recent complex applications. However, in general,
MOEAs noticeably deteriorate their search performance as we increase the num-
ber of objectives to more than 4 [2,3], especially Pareto dominance-based MOEAs
such as NSGA-II [4] and SPEA2 [5]. This is because these MOEAs meet diffi-
culty to rank solutions in the population, i.e., most of the solutions become
non-dominated and the same rank is assigned to them, which seriously spoils
proper selection pressure required in the evolution process. To overcome this

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 91–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

92 H. Sato, H.E. Aguirre, and K. Tanaka

problem, several studies have been made on methods to determine the superior-
ity of non-dominated solutions in a more effective manner in order to strengthen
parent selection pressure [6,7].

Contrary to these studies, in this work we focus on genetic diversity in Pareto
optimal solutions (POS) in MaOPs. It is well known that in MaOPs the number
of non-dominated solutions increases considerably with the number of objectives.
However, not much is known about the distribution of those solutions in decision
space, how selection shapes that distribution, and how both the distribution
in variable space and selection in objective space influence the effectiveness of
genetic operators of MOEAs in MaOPs. This work is an important step towards
understating these important issues in many-objective optimization.

In this work, first we analyze genetic diversity in the true POS obtained by ex-
haustive search on many-objective 0/1 knapsack problem with n = {10, 15, 20}
bits (items), showing that genes in POS become noticeably diverse in the same
way as the ratio of POS in feasible solution space increases with the number
of objectives. In MOEAs, if genes of solutions in the population become no-
ticeably diverse, conventional recombination might become too disruptive and
decrease its effectiveness. In this work, we verify the effectiveness of conventional
two-point crossover, Local Recombination that selects mating parents based on
proximity in objective space, and two-point and uniform crossover operators
Controlling the maximum number of Crossed Genes (CCG). To verify the search
performance of each crossover operator, we use NSGA-II [4], SPEA2 [5], IBEAε+

[9] and MSOPS [2], well known MOEAs that adopt different selection methods,
and many-objective 0/1 knapsack problems with n = {100, 250, 500, 750, 1000}
items (bits) and m = {2, 4, 6, 8, 10} objectives.

2 Analysis of Pareto Optimal Solutions in Many-objective
0/1 Knapsack Problem

First, we analyze many-objective 0/1 knapsack problems [10] by observing the
number of Pareto optimal solutions |POS| and their genetic diversity in discrete
solution space. Here, we generate problems with n = {10, 15, 20} items (bits)
and m = 2 ∼ 20 objectives, setting the feasibility ratio φ = 0.5. We generate
90 problems for each combination of parameters m and n, find all true POS by
exhaustive search in solution space S, and analyze average results.

Fig.1 shows the ratio |POS|/|F| of true POS in feasible solution space F
(⊆ S). From these results, we can see that the ratio of POS in F increases
significantly with the number of objectives m. Also, the ratio of POS in F
decreases as the solution space expands with n (2n). Next, to observe the genetic
diversity of POS, Fig.2 shows the average hamming distance of POS. Here, we
also plot the average hamming distance of all solutions in the solution space S
as a horizontal line. From these results, note that the average hamming distance
of POS noticeably increases with the number of objectives m. In case of a small
number of objectives m, the ratio of POS in F is relatively low and the average
hamming distance of POS is short compared to the average hamming distance of

Genetic Diversity and Effective Crossover 93

m (Number of objectives)

|
P
O
S
|

/

|
F

|

n =10 bit (items)
n =15 bit (items)
n =20 bit (items)

2 4 6 8 10 12 14 16 18 20
10-5

10-4

10-3

10-2

10-1

100

Fig. 1. Ratio of true Pareto optimal solu-
tions POS in feasible solution space F

m (Number of objectives)

A
v
e
ra
g
e
 H
a
m
m
in
g
 D
is
ta
n
c
e

POS (n =10 bit)
POS (n =15 bit)
POS (n =20 bit)

S (n =10 bit)

S (n =15 bit)

S (n =20 bit)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

Fig. 2. Average hamming distance of true
POS

all solutions S, suggesting that POS are distributed in a relatively narrow region
in the solution space S. On the other hand, the ratio of POS in F increases with
the number of objectives m and the average hamming distance also increases,
approaching the average hamming distance of all solution in S. For example,
on n = 20 bits and m = 20 objectives, around 6% of feasible solutions become
POS and the average hamming distance of POS is 9.36 bits, which is very close
to the 10 bits average hamming distance of all solutions in S. This tendency is
also observed in problems with n = {10, 15} bits, where the average hamming
distances of POS {4.45, 7.06} are close to the average hamming distance of S
{5.0, 7.5}, respectively. These results suggest that POS come to be distributed
nearly uniformly in solution space by increasing m. That is, we can expect that
genes become noticeably diverse in the population during evolutionary many-
objective optimization. Also, the exploitation effectiveness of the conventional
recombination might decrease if difference of genes between two parents becomes
too large.

3 Mating Based on Proximity in Objective Space

3.1 Related Works

To realize effective recombination of solutions in MOEAs, several studies that
apply crossover for two parents located near each other in the objective function
space have been made. NCGA (Neighborhood Cultivation GA) introduce neigh-
borhood crossover in the objective function space [11]. In NCGA, after sorting
solutions in the population according to one objective function value, two neigh-
boring solutions become a pair for crossover. The improvement of convergence
and diversity of obtained POS by NCGA on continuous and combinatorial 0/1
knapsack problems with two objectives functions has been reported in [11]. In
another study, Local Recombination [8] selects pairs of parents by considering

94 H. Sato, H.E. Aguirre, and K. Tanaka

crossover

tournament

1

1

2

1

count

count

tournament

f2

f1

5

Fig. 3. Neighborhood creation and mating for Local Recombination [8]

nearness of the search direction of solutions, using a locality parameter nLR.
When we use a small nLR, parents are selected with high locality in the ob-
jective space. Increasing nLR, the neighborhood expands and in the extreme
it comes to be the entire parent population. That is, in the extreme we have
conventional recombination, because mates are selected without restriction from
the entire parent population. The effectiveness of Local Recombination has been
verified on m = 2 ∼ 4 objective problems [8]D In [12], a mating scheme was
proposed to select one pair of solutions for crossover by first selecting various
candidates performing multiple binary tournaments, and then picking two of
them based on their distance in the objective space. This method controls the
balance between convergence and diversity of obtained solutions by the mat-
ing scheme. Additionally, MOEA/D [13] utilizes multiple scalarization functions
to find POS, selecting pair of solutions for recombination from solutions that
maximize neighbor scalarization functions.

In terms of avoiding the inefficient recombination of solutions having very
different objective function values, it is thought that these methods bring sim-
ilar effects for the search performance of MOEAs. In problems where there is
some correlation between objective and variable space, it is expected that these
methods can effectively apply crossover to solutions that have relatively similar
gene structure even in MaOP. In this paper we focus on Local Recombination
[8] which controls locality for recombination with parameter nLR and verify its
effectiveness on MaOPs.

3.2 Local Recombination

To create nLR neighborhoods which have similar search direction, original Local
Recombination utilizes angle information in polar coordinate vector transformed
from objective function values [8]. In this work, we use search direction d(x) =
(d1(x), d2(x), · · · , dm(x)) calculated by the fraction of each objective function
value, namely

Genetic Diversity and Effective Crossover 95

di(x) = fi(x)/
m∑

j=1

fj(x) (i = 1, 2, · · · , m). (1)

Then, we calculate the Euclidean distance between d(x) and the search direction
of other solutions, and create a sub-population SLR of nLR neighboring solutions,
as shown in Fig.3. Note that nLR is the locality parameter for recombination.
Similar to [8], mating is performed within the neighborhood SLR and then recom-
bination followed by mutation are carried out. We enforce equal participation in
the tournaments. To accomplish that we keep for each individual in the parent
population Pt a counter showing the number of times it has participated in a
tournament and select the individuals that will undergo a binary tournament
randomly from among those with smallest value in its counter. Note that the in-
dividual’s counters are not re-initialized until all offspring Qt have been created.
Varying the number of elements in the neighborhood nLR ≤ |Qt| we can control
the degree of locality for recombination. In the extreme, nLR = |Qt|, we have
conventional recombination. Note that we refer to conventional recombination as
global recombination, because the neighborhood for mating considers the entire
parent population.

4 Controlling Crossed Genes for Crossover

4.1 Problem of Local Recombination in MaOPs

Since Local Recombination selects mates having similar search direction, the
probability that some selected pairs of solutions have similar genes structure
increases. However, as mentioned in section 2, the diversity of genes in solutions
noticeably increase in MaOPs. In this case, even if we select neighborhood solu-
tions in objective space for recombination, it is expected that they have a large
difference in genes and recombination might be inefficient. To solve this problem,
in this work we consider methods to restrict the length of crossed genes when
we apply crossover in MaOPs.

4.2 CCG for Two-Point Crossover (CCGTX)

When we apply the conventional one- or two-point crossover for individuals with
n genes, the length of crossed genes vary in the range [0, n] by randomly chosen
the crossover point(s). To restrict the variation of genes in crossover for parents
having large difference in gene structure, in this work we propose controlling
crossed genes (CCG) for crossover. In this section we explain CCG for two-point
crossover (CCGTX). CCGTX controls the length of crossed genes by using a user-
defined parameter αt. Fig.4 shows the conceptual diagram of CCGTX. First we
randomly select parents A and B from the parent population Pt, and randomly
choose the 1st crossover point p1. Then, we randomly determine the length of
the crossed genes l in the range [0, αt · n]. In case of p1 + l ≤ n, the second
crossover point is set to p2 = p1 + l. In case of p1 + l > n, the second crossover

96 H. Sato, H.E. Aguirre, and K. Tanaka

A

B

n bits

A’

B’

n
t
⋅α

p1 p2 p1 p2

Parents Offsprings

bits

l

Fig. 4. Controlling crossed genes for two-point crossover (CCGTX)

A

B

n bits

A’

B’

0 1 0 0 0 1 0 0Mask

Parents Offsprings

t
αset 1 with probability

Fig. 5. Controlling crossed genes for uniform crossover (CCGUX)

point is set to p2 = p1 + l − n. Here, the possible range of the parameter αt is
[0.0, 1.0]. In this method, when we utilize a small αt, the maximum length of
crossed segment becomes short. On the other hand, when we utilize a large αt,
the maximum length of crossed segment becomes long. In the case of αt = 0.0,
since the length of the crossed segment becomes αt · n = 0, the solutions search
is equivalent to only mutation without crossover. Also, in the case of αt = 1.0,
the maximum length of the crossed segment become αt · n = n. This case is
equivalent to the conventional two-point crossover. In this work we verify the
effects of CCGTX in MOEA as we vary αt in the range αt ∈ [0.0, 1.0].

4.3 CCG for Uniform Crossover (CCGUX)

Next, we explain a method for CCG in uniform crossover (CCGUX). As shown
in Fig.5, for uniform crossover we randomly select two parents from the parent
population and generate a n bit mask [14,15]. For offspring A′, if mask bit is 0,
the gene is copied from parent A. If mask bit is 1, the gene is copied from parent
B. Similarly, for offspring B′, if mask bit is 0, the gene is copied from parent
B. If mask bit is 1, the gene is copied from parent A. To control the number of
crossed genes, in this work we control the probability of 1 in the mask by using
the parameter αu. The possible range of αu is [0, 1], and αu = 0.5 indicates
typical uniform crossover [14]. In this method, when we utilize a small αu, the
number of crossed genes becomes small. On the other hand, when we utilize a
large αu, the number of crossed genes becomes large. αu = 0.0 is equivalent
to only mutation without crossover. Also, αu = 1.0 is equivalent to αu = 0.0
because all gene are exchanged in this crossover. In this work we verify the effects
of CCGUX in MOEA as we vary αu in the range αu ∈ [0.0, 0.5]

Genetic Diversity and Effective Crossover 97

5 Preparation

5.1 Algorithms and Selection Methods
To verify the effectiveness of Local Recombination [8], CCGTX and CCGUX,
in this work we implement them in NSGA-II [4], SPEA2 [5], IBEAε+ [9] and
MSOPS [2], which use different selection methods. NSGA-II and SPEA2 are
dominance based MOEAs that use Pareto dominance to determine the supe-
riority of solutions in parent selection. IBEAε+ (Indicator-based Evolutionary
Algorithm) introduces fine grained ranking of solutions by calculating fitness
value based on the indicator Iε+ which measure the degree of superiority for
each solution in the population [9]. MSOPS (Multiple single objective Pareto
sampling) aggregates fitness vector with multiple weight vectors, and reflects
the ranking of solutions calculated for each weight vector in parent selection [2].

According to a previous performance comparison [16], in NSGA-II the con-
vergence of obtained POS gradually deteriorates increasing the number of ob-
jectives m, but the diversity of POS significantly increases. On the other hand,
POS obtained by IBEAε+ achieves extremely high convergence but scarce diver-
sity. In contrast, MSOPS realizes a well-balanced search between convergence
and diversity in MaOPs.

5.2 Problems, Parameters and Metrics
In this paper we use many-objective 0/1 knapsack problems [10] as bench-
mark problem. We generate problems with m = {2, 4, 6, 8, 10} objectives, n =
{100, 250, 500, 750, 1000} items, and feasibility ratio φ = 0.5. For all algorithms
to be compared, we adopt crossover with a crossover rate Pc = 1.0, and apply bit-
flipping mutation with a mutation rate Pm = 1/n. In the following experiments,
we show the average performance with 30 runs, each of which spent T = 2, 000
generations. Population size is set to N = 200 (|Pt| = |Qt| = 100). In IBEAε+,
scaling parameter κ is set to 0.05 similar to [9]. Also, in MSOPS, we use W = 100
uniformly distributed weight vectors [7], which maximizes Hypervolume (HV)
[17] in the experiments.

In this work, to evaluate the search performance of MOEAs we use HV ,
which measures the m-dimensional volume of the region enclosed by the obtained
non-dominated solutions and a dominated reference point in objective space.
Here we use r = (0, 0, · · · , 0) as the reference point. Obtained POS showing
a higher value of hypervolume can be considered as a better set of solutions
from both convergence and diversity viewpoints. To calculate the hypervolume,
we use the improved dimension-sweep algorithm proposed by Fonseca et al. [18],
which significantly reduces computational time especially for large m. To provide
additional information separately on convergence and diversity of the obtained
POS, in this work we also use Norm [19] and Maximum Spread (MS) [17],
respectively. Higher value of Norm generally means higher convergence to true
POS. Although Norm cannot precisely reflect local features of the distribution
of the obtained POS, we can observe the general convergence tendency of POS
from their values. On the other hand, higher MS indicates better diversity in
POS, i.e. a widely spread Pareto front.

98 H. Sato, H.E. Aguirre, and K. Tanaka

m (Number of objectives)

A
v
e
ra
g
e
 H
a
m
m
in
g
 D
is
ta
n
c
e

n= 100

n= 250

n= 500

n= 750

n=1000

2 4 6 8 10

0

50

100

150

200

250

(a) NSGA-II

m (Number of objectives)

A
v
e
ra
g
e
 H
a
m
m
in
g
 D
is
ta
n
c
e

n= 100

n= 250

n= 500

n= 750

n=1000

2 4 6 8 10

0

50

100

150

200

250

(b) SPEA2

m (Number of objectives)

A
v
e
ra
g
e
 H
a
m
m
in
g
 D
is
ta
n
c
e

n= 100

n= 250

n= 500

n= 750

n=1000

2 4 6 8 10

0

50

100

150

200

250

(c) IBEAε+

m (Number of objectives)

A
v
e
ra
g
e
 H
a
m
m
in
g
 D
is
ta
n
c
e

n= 100

n= 250

n= 500

n= 750

n=1000

2 4 6 8 10

0

50

100

150

200

250

(d) MSOPS

Fig. 6. Average hamming distance of solutions in the population at the final generation

6 Experimental Results and Discussion

6.1 Diversity of Genes in the Population Obtained by Conventional
Crossover

First, we observe the diversity of genes in the population at the final generation
when conventional two-point crossover is used. Fig.6 shows the average hamming
distance of solutions in the population obtained by NSGA-II, SPEA2, IBEAε+

and MSOPS on many-objective 0/1 knapsack problems with m = {2, 4, 6, 8, 10}
objectives and n = {100, 250, 500, 750, 1000} items (bits).

For NSGA-II, SPEA2 and IBEAε+, we can see that the average hamming dis-
tance increases as we increase the number of objectives m. This tendency is similar
to the aforementioned results obtained by exhaustive search on n = {10, 15, 20}
bits problems, as shown in Fig.2. On the other hand, although MSOPS shows
higher average hamming distance than other MOEAs in m = {2, 4} objectives,
the average hamming distance tendency is to become short in m ≥ 6. Also, we
can see that the average hamming distance obtained by IBEAε+ is the shortest
in all MOEA compared in Fig.6. That is, the population obtained by IBEAε+ is
distributed in narrow region of solution space. On the other hand, the population

Genetic Diversity and Effective Crossover 99

obtained by NSGA-II shows the highest average hamming distance. That is, the
population obtained by NSGA-II is widely distributed in solution space. In the
case of m = 10 objectives and n = 1, 000 bits, note that the average hamming
distance obtained by NSGA-II becomes around 250 bits at the final generation.
In this case, if we randomly select two solutions from the population as parents,
they will be different in 250 bits out of 1,000 bits. Thus, since diversity of genes
in the population obtained by NSGA-II is significantly high in MaOPs, the like-
lihood that the conventional recombination becomes too disruptive is also high,
making it an inefficient genetic operator for solutions search.

6.2 Effects of Local Recombination in MaOPs

Next, we observe the effects of Local Recombination [8] in NSGA-II, SPEA2,
IBEAε+ and MSOPS on problems with n = 1, 000 items (bits) and m = {2, 4, 6, 8,
10} objectives. Figs.7∼10 show results on HV as a combined metric of conver-
gence and diversity, Norm as a measure of convergence, and MS as a measure of
diversity, varying the locality of recombination nLR. In the case of nLR = 4, tour-
nament selection for recombination is performed in highest locality. Increasing
nLR the locality of recombination decrease, and the conventional recombina-
tion is applied when we utilize nLR = 100. After we select a pair of parents,
the conventional two-point crossover is applied. In these figures, all the plots are
normalized by the results of NSGA-II using the conventional two-point crossover.

First, from results of HV in Figs.7∼10 (a), we can see that IBEAε+ and
MSOPS with conventional recombination (nLR = 100) achieve higher HV than
dominance based NSGA-II and SPEA2 with conventional recombination as we
increase the number of objectives m. When we decrease nLR and enhance the
locality of selected pair of parents in objective space, we see improvements on
HV by NSGA-II and MSOPS, but not by SPEA2 and IBEAε+. Improvement
of HV by NSGA-II becomes significant as we increase the number of objectives
m. In the case of m = 8 objectives, although HV obtained by NSGA-II with
conventional recombination (nLR = 100) is lower than IBEAε+ and MSOPS,
NSGA-II using Local Recombination with nLR = 10 achieves higher HV than
MSOPS and comparative with IBEAε+.

Next, from results of Norm in Figs.7∼10 (b), SPEA2, IBEAε+ and MSOPS
achieve higher Norm than NSGA-II especially for large number of objectives
m. We can see that small improvement in Norm is obtained by NSGA-II as
we decrease nLR, but SPEA2, IBEAε+ and MSOPS do not improve Norm by
varying nLR.

Next, from results of MS in Figs.7∼10 (c), all MOEA improve MS by de-
creasing nLR. MS obtained by SPEA2 and IBEAε+ are relatively lower than
NSGA-II and MSOPS. Consequently, average hamming distance of the popula-
tion by SPEA2 and IBEAε+ becomes short in Fig.6, and these populations are
distributed in a relatively narrow region in objective/solution space.

Summarizing, it is difficult to obtain effectiveness of Local Recombination in
SPEA2 and IBEAε+ which evolve less diverse populations. On the other hand,
although NSGA-II obtain well-spread solutions, convergence towards Pareto

100 H. Sato, H.E. Aguirre, and K. Tanaka

n
LR

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 20 40 60 80 100

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

n
LR

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

n
LR

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 7. Performance obtained by NSGA-II [4] with Local Recombination (n = 1, 000)

n
LR

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 20 40 60 80 100

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

n
LR

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

n
LR

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 8. Performance obtained by SPEA2 [5] with Local Recombination (n = 1, 000)

n
LR

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 20 40 60 80 100

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

n
LR

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

n
LR

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 9. Performance obtained by IBEAε+ [9] with Local Recombination (n = 1, 000)

n
LR

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 20 40 60 80 100

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

n
LR

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

n
LR

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 10. Performance obtained by MSOPS [2] with Local Recombination (n = 1, 000)

Genetic Diversity and Effective Crossover 101

optimal front is not enough. In contrast, MSOPS achieves well-balanced search
between convergence and diversity of obtained solutions. Since NSGA-II and
MSOPS achieve relatively high diversity of solutions in objective/solution space,
average hamming distance becomes large in Fig.6. Thus, the effectiveness of Lo-
cal Recombination becomes clear in NSGA-II and MSOPS which evolve well-
spread populations. Also, the effectiveness becomes significant increasing the
number of objectives m.

6.3 Effects of CCGTX in MaOPs

Next, we observe the effects of CCGTX in NSGA-II, SPEA2, IBEAε+ and MSOPS.
Figs.11∼14 shows results on HV , Norm and MS varying the parameter αt. Sim-
ilar to the previous section, all plots are normalized by the results of NSGA-II
using conventional two-point crossover.

First, from results of HV in Figs.11∼14 (a), we can see that there is no
improvement when we use CCGTX varying αt in SPEA2 and IBEAε+, which
evolve less diverse solutions in the population. On the other hand, NSGA-II
and MSOPS having well-spread population significantly improve HV when we
set small αt. Compared with HV achieved by Local Recombination shown in
Figs.7∼10 (a), the maximum HV obtained by NSGA-II with CCGTX is higher
than the maximum HV obtained by NSGA-II with Local Recombination. The
same is true for MSOPS with CCGTX compared to MSOPS with Local Recom-
bination. Next, from results of Norm in Figs.11∼14 (b), it can be seen that
NSGA-II, SPEA2 and MSOPS improve the convergence of obtained POS by us-
ing smaller αt. Also, from results of MS in Figs.11∼14 (c), as general tendency,
we can see that MS improves by decreasing αt. It is interesting to note that, al-
though MSOPS achieves the highest HV in m = 6 objectives, NSGA-II achieves
highest HV in m = {8, 10} objectives problems. This is because deterioration of
MS in MSOPS becomes significant for large number of objectives. From these re-
sults, we conclude that the effectiveness of CCGTX becomes significant especially
for NSGA-II and MSOPS because these MOEAs evolve well-spread solutions in
the population. Also, HV obtained by CCGTX is higher than HV obtained by
Local Recombination especially for large number of objectives. This is because
crossover under Local Recombination still could be too disruptive, especially for
large m, whereas CCGTX can control better the number of genes being crossed.

6.4 Effects of CCGUX in MaOPs

Next, we observe the effects of CCGUX in NSGA-II, SPEA2, IBEAε+ and MSOPS.
Figs.15∼18 shows results on HV , Norm, and MS varying the parameter αu. Sim-
ilar to previous sections, all plots are normalized by the results of NSGA-II using
conventional two-point crossover.

Results obtained by CCGUX have similar tendency to results obtained by
CCGTX shown in Figs.11∼14. However, values of Norm obtained by CCGUX

become higher than CCGTX. Consequently, CCGUX achieves higher HV than
CCGTX due to the improvement of convergence. Overall, values of MS obtained
by CCGUX are similar to MS obtained by CCGTX.

102 H. Sato, H.E. Aguirre, and K. Tanaka

 α
t

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
t

N
o
r
m

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
t

M
S

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 11. Performance obtained by NSGA-II [4] with CCGTX (n = 1, 000)

 α
t

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
t

N
o
rm

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.2 0.4 0.6 0.8 1
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
t

M
S

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 12. Performance obtained by SPEA2 [5] with CCGTX (n = 1, 000)

 α
t

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
t

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.2 0.4 0.6 0.8 1
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
t

M
S

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 13. Performance obtained by IBEAε+ [9] with CCGTX (n = 1, 000)

 α
t

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
t

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.2 0.4 0.6 0.8 1
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
t

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 14. Performance obtained by MSOPS [2] with CCGTX (n = 1, 000)

Genetic Diversity and Effective Crossover 103

 α
u

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
u

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
u

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 15. Performance obtained by NSGA-II [4] with CCGUX (n = 1, 000)

 α
u

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
u

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
u

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 16. Performance obtained by SPEA2 [5] with CCGUX (n = 1, 000)

 α
u

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
u

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
u

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 17. Performance obtained by IBEAε+ [9] with CCGUX (n = 1, 000)

 α
u

H
yp
er
vo
lu
m
e

m = 2

m = 4

m = 6

m = 8

m = 10

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(a) HV

 α
u

N
o
r
m

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

1.06

1.08

(b) Norm

 α
u

M
S

m = 2 m = 8

m = 4 m = 10

m = 6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

(c) MS

Fig. 18. Performance obtained by MSOPS [2] with CCGUX (n = 1, 000)

104 H. Sato, H.E. Aguirre, and K. Tanaka

These results reveal that Local Recombination, CCGTX, and CCGUX improve
the search performance significantly. Also, the effectiveness is emphasized when
we apply these crossover operators to NSGA-II and MSOPS, which evolve well-
spread solutions in objective/solution space. Furthermore, the effectiveness of
CCG operators is higher than Local Recombination especially for large number of
objectives. Additionally, CCGUX achieves higher HV than CCGTX by enhancing
the convergence of obtained POS toward Pareto optimal front. This is because
CCGUX can control more precisely the number of genes being crossed than
CCGTX.

7 Conclusions

In this work, we have analyzed genetic diversity of Pareto optimal solutions in
many-objective optimization problems and studied the effectiveness of crossover
for many-objective optimization. First, we analyzed the true Pareto optimal so-
lutions obtained by exhaustive search on many-objective 0/1 knapsack problem
with n = {10, 15, 20} bits, verifying that the ratio of Pareto optimal solutions
in feasible solution space increases with the number of objectives. Also, we ob-
served that genes of Pareto optimal solutions become noticeably diverse, and
Pareto optimal solutions come to be distributed nearly uniformly in solution
space by increasing the number of objectives m. Then, we used NSGA-II, SPEA2,
IBEAε+, and MSPOS, well known multi-objective evolutionary algorithms that
adopt different selection methods, to analyze the search performance of conven-
tional recombination, Local Recombination that selects mating parents based
on proximity in objective space, and crossover operators Controlling the max-
imum number of Crossed Genes (CCG). Simulation results on many-objective
0/1 knapsack problems with m = {2, 4, 6, 8, 10} objectives reveal that Local
Recombination and CCG operators significantly improve search performance,
especially for NSGA-II which have high diversity of genes in the population.
CCG operators achieve higher search performance than Local Recombination
for m ≥ 4 objectives problems. Also, the effectiveness becomes more significant
as the number of objectives m increase.

As future works, we should further analyze Pareto optimal solutions on vari-
ous many-optimization problems to understand better the relationship between
variable and objective space and how to reflect that in the genetic operators the
algorithm use. Also, we want to study the effect of the proposed CCG operations
in other MOEAs.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Chichester (2001)

2. Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One
Many? In: Proc. IEEE Congress on Evolutionary Computation (CEC 2005), pp.
222–227 (September 2005)

Genetic Diversity and Effective Crossover 105

3. Aguirre, H., Tanaka, K.: Working Principles, Behavior, and Performance of MOEAs
on MNK-Landscapes. European Journal of Operational Research 181(3), 1670–
1690 (2007)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, KanGAL
report 200001 (2000)

5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. TIK-Report (103) (2001)

6. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: Proc. of 2008 IEEE Congress on Evolutionary Computa-
tion (CEC 2008), pp. 2424–2431 (2008)

7. Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based
Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer,
Heidelberg (2007)

8. Sato, H., Aguirre, H., Tanaka, K.: Local Dominance and Local Recombination in
MOEAs on 0/1 Multiobjective Knapsack Problems. European Jour. on Operational
Research 181(3), 1670–1690 (2007)

9. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

10. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

11. Watanabe, S., Hiroyasu, T., Miki, M.: Neighborhood Cultivation Genetic Algo-
rithm for Multi-Objective Optimization Problems. In: Proc. Genetic and Evolu-
tionary Computation Conference (GECCO 2002), pp. 458–465 (2002)

12. Ishibuchi, H., Shibata, Y.: Mating Scheme for Controlling the Diversity-
Convergence Balance for Multiobjective Optimization. In: Deb, K., et al. (eds.)
GECCO 2004. LNCS, vol. 3102, pp. 1259–1271. Springer, Heidelberg (2004)

13. Zhang, Q., Li, H.: MOEA/D: A Multi-objective Evolutionary Algorithm Based on
Decomposition. IEEE Trans. on Evolutionary Computation 11(6), 712–731 (2007)

14. Syswerda, G.: Uniform Crossover in Genetic Algorithms. In: Proc. of the Third
International Conference on Genetic Algorithms (ICGA 1989), pp. 2–9 (1989)

15. Spears, W., De Jong, K.A.: An analysis of multi-point crossover. In: Proc. Foun-
dations of Genetic Algorithms (1990)

16. Sato, H., Aguirre, H., Tanaka, K.: Pareto Partial Dominance MOEA and Hybrid
Archiving Strategy Included CDAS in Many-Objective Optimization. In: Proc.
IEEE Congress on Evolutionary Computation (CEC 2010), pp. 3720–3727 (2010)

17. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

18. Fonseca, C., Paquete, L., López-Ibáñez, M.: An Improved Dimension-sweep Algo-
rithm for the Hypervolume Indicator. In: Proc. 2006 IEEE Congress on Evolution-
ary Computation, pp. 1157–1163 (2006)

19. Sato, M., Aguirre, H., Tanaka, K.: Effects of δ-Similar Elimination and Controlled
Elitism in the NSGA-II Multiobjective Evolutionary Algorithm. In: Proc. IEEE
Congress on Evolutionary Computation (CEC 2006), pp. 3980–3398 (2006)

An Optimal Stopping Strategy for Online

Calibration in Local Search

Gianluca Bontempi

Machine Learning Group, Département d’Informatique
Faculté des Sciences, ULB, Université Libre de Bruxelles

1050 Bruxelles - Belgium
gbonte@ulb.ac.be

Abstract. This paper formalizes the problem of choosing online the
number of explorations in a local search algorithm as a last-success prob-
lem. In this family of stochastic problems the events of interest belong to
two categories (success or failure) and the objective consists in predicting
when the last success will take place. The application to a local search
setting is immediate if we identify the success with the detection of a
new local optimum. Being able to predict when the last optimum will be
found allows a computational gain by reducing the amount of iterations
carried out in the neighborhood of the current solution. The paper pro-
poses a new algorithm for online calibration of the number of iterations
during exploration and assesses it with a set of continuous optimisation
tasks.

1 Introduction

A stochastic local search algorithm [5] starts from some given solution and tries
to find a better solution by performing a number of function evaluations in
an appropriately defined neighborhood of the current solution. In case a better
solution is found, it replaces the current solution and the local search is continued
from there. The stopping criterion for the local exploration is often defined in
terms of a maximal number of local function evaluations. This number is a
central parameter in a local search algorithm and its setting is not an easy task,
since a too low value could prevent the algorithm from finding betters solutions
while a too big value would waste precious computational ressources. In an ideal
case we would like to stop exploring as soon as the best solution in the given
neighborhood is found.

The issue of when to stop in a stochastic setting appears in several applied
problems. These problems are formalized by a stochastic setting where the event
of interest may take value in one of the two categories: success (1) or failure (0).
The objective is to determine when the last success will take place. A well-known
instance is the classical secretary problem [4] where the employer wants to stop
making interviews as soon as the best candidate has been met.

The exploration in local search is an analogous problem since it is useless to
continue explore when the best value in the neighborhood of the current state

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 106–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Optimal Stopping Strategy for Online Calibration in Local Search 107

has already been attained. In this context the success event corresponds to the
discovery of a better neighbouring solution.

A brilliant and computationally efficient solution to the optimal stopping
problem has been proposed by the Odds algorithm of Bruss [3]. This algorithm
applies to sequences of n independent events Ik, k = 1, . . . , n and consists in a
compact formula to derive from the n probabilities of success pk = P (Ik = 1)
the moment at which the probability of the last success is maximal. In other
terms the Bruss algorithm returns an iteration value s such that if we stop at
the first success we meet after s steps, the probability that this success will be
the last is maximal.

In order to be applied, the Odds formulation requires the probability of suc-
cess of each event Ik where Ik = 1 stands for the fact that a new optimum
was found by performing k additional explorations. This quantity is not imme-
diately available in a generic optimization task by local search. Our approach
consists then in estimating this quantity from data (i.e. a set of N observed value
functions) by using a nonparametric approach to compute P (Ik = 1).

The use of observed function evaluations in order to improve the performance
of a local search algorithm is not new. Boyan and Moore [2] proposed a learning
approach to improve local search by estimating the best objective function value
that can be attained in a neighbourhood of a certain solution. In their approach
the goal is to associate to each intermediate solution exploration a measure of
quality: this measure can be used to replace the original objective function and
make the search smoother. Automated parameter tuning techniques (for a de-
tailed review see [6]) aim also to calibrate the parameters by learning offline the
dependency between the value of parameters and the algorithm performance for
a class of problems. Examples are the racing algorithm for configuring meta-
heuristics proposed by [7], the ILS algorithm proposed by [6] or the CALIBRA
system proposed by [1].

What is original in our approach with respect to the state-of-the-art is that,
by taking advantage of the optimal stopping theory and restricting to consider a
specific parameter (i.e. the duration of the exploration phase), we can define an
online calibration procedure which is not limited to a specific class of problems
nor requires the fitting of a model linking parameter value and performance.
The only element which is taken into consideration is the distribution of the
function values during an exploration phase which makes possible to define how
the probability of finding a better minimum evolves with time. Optimal stop-
ping algorithms can then be used to decide online when it is optimal to stop
exploration.

It is important however to remark that, like any online calibration activity, our
algorithm demands a computational overhead in order to calculate the optimal
number of local function evaluations. Overall, the calibration will be beneficial if
the calibration time is compensated by the gain deriving by the smaller number
of evaluations.

The rest of the paper is structured as follows. In the next section, we will
introduce the basics of optimal stopping and the formula proposed by Bruss.

108 G. Bontempi

Section 3 will discuss how the optimal stopping algorithm can be instantiated
to address a local search problem. A toy example to visualise the approach is
presented in Section 4. Experiments on a set of continuous optimisation tasks
to assess the added value of the approach in terms of exploration strategy are
presented in Section 5.

2 The Bruss Algorithm

Let us consider a sequence of n independent events and the related indica-
tor functions Ik such that Ik = 1 means that the kth event is a success.
Let us denote pk = Prob {Ik = 1}, qk = 1 − pk and rk = pk/qk. An opti-
mal stopping rule is a rule which returns a value K such that the probability
Prob{IK = 1, IK+1 = 0, . . . , In = 0} is maximised.

Bruss [3] demonstrates that the optimal rule for stopping consists in stopping
at the first index (if any) K such that IK = 1 and K ≥ s where

s = sup

⎧⎨⎩1, sup

⎧⎨⎩1 ≤ k ≤ n :
n∑

j=k

rj ≥ 1

⎫⎬⎭
⎫⎬⎭ (1)

In other terms the stopping algorithm lists in reversed order the terms rk and
computes Rk = rn + rn−1 + · · · + rk. The algorithms returns the value s as the
first value k when Rk equals or exceeds 1.

3 The Estimation of the Probability of Success in Local
Exploration

Let us consider a continuous optimization problem

x∗ = arg min f(x), x ∈ R
d

where the function f is available. Suppose we adopt a stochastic local search
strategy. Once initialized with the solution x(0), the SLS algorithm iterates these
two phases: (i) a random search (exploration phase) in the neighborhood N (x(i))
of x(i) up to a stopping criterion is met (typically a maximum number n of itera-
tions is reached) and (ii) an update of the solution (exploitation phase) to x(i+1)

where x(i+1) = arg minxk,k=1,...,n f(xk) is the best solution in the neighborhood.
Let xk be the random variable denoting the kth solution assessed in the

neighborhood of x(i). If we intend to apply the optimal stopping terminology
to the context of local search exploration, a success event corresponds to the
discovery at the step k of the exploration phase of a solution xk whose function
value is smaller than all the f(xj), j < k assessed so far.

The adoption of the Bruss algorithm to address the problem of stopping in lo-
cal search exploration requires then the availability of the values pk, k = 1, . . . , n
where

pk = Prob
{

f(xk) < min
1≤j<k

f(xj)
}

and xk,xj ∈ N (x(i)). (2)

An Optimal Stopping Strategy for Online Calibration in Local Search 109

An analytical computation of the terms pk is typically not feasible for complex
nonlinear functions f . For that reason we propose in this paper a data based
resampling approach to compute the values pk on the basis of a small number of
explorations. The rationale of our approach consists in collecting first a training
set of values DN = {f(xk)} with k = 1, . . . , N with N sufficiently large to allow
a reliable estimation of the distribution of f(xk). The parametric bootstrap
estimation of pk for k > N is obtained by generating first B samples distributed
according to the empirical distribution of f(xk) and then counting the frequency
of the event characterized by the kth value smaller than the minimum of the
previous ones. Once the estimates p̂k and r̂k are computed we proceed with
a plug-in estimation of the optimal number of exploration steps by using the
equation (1).

The resulting exploration algorithm implementing the optimal stopping crite-
rion when the current best solution is x(i) is resumed in Algorithm 1. Note that
the nonparametric estimation of the probability of success is performed in the
for loop at lines 8-15 and that the repeat loop in 20-23 has the role of waiting
for the first success event after the sth iteration.

Algorithm 1: SLS exploration with optimal stopping
1: Input: n: max number of explorations
2: for j = 1 to N do
3: Sample xj ∈ N (x(i)) and compute f(xj)
4: DN = DN ∪ f(xj)
5: end for
6: for k = 2 to n do
7: p̂k = 0
8: for b = 1 to B do
9: Generate an iid vector Vb of size k according to

the empirical distribution of DN

10: if Vb[k] < min(Vb[1 : k − 1]) then
11: p̂k = p̂k + 1
12: end if
13: end for
14: p̂k = p̂k

B
, r̂k = p̂k

1−p̂k

15: end for
16: Compute s by (1)
17: for j = N + 1 to s do
18: Sample xj ∈ N (x(i)) and compute f(xj)
19: end for
20: repeat
21: Sample xj ∈ N (x(i)) and compute f(xj)
22: j = j + 1
23: until (f(xj) < minh=1,...,j−1 f(xh)) OR (j ≥ n)

110 G. Bontempi

4 Illustration of the Approach

In order to ilustrate how the Odds algorithm works in a specific local search,
let us consider a toy example where two univariate (d = 1) functions f1 and
f2 have to be minimised in the neighbourhood of the current state x(i) = 0.5.
Suppose that the landscapes of the two functions in N (x(i)) are different. The
first landscape, illustrated in Figure 1a, is a plateau where most of the values of
the function f1 are close to the local minimum. The second one, illustrated in
Figure 1b, is a reverse plateau where the function f2 is essentially constant apart
from two peaks at boundaries which correspond to two local minima. Intuitively,
the first landscape is the least interesting to explore. A small number of repeti-
tions is sufficient to realise that the neighborhood is not worthy to be explored
further. The second landscape instead is more interesting from a minimisation
point of view and would deserve a larger number of exploration steps. Let us see
how this intuitive notion can be put in the language of optimal stopping. In order
to visualise the notions introduced in the previous section we will have recourse
to the illustration of the densities of fl(xk) and min1≤j<k fl(xj) (l = 1, 2) when
xk and xj are sampled uniformly in the neighborhood of x(i). Note that all the
densities are obtained by Monte Carlo simulation.

The density functions f1(xk) and f2(xk), for xk sampled uniformly in the
neighborhood of x(i), are illustrated in Figures 2a and 2b, respectively. The
density functions of the random variables min1≤j<k f1(xj) and min1≤j<k f2(xj)
for k = 5 and k = 10 are illustrated in Figures 3 and 4, respectively. It is
interesting to remark that in the case of the plateau landscape the distribution
of f1(x) and min(f1(x) tend to overlap while this is not the case for the reverse
plateau. In qualitative terms this means that in the plateau configuration it is
less probable that a new exploration (xk) returns an objective function value
(f1(xk)) which is lower than the ones found so far (minj<k(f1(xj)).

Quantitatively this can be shown by estimating by Monte Carlo the values of
pk (Equation 2) for k = 5 and k = 10. We obtain in the case of the plateau p5 =
Prob{f1(x5) < min1≤j<5 f1(xj)} ≈ 0.185 and p10 ≈ 0.081. In the case of reverse
plateau the probabilities are bigger: p5 = Prob {f2(x5) < min1≤j<5 f2(xj)} ≈
0.197 and p10 ≈ 0.1. This implies that the Odds algorithm will return an higher
value of s for the function f2 than for the function f1, then proposing a number
of local iterations larger in the case of the reverse plateau and consequently
confirming the initial intuition.

5 Experiments

The experimental session aims at assessing the optimisation performance of the
local search strategy for a fixed budget H of function evaluations in two al-
ternative configurations: in the first one a fixed number of iterations n of the
exploration phase is set a priori while in the second one the number of iterations
is adaptively determined by the optimal stopping algorithm described in the pre-
vious section. In order to assess the effectiveness of the proposed procedure we

An Optimal Stopping Strategy for Online Calibration in Local Search 111

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.5

2
.0

2
.5

3
.0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

y

a) b)

Fig. 1. Left: plateau landscape of function f1 in the neighborhood of the solution
x(i) = 0.5. Right: reverse plateau landscape of function f2 in the neighborhood of the
solution x(i) = 0.5.

consider a set of 10 multidimensional test functions commonly used in continuous
optimisation [8]. The set of functions, to be minimised, is detailed in Table 1.
For each of these functions we consider all the values d of the dimensionality
between 2 and 40.

We performed a set of local searches where the total number of function eval-
uations H = 500d is set as a function of the dimensionality, n takes values in
the set {50, 100, 200, 300, 500} and the exploration step consists in a random
sampling according to a Normal distribution centered in the best solution so
far and with a standard deviation σ. In order to consider different exploration
settings σ is taken equal to 3u√

d
where u is uniformly sampled in [0, 1]. Note also

that the number N of evaluations required before estimating the probability of
success in Algorithm 1 is set to 50. This implies that the number of iterations
proposed by the Odds algorithm is always greater or equal than 50. Since the
number returned by the Odds strategy is contained in the range of fixed values
n, this allows a fair evaluation of the Odds strategy with respect to local search
strategies relying on a fixed number of evaluations. For each value of d we per-
formed 25 paired repetitions such that the initial conditions and the sequence
of exploration steps performed by the different local searches are identical. The
only allowed difference is the amount of local functions evaluations allocated to
each exploration phases.

The results are organized in two tables: Table 2 shows the attained minima
of the test functions, averaged over multiple runs and over different values of d.
Table 3 presents the attained minima for the different values d of the dimen-
sionality and averaged over the test functions. The bold notation is used when
the minimum attained (on average) by the fixed strategy is significantly different
(paired permutation test, pv< 0.05) from the one attained by the Odds strategy.

112 G. Bontempi

0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6

Density f(x)

D
e

n
s
it
y

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

Density f(x)

D
e

n
s
it
y

Fig. 2. Density of f1(xk) (left) and f2(xk) (right) for xk sampled uniformly in the
neighborhood of x(i)

−1 0 1 2 3

0
1

2
3

4
5

P= 0.18502 k= 5

D
e

n
s
it
y

−1 0 1 2 3

0
1

2
3

4
5

P= 0.1969 k= 5

D
e

n
s
it
y

a) b)

Fig. 3. Density (black line) of min1≤j<k f1(xj) (left) and min1≤j<k f2(xj) (right) for
k = 5 and xj sampled uniformly in the neighborhood of x(i). For the sake of comparison
the density of fl(xk), l = 1, 2 is reported in dotted line.

An Optimal Stopping Strategy for Online Calibration in Local Search 113

−1 0 1 2 3

0
1

2
3

4
5

P= 0.08124 k= 10

D
e

n
s
it
y

−1 0 1 2 3

0
1

2
3

4
5

P= 0.09976 k= 10

D
e

n
s
it
y

Fig. 4. Density (black line) of min1≤j<k f1(xj) (left) and min1≤j<k f2(xj) (right) for
k = 10 and xj sampled uniformly in the neighborhood of x(i). For the sake of compar-
ison the density of fl(xk), l = 1, 2 is reported in dotted line.

Table 1. Benchmark nonlinear test functions

Name Function

Rosenbrock f(x) =
∑d−1

i=1

[
100(xi+1 − x2

i)2 + (1 − xi)
2]

Michalewicz f(x) = −∑d
i=1 sin(xi)

[
sin

(
ix2

i
π

)]20
Langermann f(x) =

∑ 5
i=1 ci exp

[
− 1

π

∑d
j=1(xj − aij)

2
]
cos
[
π
∑d

j=1(xj − aij)
2
]

De Jong f(x) =
∑d

i=1 x2
i

axis-parallel f(x) =
∑d

i=1(ix
2
i)

rotated hyper-ell f(x) =
∑d

i=1
∑ i

j=1 x2
j

Rastrigin f(x) = 10d +
∑d

i=1

[
x2

i − 10 cos(2πxi)
]

Schwefel f(x) =
∑d

i=1

[
−xi sin

(√ |xi|
)]

Griewangk f(x) = 1
4000

∑d
i=1 x2

i −∏d
i=1 cos

(
xi√

i

)
+ 1

Ackley f(x) = −20 exp

(
−0.2

√
1
d

∑
d
i=1 x2

i

)
− exp

(
1
d

∑d
i=1 cos(2πxi)

)
+ 20 + exp(1)

The lines W-L contains the number of times that the Odds strategy is signif-
icantly better (wins) or worse (loss) than the strategy with a fixed number of
exploration iterations.

The experimental results show that:

– if we consider exploration phases with a fixed number of iterations, we ob-
serve that i) the optimal strategy depends on the considered data set and,
2) on average the best strategy is the one with n = 500.

– the Odds strategy is competitive with the n = 500 strategy,
– the Odds strategy is significantly better than the other exploration strategies,

when the results are stratified both per function and per dimensionality.

Since the Odds strategy is competitive with the best fixed approach, this means
that the Odds strategy is able to adapt in an efficient manner the number of

114 G. Bontempi

Table 2. Attained minima averaged over different values of d and different runs. The
last line accounts for the number of times that the Odds strategy is better-worse than
the local search with a fixed number n of iterations per exploration.

Name ODD n = 500 n = 300 n = 200 n = 100 n = 50

Rosenbrock 256.73 258.91 264.3 269.53 285.06 316.1
Michalewicz -8.3 -8.32 -8.31 -8.26 -8.15 -7.95
Langermann -1.32 -1.15 -1.21 -1.27 -1.32 -1.29
De Jong 1.55 1.56 1.58 1.63 1.68 1.8
axis-parallel 21.46 20.95 21.54 22.34 23.49 25.3
rotated hyper-ell 21.09 20.99 21.06 21.7 22.95 24.79
Rastrigin 90.76 89.16 91.01 92.66 94.86 99.44
Schwefel 9152.33 9180.05 9174.5 9167.23 9157.84 9146.79
Griewangk 4.15e-4 4.18e-4 4.19e-4 4.31e-4 4.46e-4 4.78e-4
Ackley 1.82 1.8 1.82 1.84 1.86 1.92

W-L 2-3 4-0 9-0 9-0 8-1

Table 3. Attained minima averaged over different test functions and different runs.
The last line accounts for the number of times that the Odd strategy is better-worse
than the local search with a fixed number n of iterations per exploration.

d ODD n = 500 n = 300 n = 200 n = 100 n = 50

2 124.29 124.38 124.39 124.36 124.31 124.32
10 293.5 294.35 294.34 294.18 294.09 294.55
20 469.92 470.28 470.19 470.1 470.98 472.69
30 733.63 735.74 734.92 734.8 735.2 739.64
40 910.92 912.39 912.03 912.22 914.03 919.98

W-L 1-0 2-0 3-0 1-0 4-0

local iterations to different functions, neighbourhood sizes, dimensionality and
local landscapes. Note that such result is obtained in an online fashion without
using any apriori knowledge of the problem or previous offline analysis of the
algorithm performance.

6 Conclusion and Future Work

An important issue in optimisation is the automatic calibration of the hyperpa-
rameters of the algorithms. A stochastic search algorithm produces during its
execution a bunch of data about the evolution of the objective function and the
attained minimum. It is then intuitive to take advantage of the information hid-
den within this data to know more about the algorithm performance and try to
better calibrate its parameters. So far, most of the calibration techniques require
an off-line multi-instances procedure. This paper showed that optimal stopping
theory can play an important role if we want to calibrate online the duration
of the exploration phase. This work shows some promising, yet preliminary re-
sults, in the case of continuous optimisation. Several issues are still open and

An Optimal Stopping Strategy for Online Calibration in Local Search 115

are worthy to be investigated further in the future: among them, we mention
the comparison with state-of-the-art offline methods, the implementation of al-
ternative estimation procedures of the probability of success and the extension
to combinatorial optimisation tasks.

Acknowledgments

The author wish to thank Souhaib Ben Taieb as well as the three anonymous
reviewers for useful comments and remarks.

References

1. Adenso-Daz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimen-
tal design and local search. Operations Research 54 (2006)

2. Boyan, J.A., Moore, A.W.: Learning evaluation functions to improve optimization
by local search. Journal of Machine Learning Research 1, 77–112 (2001)

3. Bruss, F.T.: Sum the odds to one and stop. Annals of Probability 28, 1384–1391
(2000)

4. Freeman, P.R.: The secretary problem and its extensions: a review. International
Statistical Review 51, 189–206 (1983)

5. Hoos, H.H., Stuetzle, T.: Stochastic Local Search. Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

6. Hutter, F., Hamadi, Y.: Parameter adjustment based on performance prediction:
Towards an instance-aware problem solver. Technical report, Department of Com-
puter Science University of British Columbia (2005)

7. Paquete, L., Birattari, M., Stuetzle, T., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2002), pp. 11–18. Morgan Kaufmann Publishers, San
Francisco (2002)

8. Molga, M., Smutnicki, C.: Test functions for optimization needs. Technical report
(2005), http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

Analyzing the Effect of Objective Correlation on

the Efficient Set of MNK-Landscapes

Sébastien Verel1,3, Arnaud Liefooghe2,3,
Laetitia Jourdan3, and Clarisse Dhaenens2,3

1 University of Nice Sophia Antipolis – CNRS, France
2 Université Lille 1, LIFL – CNRS, France

3 INRIA Lille-Nord Europe, France
verel@i3s.unice.fr, arnaud.liefooghe@univ-lille1.fr,

laetitia.jourdan@inria.fr, clarisse.dhaenens@lifl.fr

Abstract. In multiobjective combinatorial optimization, there exists
two main classes of metaheuristics, based either on multiple aggrega-
tions, or on a dominance relation. As in the single-objective case, the
structure of the search space can explain the difficulty for multiobjective
metaheuristics, and guide the design of such methods. In this work we
analyze the properties of multiobjective combinatorial search spaces. In
particular, we focus on the features related the efficient set, and we pay
a particular attention to the correlation between objectives. Few bench-
mark takes such objective correlation into account. Here, we define a
general method to design multiobjective problems with correlation. As
an example, we extend the well-known multiobjective NK-landscapes.
By measuring different properties of the search space, we show the im-
portance of considering the objective correlation on the design of meta-
heuristics.

1 Introduction

Multiobjective combinatorial optimization (MoCO) problems, where several cri-
teria have to be optimized simultaneously, receive more and more interest in the
field of search algorithms. One of the main issues in multiobjective optimization
is the Pareto dominance relation, which gives a partial order between feasible
solutions. Roughly speaking, a given solution dominates another solution if it
is better according to all objective functions. A possible approach in solving a
multiobjective problem consists in finding the whole set of non-dominated so-
lutions, called the efficient set, or a subset that is close to it. This efficient set
plays a central role in the structure of the search space.

The design of metaheuristics for multiobjective combinatorial optimization is
a real challenge, as it is problem-dependent. Like in single-objective optimiza-
tion, the structure of the search space can explain the ability of multiobjective
metaheuristics. Two main classes of multiobjective metaheuristics can be dis-
tinguished. The first ones, known as scalar approaches, are based on multiple
scalarized aggregations of the objective functions. However, they are only able

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 116–130, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Efficient Set of MNK-Landscapes with Objective Correlation 117

to find a subset of efficient solutions, called supported efficient solutions. The
second ones, known as Pareto-based approaches, directly or indirectly focus the
search on the Pareto dominance relation. Moreover, when the size of the effi-
cient set is too large, a metaheuristic should manipulate a limited-size solution
set during the search, and this limit is related to the size of the efficient set. In
addition, connectedness is related to the property that efficient solutions are con-
nected with respect to a neighborhood relation [1]. When connectedness holds,
it becomes possible to find the whole efficient set by iteratively exploring the
neighborhood of the current approximation, initialized with at least one efficient
solution. This strategy is often used explicitly, or implicitly by Pareto-based
approaches. For the design of metaheuristics for MoCO, three main questions,
related to the efficient set properties, are of our interest in this paper:

(i) What is the cardinality of the efficient set? Can we pretend to identify or
approximate the whole set of efficient solutions, or should we consider a
mechanism to bound the size of the approximation set?

(ii) How many efficient solutions are supported? Is a scalar approach able to
identify or approximate enough efficient solutions?

(iii) Are efficient solutions connected with respect to a neighborhood operator?
Is it possible to identify or approximate additional efficient solutions by a
simple local search initialized with a subpart of the efficient set?

In particular we want to study such properties according to the objective corre-
lation, as it seems to largely affect the solutions of MoCO problems [2] and the
behavior of metaheuristics [3]. Few benchmark takes the correlation between ob-
jectives into account. To the best of our knowledge, the multiobjective quadratic
assignment problem [4] should be the single one. In this problem, a parameter can
tune the correlation between different pairs of objectives. Another well-known
benchmark, the multiobjective NK-landscapes [5] facilitate the study of prob-
lem structure in multiobjective optimization. In this class, the epistatic degree,
which is the degree of non-linearity of the problem, can be tuned very precisely.
In this work, in order to study the problem structure, and in particular the
structure of the efficient set, we define a general method to tune the correlation
between all pairs of objectives very precisely. As an example, we define the mul-
tiobjective ρMNK-landscapes, an extension of multiobjective NK-landscapes
with objective correlation. With such a benchmark, we can study the problem
structure according to the objective space dimension, the epistasis and especially
the objective correlation, and then highlight some guidelines for the design of
efficient multiobjective metaheuristics.

In summary, the contributions of this work can be stated as follows. First, we
propose a method to precisely tune the correlation between objective functions.
It is applied to the design of MNK-landscapes, but it can easily be generalized
to other problems. Second, we show the influence of the objective correlation
on some properties of the efficient set (and its image in the objective space):
its size, the proportion of supported solutions, and the connectedness of effi-
cient solutions. Third, we bring those properties with the design of local search
metaheuristics in order to help the practitioner to make proper choices between

118 S. Verel et al.

several classes of methodologies. The reminder of the paper is organized as fol-
lows. Section 2 is dedicated to multiobjective combinatorial optimization, multi-
objective metaheuristics, as well as single- and multi-objective NK-landscapes.
Section 3 presents the design of ρMNK-landscapes. We conduct a theoretical
analysis and an experimental study to show the sharpness of the objective cor-
relation. Section 4 deeply analyzes the efficient set structure on this new class of
problems according to the objective space dimension, the non-linearity and espe-
cially the objective correlation. The consequence on the design of multiobjective
metaheuristics are discussed in the last section.

2 Background

2.1 Multiobjective Combinatorial Optimization

A large number of real-world optimization problems are multiobjective by na-
ture, because several criteria have to be considered simultaneously. A MoCO
problem can be defined by a set of M ≥ 2 objective functions (f1, f2, . . . , fM),
and a discrete set X of feasible solutions in the decision space. Let Z = f(X) ⊆
IRM be the set of feasible outcome vectors in the objective space. In a maxi-
mization context, a solution x ∈ X dominates a solution x′ ∈ X , denoted by
x 	 x′, iff ∀i ∈ {1, 2, . . . , M}, fi(x) ≥ fi(x′) and ∃j ∈ {1, 2, . . . , M} such as
fj(x) > fj(x′). A solution x ∈ X is said to be efficient (or non-dominated,
Pareto optimal), if there does not exist any other solution x

′ ∈ X such that x
′

dominates x. The set of all efficient solutions is called the efficient set (or Pareto
optimal set), denoted by XE , and its mapping in the objective space is called the
Pareto front. A possible approach in MoCO is to identify a minimal complete
efficient set, i.e. one efficient solution mapping to each point of the Pareto front.

However, generating the entire efficient set of a MoCO problem is often infea-
sible for two main reasons [6]. First, for most MoCO problems, the number of
efficient solutions is known to be exponential in the size of the problem instance.
In that sense, most MoCO problems are said to be intractable. Second, deciding
if a feasible solution belongs to the efficient set is NP-complete for numerous
MoCO problems, even if none of its single-objective counterpart is NP-hard.
Therefore, the overall goal is often to identify a good efficient set approximation.
To this end, metaheuristics in general, and evolutionary algorithms in particu-
lar, have received a growing interest since the late eighties, and multiobjective
metaheuristics still constitute an active research area.

2.2 Metaheuristics for Multiobjective Combinatorial Optimization

Two main classes of metaheuristics for MoCO can be distinguished, see for in-
stance [7]. The first ones, known as scalar approaches, are based on multiple
scalarized aggregations of the objective functions. The second ones, known as
Pareto-based approaches, directly or indirectly focus the search on the Pareto
dominance relation (or a slight modification of it). These two kinds of approaches
can also be hybridized in a two-phase way.

On the Efficient Set of MNK-Landscapes with Objective Correlation 119

Initial approaches dealing with MoCO are based on successive transforma-
tions of the original multiobjective problem into single-objective ones by means
of a scalarization strategy. Most of the time, scalar approaches are based on
a weighted-sum aggregation of the objective functions, that can be defined as
follows. ∀x ∈ X : fλ(x) =

∑M
i=1 λi fi(x) where λi > 0 for all i ∈ {1, . . . , M}.

The problem is now to identify a (single) solution that maximizes fλ. For any
given weighting coefficient vector λ, if x� = arg maxx∈X fλ(x), then x� is an effi-
cient solution. Multiple weighting coefficient vectors can be iteratively defined so
that several non-dominated solutions are identified (or approximated). For each
scalarization, the corresponding solution is incorporated into an approximation
set, whose dominated solutions are then discarded. However, in the combinato-
rial case, a number of efficient solutions are not optimal for any definition of fλ.
They are known as non-supported (efficient) solutions. On the contrary, there
exists supported (efficient) solutions whose corresponding objective vectors are
located on the convex hull of the Pareto front. The set of all supported efficient
solutions will be denoted by XSE . As a consequence, the proportion of non-
supported solutions over the efficient set has a direct implication on the ability
of scalar approaches to find a proper non-dominated set approximation.

Over the years, other types of approaches were proposed. They are based
on the explicit or implicit use of the Pareto dominance relation, that allows to
define a partial order between feasible solutions. The basic idea is to maintain
a set solutions (typically a population or an archive of mutually non-dominated
solutions). The content of this set is then iteratively updated with new solutions
built by means of variation or neighborhood operators. The update of this set is
based on a specific decision on which solutions to accept or to choose for further
manipulation. This process is iterated until no further improvement is possible
or another stopping condition is fulfilled. In the end, this set corresponds to the
approximation outputted by the algorithm. The implicit goal is to identify an
approximation whose image in the objective space is (i) close to and (ii) well-
spread along the Pareto front. However, as the number of efficient solutions is
often intractable, we generally have to design specific strategies to limit the size
of the approximation set [8]. As a consequence, the cardinality of the efficient
set also plays a major role on the design of multiobjective metaheuristics.

More recently, the neighborhood structure of the efficient set has been claimed
to play a crucial role for the development of efficient metaheuristics. One of these
properties is known as connectedness [1,9]. Let us define a graph such that each
node represents an efficient solution, and an edge connects a pair of nodes if
the corresponding solutions are neighbors with respect to a given neighborhood
operator [1]. This graph is called the efficient graph. A neighborhood operator
is a function N : X → 2X that assigns a set of solutions N (x) ⊂ X to any
solution x ∈ X . N (x) is called the neighborhood of x, and a solution x′ ∈ N (x)
is called a neighbor of x. The efficient set is said to be connected if there exists
a path between every pair of nodes in the graph. In other words, each efficient
solution is located in the neighborhood of at least one other solution from the
efficient set. This property has later been extended to the notion of cluster by

120 S. Verel et al.

introducing an arbitrary distance separating two efficient solutions [10]. When
connectedness holds, it becomes possible to find all the efficient solutions by
means of the iterative exploration of the neighborhood of the current approx-
imation by starting with one (or more) solution(s) from the efficient set. This
gives rise to a two-phase approach: (i) identify a number of (typically supported)
non-dominated solutions (ii) improve the set of non-dominated solutions by ex-
ploring their neighborhood.

2.3 NK- and MNK-Landscapes

The family of NK-landscapes [11] is a problem-independent model used for
constructing multimodal landscapes. N refers to the number of (binary) genes in
the genotype (i.e. the string length) and K to the number of genes that influence
a particular gene from the string (the epistatic interactions). By increasing the
value of K from 0 to (N − 1), NK-landscapes can be gradually tuned from
smooth to rugged. The fitness function (to be maximized) of a NK-landscape
fNK : {0, 1}N → [0, 1) is defined on binary strings with N bits. An ‘atom’ with
fixed epistasis level is represented by a fitness component fi : {0, 1}K+1 → [0, 1)
associated to each bit i ∈ N . Its value depends on the allele at bit i and also
on the alleles at K other epistatic positions (K must fall between 0 and N − 1).
The fitness fNK(x) of a solution x ∈ {0, 1}N corresponds to the mean value of
its N fitness components fi:

fNK(x) =
1
N

N∑
i=1

fi(xi, xi1 , . . . , xiK)

where {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}. Several ways have been proposed
to set the K bits from the bit string of size N . Two possibilities are mainly used:
adjacent and random neighborhoods. With an adjacent neighborhood, the K
bits nearest to the bit i ∈ N are chosen (the genotype is taken to have periodic
boundaries). With a random neighborhood, the K bits are chosen randomly on
the bit string. Each fitness component fi is specified by extension, i.e. a number
yi

xi,xi1 ,...,xiK
from [0, 1) is associated with each element (xi, xi1 , . . . , xiK) from

{0, 1}K+1. Those numbers are uniformly distributed in the range [0, 1).
More recently, a multiobjective variant of NK-landscapes (namely MNK-

landscapes) [5] have been defined with a set of M fitness functions:

∀m ∈ [1, M], fNKm(x) =
1
N

N∑
i=1

fm,i(xi, xim,1 , . . . , xim,Km
)

The numbers of epistasis links Km can theoretically be different for each fitness
function. But in practice, the same epistasis degree Km = K for all m ∈ [1, M]
is used. Each fitness component fm,i is specified by extension with the numbers
ym,i

xi,xim,1 ,...,xim,Km
. In the original MNK-landscapes [5], these numbers are ran-

domly and independently drawn from [0, 1). As a consequence, it is very unlikely
that two different solutions map to the same point in the objective space.

On the Efficient Set of MNK-Landscapes with Objective Correlation 121

3 ρMNK-Landscapes: Multiobjective NK-Landscapes
with Correlation

In this section, we define the CMNK- and the ρMNK-landscapes, which are
based on the MNK-landscapes [5]. In this multiobjective model, the correlation
between objective functions can be precisely tuned by a correlation matrix. It
allows to study the simultaneous influence of objective space dimension, non-
linearity and objective correlation on the main properties of multiobjective fit-
ness landscapes. The construction of landscapes is defined and the analytic proof
of the correlation between objectives, completed with an experimental study, are
given. Note that the proposed approach to tune the objective correlation can be
applied to other MoCO problems where the objective functions are summing
objectives, share the same definition, but are computed with different cost or
profit matrices. This is the case, for instance, of the multiobjective knapsack,
traveling salesman and quadratic assignment problems [4,6].

3.1 Definition

In the proposed CMNK-landscapes, the epistasis structure is identical for all
the objective functions: ∀m ∈ [1, M], Km = K and ∀m ∈ [1, M], ∀j ∈ [1, Km],
im,j = ij. The fitness components are not defined independently. The numbers
(y1,i

xi,xi1 ,...,xiK
, . . . , yM,i

xi,xi1 ,...,xiK
) follow a multivariate uniform law of

dimension M , defined by a correlation matrix C. Thus, the y’s follow a mul-
tidimensional law with uniform marginals and the correlations between ym,i

... s
are defined by the matrix C. So, the four parameters of the family of CMNK-
landscapes are (i) the number of objective functions M , (ii) the length of the
bit string N , (iii) the number of epistatic links K, and (iv) the correlation
matrix C.

The matrix C is a symmetric positive-definite matrix where M(M−1)
2 numbers

can be defined. In order to limit the number of free numbers in matrix C, we
define the matrix Cρ = (cnp) which has the same correlation between all the
objectives: cnn = 1 for all n, and cnp = ρ for all n = p. In this case, we denote
CMNK-landscapes by ρMNK-landscapes, and the original MNK-landscapes
are equivalent to ρMNK-landscapes with ρ = 0. However, it is not possible
to have the matrix Cρ for all ρ between [−1, 1]. Cρ must be positive-definite:
∀u ∈ IRM , utCρu ≥ 0. So, ρ must be greater than −1

M−1 . For two-objective
problems, all the correlations between [−1, 1] are possible. However, for three-
objective problems, the correlation ρ must fall in [−0.5, 1]. Of course, if one
wants to study very negative correlations between some pairs of objectives, it is
possible to design a matrix C that keeps the condition that C is positive-definite.

To generate random variables with uniform marginals and a specified correla-
tion matrix C, we follow the work of Hotelling [12]. We first generate (Z1, . . . , ZM)
a multinormal laws of means 0 and correlation matrix R = 2 sin(π

6 C). Then, the
values zi = Φ(Zi) are uniformly distributed with a correlation matrix C, where
Φ is the univariate normal cumulative density function. Note that this is not the
only way to generate a multivariate uniform law.

122 S. Verel et al.

3.2 Correlation between Objective Functions

The construction of CMNK-landscapes defines correlation between the y’s but
not directly between the objectives. In this section, we prove by algebra that the
correlation between objectives is tuned by the matrix C. This proof is followed
by an experimental analysis.

Theoretical analysis. Let Fm = (fmNK(x)) be the fitness vector values of the
2N solutions with respect to objective m. The correlation between objective n

and p is: cor(Fn, Fp) = cov(Fn,Fp)
σnσp

where σn and σp are the standard deviations
of fitness values over the landscape of the nth and pth NK fitness functions. Fn

(resp. Fp) corresponds to the average value of the N vectors Fni (resp. Fpj) of
fitness component values:

cov(Fn, Fp) =
1

N2

N∑
i,j=1

cov(Fni, Fpj)

By definition, when i = j, cov(Fni, Fpj) = 0 and cov(Fni, Fpi) = cnp · σni · σpi,
where cnp is the correlation defined in the matrix C, and σni (resp. σpi) is the
standard deviation of fitness component i. The correlation between objectives n
and p becomes:

cor(Fn, Fp) = cnp

∑N
i=1 σniσpi

N2σnσp

By construction of the fitness functions, the following relation between standard
deviations stands σ2

n = 1
N

∑N
i=1 σ2

ni (resp. for σ2
p). On average, the σni are equal

to the standard deviation of the uniform law on [0, 1).

E(cor(Fn, Fp)) = cnp (1)

Then, the average of the correlations between objective functions are given by
the matrix C. In the ρMNK-landscapes, the parameter ρ allows to tune very
precisely the correlation between all pairs of objectives.

Experimental study. In order to enumerate the search space exhaustively, we
conduct an empirical study for N = 18. In order to minimize the influence of
the random creation of landscapes, we considered 30 different and independent
landscapes for each parameter combinations: ρ, M , N and K. The measures re-
ported are the average over these 30 landscapes. The remaining set of parameters
are given in Table 1. Figure 1 shows the average1 of the Spearman correlation
coefficient according to the parameters ρ, M and K. This confirms the result of
equation (1), the correlation coefficients are very close to the expected value ρ.

Then, in the ρMNK-landscapes, the parameter ρ tunes very precisely the cor-
relation, and, in addition to the correlated multiobjective quadratic assignment
1 For M > 2, there are several correlation coefficients. We report here the average

correlation coefficients over all the objectives (these values are all very close).

On the Efficient Set of MNK-Landscapes with Objective Correlation 123

Table 1. Parameters used in the paper for the experimental analysis

Parameter Values

N 18
M {2, 3, 5}
K {2, 4, 6, 8, 10}
ρ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} such that ρ ≥ −1

M−1

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

A
vg

 o
bj

ec
tiv

e
co

rr
el

at
io

n

ρ

K=2
K=4
K=6
K=8

K=10

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

A
vg

 o
bj

ec
tiv

e
co

rr
el

at
io

n

ρ

K=2
K=4
K=6
K=8

K=10

Fig. 1. Average values of the correlation between objectives according to the parame-
ter ρ. The number of objectives is M = 2 (left) and M = 5 (right).

problem [4], it is possible to tune this correlation between all pairs of objectives.
In the following, we study the influence of epistasis, number of objective and ob-
jective correlation on the properties of the efficient set for the ρMNK-landscapes
model.

4 Analysis of the Efficient Set Properties

In this section, we conduct experiments on the ρMNK-landscapes in order to
study different properties of the efficient set: its cardinality, the number of sup-
ported solutions and connectedness-related features. The instances under study
are defined by the parameter setting given in Table 1.

4.1 Cardinality of the Efficient Set

Figure 2 shows the proportion of efficient solutions in the search space according
to parameters K, ρ and M of ρMNK-landscapes. First of all, the epistatic
parameter K does not seem to have a major influence on the results. At the
opposite, the objective correlation ρ modifies the number of efficient solutions to
several orders of magnitude. Indeed, the proportion decreases from 10−4 to 10−5

(ρ ∈ [−1, 1]) for two-objective problems, and from 10−1 to 10−5 (ρ ∈ [−0.2, 1])
for M = 5. With respect to the number of objective functions (M = 2, 3, and 5),
the size increases of several decades according to M . For a negative objective

124 S. Verel et al.

correlation (ρ = −0.2), the proportion goes from 10−4 to 10−1 whereas it goes
from 10−5 to 10−4 for a positive correlation (ρ = 0.9).

The influence of objective correlation on the efficient size becomes as impor-
tant as the number of dimension of objective space. A lot of solutions becomes
efficient when the anti-correlation is high. Now, let us suppose that we want to set
or to bound the size of the approximation set by 100. Such a parameter setting is
often used while handling a population or an archive of non-dominated solutions
in a multiobjective metaheuristic. For the ρMNK-landscapes, the proportion of
non-dominated solutions over the search space should be roughly around 4 ·10−4

(this goes up to 8 · 10−4 for 200 solutions). Whatever the correlation value ρ,
a 100−solution approximation set always allows to store all the efficient set for
two-objective problems. However, this is not the case for a higher dimension of
the objective space. For instance, for M = 5, 100 solutions suffice to store the
whole efficient set for a high objective correlation only (ρ > 0.5). In other words,
for ρ < 0.5, we cannot pretend to identify the whole efficient set exhaustively by
handling a 100−solution approximation set.

To summarize, when the number of objective increases, and even more when
the objectives are in conflict, the size of the efficient set becomes very large, and
then tend to be intractable. In this case, it is not reasonable to pretend to identify
the whole efficient set, and a limited-size approximation should be considered.
This first result shows the importance to design a benchmark where the objective
correlation can be tuned precisely, even when M > 2. Such a property should
be taken into consideration for the development of metaheuristics, when the
number of objective becomes too large, and when there is a high anti-correlation
between objective functions. A special attention should be paid with regards to
the size of the approximation set handled by the search approach.

4.2 Number of Supported Efficient Solutions

Figure 3 shows the proportion of supported solutions in the search space ac-
cording to parameters K, ρ and M of ρMNK-landscapes. Mainly, this number
follows the size of the efficient set: the epistatic parameters K has low influ-
ence on the size. When the objective space dimension increases or the objective
correlation decreases, the number of supported solutions gets higher. The differ-
ence with the size of the efficient set becomes more clear in Figure 4. It gives
the proportion of supported solutions over the efficient set. This proportion is
nearly independent of the epistasis degree of the problem (K). However, when
the objective correlation increases, this proportion increases. For a high objec-
tive correlation (ρ = 0.9), nearly all solutions become supported (this is even the
case for some instances). The same observation can be made with the number
of objectives. The number of supported solution increases with the cardinality
of the efficient set, but the former increases faster than the latter.

While putting this property in relation with the design of a metaheuristic, we
can conclude that scalar approaches should become more appropriate when the
number of objective is low, and when the objective correlation is high.

On the Efficient Set of MNK-Landscapes with Objective Correlation 125

 1e-06

 1e-05

 0.0001

 0.001

-1 -0.5 0 0.5 1

| X
E
 |

 /
 |

X
 |

ρ

K=2
K=4
K=6
K=8

K=10

 1e-05

 0.0001

 0.001

 0.01

 0.1

-0.2 0 0.2 0.4 0.6 0.8 1

| X
E
 |

 /
 |

X
 |

ρ

K=2
K=4
K=6
K=8

K=10

 1e-05

 0.0001

 0.001

 0.01

 0.1

 2 4 6 8 10

| X
E
 |

 /
 |

X
 |

K

M=2
M=3
M=5

 1e-06

 1e-05

 0.0001

 2 4 6 8 10

| X
E
 |

 /
 |

X
 |

K

M=2
M=3
M=5

Fig. 2. Average ratio of the number of efficient solutions compared to the size of the
search space (2N) according to parameter ρ (top left M = 2, right M = 5), and
according to parameter K for different number of objectives (bottom left ρ = −0.2,
right ρ = 0.9). Notice the log y-scale.

4.3 Connectedness of the Efficient Set

In this section, the efficient graph (see Section 2.2), i.e. the graph of efficient
solutions where edges are induced by a given neighborhood operator, is analyzed.

Firstly, the efficient graph can be composed of several connected components.
In this case, all the efficient solutions are not connected with respect to the neigh-
borhood relation. Figure 5 shows the average ratio of the larger connected com-
ponent size induced by Hamming distance 1. Nearby all solutions of the efficient
graph are in the same component when the objective space dimension is high
(M = 5) and when the objective correlation is negative (ρ = −0.2). At first sight,
such a result seems to be explained by the very large size of the efficient set ob-
tained for those parameters (see Section 4.1). However, we compared this result
to the size of the larger component of a graph of same size, but where the nodes
are now random solutions. We found out that this size is much smaller than the
one of the efficient graph, in particular when the epistatic degree is low (170 times
larger for M = 5, ρ = −0.2, and K = 4). Consequently, the ratio size of the larger
component is not the consequence of the number of efficient solutions only.

Contrary to the size of the efficient set, the size of the largest connected
component seems to depend on the epistatic degree K. Indeed, this size decreases
when K increases. As an example, for M = 2 and ρ = −0.4, the ratio size is
0.42 for K = 2 and lower than 0.1 for K = 10. When the epistatic degree is low,
the objective values of neighboring solutions are correlated, and this correlation
decreases with the epistatic degree [13]. This could explain our experimental
result: If a solution is efficient, the probability that one of its neighbors is also
efficient gets higher when the epistatic degree gets lower.

126 S. Verel et al.

 1e-06

 1e-05

 0.0001

-1 -0.5 0 0.5 1

| X
S

E
 |

 /
 |

X
 |

ρ

K=2
K=4
K=6
K=8

K=10

 1e-05

 0.0001

 0.001

 0.01

-0.2 0 0.2 0.4 0.6 0.8 1

| X
S

E
 |

 /
 |

X
 |

ρ

K=2
K=4
K=6
K=8

K=10

 1e-05

 0.0001

 0.001

 0.01

 2 4 6 8 10

| X
S

E
 |

 /
 |

X
 |

K

M=2
M=3
M=5

 1e-06

 1e-05

 0.0001

 2 4 6 8 10

| X
S

E
 |

 /
 |

X
 |

K

M=2
M=3
M=5

Fig. 3. Average ratio of the number of supported efficient solutions compared to the
size of the search space (2N) according to parameter ρ (top left M = 2, right M = 5),
and according to parameter K for different number of objectives (bottom left ρ = −0.2,
right ρ = 0.9). Notice the log y-scale.

The objective correlation and the number of objective functions also affect
the size of the largest connected component. But the variation is different with
respect to the number of objective functions. For M = 2, the ratio of the larger
component size increases when the objective correlation increases (apart from
K = 2). For M = 5, the ratio decreases when the objective correlation increases.
As a consequence, excepting when the efficient set is intractable (that is, when
there is a high objective space dimension and a high anti-correlation degree),
we cannot expect to reach all the efficient solutions by iteratively exploring
the neighborhood of an approximation set initialized with one non-dominated
solution. However, when there are several connected components for the efficient
graph based on Hamming distance 1 (see the definition of cluster in Section 2.2),
the distance between those components could be small.

When efficient solutions are connected with respect to a neighborhood struc-
ture related to Hamming distance k and not k − 1, the efficient set is then said
to be k-connected [10]. When the minimal distance k is around 9, which is the
average distance between random solutions, we can say that the distance be-
tween efficient solutions is large. Figure 6 shows the average minimal distance k
to connect all the efficient solutions. This minimal distance k increases when the
epistatic degree increases. As an example, for ρ = −0.2, the average distance is
equals to 4.3 and 2 for dimension 2 and 5, respectively, when K = 2, whereas it
is equal to 7.1 and 2.8, respectively, when K = 10. These results meet the previ-
ous ones on the largest component size: At the same time, the size of the larger
component decreases, and the distance between efficient solutions increases.

On the Efficient Set of MNK-Landscapes with Objective Correlation 127

 0.1

 1

-1 -0.5 0 0.5 1

| X
S

E
 |

 /
 |

X
E
 |

ρ

K=2
K=4
K=6
K=8

K=10
 0.01

 0.1

 1

-0.2 0 0.2 0.4 0.6 0.8 1

| X
S

E
 |

 /
 |

X
E
 |

ρ

K=2
K=4
K=6
K=8

K=10

 0.01

 0.1

 1

 2 4 6 8 10

| X
S

E
 |

 /
 |

X
E
 |

K

M=2
M=3
M=5

 0.1

 1

 2 4 6 8 10

| X
S

E
 |

 /
 |

X
E
 |

K

M=2
M=3
M=5

Fig. 4. Average ratio of the number of supported efficient solutions compared to the
size of the efficient set according to parameter ρ (top left M = 2, right M = 5), and
according to parameter K for different number of objectives (bottom left ρ = −0.2,
right ρ = 0.9). Notice the log y-scale.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-1 -0.5 0 0.5 1

A
ve

ra
ge

 r
at

io
 o

f l
ar

ge
r

co
m

po
ne

nt
 s

iz
e

ρ

K=2
K=4
K=6
K=8

K=10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.2 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 r
at

io
 o

f l
ar

ge
r

co
m

po
ne

nt
 s

iz
e

ρ

K=2
K=4
K=6
K=8

K=10

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

A
ve

ra
ge

 r
at

io
 o

f l
ar

ge
r

co
m

po
ne

nt
 s

iz
e

K

M=2
M=3
M=5

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 2 4 6 8 10

A
ve

ra
ge

 r
at

io
 o

f l
ar

ge
r

co
m

po
ne

nt
 s

iz
e

K

M=2
M=3
M=5

Fig. 5. Average ratio of the size of the larger component of the efficient graph and
Hamming distance of 1 to the size of the efficient set according to parameter ρ (top left
M = 2, right M = 5), and according to parameter K for different number of objectives
(bottom left ρ = −0.2, right ρ = 0.9).

128 S. Verel et al.

 3

 4

 5

 6

 7

 8

 9

-1 -0.5 0 0.5 1

A
ve

ra
ge

 m
in

im
al

 k
 fo

r
k-

co
nn

ec
te

dn
es

s

ρ

K=2
K=4
K=6
K=8

K=10

 2

 3

 4

 5

 6

 7

 8

 9

-0.2 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 m
in

im
al

 k
 fo

r
k-

co
nn

ec
te

dn
es

s

ρ

K=2
K=4
K=6
K=8

K=10

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10

A
ve

ra
ge

 m
in

im
al

 k
 fo

r
k-

co
nn

ec
te

dn
es

s

K

M=2
M=3
M=5

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10

A
ve

ra
ge

 m
in

im
al

 k
 fo

r
k-

co
nn

ec
te

dn
es

s

K

M=2
M=3
M=5

Fig. 6. Average of the minimal Hamming distance to connect all the efficient solutions
according to parameter ρ (top left M = 2, right M = 5), and according to parameter
K for different number of objectives (bottom left ρ = −0.2, right ρ = 0.9).

The average k-connectedness increases also when the objective correlation
increases. For an objective space dimension 5 and a negative objective correlation
ρ = −0.2, it could be possible to reach all non-dominated solutions from another
one, as the average minimal distance is lower than 3. At the opposite, when the
objective correlation is positive, it should be easier to find a new non-dominated
solution by restarting the search from a random solution, rather than exploring
the neighborhood of a given non-dominated solution such as the distance is
around the third of the bit string length. When objectives are correlated, less
solutions are to be found, but knowing some of them will not help to find more.
Then, the design of an efficient metaheuristic has to be different according to the
objective correlation. In a two-phase approach, the number of starting solutions
and the size of the neighborhood can be tuned according to correlation between
objectives following this study.

5 Discussion

In this paper, we analyzed the consequence of the objective space dimension,
the non-linearity, and the objective correlation on the structure of multiobjec-
tive combinatorial search spaces for the design of metaheuristics. We proposed
a new method to design a multiobjective combinatorial benchmark where the
correlation between all pairs of objectives can be tuned very precisely. As an
example, we defined the ρMNK-landscapes which extend the multiobjective
NK-landscapes.

On the Efficient Set of MNK-Landscapes with Objective Correlation 129

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
bj

ec
tiv

e
2

Objective 1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
bj

ec
tiv

e
2

Objective 1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
bj

ec
tiv

e
2

Objective 1

Fig. 7. The objective space (maximization problem) for three landscapes. The number
of objective is M = 2, the length of bit string remains N = 18, the epistasis parameters
is K = 4. From left to right, the correlation increases from negative correlation to
positive correlation (ρ = −0.9, 0.0 and 0.9). The green points are random solutions of
the search space (10% of the size), the red points are the solutions of the efficient set,
and blue are the supported solutions of the efficient set.

Figure 7 shows three examples of ρMNK-landscapes in the objective space.
The number of objective is 2, the parameter K is 4, and length of the bit string
is 18. This gives a summary of our results in a more intuitive way. When the
objective correlation is negative, the objectives are in conflict (feasible solutions
are in green). The efficient set size (in red) is large, and the problem could
become intractable. In this case, a metaheuristic has to find a limited-size ap-
proximation of the efficient set only. When the objective correlation is null, as
in [5], the image of the search space in the objective space can be represented
as a multidimensional ‘bowl’. The objectives are independent. When the objec-
tive correlation is positive, there exists few solutions in the efficient set. Nearly
all solutions become supported. Indeed, when the number of objectives is low,
and when the objective correlation is high, efficient solutions are supported. We
can conclude that scalar approaches should become more appropriate in such a
case. The connectedness property is not represented in the last figure. The size of
larger connected component and the minimal distance to connect all the efficient
solutions depend on the objective space dimension, the epistatic degree, and also
on the objective correlation. A two-phase strategy, starting from some efficient
(supported) solutions, and exploring their neighborhood at a given distance, can
be tuned according to the results of this work.

Bringing those properties with the design of local search metaheuristics help
to make proper choices between several classes of methodologies. This analysis
shows the importance of the objective correlation on the design of benchmark
problems, in particular when the number of objectives is higher than 2. In future
works, we will use some sample technics to study the ρMNK-landscapes of larger
size. We will also compare our results on the properties of search space with the
performance of different metaheuristics. However, the efficient set does not cover
all the search space properties, so next works will focus on the properties related
to the Pareto local optima, and to the Pareto local optimum sets.

130 S. Verel et al.

References

1. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria
combinatorial optimization. European Journal of Operational Research 97(1), 159–
166 (1997)

2. Mote, J., Olson, I.M.D.L.: A parametric approach to solving bicriterion shortest
path problems. European Journal of Operational Research 53(1), 81–92 (1991)

3. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the
biobjective QAP with correlated flow matrices. European Journal of Operational
Research 169(3), 943–959 (2006)

4. Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective
quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb,
K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg
(2003)

5. Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of
MOEAs on MNK-landscapes. European Journal of Operational Research 181(3),
1670–1690 (2007)

6. Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Heidelberg (2005)
7. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-

binatorial optimization: A review. In: Handbook of Approximation Algorithms and
Metaheuristics. Computer & Information Science Series, vol. 13, Chapman & Hall
/ CRC (2007)

8. Knowles, J., Corne, D.: Bounded Pareto archiving: Theory and practice. In: Meta-
heuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp. 39–64. Springer,
Heidelberg (2004)

9. Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple
objective combinatorial optimization. Technical Report 102/2006, University of
Kaiserslautern, Department of Mathematics (2006)

10. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective com-
binatorial optimization: An experimental analysis. In: Multiobjective Programming
and Goal Programming. LNEMS, vol. 618, pp. 69–77. Springer, Heidelberg (2009)

11. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)
12. Hotelling, H., Pabst, M.R.: Rank correlation and tests of significance involving no

assumptions of normality. Ann. Math. Stat. 7, 29–43 (1936)
13. Weinberger, E.D.: Correlated and uncorrelatated fitness landscapes and how to tell

the difference. Biological Cybernetics 63, 325–336 (1990)

Instance-Based Parameter Tuning via Search

Trajectory Similarity Clustering

Lindawati, Hoong Chuin Lau, and David Lo

School of Information Systems, Singapore Management University, Singapore
lindawati.2008@phdis.smu.edu.sg, {hclau,davidlo}@smu.edu.sg

Abstract. This paper is concerned with automated tuning of param-
eters in local-search based meta-heuristics. Several generic approaches
have been introduced in the literature that returns a ”one-size-fits-all”
parameter configuration for all instances. This is unsatisfactory since
different instances may require the algorithm to use very different pa-
rameter configurations in order to find good solutions. There have been
approaches that perform instance-based automated tuning, but they are
usually problem-specific. In this paper, we propose CluPaTra, a generic
(problem-independent) approach to perform parameter tuning, based on
CLUstering instances with similar PAtterns according to their search
TRAjectories. We propose representing a search trajectory as a directed
sequence and apply a well-studied sequence alignment technique to clus-
ter instances based on the similarity of their respective search trajec-
tories. We verify our work on the Traveling Salesman Problem (TSP)
and Quadratic Assignment Problem (QAP). Experimental results show
that CluPaTra offers significant improvement compared to ParamILS (a
one-size-fits-all approach). CluPaTra is statistically significantly better
compared with clustering using simple problem-specific features; and in
comparison with the tuning of QAP instances based on a well-known dis-
tance and flow metric classification, we show that they are statistically
comparable.

Keywords: instance-based automated tuning parameter, search trajec-
tory, sequence alignment, instance clustering.

1 Introduction

In the last decade there has been a dramatic rise in the design and application
of meta-heuristics such as tabu search and simulated annealing to solve combi-
natorial optimization problems (COP) in many practical applications. The ef-
fectiveness of a meta-heuristic algorithm hinges on its parameter configurations.
For example, a tabu search will perform differently with different tabu lengths.
Previous studies revealed that only 10% of the time is spent on algorithm de-
sign and test; while the rest of the development time is spent on fine-tuning the
parameter settings [1]. The latter process is either a laborious manual exercise
by the algorithm designer, or an automated procedure. The key challenge in

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 131–145, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

132 Lindawati, H. Chuin Lau, and D. Lo

automated tuning is the large parameter configuration space on even a handful
of parameters.

Given an algorithm (which we call the target algorithm) to solve a given COP,
it has been observed that different problem instances require different parameter
configurations in order for the algorithm to find good solutions (e.g. [6,19,24]).
An interesting research question is whether there are patterns or rules governing
the choice of parameter configurations, and whether such patterns can be learnt.

Several approaches have been proposed to automate the tuning problem, such
as the Racing Algorithm by Birratari et al. [3], Decision Tree Classification Ap-
proach by Srivastava and Mediratta [22], CALIBRA by Andenso-Daz and Laguna
[1], ParamILS by Hutter et al. [12,13] and Randomized Convex Search (RCS) by
Lau and Xiao [14]. These are generic approaches which can be used for various
COP problems. One common shortcoming of such approaches is that they pro-
duce a one-size-fits-all configuration for all instances, which may not perform
well on large and diverse instances. On the other hand, approaches by Patterson
and Kautz [19], Hutter and Hamadi [11], Gagliolo and Schmidhuber [6] and Xu et
al. [24] attempted to deal with instance-based automatic tuning. However, those
approaches are less general in the sense that each of them can only solve a partic-
ular problem by making use of problem-specific features. For example, SATzilla
constructs per-instance algorithm portfolios for SAT [24]. SATzilla07 uses 48 fea-
tures, most of which are SAT-specific features. The caveat is that feature selection
is itself a very complex problem in general which cannot be done automatically but
rather must rely on the knowledge of a domain expert.

Rather than ambitiously attempting instance-based tuning which we believe
to be a computationally prohibitive and unachievable task in the near future
because of the large parameter configuration space and large number of instances,
we turn towards a cluster-based treatment. Our goal extends a preliminary work
on features-based tuning proposed in [14] where instances are clustered according
to some problem-specific features, but unlike [14], we do not rely on problem-
specific features; rather, we propose a generic approach where we make use of the
search trajectory patterns as a feature. A search trajectory pattern is defined as
the path that the target algorithm follows as it searches from an initial solution
to its neighbor iteratively [10]. We then apply a standard clustering algorithm to
segment the training set of instances into clusters based on their search trajectory
patterns similarity.

Motivated by earlier works on the tight correlation between fitness landscape
and search trajectories [7,8], and the tight correlation between the fitness land-
scape and algorithm performance [20], our bold conjecture in this paper is that
trajectory patterns themselves are correlated with parameter configurations; in
other words, we believe that if a parameter configuration works well for a partic-
ular instance, then it will also work well for instances with similar fitness land-
scapes (which can be inferred from the trajectory patterns). Consequently, we
train our automated tuning algorithm by first performing clustering on problem
instances based on their search trajectories similarity, and then apply existing
one-size-fits-all algorithms (such as CALIBRA, ParamILS or RCS) to derive the

Instance-Based Parameter Tuning 133

best parameter configurations for the respective clusters. Subsequently, given an
arbitrary instance, we first map its search trajectory to the closest cluster. The
tuned parameter configuration for that cluster is then returned as the parame-
ter configuration for this instance. The result is a fine-grained tuning algorithm
that does not produce a one-size-fits-all parameter configuration, but rather in-
stance (or rather cluster)-based parameter configurations. Even though strictly
speaking, our approach is cluster-specific rather than instance-specific, it is a
big leap from one-size-fits-all schemes. Arguably, our approach, taken to the ex-
treme, can potentially produce instance-based tuning; although we do not know
how to scale it well at the moment. The major contributions in this paper are
summarized as follows:

– We propose CluPaTra, a novel instance-based problem-independent auto-
mated parameter tuning approach based on clustering of patterns of in-
stances by their search trajectories.

– A search trajectory can be derived readily from a local-search based algorithm
without incurring extra computation (other than the task of storing these so-
lutions as the local search discovers them). Hence our approach can be applied
to tune any local search-based target algorithm to solve a given problem.

– We tap into the rich depository of machine learning and data mining, uti-
lizing a clustering method based on two well-studied techniques, sequence
alignment and hierarchical clustering. We apply sequence alignment to cal-
culate a similarity score between a pair of instance search trajectories, and
hierarchical clustering to form the clusters.

CluPaTra is verified with experiments on two classical COPs - Traveling Sales-
man Problem (TSP) and Quadratic Assignment Problem (QAP). For TSP, our
target algorithm is the classical Iterated Local Search (ILS) algorithm (imple-
mented by [8]), whereas for QAP we use a relatively new hybrid metaheuristic
algorithm proposed in [18]. These choices are made on the dual intent to bench-
mark our approach against best published results (showing that it is capable of
producing results compatible to the best-found results), as well as to demon-
strate how our approach can yield significant improvement when applied to tune
a newly designed algorithm.

2 Preliminaries

In this section, we formally define the Automated Parameter Configuration
problem, followed by the concepts of the one-size-fits-all and instance-based
configurators.

2.1 Automated Parameter Configuration Problem

Let A be the target algorithm with n number of parameters to be tuned based on
a given set of training instances I. Each parameter xi can assume a value taken
from a (either continuous or discrete) interval [ai, bi] in parameter configuration

134 Lindawati, H. Chuin Lau, and D. Lo

space Θ. Let the vector x = [x1, x2, ..., xn] represent a parameter configura-
tion and H be a performance metric function that maps x to a numeric score
computed over a set of instances (see details below). The automated parameter
configuration problem is thus an optimization problem seeking to find x ∈ Θ
that minimizes H(x).

Notice that unlike standard optimization problems, the function H is a meta-
function on x is typically highly non-linear and very expensive to compute.
Furthermore, as the parameter space may be extremely large (even for discrete
values, the size is equal to (b1−a1)(b2−a2) · · · (bn −an)), it is generally imprac-
tical to execute a tuning algorithm based on full factorial exploration of good
parameter values. As in [13], to avoid confusion between a algorithm whose per-
formance is being optimized and an algorithm used to tune it, we refer to the
former as the target algorithm and the latter as the configurator.

2.2 One-Size-Fits-All Configurator

Since a one-size-fits-all configurator (such as ParamILS) only produces a single
parameter configuration for a set of instances I, it calculates the function H by
using a specific statistic (such as mean or standard deviation) measured over the
entire set (or distribution) of problem instances. We define the one-size-fits-all
configurator as follows.

Definition 1 (One-Size-Fits-All Configurator). Given a target algorithm
A, a set of training instances I, a set of testing instances It, a parameter con-
figuration space Θ and a meta-function H to measure algorithm A performance,
a one-size-fits-all configurator finds a parameter configuration x ∈ Θ such that
H is minimized over the entire set (or distribution) of I. Subsequently, given a
testing instance in It, that parameter configuration x will be used to execute A.

2.3 Instance-Based Configurator

In this paper, we are concerned with clustering of problem instances. Hence, us-
ing the same notation as the one-size-fits-all configurator, we define the instance-
based configurator as follows.

Definition 2 (Instance-Based Configurator). Given a target algorithm A,
a set of training instances I, a set of testing instances It, a parameter config-
uration space Θ and a meta-function H to measure algorithm A performance,
an instance-based configurator creates a set of clusters C from I and finds a
parameter configuration xc for each cluster c ∈ C that minimizes H for the set
of instances in the respective cluster. For a given testing instance in It, it will
find the most similar cluster c ∈ C and return the parameter configuration xc

which will be used to execute A.

Instance-Based Parameter Tuning 135

2.4 Performance Metric

We now define the performance metric function H, for both the training and
testing instances. For training, this value is measured over all training instances,
while for testing, ditto test instances.

Definition 3 (Performance Metric). Let i be a problem instance, and Ax(i)
be the objective value of the corresponding solution obtained by A when executed
under the configuration x. Let OPT (i) denote either (a) the known global optimal
value of i, or (b) where the global optimal value is unknown, the best known
value. H(x) is defined as the mean percentage deviation of Ax(i) from OPT (i),
for all problem instance i in question (training/testing). Obviously, the lower the
deviation value the better it is.

3 Solution Approach

In this section, we present our solution approach CluPaTra by first defining
the search trajectory similarity and describing CluPaTra major components,
namely: search trajectory representation, similarity calculation, and the cluster-
ing method, followed by the overall steps for the training and testing phases.

3.1 Search Trajectory Similarity

A search trajectory is defined as a path of solutions that the target algorithm
A finds as it searches through the neighborhood search space. Two or more
search trajectories are similar if some fragments (several number of consecutive
moves) of the path have identical solution’s attributes. An example of solution’s
attributes is the deviation of its objective value from global optimum (or best
known) value (see section 3.2). The longer the fragments the more similar it is.

As an example, Fig. 1 shows a search trajectory obtained by 10 consecutive
moves of the ILS algorithm for three TSP instances, namely: kroa100, bier127
and eil51 with two very different parameter configurations, namely: configura-
tion I and configuration II. Observe that for the same configuration, kroa100
and bier127 have similar search trajectories, while ei151 has a very different
trajectory. Observe also that even when different configurations result in differ-
ent search trajectories for a given instance, the similarity between kroa100 and
bier127’s trajectories are preserved. This similarity property is what we need
that allows us to perform clustering of instances using an arbitrary parameter
configuration.

Since there is a tight correlation between fitness landscape (or commonly
known as search space) and search trajectories [7,8], and the tight correla-
tion between the fitness landscape and algorithm performance [20], we assume
that instances with similar search trajectories will need the same parameter
configuration.

136 Lindawati, H. Chuin Lau, and D. Lo

 (a) kroa100 – Parameter Configuration I (b) bier127 – Parameter Configuration I (c) eil51 – Parameter Configuration I

(d) kroa100 – Parameter Configuration II (e) bier127 – Parameter Configuration II (f) eil51 – Parameter Configuration II

Fig. 1. Search Trajectories of 3 TSP instances kroa100, bier127 and eli51 using two
very different parameter configuration (with z-axis as the objective value and x and y
axis as the search space)

3.2 Search Trajectory Representation

We present the search trajectory as a directed sequence of symbols, each repre-
senting a solution along the trajectory. A symbol encodes a combination of two
solution attributes, namely: the position type and its percentage deviation of
quality from OPT (as defined in section 2.4).

The position type represents in a sense the local property of a solution with
respect to its search neighborhood, and is defined based on the topology of the
local neighborhood [10]. There are 7 position types, determined by evaluating
the solution objective value with all its local direct neighbors’ objective values
- whether it is better, worse or the same. The 7 positions types are given in
Table 1.

The deviation of solution quality measures in a sense the global property of
the solution (since it is compared with the global value OPT). If the global
optimum value is unknown, we use the best known value. Granted however that

Table 1. Position Types of Solution

Position Type Label Symbol < = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

’+’ = present, ’-’ = absent; referring to the presence of neighbors
with larger (’<’), equal (’=’) and smaller (’>’) objective values

Instance-Based Parameter Tuning 137

the best known value is not the same as the global optimal value, it provides
a reasonably good upper bound (for a minimization problem); and since our
aim is to find similar patterns of the transition from one solution to the next,
and not to measure the actual absolute performance of the algorithm, the best
known value suffices in providing a good proxy to the global optimal value for
our purpose of representing the trajectory.

These two attributes are combined into a symbol with the first two digits
being the deviation of the solution quality and the last digit being the position
type. Note that the attributes are generic in the sense that they can be easily
retrieved/computed from any local-search-based algorithm albeit different prob-
lems. Being mindful that some target algorithms may have cycles and (random)
restarts, we intentionally add two additional symbols: ’CYCLE’ and ’JUMP’;
’CYCLE’ is used when the target algorithm returns to a position that has been
found previously, while ’JUMP’ is used when the local search is restarted.

In order to obtain the search trajectory for a given problem instance, we natu-
rally need to execute the target algorithm with a certain parameter configuration
and record all the solutions visited. We refer to this configuration as the initial
sequence configuration .

An example of the sequence representing the eil51 search trajectory in Fig. 1
is 15L-11L-09L-07L-07P-06P-04S-05L-J-21L-19L. Notice that after position 8,
the target algorithm performs a random restart, hence we add ’JUMP’ symbol
after position 8.

3.3 Similarity Calculation

Having represented trajectories by linear sequences, it is natural to use pairwise
sequence alignment to determine the similarity between a pair of trajectories. In
pairwise sequence alignment [9], the symbols of one sequence will be matched
with those of the other sequence while respecting the sequential order in the
two sequences. It can also allow gaps to occur if symbols do not match. There
are two kinds of alignment strategies: local and global. In local alignment, only
portions of the sequences are aligned, whereas global alignment aligns over the
entire length of the sequences. Because search trajectory sequences have varying
lengths, we find local alignment best fits our need.

To measure the similarity score between two search trajectory sequences, a
metric based on the best alignment is used. The matched symbol contributes a
positive score (+1), while a gap contributes a negative score (-1). The sum of
the scores is taken as the maximal similarity score of the two sequences. We may
find situations as follows: (a) a search trajectory sequence is a subsequence of
another one thus having a very high similarity score or (b) longer sequences get
higher similarity score. To avoid these situations, the final similarity score will
be divided by 1

2 × (|Sequence1| + |Sequence2|).
Our sequence alignment is implemented using standard dynamic programming

[9], with a complexity of O(n2). As an example, the sequence alignment for the
kroa100 and bier127 search trajectories from Fig. 1 is illustrated in Table 2.

138 Lindawati, H. Chuin Lau, and D. Lo

Table 2. Example of Sequence Alignment from 2 TSP instances search trajectory,
kroa100 and bier127

kroa100 19L 19P 18P 17P 16P 15P 14P 13P 11P 10P
| | | | | | | | |

bier127 19P 18P 17P 15P 13P 11P 10P 09P 08P

score +1 +1 +1 -1 +1 -1 +1 +1 +1

To cluster instances (see the subsection below), we need to compute similarity
scores for all possible pairs of training instances. Hence, the total time complexity
for sequence alignment is O(m2×n2), where n is the maximum sequence length
of the sequences and m is the number of instances in the training set.

3.4 Clustering Method

Here, our goal is to group similar instances according to their search trajec-
tory similarity. A typical clustering algorithm requires a distance measure be-
tween data points. For the distance measure we use 1

similarity score . After such
a measure is known, a standard clustering algorithm could be employed. For
our purpose, we adopt the well-known hierarchical clustering approach AGNES
(AGglomerative NESting) to cluster the instances [9]. AGNES works by plac-
ing each instance initially in a cluster of its own. It then iteratively merges two
closest clusters (i.e., a pair of clusters with the smallest distance) resulting in
lesser number of clusters of larger sizes. The process is repeated until all nodes
belong to the same cluster unless a termination condition applies. Examples of
termination conditions are minimal number of cluster is reached or the maximal
inter-cluster distance goes below a certain value. The complexity of AGNES is
O(n2) with n being the number of instances.

Since the learning is unsupervised, we need to determine the number of clus-
ters to be used. For this purpose, we apply the L method from [21] which makes
use of an evaluation graph where the x -axis is the number of clusters and the
y-axis is the value of the evaluation function at x clusters. The evaluation func-
tion can be any evaluation metric based on distance, similarity, error or quality.
In this paper, we use the average distance among all instances in two different
clusters. It determine the number of clusters by finding the point that has min-
imum root mean square error for both the left and right side. It is calculated
using the following formula:

c∗ = min

[
RMSE(L)

nL
+

RMSE(R)
nR

]
(1)

where:
Notation Definition
RMSE(L) root mean squared error of points in the left side of c
nL number of points in the left side of c
RMSE(R) root mean squared error of points in the right side of c
nR number of points in the right side of c

Instance-Based Parameter Tuning 139

This method only requires AGNES algorithm to be run once, since all the clusters
created by AGNES can be recorded in one run. And since we want to produce a
compact set of clusters, we limit the number of clusters to be less then 10. Thus,
for the x -axis, we only use the number of clusters from 1 to 10.

3.5 Training and Testing Phases

The steps involved in the training and testing phases are shown in Fig. 2 (which
are quite self-explanatory, and details are skipped in the interest of space).

Procedure TrainingPhase
Inputs: A: Target Algorithm;

I : Training instances;
Θ: Parameter Configuration Space;
xi: Initial Sequence Configuration;

Outputs: C: A set of clusters;
X: Parameter configurations for each cluster in C;

Method:
1: Let TRAJ = A search trajectory from A for I using xi;
2: Let SEQ = A transformation from TRAJ to sequence;
3: Let Score = A mapping from I x I to scores;
4: For each (i,j) in I X I

5: Let s1 = SEQ(i);
6: Let s2 = SEQ(j);
7: Score[s1,s2] = similarity(s1,s2);
8: Let C = Run AGNES using Score;
9: Let X = A mapping from clusters to configuration;
10: For each cluster c in Clusters;
11: X[c] = Run One-size-fits-all configurator on instances in c with respect to Θ;
12: Output C, X;

Procedure TestingPhase
Inputs: i: An Arbitrary Testing instance;

C: Set of clusters;
X: Parameter configurations for each cluster in C;

Outputs: BestConfig: A recommended configuration;
Method:
1: Let Score = A mapping from C to scores;
2: For each cluster c in C

3: Score[c] = Average similarity from i to each instance in c;
4: Let BestClust = c, where for all c′ not equals to c in C, Score[c] >= Score[c′];
5: Let BestConfig = X[BestClust];
6: Output BestConfig;

Fig. 2. Training and Testing Phase

140 Lindawati, H. Chuin Lau, and D. Lo

4 Experimental Design

In this section, we provide information on the experiments presented in the
following section. First, we present our experiment settings. Second, we present
our validity and statistical significant measurement. And finally, we describe the
low-level details of our experimental setup.

4.1 Experiment Settings

Here we briefly explain the target algorithm, one-size-fits-all configurator, bench-
mark instances and initial sequence configuration.

Target Algorithm. We used two different target algorithms respectively for
solving two different problems. The first algorithm is a variant of a well-known
Iterated Local Search (ILS) algorithm [15] for solving the classical TSP, as im-
plemented in [8]. It has 5 discrete-value parameters to be tuned. The second
algorithm is a new hybrid Simulated Annealing and Tabu Search (SA-TS) algo-
rithm for solving QAP (presented in [18]). It has 4 parameters; some are discrete
while the others are continuous.

One-Size-Fits-All Configurator. In order to derive meaningful experimen-
tal comparison, we deliberately chose to use ParamILS [13] as our configurator.
ParamILS is itself an iterated local search algorithm used for tuning discrete
parameters. Since ParamILS works only with discrete parameters, we first dis-
cretize the values of the parameters if the target algorithm has parameters that
assume continuous values.

Benchmark Instances. For TSP, we applied our target algorithm to 70 bench-
mark instances extracted from TSPLib. Fifty six random instances were used
as training instances and the remaining 14 instances as testing instances. The
problem size (the number of cities) varies from 51 to 3038. For QAP, we used
50 benchmark instances from QAPLib, and randomly picked 40 instances for
training and 10 for testing. The problem size (number of facilities) varied from
20 to 150.

Initial Sequence Configuration. The initial sequence configuration is a ran-
dom configuration from the configuration space Θ.

4.2 Validity and Statistical Significant Measurement

To ensure unbiased evaluation, we used a 5-fold cross-validation [9]. The over-
all result is recorded to be the average performance over all iterations. We also
performed a statistical test to compare the significance of our result. We per-
formed a t-test [17]; we consider p-value below 0.05 to be statistically significant
(confidence level 5%).

Instance-Based Parameter Tuning 141

4.3 Experimental Setup

All experiments were performed on a 1.7GHz Pentium-4 machine running Win-
dows XP. We measured runtime as the CPU time on this machine. As an input
to the one-size-fits-all configuratior, we fairly set cutoff times of 10 seconds per
run for TSP target algorithm and 100 seconds for QAP target algorithm and
allowed each configuration process to execute the target algorithm for a maxi-
mum of two CPU hours and to call the target algorithm for a maximum of 10 x
n times, where n is the number of instances in the cluster.

5 Empirical Evaluation

In this section, we present our experiment results on the effectiveness of CluPa-
Tra. First, we compare CluPaTra against one-size-fits-all configurator. Then, to
analyze the effectiveness of our generic feature, we compare it with simple spe-
cific feature. In addition to that, we also compare CluPaTra against an existing
classification of QAP instances based on distance and flow metrics [23]. Next
we analyze the effect of different initial sequence configurations to our result.
We also present the computational time of CluPaTra. Finally, a brief discussion
regarding the experiment is presented. For the entire experiment, we measure
the performance by using the performance metric described in Definition 3.

5.1 Performance Comparison

We evaluated the effectiveness of CluPaTra against the vanilla one-size-fits-all
configurator (ParamILS). In Fig. 3a, we show the performance achieved by the
two approaches for two target algorithms. This result is an average from each of
the 5-fold results. The average improvement using CluPaTra is 7.78% for TSP
training instances, 12.31% for TSP testing instances, 14% for QAP training
instances and 21.78% for QAP testing instances. CluPaTra performed better
and the difference was statistically significant.

5.2 Comparison on Feature Selection

To evaluate the effectiveness of the generic feature (i.e. search trajectory) used
by CluPaTra, we compared CluPaTra with a simple problem-specific feature
clustering for TSP and QAP, and a known instance classification for QAP.

First, we compared CluPaTra with simple specific feature clustering
(SpecFeat). For the specific feature cluster, we used the number of cities (for
TSP) [14] and the number of facilities (for QAP). Besides using different features,
steps in training and testing phase for both approaches are the same. In Fig. 3b,
we present the average performance achieved using 5-fold cross-validation by the
two approaches for two target algorithm. CluPaTra always perform better and
the differences are statistically significant.

Next, we compared CluPaTra against an existing well-studied classification
of QAP instances based on the distance and flow metrics, due to [23]. We refer

142 Lindawati, H. Chuin Lau, and D. Lo

(a)

3

3.5

4

4.5

5

5.5

6

Training Testing Training Testing

TSP QAP

P
er

fo
rm

an
ce

 M
et

ri
c

ParamILS CluPaTra

(b)

3

3.5

4

4.5

5

5.5

6

Training Testing Training Testing

TSP QAP

P
er

fo
rm

an
ce

 M
et

ri
c

SpecFeat CluPaTra

Fig. 3. Performance Comparison (a) CluPaTra and ParamILS, (b) CluPaTra and Spe-
cific Feature

to this as the Natural Cluster (Natural). (We conducted this comparison only
for QAP since the classification of QAP benchmark instances is already well-
studied and well characterized). Under this classification, QAP instances are
divided into 5 groups: (1) random and uniform distances and flows, (2) random
flows on grids, (3) real-life problems, (4) characteristics of real-life problems
and (5) non-uniform, random problems. Due to the target algorithm limitation
(it does not solve groups (4) and (5) problems), we can only provide results on
groups (1), (2) and (3). The average performance of 5 folds is shown in Table 3. It
shows that CluPaTra performs slightly better but the results are not statistically
significant. Nonetheless, we can claim that the performance of CluPaTra is not
inferior to tuning based on the natural classification.

Table 3. Comparison between CluPaTra and Natural Clustering

CluPaTra Natural Difference(%) p-value

Training 4.36 4.54 3.96 0.84108
Testing 4.13 4.14 0.24 0.61976

5.3 Sensitivity Analysis on Different Initial Sequence Configurations

Being mindful that our results may be biased depending on the initial sequence
configuration used (to find the trajectories), we consider here two different pa-
rameter configurations - a configuration derived from running ParamILS versus
a random configuration. Table 4 shows no statistically significant difference be-
tween these two initial sequence configurations.

5.4 Computational Results

The two most time-consuming processes in the training phase are those of calcu-
lating the similarity of trajectories and running the one-size-fits-all configurator

Instance-Based Parameter Tuning 143

Table 4. Comparison between Different Initial Sequence Configurations

Random ParamILS Different(%) p-value

TSP Training 4.74 4.66 1.69 0.94486
Testing 4.63 4.72 (1.95) 0.40181

QAP Training 4.36 3.97 8.94 0.1499
Testing 4.13 4.5 (8.96) 0.54516

(ParamILS) for each cluster. For the 56 TSP instances with a maximal sequence
length of 1560, the time taken for similarity computation is approximately 3 min-
utes; and for 40 QAP instances with a maximal sequence length of 520, the time
taken is approximately 1 minute. For all clusters in one fold, the time needed
to run ParamILS was approximately 44 minutes for TSP and 1 hour and 45
minutes for QAP. The total time needed to run the training phase for each fold
is hence approximately 48 minutes on TSP and 1 hour and 47 minutes on QAP.
While the time needed to run ParamILS alone for each fold is approximately 45
minutes on TSP and 1 hour and 40 minutes on QAP.

For the testing phase, we need to find the best cluster to fit the testing in-
stances. For TSP instances, it took approximately 1.5 minutes in total; while for
QAP instances, it took approximately 42 seconds.

5.5 Discussion

As shown from the results, compared to the vanilla one-size-fits-all configuration
ParamILS, CluPaTra gives a significant improvement in performance (with re-
spect to the performance metric we defined) with a small additional computation
time. The additional computation time is needed to cluster the instances (ap-
proximately 6.66% for TSP and 7% for QAP from ParamILS run time). Based
on this observation, we claim that dividing the instances into cluster using Clu-
PaTra before running one-size-fits-all configurator provides a better parameter
configuration for each instance and significantly improves the performance with
minor additional computational time.

The effectiveness of using the search trajectory as the generic feature is eval-
uated by comparing it with problem-specific features. For the simple specific
feature tried (number of cities for TSP and number of facilities for QAP), our
approach is significantly better. Furthermore for QAP, we benchmarked against
the natural clustering proposed in [23]. CluPaTra is statistically equivalent with
the existing natural clustering approach. This shows that search trajectory can
be used as a generic feature to cluster the instances without deep prior knowl-
edge of the problem structure. We also evaluated the effect of different initial
sequence configurations. Even though different initial sequence configurations
may create different search trajectories, the effect of different initial sequence
configurations is not significant.

144 Lindawati, H. Chuin Lau, and D. Lo

6 Conclusion and Future Works

In this paper, we presented CluPaTra, a computationally efficient approach for
generic instance-based configurator via clustering of patterns according to the in-
stance search trajectories. We verified our approach on TSP and QAP and ob-
served a significant improvement compared to a vanilla one-size-fits-all approach.

We see two limitations of our proposed approach. First, in terms of scope, our
approach can only be applied to target algorithms which are local-search-based,
since our approach uses search trajectory as feature. Second, there is an inher-
ent computational bottleneck introduced by the method used for sequence align-
ment whose worst-case time complexity is O(m2×n2) (where m is the number
of instances in the training set and n is the maximum length of the sequences).
As future work, one may investigate the effects of exploiting a less computation-
ally intensive sequence alignment algorithm such as [5] or limit the length of the
sequences.

There are also a number of challenges that remain to be explored. On the fea-
ture selection method, we proposed a single generic feature, search trajectory. It
will be interesting to see if the accuracy can be improved if we combine several
fitness landscape features, such as fitness distance correlation, run time distribu-
tion and density of local optima. On the metric and clustering method, we use
only one metric (sequence alignment) and one clustering method (agglomerative
clustering). It may also be interesting to learn how different possible metrics
and how different clustering methods can influence the performance. And on a
separate front, our approach is to learn to set parameter values based on training
instances. This contrasts and complements the volume of works which seek to
adaptively adjust the parameter configuration dynamically during search (such
as the works of reactive search by Battiti (e.g. [2]) and many others). In adaptive
scenario, the parameter values are modified in response to the search algorithm’s
behavior during its execution. It will be interesting to see if synergies can be ex-
ploited to create better instance-based configurators.

References

1. Adenso-Diaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Exper-
imental Design and Local Search. Operations Research 54(1), 99–114 (2006)

2. Battiti, R., Brunato, M., Campigotto, P.: Learning While Optimizing an Unknown
Fitness Surface. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II.
LNCS, vol. 5313, pp. 25–40. Springer, Heidelberg (2008)

3. Birattari, M., Stuzle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for
Configuring Metaheuristics. In: Genetic and Evolutionary Computation Confer-
ence, pp. 11–18. Morgan Kaufmann, San Francisco (2002)

4. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using Experimental Design to
Find Effective Parameter Setting for Heuristics. Journal of Heuristic 7(1), 77–97
(2001)

5. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 35(5), 1792–1797 (2004)

Instance-Based Parameter Tuning 145

6. Gagliolo, M., Schmidhuber, J.: Dynamic Algorithm Portfolio. In: Amato, C., Bern-
stein, D., Zilberstein, S. (eds.) Ninth International Symposium on Artificial Intel-
ligence and Mathematics (2006)

7. Halim, S., Yap, R., Lau, H.C.: Viz: A Visual Analysis Suite for Explaining Local
Search Behavior. In: 19th Annual ACM Symposium on User Interface Software
and Technology, pp. 57–66. ACM, New York (2006)

8. Halim, S., Yap, R., Lau, H.C.: An Integrated White+Black Box Approach for
Designing and Tuning Stochastic Local Search. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 332–347. Springer, Heidelberg (2007)

9. Han, J., Kamber, M.: Data Mining: Concept and Techniques, 2nd edn. Morgan
Kaufman, San Francisco (2006)

10. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundation and Application, 1st
edn. Morgan Kaufman, San Francisco (2004)

11. Hutter, F., Hamadi, Y.: Parameter Adjustment Based on Performance Prediction:
Towards an Instance-Aware Problem Solver. Technical Report, Microsoft Research
(2005)

12. Hutter, F., Hoos, H.H., Stutzle, T.: Automatic Algorithm Configuration based on
Local Search. In: 22nd National Conference on Artifical Intelligence, pp. 1152–1157.
AAAI Press, Menlo Park (2007)

13. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stutzle, T.: ParamILS: An Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

14. Lau, H.C., Xiao, F.: Enhancing the Speed and Accuracy of Automated Parameter
Tuning in Heuristic Design. In: 8th Metaheuristics International Conference (2009)

15. Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated Local Search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in
Operations Research & Management Science, vol. 57, pp. 320–353. Springer, Hei-
delberg (2003)

16. Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for
the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Compu-
tation 4, 337–351 (2000)

17. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers,
2nd edn. John Wiley & Son, Chichester (1999)

18. Ng, K.M., Gunawan, A., Poh, K.L.: A hybrid algorithm for the quadratic assign-
ment problem. In: International Conf. on Scientific Computing (2008)

19. Patterson, D.J., Lautz, H.: Auto-WalkSAT: A Self-Tuning Implementation of Walk-
SAT. Electronic Notes in Discrete Mathematics 9, 360–368 (2001)

20. Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations
Research 86(1), 473–490 (1999)

21. Salvador, S., Chan, P.: Determining the Number of Clusters/Segments in Hierarchi-
cal Clustering/Segmentation Algorithms. In: 16th IEEE International Conference
on Tools with Artificial Intelligence, pp. 576–584 (2004)

22. Srivastava, B., Mediratta, A.: Domain-dependent parameter selection of search-
based algorithms compatible with user performance criteria. In: 20th National
Conference on Artificial Intelligence, pp. 1386–1391. AAAI Press, Pennsylvania
(2005)

23. Taillard, E.D.: Comparison of Iterative Searches for The Quadratic Assignment
Problem. Location Science 3(2), 87–105 (1995)

24. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Al-
gorithm Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606
(2008)

Effective Probabilistic Stopping Rules for

Randomized Metaheuristics:
GRASP Implementations

Celso C. Ribeiro1, Isabel Rosseti1, and Reinaldo C. Souza2

1 Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil

2 Department of Electrical Engineering, Pontif́ıcia Universidade Católica do Rio de
Janeiro, Rio de Janeiro, RJ 22453-900, Brazil

{celso,rosseti}@ic.uff.br, reinaldo@ele.puc-rio.br

Abstract. The main drawback of most metaheuristics is the absence of
effective stopping criteria. Most implementations stop after performing
a given maximum number of iterations or a given maximum number of
consecutive iterations without improvement in the best known solution
value, or after the stabilization of the set of elite solutions found along
the search. We propose probabilistic stopping rules for randomized meta-
heuristics such as GRASP and VNS. We first show experimentally that
the solution values obtained by GRASP fit a Normal distribution. Next,
we use this approximation to obtain an online estimation of the number
of solutions that might be at least as good as the best known at the
time of the current iteration. This estimation is used to implement effec-
tive stopping rules based on the trade off between solution quality and
the time needed to find a solution that might improve the best found to
date. This strategy is illustrated and validated by a computational study
reporting results obtained with some GRASP heuristics.

1 Introduction and Motivation

Metaheuristics are general high-level procedures that coordinate simple heuris-
tics and rules to find good approximate solutions to computationally difficult
combinatorial optimization problems. Among them, we find simulated annealing,
tabu search, GRASP, VNS, and others. They are based on distinct paradigms
and offer different mechanisms to escape from locally optimal solutions, contrar-
ily to greedy algorithms or local search methods. Metaheuristics are among the
most effective solution strategies for solving combinatorial optimization prob-
lems in practice and they have been applied to a very large variety of areas and
situations. The customization (or instantiation) of some metaheuristic to a given
problem yields a heuristic to the latter.

A number of principles and building blocks blended into different and often
innovative strategies are common to different metaheuristics. Randomization
plays a very important role in algorithm design. Metaheuristics such as simu-
lated annealing, GRASP, VNS, and genetic algorithms rely on randomization to

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 146–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 147

sample the search space. Randomization can also be used to break ties, so as
that different trajectories can be followed from the same initial solution in mul-
tistart methods or to sample fractions of large neighborhoods. One particularly
important use of randomization appears in the context of greedy randomized
algorithms, which are based on the same principle of pure greedy algorithms,
but make use of randomization to build different solutions at different runs.

Greedy randomized algorithms are used in the construction phase of GRASP
heuristics or to create initial solutions to population metaheuristics such as ge-
netic algorithms or scatter search. Randomization is also a major component of
metaheuristics such as simulated annealing and VNS, in which a solution in the
neighborhood of the current one is randomly generated at each iteration.

The main drawback of most metaheuristics is often the absence of effective
stopping criteria. Most of their implementations stop after performing a given
maximum number of iterations or a given maximum number of consecutive it-
erations without improvement in the best known solution value, or after the
stabilization of the set of elite solutions found along the search. In some cases
the algorithm may perform an exaggerated and non-necessary number of itera-
tions, when the optimal solution is quickly found (as it often happens in GRASP
implementations). In other situations, the algorithm may stop just before the
iteration that could find an optimal solution. Dual bounds may be used to imple-
ment quality-based stopping rules, but they are often hard to compute or very
far from the optimal values, which make them unusable in both situations.

Bayesian stopping rules proposed in the past were not followed by enough
computational results to sufficiently validate their effectiveness or to give evi-
dence of their efficiency. Bartkutė et al. [1,2] made use of order statistics, keeping
the value of the k-th best solution found. A probabilistic criterion is used to infer
with some confidence that this value will not change further. The method pro-
posed for estimating the optimal value with an associated confidence interval is
implemented for optimality testing and stopping in continuous optimization and
in a simulated annealing algorithm for the bin-packing problem. The authors
observed that the confidence interval for the minimum value can be estimated
with admissible accuracy when the number of iterations is increased.

Boender and Rinnooy Kan [3] observed that the most efficient methods for
global optimization are based on starting a local optimization routine from an
appropriate subset of uniformly distributed starting points. As the number of
local optima is frequently unknown in advance, it is a crucial problem when to
stop the sequence of sampling and searching. By viewing a set of observed minima
as a sample from a generalized multinomial distribution whose cells correspond to
the local optima of the objective function, they obtain the posterior distribution
of the number of local optima and of the relative size of their regions of attraction.
This information is used to construct sequential Bayesian stopping rules which
find the optimal trade off between reliability and computational effort.

In Dorea [5] a stochastic algorithm for estimating the global minimum of a
function is described and two types of stopping rules are derived. The first is
based on the estimation of the region of attraction of the global minimum, while

148 C.C. Ribeiro, I. Rosseti, and R.C. Souza

the second is based on the existence of an asymptotic distribution of properly
normalized estimators. Hart [12] described sequential stopping rules for several
stochastic algorithms that estimate the global minimum of a function. Stopping
rules are described for pure random search and stratified random search. These
stopping rules use an estimate of the probability measure of the ε-close points
to terminate these algorithms when a specified confidence has been achieved.
Numerical results indicate that these stopping rules require fewer samples and
are more reliable than the previous stopping rules for these algorithms. They
can also be applied to multistart local search and stratified multistart local
search. Numerical results on a standard test set show that these stopping rules
can perform as well as Bayesian stopping rules for multistart local search. The
authors claimed an improvement on the results in [5].

Orsenigo and Vercellis [15] developed a Bayesian framework for stopping rules
aimed at controlling the number of iterations in a GRASP heuristic. Two dif-
ferent prior distributions are proposed and stopping conditions are explicitly
derived in analytical form. The authors claimed that the stopping rules lead to
an optimal trade off between accuracy and computational effort, saving from
unnecessary iterations and still achieving good approximations.

In another context, stopping rules have also been discussed in [6,28]. The
statistical estimation of optimal values for combinatorial optimization problems
as a way to evaluate the performance of heuristics was also addressed in [16,25].

We propose effective probabilistic stopping rules for randomized metaheuris-
tics. In the next section, we give a template for a GRASP heuristic and we
describe the optimization problems and test instances that have been used in
our computational experiments. In Section 3, we assume that the solution val-
ues obtained by a GRASP procedure fit a Normal distribution. This hypothesis
is validated experimentally for all problems and test instances described in the
previous section. In Section 4, we first show how this Normal approximation can
be used to give an online estimation of the number of solutions that might be
at least as good as the currently best known solution. This estimation is used to
implement effective stopping rules based on the time needed to find a solution
that might improve the incumbent. The robustness of this strategy is illustrated
and validated by a computational study reporting results obtained with some
GRASP implementations. Concluding remarks are made in the last section.

2 GRASP and Experimental Environment

We consider in what follows a general combinatorial optimization problem of
minimizing f(x) over all solutions x ∈ F , which is defined by a ground set
E = {e1, . . . , en}, a set of feasible solutions F ⊆ 2E , and an objective function
f : 2E → R. The ground set E, the objective function f , and the constraints
defining the set of feasible solutions F are defined and specific for each problem.
We seek an optimal solution x∗ ∈ F such that f(x∗) ≤ f(x), ∀x ∈ F .

GRASP (which stands for greedy randomized adaptive search procedures) [8],
is a multi-start metaheuristic, in which each iteration consists of two phases:
construction and local search. The construction phase builds a feasible solution.

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 149

The local search phase investigates its neighborhood until a local minimum is
found. The best overall solution is kept as the result; see [18,21,19,20].

The pseudo-code in Figure 1 gives a template illustrating the main blocks of
a GRASP procedure for minimization, in which MaxIterations iterations are
performed and Seed is used as the initial seed for the pseudo-random number
generator.

procedure GRASP(MaxIterations, Seed)
1. Set f∗ ←∞;
2. for k = 1, . . . , MaxIterations do
3. x← GreedyRandomizedAlgorithm(Seed);
4. x← LocalSearch(x);
5. if f(x) < f∗ then begin; x∗ ← x; f∗ ← f(x); end;
6. fk ← f(x);
7. end;
8. return x∗;
end.

Fig. 1. Template of a GRASP heuristic for minimization

An especially appealing characteristic of GRASP is the ease with which it
can be implemented. Few parameters need to be set and tuned, and therefore
development can focus on implementing efficient data structures to assure quick
iterations. Basic implementations of GRASP rely exclusively on two parameters:
the stopping criterion (usually set as a predefined number of iterations) and
the parameter used to limit the size of the restricted candidate list within the
greedy randomized algorithm used by the construction phase. In spite of its
simplicity and ease of implementation, GRASP is a very effective metaheuristic
and produces the best known solutions for many problems, see [9,10,11].

Two combinatorial optimization problems have been used in the experiments
reported in this paper: the 2-path network design problem and the p-median
problem. They are both described below.

Given a connected undirected graph G = (V, E) with non-negative weights
associated with its edges, together with a set of formed by K pairs of origin-
destination nodes, the 2-path network design problem consists of finding a min-
imum weighted subset of edges containing a path formed by at most two edges
between every origin-destination pair. Applications can be found in the design
of communication networks, in which paths with few edges are sought to en-
force high reliability and small delays. Its decision version was proved to be
NP-complete by Dahl and Johannessen [4]. The GRASP heuristic that has been
used in the computational experiments was firstly presented in [23,24]. Data of
the four instances involved in the experiments are summarized in Table 1.

Given a set F of m potential facilities, a set U of n customers, a distance
function d : U × F → R, and a constant p ≤ m, the p-median problem consists
of determining which p facilities to open so as to minimize the sum of the dis-
tances from each costumer to its closest open facility. It is a well-known NP-hard

150 C.C. Ribeiro, I. Rosseti, and R.C. Souza

Table 1. Test instances for the 2-path network design problem

Instance |V | |E| K

2pndp50 50 1,225 500
2pndp70 70 2,415 700
2pndp90 90 4,005 900
2pndp200 200 19,900 2000

problem [14], with numerous applications in location [26] and clustering [17,27].
The GRASP heuristic that has been used in the computational experiments with
the p median problem was firstly presented in [22]. Data of the four instances
involved in the experiments are summarized in Table 2.

Table 2. Test instances for the p-median problem

Instance m n p

pmed10 200 800 67
pmed15 300 1800 100
pmed25 500 5000 167
pmed30 600 7200 200

3 Normal Approximation for GRASP Iterations

We assume that the solution values obtained by a GRASP procedure fit a Normal
distribution. This hypothesis is validated experimentally for all problems and test
instances described in the previous section. Let f1, . . . , fN be a sample formed
by all solution values obtained along N GRASP iterations. We assume that the
null (H0) and alternative (H1) hypotheses are:

H0: the sample f1, . . . , fN follows a Normal distribution; and
H1: the sample f1, . . . , fN does not follow a Normal distribution.

The chi-square test is the most commonly used to determine if a given set
of observations fits a specified distribution. It is very general and can be used
to fit both discrete or continuous distributions [13]. First, a histogram of the
sample data is estimated. Next, the observed frequencies are compared with
those obtained from the specified density function. If the histogram is formed by
k cells, let oi and ei be the observed and expected frequencies for the i-th cell,
with i = 1, . . . , k. The test consists of computing

D =
k∑

i=1

(oi − ei)2

ei
. (1)

It can be shown that, under the null hypothesis, D follows a chi-square distri-
bution with k−1 degrees of freedom. Since the mean and the standard deviation

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 151

are unknown, they should be estimated from the sample. As a consequence, two
degrees of freedom are lost to compensate for that. The null hypothesis that the
observations come from the specified distribution cannot be rejected at a level
of significance α if D is less than χ2

[1−α;k−3].
Let m and S be, respectively, the average and the standard deviation of the

sample f1, . . . , fN . A normalized sample f ′
i = (fi−m)/S is obtained by subtract-

ing the average m from each value fi and dividing the result by the standard
deviation S, for i = 1, . . . , N . Then, the null hypothesis that the original sample
fits a Normal distribution with mean m and standard deviation S is equivalent
to compare the normalized sample with the N(0, 1) distribution.

We show below that the solution values obtained along N GRASP iterations
fit a Normal distribution, for all problems and test instances presented in Sec-
tion 2. In all experiments, we used α = 0.1 and k = 14, corresponding to a
histogram with the intervals (−∞,−3), [−3.0,−2.5), [−2.5,−2.0), [−2.0,−1.5),
[−1.5,−1.0), [−1,−0.5), [−0.5, 0.0), [0.0, 0.5), [0.5, 1.0), [1.0, 1.5), [1.5, 2.0),
[2.0, 2.5), [2.5, 3.0), and [3.0,∞). For each instance, we illustrate the Normal
fittings after N = 50, 100, 500, 1000, 5000, and 10000 iterations.

Table 3 reports on the application of the chi-square test to the four instances
of the 2-path network design problem after N = 50 iterations. We observe that
already after as few as 50 iterations the solution values obtained by the heuristic
fit very close a Normal distribution.

To further illustrate that this close fitting is maintained when the number of
iterations increase, we present in Table 4 the main statistics for each instance
and for increasing values of the number N = 50, 100, 500, 1000, 5000, and 10000
of iterations: mean, standard deviation, skewness (η3), and kurtosis (η4). The
skewness and the kurtosis are computed as follows [7]:

η3 =

√
N ·∑N

i=1(fi − m)3

[
∑N

i=1(fi − m)2]3/2
and η4 =

N ·∑N
i=1(fi − m)4

[
∑N

i=1(fi − m)2]2
.

The skewness measures the symmetry of the original data, while the kurtosis
measures the shape of the fitted distribution. Ideally, they should be equal to 0
and 3, respectively, in the case of a perfect Normal fitting. We first notice that
the mean value consistently converges very quickly to a steady-state value when
the number of iterations increases. Furthermore, the mean after 50 iterations
is already very close to that of the Normal fitting after 10000 iterations. The
skewness values are consistently very close to 0, while the measured kurtosis of
the sample is always close to 3.

Table 3. Chi-square test for 90% confidence level: 2-path network design problem

Instance Iterations D χ2
[1−α;k−3]

2pndp50 50 0.398049 17.275000
2pndp70 50 0.119183 17.275000
2pndp90 50 0.174208 17.275000
2pndp200 50 0.414327 17.275000

152 C.C. Ribeiro, I. Rosseti, and R.C. Souza

Table 4. Statistics for Normal fittings: 2-path network design problem

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 372.920000 7.583772 0.060352 3.065799
100 373.550000 7.235157 -0.082404 2.897830

2pndp50 500 373.802000 7.318661 -0.002923 2.942312
1000 373.854000 7.192127 0.044952 3.007478
5000 374.031400 7.442044 0.019068 3.065486
10000 374.063500 7.487167 -0.010021 3.068129

50 540.080000 9.180065 0.411839 2.775086
100 538.990000 8.584282 0.314778 2.821599

2pndp70 500 538.334000 8.789451 0.184305 3.146800
1000 537.967000 8.637703 0.099512 3.007691
5000 538.576600 8.638989 0.076935 3.016206
10000 538.675600 8.713436 0.062057 2.969389

50 698.100000 9.353609 -0.020075 2.932646
100 700.790000 9.891709 -0.197567 2.612179

2pndp90 500 701.766000 9.248310 -0.035663 2.883188
1000 702.023000 9.293141 -0.120806 2.753207
5000 702.281000 9.149319 0.059303 2.896096
10000 702.332600 9.196813 0.022076 2.938744

50 1599.240000 13.019309 0.690802 3.311439
100 1600.060000 14.179436 0.393329 2.685849

2pndp200 500 1597.626000 13.052744 0.157841 3.008731
1000 1597.727000 12.828035 0.083604 3.009355
5000 1598.313200 13.017984 0.057133 3.002759
10000 1598.366100 13.066900 0.008450 3.019011

Figure 3 displays the Normal distributions fitted for the three first instances
for each number of iterations. Together with the above statistics, these plots illus-
trate the robustness of the Normal fittings to the solution values obtained along
the iterations of the GRASP heuristic for the 2-path network design problem.

Table 5 reports the application of the chi-square test to the four instances
of the p-median problem after N = 50 iterations. As before, we observe that
already after as few as 50 iterations the solution values obtained by the heuristic
for this problem also fit very close a Normal distribution.

Table 6 gives the same statistics for each instance of the p-median problem
and for increasing values of the number N = 50, 100, 500, 1000, 5000, and
10000 of iterations. As for the previous problem, we notice that the mean value
consistently converges very quickly to a steady-state value when the number of
iterations increases. Furthermore, the mean after 50 iterations is already very
close to that of the Normal fitting after 10000 iterations. Once again, the skew-
ness values are consistently very close to 0, while the measured kurtosis of the
sample is always close to 3. Figure 4 displays the Normal distributions fitted for
the three first instances for each number of iterations. Once again, these results
illustrate the robustness of the Normal fittings to the solution values obtained
along the iterations of the GRASP heuristic for the p-median problem.

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 153

Table 5. Chi-square test for 90% confidence level: p-median problem

Instance Iterations D χ2
[1−α;k−3]

pmed10 50 0.196116 17.275000
pmed15 50 0.167526 17.275000
pmed25 50 0.249443 17.275000
pmed30 50 0.160131 17.275000

Table 6. Statistics for Normal fittings: p-median problem

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 1622.020000 57.844097 -0.179163 3.255009
100 1620.890000 59.932611 -0.364414 3.304588

pmed10 500 1620.332000 63.484721 0.111186 3.142248
p = 67 1000 1619.075000 64.402076 0.074091 2.964164

5000 1617.875200 63.499795 0.043152 2.951273
10000 1618.415400 63.415181 0.087909 2.955408

50 2170.500000 58.880642 -0.041262 1.949923
100 2168.450000 65.313609 0.270892 2.693553

pmed15 500 2173.060000 65.881958 0.202400 2.828056
p = 100 1000 2173.484000 65.590272 0.129234 2.784433

5000 2174.860000 64.639604 0.086450 2.940204
10000 2175.651600 65.101495 0.096328 2.954639

50 2277.780000 54.782220 0.330959 3.028905
100 2279.610000 58.034799 0.360133 3.466265

pmed25 500 2271.546000 56.029848 0.219415 3.311486
p = 167 1000 2274.182000 56.915366 0.081878 3.068963

5000 2276.305200 56.985195 -0.041096 3.108109
10000 2277.151600 57.583524 -0.041570 3.073374

50 2434.660000 57.809899 -0.130383 2.961249
100 2446.560000 57.292464 -0.259531 2.667470

pmed30 500 2444.638000 56.109134 -0.189935 2.691882
p = 200 1000 2441.465000 57.265005 -0.053183 2.858399

5000 2441.340400 54.941836 -0.013377 3.054188
10000 2441.277700 54.978827 0.006407 3.066879

Similar experiments have been performed for other problems and test in-
stances, such as the quadratic assignment and the set k-covering problems, with
results of the same caliber. We conclude this section by observing that the null
hypothesis cannot be rejected with 90% of confidence. Therefore, we may ap-
proximate the solution values obtained by a GRASP heuristic by a Normal
distribution that can be progressively fitted and improved as more iterations are
performed. This approximation will be used in the next section to establish and
validate a probabilistic stopping rule for GRASP heuristics.

4 Probabilistic Stopping Rule

We show in this section that the Normal distribution fitted to the solution values
obtained along the GRASP iterations can be used to give an online estimation of

154 C.C. Ribeiro, I. Rosseti, and R.C. Souza

Table 7. Stopping criterion vs. estimated and counted number of solutions at least as
good as the incumbent after N = 1, 000, 000 additional iterations

Problem Instance Threshold Probability Estimation Count

β F k
X(UB) N̂≤ N≤

10−3 0.000701657 701 738
2pndp50 10−4 0.000001326 1 0

10−5 0.000001326 1 0
10−3 0.000655383 655 465

2-path 2pndp70 10−4 0.000036147 36 26
10−5 0.000005363 5 4
10−3 0.000322033 322 190

2pndp90 10−4 0.000014878 14 7
10−5 0.000001265 1 0
10−3 0.000525545 525 503

2pndp200 10−4 0.000098792 98 95
10−5 0.000000853 0 1

10−3 0.000181323 181 47
pmed10 10−4 0.000088594 88 16

10−5 0.000007667 7 0
10−3 0.000331692 331 123

p-median pmed15 10−4 0.000028636 28 7
10−5 0.000005236 5 0
10−3 0.000293215 293 211

pmed25 10−4 0.000053319 53 31
10−5 0.000008891 8 3
10−3 0.000569064 569 310

pmed30 10−4 0.000028080 28 8
10−5 0.000000790 0 0

the number of solutions that might be at least as good as the best known solution
at the time of the current iteration. This estimation is used to implement an
effective stopping rule based on the time needed to find a solution that might
improve the incumbent. The robustness of the proposed strategy is illustrated
and validated by a computational study reporting the results obtained.

We denote by X the random variable representing the value of the local min-
imum obtained at each iteration. We recall that f1, . . . , fk is a sample formed
by the solution values obtained along the k first iterations. Let mk and Sk be,
respectively, the estimated mean and standard deviation of f1, . . . , fk. As al-
ready established, we assume that X fits a Normal distribution N(mk, Sk) with
average mk and standard deviation Sk, whose probability density function and
cumulative probability distribution are, respectively, fk

X(.) and F k
X(.).

Let UBk be the value of the best solution found along the k first iterations.
Therefore, the probability of finding a solution value smaller than or equal to
UBk in the next iteration can be estimated by F k

X(UBk) =
∫ UBk

−∞ fk
X(τ)dτ . This

estimation is periodically updated or whenever the best solution value improves.

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 155

procedure GRASP(β, Seed)
1. Set f∗ ←∞;
2. Set k← 0;
3. repeat
4. x← GreedyRandomizedAlgorithm(Seed);
5. x← LocalSearch(x);
6. if f(x) < f∗ then begin; x∗ ← x; f∗ ← f(x); end;
7. k← k + 1;
8. fk ← f(x);

9. UBk ← f∗;
10. Update the average mk and the standard deviation Sk of f1, . . . , fk;

11. Compute the estimate F k
X(UBk) = F k

X(f∗) =
∫ f∗
−∞ fk

X(τ)dτ ;

12. until F k
X(f∗) < β;

13. return x∗;
end.

Fig. 2. Template of a GRASP heuristic for minimization with the probabilistic stopping
criterion

We propose the following stopping rule: for any given threshold β, stop the
GRASP iterations whenever F k

X(UBk) ≤ β. In other words, the iterations will
be interrupted whenever the probability of finding a solution at least as good as
the current best becomes less than or equal to β.

To assess the effectiveness of this stopping rule, we have devised and per-
formed the following experiment for each problem and test instance considered in
Section 3. For each value of the threshold β = 10−3, 10−4, and 10−5, we run the
GRASP heuristic until F k

X(UBk) becomes less than or equal to β. Let us denote
by k the iteration counter when this condition is met and by UB the best known
solution at this time. At this point, we may estimate by N̂≤ = �N ·F k

X(UB)� the
number of solutions whose value will be at least as good as UB if N additional
iterations are performed. We empirically set N = 1, 000, 000. Next, we perform
N additional iterations and we count the number N≤ of solutions whose value
is less than or equal to F k

X(UB).
The computational results displayed in Table 7 show that N̂≤ = �N ·F k

X(UB)�
is a good estimation for the number N≤ of solutions that might be found after N
additional iterations whose value is less than or equal to the best value at the time
the algorithm would stop for each threshold value β. The probability F k

X(UBk)
may be used to estimate the number of iterations that must be performed by
the algorithm to find a new solution at least as good as the currently best one.
Since the user is able to account for the average time taken by each GRASP
iteration, the threshold defining the stopping criterion can either be fixed or
determined online so as to bound the computation time when the probability of
finding improving solutions becomes very small.

The pseudo-code in Figure 2 extends the previous template of a GRASP pro-
cedure for minimization, implementing the termination rule based on stopping

156 C.C. Ribeiro, I. Rosseti, and R.C. Souza

(a) 50-node instance

0.000

0.010

0.020

0.030

0.040

0.050

0.060

 350 360 370 380 390 400

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(b) 70-node instance

0.000

0.010

0.020

0.030

0.040

0.050

 510 520 530 540 550 560 570

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(c) 90-node instance

0.000

0.010

0.020

0.030

0.040

0.050

 670 680 690 700 710 720 730

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

Fig. 3. Fitted probability density functions for the 2-path network design problem

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 157

(a) Instance pmed10 with p = 67

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(b) Instance pmed15 with p = 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(c) Instance pmed25 with p = 167

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

Fig. 4. Fitted probability density functions for the p-median problem

158 C.C. Ribeiro, I. Rosseti, and R.C. Souza

the GRASP iterations whenever the probability F k
X(UBk) of improving the best

known solution value gets smaller than or equal to β. Lines 8 and 9 update the
sample f1, . . . , fk and the best known solution value UBk = f∗ at each iteration
k. The mean mk and the standard deviation sk of the fitted Normal distribu-
tion in iteration k are estimated in line 10. The probability of finding a solution
whose value is better than the currently best known solution value is computed
in line 11 and used in the stopping criterion implemented in line 12.

The threshold β used to implement the stopping criterion may either be a
fixed parameter or iteratively computed. In the last case, it will be computed
considering the probability of finding an improving solution (or, alternatively, the
estimated number of iterations to find an improving solution) and the average
computation time per iteration.

We also notice that since the average time consumed by each GRASP iteration
is known, another promising avenue of research consists in investigating stopping
rules based on estimating the amount of time needed to probabilistically improve
the best solution found by each percent point.

5 Concluding Remarks

The main drawback of most metaheuristics is often the absence of effective stop-
ping criteria. Most of their implementations stop after performing a given maxi-
mum number of iterations or a given maximum number of consecutive iterations
without improvement in the best solution value, or after the stabilization of a
population of solutions or of a set of elite solutions found along the search. In
some cases, the algorithm may perform an exaggerated and non-necessary num-
ber of iterations. In other situations, the algorithm may stop just before the
iteration that could find a better, or even optimal, solution.

Bayesian stopping rules proposed in the past were not followed by enough com-
putational results to sufficiently validate their effectiveness or to give evidence of
their efficiency. In this paper, we proposed effective probabilistic stopping rules
for randomized metaheuristics.

We first showed experimentally that the solution values obtained by a GRASP
heuristic fit a Normal distribution. Next, we used the above Normal approxima-
tion to estimate the probability of finding a solution at least as good as the
currently best known solution at any iteration. With this probability, we have
been able to estimate the number of iterations that must be performed by the
algorithm to find a new solution at least as good as the currently best one.

We proposed a stopping rule based on the trade off between this estimation
and the time needed to find a solution that might improve the current best
one. GRASP iterations will be interrupted whenever the probability of finding
a solution at least as good as the current best becomes smaller than or equal a
certain threshold.

The robustness of this strategy was illustrated and validated by a computa-
tional study reporting results obtained with GRASP implementations for two
combinatorial optimization problems. Similar results already obtained for other

Effective Probabilistic Stopping Rules for Randomized Metaheuristics 159

problems, such as the quadratic assignment and the set k-covering problems,
will be reported elsewhere in an extended version of this work.

Since the average time consumed by each GRASP iteration is known, another
promising avenue of research consists in investigating stopping rules based on
estimating the amount of time needed to probabilistically improve the best so-
lution found by each percent point. We notice that the approach proposed in
this paper can be extended and applied not only to GRASP, but also to other
metaheuristics that rely on randomization to sample the search space.

Acknowledgments. The authors are grateful to M.G.C. Resende and R. Wer-
neck for making available their GRASP code for solving the p-median problem.

References

1. Bartkutė, V., Felinskas, G., Sakalauskas, L.: Optimality testing in stochastic and
heuristic algorithms. Technical report, Vilnius Gediminas Technical University, pp.
4–10 (2006)

2. Bartkutė, V., Sakalauskas, L.: Statistical inferences for termination of markov type
random search algorithms. Journal of Optimization Theory and Applications 141,
475–493 (2009)

3. Boender, C.G.E., Rinnooy Kan, A.H.G.: Bayesian stopping rules for multistart
global optimization methods. Mathematical Programming 37, 59–80 (1987)

4. Dahl, G., Johannessen, B.: The 2-path network problem. Networks 43, 190–199
(2004)

5. Dorea, C.: Stopping rules for a random optimization method. SIAM Journal on
Control and Optimization 28, 841–850 (1990)

6. Duin, C., Voss, S.: The Pilot method: A strategy for heuristic repetition with
application to the Steiner problem in graphs. Networks 34, 181–191 (1999)

7. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley,
New York (2000)

8. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization 6, 109–133 (1995)

9. Festa, P., Resende, M.G.C.: GRASP: An annotated bibliography. In: Ribeiro, C.C.,
Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 325–367. Kluwer Aca-
demic Publishers, Dordrecht (2002)

10. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP, Part I: Algo-
rithms. International Transactions in Operational Research 16, 1–24 (2009)

11. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP, Part II: Appli-
cations. International Transactions in Operational Research 16, 131–172 (2009)

12. Hart, W.E.: Sequential stopping rules for random optimization methods with ap-
plications to multistart local search. SIAM Journal on Optimization 9, 270–290
(1998)

13. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York
(1991)

14. Kariv, O., Hakimi, L.: An algorithmic approach to nework location problems, Part
II: The p-medians. SIAM Journal of Applied Mathematics 37, 539–560 (1979)

15. Orsenigo, C., Vercellis, C.: Bayesian stopping rules for greedy randomized proce-
dures. Journal of Global Optimization 36, 365–377 (2006)

160 C.C. Ribeiro, I. Rosseti, and R.C. Souza

16. Rardin, R.L., Uzsoy, R.: Experimental evaluation of heuristic optimization algo-
rithms: A tutorial. Journal of Heuristics 7, 261–304 (2001)

17. Rao, M.R.: Cluster analysis and mathematical programming. Journal of the Amer-
ican Statistical Association 66, 622–626 (1971)

18. Resende, M.G.C., Ribeiro, C.C.: GRASP. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies, 2nd edn. Springer, Heidelberg (to appear)

19. Resende, M.G.C., Ribeiro, C.C.: A GRASP with path-relinking for private virtual
circuit routing. Networks 41, 104–114 (2003)

20. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: Recent advances
and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics:
Progress as Real Problem Solvers, pp. 29–63. Springer, Heidelberg (2005)

21. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In: Gendreau, M., Potvin, J.-Y. (eds.)
Handbook of Metaheuristics, 2nd edn., pp. 283–319. Springer, Heidelberg (2010)

22. Resende, M.G.C., Werneck, R.F.: A hybrid heuristc for the p-median problem.
Journal of Heuristics 10, 59–88 (2004)

23. Ribeiro, C.C., Rosseti, I.: A parallel GRASP heuristic for the 2-path network design
problem. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400,
pp. 922–926. Springer, Heidelberg (2002)

24. Ribeiro, C.C., Rosseti, I.: Efficient parallel cooperative implementations of GRASP
heuristics. Parallel Computing 33, 21–35 (2007)

25. Serifoglu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid
flow-shops: A genetic algorithm approach. Journal of the Operational Research
Society 55, 504–512 (2004)

26. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: A survey. Manage-
ment Science 29, 482–511 (1983)

27. Vinod, H.D.: Integer programming and the theory of groups. Journal of the Amer-
ican Statistical Association 64, 506–519 (1969)

28. Voss, S., Fink, A., Duin, C.: Looking ahead with the Pilot method. Annals of
Operations Research 136, 285–302 (2005)

A Classifier-Assisted Framework for Expensive
Optimization Problems: A Knowledge-Mining

Approach

Yoel Tenne, Kazuhiro Izui, and Shinji Nishiwaki

Kyoto University, Kyoto, Japan
yoel.tenne@ky3.ecs.kyoto-u.ac.jp,
{izui,shinji}@prec.kyoto-u.ac.jp

Abstract. Real-world engineering design optimization problems often rely on
computationally-expensive simulations to replace laboratory experiments. A com-
mon optimization approach is to approximate the expensive simulation with a
computationally cheaper model resulting in a model-assisted optimization algo-
rithm. A prevalent issue in such optimization problems is that the simulation may
crash for some input vectors, a scenario which increases the optimization diffi-
culty and results in wasted computer resources. While a common approach to
handle such vectors is to assign them a penalized fitness and incorporate them
in the model training set this can result in severe model deformation and degrade
the optimization efficacy. As an alternative we propose a classifier-assisted frame-
work where a classifier is incorporated into the optimization search and biases the
optimizer away from vectors predicted to crash to simulator and with no model
deformation. Performance analysis shows the proposed framework improves per-
formance with respect to the penalty approach and that it may be possible to
’knowledge-mine’ the classifier as a post-optimization stage to gain new insights
into the problem being solved.

1 Introduction

Nowadays researchers replace real-world laboratory experiments with computer simu-
lations to reduce the time and cost of the engineering design process. In this setup the
design process is effectively an optimization problem having two distinct features:

a) Objective values are obtained from the simulation which is often a legacy code
or a commercial software available only as an executable. As such the simulation
is treated as a ‘black-box’ function (no analytic expression for the function or its
derivatives).

b) Each simulation run is expensive, that is, it requires large computational resources
(anywhere from minutes to weeks of CPU time) and so only a small number of
evaluations can be made.

Accordingly, these scenarios are often referred to as expensive optimization problems
[26].

Besides the two issues mentioned above such problems introduce another challenge:
the simulation may ‘crash’ and fail to return an objective value (fitness) for some vectors

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 161–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 Y. Tenne, K. Izui, and S. Nishiwaki

(candidate designs). We refer to such vectors as simulator-infeasible (SI) while vectors
for which the simulation completes successfully are simulator-feasible (SF). Encounter-
ing SI vectors during an optimization search has two main implications: a) the objective
function is now discontinuous which is problematic for optimizers requiring continuous
functions (such as SQP) and b) such vectors can consume a large portion of the opti-
mization budget without improving the fitness landscape and so the optimization search
may stagnate.

To effectively handle such SI vectors we propose a framework which uses both a
model and a classifier during the optimization search. The classifier is continuously
trained using all evaluated vectors (SI and SF) and its role is to predict if a new candidate
solution is SI or not. The framework then leverages on the classifier’s prediction to bias
the search to vectors predicted to be SF. Analysis also shows that besides improving the
search the classifier can also provide new insights into the problem being solved.

The remainder of this paper is as follows: Sect. 2 reviews expensive optimization
problems and relevant computational intelligence approaches, Sect. 3 describes the
proposed framework, Sect. 4 gives a detailed performance analysis and lastly Sect. 5
summarizes the paper.

2 Background

2.1 Expensive Optimization Problems

Expensive optimization problems, that is, where objective values are obtained from a
computer simulation with a lengthy run time, arise in diverse domains across engi-
neering and science. The high computational cost of each simulator run implies that
only a small number of such function evaluations can be made during the entire search.
This is particularly challenging for a computational intelligence (CI) optimizer (such as
an evolutionary algorithm (EA), particle swarm optimizer (PSO), simulated annealing
(SA) and alike) which often requires many thousands of function evaluations to obtain
a good solution.

A common approach to combat expensive evaluations is modelling, that is, where a
computationally cheaper approximation of the objective function is trained using pre-
viously evaluated solutions and is used during the search instead of calling the true
(expensive) function. Examples of models include quadratics [18], radial basis func-
tions (RBFs) [3], artificial neural networks (ANNs) [1] and Kriging [7]. CI algorithms
which use models are commonly termed model-assisted or surrogate-assisted and the
literature is rich with variants [26].

While models alleviate the bottleneck of a high computational cost they introduce a
challenge of inaccurate objective values: since function evaluations are expensive the
training sample is small which leads to an inaccurate model [5]. Model inaccuracy
implies that the optimizer is searching on a deformed landscape with a possibly false
optimum (an optimum of the model which is not an optimum of the true expensive func-
tion) [12]. As such model-assisted algorithms must manage this inherent inaccuracy in
order to be effective. One approach to handle model inaccuracy is with the trust-region
(TR) framework which has a long standing history in nonlinear programming (and unre-
lated to expensive black-box optimization) [5]. The TR is a sequential approach where

A Classifier-Assisted Framework for Expensive Optimization Problems 163

starting from an initial guess x(0) then at each iteration i = 0 ,1 , . . . a model is trained
and the framework performs a trial step where it seeks an optimum of the model m(x)
constrained to the TR T where

T = {x : ‖x−x(i)‖2 � Δ} , (1)

where Δ is the TR radius. This defines the constrained optimization problem

min m(x)
s.t. x ∈ T

(2)

which gives a minimizer xm . The success of the trial step is gauged by the merit value

ρ =
f (x(i))− f (xm)

m(x(i))−m(xm)
, (3)

where ρ > 0 indicates the trial was successful. The TR is then updated based on ρ , for
example the TR is expanded if ρ > 0 but is contracted otherwise [19, 25].

2.2 Simulator Infeasible Vectors

As mentioned in Sect. 1 this study focuses on expensive optimization problems with
vectors which ‘crash’ the simulation. Such vectors pose the risk of consuming a sig-
nificant portion of the optimization budget without providing new objective values, a
scenario which can lead to search stagnation. Several studies have acknowledged the
difficulties such vectors induce, for example [14] mentioned ‘inputs combinations which
are likely to crash the simulator’, [20] studied a multidisciplinary optimization problem
with ‘unevaluable points’ which ‘cause the simulator to crash’, [6] mentioned ‘virtual
constraints’ where ‘function evaluations fail at certain points’ and additional examples
include [2, 10].

With respect to handling such vectors [20] proposed using a classifier to screen vec-
tors before evaluating them. Those classified as SI were assigned a ‘death penalty’, that
is, a fictitious and highly penalized fitness which resulted in them being quickly elimi-
nated from the population. The study did not consider using models but the EA called
the expensive function directly. A related approach was used in [10] in the context of
airfoil shape optimization where SI vectors were severely penalized and incorporated
into the model in order to bias the search away from them. In [2] such vectors were
simply excluded from the training sample of the model. While these approaches offer
a workable solution they suffer from two main drawbacks: a) eliminating SI vectors
discards valuable (and expensive to obtain) information regarding the fitness landscape
while b) incorporating highly-penalized vectors into the model may severely deform
it and introduce false optima. As an example Fig. 1 compares Kriging models of the
Rosenbrock function with and without SI vectors (penalty taken as the worst fitness of
the SF ones). It follows that incorporating the SI vectors with a penalized fitness had
severely deformed the model.

The demerits of such approaches have motivated studying various alternatives. As
mentioned above, in [20] the authors proposed using a classifier to screen candidate

164 Y. Tenne, K. Izui, and S. Nishiwaki

0
0.5

1 0
0.5

10

5

·105

(a)

0
0.5

1 0
0.5

1−2

0

2

4

·105

(b)

Fig. 1. Comparison of models with and without penalized SI vectors. The objective function is
Rosenbrock and the model is Kriging: (a) baseline sample of 30 vectors all SF (b) 20 SI vectors
were added, assigned the worst function from the baseline 30 value and incorporated into model.

vectors prior to evaluation if they are expected to be SI or not and those predicted to be
SI were assigned a death penalty. Also along the classification concept [24] proposed
a dual model approach: one for the objective function and one which interpolates a
penalty between SI vectors and where vectors predicted to be SI received a high penalty
and vice-versa. Other studies have explored the use of classifiers for constrained non-
linear programming (but did not focus on handling SI vectors) [11]. Further exploring
the use of classifiers [27] studied a preliminary classifier-assisted framework for han-
dling SI vectors (termed there ‘undefined’) and applied it to an airfoil shape optimiza-
tion problem.

3 Proposed Framework

Following the above discussion we propose a classifier-assisted framework for expen-
sive optimization problems in the presence of SI vectors. It leverages on the TR frame-
work as a rigorous approach to manage both the model and classifier and to ensure
convergence to an optimum of true (expensive) objective function. We briefly describe
the model and classifiers used and then the mechanics of the framework.

3.1 The Model

The proposed framework can accommodate any model and in this study we have used
Kriging which is a statistical approach to interpolation [14]. This particular model was
chosen since it is widely used in real-world applications [7, 21]. Given a set of evaluated
vectors xi , i = 1 . . .k , the model is trained such that is exactly interpolates the observed
values, that is, m(xi) = f (xi) . The model combines a global ‘drift’ function with a
local correction based on correlation between neighbouring sites. Using a constant drift
function gives the Kriging model

m(x) = β + c(x) , (4)

A Classifier-Assisted Framework for Expensive Optimization Problems 165

with the drift function β and point-wise local correction c given by a stationary Gaus-
sian process with mean zero and covariance

Cov[C(x)C(y)] = σ2R (5)

where R is the symmetric k× k correlation matrix between all sample vectors, that is,
Ri, j is the correlation between vectors i and j and following the discussion in [14] we
have used the Gaussian correlation function

R(θ ,x,y) =
d

∏
i=1

exp
(−θ (xi − yi)2) . (6)

The model prediction is then

m(x) = β̂ +rTR(f−1)β̂ (7)

where β̂ is the estimated drift coefficient, f is the vector of objective values and 1 is a
vector with all elements equal 1. The estimated drift coefficient β̂ and variance σ̂2 are
obtained from

β̂ =
(
1R−11

)−1
1TR−1f (8)

σ̂2 =
1
n

[
(f−1β̂)R−1(f−1β̂)

]
. (9)

Fully defining the model requires the correlation parameter θ which is commonly taken
as the maximizer of the model likelihood

θ � : min−(n log(σ2)+ log(|R|)) . (10)

3.2 The Classifier

As mentioned in Sect. 1, the proposed framework also uses a classifier to predict if
candidate vectors are SI. Briefly, a classifier maps inputs vectors into one of several
‘groups’ based on some similarly measure [9].

We consider two representative classifiers. The first is the nearest neighbour (NN)
classifier [16] which assigns the new vector the same class as its closest training vector
(measured by a distance d(x,y) such as the l2 norm), namely:

c(xnew) = F(xNN) : d(xnew,xNN) = min d
(
xnew,xi

)
, i = 1 . . .k . (11)

where c(x) is the class assigned by the classifier and F(xNN) is the class of the NN
vector. An extension of the algorithm is to observe the most common class among the
k nearest neighbours (k-NN) of the new vector and assign it that class. A merit of k-NN
classifiers is that they do not require any training and have no parameters to calibrate
(besides the user-prescribed parameter k).

The second classifier is the support vector machine (SVM) which projects the data
into a high-dimensional space where it can be more easily separated [28]. In a two-class
problem an SVM tries to find the best classification function for the training data. For

166 Y. Tenne, K. Izui, and S. Nishiwaki

a linearly separable training set a linear classification function is the separating hyper-
plane passing through the middle of the two classes. Once the classifier (hyperplane)
is fixed then new vectors are classified based on the sign of the classifier output (±1).
There are many such hyperplanes so an SVM adds the condition that the function (hy-
perplane) maximizes the margin between the two classes (geometrically the distance
between the hyperplane and the nearest vectors to it from each class) by maximizing
the following Lagrangian:

LP =
1
2
‖w‖−

K

∑
i=1

αiyi(w ·xi + b)+
K

∑
i=1

αi (12)

where yi = ±1 is the class of each training vector, αi � 0 and the derivatives of Lp with
respect to αi are zero. The vector w and scalar b define the hyperplane.

3.3 The Framework

The proposed framework begins by sampling an initial set of points using a Latin hyper-
cube design (LHD) [17] which ensures the points are space-filling and hence improve
the model accuracy.

The main optimization loop then begins where the framework first trains a Kriging
model (Sect. 3.1) using only the SF vectors in the cache and then trains a classifier using
all cached vectors (both SF and SI) (Sect. 3.2). At this stage the framework performs
a TR trial step where it uses a real-coded EA to search for an optimum of the model.
However the EA does not receive the fitness value directly from the model but instead
from the objective function m̂(x) where

m̂(x) =

{
m(x) if c(x) is SF

τ if c(x) is SI
(13)

where m(x) is the model-predicted objective value, τ is a penalized fitness taken to be
the worst function value from the initial LHD sample and c(x) is the classifier predic-
tion. In this setup the EA receives the model prediction if the classifier predicts a vector
is SF but receives the penalized fitness otherwise. A merit of this setup is that the knowl-
edge about the SI vectors is preserved in the classifier but they are not incorporated into
the model (with a penalized fitness) and hence do not deform the model (Sect. 2.1).

The proposed framework can accommodate any CI optimizer and we use the real-
coded EA from [4] as it is representative of many other real-coded EA variants. Since
evaluating the model is computationally cheap (a fraction of a second) the EA uses a
population size of 100 for a lengthy 100 generations to improve the search efficacy. For
its operators the EA used stochastic universal selection (SUS) with p = 0.7 , interme-
diate recombination with p = 0.7 and the Breeder Genetic Algorithm (BGA) mutation
with p = 0.1 and 10% elitism.

The EA is invoked and yields x� an optimum of the model which is then evalu-
ated with the true (expensive) function (at a cost of one function evaluation), obtaining
f (x�) . Next, the framework updates the TR based on the success of the trial step with
the following steps:

A Classifier-Assisted Framework for Expensive Optimization Problems 167

– if f (x�) < f (xc): the search was successful since the EA found a better solution.
As such the TR is centred at the new vector and the TR radius is enlarged to search
in a wider region since the model appears to be accurate.

– if f (x�) � f (xc) and there are sufficient SF points inside the TR: the search was
unsuccessful but since there is a sufficient number of points in the TR the model is
considered accurate enough to justify contracting the TR.

– if f (x�) � f (xc) and there are insufficient SF points inside the TR: the search
was unsuccessful but this may be due to poor model accuracy in the TR. As such
the framework adds a new point (xn) inside the TR to improve the local model
accuracy. The procedure for adding the point is explained below.

The above tests differ from the classical TR framework by accounting for the num-
ber of points in the TR since contracting the TR even when the model accuracy is poor
(small number of points in the TR) may lead to premature convergence [5]. As such,
checking the number of points in the TR is an additional measure to account for uncer-
tainty due to the model approximation error. Based on experimentation the threshold
number of points was taken as max(5, 0.1d) where d is the problem dimension.

As explained above the framework may add a new point (xn) to improve the model
in the TR. To achieve this the new interior point should be placed in a region sparse
with points so it adds information about the model in a relatively unexplored region.
To find such a point the framework generates a LHD sample of points in the TR and
selects the point having the largest minimum distance to all interior points (a max-min
criterion [13]), that is

xn : max
x∈T

min
xi∈T

{‖x−xi‖2} (14)

where xi , i = 1 . . . l are cached points (vectors) which are in the TR.
Besides ensuring convergence to a true optimum of the objective function the TR

framework offers another merit: it has an intrinsic mechanism to measure the model
accuracy, at least with respect to its ability to predict an optimum, as formulated by
the TR trial steps. The use of such an accuracy measure precludes the need to assess
the model accuracy (at least with respect to its ability to predict an optimum) by other
means such as cross-validation [15]. Of course, the TR trial step does not indicate the
model accuracy over the entire TR (or the search space).

We have also considered handling the case where the classifier hampers the optimiza-
tion by ‘masking’ an optimum predicted by the model (the classifier may mask an opti-
mum and prevent the optimizer from reaching it). To monitor the effect of the classifier
the proposed framework adds an additional step: if no progress has been made for u con-
secutive optimization iterations (termed unsuccessful iterations) then a pseudo-search
is made where the classifier is ‘disabled’ and the EA searches using the model only
(based on experiments we have used u = 5). The obtained optimum is then compared to
the one in the original search (with the classifier) but the optimum is not evaluated with
the expensive function. If they differ then the classifier is affecting the search and this
motivates improving the classifier accuracy to reduce the chances it ‘masks’ a better
solution and prevents the optimizer from reaching it. To improve the classifier accuracy
the framework generates a LHD sample of vectors in the box defined by the extremal
coordinates of the optimum predicted with the classifier and the optimum found with

168 Y. Tenne, K. Izui, and S. Nishiwaki

the classifier disabled. Similarly to improving the model locally, the framework selects
a vector from this sample based on the max-min distance criterion to existing vectors
in the box. Lastly, if the TR has been contracted for v consecutive times this can in-
dicate convergence to a local optimum and so the framework samples a point in the
entire search space to improve the global accuracy of the model and classifier and to
assist in discovering possibly new optima. As above, the new point is selected using the
max-min criterion but with respect to all cached vectors. Based on experimentation we
have used v = 2 . To complete the description Algorithm 1 gives the algorithm for the
proposed framework.

Algorithm 1: Proposed Framework

generate an initial LHD sample;
evaluate and cache vectors;
repeat

TR centre: xc ← best vector;
train a model using SF vectors in cache;
train a classifier using all vectors in cache;
search for the model optimum with an EA (fitness modified by classifier);
evaluate the predicted optimum (x�);
/* manage the TR, model and classifier */
if new optimum is better than TR centre then

increase the TR radius
else if new optimum is not better than TR centre and insufficient points in TR then

add a new point in the TR to improve the model;

else if new optimum not better than TR centre and sufficient points in TR then
decrease the TR radius;

/* check the effect of the classifier */
if u consecutive unsuccessful iterations then

search for the model optimum but with the classifier disabled;
if different from x� then add a point to improve the classifier;

/* check search stagnation */
if v consecutive TR contractions then

add a point globally to improve the model and classifier;

until optimization budget exhausted ;

4 Performance Analysis

4.1 Test Problem and Benchmarks

We test the efficacy of the proposed framework on a problem of airfoil shape optimiza-
tion as it is representative of real-world engineering problems and contains SI vectors
as explained below. In this problem the goal is to find an airfoil shape which maximizes
the lift coefficient (cl) and minimizes the aerodynamic drag coefficient (cd) at some
prescribed flight conditions (flight altitude, speed and angle of attack (AOA) which in-
dicates the angle between the airfoil chord and the aircraft velocity). Also, between 0.2

A Classifier-Assisted Framework for Expensive Optimization Problems 169

to 0.8 of the chord length the airfoil’s minimum thickness (t) must be equal to or larger
than a critical value t� = 0.1 to ensure structural integrity. The objective function is

f = − cl

cd
+ pt (15a)

where pt is a penalty for airfoils which violate the thickness constraint and defined as

pt =

⎧⎨⎩
t�

t
·
∣∣∣∣ cl

cd

∣∣∣∣ if t < t�

0 otherwise
. (15b)

Airfoils were represented with the Parametric Sections (PARSEC) parameterization
[23] which defines 11 design variables representing geometrical features (Figure 2). To
ensure a closed airfoil shape we have set dzT E = 0 (the PARSEC variable) while bounds
on the other variables were set based on [27]. To obtain the lift and drag of candidate
airfoils we used XFoil–a computational fluid dynamics simulation for analysis of sub-
sonic isolated airfoils [8]. Each airfoil evaluation required up to 30 seconds on a desktop
computer.

AOA

Lift

Dragvelocity
0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

rLE

z
′′
uppzupp

xupp

z
′′
low

zlow

xlow
dzT E

αT E

βT E

x

z

zTE

Fig. 2. Physical quantities (left) and the PARSEC design variables (right) in the airfoil optimiza-
tion problem

To change the prevalence of SI vectors we have used four AOA settings (2◦,5◦,10◦
and 15◦) since due to the mechanics of the simulation and the underlying physics higher
AOA values result in more frequent simulation crashes. For the proposed framework we
have used two variants:

– P-SVM: proposed framework with an SVM classifier (Gaussian kernels) and
– P-KNN: proposed framework with a k-NN classifier (k = 3) .

We have also benchmarked these two variants against penalty-based variants (termed
the reference algorithms) which use the same optimization steps except that they do not
use a classifier but instead assign the SI vectors a penalized fitness and incorporate them
into the model training sample. The two variants used were:

– R-1: reference algorithm with the penalized fitness as the worst objective value
from the initial LHD sample

– R-10: as above but uses 10 times the worst objective value.

170 Y. Tenne, K. Izui, and S. Nishiwaki

Table 1. Statistics for Best Objective Value

AOA P-SVM P-k-NN R-1 R-10

mean -2.851e+02 -9.981e+01 -9.637e+01 -2.550e+02
SD 5.408e+02 3.179e+01 2.660e+01 8.370e+02

2 median -9.806e+01 -9.869e+01 -9.768e+01 -1.126e+02
min -2.375e+03 -1.835e+02 -1.670e+02 -4.604e+03
max -3.181e+01 -1.084e+01 -3.425e+01 -3.070e+01

mean -1.600e+03 -1.496e+03 -2.820e+02 -3.104e+02
SD 7.392e+03 4.761e+03 3.973e+02 5.424e+02

5 median -8.810e+01 -1.016e+02 -9.320e+01 -8.405e+01
min -3.999e+04 -2.488e+04 -1.515e+03 -2.210e+03
max -3.595e+01 -1.879e+01 -3.635e+01 -1.518e+01

mean -2.416e+01 -2.293e+01 -1.697e+01 -2.103e+01
SD 1.969e+01 1.198e+01 9.226e+00 1.102e+01

10 median -2.017e+01 -2.090e+01 -1.478e+01 -1.636e+01
min -1.216e+02 -7.533e+01 -4.130e+01 -4.233e+01
max -1.237e+01 -8.926e+00 -6.545e+00 -4.784e+00

mean -6.079e+00 -5.172e+00 -5.690e+00 -6.043e+00
SD 2.038e+00 1.497e+00 2.111e+00 3.200e+00

15 median -5.322e+00 -5.321e+00 -5.009e+00 -4.598e+00
min -9.923e+00 -8.834e+00 -1.119e+01 -1.701e+01
max -3.441e+00 -2.720e+00 -3.272e+00 -3.183e+00

P-SVM: proposed approach, SVM classifier.
P-k-NN: proposed approach, k-NN classifier.
R-1: reference approach, penalty = worst objective.
R-10: reference approach, penalty = 10× worst objective.

50 100 150 200

−100

−50

0

P-SVM

P-KNN

R-1

R-10

expensive function evaluations

be
st

ob
je

ct
iv

e
va

lu
e

(a) AOA =5◦

50 100 150 200

−10

−5

0

P-SVM

P-KNN

R-1

R-10

expensive function evaluations

be
st

ob
je

ct
iv

e
va

lu
e

(b) AOA =15◦

Fig. 3. Convergence trends the algorithms

We have chosen this benchmarking setup since it highlights the effect of the proposed
classifier-assisted approach (the reference algorithms simply disabled the classifier ef-
fect and used penalized vectors in the training set). We specifically did not try to select
the best model type, best optimizer or to calibrate any algorithm parameters to the spe-
cific test problem but instead we study the contribution of adding the proposed frame-
work to a typical optimization setup (a real-coded EA with a Kriging model). In all
tests the limit was 200 function evaluations (simulation runs) and for valid statistical
analysis we have repeated each algorithm–AOA combination for 30 times.

A Classifier-Assisted Framework for Expensive Optimization Problems 171

Table 1 shows the statistics for the best objective function with the best mean and
median emphasized at each AOA. It follows the proposed framework with an SVM
classifier (P-SVM) had the best mean in all cases and best median in two cases. The
k-NN variant had the best median for AOA=10◦. Overall results show the proposed
framework outperformed the reference (penalty-based) algorithms and also indicate the
demerits of the penalty approach, namely: a) incorporating penalized vectors into the
model can deform the landscape and hinder performance and b) performance can be
sensitive to the penalty value but an optimal penalty value is unknown a-priori and may
be difficult to obtain given the tight optimization budget.

Statistical significance analysis (at the α = 0.05 level) shows that performance gains
of the P-SVM variant were not statistically-significant at AOA=2◦ since at a low AOA
settings the SI vectors are less frequent and so the proposed framework operates during
most of the optimum very similar or identically to the reference algorithms. At higher
AOAs where SI vectors are more prevalent the situation changes: at AOA=5◦ gains were
significant over the R-10 variant and at AOA=10◦ over the R-1 and R-10 variants. At
AOA=15◦ gains were borderline significant over the R-1 and significant over the R-10
variant.

To visualize the convergence trends for each algorithm Fig. 3 compares the repre-
sentative tests for AOA=5◦ and 15◦, showing the variants of the proposed framework
performed well.

We have also studied the number of SI vectors encountered during the search by each
algorithm. Table 2 gives the test statistics for the number of SI vectors from which it fol-
lows the proposed classifier-assisted approach consistently obtained a competitive num-
ber of SI vectors which is similar or better to that of the penalty approach variants. This
indicates the proposed approach both obtained a better final solution and also reduced
the number of failed evaluations (and hence the amount of wasted computer resources).

4.2 Knowledge-Mining the Classifier
The classifier adds a machine-learning component to the optimization algorithm and so
we explore the option of ‘knowledge-mining’ the classifier as a post-processing stage
to the optimization in order to gain new insights into the problem. Specifically, we are
interested in understating: a) how SI vectors are distributed in the search space and
b) why some vectors crash the simulation.

To understand how SI vectors are distributed we applied the following procedure.
After an optimization search was completed we applied the classifier to a new LHD
sample of vectors (without evaluating them with the expensive function). Since the
vectors are 11D we visualize their distribution by projecting them to a 2D scatter plot
using the Sammon mapping (a dimensionality-reduction procedure) [22]. The mapping
preserves the proximity relations between vectors (data points) such that adjacent high-
dimensional points will be mapped into adjacent low-dimensional ones and vice versa,
resulting in a topologically consistent projection. Starting from a (possibly random)
distribution of low-dimensional points, the mapping algorithm iteratively updates these
points to minimize the Sammon stress function

C =
1

∑k
i=1 δ (xi,x j)

k

∑
i=1

k

∑
j<i

(
δ (xi,x j)− δ (x̂i, x̂ j)

)2
δ (xi,x j)

(16)

172 Y. Tenne, K. Izui, and S. Nishiwaki

Table 2. Statistics for the Number of SI Vectors

AOA P-SVM P-k-NN R-1 R-10

mean 3.410e+01 3.090e+01 2.552e+01 3.043e+01
SD 1.832e+01 1.429e+01 1.123e+01 1.582e+01

2 median 2.800e+01 2.550e+01 2.300e+01 2.600e+01
min 1.700e+01 1.300e+01 1.300e+01 1.400e+01
max 9.500e+01 7.900e+01 5.900e+01 7.900e+01

mean 4.624e+01 5.837e+01 4.833e+01 7.050e+01
SD 1.274e+01 2.055e+01 2.002e+01 2.533e+01

5 median 4.900e+01 5.750e+01 4.650e+01 6.900e+01
min 1.800e+01 2.300e+01 2.200e+01 3.600e+01
max 6.800e+01 1.070e+02 9.700e+01 1.440e+02

mean 9.647e+01 1.066e+02 1.242e+02 1.214e+02
SD 1.578e+01 1.819e+01 2.578e+01 2.568e+01

10 median 1.000e+02 1.070e+02 1.280e+02 1.185e+02
min 5.500e+01 6.500e+01 6.300e+01 6.400e+01
max 1.210e+02 1.490e+02 1.770e+02 1.730e+02

mean 1.159e+02 1.109e+02 1.369e+02 1.249e+02
SD 1.836e+01 2.757e+01 2.768e+01 3.501e+01

15 median 1.180e+02 1.135e+02 1.440e+02 1.300e+02
min 6.200e+01 4.000e+01 8.200e+01 3.600e+01
max 1.430e+02 1.570e+02 1.800e+02 1.770e+02

P-SVM: proposed approach, SVM classifier.
P-k-NN: proposed approach, k-NN classifier.
R-1: reference approach, penalty = worst objective.
R-10: reference approach, penalty = 10× worst objective.

where δ is a distance measure (typically l2), x is a high-dimensional vector (original
data) and x̂ is a low-dimensional (projected) vector. Figure 4 shows an example for
AOA=5◦. The background scatter plot shows the projection of the vectors evaluated
during the search (and which trained the classifier) while the foreground plot shows the
prediction of an SVM classifier on a new LHD sample of 100 vectors which were not
evaluated with the simulation. The three inset plots show the airfoils corresponding to
vectors classified as SI. This analysis indicate that the classifier ‘learns’ the limitations
of the simulation code and can predict which airfoil geometries will likely crash it.
The Sammon mapping shows the SI are expected to be scattered over the entire search
space.

We have also explored the option of using histograms of the design variables to
identify for each variable if there is a ‘critical’ range of values which is likely to result
in a SI vector. For example, analyzing the variables histograms for the vectors in the
above sample shows that vectors classified as SI often had the variable xupp in the range
0.2 . . .0.28 . Plotting a few of the vectors with xupp in this critical range showed that they
correspond to irregularly shaped airfoils which highlights the effect of the variable. With
this insight it is now possible to refine the variable bounds and to reduce the number of
failed evaluations in future optimization runs.

Overall, these experiments show that exploratory data analysis procedures (which
do not require any additional expensive evaluations) were able to ‘knowledge-mine’ the
classifier and to yield new insights into the problem being solved.

A Classifier-Assisted Framework for Expensive Optimization Problems 173

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

cache

.5 0 0.5 1 1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0−.5−−00

0

0.5

111

111.5

22

classifier
prediction

111 555

Fig. 4. Classifier prediction for SF and SI vectors at AOA=5

5 Summary

Real-world engineering design optimization problems often rely on computationally-
expensive simulations to replace laboratory experiments. A common optimization ap-
proach is to approximate the expensive simulation with a computationally cheaper
model resulting in a model-assisted optimization algorithm. A prevalent issue in such
optimization problems is that the simulation may crash for some input vectors, a sce-
nario which increases the optimization difficulty and results in wasted computer re-
sources. While a common approach to handle such vectors is to assign them a penalized
fitness and incorporate them in the model training set this can result in severe model de-
formation and degrade the optimization efficacy. As an alternative we have proposed
a classifier-assisted framework where a classifier is incorporated into the optimization
search and biases the optimizer away from vectors predicted to crash to simulator and
with no model deformation. Performance analysis showed the proposed framework im-
proved performance with respect to the penalty approach and that it was possible to
’knowledge-mine’ the classifier as a post-optimization stage to gain new insights into
the problem being solved.

Acknowledgement

The first author thanks the Japan Society for Promotion of Science for its fellowship
support.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York
(1995)

174 Y. Tenne, K. Izui, and S. Nishiwaki

2. Büche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms
with Gaussian process fitness function models. IEEE Transactions on Systems, Man, and
Cybernetics–Part C 35(2), 183–194 (2005)

3. Buhmann, M.D.: Radial Basis Functions Theory and Implementations. Cambridge Mono-
graphs on Applied and Computational Mathematics, vol. (12). Cambridge University Press,
Cambridge (2003)

4. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic Algorithm TOOLBOX For
Use with MATLAB, Version 1.2. Department of Automatic Control and Systems Engineer-
ing, University of Sheffield, Sheffield (1994)

5. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia (2000)
6. Conn, A.R., Scheinberg, K., Toint, P.L.: A derivative free optimization algorithm in prac-

tice. In: Proceedings of the Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization. American Institute of Aeronautics and Astronautics,
Reston (1998); AIAA Paper AIAA-1998-4718

7. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)
8. Drela, M., Youngren, H.: XFOIL 6.9 User Primer. Department of Aeronautics and Astronau-

tics, Massachusetts Institute of Technology, Cambridge, MA (2001)
9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, second edn (2001)

10. Emmerich, M.T.M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K.: Metamodel-
assisted evolution strategies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 361–370.
Springer, Heidelberg (2002)

11. Handoko, S., Kwoh, C.K., Ong, Y.S.: Feasibility structure modeling: An effective chaperon
for constrained memetic algorithms. IEEE Transactions on Evolutionary Computation 14(5),
740–758 (2010)

12. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with ap-
proximate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481–494
(2002)

13. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. Journal
of Statistical Planning and Inference 26(2), 131–148 (1990)

14. Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R., Krishnaiah, P.R.
(eds.) Handbook of Statistics, pp. 261–308. Elsevier, Amsterdam (1996)

15. Linhart, H., Zucchini, W.: Model Selection. Wiley Series in Probability and Mathematical
Statistics. Wiley-Interscience Publication, New York (1986)

16. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.
In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.
281–297. University of California Press, Berkeley (1967)

17. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code. Technomet-
rics 21(2), 239–245 (1979)

18. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Op-
timization Using Designed Experiments. John Wiley and Sons, New York (1995)

19. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive
problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)

20. Rasheed, K., Hirsh, H., Gelsey, A.: A genetic algorithm for continuous design space search.
Artificial Intelligence in Engineering 11, 295–305 (1997)

21. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experi-
ments. Statistical Science 4(4), 409–435 (1989)

22. Sammon, J. J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on
Computers C-18(5), 401–409 (1969)

A Classifier-Assisted Framework for Expensive Optimization Problems 175

23. Sobieszczansk-Sobieski, J., Haftka, R.: Multidisciplinary aerospace design optimization:
Survey of recent developments. Structural Optimization 14(1), 1–23 (1997)

24. Tenne, Y., Armfield, S.W.: A versatile surrogate-assisted memetic algorithm for optimiza-
tion of computationally expensive functions and its engineering applications. In: Yang, A.,
Shan, Y., Thu Bui, L. (eds.) Success in Evolutionary Computation. SCI, vol. 92, pp. 43–72.
Springer, Heidelberg (2008)

25. Tenne, Y., Armfield, S.W.: A framework for memetic optimization using variable global and
local surrogate models. Journal of Soft Computing 13(8) (2009)

26. Tenne, Y., Goh, C.K. (eds.): Computational Intelligence in Expensive Optimization Prob-
lems, Evolutionary Learning and Optimization, vol. 2. Springer, Heidelberg (2010),
http://www.springerlink.com/content/v81864

27. Tenne, Y., Izui, K., Nishiwaki, S.: Handling undefined vectors in expensive optimization
problems. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar,
A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.)
EvoApplicatons 2010. LNCS, vol. 6024, pp. 582–591. Springer, Heidelberg (2010)

28. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience Publication, Hoboken (1998)

http://www.springerlink.com/content/v81864

Robust Gaussian Process-Based

Global Optimization Using a Fully Bayesian
Expected Improvement Criterion

Romain Benassi, Julien Bect, and Emmanuel Vazquez

SUPELEC
Gif-sur-Yvette, France

Abstract. We consider the problem of optimizing a real-valued con-
tinuous function f , which is supposed to be expensive to evaluate and,
consequently, can only be evaluated a limited number of times. This ar-
ticle focuses on the Bayesian approach to this problem, which consists in
combining evaluation results and prior information about f in order to
efficiently select new evaluation points, as long as the budget for evalu-
ations is not exhausted.

The algorithm called efficient global optimization (EGO), proposed
by Jones, Schonlau and Welch (J. Global Optim., 13(4):455–492, 1998),
is one of the most popular Bayesian optimization algorithms. It is based
on a sampling criterion called the expected improvement (EI), which
assumes a Gaussian process prior about f . In the EGO algorithm, the
parameters of the covariance of the Gaussian process are estimated from
the evaluation results by maximum likelihood, and these parameters are
then plugged in the EI sampling criterion. However, it is well-known that
this plug-in strategy can lead to very disappointing results when the
evaluation results do not carry enough information about f to estimate
the parameters in a satisfactory manner.

We advocate a fully Bayesian approach to this problem, and derive an
analytical expression for the EI criterion in the case of Student predic-
tive distributions. Numerical experiments show that the fully Bayesian
approach makes EI-based optimization more robust while maintaining
an average loss similar to that of the EGO algorithm.

1 Introduction

Let f be a continuous real-valued function defined on some compact space � ⊂
�

d. We consider the problem of finding the maximum of f , when f is supposed
to be expensive to evaluate because one evaluation takes a long time or a large
amount of resources. In this case, the optimization of f must be carried out
using a limited number of evaluations. More precisely, given a budget of N
evaluations of f , our objective is to choose sequentially N evaluation points
X1, . . . , XN ∈ � so that ε(XN , f) = M − MN is small, where XN stands for
(X1, . . . , XN), M = maxx∈� f(x) and MN = f(X1) ∨ · · · ∨ f(XN).

In this article, we adopt a Bayesian approach to this sequential decision prob-
lem: the unknown function f is considered as a sample path of a real-valued

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 176–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Robust Gaussian Process-Based Global Optimization 177

random process ξ defined on some probability space (Ω,B, P0) with parameter
x ∈ �, and a good strategy is a strategy that achieves, or gets close to, the
Bayes risk rB := infXN

E0 (ε(XN , ξ)), where E0 denotes the expectation with
respect to P0 and the infinimum is taken over the set of all sequential strategies.
The reader is referred to the books [1,2,3,4,5] for a broader view on the field of
global optimization.

It is well-known [6, 7, 8, 9, 10, 11, 12] that an optimal Bayesian optimization
strategy, i.e. a strategy X�

N such that E0 (ε(X�
N , ξ)) = rB, can be formally ob-

tained by dynamic programming. Let En, n = 1, 2, . . ., denote the conditional
expectation with respect to the σ-algebra Fn generated by the random variables
X1, ξ(X1), . . . , Xn, ξ(Xn). Denote by RN = EN (ε(XN , ξ)) the terminal risk and
define by backward induction

Rn = min
x∈�

En

(
Rn+1 | Xn+1 = x

)
, n = N − 1, . . . , 0. (1)

Then, we have R0 = rB, and the strategy X�
N defined by

X�
n+1 = argmin

x∈�
En

(
Rn+1 | Xn+1 = x

)
, n = 1, . . . , N − 1, (2)

is optimal. Unfortunately, solving (1)–(2) over an horizon N of more than a few
steps is not numerically tractable, for both the space of possible actions and the
space of possible outcomes at each step are continuous.

A natural way of dealing with this problem is to consider a suboptimal one-
step lookahead strategy; see, e.g., [13, chapter 6]. This leads to choosing each
new evaluation point according to

Xn+1 = argmin
x∈�

En (M − Mn+1 | Xn+1 = x)

= argmax
x∈�

En (Mn+1 | Xn+1 = x)

= argmax
x∈�

ρn(x) := En

(
(ξ(Xn+1) − Mn)+

∣∣ Xn+1 = x
)
, (3)

where (z)+ = 0∨ z. The sampling criterion ρn, introduced by J. Mockus [6] and
popularized through the EGO algorithm [14], is known as the expected improve-
ment (EI).

When ξ is a Gaussian process, or in other words, when a Gaussian process
prior is chosen for f , it is well-known that the EI can be written in closed
form, with the consequence that the maximization of ρn can be carried out with
a moderate computational effort. However, a Gaussian process prior carries a
high amount of information about f and it is often difficult to elicit such a prior
before any evaluation is made. As a result, the covariance function of ξ is usually
assumed to belong to some parametric class of positive definite functions, the
value of the parameters assumed to be unknown. In the EGO algorithm, the
parameters are estimated from the evaluation results by maximum likelihood,
and then plugged in the EI sampling criterion (computed for a Gaussian process
with known covariance function). It has been reported [15] that this plug-in

178 R. Benassi, J. Bect, and E. Vazquez

strategy can lead to very disappointing results when the evaluation results do
not carry enough information about f to estimate the parameters satisfactorily.
We advocate a fully Bayesian approach to this problem, following the steps of
Locatelli [9, 16] and, more recently, Osborne and co-authors [17, 18, 19].

The paper is organized as follows. Section 2 recalls the expression of the EI
criterion in the case of a Gaussian process prior with known covariance func-
tion, and describes the plug-in approach used in the EGO algorithm to handle
the parameters of the covariance function when it is only assumed to belong to
some parametric class. Section 3 explains how a fully Bayesian approach can
be adopted in this problem, in order to take into account the uncertainty on
the parameters of the covariance function. Section 4 presents a new closed-form
expression of the EI criterion for Student predictive densities, which arises nat-
urally when a conjugate inverse-gamma prior is used for the variance parameter
of the Gaussian process prior. Section 5 illustrates with numerical results the
benefits of the fully Bayesian approach, focusing more particularly on the tail of
the error distribution, i.e., on the occurrence of large errors.

Nota bene. The analytical expression of the expected improvement for Student
predictive distributions, presented in Section 4, has in fact already been obtained
by Williams, Santner and Notz [20] in the special case of an improper Jeffrey
prior on the variance. We warmly thank Frank Hutter for pointing out this paper
to us during the LION5 conference.

2 Efficient Global Optimization

2.1 The Expected Improvement Sampling Criterion for a Gaussian
Process

Recall that the distribution of a Gaussian process ξ is uniquely determined
by its mean function m(x) := E0(ξ(x)), x ∈ �, and its covariance function
k(x, y) := E0 ((ξ(x) − m(x))(ξ(y) − m(y))), x, y ∈ �. Hereafter, we assume that
the mean function is constant on� and write ξ ∼ GP (m, k) to denote that ξ is a
Gaussian process with mean function m(x) = m ∈ � and covariance function k.

Proposition 1. Let k be a stationary covariance function written as k(x, y) =
σ2r(x − y), x, y ∈ �, where σ2 > 0 and r(0) = 1 (hence, r is a correlation
function). Assume that ξ | m ∼ GP (m, k) and m ∼ U(�), where U(�)
denotes the (improper) uniform distribution over �. Then, for all x ∈ �,

ξ(x) | Fn ∼ N
(
ξ̂n(x), s2

n(x)
)

,

where

ξ̂n(x) = m̂n + rn(x)TR−1
n (ξ

n
− m̂n�n) , (4)

with

Robust Gaussian Process-Based Global Optimization 179⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ
n

= (ξ(X1), . . . , ξ(Xn))T ,

�n = (1, . . . , 1)T ∈ �n,

Rn the correlation matrix of ξ
n
,

rn(x) the correlation vector between ξ(x) and ξ
n
,

m̂n =
�

T
nR−1

n ξ
n

�T
nR−1

n �n
, the weighted least squares estimate of m,

and
s2

n(x) = σ2κ2
n(x) , (5)

with

κ2
n(x) = 1 − rn(x)TR−1

n rn(x) +
(1 − rn(x)TR−1

n �n)2

�T
nR−1

n �n

. (6)

Proposition 2. Under the assumptions of Proposition 1, the expected improve-
ment can be written as

ρn(x) =

⎧⎨⎩sn(x)Φ′
(

ξ̂n(x)−Mn

sn(x)

)
+ (ξ̂n(x) − Mn)Φ

(
ξ̂n(x)−Mn

sn(x)

)
if sn(x) > 0,(

ξ̂n(x) − Mn

)
+

if sn(x) = 0.

(7)
where Φ denotes the Gaussian cumulative distribution function.

Propositions 1 and 2 show that, given a set of evaluation points and a Gaussian
prior, the EI sampling criterion can be computed with a moderate amount of
resources (computing (4) at q different points in � involves O(qn2) operations).

However, it is rare that a user has enough information about f in order to
choose an adequate covariance function k before any evaluation is made. The
approach generally taken consists in choosing k in a parametrized class of covari-
ance functions and estimating the parameters of k from the evaluation results.

2.2 Classical Parametrized Covariance Functions

There are chiefly three classes of parametrized covariance functions in the liter-
ature of Gaussian processes for modeling computer experiments. These are the
class of the so-called Gaussian covariances, the class of the exponential covari-
ances, and that of the Matérn covariances. Using Matérn covariances makes it
possible to tune the mean square differentiability of ξ, which is not the case with
the exponential and Gaussian covariances.

Define υν : �+ → �
+ such that, ∀h ≥ 0,

υν(h) =
1

2ν−1Γ (ν)

(
2ν1/2h

)ν

Kν

(
2ν1/2h

)
, (8)

where Γ is the Gamma function and Kν is the modified Bessel function of the
second kind of order ν. The parameter ν > 0 controls regularity at the origin
of υν .

180 R. Benassi, J. Bect, and E. Vazquez

The anisotropic form of the Matérn covariance on �
d may be written as

kθ(x, y) = σ2rθ(x, y), with

rθ(x, y) = υν

⎛⎝
√√√√ d∑

i=1

(x[i] − y[i])2

β2
i

⎞⎠ , x, y ∈ �d , (9)

where the positive scalar σ2 is a variance parameter (we have kθ(x, x) = σ2),
x[i], y[i] denote the ith coordinate of x and y, the positive scalars βi represent
scale or range parameters of the covariance, or in other words, characteristic
correlation lengths, and finally θ = (ν, β1, . . . , βd) ∈ �d+1

+ denotes the parameter
vector of the Matérn covariance. Note that an isotropic form of the Matérn
covariance is obtained by setting β1 = . . . = βd = β. Then, the parameter vector
of the Matérn covariance is θ = (ν, β) ∈ �2

+.

2.3 The EGO Algorithm

The approach taken in the EGO (efficient global optimization) algorithm [21,23,
22,14] consists in estimating the unknown parameters of the covariance function
by maximum likelihood, after each new evaluation. Then, the EI sampling cri-
terion is computed using the current value of the parameters of the covariance.
EGO can therefore be viewed as a plug-in approach.

Remark 1 (about maximum likelihood estimation of the parameters of a covari-
ance function of a Gaussian process). Recall that, for ξ ∼ GP(m, kθ) with
kθ(x, y) = σ2rθ(x, y), the likelihood of the evaluation results can be written
as

�n(ξ
n
; m, σ2, θ) =

1
(2πσ2)n/2|Rn(θ)|1/2

e−
1

σ2 (ξ
n
−m�n)T

Rn(θ)−1(ξ
n
−m�n), (10)

where Rn(θ) stands for the correlation matrix of ξ
n
, parametrized by θ. Note

that setting to zero the partial derivatives of �n with respect to m and σ2 yields
the following maximum likelihood estimates for m and σ2:

m̂(θ) =
�

T
nRn(θ)−1ξ

n

�T
nRn(θ)−1�n

, (11)

σ̂2(θ) =
1
n

(
ξ

n
− m̂�n

)T

Rn(θ)−1
(
ξ

n
− m̂�n

)
. (12)

Thus the maximum likelihood estimate of θ can be obtained by maximizing the
profile likelihood θ 	→ �n(ξ

n
; m̂(θ), σ̂2(θ), θ).

2.4 The Case of Deceptive Functions

Deceptive functions is a term coined by D. Jones (see [15, 25]) to describe func-
tions that appear to be “flat” based on evaluation results. In fact, any function
can potentially appear to be flat depending on how it is sampled.

Robust Gaussian Process-Based Global Optimization 181

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 1. Example of a deceptive sampling of a function (dashdot line). Evaluation points
(black dots) are chosen such that the value of the function is around zero at these points.
After having estimated the parameters of the covariance function by maximum likeli-
hood, the prediction is very flat (solid line) and confidence intervals derived from the
standard deviation of the error of prediction (gray area) are severely underestimated.

When the available evaluation results do not bring enough information on the
objective function f to estimate the parameters of the covariance function with
a reasonnable precision, the variance of the error of prediction can be severely
under-estimated as depicted in Figure 1. As will be shown in Section 5.1, this
can lead to very unsatisfactory behaviors of the EGO algorithm, which tends
to waste lots of evalutions in local search around the current maxima (exploita-
tion), very early in the optimization procedure, to the detriment of global search
(exploration).

3 Fully Bayesian One-Step Lookahead Optimization

It has been emphasized in Section 1 that the rationale behind the EI criterion is
of a Bayesian decision-theoretic nature. Indeed, maximizing the EI criterion at
iteration n is equivalent to minimizing the expected loss En (max(ξ) − Mn+1),
where the expectation is taken with respect to the value of the next evaluation,
which is unknown and therefore modeled as a random variable.

In a fully Bayesian setting, all the unknown parameters of the model have
to be given prior distributions. This has already been done for the unknown
mean m in Proposition 1. Let π0 denote the prior distribution of the vector
of covariance parameters θ′ = (σ2, θ), and let πn, n = 1, . . . , N , denote the
corresponding posterior distributions. According to Bayes’ rule, the posterior
distribution of ξ(x) is a mixture of Gaussian distributions N (ξ̂n(x; θ′), s2

n(x; θ′)
)

weighted by πn(dθ′). The expected improvement criterion for this model can
thus be written, using the tower property of conditional expectations, as

182 R. Benassi, J. Bect, and E. Vazquez

En

(
(ξ(x) − Mn)+

)
= En

(
En

(
(ξ(x) − Mn)+

∣∣∣ θ′
))

=
∫

ρn(x; θ′)πn (dθ′) . (13)

Note that the plug-in EI criterion of Section 2.3 can be seen as an approximation
of the fully Bayesian criterion (13):∫

ρn(x; θ′)πn (dθ′) ≈ ρn(x; θ̂′n) ,

which is justified only if the posterior distribution is concentrated enough around
the MLE estimate θ̂′n. In the general case, we claim that it is safer to use the
fully Bayesian criterion (13), since the corresponding expected loss integrates
the uncertainty related to the fact that θ′ is not exactly known. This claim will
be supported by the numerical results of Section 5.

When π0 is a finitely supported discrete distribution, the posterior distribu-
tion πn—and therefore the integral (13)—can be computed exactly using Bayes’
rule. For more general prior distribution, the integral can be approximated by
stochastic techniques like MCMC sampling or SMC sampling (see [27, 26, 28]
and the references therein). An alternative approach using Bayesian quadrature
rules [29] has been proposed in [18,17,19]. In all cases, the EI criterion is approx-
imated by an expression of the form

∑
i wiρn(x; θ′i), which amounts to saying

that πn is approximated by the discrete distribution
∑

i wiδθ′
i
.

Remark 2. Although fully Bayesian approaches for Gaussian process models
have been proposed in the literature for more than two decades (see [30, 31]
and the references therein), surprisingly little has been written from this per-
spective in the context of Bayesian global optimization. An early attempt in this
direction can be found in [16, 9], where the variance parameter of a Brownian
motion is given an inverse-gamma prior and then integrated out as in (13). More
recently, the fully Bayesian approach has been developed in a more general way
by [18, 17, 19], but the important connection of (13) with the usual (Gaussian)
EI criterion was not clearly established.

Remark 3. Discrete mixtures of Gaussian distributions and the corresponding EI
criterion have also been introduced in [32] to allow for the use of several para-
metric classes of covariance functions, in order to provide increased robustness
with respect to the choice of a particular class. The approach is not Bayesian,
however, since the weights in the mixture are not posterior probabilities.

4 Student EI

Let us consider the case of a Gaussian process ξ with unknown mean m and
covariance function of the form k(x, y) = σ2r(x, y). We assume that m and σ2

are independent, with m uniformly distributed on � (as in Proposition 1) and σ2

following an inverse-gamma distribution with shape parameter a0 and scale pa-
rameter b0, hereafter denoted by IG (a0, b0). We shall prove that, in this setting,

Robust Gaussian Process-Based Global Optimization 183

the EI criterion still has an explicit analytical expression, which is a generaliza-
tion of the usual EI criterion given in Proposition 2.

First, recall that the prior chosen for σ2 is conjugate [33]:

Proposition 3. The conditional distribution of σ2 given Fn is IG (an, bn), with

an = a0 +
n − 1

2
,

bn = b0 +
1
2

(
ξ

n
− m̂n�n

)T

R−1
n

(
ξ

n
− m̂n�n

)
.

Using this result and the fact that ξ(x) | σ2, ξ
n
∼ N (0, σ2κ2

n(x)
)
, it is easy

to show that the predictive distribution of ξ(x) is a Student distribution. More
precisely:

Proposition 4. Let tη denote the Student distribution with η > 0 degrees of
freedom. Then, for all x ∈ �,

ξ(x) − ξ̂n(x)
γn(x)

| Fn ∼ tηn ,

with ηn = 2an, and γ2
n(x) = bn/an κ2

n(x).

In other words, the predictive distribution at x is a location-scale Student dis-
tribution with ηn degrees of freedom, location parameter ξ̂n(x) and scale pa-
rameter γn(x). The following result is the key to our EI criterion for Student
predictive distributions:

Lemma 1. Let T ∼ tη with η > 0. Then

E
(
(T + u)+

)
=

{
+∞ if η ≤ 1,
η+u2

η−1 F ′
η(u) + u Fη(u) otherwise,

where Fη is the cumulative distribution function of tη.

Combining Lemma 1 and Proposition 4 finally yields an explicit expression of
the EI criterion:

Theorem 1. Under the assumptions of this section, for all x ∈ �,

En

(
(ξ(x) − Mn)+

)
= γn(x)

(
ηn + u2

ηn − 1
F ′

ηn
(u) + u Fηn(u)

)
, (14)

with u =
(
ξ̂n(x) − Mn

)
/γn(x).

It has been assumed, up to this point, that the only unknown parameter in the
covariance function is the variance σ2. More generally, assume that k(x, y) =
σ2 r(x, y; θ): in this case we proceed by conditioning as in Section 3. Indeed,
assume that θ is independent from

(
m, σ2

)
with a prior distribution π0. Let us

184 R. Benassi, J. Bect, and E. Vazquez

denote by ρ̃n(x; θ) = En

(
(ξ(x) − Mn)+ | θ

)
the value of the EI criterion at x

provided by Theorem 1 when the value of the unknown parameter is θ. Then

En

(
(ξ(x) − Mn)+

)
= En

(
ρ̃n (x; θ)

)
=
∫

ρ̃n(x; θ)πn(dθ), (15)

where πn denotes the posterior distribution of θ after n evaluations. As explained
in Section 3, the integral (15) boils down to a finite sum that can be computed
exactly (using Bayes’ rule) when the prior π0 has a finite support; in the general
case, approximation techniques have to be used.

5 Numerical Experiments

5.1 Optimization of a Deceptive Function

Experiment. Consider the objective function f : � = [−1, 1] → � defined by

f(x) = x (sin(10x + 1) + 0.1 sin(15x)) , ∀x ∈ � .

We choose an initial set of four evaluation points with abscissas −0.43, −0.11,
0.515 and 0.85, as shown in Figure 1. Our objective is to compare the evaluation
points chosen by the plug-in approach (i.e., the EGO algorithm) and those chosen
by the fully Bayesian algorithm (FBA) proposed in Section 4.

In both approaches, we consider a Matérn covariance function with a known
regularity parameter ν = 2 (see Section 2.2). In the approach of Section 4, we
choose an inverse gamma distribution IG(0.2, 12) for σ2. Since � has dimension
one, there is only one range parameter β. To simplify the implementation of the
approach proposed, we shall assume that β has a finite support distribution.
More precisely, define a βmin and a βmax, such that βmin < βmax, and set, for all

i = 0, . . . , I, βi = βmin

(
βmax
βmin

)i/I

. We assume a uniform prior distribution over

the βis, with βmin = 2 × 10−3, βmax = 2 and I = 100.
The optimization of the two sampling criteria is performed by a Monte Carlo

approach. More precisely, we generate once and for all a set of q = 600 candidate
points uniformly distributed over � and the search for the maximum of each
sampling criterion is carried out at each iteration by determining the value of
the sampling criterion over this finite set (the same set of points is used for both
criteria).

Table 1. Parameters used for building the testbeds of Gaussian-process sample-paths

Parameter \ Testbed T1 T2
Dimension d 1 4
Number of sample paths L 20000 20000
Variance σ2 1.0 1.0
Regularity ν 2.5 2.5
Scale β = (β1, . . . , βd) 0.1 (0.7, 0.7, 0.7, 0.7)

Robust Gaussian Process-Based Global Optimization 185

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−2.8
−2.6
−2.4
−2.2

lo
g1

0E
I

(a) parameters estimated by MLE

−1 −0.5 0 0.5 1
−10

−5

0

5

10

−1 −0.5 0 0.5 1

−0.6
−0.4
−0.2

0

lo
g1

0E
I

(b) Bayesian approach for the parameters

Fig. 2. A comparison of a) EGO and b) FBA at iteration 1. Top: objective function
(dashdot line), prediction (solid line), 95% confidence intervals derived from the stan-
dard deviation (gray area), sampling points (dots) and position of the next evaluation
(vertical dashed line). Bottom: EI criterion.

Results. Figures 2, 3 and 4 show that the standard deviation of the error of
prediction is severely underestimated when using the EGO algorithm, as a result
of the maximum likelihood estimation of the parameters of the covariance from
a deceptive set of evaluation points. If the uncertainty about the covariance
parameters is taken into account, as explained above, the standard deviation
of the error is more satisfactory. Figures 3 and 4 show that the maximum is
approximated satisfactorily after only four iterations with FBA, whereas EGO
needs nine more iterations before making an evaluation in the neighborhood of
the maximizer. Indeed, we observe that EGO stays in the neighborhood of a
local optimum for a long time, while � remains unexplored. This behavior is
not desirable in a context of expensive-to-evaluate functions.

5.2 Comparison on Sample Paths of a Gaussian Process

Experiment. In order to assess the performances of EGO and FBA from a
statistical point of view, we study the convergence to the maximum using both
algorithms on a set of sample paths of a Gaussian process.

We have built several testbeds Tk, k = 1, 2, . . ., of functions fk,l, l = 1, . . . , L,
corresponding to sample paths of a Gaussian process, with zero-mean and a
Matérn covariance function, simulated on a set of q = 600 points in [0, 1]d gener-
ated using a Latin hypercube sampling (LHS), with different values for d and for
the parameters of the covariance. Here, due to the lack of room, we present only
the results obtained for two testbeds in dimension 1 and 4 (the actual parameters
are provided in Table 1).

We shall compare the performance of EGO and FBA based on the approxi-
mation error ε(Xn, fk,l), l = 1, . . . , L. For reference, we also provide the results
obtained with two other strategies. The first strategy corresponds to using an
EI criterion with the same values for the parameters of the covariance func-

186 R. Benassi, J. Bect, and E. Vazquez

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−20

−10

0

lo
g1

0E
I

(a) parameters estimated by MLE

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−1.8
−1.6
−1.4
−1.2

lo
g1

0E
I

(b) Bayesian approach for the parameters

Fig. 3. Iteration 3 (see Figure 2 for details)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−40

−20

0

lo
g1

0E
I

(a) parameters estimated by MLE

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−2.5

−2

lo
g1

0E
I

(b) Bayesian approach for the parameters

Fig. 4. Iteration 8 (see Figure 2 for details)

tion of ξ than those used to generate the sample paths in the testbeds. In
principle this strategy ought to perform very well. The second strategy cor-
responds to space-filling sampling, which is not necessarily a good optimization
strategy.

For FBA, we choose the same priors as those described in Section 5.1. More
precisely, whatever be the dimension d, we choose an isotropic covariance func-
tion (with only one scale parameter) and we set βmin = 1/400 and βmax = 2

√
d.

Results. Figures 5(a) and 6(a) show that EGO and FBA have very similar
average performances. In fact, both of them perform almost as well, in this
experiment, as the reference strategy where the true parameters are assumed
to be known. Comparing the tails of complementary cumulative distribution
function of the error max f − Mn makes it clear, however, that using a fully
Bayesian approach brings a significant reduction of the occurrence of large errors
with respect to the EGO algorithm. In other words, the fully Bayesian approach
appears to be statistically more robust than the plug-in approach, while retaining
the same average performance.

Robust Gaussian Process-Based Global Optimization 187

Number of iterations

m
a
x

f
−

M
n

ref 1
ref 2
FBA
EGO

6 8 10 12 14 16 18 20 22 24

10−6

10−4

10−2

100

(a) Average error to the maximum

max f −Mn

1
−

F
(x

)

0 0.2 0.4 0.6 0.8 1
10−3

10−2

10−1

100

(b) Distribution of errors at iteration 13

max f −Mn

1
−

F
(x

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−3

10−2

10−1

100

(c) Distribution of errors at iteration 16

Fig. 5. Average results and error distributions for testbed T1, for FBA (solid black
line), EGO (dashed black line), the EI with the parameters used to generate sample
paths (solid gray line), the space-filling strategy (dashed gray line). More precisely, (a)
represents the average approximation error as a function of the number of evaluation
points. In (b) and (c), F (x) stands for the cumulative distribution function of the
approximation error. We plot 1−F (x) in logarithmic scale in order to analyze the be-
havior of the tail of the distribution (big errors with small probabilities of occurrence).
Small values for 1− F (x) mean better results.

188 R. Benassi, J. Bect, and E. Vazquez

Number of iterations

m
a
x

f
−

M
n

ref 1
ref 2
FBA
EGO

10 20 30 40 50 60
10−4

10−3

10−2

10−1

100

(a) Average error to the maximum

max f −Mn

1
−

F
(x

)

0 0.2 0.4 0.6 0.8 1 1.2
10−3

10−2

10−1

100

(b) Distribution of errors at iteration 20

max f −Mn

1
−

F
(x

)

0 0.1 0.2 0.3 0.4 0.5 0.6
10−3

10−2

10−1

100

(c) Distribution of errors at iteration 34

Fig. 6. Average results and distribution of errors for testbed T2. See Figure 5 for details.

Robust Gaussian Process-Based Global Optimization 189

References

1. Törn, A., Zilinskas, A. : Global Optimization. Springer, Berlin (1989)
2. Pintér, J.D. : Global optimization. Continuous and Lipschitz optimization : algo-

rithms, implementations and applications. Springer, Heidelberg (1996)
3. Zhigljavsky, A., Zilinskas, A. : Stochastic global optimization. Springer, Heidelberg

(2007)
4. Conn, A.R., Scheinberg, K., Vicente, L.N. : Introduction to derivative-free optimi-

zation. SIAM, Philadelphia (2009)
5. Tenne, Y., Goh, C.K. : Computational intelligence in optimization : applications

and implementations. Springer, Heidelberg (2010)
6. Mockus, J., Tiesis, V., Zilinskas, A. : The application of Bayesian methods for see-

king the extremum. In : Dixon, L., Szego, G. (eds.) Towards Global Optimization,
vol. 2, pp. 117–129. Elsevier, Amsterdam (1978)

7. Mockus, J. : Bayesian approach to Global Optimization : Theory and Applications.
Kluwer Acad. Publ., Dordrecht (1989)

8. Betrò, B. : Bayesian methods in global optimization. Journal of Global Optimiza-
tion 1, 1–14 (1991)

9. Locatelli, M., Schoen, F. : An adaptive stochastic global optimization algorithm for
one-dimensional functions. Annals of Operations Research 58(4), 261–278 (1995)

10. Auger, A., Teytaud, O. : Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica 57(1), 121–146 (2008)

11. Ginsbourger, D., Le Riche, R. : Towards Gaussian process-based optimization with
finite time horizon. In : mODa 9 Advances in Model-Oriented Design and Analysis.
Contribution to Statistics, pp. 89–96. Springer, Heidelberg (2010)

12. Grünewälder, S., Audibert, J.-Y., Opper, M., Shawe-Taylor, J. : Regret bounds
for Gaussian process bandit problems. In : Proceedings of the 13th Internatio-
nal Conference on Artificial Intelligence and Statistics (AISTATS 2010). JMLR
W&CP, vol. 9, pp. 273–280 (2010)

13. Bertsekas, D.P. : Dynamic programming and optimal control. Athena Scientific,
Belmont (1995)

14. Jones, D.R., Schonlau, M., Welch, W.J. : Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

15. Forrester, A.I.J., Jones, D.R. : Global optimization of deceptive functions with
sparse sampling. In : 12th AIAA/ISSMO Multidisciplinary Analysis and Optimi-
zation Conference, September 10-12 (2008)

16. Locatelli, M. : Bayesian algorithms for one-dimensional global optimization. Jour-
nal of Global Optimization 10(1), 57–76 (1997)

17. Osborne, M.A. : Bayesian Gaussian Processes for Sequential Prediction Optimisa-
tion and Quadrature. PhD thesis, University of Oxford (2010)

18. Osborne, M.A., Garnett, R., Roberts, S.J. : Gaussian processes for global optimi-
zation. In : 3rd International Conference on Learning and Intelligent Optimization
(LION3), Online Proceedings, Trento, Italy (2009)

19. Osborne, M.A., Roberts, S.J., Rogers, A., Ramchurn, S.D., Jennings, N.R. : To-
wards real-time information processing of sensor network data using computatio-
nally efficient multi-output Gaussian processes. In : Proceedings of the 7th Inter-
national Conference on Information Processing in Sensor Networks, pp. 109–120.
IEEE Computer Society, Los Alamitos (2008)

20. Williams, B., Santner, T., Notz, W. : Sequential Design of Computer Experiments
to Minimize Integrated Response Functions. Statistica Sinica 10(4), 1133–1152
(2000)

190 R. Benassi, J. Bect, and E. Vazquez

21. Schonlau, M. : Computer experiments and global optimization. PhD thesis, Uni-
versity of Waterloo, Waterloo, Ontario, Canada (1997)

22. Schonlau, M., Welch, W.J. : Global optimization with nonparametric function fit-
ting. In : Proceedings of the ASA, Section on Physical and Engineering Sciences,
pp. 183–186. Amer. Statist. Assoc. (1996)

23. Schonlau, M., Welch, W.J., Jones, D.R. : A data analytic approach to Bayesian glo-
bal optimization. In : Proceedings of the ASA, Section on Physical and Engineering
Sciences, pp. 186–191. Amer. Statist. Assoc. (1997)

24. Forrester, A.I.J., Keane, A.J. : Recent advances in surrogate-based optimization.
Progress in Aerospace Sciences 45(1-3), 50–79 (2009)

25. Jones, D.R. : A taxonomy of global optimization methods based on response sur-
faces. Journal of Global Optimization 21(4), 345–383 (2001)

26. Robert, C.P., Casella, G. : Monte Carlo statistical methods. Springer, Heidelberg
(2004)

27. Del Moral, P., Doucet, A., Jasra, A. : Sequential Monte Carlo samplers. Journal of
the Royal Statistical Society : Series B (Statistical Methodology) 68(3), 411–436
(2006)

28. Liu, J.S. : Monte Carlo strategies in scientific computing. Springer, Heidelberg
(2008)

29. O’Hagan, A. : Bayes-Hermite quadrature. Journal of Statistical Planning and In-
ference 29(3), 245–260 (1991)

30. O’Hagan, A. : Curve Fitting and Optimal Design for Prediction. Journal of the
Royal Statistical Society : Series B (Statistical Methodology) 40(1), 1–42 (1978)

31. Handcock, M.S., Stein, M.L. : A Bayesian analysis of Kriging. Technometrics 35(4),
403–410 (1993)

32. Ginsbourger, D., Helbert, C., Carraro, L. : Discrete mixtures of kernels for kriging-
based optimization. Quality and Reliability Engineering International 24, 681–691
(2008)

33. O’Hagan, A. : Some Bayesian numerical analysis. In : Bayesian Statistics 4 : Pro-
ceedings of the Fourth Valencia International Meeting, April 15-20, 1991. Oxford
University Press, Oxford (1992)

Hierarchical Hidden Conditional Random Fields

for Information Extraction

Satoshi Kaneko, Akira Hayashi, Nobuo Suematsu, and Kazunori Iwata

Graduate School of Information Sciences, Hiroshima City University,
3-4-1 Ozuka-higashi, Asaminami-ku, Hiroshima 731-3194, Japan

kaneko@prl.info.hiroshima-cu.ac.jp

Abstract. Hidden Markov Models (HMMs) are very popular genera-
tive models for time series data. Recent work, however, has shown that
for many tasks Conditional Random Fields (CRFs), a type of discrim-
inative model, perform better than HMMs. Information extraction is
the task of automatically extracting instances of specified classes or
relations from text. A method for information extraction using Hier-
archical Hidden Markov Models (HHMMs) has already been proposed.
HHMMs, a generalization of HMMs, are generative models with a hierar-
chical state structure. In previous research, we developed the Hierarchical
Hidden Conditional Random Field (HHCRF), a discriminative model
corresponding to HHMMs. In this paper, we propose information ex-
traction using HHCRFs, and then compare the performance of HHMMs
and HHCRFs through an experiment.

1 Introduction

1.1 Hierarchical Hidden Conditional Random Fields

Hidden Markov Models (HMMs) are very popular generative models for sequence
data. Recent work, however, has shown that Conditional Random Fields (CRFs),
a type of discriminative model, perform better than HMMs on many tasks [1].
There are several differences between CRFs and HMMs. (1) HMMs are genera-
tive models and thus model the joint probability of input (i.e., observations) and
output data (i.e., states), whereas CRFs are discriminative models that model
the conditional probability of output data given the input data. (2) HMMs make
independent assumptions on observations given states, whereas CRFs do not.
(3) For model parameter estimation, HMMs do not need the states, whereas
CRFs do.

Hierarchical HMMs (HHMMs) are a generalization of HMMs with a hier-
archical structure [2]. Murphy [3] showed that an HHMM is a special kind of
Dynamic Bayesian Network (DBN) and derived an efficient inference algorithm.
In previous research, we developed Hierarchical Hidden Conditional Random
Fields (HHCRFs), a discriminative model corresponding to HHMMs. In addi-
tion, it has been shown that HHCRFs achieve better performance than HHMMs
on certain tasks [4] [5].

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 191–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

192 S. Kaneko et al.

1.2 Information Extraction

Information extraction is the task of automatically extracting instances of speci-
fied classes or relations from text. Systems for information extraction are usually
built using machine learning techniques. Single layer models such as HMMs have
been used for information extraction in previous works. Most of the work in learn-
ing HMMs for information extraction has focused on tasks with semi-structured
text sources in which English grammar does not play a key role.

Skounakis et al. [6] considered the task of extracting information from ab-
stracts of biology articles. In this domain, it is important that the learned mod-
els are able to represent regularities in the grammatical structure of a sentence.
They proposed an approach using HHMMs. Hierarchical models have multiple
levels of states, which describe input sequences at different levels of granular-
ity. In the model they used, the upper level represents sentences at the level
of phrases, while the lower level represents sentences at the level of individual
words.

In this paper, we first propose information extraction using HHCRFs, and
then compare their performance with that of HHMMs in extracting instances
of three binary relations from abstracts of scientific articles. An example of the
binary relations we use in our experiments is the subcellular− localization rela-
tion, which represents the location of a particular protein within a cell. We refer
to the domains of this relation as PROTEIN and LOCATION and to an instance
of a relation as a tuple. Given the sentence, ”This enzyme, UBC6, localizes to
the endoplasmic reticulum, with the catalytic domain facing the cytosol”, for
example, PROTEIN ”UBC6” and LOCATION ”endoplasmic reticulum” should
be extracted. The sentence asserts that protein UBC6 is found in the subcellular
compartment called the endoplasmic reticulum.

1.3 Paper Organization

In Section 2, we review the HHMM, and represent it as a DBN. Then, in Section
3, we define HHCRFs and explain their training algorithm. In Section 4, we
discuss the sentence representation for information extraction, while in Section
5, we explain the architecture and the learning and inference methods for both
HHMMs and HHCRFs. Experimental results are given in Section 6, and we
conclude in Section 7.

2 HHMMs

Hierarchical HMMs (HHMMs) are a generalization of HMMs with a hierarchi-
cal structure [2]. HHMMs have three kinds of states: internal, production, and
end states. They also have three kinds of transitions: vertical, horizontal, and
forced transitions. Murphy [3] showed that an HHMM is a special kind of DBN,
and derived an efficient inference algorithm. In what follows, we show how to
represent an HHMM as a DBN.

Hierarchical Hidden Conditional Random Fields for Information Extraction 193

(a) (b)

Fig. 1. (a) An HHMM represented as a DBN. (b) An HHCRF represented as an undi-
rected graph. Both (a) and (b) describe only the part of the model between t− 1 and
t.

2.1 Representing an HHMM as a DBN

We can represent an HHMM as a DBN as shown in Fig. 1(a). (We assume for
simplicity that all production states are at the bottom of the hierarchy.) The
state of the HHMM is denoted by qd

t (d ∈ {1, . . . , D}), where d is the hierarchy
index, with the top level having d = 1, and the bottom level d = D.

fd
t is the indicator variable, which is equal to 1 if qd

t has transited to its end
state; otherwise it is 0. Note that if fd

t = 1, then fd′
t = 1 for all d′ > d; hence,

the number of indicator variables equal to 0 denotes the level of the hierarchy we
are currently on. The indicator variables play an important role in representing
the HHMM as a DBN.

Defined below are the transition and output probability distributions. These
complete the definition of the model. When qd

t has transited to its end state,
fd

t = 1. This is the signal that the states at the upper levels can be changed.
Furthermore, it is a signal that the next value of qd

t+1 should be determined by a
vertical transition, instead of a horizontal transition. Formally, we denote these
as follows:

p(qd
t = j′|qd

t−1 = j, fd+1
t−1 = b, fd

t−1 = f, q1:d−1
t = i) =

⎧⎨⎩
δ(j, j′) if b = 0

Ad
i (j, j

′) if b = 1 and f = 0
πd

i (j′) if b = 1 and f = 1

p(fd
t = 1|qd

t = j, q1:d−1
t = i, fd+1

t = b) =

{
0 if b = 0

Aed(i, j) if b = 1
(1)

p(ot = s|qD
t = i) = B[s|i]

where the state vector q1:d
t = {q1

t , . . . , qd
t }d∈{1,...,D} is represented by an integer

i (i.e., i is the index for the ”mega state”). In Eq. (1), we assume the dummy

194 S. Kaneko et al.

state q0
t = 0 (i.e., the root state) for notational convenience. We also assume

dummy indicator variables f2:D
0 = 1 and fD+1

t = 1 for the first slice and bottom
level, respectively.

δ(j, j′) is Kroneckers delta. Ad
i (j, j

′) is the horizontal transition probability
into the j′-th state (except into an end state) from the j-th state at level d. πd

i (j′)
is the vertical transition probability into the j′-th state from the i-th state at
level d. Aed(i, j) is the horizontal transition probability into an end state from
the j-th state at level d.

B[s|i] is the output probability of observation s at the bottom level of the i-th
state.

3 HHCRFs

3.1 Model

HHCRFs are undirected graphical models (as shown in Fig. 1(b)) that encode
the conditional probability distribution:

p(Q1:D, F 1:D|O; Λ) =
1

Z(O; Λ)
exp

(
K∑

k=1

λkΦk(Q1:D, F 1:D, O)

)
(2)

where we represent the state sequence Q1:D = {Q1, . . . , QD} and the indicator
variable sequence F 1:D = {F 1, . . . , FD}. O = {o1, . . . , oT } is the sequence data
(observations) and Λ = {λ1, . . . , λK} is the model parameter. Z(O; Λ) is the
partition function that ensures that p(Q1:D, F 1:D|O; Λ) is properly normalized.

Z(O; Λ) =
∑
Q1:D

∑
F 1:D

exp

(
K∑

k=1

λkΦk(Q1:D, F 1:D, O)

)
(3)

Φk(Q1:D, F 1:D, O) is a feature function that can be arbitrarily selected.
To compare the performance of HHCRFs with that of HHMMs, which

have a Markov structure in the state sequence, we restrict the feature func-
tion as Φk(Q1:D, F 1:D, O) =

∑T
t=1 φk(q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) to make the

model structure equivalent to that of HHMMs. The different feature functions
φk(q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) are as follows.

φ
(Hor)
j,j′,i,d(q

1:D
t−1, q

1:D
t , f1:D

t−1 , f1:D
t , ot) =

(
δ(qd

t−1 = j) · δ(qd
t = j′) · δ(q1:d−1

t = i)

· δ(fd+1
t−1 = 1) · δ(fd

t−1 = 0)
)

∀j , ∀j′ , ∀i, ∀d

φ
(V er)
i,j′,d (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) =

(
δ(qd−1

t = i) · δ(qd
t = j′)

· δ(fd+1
t−1 = 1) · δ(fd

t−1 = 1)
)

∀i, ∀j′ , ∀d

Hierarchical Hidden Conditional Random Fields for Information Extraction 195

φ
(End)
i,j,d (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) =

(
δ(q1:d−1

t = i) · δ(qd
t = j)

· δ(fd+1
t = 1) · δ(fd

t = 1)
)

∀i, ∀j , ∀d

φ
(Obs)
i,s (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) = δ(q1:D

t = i)δ(ot = s) ∀i

(4)

where δ(q = q′) is equal to 1 when q = q′ and 0 otherwise. The first three
feature functions are transition features. φ

(Hor)
j,j′,i,d counts the horizontal transitions

into the j′-th state (except into an end state) from the j-th state at level d. φ
(V er)
i,j′,d

counts the vertical transitions into the j′-th state from the i-th state at level d.
φ

(End)
i,j,d counts the horizontal transitions into an end state from the j-th state at

level d. φ
(Obs)
i counts the output at the i-th state.

It can be shown that setting parameter Λ (i.e., the weight of the feature
functions) as follows gives the conditional probability distribution induced by
HHMMs with the transition probability distributions and the output probability
distributions defined in Eq. (1):

λ
(Hor)
j,j′,i,d = log Ad

i (j, j
′)

λ
(V er)
i,j′,d = log πd

i (j′)

λ
(End)
i,j,d = log Aed(i, j)

λObs
i,s = log B[s|i]

(5)

3.2 Parameter Estimation

Exactly as in HHMMs, parameter estimation for HHCRFs is based on the max-
imum likelihood principle given a training set D = {O(n), Q1:D(n)

, F 1:D(n)}N
n=1.

The difference is that we maximize the conditional probability distribution
p(Q1:D, F 1:D|O; Λ) for HHCRFs, whereas we maximize the joint probability
distribution p(Q1:D, F 1:D, O; Λ1) for HHMMs. Here, Λ1 is the parameter for
HHMMs. The conditional log-likelihood for HHCRFs is given below.

L(Λ) =
N∑

n=1

log p(Q1:D(n)
, F 1:D(n)|O(n); Λ)

=
N∑

n=1

(
K∑

k=1

λkΦk(Q1:D(n)
, F 1:D(n)

, O(n))

)

−
N∑

n=1

log Z(O(n); Λ) (6)

196 S. Kaneko et al.

The gradient of Eq. (6), which is needed for estimating parameter Λ̂, is given
by

∂L
∂λk

=
N∑

n=1

Φk(Q1:D(n)
, F 1:D(n)

, O(n))

−
N∑

n=1

∑
Q1:D

∑
F 1:D

Φk(Q1:D, F 1:D, O(n))p(Q1:D, F 1:D|O(n); Λ) (7)

The right hand side of Eq. (7) is the difference between the expectation of
feature values under the actual distribution and that under the model distribu-
tion p(Q1:D, F 1:D|O(n); Λ). The first expectation, the first term of the equation,
can be computed using the junction tree algorithm [7], or by converting the
hierarchical model to a flat model with mega states and applying the backward-
forward-backward algorithm [8].

The sufficient statistics to compute the second expectation are the transition
probabilities {p(q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t |O(n); Λ)|1 ≤ t ≤ T } and the occupancy

probabilities {p(q1:D
t , f1:D

t |O(n); Λ)|1 ≤ t ≤ T }, which can be computed using
the junction tree algorithm, or by converting the hierarchical model to a flat
model with mega states and applying the forward-backward algorithm. (Once
again, we use the latter method in our experiment.)

4 Sentence Representation

In previous works on single level time series models (HMMs) for natural lan-
guage tasks, the passages of text to be processed were represented as a sequence
of tokens. Skounakis et al. [6] showed that representing the sentence structure
in the learned hierarchical models (HHMMS) provides better extraction. Their
approach is based on using syntactic parses of all sentences to be processed.

We follow their approach for sentence representation, with our representation
providing a two-level description. The upper level represents each sentence as a
sequence of phrase segments, while the lower level represents individual tokens,
together with their part-of-speech (POS) tags. In positive training examples, if
a segment contains a word or words that belong to a domain in a target tuple,
the segment and the words of interest are annotated with the corresponding
domain. We refer to these annotations as labels. Test instances do not contain
labels; these labels need to be predicted by the learned model.

Fig. 2 depicts a sentence containing an instance of a subcellular−localization
relation and its annotated segments. The sentence is segmented into typed
phrases, while each phrase is segmented into words typed with part-of-speech
tags. The labels are shown in red and green next to the typed phrases and POS
tags.

Hierarchical Hidden Conditional Random Fields for Information Extraction 197

Fig. 2. Input representation for a sentence containing a tuple

5 Hierarchical Models for Information Extraction

5.1 Upper and Lower Levels

The hierarchical models, HHMMs and HHCRFs, have two levels. At the ”coarse”
level, our hierarchical models represent a sentence as a sequence of phrases. Thus,
we can think of the upper level as a single level model whose states emit phrases.
We refer to this single level model as the phrase model and its states as phrase
states. At the ”fine” level, each phrase is represented as a sequence of words.
This is achieved by embedding another single level model within each phrase
state. We refer to this embedded single level model as a word model and its
states as word states. Fig. 3 shows a transition graph between phrase states,
while Fig. 4 shows a transition graph between word states. The phrase states
in Fig. 3 are depicted as circles, while the word states in Fig. 4 are depicted as
trapeziums. To explain a sentence, the phrase model first follows a transition
from the START state to some phrase state qi, uses the word model of qi to
emit the first phrase of the sentence, then transitions to another phrase state
qj , emits another phrase using the word model of qj , and so on, until it moves
to the END state of the phrase model. Note that only word states have direct
emissions.

5.2 Model Learning

Training sentences can be classified into two types, positive and negative sen-
tences. Positive sentences include a tuple (an instance of a particular relation) in

198 S. Kaneko et al.

Fig. 3. Phrase model for the subcellular − localization relation

Fig. 4. Word model for the subcellular − localization relation

the sentences, while negative sentences do not. We use both positive and negative
sentences for learning the models.

In the case of HHMMs, a pair of HHMMs, one positive and one negative, are
learned. The positive HHMM learns parameters using only positive sentences,
whereas the negative HHMM learns parameters using only negative sentences.

In the case of HHCRFs, being a discriminative model, the HHCRF can learn
both positive and negative sentences with only one model. Our HHCRFs have
an indicator variable PN in addition to regular parameters to indicate whether
a given sentence includes a tuple. The conditional probability that a tuple is
included in the sentence is described as follows.

P (PN = positive, Q1:D, F 1:D|O, Λ) (8)

Hierarchical Hidden Conditional Random Fields for Information Extraction 199

5.3 Inference

Once the model has been trained, we can predict whether a sentence includes
a tuple using the forward algorithm (the forward part of the forward-backward
algorithm), and then we can predict the position of the tuple using Viterbi
algorithm.

In the case of HHMMs, we can compare the likelihood for positive and negative
HHMMs for a given test sentence. If the likelihood of the positive HHMM is
greater than that of the negative HHMM, we infer that the test sentence includes
a tuple. The forward algorithm is used to calculate the likelihoods. For positive
test sentences, we then apply Viterbi algorithm to the positive HHMM. We
extract a tuple from the given sentence if the Viterbi path goes through states
with labels for all the domains of the relation.

In the case of HHCRFs, we can predict whether the sentence includes a tuple
by comparing the conditional probabilities P (PN = positive/negative|O, Λ).
The forward algorithm is used to calculate the conditional probabilities and
then, we use Viterbi algorithm. Viterbi algorithm is used with parameter PN =
positive for those test sentences predicted as being positive.

6 Experiments

6.1 Data

To compare the performance of HHCRFs with that of HHMMs in information
extraction, we evaluated the HHMMs and HHCRFs using three data sets as-
sembled by Skounakis [6] from the biomedical literature. The first set contains
instances of the subcellular−localization relation, which represents the location
of a particular protein within a cell. The second set, which we refer to as the
disorder − association data set, characterizes a binary relation between genes
and disorders. The third set, which we refer to as the protein− interaction data
set, characterizes physical interactions between pairs of proteins. We selected
300 positive and 300 negative sentences from each of the three sets.

We use five-fold cross-validation to measure the accuracy of each approach.
We map all numbers to a special NUMBER token and all words that occur only
once in a training set to an OUT-OF-VOCAB token. Also, all punctuation is
discarded. The same preprocessing is done on test sentences, with the exception
that words not encountered in the training set are mapped to the OUT-OF-
VOCAB token. The vocabulary is the same for all emitting states in the models,
and all parameters are smoothed using m − estimates [9].

6.2 Retrieved Results

We use the lower levels most likely Viterbi path to predict the positions of
the tuple words for the relation. The most likely Viterbi path is returned as a
retrieved result, if the following two conditions hold.

200 S. Kaneko et al.

– The forward algorithm predicts that the given test sentence is positive and
includes a tuple.

– The confidence measure for the most likely path is above the threshold.

For the most likely path for a sentence snt, we calculate the confidence measure
as follows.

c(snt) =
δn(|snt|)
αn(|snt|) (9)

Let n be the length of the most likely path. δn(|snt|) is the probability of the most
likely path up to the n-th state, given by the Viterbi algorithm, and αn(|snt|)
is the total probability of the sequence, calculated by the forward algorithm.

We consider the retrieved result to be correct if the following hold.

– The given test sentence is positive, i.e., the sentence includes a tuple (an
instance of the relation).

– The positions of the labels predicted by the most likely path correspond to
the actual positions of the tuple words in the sentence.

6.3 Performance Evaluation

To evaluate our models, we construct precision − recall graphs. Precision is
defined as the fraction of the number of the sentences for which the positions
of tuple words were predicted correctly over the sentences predicted to include
a tuple by the model. Recall is defined as the fraction of the number of the
sentences for which the positions of tuple words were predicted correctly over
the total number of positive sentences. We constructed precision-recall curves
by varying the threshold for the confidence measure defined in (9).

6.4 Results

Fig. 5(a), (b), and (c) show the precision-recall graphs for the three data sets.
Each figure shows graphs for both the HHMM and HHCRF. The shapes of these
precision-recall curves differ from the more common precision-recall curves with
respect to the following. (1) We predict not only whether a sentence includes
a tuple, but also the position of the tuple. Hence, we cannot assume that all
of the most likely paths are retrieval results and thus, the recall cannot be 1.0.
(2) The recall takes its maximum value when the threshold for the confidence
measure is 0. (3) The precision does not necessarily increase with the threshold
for the confidence measure, because the confidence measure is only an indication
of accuracy. Because of (1) and (2),the curves end before the precision reaches
0. Because of (3), it is possible that both precision and recall increase together
on the graph. It is also possible that they both decrease together. Precision and
recall do not necessarily have a trade-off relation.

For the first two data sets, HHCRFs achieve a higher precision than HHMMs
given the same recall, as can be seen in Fig. 5(a) and (b). For the last data set,

Hierarchical Hidden Conditional Random Fields for Information Extraction 201

(a)

(b)

(c)

Fig. 5. Precision-recall curves: (a) HHMM and HHCRF on the subcellular-localization
data set, (b) HHMM and HHCRF on the disorder-association data set, (c) HHMM and
HHCRF on the protein-interaction data set

202 S. Kaneko et al.

according to Fig. 5(c), HHCRFs show higher precision except for one location.
Furthermore, as shown in the figures, the maximum recall value for HHCRFs is
smaller than that for HHMMs. We summarize the results as follows.
– As long as the recall value is below the maximum recall value for HHCRFs,

HHCRFs make fewer errors than HHMMs.
– If the recall value lies between the maximum recall value for HHCRFs and

that for HHMMs, HHCRFs are not able to extract more tuple words correctly
even if the threshold is removed.

In these experiments, we expect extraction precision to improve when using
HHCRFs instead of HHMMs. We assume that HHCRFs have higher precision,
since they are discriminative models with an indicator variable PN .

7 Conclusion

Information extraction is the task of automatically extracting instances of spec-
ified classes or relations from text. Skounakis et al. [6] proposed a method for
information extraction using HHMMs. In this paper, we have proposed informa-
tion extraction using an HHCRF, which is a discriminative model corresponding
to the HHMM.

In the experiment, the maximum recall value for HHCRFs is smaller than
that for HHMMs. However, HHCRFs achieve higher precision than HHMMs
with the same recall. We presume that this is because the HHCRF is a model
that is discriminatively trained to predict whether or not a sentence is positive.

References

1. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proc. 18th Int. Conf.
Machine Learning (2001)

2. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: Analysis
and applications. Machine Learning 32(1) (1998)

3. Murphy, K., Paskin, M.: Linear time inference in hierarchical HMMs. In: Advances
in Neural Information Processing Systems, vol. 14 (2001)

4. Sugiura, T., Goto, N., Hayashi, A.: A discriminative model corresponding to hierar-
chical hMMs. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL
2007. LNCS, vol. 4881, pp. 375–384. Springer, Heidelberg (2007)

5. Tamada, H., Hayashi, A.: Sports video segmentation using a hierarchical hid-
den CRF. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS,
vol. 5506, pp. 715–722. Springer, Heidelberg (2009)

6. Skounakis, M., Craven, M., Ray, S.: Hierarchical hidden Markov models for infor-
mation extraction. In: Proc. 18th Int. Joint Conf. Artificial Intelligence (2003)

7. Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. Int. J.
of Approximate Reasoning 15(3) (1996)

8. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for information
extraction. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J.
(eds.) IDA 2001. LNCS, vol. 2189, p. 309. Springer, Heidelberg (2001)

9. Cestnik, B.: Estimating probabilities. In: Proc. 9th European Conf. Artificial Intel-
ligence (1990)

Solving Extremely Difficult MINLP Problems Using
Adaptive Resolution Micro-GA with Tabu Search

Asim Munawar1, Mohamed Wahib1,
Masaharu Munetomo2, and Kiyoshi Akama2

1 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Japan

{asim,wahib}@ist.hokudai.ac.jp
2 Information Initiative Institute, Hokkaido University, Sapporo, Japan

{munetomo,akama}@iic.hokudai.ac.jp

Abstract. Non convex mixed integer non-linear programming problems
(MINLPs) are the most general form of global optimization problems. Such prob-
lems involve both discrete and continuous variables with several active non-linear
equality and inequality constraints. In this paper, a new approach for solving
MINLPs is presented using adaptive resolution based micro genetic algorithms
with local search. Niching is incorporated in the algorithm by using a technique
inspired from the tabu search algorithm. The proposed algorithm adaptively con-
trols the intensity of the genetic search in a given sub-solution space, i.e. promis-
ing regions are searched more intensely as compared to other regions. The algo-
rithm reduces the chances of convergence to a local minimum by maintaining a
list of already visited minima and penalizing their neighborhoods. This technique
is inspired from the tabu list strategy used in the tabu search algorithm. The pro-
posed technique was able to find the best-known solutions to extremely difficult
MINLP/NLP problems in a competitive amount of time. The results section dis-
cusses the performance of the algorithm and the effect of different operators by
using a variety of MINLP/NLPs from different problem domains.

Keywords: Mixed Integer Non-Linear Programming (MINLP), micro Genetic
Algorithms (mGA), Tabu Search (TS), niching.

1 Introduction

Mixed integer non-linear programming problems (MINLP) are the most generalized
form of single-objective global optimization problems. They contain both continuous
and integer decision variables, and involve non-linear objective function and constraints
setting no limit to the complexity of the problems. MINLPs are difficult to solve [6]:

1. They involve both discrete (integer) and continuous (floating point) variables.
2. Objective function & constraints are non-linear, generating potential non-

convexities.
3. They involve active equality and inequality constraints.

Many real world constrained optimization problems are modeled as MINLPs e.g.
heat and mass exchange networks, batch plant design and scheduling, design of inter-
planetary spacecraft trajectories etc. In a mathematical form an MINLP problem can be
given as:

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 203–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

204 A. Munawar et al.

Minimize f(x, y) x ∈ N
ndisc , y ∈ R

ncont , ndisc ∈ N, ncont ∈ N

Subject to: gi(x, y) = 0, i = 1, ..., meq ∈ N

gi(x, y) ≥ 0, i = meq + 1, ..., m ∈ N

xl ≤ x ≤ xu, xl, xu ∈ N

yl ≤ y ≤ yu, yl, yu ∈ R

Where, f(x, y) is the objective function, x is a vector of ndisc discrete variables, y is
a vector of ncont continuous variables, meq & m are the number of equality and total
constraints respectively, xl, xu, yl, yu are the lower and upper bounds for the discrete
and continuous variables respectively.

Genetic Algorithms (GAs) are population based search and optimization methods
that mimic the process of natural evolution. They fall in the category of stochastic global
optimization algorithms. Over the recent years GAs have been successfully applied
to solve different MINLPs [6,10,27]. GAs are easy to implement and are black box
optimizers (BBOs) as they do not require any auxiliary information like continuity or
differentiability of functions. They are robust and usually do not get trapped in a local
optima. However, like other stochastic methods GAs may need a large number of fitness
evaluations because of the combinatorial nature of sampling multidimensional space.
Nonetheless, GAs have proven effective for the solution of MINLPs [6,27].

The existing genetic algorithms to solve MINLPs concentrate on a set of problems
from a particular domain and carry no promise to perform well on a problem from an
entirely new domain. The main motivation behind this paper is to develop a method
that is generalized enough to solve difficult MINLP/NLPs taken from different problem
domains in a black-box fashion without user intervention. We address the problems that
are far more difficult than the MINLPs solved in the literature of solving MINLPs using
GAs. Our technique is based on a recursive adaptive resolution micro GA (arGA) with
local search (LS). The basic idea is to locate the regions of interest and intensify the
genetic search in those areas without revisiting the same areas redundantly. We use the
entropy measure of each continuous variable to determine the size of the critical area
around a promising individual. The entropy measure is also used to perform an adap-
tive resolution based local search. This local search tries to find a better solution in the
neighborhoods of an individual using multiple resolutions. In order to avoid revisits to
previously visited local optima we use a technique inspired from the tabu search algo-
rithm. We maintain a finite list of visited local optima and penalize their neighborhoods
for a specific number of iterations. This generates a niching effect and encourages the
algorithm to search in unexplored areas. Without this niching the algorithm does not
work for difficult problems. We have used oracle penalty method [25] for constraint
handling. Oracle penalty method is an advanced penalty method that depends on a sin-
gle easily controllable input parameter called Ω. We have verified the efficiency of the
algorithm by solving a variety of difficult MINLPs.

The rest of the paper is organized as follows: In the next section we will discuss some
of the existing GAs for solving of MINLPs. In Sect. 3 we explain the proposed arGA
and the arLS operators. Section 4 gives some results to show the advantage of using the
proposed algorithm. We conclude the paper in Sect. 5 with some guidelines for possible
improvements in the algorithm.

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 205

2 Related Work

The solvers for MINLPs can be categorized as deterministic and stochastic methods. De-
terministic techniques have been extensively used to solve MINLPs. Branch & bound,
outer approximation, and extended cutting plan methods are some of the famous deter-
ministic techniques. Grossman (2002) [13] gives a detailed review of the deterministic
techniques for solving MINLPs. Deterministic methods usually guarantee the global
optimality at the expense of long execution times depending on the problem complex-
ity. Deterministic methods are usually not BBOs as they often require the problem to be
reduced in a particular form e.g. removal of non-convexities, initialization of optimizers
etc. This often requires the knowledge about the problem structure.

Stochastic methods based on metaheuristics search techniques are true BBOs as they
do not require any information about the mathematical model of the optimization prob-
lem. Although such algorithms carries no guarantee for reaching global optimality, due
to their robustness and ease of implementation they are widely used to solve difficult op-
timization problems, yet their applications in MINLPs remain small. A recent approach
on MINLPs by ant colony optimization is done by MIDACO [24].

Two main concepts of evolution, natural selection and genetic dynamics, inspired
the development of GAs. Basic principles of GAs were laid down by J.H. Holland [17]
and his colleagues in 1975 and were elaborated in detail by D.E. Goldberg (1989) [11].
GAs are flexible and can easily be used with other algorithms in a hybrid fashion [7,9].

2.1 GAs for Solving MINLP Problems

Simple GA is not able to solve even the easiest MINLPs. There are two approaches that
can be used to enable a GA to solve MINLPs: First approach is the use of advanced
genetic operators to ensure the desired convergence of the algorithm, Second approach
is hybridization of GAs with deterministic or LS methods [7].

A. Ponsich et al. (2008) [23] gives some guidelines for GA implementation in batch
plant design problems. Batch plant design problem is a real world problem that is mod-
eled as a non-convex MINLP. Two main issues discussed in this study are the specific
encoding methods and efficient constraint handling. The research uses similar encod-
ing for both integer and continuous part and claims the mixed real-discrete encoding
method to be the best option. For constraint handling the paper suggests elimination for
small problems but appropriate penalization for the complex problems. However, find-
ing appropriate penalization factor is not always easy for the case of MINLPs where
the constraints are non-convex and numerous. Another research on the use of GAs for
similar problem is given in M. Danish et al. (2006) [6]. The paper uses tournament se-
lection, SBX crossover, polynomial mutation and variable elitism operator along with
distance based dynamic penalty with anti-distortion. The authors claim to solve six dif-
ficult MINLP problems by using the proposed method. T. Young et al. (2007) [27] sug-
gests an information guided GA (IGA) approach. It implements the information theory
to the mutation stage of the GAs to refresh the premature population. Local search is
also performed to increase the efficiency. The paper uses an adaptive penalty scheme to
handle constraints [21] and solves 5 popular benchmark problems using the suggested
scheme. V.B. Gantovnik et al. (2005) [10] uses GAs to solve a problem to design of

206 A. Munawar et al.

fiber reinforced composite shell. The suggested approach tries to reduce the number
of fitness and constraint function evaluations by using tree based data structures for
efficient search in the memory to avoid redundant fitness calculations. It suggests the
use of multivariate approximation for continuous variables to avoid unnecessary exact
analyses for points close to previous values.

Apart from the research work done in the area there is at least one commercial prod-
uct that uses GAs to solve MINLP problems. The product is known as GENO or General
Evolutionary Numerical Optimizer [1].

As opposed to the existing techniques, the proposed approach uses unbiased genetic
operators that are applicable to problems from a wide variety of problem domains.
Moreover, we try to solve some of the extremely difficult problems that to the best of
author’s knowledge have never attempted before using genetic algorithms.

3 The Proposed Algorithm

The proposed approach adopts three guiding principles: (a) areas around better solutions
have a greater chance of having an even better solution, (b) constraints must be handled
using an advanced penalty method that do not get trapped in a single feasible region, and
(c) revisiting local optima results in waist of time and therefore must be avoided. Using
these principles as guidelines, the algorithm uses a hierarchical approach for vigorously
searching the promising sub-solution spaces by adaptive resolution GA combined with
an adaptive resolution LS operator. In order to eliminate redundancy in revisiting al-
ready visited local optima we have used an operator inspired from the working of tabu
search algorithm. The oracle penalty method is used to handle constraints.

3.1 Variables Encoding and Genetic Operators

Encoding is one of the most important design factors for GAs, as it limits the kind of
genetic operators that can be used by the algorithm. In our approach, we use different
encoding for the real and the integer part. In the proposed approach the continuous part
of the problem is encoded as real numbers with double precision while the discrete part
is encoded as binary numbers of fixed user defined length. This kind of encoding al-
lows to perform real genetic operators on the continuous variables while binary genetic
operators are applied to the discrete part.

We employ simple one-point crossover for the discrete part while SBX crossover
[2] is applied to the real part of the chromosome. Binary mutations are achieved by
simple bit flipping operation while polynomial mutation is used for the continuous part
of the individuals. Tournament selection of size T is used as a selection operator along
with sharing operator that acts as a niching technique to avoid early convergence. Elitist
replacement is used for the insertion of new individuals in the population.

3.2 Constraint Handling

Penalty methods are used to handle the problem constraints. Such methods transform
a constrained problem to an unconstrained problem by adding the weighted sum of

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 207

constraint violations to the original fitness function. Death or static penalty methods
are the most commonly used penalty methods. Although easy to use these methods are
not able to achieve good performance for tightly constrained problems. We have used
oracle penalty method [25] for constraint handling. Oracle method depends only on
one parameter, named Ω, which is selected as the best equivalent or just slightly greater
than the optimal (feasible) objective function value for a given problem. As for most
real-world problems this value is unknown a priori, we start with a value of Ω = 1e6.
We keep on improving the value of Ω by assigning the best known feasible fitness value
of the previous run. Mathematically the oracle penalty function can be represented as:

p(x) =

⎧⎨⎩
α · |f(x)−Ω|+ (1− α) · res(x) , if f(x) > Ω or res(x) > 0

−|f(x)−Ω| , if f(x) ≤ Ω and res(x) = 0

where α is given by:

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|f(x)−Ω|· 6
√

3−2
6
√

3
−res(x)

|f(x)−Ω|−res(x)
, if f(x) > Ω and res(x) < |f(x)−Ω|

3

1− 1

2

√
|f(x)−Ω|

res(x)

, if f(x) > Ω and |f(x)−Ω|
3

≤ res(x) ≤ |f(x)−Ω|

1
2

√
|f(x)−Ω|

res(x)
, if f(x) > Ω and res(x) > |f(x)−Ω|

0 , if f(x) ≤ Ω

Shape of the oracle penalty function is shown in Fig. 1. The oracle penalty function
is good at dealing with the non-convexities in both equality and inequality constraints.

3.3 Micro GA

The algorithm relies on micro GAs [20] as opposed to the conventional GAs. Micro
GAs maintain a very small population (� 20) that is re-initialized after every few gen-
erations (between 10 and 100). We call this re-initialization of the population a restart.
A restart can inherit some information from the previous run in order to improve the
performance. This re-initialization of the population every few generations can be con-
sidered as a mutation operator. The re-initialization of the population may or may not
be completely random. We define a proximity parameter that determines the proximity
of the newly initialized individuals to the best known individual of the previous restart.
Conventional GAs maintain a large population with sizes of approximately (1/k)·2k for
binary encoding, where k is the average size of the schema of interest (effectively the
average number of bits per parameter, i.e. approximately equal to nchrome/nparam,
rounded to the nearest integer) [12]. The large population size ensures with high proba-
bility that the required genetic material is present in the initial population. In our obser-
vation, for extremely complex MINLP/NLPs a large population slows down the overall
process as a convergence to local optima may lead the whole population to converge to
this point. While in the case of micro GAs a small population may converge to a local
optima but the next restart will have a good chance of jumping to another area. More-
over, as the population size is very small this process happens very quickly. Therefore,

208 A. Munawar et al.

Fig. 1. The oracle penalty function [25]

even though the micro GAs require many restarts before they succeed to achieve all
the required genetic information to reach the best or near best solution the process is
much faster than their conventional counterparts. Individuals carried on from the previ-
ous run allow the building blocks of two different restarts to mix with each other, a step
required by the schema theorem of GAs. In the results section we discuss the effects of
population sizing on the solution quality.

3.4 Adaptive Resolution Approach

Adaptive resolution is a recursive approach to divide the solution space in search for
a better solution. The recursion terminates when no better solution is found. The size
of the sub-solution space is calculated by using the entropy value of each variable. The
recursive nature of arGA is shown in Fig. 2. The probability of adaptive resolution is
proportional to the fitness of the individuals i.e. an individual with a good overall fitness
has a greater chance of getting selected for the adaptive resolution search.

Using Entropy to control Resolution. In order to control the size of the sub-solution
space a vector of real numbers γ is defined, γ is the same size as number of contin-
uous variables. γ value for each variable is calculated using the information entropy.
According to Shannon’s definition of information entropy [26], for a variable V which
can randomly take a value v from a set V, the information entropy of the set V is:

E(V) = −∑v∈V p(v)lnp(v)

If V can only take a narrow range of values, p(v) for these values is � 1. For other
values of V , p(v) is close to zero. Therefore, E(V) will be close to zero. In contrast, if
V can take many different values each time with a small p(v), E(V) will be close to 1.

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 209

Fig. 2. Recursive behavior of adaptive resolution technique

Measuring entropy using the above equation is simple for discrete variables, but the
entropy must be redefined for real numbers by discritizing the range of each variable.
If we have i = 0, . . . , I real variables with lower and upper bound (Li, Ui) such that
Li ≤ Vi ≤ Ui. For each variable Vi, we divide the solution space into R sections of
equal size. Let S = {sr,i|i = 1, . . . , I, r = 1, . . . , R} and sr,i = [Lr

i , U
r
i], where:

Lr
i = Li +

r − 1
R

(Ui − Li) U r
i = Ui − R − r

R
(Ui − Li)

for i = 1, . . . , I and r = 1, . . . , R. Probability that the variable Vi takes the value in
subspace sr,i = [Lr

i , U
r
i] is given by Pr,i = P (Vi = vi|vi ∈ sr,i). The total entropy of

the set Vi is:

E(Vi) = −
R∑

r=1

Pr,ilog(Pr,i)

So, for a variable Vi we define γi = E(Vi). Furthermore, in each iteration of arGA
the value of γ for each variable is halved, hence reducing the size of sub-solution space
to half. This technique is similar to the well known bisection based reduction technique.

3.5 Local Search

We have used an asynchronous local search to improve the efficiency of the algorithm.
LS is applied only to a specified percentage of the individuals. This probability of local
search is kept low (0.01 to 0.1). The proposed local search is adaptive resolution version
of the widely used hill-climbing algorithm. The algorithm for the local search used in

210 A. Munawar et al.

Algorithm 1. Adaptive resolution local search algorithm

inputs
X = [Xbin, Xreal] {Xbin is a binary vector of size Nbin, and Xreal is a binary vector of size Nreal}
γ {A real number vector of size Nreal. contains the resolution for each real variable}
NLS, NrLS {number of overall local search iterations, and number iterations for each real
variable}

—————————————————————————————-
for i = 1 to NLS do

nextEval = INFINITY;
—————- binary local search —————-
for j = 1 to Nbin do
¬ Xbin[j];
if nextEval > objFunc(X) then nextNode← X, nextEval← objFunc(X);
¬ Xbin[j];

end for
—————— real local search ——————
for j = 1 to Nreal do

for k = 1 to NrLS do
Xreal[j] –= k · γ[j];
if nextEval > objFunc(X) then nextNode← X, nextEval← objFunc(X);
Xreal[j] += 2 · k · γ[j];
if nextEval > objFunc(X) then nextNode← X, nextEval← objFunc(X);
Xreal[j] –= k · γ[j];

end for
end for
if objFunc(X) > nextEval then X← nextNode; else break;

end for

arGA is shown in Algorithm 1. The effect of this asynchronous operator is discussed in
the results section.

3.6 Avoiding Redundancy

Avoiding redundant search near already visited local optima is a key to better and faster
search. We have used a simple technique inspired from tabu search algorithm to avoid
this redundancy. The algorithm used for avoiding redundancy is shown in Algorithm 2.
It maintains a finite list of visited local optima. The neighborhoods of these individuals
are penalized in every fitness evaluation. As the list is of finite size the individual can
be removed from the list and get a second chance of getting searched by the algorithm.

4 Results

4.1 Environment and Parameters

All the experiments were performed over an Intel Core 2 Duo 3.3GHz CPU with 4GB
of RAM. The implementation is serial but uses the auto parallelization performed by

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 211

Algorithm 2. Algorithm for avoiding redundancy
Initialize counter
Loop until the maximum number of restarts is achieved
Run GA
If no better solution is found in the current restart
Increment the counter
If counter exceeds the maximum number of similar runs (Mr)

Apply arGA to the neighborhood just to make sure that this is the local optima
If a better solution is found by the arGA
Reset counter and continue the loop

Else
Insert the solution into a finite size Queue

End Loop

the compiler. The algorithm is controlled and configured by various input parameters.
All the parameters are preconfigured to an appropriate value. However, an advanced
user can modify the parameters by accessing the parameter’s input file. Nomenclature
of the parameters is given below:

G, P, R Maximum number of allowed generations, population and restarts
nC, nD, Lc Number of continuous, discrete variables & Chromosome length (nC + nD)
meq, m Number of equality constraints & total number of active constraints
Li, Ui Lower & Upper bound for the ith continuous variable respectively
lj , uj , bj Lower & upper bound and bits required for the jth discrete variable
P, Pc Penalty function and penalty configuration
Pc, Pmb, Pmr Crossover probability, binary mutation & real mutation probability
Pls, Nls Local search probability and number of LS iterations
T Tournament size for the selection operator
Pr Proximity parameter for sampling of population in consecutive runs
ηc, ηm Crossover & mutation probability distribution index
Ω Initial value of the oracle for oracle penalty method

Table 1. Results obtained by applying the proposed algorithm on different optimization problems

212 A. Munawar et al.

Ia Number of levels for performing adaptive resolution genetic algorithm
Ir Number of iterations of adaptive resolution local search for continuous variables
St Stopping criteria
Mf , Mt Maximum allowed fitness evaluations & execution time
MG, MR Maximum allowed generations & runs without any improvement in fitness
Q Size of the queue for the tabu list
N Size of the neighborhood that needs to be penalized
Re Number of partitions to discretize the continuous range for entropy calculations
Lr

i , U
r
i Lower & upper range of the rth partition of the ith variable

E Allowed error between the calculated and the best known result
Ep Residual accuracy

We consider MINLP/NLPs from a wide variety of problem domains. The problems
vary in difficulty levels starting from simple to extremely difficult problems. The bench-
marking problems used in the results section are shown in the appendix.

4.2 Results and Discussion

Results obtained by applying the proposed algorithm on the MINLP/NLP benchmark
problems can be found in Table 1. Note that all the results are an average of 30 indepen-
dent runs under identical circumstances. Table below explains the abbreviations used in
Table 1.

Abbreviation Explanation
Problem problem name used in the literature
Restartsmean average number of restarts
Feasible number of feasible solutions found out of 30 test runs
Optimal number of optimal solutions found out of 30 test runs
fbest best (feasible) objective function value found out of 30 test runs
fworst worst (feasible) objective function value found out of 30 test runs
fmean average objective function value over all runs with a feasible solution
Timemean average CPU-time over all runs with a feasible solution
Evalmean average number of evaluations over all runs with a feasible solution

With so many parameters for the algorithm calibration it is vital to carefully study
the effect of each and every important parameter on the total execution time and so-
lution quality. The preset values of the parameters used for the above experimentation
are as follows: G = 10, P = 10, R = 30000, Pc = 0.5, Pmb = 0.2, Pmr = 0.3,
Pls = 0.01, Ω = 1e6, ηc = 2, ηm = 100, Pr = 1e2, MG = 6, MR = 30,
Ia = Ir = 8, Ep = 0.01, E = 1%, Re = 8, Q = 20, P = “oracle penalty”,
St = “best solution found or no improvement”, Nn = 1, T = 3. The values of these
parameters are selected empirically by studying the effect of the different parameters
on the output.

Figure 3 shows the relationship between the average number of evaluations and av-
erage number of restarts vs. the generation/population (G, P) pair. Even though the
number of average restarts decreased with the increase of G and P , the total number
of fitness evaluations increased by a significant amount. As the total number of fitness
evaluations is directly related to the total execution time, larger values of G and P re-
sults in longer execution time. The results provide a solid ground for the use of micro
GAs instead of conventional GAs.

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 213

Fig. 3. Effect of generation-population (G,P) pair on the total number of evaluations and average
number of restarts

Fig. 4. Effect of local search probability (Pls) on the number of optimal solutions found

Figure 4 shows the importance of optimizing the probability of LS Pls. It is clear
that Pls = 0.01 is the optimal value as it results in the maximum number of optimal
solutions found. Keeping the value of Pls ≥ 0.1 forces the algorithm towards local
optima.

Figure 5 shows the effect of arGA iterations on the total number of optimal solutions
found in 30 runs. arGA is a kind of non-deterministic local search algorithm. The figure
depicts the importance of the arGA step.

Figure 6 shows the efficiency of the queue based approach to avoid redundancy in
searching. The figure shows that for Q = 0 the algorithm is not able to find any optimal
result for some problems, while for other difficult optimization problems the performance
remains low. Hence, the quality of the results is tightly related with the value of Q.

214 A. Munawar et al.

Fig. 5. Effect of arGA iterations (Ia) on the number of optimal solutions found

Fig. 6. Effect of queue size (Q) on the number of optimal solutions found.

5 Conclusions and Future Work

In this paper we suggested a new technique to solve extremely difficult MINLP prob-
lems. We were able to find the best known solutions to the problems from different
domains in a reasonable amount of time. Adaptive resolution technique combined with
microGAs is able to find good local optima in a very rough multidimensional terrain.
This technique combined with an operator inspired by the tabu list in tabu search does
the trick. Local optima are stored in a list for a specific number of generations in or-
der to avoid redundant searching in already searched areas. Even though the algorithm
depends on many different operators and input parameters one of the most important
operators is the restarting of the algorithm whenever stuck. This might sound simple
but microGA with many restarts produces much better results than a normal GA with
larger population and greater number of generations.

As a future work it would be interesting to calibrate (optimize) the input param-
eters using the same algorithm. The parameter tuning in this case will become a very

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 215

complicated MINLP. The fitness function in this case would be cumulative performance
of the algorithm over a set of benchmarking MINLP/NLP problems.

Acknowledgments. We would like to thank Martin Schlüter for his help regarding the
MINLPs. We are also thankful to Kanpur Genetic Algorithms Laboratory for the free
codes for C code of single-objective GA; we have built our code using this code as
the foundation. This work is supported by Grant-in-Aid for Scientific Research (C) by
MEXT, Japan.

References

1. Geno: General evolutionary numerical optimizer, http://tomopt.com/tomlab/
products/geno/

2. Agrawal, R.B., Deb, K., Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous
search space (1995)

3. Babu, B., Angira, A.: A differential evolution approach for global optimisation of minlp
problems. In: Proceedings of the Fourth Asia Pacific Conference on Simulated Evolution
and Learning (SEAL 2002), Singapore, pp. 880–884 (2002)

4. Coello, C.C.: Constraint-handling using an evolutionary multi-objective optimisation tech-
nique. Civil Engineering and Environmental Systems 17, 319–346 (2000)

5. Colville, A.: A comparative study of non-linear programming codes. Tech. Rep. Report 320-
2949, IBM Scientific Centre, New York

6. Danish, M., Kumar, S., Qamareen, A., Kumar, S.: Optimal solution of minlp problems using
modified genetic algorithm. Chemical Product and Process Modeling 1(1) (2006)

7. El-mihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid genetic algorithms: A
review. Engineering Letters 13(12), 124–137 (2006)

8. Floudas, C., Aggarwal, A., Ciric, A.: Global optimum search for nonconvex nlp and minlp
problems. Computers & Chemical Engineering 13(10), 1117–1132 (1989)

9. French, A.P., Robinson, A.C., Wilson, J.M.: Using a hybrid genetic-algorithm/branch and
bound approach to solve feasibility and optimization integer programming problems. Journal
of Heuristics 7(6), 551–564 (2001)

10. Gantovnik, V.B., Gurdal, Z., Watson, L.T., Anderson-Cook, C.M.: A genetic algorithm for
mixed integer nonlinear programming problems using separate constraint approximations.
Departmental Technical Report TR-03-22, Computer Science, Virginia Polytechnic Institute
and State University (2005)

11. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley Professional, Reading (1989)

12. Goldberg, D., Deb, K., Clark, J.: Genetic algorithms, noise, and the sizing of populations.
Complex Systems 6, 333–362 (1991)

13. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and Engineering 3, 227–252 (2002)

14. (GTOP), E.S.A.E.G.O.T.P., Solutions, http://www.esa.int/gsp/ACT/inf/op/
globopt.htm

15. Himmelblau, D.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
16. Hock, W., Schittkowski, K.: Test examples for non-linear programming codes. LNEMS,

vol. 187. Springer, Berlin (1981)
17. Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann

Arbor (1975)

http://tomopt.com/tomlab/products/geno/
http://tomopt.com/tomlab/products/geno/
http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.esa.int/gsp/ACT/inf/op/globopt.htm

216 A. Munawar et al.

18. Homaifar, A., Lai, S.: Constrained optimisation via genetic algorithms. Simulation 62, 242–
254 (1994)

19. Kocis, G., Grossmann, I.: A modelling and decomposition strategy for the minlp optimisation
of process flow sheets. Computers and Chemical Engineering 13, 797–819 (1989)

20. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function opti-
mization. In: SPIE: Intelligent Control and Adaptive Systems, vol. 1196, pp. 289–296 (1989)

21. Lemonge, A.C., Barbosa, H.J.: An adaptive penalty scheme for genetic algorithms in struc-
tural optimization. International Journal for Numerical Methods in Engineering 59(5), 703–
736 (2004)

22. Michalewicz, Z., Fogel, D.: How to solve it. In: Modern Heuristics. Springer, Berlin (2000)
23. Ponsich, A., Azzaro-Pantel, C., Domenech, S., Pibouleau, L.: Some guidelines for genetic al-

gorithm implementation in minlp batch plant design problems. In: Advances in Metaheuris-
tics for Hard Optimization. Natural Computing Series, pp. 293–316. Springer, Heidelberg
(2008) ISSN 1619-7127

24. Schlueter, M.: Midaco: Global optimization software for mixed integer nonlinear program-
ming (2009), http://www.midaco-solver.com

25. Schlueter, M., Gerdts, M.: The oracle penalty method. Journal of Global Optimization 47(2),
293–325 (2010)

26. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27
(1948)

27. Young, C., Zheng, Y., Yeh, C., Jang, S.: Information-guided genetic algorithm approach to
the solution of minlp problems. Industrial & Engineering Chemistry Research 46(5), 1527–
1537 (2007)

Appendix: Problems

Problem 1. Originally proposed by Kocis et al. (1989) [19]. It is a process synthesis
model simulation. The latest effort to solve the problem appears to be that by Angira
and Babu (2002) [3] who used a differential evolution algorithm. The best known fitness
value is 99.245209. The problem definition is as follows:

Minimizex: J(x) = 7.5x3 + 5.5(1 − x3) + 7x1 + 6x2 + 50
(1−x3)

0.8[1−exp(−0.4x2)] + 50
x3

0.9[1−exp(−0.5x1)]
Subject to: x1 ≤ 10x3 0.9[1 − exp(−0.5x1)] − 2x3 ≤ 0

x2 ≤ 10(1 − x3) 0.8[1 − exp(−0.4x2)] − 2(1 − x3) ≤ 0
x1 ∈ [0,∞); x2 ∈ [0,∞); x3 ∈ {0, 1}

Problem 2. This problem was originally proposed by Floudas et al. (1989) [8]. The
latest effort appears to be that by Angira and Babu (2002) [3] who used a differential
evolution algorithm.

Minimizex,y :
J(x,y) = (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

Subject to: y1 + y2 + y3 + x1 + x2 + x3 − 5 ≤ 0 y2
3 + x2

1 + x2
2 + x2

3 − 5.5 ≤ 0
x1 + y1 − 1.2 ≤ 0 x2 + y2 − 1.8 ≤ 0
x3 + y3 − 2.5 ≤ 0 x1 + y4 − 1.2 ≤ 0
x2
2 + y2

2 − 1.64 ≤ 0 x2
3 + y2

3 − 4.25 ≤ 0
x2
3 + y2

2 − 4.64 ≤ 0
x ∈ [0,∞) y ∈ {0, 1}

Problem 3. The original source of this problem is reputed to be the Proctor and Gamble
Corporation, and the earliest reference appears to be Colville (1968) [5]. It has featured
in many empirical studies on numerical optimization including Himmelblau (1972)
[15], Hock and Schittkowski (1981) [16], Homaifar et al. (1994) [18], Michalewicz and

http://www.midaco-solver.com

Solving MINLPs Using Adaptive Resolution Micro-GA with Tabu Search 217

Fogel (2000) [22], and Coello Coello (2000) [4]. The best known solution still remains
as that reported by Hock and Schittkowski (1981) [16]

Minimizex,y : J(x) = 5.3578547x2
3 + 0.8356891x1x3 + 37.293239x1 − 40792.141

Subject to: 0 ≤ 85.334407 + 0.0056858x2x3 + 0.0006262x1x4 − 0.0022053x3x5 ≤ 92
90 ≤ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 ≤ 110
20 ≤ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 − 0.0019085x3x4 ≤ 25
x1 ∈ [78, 102]; x2 ∈ [33, 45]; x3 ∈ [27, 45]; x4 ∈ [27, 45]; x5 ∈ [27, 45]

Problem 4. Is a problem with 23 constraints in total out of which 2 are equality con-
straints. Number of discrete variables is 8 while the number of continuous variables is
9. Best known fitness so far is 67.998977252444.

Problem 5 - 11. These are NLP space mission trajectory design problems that are
taken from the ESA (European space agency) GTOP (Global Optimization Trajec-
tory Problems) Database [14]. Table 3 gives the details of these problems and the best
known results so far. The table also shows the solvers that are attributed for finding
the best known result. The variable bounds for some of the problems were reduced to
make them more suitable for the algorithm and avoid some technical glitches in the
simulator.

Table 3. Details of problems 5 to 11

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 218–225, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Adaptive Abnormality Detection on ECG Signal by
Utilizing FLAC Features

Jiaxing Ye1, Takumi Kobayashi2, Tetsuya Higuchi1,2, and Nobuyuki Otsu2

1 Department of Computer Science, University of Tsukuba, Japan
2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

{jiaxing.you,takumi.kobayashi,t-higuchi,otsu.n}@aist.go.jp

Abstract. In this paper we propose a self-adaptive algorithm for noise robust
abnormality detection on ECG data. For extracting features from ECG signals,
we propose a feature extraction method by characterizing the magnitude,
frequency and phase information of ECG signal as well as the temporal
dynamics in time and frequency domains. At abnormality detection stage, we
employ the subspace method for adaptively modeling the principal pattern
subspace of ECG signal in unsupervised manner. Then, we measure the
dissimilarity between the test signal and the trained major pattern subspace. The
atypical periods can be effectively discerned based on such dissimilarity degree.
The experimental results validate the effectiveness of the proposed approach for
mining abnormalities of ECG signal including promising performance, high
efficiency and robust to noise.

Keywords: ECG signal processing, time-frequency analysis, local auto-correlation,
self-adaptive algorithm, subspace method.

1 Introduction

The electrocardiographic (ECG) is the chart interpretation of electrical activity of
the heart over time and is externally captured by skin electrodes. ECG signals may be
recorded over a long timescale (i.e., few days). It cost pretty expensive labor for
investigating the ECG data manually as well as huge storage space to keep it. In
recent years, the signal processing techniques on ECG data have been extensively
studied and contribute significantly for diagnosing cardiac diseases.

Mostly, ECG signal processing system comprises several components such as
preprocessing, detection, or compression stage, several signal processing approaches
have involved for specific goal accordingly. For example, low pass filter is employed
for removing the baseline wander of ECG signal and band stop filter is utilized to get
rid of powerline interference of Direct Current (DC) [1, 2]. Further developed
analytical schemes are adopted for detecting the typical deflections of ECG signal
which is called QRS [3]. For reducing the storage space of ECG signal, lots of signal
analysis tools have been studied for addressing the data compression problem such as
principle component analysis and wavelet transform [4]. Recently, more machine
learning approaches have been introduced to enhance the performance of ECG

 Adaptive Abnormality Detection on ECG Signal by Utilizing FLAC Features 219

processing system such as Support Vector Machines (SVM) [5], Artificial Neural
Networks (ANN) and Genetic Algorithms (GA) [6].

In this work, we propose a self-adaptive framework for detecting abnormalities of
ECG signal. The goal is to discern the aberrant periods from the whole ECG data.
Note that the abnormalities refer to all kinds of disordered variations corresponding to
prominent regular recurrent ECG signal. For extracting the dynamic properties of
ECG signal, we modify our previous work of Fourier Local Auto-Correlation (FLAC)
methodology [7]. The FLAC is initially proposed for representing audio signal and
proved to work effective for modeling unstructured sound with wide variations. In
this work we generalize FLAC features for time-series signal processing with some
modifications characterizing the features of ECG signal. Unlike most time-frequency
analysis schemes characterize the magnitude spectrum only; The FLAC feature
extraction method is based on the complex spectrogram of ECG signal and takes
advantage both of the magnitude and the phase components without losing any
information. In addition, the FLAC extract the temporal dynamics on the time-
frequency plane by calculating correlations of respective frequency components at
adjacent positions on the ECG spectrum plane, which are favorable for describing
non-stationary signals with unpredictable variations such as ECG signals.

The detection problem can be interpreted as two-set classification between normal
and aberrant ECG waveforms. The subspace method was proved effective for
describing and solving the abnormal detection problem [8]. To deal with complex
FLAC feature vectors, we utilize the reformed type of subspace method, called
complex subspace method. We utilize complex subspace method to extract the
prominent characteristics of ECG signals which assumed to be normal heart beating.
In addition, the noise reduction procedure is crucial for the performance of the ECG
signal processing system. The subspace method can adapt to such noise variations by
constructing subspace statistically in unsupervised manner. The trained “normal”
subspace is sensitive to the occurrences of irregular variations in ECG data, which are
reflected in deviation distances between the ECG signal feature vectors and the
trained subspace. These distance values provide effective evidence for detecting
aberrant periods. Benefited from the self-adaptation of subspace method, the proposed
framework can achieve promising detection performance on original ECG record. The
experimental results clearly validate the effectiveness of proposed methodology.

2 Architecture of the Proposed Framework

Fig.1 shows the brief flow chart of the proposed system. Firstly, the ECG signal is
transformed to complex spectrum by short-time Fourier transform (STFT), and then a
series of frame sequences of short-time spectra are obtained. Before extracting FLAC
features, a spectral preprocessing procedure is applied based on prior-knowledge of
ECG signal. Then we compute FLAC features considering neighborhoods along both
time and Mel-frequency coordinate to extract the temporal dynamic information. At
detection stage, all FLAC feature vectors extracted from ECG signal are utilized to
train the “main pattern” subspace. The regular recurrent ECG signals are assumed to
produce pretty low deviation distance to the trained subspace. Conversely, the
aberrant variations of ECG signal would exhibit distinct deviation. In other word,

220 J. Ye et al.

such deviation distance values manifest the dissimilarity degree between input signal
and the trained major pattern subspace. A threshold on the deviation distance values
can be determined to efficiently detect the atypical sections of ECG signal.

Fig. 1. Chart flow of proposed system

2.1 Preprocessing in Frequency Domain

In this part, the prior-knowledge of ECG signal is employed to enhance the efficiency
and the performance of detection. The maximum frequency of ECG signal is
generally fixed to 70Hz. We remove the frequency components from complex
spectrogram which exceed that maximum. Owing to reducing the computation time,
we compress the frequency component by adding up several neighbor frequency
entries’ values as the compressed frequency feature. The length of summation is
optimized and fixed to 8 according to experimental results. With such compression
procedure, we can accelerate the algorithm as well as achieve high performance
according to experimental results.

2.2 Local Auto-correlation on Complex Fourier Values (FLAC) for ECG

In [7] we proposed FLAC, a methodology for extracting acoustic features by
characterizing joint temporal dynamic features in time and frequency domains as well
as taking advantage both of magnitude and phase information. We introduce the
mechanism of FLAC features for time-series data explicitly in this section.

Let time and frequency be denoted by t and v, respectively. Note that the frequency
information corresponds to the already finished preprocessing procedure. f(r) denotes
complex spectrogram at position r=(t,v) on such two-dimensional plane. We employ
the local auto-correlation function to extract the features based on complex
spectrogram:

 (1)*

,
() () (),

t v
x a f r f r a= +

ECG Signal

Short-Time Fourier Transform

Complex Fourier FLAC Feature Extraction

Main Pattern Subspace

Judgment by Threshold Criterion on abnormality indexes

Signal
Feature
Extraction

Abnormality
Detection

Learning Projecting

Preprocessing in Frequency domain

 Adaptive Abnormalit

where a is a displacement
complex conjugate. We lim
neighborhoods are assumed
r+a are shown in Fig. 3.
patterns enable us to extrac

features. The complex val
where A and B are magnit
feature is described by:

This is based on multi
correlation of complex valu
of phases which are robus
No.1 pattern produces ordi
No.2~4 provide dynamic f
concatenate all pattern featu
feature vector which effe
acoustic FLAC features, th
and maintain the whole spe

Fig. 3. Time-frequenc

2.3 Complex Subspace M

There are two goals for ad
“learn” the “mainstream” p
those features by a subspa
feature vectors by measuri
trained subspace and extra
deviation distances. Such
atypical periods. This sectio
that for noise signals, subs
adaptively into the trained s

,t vx

T
im

e

Freque

ty Detection on ECG Signal by Utilizing FLAC Features

vector indicating local neighborhoods and f* denotes
mit a within 2x2 region on time-frequency plane as the lo
d to be highly correlated. The combination patterns of r

FLAC can extract phase information as follows. Th
ct plenty of in-domain and cross-domain temporal dynam

ues f(r) and f(r+a) are represented by and
tudes and and are phases. Then the complex FL

plication of magnitudes and difference of phases. S
ues provides joint features of magnitudes as well as th
st to phase shift by considering the difference. Note t
inal magnitude-based feature like power spectrum, wh
features in time and frequency domains. In the end
ure vectors to the (long) feature vector at each frame (t

ective for representing ECG signals. Comparing to
he FLAC feature in this work removed the Mel filter b
ctral information.

y local auto-correlation feature patterns in FLAC features

Method

dopting subspace method [8] in our framework. First is
pattern of ECG signal in unsupervised manner and mo
ace statistically. Secondly, we investigate the ECG sig
ing the deviation distances (dissimilarity degrees) to

act only “non-mainstream” periods which present disti
distance values provide effective evidences to disc

on provides a thorough explanation to the procedure. N
space method can incorporate the characteristics of no
subspace.

jAe θ− Be
θ ϕ

() .i i i

v Ae Be ABeθ ϕ ϕ θ− −= =

Pattern No.1
Magnitude
Features

Pattern No.2, 3
Inner Domain
Dynamic
Features

Pattern No.4, 5
Cross Domain
Dynamic
Features

ency

221

the
ocal
and

hese
mic

LAC

(2)

uch
hose
that

hile,
we

t) as
the
ank

s to
odel
gnal
the

inct
cern
Note
oise

je ϕ−

222 J. Ye et al.

Let denote M-dimensional complex feature vectors. We
calculate eigenvalues and eigenvectors by:

 (3)

where are conjugate transpose of and refers to the covariance

matrix of feature vectors. A phase shift of is denoted by and the robustness
of complex subspace method to phase shift can be simply proved as:

.
(4)

We sort eigenvectors by eigenvalues in decreasing order. These eigenvalues denote
the significance of corresponding eigenvectors for expressing the time-series data.
The contribution rate of is defined as:

 (5)

We keep first K eigenvectors with contribution rate of
to express the main patterns of ECG data. We represent main pattern subspace of
ECG signal as S and its projection operator as . The project operator onto
the ortho-complement subspace of S is denoted by . The deviation
distance between signal feature vector and S can be measured as:

. (6)

The robustness to phase shift is also achieved in this distance:

(7)

The following mathematical forms manifest that only the abnormal ECG feature
vectors lead to distinct deviation distances while projecting them onto the trained
subspace.

Suppose:

(N: Normal ECG, A: Abnormal ECG)
(9)

 Then:

(10)

Subsequently, we define the sequence of d as abnormality indexes for representing
dissimilarity degrees between input feature and regular ECG signal. According to
experimental tests, the threshold is determined based on d as:

 (11)

(1, ,)
M

i
x i n C= ∈

1
(, ,)

M
diag λ λΛ = []1, , , M

MU u u u C= ∈

{ }
1

, ,
x x

n

Cov Cov i i
i

R U U R E x x ∗

=
= − −Λ

, (1, ,)ix i n∗ ∈ ix
Cov

R

ix j

ix e θ

() (){ } { } { }
1 1 1

n n n
j j j j

i i i i i ii i i
E x e x e E x x e e E x xθ θ θ θ∗ ∗ − ∗

= = =
⋅ = =

K
η

1 1
.K M

i ii iK λ λη
= =

[]1 , ,
K KU u u= 0.99

K
η >

K K
P U U

∗=

M
P I P

⊥
= −

22 ()M K K K Kd P x x I U U x x x x U U x∗ ∗ ∗ ∗ ∗
⊥= = − = −

() 22 j j j j j

K Kd P x e x e e x x U e e U xθ θ θ θ θ∗ − ∗ − ∗
⊥= ⋅ = −

.
K K

x x x U U x∗ ∗ ∗= −

() () ()
1 .N N A

nx x x x= + + +

222 () () ()

1)(N N S
nd P x P x x P x⊥ ⊥ ⊥= = + + +

2()
.0 SP x⊥= +

.() ()Threshold mean d std d= +

 Adaptive Abnormality Detection on ECG Signal by Utilizing FLAC Features 223

3 Experiments

To validate the proposed framework, we conducted abnormality detection
experiments on ECG signal. The ECG recordings were extracted from MIT-BIH
arrhythmia ECG database [9]. The MIT-BIH arrhythmia ECG database consists of 48
half hour excerpts ambulatory ECG recordings, which were obtained from 47
subjects, including men and women of various ages. The ECG waveforms were
digitized at 360 samples per second. Meanwhile, the reference annotations were
utilized for evaluating the detection performance. Note that the annotations presented
all detailed information of abnormality types such as premature ventricular
contraction (PVC), premature atrial contraction (PAC), etc. In our case, we involve
the rough classification between normal and abnormal only, so we reformed the labels
two to normal and abnormal sections.

The length of analysis window in short-time Fourier transform was set to 512
points of ECG data with 128 points overlapped. The contribution rate was fixed to
0.99 for constructing main pattern subspace of ECG signal. For compressing the
frequency components, we chose the summation of 8 neighbor entries as new feature
in frequency domain.

For a more intelligible understanding of the proposed scheme, we provide the
illustration of abnormality detection on 200-second ECG data. Note that the test ECG
signal was the original data without any separated preprocessing steps, such as
baseline wander removal or powerline interference suppression. The detection result
by the proposed methodology was depicted in Fig.3. Meanwhile, the method achieved
pretty high efficiency that it cost only 0.0017 second for detecting one second’s data
points (360) of ECG signal by utilizing Core™2 Quad Processor Q6600 2.4GHz.

Fig. 3. Abnormality Detection on clean ECG signal. (a). ECG data waveform. (b). Abnormality
indexes detected by proposed framework with threshold (dashed line)

(a)

(b)

224 J. Ye et al.

In the case of real-world ECG signal processing, noise always existed. For
validating self-adaptation characteristic of the proposed scheme to the noise in ECG
data, we conducted abnormality detection experiments on noisy ECG signal. The
source data of ECG was the same as in the previous experiment and distorted
manually by additive Gaussian noise with 20dB SNR. Fig.4 (a) plotted the waveform
of ECG signal. According to the detection result presented in Fig.4 (b), the noise can
be effectively encoded by subspace method and the detection performance was
maintained stably.

Fig. 4. Abnormality Detection on Noisy ECG signal. (a). Noisy ECG data waveform. (b).
Abnormality indexes detected by proposed framework with threshold (dashed line).

Subsequently, we conducted extensive experiments on ECG signal extracted from the
MIT-BIH arrhythmia ECG database. We selected six sequences of ECG data and each
contains 10 minutes’ ECG data. The experiments were conducted twice as on the clean
(original) ECG signal and the noisy ECG at 20dB SNR. The criterions of Recall rate (RC)
and False Alarm rate (FA) were adopted to evaluate the performance of the proposed
detection approach. The detailed results of experiments are presented in Table.1.

According to all the experimental results listed above, the effectiveness of the
proposed detection algorithm was validated as well as the self-adaptation
characteristic to noise interference. In addition, our approach doesn’t need any
preprocessing and present pretty high efficiency. It could be utilized as an automatic
filter to target the candidates for further examination.

Tabel 1. Experimental result of abnormalities detection by proposed scheme (%)

 No. 213 No. 214 No. 215 No. 217 No. 221 No. 223
RC FA RC FA RC FA RC FA RC FA RC FA

Clean
ECG

95.14 4.41 88.16 3.00 88.76 13.84 100 15.53 99.05 4.63 90.48 8.47

Noisy
ECG

93.75 5.47 86.18 3.03 87.16 18.40 100 18.12 99.05 4.66 90.37 11.48

(a)

(b)

 Adaptive Abnormality Detection on ECG Signal by Utilizing FLAC Features 225

4 Conclusions

In this paper, we proposed a novel adaptive abnormality detection scheme for ECG
signal processing. For extracting the dynamic properties from ECG signal, we
employed the method of computing local auto-correlation on complex Fourier values
(FLAC) to capture the temporal dynamics in time and frequency domain as well as to
take advantages both of the magnitude and the phase information. To detect aberrant
sections as well as to cope with the FLAC complex feature vectors, we employed the
complex subspace method in unsupervised manner. The experimental results
demonstrate that the proposed methodology can effectively adapt to noise variations
with high efficiency and promising detection performance. The proposed scheme can
also be generalized for other applications of abnormality mining in addition to ECG
signal.

References

1. Rahman, M.Z.U., Shaik, R.A., Rama Koti Reddy, D.V.: Noise Cancellation in ECG Signals
using Computationally Simplified Adaptive Filtering Techniques: Application to
Biotelemetry. Int. J. Signal Processing 3(5), 120–131 (2009)

2. Blanco-Velasco, M., Weng, B., Barner, K.E.: ECG signal denoising and baseline wander
correction based on the empirical mode decomposition. Computers in Biology and
Medicine 38(1), 1–13 (2008)

3. Chouhan, V.S., Mehta, S.S.: Threshold-based Detection of P and T-wave in ECG using New
Feature Signal. Int. J. Computer Science and Network Security 8(2), 144–153 (2008)

4. Mohammadpour, T.I., Mollaei, M.R.K.: ECG Compression with Thresholding of 2-D
Wavelet Transform Coefficients and Run Length Coding. Euro. J. Scientific Research 27(2),
248–257 (2009)

5. Mehta, S.S., Lingayat, N.S.: Support Vector Machine for Cardiac Beat Detection in Single
Lead Electrocardiogram. IAENG Int. J. of Applied Mathematics 36(2), 4–11 (2007)

6. Karpagachelvi, S., Arthanari, M., Sivakumar, M.: ECG Feature Extraction Techniques - A
Survey Approach. Int. J. Computer Science and Information Security 8(1), 76–80 (2010)

7. Jiaxing.Ye, T.: Kobayashi and T. Higuchi: Audio-based Sports Highlight Detection by
Fourier Local Auto-Correlations. In: 10th INTERSPEECH 2010, International Speech
Communication Association, pp. 2198–2201 (2010)

8. Nanri, T., Otsu, N.: Unsupervised abnormality detection in video surveillance. In: IAPR
Conference on Machine Vision Applications, pp. 574–577 (2005)

9. MIT-BIH arrhythmia ECG database,
http://www.physionet.org/physiobank/database/mitdb

Gravitational Interactions Optimization

Juan J. Flores1, Rodrigo López1, and Julio Barrera2

1 Universidad Michoacana de San Nicolás de Hidalgo
División de Estudios de Posgrado, Facultad de Ingenieŕıa Eléctrica

2 CINVESTAV-IPN
Departamento de Computación

Evolutionary Computation Group
Av. IPN No. 2508, Col. San Pedro Zacatenco

México, D.F. 07360, Mexico
juanf@umich.mx, rlopez@faraday.fie.umich.mx, julio.barrera@gmail.com

Abstract. Evolutionary computation is inspired by nature in order to
formulate metaheuristics capable to optimize several kinds of problems.
A family of algorithms has emerged based on this idea; e.g. genetic algo-
rithms, evolutionary strategies, particle swarm optimization (PSO), ant
colony optimization (ACO), etc. In this paper we show a population-
based metaheuristic inspired on the gravitational forces produced by the
interaction of the masses of a set of bodies. We explored the physics
knowledge in order to find useful analogies to design an optimization
metaheuristic. The proposed algorithm is capable to find the optima
of unimodal and multimodal functions commonly used to benchmark
evolutionary algorithms. We show that the proposed algorithm (Gravi-
tational Interactions Optimization - GIO) works and outperforms PSO
with niches in both cases. Our algorithm does not depend on a radius
parameter and does not need to use niches to solve multimodal prob-
lems. We compare GIO with other metaheuristics with respect to the
mean number of evaluations needed to find the optima.

Keywords: Optimization, gravitational interactions, evolutionary
computation, metaheuristic.

1 Introduction

Multimodal optimization problems deal with objective functions that commonly
contain more than one global optima and several local optima. In order to find
all the global optima in multimodal problems with classical methods, one typi-
cally runs a given method several times with different starting points, expecting
to find all the global optima. However, these techniques do not guarantee the
location of all optima. Therefore, this kind of techniques are not the best way to
explore multimodal functions with complex and large search spaces. In the evo-
lutionary computation literature exists a variety of metaheuristics challenging
the typical problems of classical optimization. E.g. in particle swarm optimiza-
tion with niches the best particle makes a niche with all particles within a radius

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 226–237, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Gravitational Interactions Optimization 227

r, until the niche is full; it then selects the next best no niched particle and its
closest particles to form the second niche; the process repeats until all particles
are assigned to a niche. Objective function stretching, introduced by Parsopolous
[9], [10] is another algorithm whose strategy is to modify the fitness landscape
in order to remove local optima and avoid the premature convergence in PSO.
In a minimization problem, a possible local minimum is stretched to overcome a
local maximum allowing to explore other sections of the search space identifying
new solutions. GSA introduced by Rashedi [11], is a gravitational memory-less
(does not include a cognitive component in the model) metaheuristic capable to
find only one global optima in unimodal and multimodal problems with more
than one global optima, where a heavier mass means a better solution and the
gravitational constant G is used to adjust the accuracy search.

The rest of the paper is organized as follows: Section 2 compares GIO with
GSA and CSS, two other metaheuristics very similar to our proposal. Section 3
reviews Newton’s universal gravitation law. Section 4 proposes Gravitational In-
teractions Optimization, the main contribution of this paper. Section 5 presents
the experimental framework and the obtained results. Finally, Section 6 presents
our conclusions.

2 Review GSA GIO and CSS

GIO has similarities with other two nature-inspired algorithms: GSA (Gravita-
tional Search Algorithm), inspired on gravitational interactions and CSS Charge
Search System (CSS) inspired on electrostatic dynamics laws. Our work is very
similar to theirs, but since we have publications from around the same time [1],
[3], and have not had any personal communication with their respective authors,
we can state that this work is independent from the works of CSS and GSA.

First GSA and CSS are very similar to GIO, assigning masses and charges
respectively to bodies, according to the fitness function in the place the body is
located, in order to determine the evolution.

The gravitational constant G in GSA decreases exponentially with time, using
a decay constant α. We think that is not a good idea because this function is
not autoadaptative, it makes the method dependent on one more parameter. In
an attempt to increase its exploration capabilities, when GSA is determining
the total force exerted to a body, it weights each component (the force exerted
by each other body) by a random number. This situation, in the worst case,
destroys the underlying metaphor, i.e. the gravitational interaction.

Another point is that GSA uses Kbest agents in order to minimize computing
time, although the complexity of the algorithm is not reduced. On the other
hand, we allow all masses (agents) to interact with each other.

The CSS algorithm tries to imitate the electrostatic dynamics in order to op-
timize unimodal and multimodal functions, assigning charge to the particles in
a similar way as GSA and GIO assign masses to the bodies. We think that the
high level of detail of the charges of the particles in CSS is unnecessary, and the
parameter a is very large for some functions; the estimation of this parameter

228 J.J. Flores, R. López, and J. Barrera

could be arbitrary. We think that CSS lost the sense of electromagnetism dynam-
ics when they assign binary flags to determine the direction of the attraction of
the bodies. All charges are positive, and still attract each other, departing from
the electrostatic metaphor and making it look more like a gravitational one.

Another important difference is that both CSS and GSA aim to locate the
global optimum for multimodal functions, while GIO’s main interest is to deter-
mine all local and global optima for multimodal functions.

In our work we explore the properties of gravitational interactions in order
to make a useful metaheuristic to find optima in unimodal and multimodal
problems.

3 Newton’s Law of Universal Gravitation

The attraction force of two particles is proportional to their masses and inversely
proportional to their distance. The Law of Universal Gravitation was proposed
by Isaac Newton [8]. This law is stated in Definition 1.

Definition 1 The force between any two particles having masses m1 and m2,
separated by a distance r, is an attraction acting along the line joining the par-
ticles and has G magnitude shown in Equation (1).

F = G
m1m2

r2
(1)

where G is a universal gravitational constant.

The forces between two particles with mass are an action-reaction pair. Two
particles with masses m1 and m2 exert attracting forces F12 and F21 towards
each other whose magnitudes are equal but their directions are opposed.

The gravitational constant G is an empirical physical constant involved in
the computation of the gravitational attraction between particles with masses,
which when determined by the maximum deflection method [12] yields.

G = 6.673× 10−11N(m/kg)2 (2)

The gravitational force is extremely weak compared to other fundamental
forces; e.g. the electromagnetic force is 39 orders of magnitude greater than the
gravity force.

Newton’s law of universal gravitation can be written in vectorial notation,
which considers both: The force of the masses and the direction of each force.
The vectorial notation is shown in Equation (3).

F12 = −G
m1m2

|r12|2 r̂12 (3)

where F12 is the force exerted by m1 on m2, G is the gravitational constant, m1

and m2 are the masses of the particles, |r12| is the euclidean distance between
particles m1 and m2, r̂12 is the unit vector, defined as r2−r1

|r2−r1| , and r1 and r2 are
the locations of particles m1 and m2 (see Figure 1).

Gravitational Interactions Optimization 229

m1 m1 m1

m2 m2 m2

F12�� �F21�r21 � �r12
r12

(a) (b) (c)

�

Fig. 1. (a) The force exerted on m2 (by m1), F21, is directed opposite to the dis-
placement, r12, of m2 from m1. (b) The force exerted on m1 (by m2), F12, is directed
opposite to the displacement, r21, of m1 from m2. (c) F21 = −F12, the forces being an
action-reaction pair.

4 Gravitational Interactions Optimization

In order to find one or more optima there exists a large variety of evolution-
ary algorithms, e.g. genetic algorithms (GA) [4], evolutionary strategies (ES)
[5], ant colony optimization (ACO) [2], particle swarm optimization (PSO) [6],
electrostatic PSO (EPSO) [1], etc. There exist works related to the design of
metaheuristics that take into account distances in order to determine the cluster
membership of the particles, computing and maximizing a ratio for all particles
in the swarm with respect to the particle to be updated, e.g. FER-PSO [7]. We
propose a Gravitational Interaction Optimization metaheuristic (GIO) capable
of solving optimization problems. The motivation of the design of this meta-
heuristic is to find useful properties and anolgies that can relate optimization
problems with Newton’s gravitational theory. In the approach presented in this
paper, we abduct the interactions exhibited by a set of bodies and use them to
guide the search for the global optimum in an optimization problem.

4.1 Gravitational Interactions for Unimodal Optimization

GIO is a population-based metaheuristic where a set of bodies are initially dis-
persed along the search space with a uniform random distribution. The fitness
of bodies located on the search space are mapped as masses in a Gravitational
field where the solutions are evolved. Each body stores its current position B
and possibly its best position so far Bb, according to the fitness function. Bodies
are allowed to interact in a synchronous discrete manner for a number of epochs.
The body interactions follow Newton’s gravitational law and move each body to
a new location in such way that the whole population tends to reach the global
optimum (or multiple local optima for multi-modal problems).

The fitness function is a mapping that transforms a vector X = (x1, x2, . . . , xn)
to a scalar f(X). This mapping associates the fitness value f(X) to each location

230 J.J. Flores, R. López, and J. Barrera

X = (x1 · · ·xn) of the search space. We assign a body B to every location X
in the search space where an individual of the population is found. Body B is
assigned a mass, whose magnitude is a function of the fitness of its location.

Newton’s law of universal gravitation describes the attraction forces that exist
between two punctual bodies with masses (described in vectorial form in 3).
Substituting we obtain Equation (4).

Fij =
M (f(Bi)) ·M (f(Bj))

|Bi − Bj |2 B̂ij (4)

where Bi is the position of the ith body and Bj is the jth body that contributes
exerting a force on the mass Bi; |Bi − Bj | is the euclidean distance and Bij is
the unit vector between bodies Bi and Bj ; f(Bi) is the fitness of body Bi, M is
the mapping function that associates the fitness value f of domain {x : x ∈ �}
to a mass of codomain {y : y ∈ (0, 1]} for each position of the body Bi. This
mapping is computed using Equation (5).

M(f(Bi)) =
(

f(Bi) − minf(B)
maxf(B) − minf(B)

(1 − mapMin) + mapMin

)2

(5)

where minf(B) is the minimum fitness value of the positions of the bodies so
far, maxf(B) is the maximum fitness value of the positions so far. mapMin
is a constant with a small positive value near zero, such that (1 − mapMin)
reescales the fitness value f(Bi) to a mass in the interval [mapMin, 1). The
result is squared to emphasize the best and worst fitnesses.

One characteristic of the proposed method is the full interaction; i.e each
body Bi interacts with every other body Bj through their masses. Interactions
contribute to their displacement, according to the resultant force. Equation (6)
computes the resultant force exerted on body Bi by the bodies Bj .

Fi =
n∑

j=1

M (f(Bi)) ·M
(
f(Bb

j)
)

|Bi − Bb
j |2

ˆBiBb
j (6)

where Fi is the resultant force of the sum of all vector forces between M(Bi)
and M(Bb

j), |Bi − Bb
j | is the Euclidean distance between the current positions

of body Bi and the best position so far of the body Bj . In order to avoid
numerical errors we compute the force between masses M(Bi) and M(Bb

j) only
if |Bi−Bj| ≥ ×10−5 (if the distance is smaller than that, we suppose both bodies
collided already and are located in the same place; we are assuming punctual
masses), ˆBiBb

j is the unit vector that directs the force. In order to estimate a
displacement that could enhance the solution of particle Bi, it is neccesary to
solve Equation (4) for Bj . Assuming that we want to find a location of the body
Bk with M (f(Bk)) = 1, Bk is computed using Equation (7).

Bk =

√
M(f(Bi))

|Fi| F̂i (7)

Gravitational Interactions Optimization 231

To update the position of the bodies we use Equations (8) and (9).

Vt+1 = χ (V + R·C·Bk) (8)

Bt+1 = B + Vt+1 (9)

where V is the current velocity of Bi, R is a random real number generated in
the range of [0, 1) and is multiplied by the gravitational interaction coefficient
C, in order to expect random exploration distances with mean μ ≈ 1, we set
C = 2.01, this displacement is constrained multiplying by a constant with a value
of 0.86, in order to ensure convergence. Bk is the main displacement computed
by Equation (7).

Using Newton’s law F = ma, we can compute velocity and from there dis-
placement, as in GSA [11]. Using this scheme though, when bodies are far apart,
forces are small, and the resulting displacement is also small; when the method
is converging, bodies are closer to each other, producing larger forces, therefore
larger displacements. This leads to a divergent or at least non-convergent behav-
ior. GSA solves this problem by assuming G as a linearly decreasing function
of time. As in classical mechanics, we consider G a constant and use a heuris-
tic solution to this problem: where should a body of unitary mass be located
to produce the same resulting force in Bi? We use that location as Bi’s new
location.

Using this heuristic, when bodies are far apart from each other, forces are
small, as they would be produced by a unitary mass located far away. When
the method is converging and masses are close together, resulting forces are
larger, as produced by a close unitary mass, resulting in small displacements.
This heuristic leads to very a convenient convergence scheme, where exploration
takes place at the beginning and exploitation at end of the process.

The complete GIO algorithm is described the Algorithms 1, 2, and 3. Al-
gorithm 1 computes the the total force exerted by the masses M(f(Bj)) and
M(f(Bi)); in order to prevent premature convergence and division by 0, we
compute only those pairs of bodies with a distance greater than ε. Algorithm
2 computes the velocities of the bodies, receives the bodies and computes the
resultant force that attracts the mass assigned to Bi. In order to prevent a di-
vision by 0 we compute the distance only if |Ftotal| > 0, the new velocity is
computed by Equation (8), and finally we update the velocity associated to Bi.
Algorithm 3 computes the new positions B of each iteration t; this algorithm
takes as parameters the search range, the number of bodies nBodies, and the
maximum number of iterations maxIter. The algorithm computes the velocities
with computeV elocities(bodies) using Algorithm 2, and updates the their posi-
tions with updatePosition(), which implements Equation (9), limitPositions()
limits the positions of the bodies to the search space defined by the search range;
updateF itness() updates the fitness according to the new positions of the bodies;
finally, we update the best position so far with updateBb().

This scheme develops good results for unimodal problems. The performace
results of the algorithm presented in this section are presented in Section 5.

232 J.J. Flores, R. López, and J. Barrera

Algorithm 1. computeFtotal(index)
1: i← index
2: Ftotal← 0
3: for j ← 1 to nBodies do
4: if distance(Bi, B

b
j) > ε then

5: Ftotal← Ftotal + B̂b
i,jM(f(Bi))M(f(Bb

j))/distance(Bi, B
b
j)

2

6: end if
7: end for
8: return Ftotal

Algorithm 2. computeVelocities(bodies)
1: for i← 1 to nBodies do
2: Ftotal← computeF total(i)
3: if |Ftotal| > 0 then
4: distance←√M(f(Bi))/|Ftotal|
5: else
6: distance← 0
7: end if
8: Vnew ← χ(V + R·C· distance· ˆFtotal)
9: updateV elocity(Bi, Vnew)

10: end for
11: return Ftotal

Algorithm 3. GIO(ranges, nBodies,maxIter)
1: bodies← initializeParticles(nBodies, ranges)
2: for t← 0 to maxIter do
3: computeV elocities(bodies)
4: limitV elocity()
5: updatePosition()
6: limitPosition()
7: updateF itness()
8: updateBb()
9: end for

4.2 Gravitational Interactions for Multimodal Optimization

In the previous Subsection we showed the basic steps of the gravitational in-
teractions metaheuristic. This scheme works well for unimodal problems. For
multimodal problems it is necessary to add a cognitive component analogous
to the one used in PSO [6]; the cognitive component is a constant that gives a
weight to each body’s memory. The new positions of the bodies are computed
in order to find more than one optima with Equations (10) and (11).

Adding the cognitive component to Equation (8) and using the constriction
factor χ (Equation (12)) [6], makes the new Equation (10) capable to find more
than one optimum in multimodal problems. The effect of this component is to
make the local search more robust, restricting the bodies to local search, unless

Gravitational Interactions Optimization 233

the gravitational forces of a cluster of masses overcome the force exerted by its
cognitive component.

Vnew = χ
(
V + C1·R1· (Bb − B) + C2·R2·Bk

)
(10)

Bnew = B + Vnew (11)

where, analogous to PSO, C1 and C2 are the cognitive and the gravitational
interaction constants, R1 and R2 are real random numbers variables in the [0, 1)
range and χ is the inertia constraint (Proposed by Clerk [6]). The inertia con-
straint is used to avoid the bodies to explore out of the search space computed
by Equation (12).

χ =
2κ

|2 − φ −
√

φ2 − 4φ| (12)

where φ = C1 + C2 > 4, κ is an arbitrary value in the range of (0, 1] [6]. In
our algorithm we set C1 = C2 = 2.01. The constriction factor in our algorithm
contributes to convergence through the iterations.

To make multimodal Gravitational Interactions Algorithm (Algorithms 1, 2,
and 3, described in the previous subsection) work for multimodal optimization
problems, we replace line 8 of Algorithm 2 by Equation 10.

5 Experiments

In order to test the performance of the Gravitational Interactions Optimization
algorithm for unimodal and multimodal functions, we tested both versions with
some functions commonly used to measure the performance of different kinds of
metaheuristics.

5.1 Test Functions

We show the performance of unimodal and multimodal Gravitational Interac-
tions Optimization with 3 unimodal and 4 multimodal functions. The test func-
tions used are shown in the Table 1.

For unimodal optimization we used the functions in Figure 2; U1 is the Gold-
stein and Price function (Figure 2(a)), U2 is the Booth function (Figure 2(b)),
and U3 is the 4 variable Colville Function. For multimodal optimization we used
the functions in Figure 3; M1 is the Branin’s RCOS Function with 3 global
optima (Figure 3(a)), M2 is the 6 global maximum univariable Deb’s function
(Figure 3(b)), M3 is Himmelblau’s function with 4 global optima (Figure 3(c)),
M4 is the Six-Hump cammelback function with 2 global optima and 4 local
optima (Figure 3(d)).

234 J.J. Flores, R. López, and J. Barrera

Table 1. Test functions used for our experiments

Unimodal Test Functions

U1
U1 = [1 + (1 + (x + y + 1)2)(19− 14x + 3y2 + 6xy + 3y2)]· −2 ≤ x, y ≤ 2
[(30 + (2x− 3y)2)(18− 32x + 12x2 + 48y − 36xy + 27y2)]

U2 U2 = (x + 2y − 7)2 + (2x + y − 5)2 −10 ≤ x, y ≤ 10

U3
U3 = −1100 · (w2 − x)2 + (w − 1)2 + (y − 1)2 + 90 · (y2 − z)2 + · −10 ≤ w, x, y, z ≤ 10
10.1 · ((x− 1)2 + (z − 1)2) + 19.8 · (x−1) · (z − 1)

Multimodal Test Functions

M1 M1 = −
(
(y − 5.1x2

4π2 + 5x
π
− 6)2 + 10(1− 1

8π
)Cos(x) + 10

) −5 ≤ x ≤ 10
0 ≤ y ≤ 15

M2 M2 = Sin(5πx)6 −0 ≤ x ≤ 1

M3 M3 = −(x2 + y − 11)2 − (x + y2 − 7)2 −6 ≤ x, y ≤ 6

M4 M4 = −4
(
(4− 2.1x2 + x4

3
)x2 + xy + (−4 + 4y2)y2

) −1.9 ≤ x ≤ 1.9
−1.1 ≤ x ≤ 1.1

�2

�1

0

1

2

x

�2

�1

0

1

2

y

�3�106

�2�106

1�106

0

f

(a) Goldstein-Price function

�10

�5

0

5

10

x

�10

�5

0

5

10

y

�2000

�1000

0

f

(b) Booth function

Fig. 2. Fitness landscape of two test functions with one optima used to measure the
performance of Unimodal Gravitational Interactions

5.2 Results

In our experiments we consider ε = 1 × 10−3 to be an acceptable error to de-
termine if the solution obtained had reached the optimum. We used 100 bodies
for a maximum of 1000 iterations, we used as stop condition the inability of all
the bodies to enhance their fitness memory solutions by 1 × 10−4, or when the
algorithm found all the optima. Each experiment was repeated 30 times.

PSO with niches requires two extra parameters: the radius r, and the max-
imum number of particles per niche nMax. To solve M1 we set r = 0.5 and
nMax = 50, to solve M2 we set r = 0.1 and nMax = 15, to solve M3 we set
r = 0.5 and nMax = 30, and M4 with r = 0.5 and nMax = 25.

The performance of Gravitational Interaction Optimization (GIO) is com-
pared with Particle Swarm Optimization with niches (NPSO) in Table 2; this
table includes the mean and the standard deviation of evaluations required to

Gravitational Interactions Optimization 235

�5

0

5

10

x

0

5

10

15

y

�300

�200

�100

0

f

(a) Branin’s RCOS function

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

(b) Deb’s function

�5

0

5

x
�5

0

5

y

�2000

�1500

�1000

�500

0

f

(c) Himmelblau’s function

�1

0

1
x

�1.0

�0.5

0.0

0.5

1.0

y

�20

�10

0

f

(d) Six-hump cammelback function

Fig. 3. Fitness landscape of multimodal test functions used in our experiments

find all the global optima (column Evaluations) and the percentage of successes
(column Success) to finding all the optima.

Table 2. Results of our experiments

PSO GIO Unimodal

Functions
Evaluations

Success
Evaluations

Success
μ σ μ σ

U1 1,394.44 399.22 20% 5,653.33 711.838 100%

U2 1,130.77 330.11 60% 6,057.55 3,984.54 70%

U3 764.00 777.75 83% 530.00 208.69 100%

NPSO GIO Multimodal

Evaluations Evaluations
μ σ μ σ

M1 2,529.17 764.13 80% 2,803.33 972.90 100%

M2 276.66 81.72 100% 390.00 88.44 100%

M3 3,400.00 0.00 00.3% 2,323.33 288.496 100%

M4 1,136.67 303.41 100% 1,600.00 501.721 100%

236 J.J. Flores, R. López, and J. Barrera

The obtained results show that Unimodal and Multimodal Gravitational In-
teractions have a higher probability to converge to global optima than PSO and
PSO with niches with a similar number of evaluations. GIO gets to the correct
results avoiding premature convergence present in PSO. We proved the GIO
algorithm replacing the Equation 7 by the acceleration Equation proposed in
[11] respect the Newton’s law gravity multiplied by the gravity constant showed
in Equation 2. The results were not better than GIO but we think that Equa-
tion (7) could give us a more accurate behavior of the gravitational constant G
through the iterations.

6 Conclusions

We presented a new heuristic, GIO, which has proven to be more reliable than
PSO. GIO needs no additional parameters like the radius and the maximum
number of particles in a niche used in PSO with niches. To solve problems with
high dimensions using PSO the radius is determined by trial and error, because
we can not plot the objective function and make a visual analysis.

The same algorithm, GIO, is used for unimodal and multimodal cases. When
used in its general form. (i.e. including the cognitive component), GIO solves
both cases without the need of any a-priori information. Adding the cognitive
component allows us to solve both, unimodal and multimodal optimization prob-
lems, while GSA can only solve unimodal problems.

Furthermore, GIO has proven to find all optima in a multimodal problem,
while GSA can only determine one of them.

References

1. Barrera, J., Coello Coello, C.A.: A particle swarm optimization method for mul-
timodal optimization based on electrostatic interaction. In: Aguirre, A.H., Borja,
R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 622–632. Springer,
Heidelberg (2009)

2. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies.
In: Proceedings of the Parallel Problem Solving from Nature Conference. Elsevier
Publishing, Amsterdam (1992)

3. Flores, J.J., Faŕıas, R.L., Barrera, J.: Particle swarm optimization with grav-
itational interactions for multimodal and unimodal problems. In: Sidorov, G.,
Hernández Aguirre, A., Reyes Garćıa, C.A. (eds.) MICAI 2010, Part II. LNCS,
vol. 6438, pp. 361–370. Springer, Heidelberg (2010)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, 1st edn. Addison-Wesley Professional, Reading (1989)

5. Ingo, R.: Evolutionsstrategie 1994. PhD thesis, Technische Universität Berlin
(1994)

6. Kennedy, J., Eberhart, R.: Swarm Intelligence. In: Evolutionary Computation.
Morgan Kaufmann Publisher, San Francisco (2001)

7. Li, X.: A multimodal particle swarm optimizer based on fitness euclidean-distance
ratio. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO 2007), pp. 78–85. ACM, New York (2007)

Gravitational Interactions Optimization 237

8. Newton, I.: Newtons Principia Mathematica. F́ısica. Ediciones Altaya, S.A., 21
edition (1968)

9. Parsopoulos, K.E., Magoulas, G.D., Uxbridge, U.P., Vrahatis, M.N., Plagianakos,
V.P.: Stretching technique for obtaining global minimizers through particle swarm
optimization. In: Proceedings of the Particle Swarm Optimization Workshop, pp.
22–29 (2001)

10. Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Improving
the particle swarm optimizer by function “stretching”. Nonconvex Optimization
and its Applications 54, 445–458 (2001)

11. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: Gsa: A gravitational search algo-
rithm. Information Sciences 179(13), 2232–2248 (2009)

12. Robert, H., David, R.: Physics Part I. Physics (1966)

On the Neutrality of

Flowshop Scheduling Fitness Landscapes

Marie-Eléonore Marmion1,2, Clarisse Dhaenens1,2, Laetitia Jourdan1,
Arnaud Liefooghe1,2, and Sébastien Verel1,3

1 INRIA Lille-Nord Europe, France
2 Université Lille 1, LIFL – CNRS, France

3 University of Nice Sophia Antipolis – CNRS, France
marie-eleonore.marmion@inria.fr, clarisse.dhaenens@lifl.fr,

laetitia.jourdan@inria.fr, arnaud.liefooghe@univ-lille1.fr,

verel@i3s.unice.fr

Abstract. Solving efficiently complex problems using metaheuristics,
and in particular local search algorithms, requires incorporating knowl-
edge about the problem to solve. In this paper, the permutation flowshop
problem is studied. It is well known that in such problems, several so-
lutions may have the same fitness value. As this neutrality property is
an important issue, it should be taken into account during the design
of search methods. Then, in the context of the permutation flowshop,
a deep landscape analysis focused on the neutrality property is driven
and propositions on the way to use this neutrality in order to guide the
search efficiently are given.

1 Motivations

Scheduling problems form one of the most important class of combinatorial op-
timization problems. They arise in situations where a set of operations (tasks)
have to be performed on a set of resources (machines), optimizing a given quality
criterion. Flowshop problems constitute a special case of scheduling problems in
which an operation must pass through all the set of resources before being com-
pleted. Such scheduling problems are often difficult to solve, because of the large
search space they induce, and then represent a great challenge for combinato-
rial optimization. Therefore many optimization methods have been proposed so
far and experimented on a set of widely-used benchmark instances. Regarding,
the minimization of makespan in flowshop problems, iterated local search (ILS)
approaches seem to achieve very good performance. In particular, Stützle’s ILS
[1] stays one of the references of the literature. It has been listed as one of the
best performing metaheuristics on a review of heuristic approaches for the flow-
shop problem investigated in the paper [2]. More recently, Ruiz and Stützle [3]
have proposed an iterated greedy algorithm to solve the flowshop problem, based
on similar mechanisms, and they have shown that is outperforms the classical
metaheuristics for this problem.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 238–252, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Neutrality of Flowshop Scheduling Fitness Landscapes 239

The aim of the paper is to analyze characteristics of the flowshop problems
in order to understand and to explain why Stützle’s method achieves such good
performance. A quick analysis shows that the neutrality is high in those problems
and we want to explain how this neutrality influences the behavior of heuristic
methods. It will then become possible to propose mechanisms that are able to
exploit this neutrality.

The method proposed by Stützle consists of an Iterated Local Search (ILS)
approach based on the insertion neighborhood operator. This operator is argued
to be the best one by the original author, as it produces better results than
the transpose operator, for example, while allowing a faster evaluation compared
to the exchange operator. The method starts from a solution constructed using
a greedy heuristic (the NEH heuristic), initially proposed by Nawaz et al. [4].
Next, the local search algorithm, based on a first improvement exploration of
the neighborhood, is iterated until a local minimum is reached. Then, between
each local search, a small perturbation is applied on the current solution using
random applications of the transpose and exchange neighborhood operators. An
important characteristic of this approach is the acceptance criterion of the ILS
algorithm, which is based on the Metropolis condition (as in simulated anneal-
ing). Indeed, such a condition allows to accept a solution with a same or worse
fitness value than the current one.

Hence, the contributions of this work are the following ones. On the one
hand, the specific problem of flowshop scheduling is deeply studied in terms of
landscape analysis and neutrality. On the other hand, some propositions are
drawn in order to exploit neutrality in the design of a local search algorithm. Of
course, these considerations are still valid for other combinatorial optimization
problems with a neutrality.

The paper is organized as follows. Section 2 is dedicated to the presentation of
the flowshop scheduling problem investigated in this paper, and of the required
notions about neutrality analysis in fitness landscapes. Section 3 presents the
neutral networks analysis for the permutation flowshop problem under study,
whereas Section 4 gives some hints on how to exploit the neutrality property
in order to solve such problems efficiently by means of local search algorithms.
Finally, the last section is devoted to discussion and future works.

2 Background

2.1 Definition of the Permutation Flowshop Scheduling Problem

The Flowshop Scheduling Problem (FSP) is one of the most investigated schedul-
ing problem from the literature. The problem consists in scheduling N jobs
{J1, J2, . . . , JN} on M machines {M1, M2, . . . , MM}. Machines are critical re-
sources, i.e. two jobs cannot be assigned to the same machine at the same time.
A job Ji is composed of M tasks {ti1, ti2, . . . , tiM}, where tij is the jth task of Ji,
requiring machine Mj. A processing time pij is associated with each task tij . We
here focus on a permutation FSP, where the operating sequences of the jobs are

240 M.-E. Marmion et al.

Table 1. Notations used in the paper

Notation Description

S Set of feasible solutions in the search space
s A feasible solution s ∈ S

Cmax Makespan
N Number of jobs
M Number of machines

{J1, J2, . . . , JN} Set of Jobs
{M1, M2, . . . , MM} Set of Machines
{ti1, ti2, . . . , tiM} Tasks
{pi1, pi2, . . . , piM} Processing times
{Ci1, Ci2, . . . , CiM} Completion dates

identical and unidirectional for every machine. As consequence, a feasible solu-
tion can be represented by a permutation πN of size N (the ordered sequence of
scheduled jobs), and the size of the search space is then |S| = N !.

In this study, we will consider that the makespan, i.e. the total completion
time, is the objective function to be minimized. Let Cij be the completion date
of task tij , the makespan (Cmax) can be computed as follows:

Cmax = max
i∈{1,...,N}

{CiM}

According to Graham et al. [5], the problem under study can be denoted by
F/perm/Cmax. The FSP can be solved in polynomial time by the Johnson’s
algorithm for two machines [6]. However, in the general case, minimizing the
makespan has been proven to be NP-hard for three machines and more [7].
As a consequence, large-size problem instances can generally not be solved to
optimality, and then metaheuristics may appear to be good candidates to obtain
well-performing solutions.

Benchmark Instances. Experiments will be driven using a set of benchmark in-
stances originally proposed by Taillard [8] and widely used in the literature [1,2].
We investigate different values of the number of jobs N ∈ {20, 50, 100, 200} and
of the number of machines M ∈ {5, 10, 20}. The processing time tij of job i ∈ N
and machine j ∈ M is generated randomly, according to a uniform distribution
U([0; 99]). For each problem size (N × M), ten instances are available. Note
that, as mentioned on the Taillard’s website1, very few instances with 20 ma-
chines have been solved to optimality. For 5- and 10-machine instances, optimal
solutions have been found, requiring for some of them a very long computational
time. Hence, the number of machines seems to be very determinant in the prob-
lem difficulty. That is the reason why the results of the paper will be exposed
separately for each number of machines.
1 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/

ordonnancement.html

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

On the Neutrality of Flowshop Scheduling Fitness Landscapes 241

2.2 Neighborhood and Local Search

The design of local search metaheuristics requires a proper definition of a neigh-
borhood structure for the problem under consideration. A neighborhood structure
is a mapping function N : S → 2S that assigns a set of solutions N (s) ⊂ S to
any feasible solution s ∈ S. N (s) is called the neighborhood of s, and a solution
s′ ∈ N (s) is called a neighbor of s. A neighbor results of the application of a
move operator performing a small perturbation to solution s. This neighborhood
operator is a key issue for the local search efficiency.

For the FSP, we will consider the insertion operator. This operator is known
to be one of the best neighborhood structure for the FSP [1,2]. It can be defined
as follows. A job located at position i is inserted at position j �= i. The jobs
located between positions i and j are shifted, as illustrated in Figure 1. The
number of neighbors per solution is (N − 1)2, where N stands for the size of the
permutation (and corresponds to the number of jobs).

J1 J2 J7 J8 J3 J4 J5 J6

J1 J3 J7 J8
 J4 J5 J6 J2

i j

Fig. 1. Illustration of the insertion neighborhood operator for the FSP. The job located
at position i is inserted at position j, all the jobs located between i and j are shifted
to the left.

2.3 Fitness Landscape

Fitness landscape with neutrality. In order to study the typology of prob-
lems, the fitness landscape notion has been introduced [9]. A landscape is a
triplet (S,N , f) where S is a set of admissible solutions (i.e. a search space),
N : S −→ 2|S|, a neighborhood operator, is a function that assigns to every
s ∈ S a set of neighbors N (s), and f : S −→ IR is a fitness function that can be
pictured as the height of the corresponding solutions. In our study, the search
space is composed of permutations of size N so that its size is N !.

Neutral neighbor. A neutral neighbor of s is a neighbor solution s′ with the same
fitness value f(s). Given a solution s ∈ S, its set of neutral neighbors is defined
by:

Nn(s) = {s′ ∈ N (s) | f(s′) = f(s)}
The neutral degree of a solution is the number of its neutral neighbors. A fitness
landscape is said to be neutral if there are many solutions with a high neutral
degree |Vn(s)|. The landscape is then composed of several sub-graphs of solutions
with the same fitness value. Sometimes, another definition of neutral neighbor is
used in which the fitness values are allowed to differ by a small amount. Here we
stick to the strict definition given above as the fitness of flowshop (makespan) is
discretized (it is an integer value).

242 M.-E. Marmion et al.

Neutral network. A neutral network, denoted as NN, is a connected sub-graph
whose vertices are solutions with the same fitness value. Two vertices in a NN
are connected if they are neutral neighbors. With the insertion operator, for
all solutions x and y, if x ∈ N (y) then y ∈ N (x). So in this case, the neutral
networks are the equivalent classes of the relation R(x, y) iff (x ∈ N (y) and
f(x) = f(y)). We denote the neutral network of a solution s by NN(s). A portal
in a NN is a solution which has at least one neighbor with a better fitness, i.e.
a lower fitness value in a minimization context.

Local optimum. A solution s∗ is a local optimum iff no neighbor has a better
fitness value: ∀s ∈ N (s∗), f(s∗) ≤ f(s). When all solutions on a neutral network
are local optima, the NN is a local optima neutral network.

Measures of neutral fitness. The average or the distribution of neutral de-
grees over the landscape is used to test the level of neutrality of the prob-
lem. This measure plays an important role in the dynamics of metaheuristics
[10,11,12]. When the fitness landscape is neutral, the main features of the land-
scape can be described by its neutral networks. Due to the number and the
size of neutral networks, they are sampled by neutral walks. A neutral walk
Wneut = (s0, s1, . . . , sm) from s to s

′
is a sequence of solutions belonging to S

where s0 = s and sm = s
′
and for all i ∈ [0, m− 1] , si+1 is a neighbor of si and

f(si+1) = f(si).
A way to describe neutral networks NN is given by the autocorrelation of

neutral degree along a neutral random walk [13]. From neutral degrees collected
along this neutral walk, we computed its autocorrelation function ρ(k) [14], that
is the correlation coefficient of the neutral degree between the solutions si and
si+k for all possible i. The autocorrelation measures the correlation structure of
a NN. If the first correlation coefficient ρ(1) is close to 1, the variation of neutral
degree is low ; and so, there are some areas in NN of solutions which have close
neutral degrees, which shows that NN are not random graphs.

Another interesting information to determine if a local search could find a
better solution on a neutral network, is the position of portals. The number of
steps before finding a portal during a neutral random walk is a good indicator
of the probability to find better solution(s) according to the computational cost
to find it, i.e. the number of evaluations.

Moreover, to design a local search which explores the neutral networks in an
efficient way, we need to find some information around the NN where, a priori,
there is a lack of information. Evolvability is defined by Altenberg [15] as ”the
ability of random variations to sometimes produce improvement”. The concept
of evolvability could be difficult to define in combinatorial optimization. For
example, the evolvability could be the minimum fitness which can be reached in
the neighborhood. In this work, we choose to define the evolvability of a solution
as the average fitness in its neighborhood. It gives the expectation of fitness
reachable after a random move. The autocorrelation of evolvability [16] allows
to measure the information around neutral networks. This autocorrelation is
the autocorrelation function of a evolvability measure collected during a neutral

On the Neutrality of Flowshop Scheduling Fitness Landscapes 243

random walk. When this correlation is large, the solutions which are close from
each other on a neutral network have evolvabilities which are close too. So,
the evolvability could guide the search on neutral networks such as the fitness
guides the search in the landscape where the autocorrelation of fitness values is
large [14].

3 Neutral Networks Analysis for the Permutation
Flowshop Scheduling Problem

3.1 Experimental Design

To analyze neutral networks, for each instance of Taillard’s benchmarks, 30 dif-
ferent neutral walks were performed. The neutral walks all start from a local
optimum. It has been obtained by a steepest descent algorithm initialized with
a random solution. The length of each neutral walk depends on the length of the
descents which lead to local optima. We consider 10 times the maximal length
found on the 30 descents. In the following, the results are presented according
to the number of jobs (N) and the number of machines (M). For each problem
size, an average value and the corresponding standard deviation are represented.
By the term size, we mean both the number of jobs (N) and the number of ma-
chines (M). This average value is computed from the means obtained from the
10 instances of the same size, themselves calculated from the values given by the
30 neutral walks.

3.2 Neutral Degree

In this section, we first measure the neutral degree of the FSP. Then, we describe
the structure of the neutral networks (NN).

Figure 2 shows the average neutral degree to the size of the neighborhood
(N−1)2, collected along the 30 neutral walks. Whatever the number of machines,
the neutral degree ratio increases when the number of jobs increases. This ratio
is higher for small number of machines. For 5-machine, and for 100- or 200-job
and 10-machine instances, the neutral degree is huge, higher than 20%. For 100-
or 200-job and 20-machine instances, the ratio seems to be very low (3.9%), but
the number of neighbors with same fitness value is significant (about 382 and
1544 neutral neighbors for 100 and 200 jobs, respectively). There is no local
optimum without a neighbor with the same fitness value, which means that each
local optimum belongs to a local optima neutral network. The neutral degree is
high enough to describe the fitness landscape with neutral networks.

A neutral walk corresponds to a sequence of neighbor solutions on a NN of
the fitness landscape, where all solutions share the same fitness value. During
those neutral walks, we compute the autocorrelation of the neutral degree (see
Section 2.3). Figure 3 shows the first autocorrelation coefficient for 5, 10 and
20 machines with respect to the number of jobs. In order to prove that those
correlations are significative, we compare them to a null model. It consists of
shuffling the same values of neutral degrees collected during the neutral walks.

244 M.-E. Marmion et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

N
eu

tr
al

 d
eg

 /
N

ei
gh

. s
iz

e

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 2. Average of the neutral degree to the neighborhood size according to the number
of jobs

Then, the autocorrelation of this model is compared to the original one. For
all sizes, the first autocorrelation coefficient of the null model is below 0.01.
Therefore, we can conclude that the autocorrelation is a consequence of the
succession of solutions encountered during the walk.

Obviously, for 50, 100 and 200 jobs, the neutral degree is highly correlated
(higher than 0.7). Moreover, the standard deviations are very low, which indi-
cates that the average values reflect properly this property on instances of same
size. For 20-job and 5- or 10-machine instances, the standard deviation gets
higher. This can possibly be explained by a higher correlation.

Nevertheless, these values allow us to conclude that the neutral degree of a
solution is partially linked to the one of its neighbor solutions. Let us remark
that the correlation for 20-job 20-machine instances is very low, due to the small
average value of the neutral degree for this size.

The first conclusions of this analysis is that (i) there exists a high neutrality
over the fitness landscape, particularly for large-size instances (ii) the neutral
networks, defined as the graphs of neighbor solutions with the same fitness value,
are not random. As a consequence, we should not expect to explore the neutral
networks efficiently with a random walk. Hence, heuristic methods should exploit
the information available in the neighborhood of the solutions.

3.3 Typology of Neutral Networks

A metaheuristic such as ILS visits several local optima. In the previous section,
we have seen that the local optima often belong to a NN. A natural question

On the Neutrality of Flowshop Scheduling Fitness Landscapes 245

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

ρ(
1)

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 3. First autocorrelation coefficient ρ(1) computed between si and si+1 of the
neutral degree according to the number of jobs

T1 T2 T3

fitn
es

s

?

Fig. 4. Typology of neutral networks (minimization problem)

arises when the metaheuristic reaches a NN: Is it possible to escape from this
NN? In this section, we classify the local optima NN in three different types,
and we analyze their size.

Three types of NN typologies may exist (see Figure 4):

1. The local optimum is the single solution on the NN (type T1), i.e. it has no
neighbor with the same fitness value, we call it a degenerated NN.

2. The neutral walk from the local optimum did not show any neighbors with
a better fitness values for all the solutions encountered along the neutral
walk (type T2). Of course, as the whole NN has not been enumerated, we
can not decide if it is possible to escape from them.

3. At least one solution having a neighbor with better fitness value than the
local optimum fitness is found along the neutral walk (type T3).

246 M.-E. Marmion et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

fr
eq

ue
nc

y

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 5. Average frequency of the
number of degenerated neutral
networks with a single solution
(type T1) according to the number
of jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

fr
eq

ue
nc

y

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 6. Average frequency of the
number of neutral networks where
no portal was found (type T2) ac-
cording to the number of jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

fr
eq

ue
nc

y

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 7. Average frequency of the
number of neutral networks where
at least one portal was found (type
T3) according to the number of
jobs

-5

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

%

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 8. Average percentage of so-
lutions visited at least twice along
the neutral walk according to the
number of jobs

Figures 5, 6 and 7 show the proportion of NN of each type (T1, T2 or T3)
counted along the neutral walks. For 50-, 100- and 200-job instances, the neutral
walks show only NN of types T2 and T3. No local optimum solution is alone on
the NN. For 20-job instances, the number of type (T1) is also small, except for 20
machines (25% of type T1). Hence, the neutrality is important to keep in mind
while solving such instances. The number of NN without any escaping solutions
found (T2) is significative only for 5-machine instances (higher than 18%) and
stays very low for 10- an 20-machine instances (lower than 6%). The 20-machine
instances, which are known to be the hardest to solve optimally, are the ones
where the probability to escape from local optimum by neutral exploration of
the NN is close to one.

When the neutral networks size is very small, the number of visited solutions
is very small. Indeed, a NN of type T2 or T3 could contain very few solutions
and, the neutral walk could loop on some solutions. These situations have to be
considered with attention. Figure 8 shows the average percentage of solutions
visited more than once during the neutral walk. For the 50-, 100- and 200-job

On the Neutrality of Flowshop Scheduling Fitness Landscapes 247

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

N
um

be
r

of
 S

te
ps

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 9. Number of steps along the neutral random walk to reach the first portal ac-
cording to number of jobs

instances, there is no re-visited solutions during the neutral walks. For 20-job and
20-machine instances, the number of re-visited solutions is approximatively 20%
during neutral walks on NN of type T2 or T3. This result points out two remarks.
First, the NN of local optima seems to be large for most instances. Second, the
number of re-visited solutions is low, which means that the probability to escape
the NN of type T2 is below the inverse of the size of the neutral walk.

In conclusion, for most instances, a metaheuristic could escape the local op-
timum by exploring the NN. The next section will show some hints on how to
guide a metaheuristic on neutral networks.

4 Exploiting Neutrality to Solve the FSP

In the previous section, we proposed to use neutral exploration to escape from
local optimum, as there exists solutions having neighbor(s) with a better fitness
value around neutral networks. We called those solutions, portals. An efficient
metaheuristic has to find such portal with a minimum number of evaluations.
First, we study the number of steps to reach a portal, and then we propose an
insight to get information to find them quickly.

4.1 Reaching Portals

As shown on Figure 7 at least 70% of neutral random walks for FSP with 50, 100
and 200 jobs can reach a portal (more than 90% for 10 and 20 machines). The
performance of a metaheuristic which explores neutral networks highly depends

248 M.-E. Marmion et al.

on the probability to find a portal. Indeed, it could become more time consuming
to consider a neutral walk than applying a smart restart.

Figure 9 gives the average number of steps to reach the first portal during
the 30 neutral walks. The larger the number of machines, the less the number of
steps is required by the neutral walk to reach a portal. For 20-machine instances,
the neutral random walks need around 7 steps to reach a portal, which is very
small compared to the length of the descents (19, 40, 64, 101 respectively for 20,
50, 100, and 200 jobs). For 5-machine instances, the length of the neutral walks
is around the length of the descents. Hence, it is probably more advantageous
to perform a neutral random exploration than a random restart. Moreover, the
fitness value obtained after the neutral walk is better than after the descent.
Consequently, if an a priori study highlights that a portal is supposed to be
encountered quickly, a metaheuristic that takes into account information on the
neutral walk should move on the NN, and then finally find an improving solution.

4.2 How to Guide the Search?

In the previous section, the role of neutrality was demonstrated by the correlation
of the neutral degree between the neutral walk neighbors and the high frequency
of neutral networks. Neutral networks lead, with very few steps, to a portal.
The neutrality could give interesting information about the landscape in order
to guide the search. However, since the neutral network is large, the search has
to be guided to find quickly a portal and not to stagnate on the NN. Thus,
proper information has to be collected and interpreted along the neutral walk to
help the metaheuristic to take good decision: Is it more interesting to continue
the neutral walk until a portal is reached or to restart? As suggested in Section
2.3, we compute the evolvability of a solution as the average fitness values of its
neighbors for all visited solutions. We analyze the evolvability of solutions on
neutral networks and we give some results about the correlation of evolvability
and portals on a neutral network. This allows us to propose new ideas for the
design of a metaheuristic.

During those neutral walks, we compute the evolvability of each solution along
the neutral walk, and then its autocorrelation (see section 2.3). Figure 10 shows
the first autocorrelation coefficient ρ(1) for 5, 10 and 20 machines with respect
to the number of jobs. In order to show that those correlations are significa-
tive, as in section 3.2, we compare them to a null model. For all sizes, the first
autocorrelation coefficient of the null model is below 0.01. Therefore, we can
conclude that the autocorrelation is a consequence of the succession of solutions
encountered during the walk. The average fitness values of the neighbors are not
distributed randomly: they can then be exploited by a metaheuristic.

The neutral networks present evolvability and portals. So, we can wonder if
the evolvability would be able to guide a metaheuristic quickly to a portal. To
test this hypothesis, along the neutral walks, we compute the correlation between
the average fitness values in the neighborhood and the number of steps required
to reach the closer portal of the walk. This is presented in Figure 11. The larger
the number of machines, the higher (in absolute value) the negative correlation.

On the Neutrality of Flowshop Scheduling Fitness Landscapes 249

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

ρ(
1)

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 10. First autocorrelation coefficient ρ(1) of the average fitness values of neighbors
solutions between si and si+1 according to the number of jobs

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 50 100 150 200 250

co
rr

Number of Jobs

5 Machines
10 Machines
20 Machines

Fig. 11. Correlation between the average fitness values of the neighbors and the number
of steps required to reach the closer portal according to the number of jobs

For 10- or 20-machine instances, this correlation belongs to [−0.6;−0.4], so that
it is significant for a metaheuristic to use such an information. The lower the
average fitness values in the neighborhood, the closer a portal is. Consequently,
we propose to design a metaheuristic that takes into account the neutrality by

250 M.-E. Marmion et al.

allowing the exploration of solutions along the neutral walk. Starting from a
local optimum, it would choose the next neutral solution with the lower average
fitness values of its neighbors. This would increase the probability to find a portal
quickly, and then to continue the search process.

5 Discussion

In this work, we studied the neutrality of the FSP on a set of benchmark in-
stances originally proposed by Taillard. Most of the instances have a high neutral
degree: for a solution, the number of its neighbors with the same fitness value
is significant in comparison to the neighborhood size. Starting from local op-
tima, neutral walks have been performed. Each walk moves from a solution to
another with the same fitness value and defines a neutral network that is shown
to be structured. Indeed, the graph of neighbor solutions is not random and so
a solution shares information with its neighbors. We show that a neutral walk
leads easily to portals, solutions of the neutral network having a neighbor with
a better fitness value. Furthermore, the evolvability, defined in this study as the
average fitness values of the neighbors, is highly autocorrelated. It proves that
this information is not random between the neighbor solutions and so it could
be helpful to take it into account. Besides, improving the evolvability during the
neutral walk often leads to a portal. This work completes the knowledge of FSP
fitness landscape, and in particular, about its neutrality. Here, the neutrality has
been shown for the FSP Taillard instances where the durations of jobs are inte-
ger values from [0; 99]. This is a specific choice which could have an impact on
the difficulty of instances. Future works will consider other instance generators,
and study the neutrality according to the instance parameters.

This work also helps to understand some experimental results on the effi-
ciency of metaheuristics. In a study of iterated local search to solve the FSP [1],
Stützle designs several efficient ILS, called ILS-S-PFSP and compares them to
local search algorithms. He writes: ”Experimentally, we found that rather small
modifications [of the solution] are sufficient to yield very good performance”.
In section 4.1, we show that improving solutions can be reached very quickly
applying insertion operator on a neutral network. So, Stützle’s remark can be
explained by the neutrality and the high probability on the neutral networks
to move on a solution with an improving neighbor. Moreover, this works sup-
ports the experimentations on ILS design for 20-machine instances. The study
of neutral walks highlights features that explain the efficient design of the ILS-
S-PFSP. Indeed, remember that the ILS-S-PFSP, initialized with a random so-
lution, applies a local search based on insertion-neighborhood mapping to get a
local optimum, and then applies iteratively the steps (i) perturbation, (ii) local
search, and (iii) acceptance criterion, until a termination condition is met. All
acceptance criteria tested in ILS-S-PFSP are based on the Metropolis condition:
they always accept a solution with equal fitness value. So the neutral moves
are always accepted. Besides, Stützle work shows that the perturbation based
on the application of several swap operators (also called transpose operators) is

On the Neutrality of Flowshop Scheduling Fitness Landscapes 251

efficient. And, the swap neighborhood is included in the insertion neighborhood
as the job i can be inserted at the positions (i − 1) or (i + 1). So, applying the
swap operator several times could correspond to a walk on a neutral network
defined by insertion-neighborhood relation. Thus, steps (i) and (iii) allow the
ILS-S-PFSP to move on the neutral network that could be frequent for those
FSP instances. Moreover, we show that the distance is small between a local
optimum and a portal. So, such an ILS-S-PFSP is able to quickly improve the
current best solution, which could explain its performances.

Furthermore, our work proposes to consider the neutrality to guide a meta-
heuristic on the search space. The FSP instances shows neutrality, it is easy
to encounter portals along a neutral walk and the evolvability leads quickly to
them. With such information, a metaheuristic is proposed: first a local search is
performed from a random solution, and then iteratively (i) the evolvability on
the neutral network is optimized until a portal is found and (ii) the local search
is applied to move to an other local optimum. The metaheuristic finishes when
the termination criterion is met. Similar ideas have been ever tested on other
problems with neutrality such as Max-SAT and NK-landscapes with neutral-
ity [17]. A first attempt for developing such a strategy leads to the proposition
of NILS [18] that has been successfully tested on flowshop problems.

References

1. Stützle, T.: Applying iterated local search to the permutation flow shop problem.
Technical Report AIDA-98-04, FG Intellektik, TU Darmstadt (1998)

2. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flow-
shop heuristics. European Journal of Operational Research 165(2), 479–494 (2005)

3. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Re-
search 177(3), 2033–2049 (2007)

4. Nawaz, M., Enscore, E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

5. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Mathematics 5, 287–326 (1979)

6. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly 1, 61–68 (1954)

7. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine schedul-
ing problems. Annals of Discrete Mathematics 1, 343–362 (1977)

8. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64, 278–285 (1993)

9. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In: Jones, D. (ed.) Proceedings of the Sixth International Congress on Ge-
netics, vol. 1 (1932)

10. Van Nimwegen, E., Crutchfield, J., Huynen, M.: Neutral evolution of mutational
robustness. Proc. Nat. Acad. Sci. USA 96, 9716–9720 (1999)

11. Wilke, C.O.: Adaptative evolution on neutral networks. Bull. Math. Biol. 63, 715–
730 (2001)

252 M.-E. Marmion et al.

12. Vérel, S., Collard, P., Tomassini, M., Vanneschi, L.: Fitness landscape of the cellular
automata majority problem: view from the “Olympus”. Theor. Comp. Sci. 378, 54–
77 (2007)

13. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: Statiscal properties of
neutral evolution. Journal Molecular Evolution 57(S), 103–119 (2003)

14. Weinberger, E.D.: Correlated and uncorrelatated fitness landscapes and how to tell
the difference. Biological Cybernetics 63, 325–336 (1990)

15. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear
Jr., K.E. (ed.) Advances in Genetic Programming, pp. 47–74. MIT Press, Cam-
bridge (1994)

16. Verel, S., Collard, P., Clergue, M.: Measuring the Evolvability Landscape to study
Neutrality. In: Keijzer, M., et al. (eds.) Poster at Genetic and Evolutionary Com-
putation – GECCO 2006, pp. 613–614. ACM Press, Seattle (2006)

17. Verel, S., Collard, P., Clergue, M.: Scuba Search: when selection meets innovation.
In: Evolutionary Computation, CEC 2004, pp. 924–931. IEEE Press, Portland
(2004)

18. Marmion, M.E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: NILS: a
neutrality-based iterated local search and its application to flowshop scheduling.
In: 11th European Conference on Evolutionary Computation in Combinatorial Op-
timisation (EvoCOP11). LNCS, Springer, Heidelberg (2011)

A Reinforcement Learning Approach for the

Flexible Job Shop Scheduling Problem

Yailen Mart́ınez1,2, Ann Nowé1, Juliett Suárez2, and Rafael Bello2

1 CoMo Lab, Department of Computer Science, Vrije Universiteit Brussel, Belgium
{ymartine,ann.nowe}@vub.ac.be

2 Department of Computer Science, Central University of Las Villas, Cuba
{yailenm,jsf,rbellop}@uclv.edu.cu

Abstract. In this work we present a Reinforcement Learning approach
for the Flexible Job Shop Scheduling problem. The proposed approach
follows the ideas of the hierarchical approaches and combines learning
and optimization in order to achieve better results. Several problem in-
stances were used to test the algorithm and to compare the results with
those reported by previous approaches.

1 Introduction

Scheduling is a scientific domain concerning the allocation of tasks to a limited
set of resources over time. The goal of scheduling is to maximize (or minimize)
different optimization criteria such as the makespan or the tardiness. The scien-
tific community usually classifies the problems according to different characteris-
tics, for example, the number of machines (one machine, parallel machines), the
shop type (Job Shop, Flow Shop or Open Shop) and so on. These kind of prob-
lems have captured the interest of many researchers from a number of different
research communities for decades. To find a good schedule (or the best sched-
ule) can be a very difficult task depending on the constraints of the problem and
the environment. The Job Shop Scheduling Problem (JSSP) is one of the most
popular scheduling models existing in practice, and it is also among the hard-
est combinatorial optimization problems [1]. The Flexible Job Shop Scheduling
Problem (FJSSP) is a generalization of the classical JSSP, where operations are
not processed by a fixed machine, but there is a choice between a set of available
machines that can execute it. Therefore, the FJSSP has an extra decision step
besides the sequencing, the job routing. To determine the job route means to
choose, for each operation, which machine will execute it from the set of available
ones.

Literature on flexible job shop scheduling is not rare, but approaches using
learning based methods are. In the literature we find different (meta-)heuristic
approaches for this problem, for example, Ant Colony Optimization [2] and Ge-
netic Algorithms [3] [4].

In [5] Thomas Gabel and Martin Riedmiller suggested and analyzed the ap-
plication of reinforcement learning techniques to solve the task of job shop

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 253–262, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

254 Y. Mart́ınez et al.

scheduling problems. They demonstrated that interpreting and solving this kind
of problems as a multi-agent learning problem is beneficial for obtaining near-
optimal solutions and can very well compete with alternative solution approaches.

Reinforcement Learning is the problem faced by an agent that must learn
behavior through trial-and-error interactions with a dynamic environment. Each
time the agent performs an action in its environment, a trainer may provide a
reward or penalty to indicate the desirability of the resulting state. For example,
when training an agent to play a game, the trainer might provide a positive
reward when the game is won, negative when it is lost and zero in all other
states. The task of the agent is to learn from this indirect, delayed reward, to
choose sequences of actions that produce the greatest cumulative reward [6].

In this paper we present a Reinforcement Learning approach for the FJSSP.
More specifically, we adopt the assign-then-sequence rule proposed by the hi-
erarchical approaches and combine a two step learning algorithm with a mode
optimization procedure in order to achieve better results.

The remainder of this paper is organized as follows. Section 2 introduces
the problem formulation and a literature review on the subject is also given.
Section 3 gives and overview on reinforcement learning and in Section 4 the
algorithm is presented detailing what is done in each step. In Section 5 we present
a computational study using some classical instances, comparing our results with
some previous approaches. Some final conclusions and ideas for future work are
given in Section 6.

2 Flexible Job Shop Scheduling Problem

2.1 Problem Formulation

The Flexible Job Shop Scheduling Problem consists of performing a set of n
jobs J = {J1, J2, . . . , Jn} on a set of m machines M = {M1, M2, . . . , Mm}. Each
job Ji has an ordered set of oi operations Oi = {Oi,1, Oi,2, . . . , Oi,oi}. Each
operation Oi,j can be performed on any among a subset of available machines
(Mi,j ⊆ M). Executing operation Oi,j on machine Mk takes pi,j,k processing
time. Operations of the same job have to respect the precedence constraints given
by the operation sequence. A machine can only execute one operation at a time.
An operation can only be executed on one machine and can not leave it before the
treatment is finished. There are no precedence constraints among the operations
of different jobs. The problem is to assign each operation to an appropriate
machine (routing problem), and then to sequence the operations in the selected
machines (sequencing problem) in order to minimize the makespan, i.e., the time
needed to complete all the jobs, which is defined as Cmax = max{Ci|1 ≤ i ≤ n}:
where Ci is the completion time of job Ji.

2.2 Previous Approaches

Different heuristic procedures have been developed in the last years for the
FJSSP, for example, tabu search, dispatching rules, simulated annealing and

A Reinforcement Learning Approach for the Flexible JSSP 255

genetic algorithms. According to the literature review, all these methods can
be classified into two main categories: hierarchical approaches and integrated
approaches, meaning that we have two different ways to deal with the problem.

The hierarchical approaches are based on the idea of decomposing the original
problem in order to reduce its complexity. A typical decomposition is “assign
then sequence”, meaning that the assignment of operations to machines and the
sequencing of the operations on the resources are treated separately. Once the
assignment is done (each operation has a machine assigned to execute it), the
resulting sequencing problem is a classical JSSP. This approach is followed by
Brandimarte [7], who was the first to use decomposition for the FJSSP, Kacem
[4] and Pezzella [3] also followed this idea in the implementation of Genetic
Algorithms.

Integrated approaches consider assignment and sequencing at the same time.
The methods following this type of approach usually give better results but they
are also more difficult to implement.

2.3 Dispatching Rules

As mentioned above, the complexity of the FJSSP gives raise to the search of
heuristic algorithms able to provide good solutions. Dispatching rules are among
the more frequently applied heuristics due to their ease of implementation and
low time complexity.

A dispatching rule is a sequencing strategy by which a priority is assigned to
each job waiting to be executed on a specific machine. Whenever a machine is
available, a priority-based dispatching rule inspects the waiting jobs and the one
with the highest priority is selected to be processed next [8]. Some of the most
used dispatching rules are:

– Shortest Processing Time (SPT): The highest priority is given to the waiting
operation with the shortest processing time.

– First In First Out (FIFO): The operation that arrived to the queue first
receives the highest priority.

– Most Work Remaining (MWKR): Highest priority is given to the operation
belonging to the job with the most total processing time remaining to be
done.

– Earliest Due Date (EDD): The job due out first is processed first.

There are also some composite dispatching rules (CDR), which combine single
dispatching rules and results have shown that a careful combination can perform
better in terms of quality.

3 Reinforcement Learning

Reinforcement Learning (RL) is a technique that allows an agent to learn how
to maximize a numerical reward signal. The learner is not told which actions
to take, as in most forms of machine learning, but instead must discover which

256 Y. Mart́ınez et al.

actions yield the most reward by trial-and-error. In the most interesting and
challenging cases, actions may affect not only the immediate reward but also
the next situation and, through that, all subsequent rewards. These two charac-
teristics, trial-and-error search and delayed reward, are the two most important
distinguishing features of RL [9].

In the standard RL paradigm, an agent is connected to its environment via
perception and action, as depicted in Figure 1. In each step of interaction, the
agent senses the current state s of its environment, and then selects an action
a which may change this state. The action generates a reinforcement signal r,
which is received by the agent. The task of the agent is to learn a policy for
choosing actions in each state so that the maximal long-run cumulative reward
is received.

Fig. 1. The Reinforcement Learning Paradigm

One of the challenges that arise in RL is the trade-off between exploration
and exploitation. To obtain a high reward, a RL agent must prefer actions that
it has tried in the past and found to be effective in producing reward. But to
discover such actions, it has to try actions that it has not selected before. The
agent has to exploit what it already knows in order to obtain reward, but it
also has to explore in order to make better action selections in the future. The
dilemma is that neither exploration nor exploitation can be pursued exclusively
without failing at the task. Therefore the agent must sample the available actions
sufficiently and progressively favor those that appear to be best.

Some previous works showed the effectiveness of the Q-Learning algorithm in
the solution of scheduling problems, more specifically the Job Shop Scheduling
Problem [10] and the Parallel Machines Job Shop Scheduling Problem [11], that
is why the Q-Learning was chosen among the different existing algorithms to
solve the Flexible Job Shop Scheduling Problem.

3.1 Q-Learning

A well-known reinforcement learning algorithm is Q-Learning [12], which works
by learning an action-value function that expresses the expected utility (i.e.
cumulative reward) of taking a given action in a given state.

A Reinforcement Learning Approach for the Flexible JSSP 257

The core of the algorithm is a simple value iteration update, each state-action
pair (s, a) has a Q-value associated. When action a is selected by the agent
located in state s, the Q-value for that state-action pair is updated based on the
reward received when selecting that action and the best Q-value for the subse-
quent state s′. The update rule for the state action pair (s, a) is the following:

Q(s, a) = Q(s, a) + α[r + γmaxa′(Q(s′, a′)) − Q(s, a)] (1)

In this expression, α ∈ {0, 1} is the learning rate and r the reward or penalty
resulting from taking action a in state s. The learning rate α determines the
degree by which the old value is updated. For example, if the learning rate is 0,
then nothing is updated at all. If, on the other hand, α = 1, then the old value
is replaced by the new estimate. Usually a small value is chosen for the learning
rate, for example, α = 0.1. The discount factor (parameter γ) has a range value
of 0 to 1 (γ ∈ {0, 1}). If γ is closer to zero, the agent will tend to consider only
immediate reward. If γ is closer to one, the agent will consider future reward
with greater weight.

4 The Proposed Approach: Learning / Optimization

The Learning/Optimization method is an offline scheduling approach divided in
two steps. First, a two-stage learning method is applied to obtain feasible sched-
ules, which are then used as initial data for the mode optimization procedure
[13] developed during the second step.

The learning method implemented decomposes the problem following the
assign-then-sequence approach. Therefore, we have two learning phases, during
the first phase operations learn which is the most suitable machine and during
the second phase machines learn in which order to execute the operations in or-
der to minimize the makespan. For this, each phase has a Q-Learning algorithm
associated and different dispatching rules are taken into account when giving re-
wards to the agents. As the process is being divided in two, we take into account
the goal of each phase in order to decide where to place the agents and which
are the possible actions. In the first phase, where the learning takes care of the
routing, we have an agent per operation being responsible for choosing a proper
machine to execute the corresponding operation, this machine is selected from
the given set of available ones, and the selection is based on the processing time
of the operation on the machine and also on the workload of the machine so far.

It could also be possible to have an agent per job, which would be responsible
of selecting a proper machine for each of its operations. This is not the case for
the second phase, where the learning algorithm takes care of the sequencing and
each operation already knows where it has to be executed so, the main idea is to
decide the order in which they will be processed on the machines, that is why in
this phase we placed the agents on the different resources, and for these agents
an action will be to choose an operation from the queue of operations waiting
at the corresponding resource.

258 Y. Mart́ınez et al.

To start the algorithm every job releases its first operation at time 0, all these
operations go to the machine they have assigned and start to be processed, if
two or more operations go to the same machine then only one of them is selected
and the rest remain in the queue until the machine is available again.

To choose the next action the agent takes into account the Q-Values associated
to the possible operations to execute at that time step in the corresponding
machine. According to the epsilon greedy policy, in order to balance exploration
and exploitation, the agent has a small probability of selecting an action at
random, and a higher probability of selecting the best action, in this case the
operation with the highest Q-Value associated, in this step the dispatching rule
taken into account to give reward to the agent is the Shortest Processing Time
(SPT).

Once a feasible schedule is obtained, the mode optimization procedure is exe-
cuted, which we refer to as the second step. This is a forward-backward procedure
which tries to shift the schedule to the left in order to minimize the makespan,
it has the following steps:

– Order the operations according to their end times (the time when they were
ended in the schedule received as input).

– Taking into account the previous ordering, for each operation, choose the
machine that will finish it first (shortest end time, not shortest processing
time). The result is a backward schedule.

– Repeat steps 1 and 2 to obtain a forward schedule.

Once the mode optimization is executed, the quality of the solution is taken
into account to give feedback to the agents of the learning phases.

4.1 Pseudo-code of the Algorithm

Step 1 - Learning
Phase 1 - Routing
For each operation - Choose a machine

Phase 2 - Sequencing
While there are operations to execute
For each machine with operations in the queue

Choose operation to execute
Update Queues of the System

Step 2 - Execute the Mode Optimization Procedure

4.2 Example

Assuming that we have a small instance with 2 jobs and 3 machines, where
Job1 has 2 operations and Job2 has 3 operations, and these operations can be
executed by the following sets of machines, where each pair represents a possible
machine and the corresponding processing time.

A Reinforcement Learning Approach for the Flexible JSSP 259

J0O0

{
M0, 10
M1, 15

J0O1

{
M1, 12
M2, 18

J1O0

{
M0, 20
M2, 25

J1O1

{
M0, 25
M1, 18

J1O2

{
M1, 15
M2, 25

As mentioned in the description of the algorithm, the first learning phase
takes care of the routing, meaning that the first step is to choose an appropriate
machine for each operation. Let’s say that after executing the first phase the
resulting assignment is the following: J0O0−M0, J0O1−M1, J1O0−M0, J1O1−
M0 and J1O2−M2. A possible schedule for this operation-machine assignment is
shown in Figure 2. Applying the Mode Optimization Procedure to this schedule,
the first step is to order the operations according to their end time, that will
give us the following ordering: J1O2, J1O1, J1O0, J0O1 and J0O0. Taking into
account this ordering, the operations will choose a machine to execute it basing
the decision in the possible end time.

For example, J1O2 can choose between going to M1 for 15 time steps or to
M2 for 25 time steps, obviously the best choice is M1, meaning that M1 will be
busy between time 0 and 15.

Fig. 2. Schedule

Then the next operation on the ordered list makes a choice, in this case J1O1

can choose between M0 for 25 time steps and M1 for 18, as this is the second
operation of J1 it can not start until the previous one is finished so, the starting
time will be 15, the possible end times are 40 and 33, being the best choice
M1, which will be occupied from 15 to 33. When an operation from another job
has to choose a machine has to respect this busy times but can search for an
available slot of the size of the time it requires.

5 Experimental Results

5.1 Instances

The approach proposed in this paper was tested on a set of instances from liter-
ature [7]. The results shown below are those obtained for the set of Brandimarte

260 Y. Mart́ınez et al.

Table 1. Brandimarte Instances

Instance Jobs Machines Lower Bound

Mk01 10 6 36
Mk02 10 6 24
Mk03 15 8 204
Mk04 15 8 48
Mk05 15 4 168
Mk06 10 15 33
Mk07 20 5 133
Mk08 20 10 523
Mk09 20 10 299
Mk10 20 15 165

instances, this dataset consists of 10 problems (Mk01-Mk10) with number of jobs
ranging from 10 to 20 and a number of machines ranging from 4 to 15 (Table 1).

5.2 Parameters

Different parameter settings were studied before deciding which combination
to use for the final experiments. The parameters involved on this study were
the discount factor (λ) and epsilon (ε). The different combinations involved the
following sets of values: λ = {0.8, 0.85, 0.9} and ε = {0.01, 0.1, 0.15, 0.2}.

After analyzing all the possibilities the best setting was picked, which resulted
to be λ = 0.8 and ε = 0.1, together with a discount factor α = 0.1. The algorithm
was executed for 1000 iterations.

5.3 Comparative Study

Table 2 shows a comparative study between the proposed approach and some
results already reported. LB is the Lower Bound for each instance, taken from
the original Brandimarte data. The algorithms used to compare our method
(QL) are:

– GA: Genetic Algorithm [3], algorithm integrating different strategies for gen-
erating the initial population, selecting the individuals for reproduction and
reproducing new individuals.

– ACO: Ant Colony Optimization [2], it provides an effective integration be-
tween the Ant Colony Optimization model and knowledge model.

– GEN: Abbreviation of GENACE, an architecture proposed in [14] where an
effective integration between evolution and learning within a random search
process is proposed.

– Brand: Tabu Search [7], a hierarchical algorithm for the flexible job shop
scheduling based on the tabu search metaheuristic.

Table 3 shows the mean relative errors in % (MRE) of the different approaches
used to compare our method with respect to the best-known lower bound. The
relative error (RE) is defined as RE =[(MK -LB)/LB 100]%, where MK is the

A Reinforcement Learning Approach for the Flexible JSSP 261

Table 2. Experimental Results

Inst. LB GA ACO GEN Brand QL

Mk01 36 40 39 40 42 40
Mk02 24 26 29 29 32 26
Mk03 204 204 204 204 211 204
Mk04 48 60 65 67 81 66
Mk05 168 173 173 176 186 173
Mk06 33 63 67 67 86 62
Mk07 133 139 144 147 157 146
Mk08 523 523 523 523 523 523
Mk09 299 311 311 320 369 308
Mk10 165 212 229 229 296 225

best makespan obtained by the reported algorithm and LB is the best-known
lower bound. The MRE takes into account the average of the results for the
whole group of instances.

Table 3. MRE: Mean relative errors

GA ACO GEN Brand QL

MRE 17,53 22,16 23,56 41,43 19,69

From the tables we can notice that the method proposed is able to find the best
reported value for several instances(Mk01-Mk03, Mk05, Mk08). For the instances
Mk04, Mk07 and Mk10 the genetic algorithm is better. For the instances Mk06
and Mk09 the algorithm is able to yield better results.

The cases where our algorithm did not report very good solutions where
mainly instances for which a proper machine assignment was not found (multiple
machines for the same operation with similar processing times). It is important
to mention that the use of the mode optimization procedure helps when the
operation-machine assignment developed during the first learning phase was ad-
equate, this is a key step which influences the quality of the solution.

6 Conclusions and Future Work

In this paper we introduced a Reinforcement Learning Approach for the Flexible
Job Shop Scheduling Problem. The learning process was combined with an op-
timization procedure in order to obtain better results. Different instances from
literature were used in order to compare our method with some other existing
approaches, results show that the method proposed is able to yield better results
than some of the previous reported, except for the Genetic Algorithm in some of
the instances. It will be interesting to combine different dispatching rules (com-
posite dispatching rules) in order to get better results using only the learning
algorithm.

262 Y. Mart́ınez et al.

References

1. Garey, M.R., Johnson, D.S., Sethi, R.: The Complexity of Flowshop and Jobshop
Scheduling. Mathematics of Operations Research 1, 117–129 (1976)

2. Lining, X., Chen, Y.: A Knowledge-Based Ant Colony Optimization for Flexible
Job Shop Scheduling Problems. Applied Soft Computing (2009)

3. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Computers & Operations Research 35, 3202–3212 (2008)

4. Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C 32, 1–13 (2002)

5. Gabel, T., Riedmiller, M.: On a successful application of multi-agent reinforcement
learning to operations research benchmarks. IEEE Transactions on Systems, Man,
and Cybernetics (2009)

6. Mitchell, T.: Machine Learning. McGraw-Hill Science/Engineering/Math (1997)
7. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search.

Annals of Operations Research 41, 157–183 (1993)
8. Nhu Binh, H., Joc Cing, T.: Evolving Dispatching Rules for solving the Flexible

Job-Shop Problem. In: IEEE Congress on Evolutionary Computation (CEC 2005),
vol. 3, pp. 2848–2855 (2005)

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

10. Mart́ınez, Y.: A Multi-Agent Learning Approach for the Job Shop Scheduling Prob-
lem. Master thesis, Vrije Universiteit Brussel (2008)

11. Mart́ınez, Y., Wauters, T., De Causmaecker, P., Nowe, A., Verbeeck, K., Bello, R.,
Suarez, J.: Reinforcement Learning Approaches for the Parallel Machines Job Shop
Scheduling Problem. In: Proceedings of the Cuba-Flanders Workshop on Machine
Learning and Knowledge Discovery, Santa Clara, Cuba (2010)

12. Watkins, C., Dayan, P.: Technical note: Q-learning. Machine Learning 8, 279–292
(1992)

13. Peteghem, V., Vanhoucke, M.: A genetic algorithm for the multi-mode resource-
constrained project scheduling problem. In: Working Papers of Faculty of Eco-
nomics and Business Administration. Ghent University, Belgium (2008)

14. Ho, N.B., Tay, J.C., Lai, E.M.: An effective architecture for learning and evolving
flexible job-shop schedules. European Journal of Operational Research 179, 316–
333 (2007)

Supervised Learning Linear Priority Dispatch

Rules for Job-Shop Scheduling

Helga Ingimundardottir and Thomas Philip Runarsson

School of Engineering and Natural Sciences, University of Iceland
{hei2,tpr}@hi.is

Abstract. This paper introduces a framework in which dispatching
rules for job-shop scheduling problems are discovered by analysing the
characteristics of optimal solutions. Training data is created via ran-
domly generated job-shop problem instances and their corresponding
optimal solution. Linear classification is applied in order to identify good
choices from worse ones, at each dispatching time step, in a supervised
learning fashion. The method is purely data-driven, thus less problem
specific insights are needed from the human heuristic algorithm designer.
Experimental studies show that the learned linear priority dispatching
rules outperforms common single priority dispatching rules, with respect
to minimum makespan.

1 Introduction

Hand crafting heuristics for NP-hard problems is a time-consuming trial and
error process, requiring inductive reasoning or problem specific insights from
their human designers. Furthermore, within a problems class, such as job-shop
scheduling, it is possible to construct problem instances where one heuristic
would outperform another. Given the ad-hoc nature of the heuristic design
process there is clearly room for improving the process. Recently a number of
attempt have been made to automate the heuristic design process. Here we
focus on the job-shop problem. Various learning approaches have been applied
to this task such as, reinforcement learning [1], evolutionary learning [2], and
supervised learning [3,4]. The approach taken here is a supervised learning
classifier approach.

In order to find an optimal (or near optimal) solution for job-shop scheduling
problem (JSSP) one could either use exact methods or heuristics methods. Exact
methods guarantee an optimal solution, however, JSSP is NP-hard [5]. Any
exact algorithm generally suffers from the curse of dimensionality, which impedes
the application in finding the global optimum in a reasonable amount of time.
Heuristics are generally more time efficient but do not necessarily attain the
global optimum. A common way of finding a good feasible solution for the JSSP
is by applying heuristic dispatching rules, e.g., choosing a task corresponding
to longest/shortest operation time; most/least successors; or ranked positional
weight, i.e., sum of operation times of its predecessors. Ties are broken in an
arbitrary fashion or by another heuristic rule. Recently it has been shown that

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 263–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

264 H. Ingimundardottir and T.P. Runarsson

combining dispatching rules is promising [2], however, there is large number of
rules to choose from and so combinations requires expert knowledge or extensive
trial-and-error. A summary of over 100 classical dispatching rules can be found
in [6].

The alternative to hand-crafting heuristics for the JSSP, is to implement an
automatic way of learning heuristics using a data driven approach. Data can
be generated using a known heuristic, such an approach is taken in [3], where a
LPT-heuristic is applied. Then a decision tree is used to create a dispatching rule
with similar logic. However, this method cannot outperform the original LPT-
heuristic used to guide the search. For instruction scheduling this drawback
is confronted in [4,7] by using an optimal scheduler, computed off-line. The
optimal solutions are used as training data and a decision tree learning algorithm
applied as before. Preferring simple to complex models, the resulting dispatching
rules gave significantly more optimal schedules than using popular heuristics in
that field, and a lower worst-case factor from optimality. A similar approach is
taken for timetable scheduling in [8] using case based reasoning. Training data
is guided by the two best heuristics for timetable scheduling. The authors point
out that in order for their framework to be successful, problem features need
to be sufficiently explanatory and training data need to be selected carefully so
they can suggest the appropriate solution for a specific range of new cases.

In this work we investigate an approach based on supervised learning on opti-
mal schedules and illustrate its effectiveness by improving upon well known dis-
patch rules for job-shop scheduling. The approach differs from previous studies,
as it uses a simple linear combination of features found using a linear classifier.
The method of generating training data is also shown to be critical for the
success of the method. In section 2 priority dispatch rules for the JSSP problem
are discussed, followed by a description of the linear classifier in section 3. An
experimental study is then presented in section 4. The paper concludes with a
summary of main findings.

2 Priority Dispatch Rules for Job-Shop Scheduling

The job-shop scheduling task considered here is where n jobs are scheduled
on a set of m machines, subject to the constraint that each job must follow a
predefined machine order and that a machine can handle at most one job at
a time. The objective is to schedule the jobs so as to minimize the maximum
completion times, also known as the makespan.

Each job j has an indivisible operation time on machine a, p(j, a), which is
assumed to be integral, where j ∈ {1, .., n} and a ∈ {1, .., m}. Starting time of
job j on machine a is denoted xs(a, j) and its completion time is denoted xf and

xf (a, j) = xs(a, j) + p(j, a) (1)

Each job has a specified processing order through the machines, it is a permu-
tation vector, σ, of {1, .., m}. Representing a job j can be processed on σ(j, a)
only after it has been completely processed on σ(j, a − 1), i.e.,

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 265

xs(σ(j, a), j) ≥ xf (σ(j, a − 1), j) j ∈ {1, .., n}, a ∈ {2, .., m} (2)

The disjunctive condition that each machine can handle at most one job at a
time is the following:

xs(a, i) ≥ xf (a, j) or xs(a, j) ≥ xf (a, i) (3)

for all i, j ∈ {1, .., n} and a ∈ {1, .., m}. The time in which machine a is idle
between jobs j and j − 1 is called slack time,

s(a, j) = xs(a, j) − xf (a, j − 1). (4)

The makespan is the maximum completion time

z = max{xf (j, m) | j = 1, .., n}. (5)

Dispatching rules are of a construction heuristics, where one starts with an
empty schedule and adds on one job at a time. When a machine is free the
dispatching rule inspects the waiting jobs and selects the job with the highest
priority. The priority may depend on which job has the most work remaining
(MWKR); least work remaining (LWKR); shortest immediate processing time
(SPT); and longest immediate processing time (LPT). These are the most ef-
fective dispatching rules. However there are many more available, e.g. randomly
selecting an operation with equal possibility (RND); minimum slack time (MST);
smallest slack per operation (S/OP); and using the aforementioned dispatching
rules with predetermined weights. A survey of more than 100 of such rules was
given in 1977 by [6]. It has recently been shown that a careful combination of
basic dispatching rules can perform significantly better [9].

In order to apply a dispatching rule a number of features of the schedule
being built must be computed. The features of particular interest were obtained
from inspecting the aforementioned single priority-based dispatching rules. Some
features are directly observed from the partial schedule. The temporal scheduling
features applied in this paper for a job j to be dispatched on machine a are: 1)
processing time for job j on its next machine a; 2) work remaining for job j;
3) start-time of job j; 4) end-time of j; 5) when machine a is next free; 6)
current makespan for all jobs; 7) slack time for machine a; 8) slack time for all
machines; and 9) slack time weighted w.r.t number of number of jobs already
dispatched. Fig. 1 shows an example of a temporal partial schedule for a six
job and six machine job-shop problem. The numbers in the boxes represent the
job identification j. The width of the box illustrates the processing times for a
given job for a particular machine Mi (on the vertical axis). The dashed boxes
represent the resulting partial schedule for when a particular job is scheduled
next. As one can see, there are 17 jobs already scheduled, and 6 potential jobs
to be dispatched next. If the job with the shortest processing time were to be
scheduled next then job 4 would be dispatched. A dispatch rule may need to
perform a one-step look-ahead and observes features of the partial schedule to
make a decision, for example by observing the resulting temporal makespan.

266 H. Ingimundardottir and T.P. Runarsson

Fig. 1. A schedule being built, the dashed boxes represent six different possible jobs
that could be scheduled next using a dispatch rule

These resulting observed features are sometimes referred to as an after-state
or post-decision state. Other dispatch rules use features not directly observable
from the current partial schedule, for example by assigning jobs with most total
processing time remaining.

Problem instances are generated stochastically by fixing the number of jobs
and machines and sampling a discrete processing time from the uniform distri-
bution U(R, 100). The machine order is a random permutation. Two different
processing times were explored, namely U(50, 100) and U(1, 100) for all ma-
chines. For each processing time distribution 500 instances were generated for
a six job and six machine job-shop problem. Their optimal solution were then
found using the GNU linear programming kit [10]. The optimal solutions are
used to determine which job should be dispatched in order to create an optimal
schedule and which ones are not. When a job is dispatched the features of the
partial schedule change. The aim of the linear learning algorithm, discussed in
the following section, is to determine which features are better than others. That
is, features created when a job is scheduled in order to build the known optimal
solution as opposed to features generated by dispatching jobs that will result in
a sub-optimal schedule.

3 Logistic Regression

The preference learning task of linear classification presented here is based on
the work presented in [11,12]. The modification relates to how the point pairs
are selected and the fact that a L2-regularized logistic regression is used.

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 267

Let φ(o) ∈ R
d denote the post-decision state when the job dispatched cor-

responds to an optimal schedule being built. All post-decisions states corre-
sponding to suboptimal dispatches are denoted by φ(s) ∈ R

d. One could label
which feature sets were considered optimal, zo = φ(o) − φ(s), and suboptimal,
zs = φ(s) − φ(o) by yo = +1 and ys = −1 respectively. Note, a negative example
is only created as long as the job dispatched actually changed the resulting
makespan, since there can exist situations in which more than one choice can be
considered optimal.

The preference learning problem is specified by a set of preference pairs:

S =
{{

φ(o) − φ
(s)
j , +1)

}�

k=1
,
{
φ

(s)
j − φ(o),−1)

}�

k=1
| ∀j ∈ J (k)

}
⊂ Φ × Y (6)

where Φ ⊂ R
d is the training set of d features, Y = {−1, +1} is the outcome

space, � = n×m is the total number of dispatches and j ∈ J (k) are the possible
suboptimal dispatches at dispatch (k). In this study, there are d = 9 features,
and the training set is created from known optimal sequences of dispatch.

Now consider the model space h ∈ H of mappings from points to preferences.
Each such function h induces an ordering � on the points by the following rule:

φ(o) � φ(s) ⇔ h(φ(o)) > h(φ(s)) (7)

where the symbol � denotes “is preferrred to”. The function used to induce the
preference is defined by a linear function in the feature space:

h(φ) =
d∑

i=1

wiφi. (8)

Let z denote either φ(o) − φ(s) with y = +1 or φ(s) − φ(o) with y = −1
(positive or negative example respectively). Logistic regression learns the optimal
parameters w ∈ R

d determined by solving the following task:

min
w

1
2

〈
w · w〉+ C

l∑
i=1

log
(

1 + e−yi

〈
w·zi

〉)
(9)

where C > 0 is a penalty parameter, and the negative log-likelihood is due to the
fact the given data points z and weights w are assumed to follow the probability
model:

P (y = ±1|z,w) =
1

1 + e−y
〈
w·z
〉 . (10)

The logistic regression defined in (9) is solved iteratively, in particular using Trust
Region Newton method [12], which generates a sequence {w(k)}∞k=1 converging
to the optimal solution w∗ of (9).

The regulation parameter C in (9), controls the balance between model com-
plexity and training errors, and must be chosen appropriately. It is also important

268 H. Ingimundardottir and T.P. Runarsson

to scale the features φ first. A standard method of doing so is by scaling the
training set such that all points are in some range, typically [−1, 1]. That is,
scaled φ̃ is

φ̃i = 2(φi − φ
i
)/(φi − φ

i
) − 1 i = 1, . . . , d (11)

where φ
i
, φi are the maximum and minimum i-th component of all the feature

variables in set Φ. Scaling makes the features less sensitive to process times.
Logistic regression makes optimal decisions regarding optimal dispatches and

at the same time efficiently estimates a posteriori probabilities. The optimal
w∗ obtained from the training set, can be used on any new data point, φ, and
their inner product is proportional to probability estimate (10). Hence, for each
feasible job j that may be dispatched, φj denotes the corresponding post-decision
state. The job chosen to be dispatched, j∗, is the one corresponding to the highest
preference estimate, i.e

j∗ = argmax
j

h(φj) (12)

where h(·) is the linear classification model (lin) obtained by the training data.

4 Experimental Study

In the experimental study we investigate the performance of the linear dispatch-
ing rules trained on problem instance generated using production times according
to distributions U(1, 100) and U(50, 100). The resulting linear models is referred
to as linU(1,100) and linU(50,100), respectively. These rules are compared with the
single priority dispatching rules mentioned previously. The goal is to minimize
the makespan, here the optimum makespan is denoted μopt, and the makespan
obtained from a dispatching rule by μDR. Since the optimal makespan varies
between problem instances the following performance measure is used:

ρ =
μDR

μopt
(13)

which is always greater or equal to 1.
There were 500 problem instances generated using six machines and six jobs,

for both U(1, 100) and U(50, 100) processing times distributions. Throughout
the experimental study, a Kolmogorov-Smirnov goodness-of-fit hypothesis test
with a significance level 0.05 is used to check if there is a statistical difference
between the models in question.

4.1 Data Generation

An optimal sequence of job dispatches is known for each problem instance.
The sequence indicates in which order the jobs should be dispatched. A job
is placed at the earliest available time slot for its next machine, whilst still
fulfilling constraints (2) and (3). Unfinished jobs are dispatched one at a time
according to the optimal sequence. After each dispatch the schedule’s current

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 269

features are updated based on the half-finished schedule. This sequence of job
assignments is by no means unique. Take for instance Fig. 1, let’s say job #1
would be dispatched next, and in the next iteration job #2. Now this sequence
would yield the same schedule as if job #2 would have been dispatched first
and then job #1 in the next iteration. In this particular instance one could not
infer that choosing job #1 is optimal and #2 is suboptimal (or vice versa) since
they can both yield the same optimal solution, however the state of the schedule
has changed and thus its features. Care must be taken in this case that neither
resulting features are labeled as undesirable. Only the resulting features from a
dispatch resulting in a suboptimal solution should be labeled undesirable. This
is the approach taken here. Nevertheless, there may still be a chance that having
dispatched a job resulting in a different makespan would have resulted in the
same makespan if another optimal scheduling path were to have been chosen.
That is, there are multiple optimal solutions to the same problem instance. We
will ignore this for the current study, but note that our data may be slightly
corrupted for this reason. In conclusion, at each time step a number of feature
pair are created, they consist of the features resulting from optimal dispatch
versus features resulting from suboptimal dispatches.

When building a complete schedule n × m dispatches must be made sequen-
tially. At each dispatch iteration a number of data pairs are created which can
then be multiplied by the number of problem instance created. We deliberately
create a separate data set for each dispatch iterations, as our initial feeling is
that dispatch rules used in the beginning of the schedule building process may
not necessarily be the same as in the middle or end of the schedule. As a result
we will have n × m linear scheduling rules for solving a n × m JSSP.

4.2 Training Size and Accuracy

Of the 500 schedule instances, 20% were devoted solely to validation, in order to
optimize the parameters of the learning algorithm. Fig. 2 shows the ratio from
optimum makespan, ρ in (13), of the validation set as a function of training size
for both processing time distributions considered. As one might expect, a larger
training set yields a better result. However, a training size of only 200 is deemed
sufficient for both distributions, and will be used here on after, yielding the
remaining unused 200 instances as its test set. The training accuracy reported
by the lin-model during training with respect to choosing the optimal job at each
time step is depicted in Fig. 3 for both data distribution considered. The models
obtained from using the training set corresponding to U(1, 100) and U(50, 100)
data distributions are referred to as linU(1,100) and linU(50,100), respectively. The
training accuracy, that is the ability to dispatch jobs according to an optimal
solution, increases as more jobs are dispatched. This seems reasonable since the
features initially have little meaning and hence are contradictory. It becomes
easier to predict good dispatches towards the end of the schedule. This illustrates
the care needed in selecting training data for learning scheduling rules.

270 H. Ingimundardottir and T.P. Runarsson

Fig. 2. Ratio from optimum makespan, ρ, for the validation set as a function of size of
training set. Solid line represents model linU(1,100) and dashed line represents model
linU(50,100)

5 10 15 20 25 30 35
60

65

70

75

80

85

90

95

100

Sequence of dispatch decision

A
cc
u
ra
cy

%

Training accuracy

linU(1,100)
linU(50,100)

Fig. 3. Training accuracy as a function of sequence of dispatching decisions. Solid line
represents model linU(1,100) and dashed line represents data distributions linU(50,100)

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 271

Table 1. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, using the test sets U(1, 100) (top) and
U(50, 100) (bottom)

U(1, 100) mean std med min max

linU(1,100) 1.0842 0.0536 1.0785 1.0000 1.2722
SPT 1.6707 0.2160 1.6365 1.1654 2.2500
MWRM 1.2595 0.1307 1.2350 1.0000 1.7288
LWRM 1.8589 0.2292 1.8368 1.2907 2.6906

U(50, 100) mean std med min max

linU(50,100) 1.0724 0.0446 1.0713 1.0000 1.2159
SPT 1.7689 0.2514 1.7526 1.2047 2.5367
MWRM 1.1835 0.0994 1.1699 1.0217 1.5561
LWRM 1.9422 0.2465 1.9210 1.3916 2.6642

4.3 Comparison with Single Priority Dispatching Rules

The performance of the two learned linear priority dispatch rules, (linU(1,100),
linU(50,100)), are now compared with the three most common single priority-
based dispatching rules from the literature, which dispatch according to: opera-
tion with shortest processing time (SPT), most work remaining (MWRM), and
least work remaining (LWRM). Their ratio from optimum, (13), is depicted in
Fig. 4, and corresponding statistical findings are presented in Table 1. Clearly
model linU(R,100) outperforms all conventional single priority-based dispatching
rules, but of them MWRM is the most successful. It is interesting to note
that for both data distributions, the worst-case scenario (right tail of the dis-
tributions) for model linU(R,100) is noticeably better than the mean obtained
using dispatching rules SPT and LWRM , so the choice of an appropriate single
dispatching rule is of paramount importance.

4.4 Robustness towards Data Distributions

All features are scaled according to (11), which may enable the dispatch rules
to be less sensitive to the different processing time distributions. To examine
this the dispatch rules linU(1,100) and linU(50,100) are tested on both U(1, 100)
and U(50, 100) test sets. The statistics for ρ are presented in Table 2. There
is no statistical difference between series #1 and #4, implying that when the
dispatch rules are tested on their corresponding test set, they perform equally
well. It is also noted that there is no statistical difference between series #2 and
#4, implying that rule linU(50,100) performed equally well on both test sets in
question. However, when observing at the test sets, then in both cases there is
a statistical difference between applying model linU(1,100) or linU(50,100), where
the latter yielded a better results. This implies that the rules are actually not
robust towards different data distributions in some cases. This is as one may
have expected.

272 H. Ingimundardottir and T.P. Runarsson

Table 2. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, for the test sets U(1, 100) and
U(50, 100), on both models linU(1,100) and linU(50,100)

model test set mean std med min max

#1 linU(1,100) U(1, 100) 1.0844 0.0535 1.0786 1.0000 1.2722
#2 linU(50,100) U(1, 100) 1.0709 0.0497 1.0626 1.0000 1.2503
#3 linU(1,100) U(50, 100) 1.1429 0.1115 1.1158 1.0000 1.5963
#4 linU(50,100) U(50, 100) 1.0724 0.0446 1.0713 1.0000 1.2159

Table 3. Feature description and mean weights for models linU(1,100) and linU(50,100)

Weight linU(1,100) linU(50,100) Feature description

w̄(1) -0.6712 -0.2220 processing time for job on machine
w̄(2) -0.9785 -0.9195 work remaining
w̄(3) -1.0549 -0.9059 start-time
w̄(4) -0.7128 -0.6274 end-time
w̄(5) -0.3268 0.0103 when machine is next free
w̄(6) 1.8678 1.3710 current makespan
w̄(7) -1.5607 -1.6290 slack time for this particular machine
w̄(8) -0.7511 -0.7607 slack time for all machines
w̄(9) -0.2664 -0.3639 slack time weighted w.r.t. number of

operations already assigned

Table 4. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, on models linU(1,100), linU(50,100) ,
linU(1,100),fixed w and linU(50,100),fixed w for corresponding test sets

model test set mean std med min max

#1 linU(1,100) U(1, 100) 1.0844 0.0535 1.0786 1.0000 1.2722
#2 linU(1,100),fixed w U(1, 100) 1.0862 0.0580 1.0785 1.0000 1.2722
#3 linU(50,100) U(50, 100) 1.0724 0.0446 1.0713 1.0000 1.2159
#4 linU(50,100),fixed w U(50, 100) 1.0695 0.0459 1.0658 1.0000 1.2201

4.5 Fixed Weights

Here we are interested in examining the sensitivity of the weights found for our
linear dispatching rules. The weights found for each feature at each sequential
dispatching step for models linU(1,100) and linU(50,100) are depicted in Fig. 5.
These weights are averaged and listed along side their corresponding features in
Table 3. The sign and size of these weights are similar for both distributions,
but with the exception of features 5 and 1. The average weights are now used
throughout the sequence of dispatches, these models are called linU(1,100),fixed w

or linU(50,100),fixed w, respectively.

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 273

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35

40
F
re
q
u
en
cy

Ratio from optimal makespan, ρ

Histogram for test data U(1, 100)

linU(1,100)

SPT
MWRM
LWRM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35

F
re
q
u
en
cy

Ratio from optimal makespan, ρ

Histogram for test data U(50, 100)

linU(50,100)
SPT
MWRM
LWRM

Fig. 4. Histogram of ratio ρ for the dispatching rules linU(R,100), SPT , MWRM and
LWRM for models linU(1,100) (top) and linU(50,100) (bottom)

274 H. Ingimundardottir and T.P. Runarsson

5 10 15 20 25 30 35
-4

-3

-2

-1

0

1

2

3

4

Sequence of dispatch decision

W
ei
gh

t

Weights for model linU(1,100)

w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)
w(8)
w(9)

5 10 15 20 25 30 35
-4

-3

-2

-1

0

1

2

3

4

Sequence of dispatch decision

W
ei
gh

t

Weights for model linU(50,100)

w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)
w(8)
w(9)

Fig. 5. Weights of features as a function of sequence of dispatching decisions, for test
data U(1, 100) (top) and U(50, 100) (bottom)

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 275

Table 5. Mean value, standard deviation, median value, minimum and maximum
values of the ratio from optimum makespan, ρ, for the test sets U(1, 100) and
U(50, 100), on both fixed weight models linU(1,100),fixed w and linU(50,100),fixed w

model test set mean std med min max

#1 linU(1,100),fixed w U(1, 100) 1.0862 0.0580 1.0785 1.0000 1.2722
#2 linU(50,100),fixed w U(1, 100) 1.0706 0.0493 1.0597 1.0000 1.2204
#3 linU(1,100),fixed w U(50, 100) 1.1356 0.0791 1.1296 1.0000 1.5284
#4 linU(50,100),fixed w U(50, 100) 1.0695 0.0459 1.0658 1.0000 1.2201

Experimental results in Table 4 indicate that the weights could be held con-
stant since there is no statistical difference between series #1 and #2 and series
#3 and #4, i.e. no statistical difference between using varied or fixed weights for
both data distributions. Hence, a simpler model using fixed weights should be
preferred to the one of varied weights. The experiment described in section 4.4
is also repeated for fixed weights, and its results are listed in Table 5. As for
varied weights (cf., Table 2), there is no statistical difference between models
#2 and #4. However, unlike using varied weights, there exists a statistical
difference between series #1 and #4. Again, looking at the test sets, in both
cases there is statistical difference between applying model linU(1,100),fixed w or
linU(50,100),fixed w, where the latter yielded again the better result.

5 Summary and Conclusion

In this paper, a supervised learning linear priority dispatch rules (lin) is investi-
gated to find optimal schedules for JSSP w.r.t. minimum makespan. The lin-
model uses a heuristic strategy such that jobs are dispatched corresponding to
the feature set that yielded the highest proportional probability output (12). The
linear priority dispatch rules showed clear superiority towards single priority-
based dispatch rules. The method of generating training data is critical for the
framework’s robustness.

The framework is not as robust with respect to different data distribution in
some cases, and thus cannot be used interchangeably for training and testing
and still maintain satisfactory results. Most features were of similar weight
between the two data distributions (cf., Table 3), however, there are some slight
discrepancies between the two distributions, e.g. w̄(5), which could explain the
difference in performance between linU(1,00) and linU(50,100).

There is no statistical difference between using the linear model with varied or
fixed weights when using a corresponding test set, so it is sufficient to apply only
the mean varied weight, no optimization of the weight parameters is needed. It
is noted that some of the robustness between data distribution is lost by using
fixed weights. Hence, when dealing with a test set of known data distributions,
it is sufficient to use the simpler fixed model linU(R,100),fixed w, however when

276 H. Ingimundardottir and T.P. Runarsson

the data distribution is not known beforehand, it is best to use the slightly more
complex varied weights model, and inferring from the experimental data rather
use linU(50,100) to linU(1,100).

It is possible for a JSSP problem to have more than one optimal solution. How-
ever for the purpose of this study, only one optimal solution used for generating
training data is sufficient. But clearly the training data set is still corrupted
because of multiple ways of representing the same or different (yet equally
optimal w.r.t minimum makespan) optimal schedule. One way of overcoming
this obstacle is applying mixed integer programming for each possible suboptimal
choice, with the current schedule as its initial value to make it absolutely certain
that the choice is indeed suboptimal or not.

The proposed approach of discovering learned linear priority dispatching rules
introduced in this study, are only compared with three common single priority-
based dispatching rules from the literature. Although they provide evidence
of improved accuracy, other comparisons of learning approaches, e.g. genetic
programming, regression trees and reinforcement learning, need to be looked
further into.

Another possible direction of future research is to extend the obtained results
to different types of scheduling problems, along with relevant features. The
efficiency of this problem solver will ultimately depend on the skills of plausible
reasoning and how effectively the features extrapolate patterns yielding rules
concerning optimal solutions, if they exist.

The main drawback of this approach is in order for the framework to be
applicable one needs to know optimal schedules and their corresponding features
in order to learn the preference, which may be difficult if not impossible to
compute beforehand for some instances of JSSP using exact methods.

References

1. Zhang, W., Dietterich, T.G.: A Reinforcement Learning Approach to Job-shop
Scheduling. In: Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pp. 1114–1120. Morgan Kaufmann, San Francisco (1995)

2. Tay, J., Ho, N.: Evolving dispatching rules using genetic programming for solving
multi-objective flexible job-shop problems. Computers & Industrial Engineer-
ing 54(3), 453–473 (2008)

3. Li, X., Olafsson, S.: Discovering Dispatching Rules Using Data Mining. Journal of
Scheduling 8(6), 515–527 (2005)

4. Malik, A.M., Russell, T., Chase, M., Beek, P.: Learning heuristics for basic block
instruction scheduling. Journal of Heuristics 14(6), 549–569 (2007)

5. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1(2), 117–129 (1976)

6. Panwalkar, S., Iskander, W.: A Survey of Scheduling Rules. Operations Re-
search 25(1), 45–61 (1977)

7. Russell, T., Malik, A.M., Chase, M., van Beek, P.: Learning Heuristics for the
Superblock Instruction Scheduling Problem. IEEE Transactions on Knowledge and
Data Engineering 21(10), 1489–1502 (2009)

Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling 277

8. Burke, E., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling
problems. Journal of Scheduling 9(2), 115–132 (2006)

9. Jayamohan, M.: Development and analysis of cost-based dispatching rules for job
shop scheduling. European Journal of Operational Research 157(2), 307–321 (2004)

10. Makhorin, A.: GNU linear programming kit. Moscow Aviation Institute, Moscow,
Russia, 38 (May 2009), Software available at
http://www.gnu.org/software/glpk/glpk.html

11. Fan, R.e., Wang, X.r., Lin, C.j.: LIBLINEAR: A Library for Large Linear
Classification. Corpus 9, 1871–1874 (2008), Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear

12. Lin, C.j., Weng, R.C.: Trust Region Newton Method for Large-Scale Logistic
Regression. Journal of Machine Learning Research 9, 627–650 (2008)

http://www.gnu.org/software/glpk/glpk.html
http://www.csie.ntu.edu.tw/~cjlin/liblinear

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 278–292, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Fine-Tuning Algorithm Parameters Using the Design of
Experiments Approach

Aldy Gunawan, Hoong Chuin Lau, and Lindawati

School of Information Systems, Singapore Management University,
80 Stamford Road, S(178902), Singapore

{aldygunawan,hclau,lindawati.2008}@smu.edu.sg

Abstract. Optimizing parameter settings is an important task in algorithm
design. Several automated parameter tuning procedures/configurators have been
proposed in the literature, most of which work effectively when given a good
initial range for the parameter values. In the Design of Experiments (DOE), a
good initial range is known to lead to an optimum parameter setting. In this
paper, we present a framework based on DOE to find a good initial range of
parameter values for automated tuning. We use a factorial experiment design to
first screen and rank all the parameters thereby allowing us to then focus on the
parameter search space of the important parameters. A model based on the
Response Surface methodology is then proposed to define the promising initial
range for the important parameter values. We show how our approach can be
embedded with existing automated parameter tuning configurators, namely
ParamILS and RCS (Randomized Convex Search), to tune target algorithms
and demonstrate that our proposed methodology leads to improvements in
terms of the quality of the solutions.

Keywords: parameter tuning algorithm, design of experiments, response surface
methodology.

1 Introduction

It is well-known that good parameter settings have a significant effect on the
performance of an algorithm (Eiben et al., 1999; Hutter et al., 2010). For example, a
simulated annealing algorithm is sensitive to the cooling factor, while a tabu search
algorithm relies on a good choice of the tabu tenure. Many of the works we witness to
date propose algorithms where the underlying parameters are set either arbitrarily
without explanation, or conveniently choose parameter values that have been reported
in previous studies.

In response to the need for a principled approach to find good parameter settings,
several automated approaches have been proposed in recent years. For model-based
approaches, Díaz and Laguna (2006) developed CALIBRA which employs a Taguchi
fractional experimental design followed by a local search procedure. The former
focuses on providing the starting point of the experiment, while the latter continues to
search for the best parameter configuration. This procedure can only handle up to five
parameters and focuses on the main effects of parameters without exploiting the

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 279

interaction effects between parameters. SPO+ (Hutter et al., 2010) is an improved
model-based technique extended from the Sequential Parameter Optimization
framework that constructs predictive performance models to focus attention on
promising regions of a design space, aimed at tuning target algorithms with
continuous parameters and a single problem instance at a time. F-Race (Birattari et
al., 2002) is the specialization of the generic class of racing algorithms for
configuration of metaheuristics.

For model-free approaches, Hutter et al. (2009) presented a local search approach,
ParamILS, for algorithm configuration which is suited for discrete parameters. Again,
ParamILS only considers changing one single parameter value at a time. Much
potential in the use of statistical testing methods as well as RSM in algorithm
configuration problems were also discussed. Randomized Convex Search (RCS) was
recently proposed to handle both discrete and continuous parameter values (Lau and
Xiao, 2009). The underlying assumption of RCS is that the points lie inside the
convex hull of a certain number of the best points (parameter configurations).

The Design of Experiments (DOE) is a well-established statistical approach that
involves experiment designs for the empirical modeling of processes (see for example
Montgomery, 2005). Some typical applications of DOE include 1) evaluation and
comparison of basic design configurations, 2) evaluation of different materials, and 3)
selection of design parameters. The proposal for exploiting DOE for algorithm
parameter tuning is in fact not new. Barr et al. (1995) discussed the design of
computational experiments to test heuristic methods and provided guidelines for such
experimentation. The performance of algorithm in computation experiments was
affected by algorithm factors which include initial solution construction procedures
and any parameters employed by the heuristic. The authors suggested the use of DOE
in the process of planning an experiment.

Parsons and Johnson (1997) used statistical techniques, a central composite design
embedded a fractional factorial design, to build a response surface for four
parameters. This approach was applied to a genetic algorithm with applications to
DNA sequence assembly. More recently, Ridge and Kudenko (2007) used the DOE
approach to build a predictive model of the performance of a combinatorial
optimization heuristic over a range of heuristic tuning parameter settings. However,
the approach was only applicable to tuning Ant Colony System for the Travelling
Salesman problem. There was no further comparison with other automated tuning
approaches.

The Response Surface methodology (RSM) is a model-based approach within
DOE that can be used to quantify the importance of each parameter, support
interpolation of performance between parameter settings as well as extrapolation to
previously-unseen regions of the parameter space (Hutter et al., 2010). Recently,
Caserta and Voss (2009) adapted the RSM to fine-tune their Corridor Method for
solving a block relocation problem in container terminal logistics. The values of
parameters were restricted to discrete intervals due to the problem characteristics.
Caserta and Voss (2010) presented a simple mechanism aimed at automatically fine
tuning only a single parameter, the corridor width, of the corridor method for solving
the DNA sequencing problem.

This paper describes a sequential experimental approach for screening and tuning
algorithm parameters. Our approach is grounded on the DOE methodology as follows.

280 A. Gunawan, H.C. Lau, and Lindawati

Consider an algorithm (called the target algorithm) to solve a particular problem that
requires a number of parameters to be set prior to the execution of the algorithm. A
factorial experiment design is applied to first screen and rank the parameters.
Parameters which are determined to be unimportant (in that the solution quality is
insensitive to the values of these parameters) are set to some constant values so that
the resulting parameter space that needs to be explored is reduced. A first-order
polynomial model based on RSM is then built to define the promising initial range for
the important parameter values. We apply our proposed approach to two different
automated tuning configurators, ParamILS (Hutter et al., 2009) and RCS (Lau and
Xiao, 2009). Each configurator is applied to a target algorithm for solving the
Traveling Salesman Problem (TSP) and Quadratic Assignment Problem (QAP),
respectively.

In summary, the major contributions/highlights of this paper are as follows:

1. We propose the use of a factorial experiment design that enables to screen and
rank the algorithm parameters. The screening process helps us to identify those
unimportant parameters so they can be set into constant values. By focusing on
important parameters, we reduce the parameter search space and target our search
on the promising regions of the important parameter search space.

2. We propose the use of RSM to define the promising initial range for important
parameter values that can be embedded to automated tuning procedures for
improving the quality of solutions.

The remainder of this paper is organized as follows. Section 2 describes our
proposed automated tuning framework. Section 3 provides a computational analysis
of our proposed approach applied to two problems. Finally, we provide some
concluding perspectives and future research plans in Section 4.

2 Automated Tuning Framework

The Automated Tuning problem is defined as follows:

Definition: Given a target algorithm TA parameterized by a set of parameters X with
their respective intervals, a set of training instances Itr, and a meta-function H(x) that
measures the algorithm performance on a fixed parameter setting x over a set of
problem instances, the goal is to determine a configuration x* such that H(x*) is
minimized over Itr.

In this paper, we assume all parameters to lie within numeric intervals. An example of
the function value H(x) is the average percentage deviation of the solution values
obtained by TA using x as the parameter setting from the optimal values over the
given set of instances. In our paper, the goal is to optimize x over the given set of
training instances Itr and subsequently verify the quality of this parameter setting on a
set of testing instances.

A high-level view of our proposed automated tuning framework is given in Figure
1. The framework consists of three phases, (1) screening, (2) exploration, and (3)
exploitation phases. In the following, we discuss the details of each phase.

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 281

Fig. 1. Automated tuning framework

2.1 Screening Phase

Let k denote the number of parameters of the target algorithm to be tuned, and each
parameter pi (discrete or continuous) lies within a numeric interval [li, ui]. In this
phase, we perform screening to determine which parameters are significantly
important thereby reducing the number of parameters under consideration. For this
purpose, we apply a 2k factorial design which consists of k parameters, where each
parameter pi only has two levels (li and ui). A complete design requires (2 × 2 ×…× 2)
× n = n × 2k observations where n represents the number of replicates.

Fig. 2. The 22 factorial design

As an example, consider there are two parameters, A and B. Figure 2 shows the 22
design with treatment combinations are represented as the corners of the squares.

282 A. Gunawan, H.C. Lau, and Lindawati

The signs + and – denote the values of li and ui of each parameter pi, respectively. In
general, a treatment combination is represented by a series of lowercase letters
(Montgomery, 2005). For example, treatment combination a indicates that parameters
A and B are set to uA and lB, respectively. To estimate this treatment combination, we
average n replications obtained. By using equations (1)–(3) and some other statistical
testing (Montgomery, 2005), we can further examine the main effects of parameters
A, B and the two-factor interaction AB as well.

[])1(
2

1 −−+= baba
n

A (1)

[])1(
2

1 −−+= aabb
n

B (2)

[]baab
n

AB −−+=)1(
2

1 (3)

The importance of a particular parameter is defined by conducting the test of
significance on the main effect of the parameter. We choose a significance level (α =
5%) for our purpose. To further determine the ranking of the important parameters,
we look at the absolute values of the main effects of those important parameters. By
doing so, we can determine which parameters should be carefully controlled including
the direction of adjustment for these parameters (see Figure 3 for illustration). The
result in Figure 3 is obtained with the MINITAB statistical software.

Fig. 3. Statistical results of the screening phase

From Figure 3, we observe that the main effects of A and B are significant since the
p-values of both effects are less than 5%. In terms of ranking, B is the most dominant
parameter, followed by A. Assuming that our objective function is a minimizing
function, we modify the range of each significant parameter by the main effect value
of the parameter. For instance, parameter A should be set to a low value since its
coefficient is positive; hence the range of parameter A is modified to [l′A,u′A] = [lA,
lA+2∆], where ∆ is a constant. (This notation will become clear in the next section.)

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 283

For each unimportant parameter, we simply set to a constant value by the main
effect value of the parameter; if the value is positive, we set the parameter to a low
value (in our case, it is set to its lower bound lc). The analysis of variance confirms
our interpretation of the effect estimates. Both parameters A and B exhibit significant
main effects.

2.2 Exploration Phase

Let m be the total number of important parameters (m ≤ k) determined in the
screening phase where each parameter pi has a modified interval [l′i, u′i] (as defined in
Section 2.1) as well as its centre point value (l′i + u′i)/2. The Exploration phase is
summarized in the following figure.

Procedure ExplorationPhase
Input: TA: Target Algorithm with m parameters,
 Θ: Parameter Configuration Space, defined by each parameter pi having initial range
 [l′i, u′i];
 I: Set of Training Instances;
Output: Modified configuration space, each parameter with modified interval.

Procedure:
1: Run TA with respect to configuration space Θ on I;
2: Implement 2m+1 factorial design on m parameters ;
3: Conduct the interaction and curvature tests. If at least one of the tests is statistically

significant, stop. Otherwise, go to Step 4;
4: Build a planar model of significant parameters;
5: Apply steepest descent to define a new centre point for each important parameter pi;
6: Update the range of each important parameter pi and generate a new [l′i, u′i];
7: If at least one parameter pi with either l′i < li or u′i > ui, stop. Otherwise, go to Step 1;

Fig. 4. Exploration phase

In essence, we begin with a small region and aim to find a “promising” range for
important parameters using steepest descent on the response surface. The target
algorithm is run with respect to the parameter configuration space Θ which contains
2m+1 possible parameter settings (each parameter has two possible values, with an
additional parameter setting defined by the centre point value of each parameter).

We apply a factorial experiment design in order to build a first-order (planar)
model. The underlying assumption is that the region can be approximated by a planar
model, which is a reasonable assumption when the region is sufficiently small and far
from the optimum. The planar model is given by the following approximating
function:

εβββ ++++= mm xxY ...110 (4)

In order to test the significance of this model, we conduct two additional statistical
tests:

284 A. Gunawan, H.C. Lau, and Lindawati

─ Interaction test. This test is mainly on testing whether any interaction between
parameters. This can be done by looking at the significance of the estimated
coefficient between two parameters (for instance, βij).

─ Curvature test. This test is mainly on testing whether the planar model is
adequate to represent the local response function.

As long as each test is not significant, we can always assume that the planar model
is adequate to represent the true surface of parameters. We then continue the process
by applying steepest descent that allows us to move rapidly to the vicinity of the
optimum. More precisely, we move sequentially along the path of steepest descent in
the direction of the maximum decrease in the response Y (Box and Wilson, 1951).
The path is proportional to the signs and magnitudes of the equation (4). For example,
if βA (coefficient of parameter A) is the largest absolute coefficient value compared
against other coefficient values, the step size of another parameter i is calculated by
βi/βA. Several points along this path of steepest descent would be generated. A point
with the minimum objective function value is then selected as the new centre point. A
new set of li and ui values for each parameter pi as well as a new parameter
configuration space Θ are then determined.

We illustrate the steepest descent step as follows. Assuming two parameters, A and
B, where A has the larger absolute coefficient value (ties broken randomly). We first
generate n possible values of xA and xB as follows: the values of xA are set to arbitrary
values (e.g., 0.1, 0.2, …, 0.9), whereas the corresponding values of xB are calculated
by (βB/βA)×xA. Finally, the n possible parameter values for A and B are calculated as
follows:

() ()
22

AAAA
A

n
A

ullu
xV

++−×= (5)

() ()
22

BBBB
B

n
B

ullu
xV

+
+

−
×= (6)

We then run the target algorithm with these n parameter values of A and B. The
parameter setting with the minimum objective function value, denoted

by best
AV and best

BV , is selected as a new centre point. The range of is parameter then

modified as [best
iV -∆, best

iV +∆] where ∆ is a constant.

From statistical point of view, the region of planar local optimality is indicated by
the existence of either interaction or curvature. Hence, we conduct the experiments
until either interaction test or curvature test is statistically significant and proceed to
the exploitation phase.

2.3 Exploitation Phase

In this phase, we drop the planarity assumption and devote our attention to finding the
optimal point in the region output from the exploration phase. This is achieved by
applying an automated tuning procedure, such as ParamILS (Hutter et al., 2009) or
RCS (Lau and Xiao, 2009).

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 285

In this study, ParamILS is applied to tune the Iterated Local Search algorithm
(Lourenco et al., 2003) for the Traveling Salesman Problem, while RCS is applied to
the hybrid algorithm combining Simulated Annealing and Tabu Search (Ng et al.,
2008) for the Quadratic Assignment Problem (QAP).

3 Experimental Results

In this section, we report a suite of computational results and analysis obtained from
our proposed approach. All the experiments are run on a Intel (R) Core (TM)2 Duo
CPU 2.33 GHz with 1.96GB RAM that runs Microsoft Windows XP.

To evaluate the performance of our proposed automated tuning framework, we
conduct two different experiments: 1) test ParamILS on Traveling Salesman Problem
(TSP), and 2) test RCS on Quadratic Assignment Problem (QAP). For each
experiment, two different scenarios, configurator+DOE (1st scenario) and configurator
(2nd scenario), would be analyzed and compared. In this case, the amount of resources
allocated (i.e. the number of iterations) are fixed. For instance, suppose the number of
iterations of ParamILS and DOE are x and y respectively, the number of iterations of
the 1st scenario is x+y, while the number of iterations of the 2nd scenario is set to z,
with z = x+y.

The main purpose is to show that our approach can lead to improvements in terms
of the gap (i.e. percentage deviation) between the average objective values of the
solutions obtained by our approach against the best known solutions. We show that
our proposed approach could provide better solutions for both discrete and continuous
parameter values.

3.1 Traveling Salesman Problem (TSP)

The target algorithm to solve TSP is the Iterated Local Search (ILS). In this paper, we
used the implementation from Halim et al. (2007). Four parameters that need to be
tuned are as follows (Table 1):

─ Maximum_number_of_iterations that limits the number of iterations for running
the algorithm.

─ Perturbation_strength that limits the number of times required for running the
perturbation.

─ Non_improving_moves_tolerance that limits the number of non-improving
moves to be accepted.

─ Perturbation_choice that selects the perturbation strategy.

Table 1. Parameter space for ILS on TSP

Parameters (pi) Range
Maximum_number_of_iterations (max_iter) [100, 900]
Perturbation_strength (perturb) [1, 10]
Non_improving_moves_tolerance (non_imprv) [1, 10]
Perturbation_choice (opt_cho) [3, 4]

286 A. Gunawan, H.C. Lau, and Lindawati

In this screening process, the parameter space for max_iter, perturb, non_improv
are reduced to [100, 500], [1, 5] and [1, 5] respectively. We started by selecting 47
instances from the 70 instances (TSPLIB) as training instances while the rest (23
instances) are treated as testing instances. For a particular parameter setting, we take
the average of 10 runs on the training instances. The details of the experiment would
be explained below.

3.1.1 Screening Phase
As described in Section 2.1, we focus on determining which parameters are
significantly important. Figures 5 and 6 present the results of a 24 factorial design
with n = 10 replicates using the factors mentioned in Table 1. The numerical estimates
of the effects indicate that the effect of max_iter, perturb, and non_imprv are
significant (with p-value < 5%), while the effect of opt_cho appears small. Based on
the coefficient value of parameter opt_cho obtained, we decide to set the value of this
parameter to its lower bound value (lopt_cho). As we can see from Figure 6, only three
parameters (max_iter, perturb, and non_imprv) have significant effects. The dotted
line represents the cut-off limit associated with that significance level.

Fig. 5. Statistical results of the screening phase

Fig. 6. Screening phase of ILS Algorithm

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 287

3.1.2 Exploration Phase
In this phase, we focus on three important parameters obtained from screening phase.
We apply a factorial experiment design in order to build the first-order model. In
order to test the significance of the first-order model, we conduct two additional
statistical testing: interaction and curvature tests. As described earlier, as long as
theses two additional tests are not significant, we can always assume that the first –
order model is adequate to represent the true surface of parameters. Table 2
summarizes the parameter space of parameters along the path of the steepest descent.

Table 2. Parameter space for ILS Algorithm

Parameters
Range

Exploration_1
max_iter [400, 600]
Perturb [1 ,3]
non_imprv [4, 6]
opt_cho 3
Objective function value (%) 3.811

3.1.3 Exploitation Phase
In this phase, we use ParamILS to further explore neighbor parameters, given the
information about the parameter values from exploration phase. Here, we would like
to show that by using the DOE approach, we can provide a very good initial range for
the parameter values.

Table 3. Parameter space for ILS on TSP

Parameters Type
Range

ParamILS ParamILS + DOE
Maximum_number_of_iteration Discrete [100, 900] [400, 600]
Perturbation_strength Discrete [1, 10] [1, 3]
Non_improving_moves_tolerance Discrete [1, 10] [4, 6]
Perturbation_choice Discrete [3, 4] 3

Table 4. Parameter tuning for ILS on TSP

Algorithms Mean
ParamILS (training instances) 2.653
ParamILS + DOE (training instances) 2.513
ParamILS (testing instances) 4.103
ParamILS + DOE (testing instances) 4.066

For comparison purpose, we also run ParamILS with the initial range for the
parameter values (Table 3). The default parameter setting is based on the lower bound
value of each parameter. The details tuning results for both ParamILS and ParamILS +
DOE are given in Table 4. We observe that the results obtained by ParamILS + DOE

288 A. Gunawan, H.C. Lau, and Lindawati

are better than those of ParamILS. We can conclude that DOE approach could lead to
improvements in terms of the solution quality. The percentage deviations between the
average objective function value of the solutions obtained and the best known/optimal
solutions are only 1.117 % and 1.710% for training and testing instances, respectively.

3.2 Quadratic Assignment Problem (QAP)

In this experiment, the target algorithm to solve QAP is the hybrid algorithm (Ng et
al. 2008). The hybrid algorithm involves using the Greedy Randomized Adaptive
Search Procedure (GRASP) to obtain an initial solution, and then using a combined
Simulated Annealing (SA) and Tabu Search (TS) algorithm to improve the solution.
There are four parameters to be tuned, which are listed as follows:

─ Initial temperature of SA algorithm (temp)
─ Cooling factor (alpha)
─ Length of tabu list (length)
─ Percentage of number of non-improvement iterations prior to intensification

strategy (pct).

In order to evaluate the performance of our proposed approach, we decided to
solve some benchmark problems from a library for research on the QAP (QAPLIB)
which have been studied and solved by other researchers (Burkard et al., 1997).
According to Taillard (1995), the instances of QAPLIB can be classified into four
classes: unstructured (randomly generated) instances, grid-based distance matrix and
real-life instances and real-life-like instances. Due to the limitation of the target
algorithm that can only solve symmetric instances with zero diagonal values, we only
focus on some instances from three classes: unstructured (randomly generated)
instances, grid-based distance matrix and real-life instances.

3.2.1 Screening Phase
We selected a certain number of instances for training and testing instances for each
class (Table 5). Table 6 summarizes the initial range for each parameter value. Only
parameter length is a discrete parameter while the rest are continuous ones.

Table 5. Training and testing instances for each class

Class Training instances Testing instances
Unstructured (randomly generated) instances 11 instances 5 instances
Grid-based distance matrix 24 instances 11 instances
Real-life instances 14 instances 7 instances

Table 6. Parameter space for hybrid algorithm on QAP

Parameters Type Range
Temp Continuous [100, 7000]
Alpha Continuous [0.5, 0.95]
Length Discrete [5, 10]
Pct Continuous [0.01. 0.10]

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 289

Fig. 7. Screening phase of the hybrid algorithm (unstructured instances)

Fig. 8. Screening phase of the hybrid algorithm (grid-based distance matrix)

Fig. 9. Screening phase of the hybrid algorithm (real-life instances)

3.2.2 Exploration Phase
In this phase, we again focus on important parameters obtained from screening phase.
By applying the same approach discussed in Section 3.1, we conduct the experiment
until the first-order model is not appropriate for each class.

The parameter spaces of parameters along the path of the steepest descent are
summarized in Tables 7, 8 and 9. We observe that the objective function value would
decrease subsequently when we reach the promising region of the parameter values.
The last column for each table represents the final range for each parameter that
would be used as an input in exploitation phase.

290 A. Gunawan, H.C. Lau, and Lindawati

Table 7. Parameter space for hybrid algorithm on QAP (unstructured instances)

Parameters
Range

Exploration_1 Exploration_2
Temp [4000, 6000] [4378, 6348]
Alpha [0.85, 0.95] [0.935, 0.945]
Length 5 5
Pct 0.01 0.01
Objective function value (%) 2.517 2.108

Table 8. Parameter space for hybrid algorithm on QAP (grid-based distance matrix)

Parameters
Range

Exploration_1 Exploration_2
Temp [4000, 6000] [4238, 6238]
Alpha [0.85, 0.95] [0.935, 0.945]
Length [4, 6] 6
Pct 0.1 0.1
Objective function value (%) 0.591 0.425

Table 9. Parameter space for hybrid algorithm on QAP (real-life instances)

Parameters
Range

Exploration_1
Temp [4000, 6000]
Alpha [0.85, 0.95]
Length [4, 6]
Pct 0. 1
Objective function value (%) 9.255

3.2.3 Exploitation Phase
In this phase, the final range for parameter values obtained from exploration phase
would be compared with the default configuration of RCS (Table 10). The results
obtained by testing two different scenarios, RCS and RCS + DOE, are given in Table
11. We can conclude that RCS + DOE outperforms RCS in all groups of instances.
We obtained improvements of results over RCS for both training and testing
instances.

Table 10. Parameter space for hybrid algorithm on QAP

Parameters

Range

RCS
RCS + DOE
(unstructured

instances)

RCS + DOE
(grid-based distance

matrix)

RCS + DOE
(real-life

instances)
Temp [100, 7000] [4378, 6348] [4238, 6238] [4000, 6000]
Alpha [0.5, 0.95] [0.935, 0.945] [0.935, 0.945] [0.85, 0.95]
Length [5, 10] 5 6 [4, 6]

Pct [0.01. 0.10] 0.01 0.10 0.1

 Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach 291

Table 11. Parameter Tuning for Hybrid Algorithm on QAP

Algorithms
Mean

(unstructured
instances)

(grid-based
distance matrix)

(real-life
instances)

RCS (training instances) 1.100 0.630 3.264
RCS + DOE (training instances) 0.938 0.190 2.822
RCS (testing instances) 1.595 1.158 6.770
RCS + DOE (testing instances) 1.518 0.754 5.985

4 Conclusion

This paper proposes an automated tuning framework based on the Design of
Experiments (DOE) approach. We demonstrate that our approach can be adapted to
address the parameter tuning problem for target algorithms that find approximate
solutions to two combinatorial optimization problems, TSP and QAP. We show that
the proposed approach performs very well for both discrete and continuous parameter
value settings.

One limitation of a factorial experiment design is that the number of experiments
increases exponentially with the number of parameters. Fractional factorial designs
offer a manageable alternative, which uses only some subset of a full factorial
design’s run.

In ParamILS and RCS, the neighborhoods of the current parameter setting are
usually randomly selected. For future extensions to this work, we can consider using a
second-order response surface model which is usually required when the
experimenter is relatively close to the optimum.

References

1. Adenso-Diaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Experimental
Design and Local Search. Operations Research 54(1), 99–114 (2006)

2. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and
Reporting on Computational Experiments with Heuristic Methods. Journal of Heuristics 1,
9–32 (1995)

3. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for
Configuring Metaheuristics. In: Proc. Of the Genetic and Evolutionary Computation
Conference, pp. 11–18. Morgan Kaufmann, San Francisco (2002)

4. Box, G., Wilson, K.: On the Experimental Attainment of Optimum Conditions. Journal of
the Royal Statistical Society Series b 13, 1–45 (1951)

5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – A Quadratic Assignment Problem
Library. Journal of Global Optimization 10, 391–403 (1997)

6. Caserta, M., Voß, S.: A Math-Heuristic Algorithm for the DNA Sequencing Problem. In:
Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 25–36. Springer, Heidelberg
(2010)

7. Caserta, M., Voß, S.: Corridor Selection and Fine Tuning for the Corridor Method. In:
Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 163–175. Springer, Heidelberg (2009)

292 A. Gunawan, H.C. Lau, and Lindawati

8. Halim, S., Yap, R., Lau, H.C.: An Integrated White+Black Box Approach for Designing
and Tuning Stochastic Local Search. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
332–347. Springer, Heidelberg (2007)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Time-Bounded Sequential
Parameter Optimization. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp.
281–298. Springer, Heidelberg (2010)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–
306 (2009)

11. Lau, H.C., Xiao, F.: A Framework for Automated Parameter Tuning in Heuristic Design.
In: 8th Metaheuristics International Conference, Hamburg, Germany (2009)

12. Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated Local Search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operations
Research & Management Sci., vol. 57, pp. 320–353. Springer, Heidelberg (2003)

13. Montgomery, D.C.: Design and analysis of Experiments, 6th edn. John Wiley and Sons
Inc., Chichester (2005)

14. Ng, K.M., Gunawan, A., Poh, K.L.: A hybrid Algorithm for the Quadratic Assignment
Problem. In: Proc. International Conference on Conference on Scientific Computing,
Nevada, USA, pp. 14–17 (2008)

15. Parsons, R., Johnson, M.: A Case Study in Experimental Design Applied to Genetic
Algorithms with Application to DNA Sequence Assembly. Journal of Mathematical and
Management Sciences 17(3), 369–396 (1997)

16. Ridge, E., Kudenko, D.: Tuning the Performance of the MMAS Heuristic. In: Stützle, T.,
Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 46–60. Springer,
Heidelberg (2007)

17. Taillard, E.D.: Comparison of Iterative Searches for the Quadratic Assignment Problem.
Location Science 3(2), 87–105 (1995)

MetaHybrid: Combining Metamodels and

Gradient-Based Techniques in a Hybrid
Multi-Objective Genetic Algorithm

Alessandro Turco

ESTECO srl
alessandro.turco@esteco.com

Abstract. We propose a metamodel approach to the approximation of
functions gradients within a hybrid genetic algorithm. The underlying
structure is implemented in order to support parallel execution of the
code: a genetic and a SQP algorithm run in different threads and can ask
designs evaluations independently, but keeping all the available resources
always working. A common archive collects the results and generates
the population for the GA and the starting points for the SQP runs.
A particular attention is dedicated to elitism and to constraints. The
hybridization is performed through a modified ε−constrained method.
The general philosophy of the algorithm is to concentrate on not wast-
ing information: metamodels, archiving and elitism, steady-state parallel
evolution are key elements for this scope and they will be discussed in
details. A preliminary but explanatory row of tests concludes the paper
highlighting the benefits of this new approach.

Introduction

Hybridization is a common practice in several fields of optimization [2]. An
hybrid algorithm is the combination of two (or more) different strategies for
the solution of a single task. In principle, each single strategy could be applied
independently to the problem, but it would focus only on some features. On the
contrary, if the coupling is effective, a deeper comprehension is achievable and
therefore a better or faster solution can be found.

Our proposal is a further development of this strategy. We start from a stan-
dard hybridization of a genetic algorithm (GA) with a gradient-based one and
we enrich the implementation introducing several other techniques with the aim
to exploit as much as possible the available resources. We consider as resources
both the data collected and the computational efforts we can afford and they all
do not have to be wasted.

Stored data can be very useful for each of the two main parts of the algorithm.
The genetic algorithm needs a parent population fed by an efficient elitism op-
erator: the information gained in the previous iterations must be distilled and
made available for the following ones. We follow a previously detailed study on
elitism [21] and we update some algorithmic choices. The hypothesized field is a

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 293–307, 2011.
� Springer-Verlag Berlin Heidelberg 2011

294 A. Turco

multi-objective framework and the target is to produce an approximate Pareto
front accurate, uniform and well extended. However the same strategy can be
successfully applied to single-objective problems, when robustness is the target
and the optimization problem is multimodal. Also the gradient-based part of
the algorithm can benefit from an appropriate managing of already collected
information. We use a filter-based Sequential Quadratic Programming (SQP)
algorithm [20]. The filter uses previously evaluated points to judge whether a
new iterate can be accepted or not. The acceptance criterion involves at the
same time the objective function and the constraints attainment.

Moreover, we propose a metamodel approach to gradients evaluation: we train
a response surface (Radial Basis Function [3] or Polynomial SVD [16]) for each
output variable using a suitable selection of points coming from previous iterates
and we analytically extract gradients from the obtained metamodels. A finite
differences approximation is most of the times more accurate, but it requires a
large number of evaluations. The proposed benchmark tests highlight the benefits
of our choice under different environmental conditions.

The efficient use of computing resources from the algorithmic and the imple-
mentation point of view is also taken in consideration. The use of a steady-state
evolution helps in leaving idle as less resources as possible, but implies modi-
fication of some standard structures in the GA. Moreover, the use of a multi-
threading framework has direct consequences on the hybridization mechanism:
the two algorithms can run in parallel, while reading and writing data on a
common (synchronized) archive.

Some concluding remarks ends the paper focusing on the novelties proposed.
The algorithm presented is promising and we are planning to further investigate
its potentials. But the most important message we hope to convey regards the
intense use of all the available resources. Real-world problems cannot be solved
using thousands of iterations as we are used to do dealing with mathematical
benchmarks, since a single design evaluation can be very time (and not only)
consuming. But this opens the door to heavy refinements of the algorithms
which do not have anymore constraints on their own computational costs, under
reasonable thresholds of course.

The paper is organized as follows: section �1 contains the details of the genetic
algorithm which is hybridized with the SQP optimizer described in section �2.
Metamodels are described in section �3. These elements are linked together in
section �4, where the parallelization is explained and a global overview of the
algorithm is presented. Section �5 concerns the preparation of the benchmark
tests, while section �6 contains the results discussion and some final remarks.

1 GA Elements: Focus on Elitism

The backbone of the proposed MetaHybrid algorithm is a steady-state genetic
algorithm. We assume as known the basic structure of a genetic algorithm, we
simply cite the chosen operators: we work with variable-wise encoding, SBX
crossover and probability based mutation; we use constraint-domination ranking
and crowding distance [7].

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 295

We are interested in discussing elitism and selection. Given the ranking strat-
egy, there remains two crucial choices: which are the individuals who will enter
in the selection process? How does the selection process use the ranking? The
MetaHybrid algorithm gathers the parent and the children population before
ranking and then selects a new parent population using a refined idea of elitism
The original mechanism is described in [7] where the population size is fixed and
a sort of Darwinian law is strictly respected: only the best individuals survive.

Two different objections have been addressed to that original implementation
of elitism: the controlled elitism approach [8] gives emphasis also to dominated
but well-spread points in order to obtain a more uniform front. The variable
population size [1] lets the population grow with the number of first-front points.
The declared aim is to enhance the convergence speed and the extension of the
obtained front. In a more recent paper [21] we propose to combine these two
techniques switching from one to the other depending on the dimension of the
actual non-dominated front.

The MetaHybrid algorithm implements a different combination which inherits
the experience gained with the previous work. The population size is free to grow
(up to an upper bound which is two times the initial size) but not to shrink.
Whenever the number of points in the first front is bigger than the previous
population size, all the non-dominated points become parents. If, in a successive
iteration, the first-front size is less than the population size then all the non-
dominated points become parents and the empty slots are filled by rearer points
selected using the controlled elitism approach.

2 SQP Elements: Focus on Constraints

In this section we describe the chosen single-objective SQP algorithm and the
modified ε−constrained technique used to adapt it to a multi-objective environ-
ment. A detailed description of the basics of Sequential Quadratic Programming
is out of the purposes of this paper, but we can sketch the main features and
cite some useful readings.

The idea behind this class of algorithms is to use gradients information to
build a quadratic approximation of the Lagrangian function associated to the
objective function and the involved constraints around the current point [14].
A local optimization problem is defined and solved using this approximated
function as objective function and a linearized version of the original constraints.
The solution of this local problem will be the center of the following iteration.

This procedure is proved to be very efficient (quadratic rate of convergence)
only when starting already nearby the solution of the problem, like the classic
Newton method. There are however different choices for achieving global con-
vergence [11]. We focus on the Filter technique introduced by Fletcher [10]. In
order to avoid bad iterates due to inefficiencies of the local model or to flat
gradients, this technique prescribes to keep memory of all the already accepted
points and to judge the quality of a new one using the following criterion: the
new point has to be non-dominated in a multi-objective framework where the

296 A. Turco

first objective is the original one and a certain number of objectives are related
to the constraints violations. The original algorithm of Fletcher uses only one
“constraints-to-objective” built with the sum of all constraints violations. We
use Adaptive Filter SQP [20] which is self adaptive and is able to recognize the
order of magnitude of the constraints building an appropriate number of filter
entries.

Several techniques for transforming a single-objective optimization strategy
into a multi-objective one exist [13]. We use a mixing between the ε−constrained
and the weighted sum methods with a particular attention to constraints attain-
ment. The ε−constrained method consists in choosing one of the objectives and
minimizing (or maximizing) it with one additional constraint for each of the re-
maining ones: the constraint is not to worsen the initial value for that objective
more than ε. This method has been already successfully employed hybridizing
GA and SQP algorithms [12,18]

We recall the original idea. Starting from a problem of the type:⎧⎪⎨⎪⎩
min fi(x) for i = 1 . . . n,

gj(x) ≤ 0 for j = 1 . . .mi,

hk(x) = 0 for k = 1 . . .me,

(1)

the ε−constrained method will ask to solve the modified problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
min fα(x) α ∈ [1, n]
fi(x) < fi(x0) + ε α �= i ∈ [1, n]
gj(x) ≤ 0 for j = 1 . . .mi,

hk(x) = 0 for k = 1 . . .me,

(2)

where x0 is the starting point for this problem and ε is a small parameter. This
formulation can be applied only when x0 is a feasible point and if, for example,
we know only one feasible point, then we will be able to reach only one Pareto
point for each choice of α (assuming a perfectly deterministic SQP algorithm).

We propose a different implementation of this idea. First of all, we allow both
feasible and unfeasible starting points. If x0 is feasible, then we fix n random
numbers φi (summing up to 1) and solve:⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
∑

i∈[1,n] φifi(x)
fi(x) < fi(x0) + ε i ∈ [1, n]
gj(x) ≤ 0 for j = 1 . . .mi,

hk(x) = 0 for k = 1 . . .me.

(3)

If otherwise the starting point is unfeasible, we remove the constraints on the
objective functions obtaining a sort of feasibility recovering subproblem.

The multi-objective SQP and the GA can be combined, hybridized following
several paths. A possible choice is the one implemented in [12,18]: once the po-
pulation is updated, the new individuals pass through a run of the SQP algorithm

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 297

before becoming parents for the subsequent generation. We follow a different
strategy: we add the SQP run to the operators list. A parent individual will be
the initial guess for the SQP run and the best iterate will become the child.
The maximum number of generations is not fixed: if the new iterate point is not
dominated (considering the original optimization problem) among all previous
ones, the search continues. If otherwise, for a fixed number of iterations (we use
5), the newly generated points are dominated by the older ones, the SQP run is
stopped.

The above ideas are implemented taking care of resource management under
different points of view. The first and the most important element regards how
we compute functions gradients and it will be the topic of the following section.
All other features regarding the parallelization will be discussed in Sect. �4.

3 Metamodels Derivatives

The correspondence between input and output values in real-world problem
usually is not accessible and must be considered as a black-box. Only in very
favorable situations, for example, the employed finite elements solver is able
to evaluate a design and to return also gradients relative to output variables.
Therefore, when working with a gradient-based algorithm, derivatives must be
approximated.

The most common and perhaps one of the more precise approximation tech-
nique is finite differences [19]. The idea is to rely on the basic definition of a
derivative as the limit of a shrinking incremental ratio: evaluating some design
around the configuration for which gradients are required, following an appropri-
ate stencil and knowing the distances from the samples, it is possible to compute
a very accurate approximate derivative for each coordinate direction and each
output variable. The drawback of this technique is that even the less consuming
stencil (forward or backward differences) requires the evaluation of one extra
design for each input variable in order to build the complete gradients for a sin-
gle configuration. Moreover, since these extra points must be very near to their
reference one and must lie in strictly defined positions, the possibility of reusing
already available information is extremely low and unpredictable.

Metamodels, or Response Surface Modeling (RSM), can help in performing
this task without requiring extra evaluations since they can be trained over
the database built during previous iterations. Metamodels are surrogates of the
black-box functions which transform input variables to output variables. Among
all the metamodel techniques there some which provides explicit formulas that
can be analytical derived. In this work we use Polynomial Singular Value De-
composition [16] and Radial Basis Function [3] regression schemes: in both cases
we end up with a set of weights assigned to a set of kernel explicit functions.
The chain rule for derivation allow us to use this information to compute the
required gradients.

Polynomial SVD technique selects the best approximating polynomial of the
input variables over the training dataset. The maximum degree of the polynomial

298 A. Turco

is fixed by the size of the dataset. Indeed, a linear system is obtained imposing
the perfect fitting on the training points and the coefficients of the monomial are
computed through its singular value decomposition. Therefore the metamodel
obtained is nothing but the least squares solution of the above system. This tech-
nique is very effective when dealing with smooth functions, which unfortunately
is not always the case. However the training time is very small compared to
other RSMs and hence this technique is often used for a quick first glance on the
problem. An hybrid algorithm can exploit this peculiarity profitably whenever
the GA is stuck in some local minimum and the SQP must provide useful more
than precise search directions.

Radial Basis Functions, on the contrary, are a powerful tool for multivariate
scattered data interpolation and they can model efficiently non-smooth func-
tions. If we consider an unknown function f(x) : R

n → R and a training set of I
couples (xi, f(xi) := fi), then the RBF interpolant approximating function will
have the form:

f̂(x) =
I∑

j=1

cjφ(‖x − xj‖/δ),

where δ is a suitable scaling parameter, ‖ · ‖ is the standard Euclidean distance
and φ(·) is the radial or kernel function. Literature reports several choices for
this function, in this work we use the Hardy’s MultiQuadrics:

φ(r) =
√

r2 + c2,

where c is a scalar parameter that will be fixed during the training (together
with δ) in order to maximize the precision of the metamodel.

Both techniques require a training dataset of truly evaluated points (we keep
the size of the training database equal to the population size), however we can
choose them among the already computed designs. The choice criterion must
consider the metamodels structure and the information we want to extract from
them. We use response surfaces in order to compute gradients and we train them
from scratch each time a new gradient is required, therefore we are interested in a
very restricted area of the design space. On the contrary, a training set composed
by too near points would produce high errors due to side effects, extrapolation
and overfitting. Moreover, a very refined search implies high computational costs
either if we scan the whole database at each metamodel creation, or if we keep
track of the closeness relations among points.

Our proposal is an incremental random search. We compute the hyper-volume
of the input variable space and we start picking randomly points in the database:
if the distance between the selected point and the location where the gradient is
needed is less than 1% of the hyper-volume, we accept the point. If, after a fixed
number of trials (usually, one tenth of the database size), the required number
of training points has not been reached, then we relax the threshold accepting
points up to 2% of the hyper-volume and so on. Moreover, the points explored by
the SQP algorithm are added to the database in order to improve the precision
of the metamodels in the region of interest.

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 299

4 Hybridization in a Parallel Environment

We designed the interaction (hybridization) between the genetic and the SQP
algorithms supposing to work in a parallel computing environment. The result-
ing code can be run also using only one computing resource (exploiting the
multi-threading capabilities of Java programming), but it is able to interface
with an arbitrary large number of concurrent design evaluations without leaving
resources idle and making new obtained information available immediately.

As already mentioned, the backbone of the MetaHybrid algorithm is a steady-
state genetic evolution: a new child individual is produced as soon as an idle
computing resource is found or a previously occupied one is freed. The parents
are chosen randomly among the actual population. This set of individual can be
updated without stopping the whole process and therefore avoiding the usual
bottleneck due to sorting and selecting routines. We follow two schemata: an on-
the-fly insertion (very quick, it does not create any delay) and a periodic update
(which is more demanding, but the required effort can be considered negligible
compared to the one required by design evaluation).

The on-the-fly update is performed each time a new child is evaluated. We
check only if it is dominated by one of the parents: if this is not the case, this
child become immediately part of the parent population. The periodic population
update is performed each time the GA evaluates a number of points equal to the
population size: it follows the elitism operator described in Sect. �1 including in
the set of individuals to be sorted also the points coming from concurrently SQP
steps.

The SQP algorithm is inserted in the GA evolution as an extra operator which
acts only on some randomly selected non-dominated parents. Each run operates
in a new thread executed in parallel with the GA by the master machine and the
required designs evaluations will be performed by a dedicated resource (the SQP
algorithm is by definition sequential and therefore it requires only one evaluation
at the time). The points explored by the SQP algorithm runs are collected in a
dedicated archive which will be scanned during the periodic population update.

The whole process can be logically decomposed as follows:

1. Creation of the parent population from an initial DOE (Design Of Experi-
ments) or performing a tournament selection among the actual population.

2. Recombination: mutation, crossover and SQP operators transform parents
into children.

3. Archiving: all the intermediate points generated by SQP are stored in a
dedicated archive.

4. On-the-fly update: if a non-dominated point is created, it becomes immedi-
ately part of the parent population. Otherwise it is stored in the children
archive.

5. Periodic update: the archives are gathered and elitism is applied. A new
population is built and the loop is restarted.

However, as discussed above, this is not a true loop. Steps 2, 3 and 4 form an
inner loop which evolve without waiting the completion of the outer one. This

300 A. Turco

is possible thanks to a master-slave architecture. The (relative) long sorting op-
erations are executed on the master node while some points are being evaluated
by the slaves.

5 Tests

We validate the proposed algorithm testing it on six different benchmarks. We
chose three unconstrained problems (ZDT4 [23], CEC ’09 UP2 [22] and Sym-
Part [17]), two constrained ones (a modified version of OSY [15], where we
rotate the problem and we enlarge the input variables range in order to avoid
side-effects and CTP2 [9]) and a single-objective multi-modal problem (a ten-
atom Lennard-Jones cluster [4]). All these problems are quite known and widely
used for benchmarking optimization algorithm, therefore we will not report here
their formulation which can be found in the cited papers.

We measure the quality of the achieved non-dominated fronts comparing them
to the true Pareto fronts using IGD performance metric [24]. We run each algo-
rithm 10 times (varying the random number generator seed and starting from
10 common different initial populations) and we collect the mean IGD value ob-
tained. This metric computes the distance between a non-dominated front A and
a reference set of points P which are assumed to belong to the Pareto set (we
use only benchmark problems with a well known structure). The mathematical
formulation of this metric is the following:

IGD(A, P) =

∑
p∈P d(p, A)

|P | ,

where d(p, A) is the minimum Euclidean distance between p and all the points
in A. Low values of IGD are desirable, since this implies that the set A contains
points near to any point in P . This means that the metric measures the accuracy,
the uniformity and the extent of the front at the same time.

The comparison is made among the following algorithms:

– NSGA–II. This algorithm is widely accepted as state-of-the-art for general
purpose GA. We set its parameters as described in the original paper [7].

– Only GA. This algorithm is the genetic part of metaHybrid. We obtain it
setting as zero the probability for the SQP operator. Crossover and Mutation
are tuned with the same parameters ad NSGA–II.

– Standard Hybrid. This version of metaHybrid does not use metamodels for
computing derivatives, but it tries to approximate them by finite differences
(forward differences). The parameters for the genetic part of this algorithm
are the same as in “Only GA”. The parameters of the SQP algorithm are
taken from the paper presenting it [20], while its maximum number of itera-
tions is dynamically modified as described in Section �2. The probability for
the SQP operator is 0.015, we put ε = 0.001.

– metaHybrid. We use the labels SVD and RBF to distinguish between the
results obtained working with the two different metamodels. The GA and
the SQP algorithms are set as in the previous instances.

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 301

5.1 ZDT4

This problem is well known to be a difficult test since it presents a large number
(219) of local Pareto fronts. It involves two objective functions and ten input
variables. We allowed 25000 evaluations for each run starting from an initial
population of 75 randomly chosen individuals.

Although all the mathematical functions involved in the problem are infinitely
many times differentiable, the objective space is very rough and therefore gra-
dient information can be misleading. Indeed, as remarked in Fig. 1, the hybrid
algorithm which uses finite differences obtained the poorest score. A second mo-
tivation for this behavior is the relative high number of input variables which
forces that algorithm to waste a lot of evaluations for each gradient estimation.

5% 10% 25% 50% 75% 100%
0

5

10

15

20

25

30

35

Percentage of evaluated points (max = 15000)

M
ea

n
IG

D
 m

et
ric

 v
al

ue
s

ZDT4 problem

NSGA−II
Only GA
Standard Hybrid
SVD
RBF

Fig. 1. Performance comparison on ZDT4 problem

On the contrary, the MetaHybrid algorithm shows performances very close
to NSGA2, for instance. A non-hybrid genetic algorithm is surely more suited
for this problem and NSGA2 is considered a state-of-the-art implementation.
This suggests that the search direction offered by metamodels has a precision
sufficiently high to capture the structure of the problem, but not so high to be
confused by local roughnesses.

5.2 CEC ’09 UP2

This problem is part of the CEC 09 Multi-Objective Evolutionary Algorithm
competition [22]. We reduce the number of variables (10 instead of 30) and the
total number of evaluations allowed (15000 instead of 300000). It is a continuous
unconstrained problem involving two objective functions. The Pareto front is
continuous.

The results are in line with the previous example. A bigger gap between
the two pure genetic algorithms can be noticed. This failure of the new elitism
approach is probably the cause also of the slight worsening in the performance
of MetaHybrid. Notwithstanding this difficulty, both SVD and RBF schemes
behave better than the “Standard Hybrid” and than the non-hybrid algorithm.

302 A. Turco

5% 10% 25% 50% 75% 100%
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Percentage of evaluated points (max=15000)

M
ea

n
IG

D
 m

et
ric

 v
al

ue
s

CEC 09 − UP 2 problem

NSGA−II
Only GA
Standard Hybrid
SVD
RBF

Fig. 2. Performance comparison on CEC ’09 UP2 problem

5.3 Rotated OSY

The constrained optimization problem called OSY [15] involves six input vari-
ables, two objectives and six constraints. We decided to modify the original
formulation in order to obtain a fairer test. The Pareto front for this problem
is composed by five segments corresponding, in the variable space, to fixing at
zero some of the input variables and to particular combination of the remaining
ones in which only one at the time varies. Moreover, these combinations touch
the variable bounds in many parts and it is possible to pass from a Pareto point
to another one simply changing one single variable.

In order to avoid these unwanted features while maintaining the smooth math-
ematical structure, we work on a rotated and translated set of input variables y
such that Ay + (1, 1, 1, 1, 1, 1) = x. The matrix A applies a π/6 rotation to the
first two variables, a π/4 rotation to the third and the fourth and a π/3 one to
the last two. The old variable bounds are added to the problem as additional
constraints, while we let y vary over all the range accessible through the rotation
(i.e. in two dimensions, a rotated square would produce a diamond whose vari-
ables span a larger interval than the original ones). We allow 10000 evaluations
for each run.

The IGD metric values reported in Fig. 3 show that pure genetic algorithms
are still the best choice for this problem, but the applied rotation reduced the
gap. We found promising that the “Only GA” implementation obtained better
results than NSGA-II, since this confirms our studies on elitism.

5.4 CTP2

Deb, Pratap and Meyarivan in [9] propose a family of constrained problems which
shares the same formulation. Modifying some parameters it is possible to obtain
very different Pareto set shapes (and therefore problems with different kind of

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 303

5% 10% 25% 50% 75% 100%
10

20

30

40

50

60

70

80

90

M
ea

n
IG

D
 v

al
ue

s

Percentage of Evaluated Points (max=10000)

"Osy" problem (rotated)

Only Genetic
Standard Hybrid
SVD
RBF
NSGA−II

Fig. 3. Mean IGD metric values computed on the rotated version of OSY problem

5% 10% 25% 50% 75% 100%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of evaluated points (Max= 25000)

M
ea

n
IG

D
 m

et
ric

 v
al

ue
s

CTP 2 Problem

NSGA−II
Only GA
Standard Hybrid
SVD
RBF

Fig. 4. Performance comparison on CTP2 problem

difficulties). The objective functions are always two and one single constraint
draws the line of the Pareto set, which is fragmented in several pieces in the case
of interest.

The hybrid implementations outperform the pure genetic ones on this exam-
ple. The SQP algorithm confirm its ability in profitably handling constraints. In
particular the RBF metamodels allowed a better comprehension of the problem
than the SVD and even than the forward differences approximation.

5.5 Sym-Part

This problem has been introduced in [17] and it entered in the problems suite
for the CEC ’07 MOEA competition. It is a scalable unconstrained problem

304 A. Turco

5% 10% 25% 50% 75% 100%
10

−2

10
−1

10
0

10
1

10
2

10
3

M
ea

n
IG

D
 v

al
ue

s
(lo

ga
rit

m
ic

 s
ca

le
)

Percentage of Evaluated Points (max=15000)

"Sym−Part" problem

Only Genetic
Standard Hybrid
SVD
RBF
NSGA

Fig. 5. Performance comparison on Sym-Part problem

involving two objective functions. We use 30 input variables for this test which
are the main source of difficulties for this problem, since the Pareto front is
continuous and convex.

The performance results for this benchmark are more similar to the CTP2
case than to the other unconstrained problems, with a small but significant
exception. The “Standard Hybrid” exhibits low performances on this problem,
while it was among the bests in the previous case. This is partially due to the
high number of input variables. However, the Sym-Part problem highlights the
benefits of the MetaHybrid approach, which outperforms both the classical GA
and hybrid algorithms.

5.6 Lennard-Jones

Lennard-Jones atom clusters are an interesting real-world optimization problem.
They involve only one objective function (the energy of the system), but the
structure of the problem is rich, full of local minima, although the formulation
is very smooth. The Lennard-Jones is a pair-wise potential which mimic the
interatomic forces: it is strongly repulsive for too nearby atoms and it is weakly
attractive for well separated ones. We study here the static problem, where we
want to find the equilibrium solution, for a cluster of 10 atoms.

This problem is part of the CEC ’11 competition on “Testing Evolutionary
Algorythms on Real World Optimization Problems” [4] and we refer to the cited
technical report for the formulation of the problem and the physical background.
We do not need to modify any of the proposed algorithm, since they can work
with single-objective problems as well. We modify the performance metric, since
the IGD metric loses its meaning in this situation. We simply look at the best
objective function value obtained at different steps during the optimization run.
Since the global optimum is known (−28.422532), we plot in figure 6 the distance
from that value. We allow 50000 evaluations for each run.

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 305

5000 10000 20000 30000 40000 50000
1

2

3

4

5

6

7

8

9

10

11

M
in

im
un

 o
bt

ai
ne

d
di

st
an

ce
 fr

om
 o

pt
im

um
 v

al
ue

Number of Evaluated Points

"LJ 10 atom cluster" problem

NSGA−II
Only GA
Standard Hybrid
SVD
RBF

Fig. 6. Performance comparison on LJ problem

The performance of the “Standard Hybrid” implementation are the best ones
for this benchmark. This reflects the smoothness of the problem. The RBF meta-
models are the most precise approximation and the relative MetaHybrid algo-
rithm outperforms all remaining implementation at the end of the runs.

6 Conclusions

We presented an hybrid genetic-SQP algorithm based on a steady-state evolu-
tion which uses metamodels in order to compute gradients. The algorithm is
competitive as outlined in the performed tests, which cover a wide range of
scenarios: single and multi-objective problems, constrained and unconstrained,
smooth and rough objective space, continuous and disconnected Pareto fronts.

A validation on real-world problems is our first future task. However, the
data collected are promising: the MetaHybrid algorithm can provide a sufficient
precision (see the Lennard-Jones test). It can avoid local minima and it has good
exploration properties (see ZDT4 and UP2 tests). The ratio between exploration
and exploitation is balanced in such a way the algorithm is able to produce an
accurate and extended approximated Pareto front as showed in the rotated OSY
problem. Moreover, it is particularly efficient when working with constraints (like
in the CTP2 problem) or when dealing with a considerable number of variables
(as highlighted by the Sym-Part benchmark).

The proposed algorithm is hybrid under many points of view, since it is the
sum of different components, but there is a common underlying idea: extract-
ing as much information as possible from available data in order to request as
less evaluations as possible. Indeed, we compute gradients through metamodels
trained over the existing design database, we keep all non-dominated points in
the parent population, we pass to elitism operator all iterates generated by the
SQP algorithm, we judge the goodness of new SQP iterates with a filter made
by old ones.

306 A. Turco

Not only data are intensively exploited: the steady-state evolution scheme
and the multi-threading implementation of the SQP operator guarantee the full
usage of the computational resources available. Further developments in this
direction are planned: once the metamodels training is parallelized, we could
use different methods for computing gradients at the same time using the most
accurate approximation which can be identified through an iterative validation
process, like in [16].

Another interesting research direction that will be explored in the next fu-
ture is the use of gradient-based techniques for discrete (but not categorical)
input variables. Categorical variables cannot support gradient information by
definition, but a further hybridization could work effectively on mixed problem.

References

1. Aittokoski, T., Miettinen, K.: Efficient evolutionary method to approximate the
Pareto optimal set in multiobjective optimization. In: EngOpt 2008 (2008)

2. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: A Brief Survey on Hybrid Meta-
heuristics. In: Filipic, B., Silc, J. (eds.) Proceedings of BIOMA 2010 (2010) ISBN:
978-961-264-017-0

3. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge
University Press, Cambridge (2003)

4. Das, S., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for CEC
2011 Competition on Testing Evolutionary Algorithms in Real World Optimization
Problems. Technical Report (2010), http://www3.ntu.edu.sg/home/EPNSugan/

5. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, UK
(2001)

6. Deb, K., Agraval, S.: Simulated binary crossover for continuous search space. Com-
plex System 9, 115–148 (1995)

7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. KanGal Report,
200001 (2000)

8. Deb, K., Goel, T.: Controlled Elitist Non-dominated Sorting Genetic Algorithms
for Better Convergence. KanGal Report, 200004 (2001)

9. Deb, K., Mathur, A.P., Meyarivan, T.: Constrained Test Problems for Multi-
objective Evolutionary Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello
Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298.
Springer, Heidelberg (2001)

10. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math-
ematical Programming 91, 239–269 (2002)

11. Gould, N.I.M., Toint, P.L.: SQP Methods for Large-Scale Nonlinear Programming.
Invited Presentation at the 9th IFIP TC7 Conference on System Modelling and
Optimization, Cambridge (1999)

12. Kumar, A., Sharma, D., Deb, K.: A hybrid multi-objective optimization proce-
dure using PCX based NSGA-II and sequential quadratic programming. In: IEEE
Congress on Evolutionary Computation, CEC 2007, pp. 3011–3018 (2008)

13. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluvert Academic Pub-
lisher, Boston (1999)

14. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

http://www3.ntu.edu.sg/home/EPNSugan/

MetaHybrid: Combining Metamodels and Gradient-Based Techniques 307

15. Osyczka, A., Kundu, S.: A new method to solve generalized multicriteria oprim-
ization problems using the simple genetic algorithm. Structural Optimization 10,
94–99 (1995)

16. Rigoni, E., Turco, A.: Metamodels for Fast Multi-objective Optimization: Trading
Off Global Exploration and Local Exploitation. In: Deb, K., Bhattacharya, A.,
Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S.K., Jain, A., Ag-
garwal, V., Branke, J., Louis, S.J., Tan, K.C. (eds.) SEAL 2010. LNCS, vol. 6457,
pp. 523–532. Springer, Heidelberg (2010)

17. Rudolph, G., Naujoks, B., Preuß, M.: Capabilities of EMOA to Detect and Preserve
Equivalent Pareto Subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T.,
Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg
(2007)

18. Sharma, D., Kumar, A., Deb, K., Sindhya, K.: Hybridization of SBX based NSGA-
II and sequential quadratic programming for solving multi-objective optimization
problems. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 3003–
3010 (2008)

19. Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations. SIAM,
Philadelphia (2004)

20. Turco, A.: Adaptive Filter SQP. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS,
vol. 6073, pp. 68–81. Springer, Heidelberg (2010)

21. Turco, A., Kavka, C.: MFGA: A GA for Complex Real-World Optimization Prob-
lems. International Journal of Innovative Computing and Applications 3(1), 31–41
(2011)

22. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective
optimization Test Instances for the CEC 2009 Special Session and Competition.
Techical Report CES–487 (2009)

23. Zitzler, E., Deb, K., Thieler, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. IEEE Transactions on Ev. Comp. 8 (2000)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

Designing Stream Cipher Systems Using Genetic

Programming

Wasan Shaker Awad

Department of Information Systems
College of Information Technology

University of Bahrain
Sakheer, Bahrain

wasan shaker@itc.uob.bh

Abstract. Genetic programming is a good technique for finding near-
global optimal solutions for complex problems, by finding the program
used to solve the problems. One of these complex problems is design-
ing stream cipher systems automatically. Steam cipher is an important
encryption technique used to protect private information from an unau-
thorized access, and it plays an important role in the communication and
storage systems. In this work, we propose a new approach for designing
stream cipher systems of good properties, such as high degree of security
and efficiency. The proposed approach is based on the genetic program-
ming. Three algorithms are presented here, which are simple genetic
programming, simulated annealing programming, and adaptive genetic
programming. Experiments were performed to study the effectiveness of
these algorithms in solving the underlying problem.

1 Introduction

Encryption is an important mechanism for protecting sensitive information from
an unauthorized access by transforming the information (plaintext) to another
form which is unreadable (ciphertext). Nowadays, you can find many cipher sys-
tems of different types. However, cryptosystems (cipher systems) are commonly
subdivided into block ciphers and stream ciphers. Stream ciphers are extremely
fast and easy to implement. In addition, they usually have very minimal hard-
ware resource requirements. Therefore stream ciphers are of great importance in
applications where encryption speed is paramount and where area-constrained
or memory constrained devices make it impractical to use block ciphers.

Designing good stream cipher automatically is a complex process. Therefore,
this problem has been considered in this paper, and it can be formulated as
follows:

– Given: Plaintext length in bits, which is the keystream length (size).
– Output: A keystream generator, which is the main component of stream

cipher, that generates pseudorandom Binary sequence (keystream) of length
size and fulfills the security and efficiency requirements.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 308–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Designing Stream Cipher Systems Using Genetic Programming 309

Thus, the main purpose of this work is to present a new general automated
approach for designing stream ciphers that satisfy the desired properties. The
proposed approach is based on genetic programming (GP).

The problem considered here is the design automation of cipher systems. This
problem has been considered by a number of researchers. For example, Genetic
Algorithm (GA) has been used to find a set of rules of Cellular Automata (CA)
suitable for cryptographic purposes [1]. Also, GA has been used for the con-
struction of Boolean functions for cipher systems, such as block ciphers and
stream ciphers [2]. The design of Boolean functions with properties of cryp-
tographic significance is a hard task. Therefore, this problem has attracted a
number of researchers [3]; they have proposed a GA-based method for finding
Boolean functions which are mostly have high degree of nonlinearity. So far, a
general automated method for designing stream ciphers is not known. However,
this problem has been reviewed in more details by Awad [4].

Although GA (and GP) has gained many applications, it is reported that the
simple GA suffers from many troubles such as getting stuck in a local minimum
and parameters dependence [5]. There are many improvements have been pro-
posed to enhance the performance of the GA, such as adaptive GA. Therefore,
in this work, to avoid the problem of getting stuck in a local minimum and to
preserve good individuals into the next generation, two algorithms are presented,
in addition to simple GP (SGP), which are:

1. Simulated Annealing Programming (SAP)
2. Adaptive GP (AGP)

SAP is an integration of simulated annealing (SA) and GP. Many researchers
explored the application of SA on many different types of problems, and it has
been integrated with GA or GP in order to work on a population of individuals
and to preserve good individuals into the next generation [6, 7, 8, 9].

AGP (or AGA) is a technique that dynamically adjusts selected control pa-
rameters, such as population size and genetic operation rates, during the course
of evolving a problem solution [10]. That is because, one of the main problems
related to GA is to find the optimal control parameter values that it uses, when a
poor parameter setting is made for an evolutionary computation algorithm, the
performance of the algorithm will be seriously degraded. Thus, different values
may be necessary during the course of a run. A widely practiced approach to
identify a good set of parameters for a problem is through experimentation. For
these reasons, AGAs offering the most appropriate exploration and exploitation
behavior. AGA has been studied by a number of researchers [11, 12].

2 Stream Cipher Systems

Every stream cryptosystem consists of two parts, which are [13]:

1. Keystream (random sequence bit) generator, and
2. Mixer (XOR for the binary sequences).

310 W.S. Awad

Fig. 1. The proposed enhance single point crossover in ATG

A keystream generator, which is the heart of stream ciphers, outputs a stream
of bits (keystream) xored with a stream of plaintext bits to produce the stream
of ciphertext, as shown in Fig. 1.

Currently, there are many stream cipher systems widely used in our day life
that can be classified into:

1. Linear Feedback Shift Register (LFSR) based stream ciphers, in which a
LFSR or nonlinear combination of LFSRS is used as keystream generator.
Fig. 2 presents a LFSR of length five stages [13, 14, 15, 16, 17].

2. Nonlinear FSR (NLFSR), in which a nonlinear feedback function is used [13,
14, 15, 16, 17].

3. Feedback-with-Carry Shift Register (FCSR) [18].
4. (n,k)-NLFSR [19]
5. Cellular Automata (CA) [1].
6. Algebraic Shift Register [20].

Fig. 2. The proposed enhance single point crossover in ATG

The stream cipher system’s security depends entirely on the inside of keystream
generator. The security of this generator can be analyzed in terms of randomness,
linear complexity, and correlation immunity [21, 22, 23]. Thus, good keystream
generators must have the following features:

1. They generate long period keystreams.
2. Their keystreams are random.
3. The generated keystreams are of large linear complexity.
4. They have high degrees of correlation immunity.

A binary sequence is said to be random if there is no obvious relationship
between the individual bits of the sequence. Several research efforts exist in the

Designing Stream Cipher Systems Using Genetic Programming 311

literature for developing suites of tests for evaluating random number (Binary
keystream) generators to be involved in stream ciphers [21, 22, 23]. In all these
methodologies two criteria are used for the evaluation of the quality of random
numbers obtained by using some generator in traditional applications such as
simulation studies: uniform distribution and independence. The most important
requirement imposed on random number generators is their capability to pro-
duce random numbers uniformly distributed in [0,1]; otherwise the application’s
results may be completely invalid. A number of statistical tests are applied to
examine whether the pseudorandom number sequences are sufficiently random
or not, which are frequency test, serial test, poker test, autocorrelation test and
runs test.

1. Frequency Test: It calculates the number of ones and zeroes of the binary
sequence and checks if there is no large difference.

2. Serial Test: The transition characteristics of a sequence such as the number
00, 01, 10 and 11 are evaluated. Ideally, it should be uniformly distributed
within the sequence.

3. Poker Test: A N length sequence is segmented into blocks of M bits and the
total number of segments is N/M. Within each segment, the integer value
can vary from 0 to m = 2M-1. The objective of this test is to count the
frequency of occurrence of each M length segment. Ideally, all the frequency
of occurrences should be equal

4. Runs Test: A sequence is divided into contiguous stream of 1’s that is referred
as blocks and contiguous stream of 0’s that is referred as gaps. If ri

0 is the
number of gaps of length i, then half of the gaps will have length 1 bit, a
quarter with length 2 bits, and an eighth with length 3 bits. If ri

1 is the
number of blocks of length i, then the distribution of blocks is similar to the
number of gaps.

Linear complexity is a well-known complexity measure in the theory of stream
ciphers. Linear complexity of a keystream s is the length of the shortest LFSR
which will produce the stream s, which is denoted by L(s). If the value of L(s)
is L, then 2L consecutive bits can be used to reconstruct the whole sequence.
Hence, to avoid the keystream reconstruction, the value of L should be large [24].
In order to obtain high linear complexity, several sequences can be combined in
some nonlinear manner. The danger here is that one or more of the internal
output sequences can be correlated with the combined keystream and attacked
using linear algebra. A keysream generator has a higher degree of correlation
immunity if there is no correlation between any internal output sequence and
the combined keytream.

3 Genetic Programming and Simulated Annealing

One of the component methodologies of computational intelligence is evolution-
ary computation. There are number of evolutionary computation techniques,

312 W.S. Awad

such as GA, GP, Cultured Algorithms, and Differential Evolution algorithms.
Regardless of the technique used, evolutionary computation applications follow
a similar procedure [25]:

1. Initialize the population.
2. Evaluate each individual in the population.
3. Select individuals.
4. Produce a new population by applying a number of operations on selected

individuals.
5. loop to step 2 until some condition is met.

Automated design is an essential part of GP paradigm. GP receives a high
level statement of a problem’s requirements from the user and attempts to create
a computer program that provides a solution for the problem. In this paper, the
computer program to be created represents a keystream generator.

GP is the extension of the genetic model of learning the space of programs.
These programs are expressed as trees. GP invented by John R. Koza in 1990s
[26] which is regarded as an extension of GA [27, 28] attributed to John H. Hol-
land [29]. Both techniques are identical in nature except for representation of in-
dividuals which in case of GP is parse trees based computer programs compared
to fixed or variable length character strings in genetic algorithms. Representation
is a major difference not only because it distinguishes the two techniques from
each other but also because it greatly extends the problem handling capabilities
of GP. It is one of the most promising domains independent and object oriented
evolutionary computation techniques [30, 31]. GP is used mainly for design au-
tomation and automatic programming; such as the design of analog and digital
circuits [32].

On the other hand, SA, which has been introduced by Kirkpatrik [33], is
a general randomization technique for solving optimization problems; it is a
recent technique for finding good solutions to a wide variety of combinatorial
optimization problems. This technique can help to avoid the problem of getting
stuck in a local minimum and to lead towards the globally optimum solution.
It is inspired by the annealing process in metallurgy. At high temperatures,
the molecules of liquid move freely with respect to one another. If the liquid is
cooled slowly, thermal mobility is lost. In SA, the solution starts with a high
temperature, and a sequence of trail vectors are generated until inner thermal
equilibrium is reached. Once the thermal equilibrium is reached at a particular
temperature, the temperature is reduced and a new sequence of moves will start.
This process is continued until a sufficiently low temperature is reached, at which
no further improvement in the objective function can be achieved. Thus, SA
algorithm consists of: configurations, re-configuration technique, cost function,
and cooling schedule [34, 35].

4 Simple Genetic Programming Method

This section is to describe the proposedSGPalgorithmused for evolving keystream
generators. The major steps for preparing GP for an application are [26]:

Designing Stream Cipher Systems Using Genetic Programming 313

1. Determining the function library.
2. Determining the representation scheme.
3. Determining the fitness measure.

The description of these steps is given in the following sub sections along the
proposed algorithm parameters.

4.1 Function Library

In GP, the structure under adaptation is a set of programs representing the
candidate keystream generators. The keystream generators considered here are
LFSR-based generators. Thus, the important basic function which is the shift
register should be included. The function library used in this work is presented
in table 1. The proposed function library is sufficient since:

1. It includes the LFSR function (SR), and there is no need to include other
types of shift registers because for every shift register there is an equivalent
LFSR.

2. Any combinational logical function can be expressed using (AND) and (XOR)
only, that is because, any logical function can constructed from (AND),
(OR), (NOT), and

x = x ⊕ 1 (1)

x + y = x · y (2)

4.2 Representation Scheme

The population chromosomes (programs), that represent candidate keystream
generators, are strings of characters which are expressions represented using
prefix polish notation. Fig. 3 shows the syntax of the population programs.
These syntactic rules should be preserved during the generation of the initial
population, and by the genetic operations. Therefore, strongly-typed GP [36] is
adopted.

The initial states and feedback functions of the shift registers are represented
as strings of the letters ′a′..′p′. These letters represent the numbers 0..15. Thus,
each letter is a sequence of four bits. The length of a LFSR is determined by
the number of letters which are initially generated randomly. The number of
these letters must be even, half of them for the initial state, and the second half
for the feedback function. For example, if the number of these letters is eight
letters, then four letters are used for the feedback function, thus, the length of
LFSR is 16 bits (4 × 4). Furthermore, the first zeros of the feedback function
are ignored. For example, consider the following LFSR: ”SR abid”, ’i’ is the
number 8 = (1000)2, then the first three zeros are ignored, and the length of
this LFSR will be five bits (1 + 4). Thus the feedback function will be (11100),
or g(x) = 1 + x + x2 + x5.

314 W.S. Awad

Table 1. The function library

Symbols Arty Format Description

SR 2 SRx Shift register where x represents the feedback poly-
nomial and initial state.

& 2 &xy Bitwise AND operation between the two binary se-
quences x and y.

∧ 2 ∧xy Bitwise XOR operation between the two binary se-
quences x and y.

X 0 Sequence of characters ′a′..′p′, representing the num-
bers 0..15.

| 2 |xy Bitwise OR operation between the two binary se-
quences x and y.

Fig. 3. The syntax rules of GP language

The following are examples of the chromosomes:

Chromosome: SRggbkbecdeh
Chromosome: ∧∧&|SRbpeiSRhoionm∧SRlhhk&SRfmcddiphhcSRcgpjkgSRiechSRkhji

Chromosome: ∧SRdcaeSRagojdfojfm

Chromosome: |&SRccga∧SReehk&|SRpfdmingc∧SRjeSRjmlidmbeSRhoSRmhofoh

Chromosome: SRlepjgc

4.3 Fitness Function

The fitness value is a measurement of the goodness of the keystream generator,
and it is used to control the application of the operations that modify a pop-
ulation. There are a number of metrics used to analyze keystream generators,
which are keystream randomness, linear complexity and correlation immunity.
Therefore, these metrics should be taken in our account in designing keystream
generators, and they are in general hard to be achieved. The fitness value is
calculated by generating the keystream after executing the program, and then
the generated keystream is examined. The fitness function used to evaluate the
chromosomes is to calculate at what percentage the chromosome satisfies the de-
sired properties of the stream ciphers. Three factors are considered in the fitness
evaluation of the chromosomes which are:

1. Randomness of the generated keystream.
2. Keystream period length.
3. Chromosome length.

Designing Stream Cipher Systems Using Genetic Programming 315

Eq. (3) is used for the evaluation of keystream randomness using the frequency
and serial tests, in which, nw is the frequency of w in the generated binary
sequence. This function is derived from the fact that in the random sequence:

1. Probability (no) = Probability (n1), and
2. Probability (n01) = Probability (n11) = Probability (n10) = Probability

(n00)

f1 = |n0 − n1| + |n00 − size

4
| + |n01 − size

4
| + |n10 − size

4
| + |n11 − size

4
| (3)

There is another randomness requirement which is: 1/2i ∗ nr of the runs in
the sequence are of length i, where nr is the number of runs in the sequence.
Thus, we have the following function:

f2 =
M∑
i=1

|(1
2i

× nr) − ni| (4)

where M is maximum run length, and ni is the desired number of runs of
length i.

Another factor is considered in the evaluation of the fitness value which is the
size of the candidate keystream generator (length of the chromosome). Thus, the
fitness function used to evaluate the chromosome x will be as follows, where wt
is a constant and size is the keystream period length:

fit(x) =
size

1 + f1 + f2
+

wt

length(x)
(5)

4.4 Algorithm Parameters

The parameters used in this work were set based on the experimental results,
the parameter value that show the highest performance was chosen to be used in
the implementation of the algorithm. Thus, the genetic operations used to up-
date the population are 1-point crossover with probability pc=1.0 and mutation
with probability pm=0.1. The selection strategy, used to select chromosomes
for the genetic operations, is the 2- tournament selection. The old population
is completely replaced by the new population which is generated from the old
population by applying the genetic operations. Regarding the structure of each
chromosome, the maximum chromosome length is 300 characters, and the max-
imum number of functions (except SR) is ten functions. The probability of the
function SR is 0.5, and all other function are of probability 0.5. Finally, the max-
imum LFSR length is 20 bits. The run of GP is stopped after a fixed number of
generations. The solution is the best chromosome of the last generation.

4.5 The Design Algorithm

The SGP algorithm for designing a keystream generator that meets the desired
properties is illustrated in Algorithm 1.

316 W.S. Awad

Algorithm 1. SGP
1: Input : Keystream period length (size)
2: Output : LFSR-based keystream generator
3: Generate the initial population (pop) randomly
4: Evaluate pop
5: while not Max Number of generations do
6: Generate a new population (pop1) by applying crossover and mutation
7: Evaluate the fitness of the new generated chromosomes of pop1

8: Replace the old population by the new one, i.e.,pop← pop1

9: end while
10: Return the best chromosome of the last generation

5 Simulated Annealing Programming Method

The fitness function, chromosome representation, and the control parameters of
SGP are also used in SAP. Algorithm 2 illustrates the process of SAP.

Algorithm 2. SAP
1: Input : Keystream period length (size)
2: Output : LFSR-based keystream generator
3: Generate the initial population (pop) randomly
4: Evaluate pop
5: temp← 250.
6: while not Max Number of generations do
7: Generate a new population (pop1) by applying crossover and mutation
8: Evaluate the fitness of the new generated chromosomes of pop1

9: Calculate the averages of fitness values for pop and pop1, av and av1 respectively

10: If (av1 > av) then replace the old population by the new one, i.e. pop← pop1

11: Else
12: Begin
13: e← av − av1

14: Pr ← e/Temp
15: Generate a random number (rnd)
16: If (exp(−pr) > rnd) then pop← pop1

17: EndElse
18: EndIf
19: Temp← Temp ∗ 0.95
20: end while
21: Return the best chromosome of the last generation

As shown in the algorithm, SA is the technique used for the construction of the
keystream generators. The structure under adaption is the set of GP expressions,
and the GA operations are used to update the population of expressions.

Designing Stream Cipher Systems Using Genetic Programming 317

6 Adaptive Genetic Programming Method

The SGP algorithm has been modified to consider the dynamic setting of the
algorithm parameters which are mutation and crossover rates. The concept of
adapting crossover and mutation operators to improve the performance of GA
has already been employed and studied by number of researchers. The goals
with adaptive probabilities of crossover and mutation are to maintain the genetic
diversity in the population and prevent the GAs to converge prematurely to local
minima. Strinvivas [11] put forward the adaptive genetic algorithm, and its basic
idea is to adjust pc and pm according to the individual fitness. In this paper,
the mutation and crossover operation rates are adjusted adaptively based on the
following formula [11]:

pc = {pc1− (pc1−pc2)(f́−favg)
fmax−favg

f́≥fmax

pc1 f́<fmax
(6)

pm = {pm1− (pm1−pm2)(f́−favg)
fmax−favg

f́≥fmax

pm1 f́<fmax
(7)

where fmax is the highest fitness value in the population; favg is the average fit-
ness value in every population; f’ is higher fitness value between two individuals;
in addition, we set 1.0 for pc1 and 0.7 for pc2, and pm1 = 0.2, and pm2 = 0.01.

7 Results

This section presents the findings and results of the experiments carried out
to demonstrate the effectiveness of the proposed methods for designing stream
ciphers automatically. The experiments were carried out after implementing the
proposed algorithms, that mentioned above, using C++ programming language.
In all experiments, the keystream period length is 200 bits, and the population
size is 100.

The researcher aimed at conducting the experiments, is to investigate the
algorithm performances, and to make a comparison of the three algorithms:
SGP, SAP, and AGP. Table 2 displays the obtained results. Results are obtained
by running each algorithm 100 times for different values of maximum number
of generations. The results shown in table 2 represent the average of the fitness
values of the best chromosomes in 100 runs. According to the results, AGP and
SAP are more effective than SGP in solving the underlying problem. They can
evolve keystream generators that can generate keystreams of good statistical
properties with large period lengths.

Table 3 presents the results of 20 runs of SAP and AGP. The values given
in this table are the fitness values of best chromosomes, i.e. keystream genera-
tors evolved in each run. We can see that the highest fitness value in 20 runs
is 50.66 which is the fitness value of the chromosome: SRphikje found by AGP.

318 W.S. Awad

Table 2. The comparison of the three algorithms for different values of maximum
number of generations

Average of fitness values

Maximum Number of Generations SGP SAP AGP

30 31.33 34.6199 34.9572

50 31.892 35.7214 35.9222

70 32.75 36.3741 36.42

90 32.865 35.3944 37.2937

Table 3. The best results of 20 runs of SAP and AGP

Run Fitness Value of SAP Fitness Value of AGP

1 34.4317 34.8774

2 33.5854 36.0652

3 40.3543 25.5107

4 29.9324 32.5907

5 49.3019 37.7025

6 35.7731 44.8094

7 35.7119 30.7139

8 43.9672 36.6298

9 28.4054 49.3019

10 42.6349 29.4603

11 25.0631 35.6179

12 36.0652 40.9058

13 34.02 35.9966

14 27.1358 44.8094

15 36.4571 41.0542

16 29.409 24.4168

17 35.5298 50.6605

18 33.5854 31.9766

19 40.9058 33.5854

20 35.6179 49.1889

The keystream generated (as dipcted bellow) by this generator is of period
length ≥ 200, and it passes the randomness tests considered in the fitness cal-
culation. The keystrem is:

1111111000001101110100000000001010111000011010101010110 011110101110011001100010
0000110000100010001011010100010 1001011010011100110100110110001101111011100100011101
00011111000010010111100101111110101101

Furthermore, according to the results of table 3 and by applying Wilcoxon
signed-rank test, there is no significant difference in the performance of SAP and
AGP

Designing Stream Cipher Systems Using Genetic Programming 319

8 Conclusion

In this paper, a new approach for designing keystream generators automatically
has been presented, which is a new promising direction for stream cipher de-
sign. It has been shown the capability of GP in designing the desired stream
ciphers. Stream cipher design methods presented here can be used for evolv-
ing any generator that satisfies the given requirements, such as period length,
and randomness. These requirements are expressed mathematically in the fit-
ness function. Three algorithms have been designed and applied: SGP, SAP, and
AGP. The numerical results have showed that the application of GP in stream
cipher design is useful. Also, SAP and AGP methods are more effective than
SGP, that is because, the performance of SGP algorithm has been improved by
the dynamic setting of the algorithm parameters and by using SA with GP.

Based on the function library defined in this work, only LFSR-based keystream
generators can be evolved. However, by changing the functions of the function li-
brary, the proposed approach can be used to evolve other types of stream ciphers.

The proposed automated approach in this study will save the time and effort
of designing stream ciphers more than if using state-of-the-art techniques. It can
be also regarded as a tool to serve the same purpose of designing good cipher
systems. However, the results of the proposed algorithms can be improved by
considering other factors, such as linear complexity, in the chromosome evalua-
tion. In addition, it is useful to investigate the effectiveness of other evolutionary
computation techniques.

References

1. Szaban, M., Seredynski, F., Bouvry, P.: Collective Behavior of Rules for Cellular
Automata-Based Stream Ciphers. In: IEEE Congress on Evolutionary Computa-
tion, pp. 179–183 (2006)

2. Clark, A., Jacob, L.J.: Almost Boolean functions: the design of Boolean functions
by spectral inversion. Computational Intelligence 20(3), 450–462 (2004)

3. Millan, W., Clark, A., Dawson, E.: An effective genetic algorithm for finding highly
nonlinear Boolean functions. In: Proc. 1st Int. Conf. on Information and Commu-
nications Security, China, Beijing, pp. 149–158 (1997)

4. Awad, W.S.: The applications of GA in cryptology. Far East Journal of Experi-
mental and Theoretical Artificial Intelligence 2(1), 59–76 (2008)

5. Eiben, A.E., Hinterding, R., Michalewic, Z.: Parameters control in evolutionary
algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1999)

6. Van Laarhoven, P.J.M., et al.: Simulated Annealing: Theory and applications. Rei-
del, Holland (1987)

7. Sadegheih: Sequence optimization and design of allocation using GA and SA. Ap-
plied Mathematics and Computation 186(2), 1723–1730 (2007)

8. Yuichiro, U., Mitsunori, M., Tomoyuki, H.: Simulated Annealing Programming
Using Effective Subtrees. Doshisha Daigaku Rikogaku Kenkyu Hokoku 49(4), 205–
209 (2009)

9. Miki, M., Hashimoto, M., Fujita, Y.: Program Search with Simulated Annealing.
In: Proc. of the 9th Annual Conference on Genetic and Evolutionary Computation,
London, England, pp. 1754–1754 (2007)

10. Sivanandam, S.N., Deepa, S.N.: Introduction to genetic algorithms. Springer, New
York (2008)

320 W.S. Awad

11. Srinivas, M., Patnaik, L.M.: Adaptive Probabilities of Crossover and Mutation in Ge-
netic Algorithms. IEEE Trans. Systems, Man and Cybernetics 24(4), 656–667 (1994)

12. Zhang, J., Hu, T.: Adaptive Genetic Algorithm Based on Population Diversity.
Computer Engineering and Applications 9(1), 49–51 (2002)

13. Forouzan, B.A.: Cryptography and network security. McGraw-Hill, New York (2008)
14. Rueppel, R.A.: Analysis and Design of Stream Cipher. Springer, New York (1986)
15. Schneier, B.: Applied cryptography. John Wiley and Sons, New York (1996)
16. Golomb, S.W.: Shift Register Sequence. Holden-Day, San Francisco (1967)
17. Beker, P.F.: Cipher Systems. John Wiley, New York (1982)
18. Klapper, G.M.: Feedback shift registers, 2-adic span and combiners with memory.

Journal of Cryptology 10(1), 111–147 (1997)
19. Dubrova, E., Teslenko, M., Tenhunen, H.: Analysis and Synthesis of (n,k)-Non-

Linear Feedback Shift Registers. In: Proc. of the Conf. on Design, Automation and
Test, Munich, Germany, pp. 1286–1290 (2008)

20. Goresky, M., Klapper, A.: Pseudonoise Sequence Based on Algebraic Feedback
Shift Registers. IEEE Trans. Inf. Theory 52(4), 1649–1662 (2006)

21. Gustafson, H., et al.: A computer package for measuring the strength of encryption
algorithm. Comp. and Sec. 14(1), 687–697 (1994)

22. Zeng, K., Yang, C., Rao, T.R.N.: Pseudorandom Bit Generator in Stream Cipher
Cryptography. Comp. 2(24), 8–17 (1991)

23. L’ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4), 22–40 (2007)

24. Massey, J.L.: Shift register sequences and BCH decoding. IEEE Trans. on Inf.
Theory IT 15(1), 122–127 (1976)

25. Eberhart, R., Shi, Y.: Computational Intelligence: concepts to implementation.
Morgan Kaufmann, San Francisco (2008)

26. Koza, J.R.: Genetic programming. MIT Press, Cambridge (1992)
27. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, New York (1989)
28. Mitchell, M.: An Introduction to Genetic Algorithm. MIT Press, Cambridge (1996)
29. Holland, J.H.: Adaptive in natural and artificial systems. University of Michigan,

Ann Arbor (1975)
30. Hirsh, H., Banzhaf, W., Koza, J.R., Ryan, C., Spector, L., Jacob, C.: Genetic

programming. IEEE Intelligent Systems 15(3), 74–84 (2000)
31. Koza, J.R., Keane, M.A., Streeter, M.: What’s AI done for me lately? - genetic

programming’s human competitive results. IEEE Intelligent Systems 18(3), 25–31
(2003)

32. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge (1994)

33. Kirkpatrik, S., et al.: Optimization by simulated annealing. Science 220(4598),
671–680 (1983)

34. Yong, L., Lishan, K., Evans, D.J.: The annealing evolution algorithm as function
optimizer. Parallel Computing 21(3), 389–400 (1995)

35. Cordon, O., et al.: An Inductive Query by Example Technique for Extended
Boolean Queries Based on Simulated-Annealing Programming. In: The Proc. of
7th International ISKO Conference on Challenges in Knowledge Representation
and Organization for the 21st Century, pp. 429–436. Integration of Knowledge
Across Boundaries, Granada (2002)

36. Haynes, T., et al.: Strongly typed GP in evolving cooperation strategies. In: Proc.
of the sixth Int. Conf. on GA, pp. 271–278. Morgan Kaufmann, San Francisco
(1995)

GPU-Based Multi-start Local Search Algorithms

Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi

INRIA Dolphin Project / Opac LIFL CNRS
40 avenue Halley, 59650 Villeneuve d’Ascq Cedex France

The-Van.Luong@inria.fr, {Nouredine.Melab,El-Ghazali.Talbi}@lifl.fr

Abstract. In practice, combinatorial optimization problems are com-
plex and computationally time-intensive. Local search algorithms are
powerful heuristics which allow to significantly reduce the computation
time cost of the solution exploration space. In these algorithms, the multi-
start model may improve the quality and the robustness of the obtained
solutions. However, solving large size and time-intensive optimization
problems with this model requires a large amount of computational re-
sources. GPU computing is recently revealed as a powerful way to harness
these resources. In this paper, the focus is on the multi-start model for lo-
cal search algorithms on GPU. We address its re-design, implementation
and associated issues related to the GPU execution context. The prelim-
inary results demonstrate the effectiveness of the proposed approaches
and their capabilities to exploit the GPU architecture.

Keywords: GPU-based metaheuristics, multi-start on GPU.

1 Introduction

Over the last years, interest in metaheuristics (generic heuristics) has risen con-
siderably in the field of optimization. Indeed, plenty of hard problems in a wide
range of areas including logistics, telecommunications, biology, etc., have been
modeled and tackled successfully with metaheuristics. Local search (LS) algo-
rithms are a class of metaheuristics which handle with a single solution iteratively
improved by exploring its neighborhood in the solution space. Different parallel
models have been proposed in the literature for the design and implementation
of LSs [1]. The multi-start model consists in executing in parallel many LSs in an
independent/cooperative manner. This mechanism may provide more effective,
diversified and robust solutions.

Nevertheless, although LS methods have provided very powerful search algo-
rithms, problems in practice are becoming more and more complex and CPU
time-intensive and their resolution requires to harness more and more computa-
tional resources. In parallel, the recent advances in hardware architecture allow
to provide such required tremendous computational power through GPU in-
frastructures. This new emerging technology is indeed believed to be extremely
useful to speed up many complex algorithms. However, the exploitation of such
computational infrastructures in metaheuristics is not straightforward.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 321–335, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 T. Van Luong, N. Melab, and E.-G. Talbi

Indeed, several scientific challenges mainly related to the hierarchical memory
management or to the execution context have to be faced. The major issues are
the efficient distribution of data processing between the CPU and the GPU, the
thread synchronization, the optimization of data transfer between the different
memories, the capacity constraints of these memories, etc. The main objective
of our research work is to deal with such issues for the re-design of parallel
metaheuristics models to allow solving of large scale optimization problems on
GPU architectures. In [2, 3], we have proposed to re-design the parallel evalua-
tion of the neighborhood model for LSs on GPU. To go on this way, the main
objective of this paper is to deal with the well-known multi-start model on GPU
architectures where many LSs are executed in parallel.

We deal with the entire re-design of the multi-start model on GPU by taking
into account the particular features related to both the LS process and the
GPU computing. More exactly, we provide two different general schemes for
building efficient multi-start LSs on GPU. The first scheme combines the multi-
start model with the parallel evaluation of the neighborhood on GPU previously
mentioned above. In the second scheme, the search process of each LS algorithm
is fully distributed on GPU. The advantage of the full distribution of the search
process on GPU is to reduce CPU/GPU memory copy latency. We will essentially
focus on this approach throughout this paper.

Despite the fact that the second scheme for the multi-start model has already
been applied in some previous works in the context of the tabu search on GPU
[4,5], to the best of our knowledge, it has never been widely investigated in terms
of 1) reproducibility for any other LS algorithm and 2) memory management.
Indeed, the contribution of this paper is to provide a general methodology for the
design of multi-start LSs on GPU applicable to any class of LS algorithms such
as hill climbing, tabu search or simulated annealing. Furthermore, a particular
focus is made on finding efficient associations between the different available
memories and the data commonly used in the multi-start LS algorithms.

The remainder of the paper is organized as follows: on the hand, Section 2
highlights the principles of LS parallel models. On the other hand, a brief review
of the GPU architecture is also depicted. Section 3 presents a methodology for the
design and the implementation of parallel multi-start LS methods on GPU. The
performance results obtained for the associated implementations are reported in
Section 4. Finally, a discussion and some conclusions of this work are drawn in
Section 5.

2 Parallel Local Search Algorithms and GPU Computing

2.1 Parallel Models of LS Algorithms

For non-trivial problems, executing the iterative process of a simple LS on
large neighborhoods requires a large amount of computational resources. Con-
sequently, a variety of algorithmic issues are being studied to design efficient LS
heuristics. Parallelism arises naturally when dealing with a neighborhood, since
each of the solutions belonging to it is an independent unit. Due to this, the

GPU-Based Multi-start Local Search Algorithms 323

performance of LS algorithms is particularly improved when running in parallel.
Parallel design and implementation of metaheuristics have been studied as well
on different architectures [6, 7, 8].

Basically, three major parallel models for LS heuristics can be distinguished:
solution-level, iteration-level and algorithmic-level.

• Solution-level Parallel Model. A focus is made on the parallel evaluation of
a single solution. Problem-dependent operations performed on solutions are
parallelized. In that case, the function can be viewed as an aggregation of a
given number of partial functions.

• Iteration-level Parallel Model. This model is a low-level Master-Worker model
that does not alter the behavior of the heuristic. Exploration and evaluation
of the neighborhood are made in parallel. At the beginning of each iteration,
each parallel node manages some candidates and the results are returned
back to the master. An efficient execution is often obtained particularly
when the evaluation of each solution is costly.

• Algorithmic-level Parallel Model. Several LS algorithms are simultaneously
launched for computing better and robust solutions. They may be heteroge-
neous or homogeneous, independent or cooperative, start from the same or
different solution(s), configured with the same or different parameters.

The solution-level model is problem-dependent and does not present many
generic concepts. In this paper, we will focus on the multi-start model which
is an instantiation of the algorithmic-level model where LS algorithms are all
homogeneous.

2.2 GPU Computing

GPUs have evolved into a highly parallel, multithreaded and many-core envi-
ronment. Indeed, since more transistors are devoted to data processing rather
than data caching and flow control, GPU is specialized for compute-intensive
and highly parallel computation. A complete review of GPU architecture can be
found in [9].

In general-purpose computing on graphics processing units, the CPU is con-
sidered as a host and the GPU is used as a device coprocessor. This way, each
GPU has its own memory and processing elements that are separate from the
host computer. Memory transfer from the CPU to the GPU device memory is a
(a)synchronous operation which is time consuming. Bus bandwidth and latency
between the CPU and the GPU can significantly decrease the performance of
the search, so data transfers must be minimized.

Each processor device on GPU supports the single program multiple data
(SPMD) model, i.e. multiple processors simultaneously execute the same pro-
gram on different data. For achieving this, the concept of kernel is defined. The
kernel is a function callable from the host and executed on the specified device
by several processors in parallel.

This kernel handling is dependent of the general-purpose language. For in-
stance, CUDA [10] or OpenCL [11] are parallel computing environments which

324 T. Van Luong, N. Melab, and E.-G. Talbi

provide an application programming interface. These toolkits introduce a model
of threads which provides an easy abstraction for single-instruction and multiple-
data (SIMD) architecture.

Regarding their spatial organization, threads are organized within so called
thread blocks. A kernel is executed by multiple equally threaded blocks. Blocks
can be organized into a one-dimensional or two-dimensional grid of thread blocks,
and threads inside a block are grouped in a similar way. All the threads belonging
to the same thread block will be assigned as a group to a single multiprocessor,
while different thread blocks can be assigned to different multiprocessors.

From a hardware point of view, graphics cards consist of streaming mul-
tiprocessors, each with processing units, registers and on-chip memory. Since
multiprocessors are used according to the SPMD model, threads share the same
code and have access to different memory areas. Basically, the communication
between the CPU host and its device is done through the global memory.

3 Design and Implementation of Multi-start Local Search
Algorithms on GPU

With the recent advances in parallel computing particularly based on GPU com-
puting, the multi-start model has to be re-visited from the design and implemen-
tation points of view. In this section, we propose multiple deployment schemes
of the multi-start model for LS algorithms on GPU.

3.1 Multi-start Local Search Algorithms Based on the
Iteration-Level

In [2, 3], we have proposed the design and the implementation of the parallel
evaluation of the neighborhood (iteration-level) model for a single LS on GPU.
That is the reason why, a natural way for designing multi-start LSs on GPU
based on the iteration-level is to iterate the whole process (i.e. the execution of
a single LS on GPU) to deal with as many LSs as needed (see Fig. 1). Indeed,
in general, evaluating a fitness function for each neighbor is frequently the most
costly operation of the LS. Therefore, in this scheme, task distribution is clearly
defined: the CPU manages the whole sequential LS process for each LS algorithm
and the GPU is dedicated only to the parallel evaluation of solutions.

Algorithm 2 gives the template of this model. The reader is referred to [2,3] for
more details about the original algorithm. Basically, for each LS, the CPU first
sends the number of expected neighbors to be evaluated to the GPU and then
these solutions are processed on GPU. Regarding the kernel thread organization,
as quoted above, a GPU is organized following the SPMD model, meaning that
each GPU thread associated with one neighbor executes the same evaluation
function kernel. Finally, results of the evaluation function are returned back to
the host via the global memory.

This way, the GPU is used as a coprocessor in a synchronous manner. The
time-consuming part i.e. the incremental evaluation kernel is calculated by the

GPU-Based Multi-start Local Search Algorithms 325

Fig. 1. Multi-start LS algorithms based on the parallel evaluation of the neighborhood
on GPU (iteration-level). In this scheme, one thread is associated with one neighbor.

Algorithm 1. Multi-start local search algorithms template on GPU based on
the iteration-level model
1: Allocate problem data inputs on GPU memory
2: Copy problem data inputs on GPU memory
3: Allocate a solution on GPU memory
4: Allocate a neighborhood fitnesses structure on GPU memory
5: Allocate additional solution structures on GPU memory
6: for m = 1 to #local searches do
7: Choose an initial solution
8: Evaluate the solution
9: Specific LS initializations

10: end for
11: repeat
12: for m = 1 to #local searches do
13: Copy the solution on GPU memory
14: Copy additional solution structures on GPU memory
15: for each neighbor in parallel on GPU do
16: Incremental evaluation of the candidate solution
17: Insert the resulting fitness into the neighborhood fitnesses structure
18: end for
19: Copy back the neighborhood fitnesses structure on CPU memory
20: Specific LS solution selection strategy on the neighborhood fitnesses structure

21: Specific LS post-treatment
22: end for
23: Possible cooperation between the different solutions
24: until a stopping criterion satisfied

326 T. Van Luong, N. Melab, and E.-G. Talbi

GPU and the rest is handled by the CPU. The advantage of this scheme resides in
its highly parallel structure (i.e. an important number of generated neighbors to
handle), leading to a significant multiprocessors occupancy of the GPU. However,
depending on the number of LS algorithms, the main drawback of this scheme
is that copying operations from the CPU to the GPU can become frequent and
thus can lead to a significant performance decrease.

3.2 Design of Multi-start Local Search Algorithms Based on the
Algorithmic-Level

A natural way for designing multi-start LSs on GPU is to parallelize the whole
LS process on GPU by associating one GPU thread with one LS. This way,
the main advantage of this approach is to minimize the data transfers between
the host CPU memory and the GPU. Figure 2 illustrates this idea of this full
distribution (algorithmic-level). In the rest of this paper, we will focus on this
approach.

Fig. 2. Multi-start LS algorithms based on the full distribution of LSs on GPU
(algorithmic-level). One thread is associated with one local search.

The details of the algorithm are given in Algorithm 1. First of all, at initial-
ization stage, memory allocations on GPU are made: data inputs of the problem
must be allocated and copied on GPU (lines 1 and 2). It is important to notice
that problem data inputs (e.g. a matrix in the traveling salesman problem [12])
are a read-only structure and never change during all the execution of LS al-
gorithms. Therefore, their associated memory is copied only once during all
the execution. Second, a certain number of solutions corresponding to each LS

GPU-Based Multi-start Local Search Algorithms 327

must be allocated on GPU (line 3). Additional solution structures which are
problem-dependent can also be allocated to facilitate the computation of incre-
mental evaluation (line 4). Third, during the initialization of the different LS
algorithms on GPU, each solution is generated and evaluated (from lines 5 to
9). Fourth, comes the algorithmic-level, in which the iteration process of each
LS is performed in parallel on GPU (from lines 11 to 17). Since each neighbor
is evaluated in a sequential manner on GPU, unlike the iteration-level scheme,
there is no need to allocate and manipulate any neighborhood fitness structure.
Fifth, an exchange of the best-so-far solutions could be made to accelerate the
search process (line 18). In that case, operations on the global memory may be
considered. Finally, the process is repeated until a stopping criterion is satisfied.

Algorithm 2. Multi-start local search algorithms template on GPU based on
the algorithmic-level model
1: Allocate problem data inputs on GPU memory
2: Copy problem data inputs on GPU memory
3: Allocate #local searches solutions on GPU memory
4: Allocate #local searches additional solution structures on GPU memory
5: for each LS in parallel on GPU do
6: Choose an initial solution
7: Evaluate the solution
8: Specific LS initializations
9: end for

10: repeat
11: for each LS in parallel on GPU do
12: for each neighbor do
13: Incremental evaluation of the candidate solution
14: Specific LS solution selection strategy
15: end for
16: Specific LS post-treatment
17: end for
18: Possible cooperation between the different solutions
19: until a stopping criterion satisfied

3.3 Memory Management of Multi-start Local Search Algorithms
on the Algorithmic-Level

Memory Coalescing Issues. When an application is executed on GPU, each
block of threads is split into SIMD groups of threads called warps. At any clock
cycle, each processor of the multiprocessor selects a half-warp (16 threads) that
is ready to execute the same instruction on different data. Global memory is
conceptually organized into a sequence of 128-byte segments. The number of
memory transactions performed for a half-warp will be the number of segments
having the same addresses than those used by that half-warp. Fig. 3 illustrates
an example of the memory management layer for a simple vector addition.

328 T. Van Luong, N. Melab, and E.-G. Talbi

Fig. 3. An example of kernel execution for vector addition

For more efficiency, global memory accesses must be coalesced, which means
that a memory request performed by consecutive threads in a half-warp is asso-
ciated with precisely one segment. The requirement is that threads of the same
warp must read global memory in an ordered pattern. If per-thread memory ac-
cesses for a single half-warp constitute a contiguous range of addresses, accesses
will be coalesced into a single memory transaction. In the example of vector ad-
dition, memory accesses to the vectors a and b are fully coalesced, since threads
with consecutive thread indices access contiguous words.

Otherwise, accessing scattered locations results in memory divergence and
requires the processor to perform one memory transaction per thread. The per-
formance penalty for non-coalesced memory accesses varies according to the size
of the data structure. Regarding LS structures, coalescing is difficult when global
memory accesses have a data-dependent unstructured pattern (especially for a
permutation representation). As a result, non-coalesced memory accesses imply
many memory transactions and it can lead to a significant performance decrease
for LS methods.

Memory Organization. Optimizing the performance of GPU applications of-
ten involves optimizing data accesses which includes the appropriate use of the
various GPU memory spaces. For instance, the use of texture memory is a so-
lution for reducing memory transactions due to non-coalesced accesses. Texture
memory provides a surprising aggregation of capabilities including the ability
to cache global memory (separate from register, global, and shared memory).
Regarding the data management on the different GPU memories, the following
observations can be made whatever the used multi-start LS algorithm:

• Global memory: For each running LS on GPU (one thread), its associated
solution is stored on the global memory. The same goes on for additional
solution structures. This way, it ensures a global visibility among the different

GPU-Based Multi-start Local Search Algorithms 329

threads (LSs) during the entire search process for a possible cooperation. In a
general way, all the data in combinatorial problems could be also associated
with the global memory. However, as previously said, non-coalesced memory
accesses may lead to a performance decrease. Therefore, the texture memory
might be preferred since it can be seen as a relaxed mechanism for the
threads to access the global memory. Indeed, the coalescing requirements do
not apply to texture memory accesses.

• Texture memory: This read-only memory is adapted to LS algorithms
since the problem inputs do not change during the execution of the algorithm.
In most of optimization problems, problem inputs do not often require a large
amount of allocated space memory. As a consequence, these structures can
take advantage of the 8KB cache per multiprocessor of texture units. Indeed,
minimizing the number of times that data goes through cache can increase
significantly the efficiency of algorithms [13]. Moreover, cached texture data
is laid out to give best performance for structures with 1D/2D access patterns
such as matrices. The use of textures in place of global memory accesses
is a completely mechanical transformation. Details of texture coordinate
clamping and filtering is given in [14, 10].

• Constant memory: This memory is read only from kernels and is hardware
optimized for the case where all threads read the same location. It might be
used when the calculation of the evaluation function requires a common
lookup table for all solutions (e.g. a decoder table for an indirect encoding
on the job shop scheduling problem [15]).

• Shared memory: The shared memory is a fast memory located on the mul-
tiprocessors and shared by threads of each thread block. Since this memory
area provides a way for threads to communicate within the same block, it
might be used with the global memory in the context of a possible coop-
eration between different LS algorithms. In the case of the multi-start LS
model, the type of shared information is the best-so-far solution found at
each iteration of the search process.

• Registers: Among streaming processors, they are partitioned among the
threads running on it and they constitute fast access memory. In the kernel
code, each declared variable is automatically put into registers.

• Local memory: In a general way, additional structures such as declared ar-
ray will reside in local memory. In fact, local memory resides in the global
memory allocated by the compiler and its visibility is local to a thread (a LS).

Table 1 summarizes the kernel memory management in accordance with the
different LS components. For the management of random numbers in SA, effi-
cient techniques are provided in many books such as [16] to implement random
generators on GPU. For deterministic multi-start LSs based on HC or TS, the
random initialization of solutions might be done on CPU and then they can be
copied on the GPU via the global memory to perform the LS process. This way,
it ensures that the obtained results are the same as a multi-start LS performed
on a traditional CPU. Regarding the management of the tabu list on GPU, since
the list is particular to a TS execution, a natural mapping is to associate a tabu

330 T. Van Luong, N. Melab, and E.-G. Talbi

Table 1. Kernel memory management. Summary of the different memories used in the
multi-start LS algorithms on GPU.

Type of memory LS structure

Texture memory problem data inputs

Global memory candidate solutions, additional candidate solution structures

Shared memory possible solutions to exchange

Registers additional LS variables

Local memory additional LS structures

Constant memory additional problem lookup tables

list to the local memory. However, since this memory has a limited size, large
tabu lists should be associated with the global memory instead.

4 Experiments

To validate our approach, the multi-start model has been implemented on the
quadratic assignment problem (QAP) on GPU using CUDA. The QAP arises
in many applications such as facility location or data analysis. Let A = (aij)
and B = (bij) be n × n matrices of positive integers. Finding a solution of the
QAP is equivalent to finding a permutation π = (1, 2, . . . , n) that minimizes the
objective function:

z(π) =
n∑

i=1

n∑
j=1

aijbπ(i)π(j)

The problem has been implemented using a permutation representation. The
chosen neighborhood for all the experiments is based on a 2-exchange operator
(n×(n−1)

2 neighbors). The incremental evaluation function has a time complexity
of O(n). The considered instances are the Taillard instances proposed in [17].
They are uniformly generated and are well-known for their difficulty.

Table 2. Used parameters for each particular LS

Tabu search Simulated annealing

geometric cooling schedule

tabu list size: tl = n×(n−1)
16

initial temperature: T0 = 10000
threshold: thr = 1

iterations: iters = 10000 ratio: r = 0.9

iterations: iters = n×(n−1)
2

equilibrium state: T < thr

The used configuration is an Intel Xeon 3GHz 2 cores with a GTX 280 (30
multiprocessors). From an implementation point of view, to build the CPU test
code, the g++ compiler has been used with the -O2 optimization flag and SSE
instructions. The specific parameters for each single LS algorithm are given in
Table 2.

GPU-Based Multi-start Local Search Algorithms 331

4.1 Measures of the Efficiency of Multi-start Algorithms Based on
the Algorithmic-Level

In the next experiments, the effectiveness in terms of quality of solutions is not
addressed here. Only execution times and acceleration factors are reported in
comparison with a mono-core CPU. The objective is to evaluate the impact of
a GPU implementation of multi-start algorithms based on the algorithmic-level
(i.e. the full distribution of the search process on GPU) in terms of efficiency.
For each multi-start algorithm, a standalone mono-core CPU implementation, a
pure GPU one, and a GPU version using texture memory (GPUtex) are consid-
ered. The number of LS algorithms of the multi-start model is set to 4096 which
corresponds to a realistic scenario in accordance with the algorithm convergence.
The average time has been measured in seconds for 30 runs. The standard de-
viation is not represented since its value is very low for each measured instance.
The obtained results are reported in Table 3 for the different LS multi-start
algorithms on GPU.

Table 3. Measures of the efficiency of the algorithmic-level on the QAP. The average
time is reported in seconds for 30 executions, the number of LSs is fixed to 4096.

tai30a tai40a tai50a tai60a tai80a tai100a

HC CPU 5.48 17.18 44.56 88.32 302.43 810.39

HC GPU 3.19×1.7 7.44×2.3 15.79×2.8 30.06×2.9 90.45×3.3 224.51×3.6

HC GPUTex 1.02×5.4 2.96×5.8 6.69×6.7 12.52×7.1 41.65×7.3 103.59×7.8

TS CPU 335.57 725.39 1539.60 2439.86 6097.61 13004.76

TS GPU 105.12×3.2 207.12×3.5 414.50×3.7 655.32×3.7 1544.32×3.9 3222.01×4.0

TS GPUTex 55.12×6.1 105.65×6.9 176.29×8.7 262.31×9.3 588.33×10.4 1207.77×10.8

SA CPU 412.64 874.44 1672.63 2699.89 6807.88 13960.69

SA GPU 115.32×3.6 223.65×3.9 422.32×4.0 677.28×4.0 1578.21×4.3 3121.28×4.5

SA GPUTex 72.25×5.7 135.21×6.5 205.74×8.1 278.88×9.7 609.78×11.2 1161.52×12.0

Regarding the acceleration for a pure implementation on GPU based on HC
(HC GPU), it varies between ×1.7 for the instance tai30a to ×3.6 for the last
instance. In comparison with a pure CPU implementation, the obtained accel-
eration factors are positive but not impressive. Indeed, due to high misaligned
accesses to global memories (flows and distances in QAP), non-coalescing mem-
ory reduces the performance of the implementation. Binding texture on global
memory allows to overcome the problem (HC GPUTex). Indeed, from the in-
stance tai30a, using texture memory starts providing significant acceleration
factors (×5.4). GPU keeps accelerating the LS process as long as the size grows
and the best results are obtained for the instance tai100a (×7.8).

Regarding the performance for the other multi-start algorithms (TS and SA
based), similar observations can be made. Indeed, on the hand, the obtained
speed-ups for the texture version of multi-start algorithms based on TS vary
between ×6.1 to ×10.8. And on the other hand, they vary from ×5.7 to ×12.0

332 T. Van Luong, N. Melab, and E.-G. Talbi

for the multi-start algorithms based on SA. In a general manner, the perfor-
mance variation obtained with the different algorithms on GPU is in accordance
with the algorithm complexity (Complexity(SA) >= Complexity(TS) >>
Complexity(HC)).

The point to highlight in these experiments is that organizing data into cache
such as texture memory clearly allows to improve the speed-ups in comparison
with a standard GPU version where inputs are stored in the global memory.

4.2 Measures of the Efficiency of Large GPU-Based
Implementations

Another experiment consists in measuring the impact in terms of efficiency by
varying the number of LSs in the multi-start based on the algorithmic-level. In
addition, we propose to compare this approach with the multi-start based on the
iteration-level model (parallel evaluation of the neighborhood on GPU) presented
in Section 3.1. For doing this, we propose to deal with the instance tai50a with
the same parameters used before in the context of multi-start methods based on
TS. The obtained results are depicted in Fig. 4 for the texture optimization.

For the algorithmic-level, one can notice that it starts providing a positive
acceleration of ×1.7 from a number of 512 LSs (one thread per LS). From 1024
LSs, the acceleration factors are drastically improved until reaching ×8.7 for
4096 LSs. After that, the speed-up keeps improving slowly with the size increase.
However, as one can see in Fig. 5, no significant difference can be made in terms of
the quality of the solutions obtained for more than 168384 LSs. Therefore, since
the execution is already time-consuming, it might not be relevant to perform
more LSs.

Regarding a small number of running LSs, from 1 to 256 LSs, the multi-start
for the algorithmic-level is clearly inefficient. This can be explained by the fact
that since the number of threads is relatively small, the number of threads per
block is not enough to fully cover the memory access latency.

Unlike the previous model, for the multi-start based on the iteration-level, the
obtained speed-ups are quiet regular (from ×4.4 to ×5.1) whatever the number of
running LSs. Indeed, since one thread is associated with one neighbor (n×(n−1)

2
neighbors), during the kernel execution, there is enough threads to keep the GPU
multiprocessors busy. However, as one can notice, the maximal performance of
this scheme is quiet limited because of the multiple data copies between the CPU
and the GPU (see [2] for an analysis of data transfers).

5 Discussion and Conclusion

Parallel metaheuristics such as the multi-start model allow to improve the effec-
tiveness and robustness in optimization problems. Their exploitation for solv-
ing real-world problems is possible only by using a great computational power.
High-performance computing based on GPU accelerators is recently revealed as
an efficient way to use the huge amount of resources at disposal. However, the

GPU-Based Multi-start Local Search Algorithms 333

Fig. 4. Measures of the efficiency of the two multi-start approaches using the texture
memory algorithmic-level approach in comparison with the iteration-level by varying
the number of tabu searches (instance tai50a)

Fig. 5. Measures of the quality of the solutions for the multi-start model based on the
algorithmic-level (tai50a). The average fitness is reported for 30 executions where each
point represents a certain number of LSs.

334 T. Van Luong, N. Melab, and E.-G. Talbi

exploitation of the multi-start model is not trivial and many issues related to
the context execution and to the memory hierarchy of this architecture have to
be considered.

In this paper, we have proposed a guideline to design and implement general
GPU-based multi-start LS algorithms. The different concepts addressed through-
out this paper takes into account popular LS algorithms such as HC, SA or TS.
The designed and implemented approaches have been experimentally validated
on a combinatorial optimization problem. To the best of our best of knowledge,
multi-start parallel LS approaches have never been widely investigated so far.

The idea of our methodology is based on two natural schemes which exploit
the GPU in a different manner. In the first scheme, the multi-start model is
combined with the parallel evaluation of the neighborhood. The advantage of this
scheme is to maximize the GPU in terms of multiprocessor occupancy. However,
the performance of this scheme is limited due to the data transfers between the
CPU and the GPU. To deal with this issue, we have particularly focused on
the full distribution of the search process on GPU with the appropriate use of
memory. Applying such mechanism with an efficient memory management allows
to provide significant speed-ups (up to ×12). However, this second scheme could
also present some performance limitations when dealing with a small number of
LS executions.

In a general manner, the two proposed schemes are complementary and their
use strongly depends of the number of LSs to deal with. It would be interesting
to test the performance of our approaches with some combinatorial optimization
problems involving the use of different memories such as the constant and the
shared memory.

Another perspective of this work is to combine the multi-start on GPU with
a pure multi-core approach. Indeed, since this model has a high degree of par-
allelism, the CPU cores can also work in parallel in an independent manner.
Moreover, since nowadays the actual configurations have 4 and 8 cores, instead
of waiting the results back from the GPU, this computational power should be
well-exploited in parallel to provide additional accelerations.

References

1. Talbi, E.G.: Metaheuristics: From design to implementation. Wiley, Chichester
(2009)

2. Van Luong, T., Melab, N., Talbi, E.-G.: Local search algorithms on graphics pro-
cessing units. A case study: The permutation perceptron problem. In: Cowling, P.,
Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 264–275. Springer, Heidelberg
(2010)

3. Luong, T.V., Melab, N., Talbi, E.G.: Large neighborhood for local search algo-
rithms. In: IPDPS. IEEE Computer Society, Los Alamitos (2010)

4. Zhu, W., Curry, J., Marquez, A.: Simd tabu search with graphics hardware accel-
eration on the quadratic assignment problem. International Journal of Production
Research (2008)

5. Janiak, A., Janiak, W.A., Lichtenstein, M.: Tabu search on gpu. J. UCS 14(14),
2416–2426 (2008)

GPU-Based Multi-start Local Search Algorithms 335

6. Alba, E., Talbi, E.G., Luque, G., Melab, N.: 4. Metaheuristics and Parallelism. In:
Parallel Metaheuristics: A New Class of Algorithms, pp. 79–104. Wiley, Chichester
(2005)

7. Zomaya, A.Y., Patterson, D., Olariu, S.: Sequential and parallel meta-heuristics for
solving the single row routing problem. Cluster Computing 7(2), 123–139 (2004)

8. Melab, N., Cahon, S., Talbi, E.G.: Grid computing for parallel bioinspired algo-
rithms. J. Parallel Distributed Computing 66(8), 1052–1061 (2006)

9. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S.,
Hwu, M.W.: Program optimization carving for gpu computing. J. Parallel Distrib-
ributed Computing 68(10), 1389–1401 (2008)

10. NVIDIA: CUDA Programming Guide Version 3.0 (2010)
11. Group, K.: OpenCL 1.0 Quick Reference Card (2010)
12. Burkard, R.E., Deineko, V.G., Woeginger, G.J.: The travelling salesman problem

on permuted monge matrices. J. Comb. Optim. 2(4), 333–350 (1998)
13. Bader, D.A., Sachdeva, V.: A cache-aware parallel implementation of the push-

relabel network flow algorithm and experimental evaluation of the gap relabeling
heuristic. In: Oudshoorn, M.J., Rajasekaran, S. (eds.) ISCA PDCS, ISCA, pp.
41–48 (2005)

14. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with cuda. ACM Queue 6(2), 40–53 (2008)

15. Dell’Amico, M., Trubian, M.: Applying tabu search to the job-shop scheduling
problem. Ann. Oper. Res. 41(1-4), 231–252 (1993)

16. NVIDIA: GPU Gems 3. Chapter 37: Efficient Random Number Generation and
Application Using CUDA (2010)

17. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17(4-5), 443–455 (1991)

Active Learning of Combinatorial Features for

Interactive Optimization

Paolo Campigotto, Andrea Passerini, and Roberto Battiti

DISI - Dipartimento di Ingegneria e Scienza dell’Informazione
Università degli Studi di Trento

{campigotto,passerini,battiti}@disi.unitn.it

http://www.disi.unitn.it

Abstract. We address the problem of automated discovery of preferred
solutions by an interactive optimization procedure. The algorithm itera-
tively learns a utility function modeling the quality of candidate solutions
and uses it to generate novel candidates for the following refinement. We
focus on combinatorial utility functions made of weighted conjunctions
of Boolean variables. The learning stage exploits the sparsity-inducing
property of 1-norm regularization to learn a combinatorial function from
the power set of all possible conjunctions up to a certain degree. The op-
timization stage uses a stochastic local search method to solve a weighted
MAX-SAT problem. We show how the proposed approach generalizes to
a large class of optimization problems dealing with satisfiability modulo
theories. Experimental results demonstrate the effectiveness of the ap-
proach in focusing towards the optimal solution and its ability to recover
from suboptimal initial choices.

1 Introduction

The field of combinatorial optimization focussed in the past mostly on solving
well defined problems, where the function f(x) to optimize is given, either in
a closed form, or as a simulator which can be interrogated to deliver f values
corresponding to inputs, possibly with some noise leading to stochastic opti-
mization. One therefore distinguishes two separated phases, a first one related
to defining the problem through appropriate consulting, knowledge elicitation,
modeling steps, and a second one dedicated to solving the problem either opti-
mally, in the few cases when this is possible, or approximately, in most real-world
cases leading to NP-hard problems.

Unfortunately the above picture is not realistic in many application scenarios,
where learning about the problem definition goes hand in hand with delivering
a set of solutions of improving quality, as judged by a decision maker (DM)
responsible for selecting the final solution. In particular, this holds in the con-
text of multi-objective optimization, where one aims at maximizing at the same
time a set of functions f1, ..., fn. Multi-objective optimization, when cast in
the language of machine learning, is a paradigmatic case of lack of information,
where only some relevant building blocks (features) are initially given as the in-
dividual function fi’s, but their combination into a utility function modeling the

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 336–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.disi.unitn.it

Active Learning of Combinatorial Features for Interactive Optimization 337

preferences of the DM is not given and has to be learnt by interacting with the
DM [1]. Dealing with human DM, characterized by limited patience and bounded
rationality, demands for some form of strategic production of candidates to be
evaluated (query learning), and requires to account for the possible mistakes and
dynamical evolution of her preferences (learning about concrete possibilities may
lead somebody to change his/her initial objectives and evaluations). A further
complication is related to the difficulty of delivering quantitative judgments by
the DM, who is often better off in ranking possibilities more than in deliver-
ing utility values. The interplay of optimization and machine learning has been
advocated in the past for example in the Reactive Search Optimization (RSO)
context, see [2,3] also for an updated bibliography and [4] for an application of
RSO in the context of multi-objective optimization.

In this work, we focus on a setting in which the optimal utility function is
both unknown and complex enough to prevent exhaustive enumeration of possi-
ble solutions. We start by considering combinatorial utility functions expressed
as weighted combinations of terms, each term being a conjunction of Boolean
features. A typical scenario would be a house sale system suggesting candidate
houses according to their characteristics, such as “the kitchen is roomy”, “the
house has a garden”,“the neighbourhood is quiet”. The task can be formalized
as a weighted MAX-SAT problem, a well-known formalization which allows to
model a large number of real-world optimization problems. However, in the set-
ting we consider here the underlying utility function is unknown and has to be
jointly and interactively learned during the optimization process.

Our method consists of an iterative procedure alternating a search phase
and a model refinement phase. At each step, the current approximation of the
utility function is used to guide the search for optimal configurations; preference
information is required for a subset of the recovered candidates, and the utility
model is refined according to the feedback received. A set of randomly generated
examples is employed to initialize the utility model at the first iteration.

We show how to generalize the proposed method to more complex utility
functions which are combinations of predicates in a certain theory of interest. A
standard setting is that of scheduling, where solutions could be starting times for
each job, predicates define time constraints for related jobs, and weights spec-
ify costs paid for not satisfying a certain set of constraints. The generalization
basically consists of replacing satisfiability with satisfiability modulo theory [5]
(SMT). SMT is a powerful formalism combining first-order logic formulas and
theories providing interpretations for the symbols involved, like the theory of
arithmetic for dealing with integer or real numbers. It has received consistently
increasing attention in recent years, thanks to a number of successful applications
in areas like verification systems, planning and model checking.

Experimental results on both weighted MAX-SAT and MAX-SMT problems
demonstrate the effectiveness of our approach in focusing towards the optimal
solutions, its robustness as well as its ability to recover from suboptimal initial
choices.

338 P. Campigotto, A. Passerini, and R. Battiti

This manuscript is organized as follows: Section 2 introduces the algorithm
for the SAT case. Section 3 introduces SMT and its weighted generalization and
shows how to adapt our algorithm to this setting. Related works are discussed
in Section 4. Section 5 reports the experimental evaluation for both SAT and
SMT problems. A discussion including potential research directions concludes
the paper.

2 Overview of Our Approach

Candidate configurations are n dimensional Boolean vectors x consisting of cata-
log features. The only assumption we make on the utility function is its sparsity,
both in the number of features (from the whole set of catalog ones) and in the
number of terms constructed from them. We rely on this assumption in designing
our optimization algorithm.

The candidate solutions are obtained by applying a stochastic local search (SLS)
algorithm that searches the Boolean vectors maximizing the weighted sum of the
terms of the learnt utility model. At each iteration, the algorithm chooses between
a random and a greedymove with probabilitywp and 1−wp, respectively. A greedy
move consists of flipping one of the variables leading to the maximum increase in
the sum of the weights of the satisfied terms (if improving moves are not available,
the least worsening move is accepted). The main difference w.r.t the “standard”
weighted SLS algorithms consists of the DNF rather than CNF representation,
which we believe to be a more natural choice when modeling combined effects of
multiple non-linearly related features. Since switching from disjunctive to con-
junctive normal form representations may involve an exponential increase in the
size of the Boolean formula, we implemented a method that operates on formulae
represented as a weighted linear sum of terms.

The candidate solutions generated by the optimizer during the search phase
are first sorted by their predicted score values and then shuffled uniformly at ran-
dom. The first s/2 configurations are selected, where s is the number of the ran-
dom training examples generated at the initialization phase. The evaluation of the
selected configurations completes the generation of the new training examples.

The refinement of the utility model consists of learning the weights of the
terms, discarding the terms with zero weight. In the following, we assume that
the available feedback consists of a quantitative score. We thus learn the utility
function by performing regression over the set of the Boolean vectors. Adapting
the method to other forms of feedback, such as ranking of sets of solutions, is
straightforward as will be discussed in Section 6. We address the regression task
by the Lasso [6]. The Lasso is an appropriate choice on problem domains with
many irrelevant features, as its 1-norm regularization can automatically select
input features by assigning zero weights to the irrelevant ones. Feature selection
is crucial for achieving accurate prediction if the underlying model is sparse [7].

Let D = (xi, yi)i=1...m the set of m training examples, where xi is the Boolean
vector and yi its preference score. The learning task is accomplished by solving
the following lasso problem:

Active Learning of Combinatorial Features for Interactive Optimization 339

1. procedure interactive optimization
2. input: set of the catalog variables
3. output: configuration optimizing the learnt utility function
4. /* Initialization phase */
5. initialize training set D by selecting s configurations uniformly at random;
6. get the evaluation of the configurations in D;
7. while (termination criterion)
8. /* Learning phase */
9. Based on D, select terms and relative weights for current
10. weighted MAX-SAT formulation (Eq. 1);
11. /* Optimization phase */
12. Get new configurations by optimizing current weighted MAX-SAT
13. formulation;
14. /* Training examples selection phase */
15. Select s/2 configurations, get their evaluation and add them to D;
16. return configuration optimizing the learnt weighted MAX-SAT formulation

Fig. 1. Pseudocode for the interactive optimization algorithm

minw

m∑
i=1

(yi − wT · Φ(xi))2 + λ||w||1 (1)

where the mapping function Φ projects sample vectors to the space of all possible
conjunctions of up to d Boolean variables. The learnt function f(x) = wT ·Φ(x)
will be used as the novel approximation of the utility function. A new iteration of
our algorithm can now take place. The pseudocode of our algorithm is in Fig. 1.

Note that dealing with the explicit projection Φ in Eq. 1 is tractable only for
a rather limited number of catalog features and size of conjunctions d. This will
typically be the case when interacting with a human DM. A possible alterna-
tive consists of directly learning a non-linear function of the features, without
explicitly projecting them to the resulting higher dimensional space. We do this
by kernel ridge regression [8] (Krr), where 2-norm regularization is used in place
of 1-norm. The resulting dual formulation can be kernelized into:

α = (K + λI)−1y

where K and I are the kernel and identity matrices respectively and λ is again
the regularization parameter. The learnt function is a linear combination of
kernel values between the example and each of the training instances: f(x) =∑m

i=1 αiK(x,xi). We employ a Boolean kernel [9] which implicitly considers all
conjunctions of up to d features:

KB(x,x′) =
d∑

l=1

(
xT · x′

l

)
With the lasso, the function Φ(·) maps the Boolean variables to all possible

terms of size up to d. This allows for an explicit representation of the learnt

340 P. Campigotto, A. Passerini, and R. Battiti

utility function f as a weighted combination of the selected Boolean terms. On
the other hand, in the kernel ridge regression case terms are only implicitly
represented via the Boolean kernel KB. In both cases, the value of the learnt
function f is used to guide the search of the SLS algorithm. In the following, the
two proposed approaches are referred as the Lasso and the Krr algorithms. As
will be shown in the experimental section, the sparsity-inducing property of the
Lasso allows it to consistently outperform Krr. The problem of addressing more
complex scenarios, possibly involving non-human DM, where we can not afford
an explicit projection, will be discussed in Section 6.

3 Satisfiability Modulo Theory

In the previous section, we assumed our optimization task could be cast into
a propositional satisfiability problem. However, many applications of interest
require or are more naturally described in more expressive logics as first-order
logic (FOL), involving quantifiers, functions and predicates. In these cases, one
is usually interested in validity of a FOL formula with respect to a certain back-
ground theory T fixing the interpretation of (some of the) predicate and function
symbols. A general purpose FOL reasoning system such as Prolog, based on the
resolution calculus, needs to add to the formula a conjunction of all the axioms
in T . This is, for instance, the standard setting we consider in inductive logic
programming when verifying whether a certain hypothesis covers an example
given the available background knowledge. Whenever the cost of including such
additional background theory is affordable, our algorithm can be applied rather
straightforwardly.

Unfortunately, adding all axioms of T is not viable for many theories of inter-
est: consider for instance the theory of arithmetic, which restricts the interpre-
tation of symbols such as +,≥, 0, 5. A more efficient alternative consists of using
specialized reasoning methods for the background theory of interest. The result-
ing problem is known as satisfiability modulo theory (SMT)[5] and has drawn a
lot of attention in recent years, guided by its applicability to a wide range of
real-world problems. Among them, consider, for example, problems arising in
formal hardware/software verification or in real-time embedded systems design.
Popular examples of useful theories include various theories of arithmetic over
reals or integers such as linear or difference ones. Linear arithmetic considers +
and − functions alone, applied to either numerical constants or variables, plus
multiplication by a numerical constant. Difference arithmetic is a fragment of
linear arithmetic limiting legal predicates to the form x − y ≤ c, where x, y
are variables and c is a numerical constant. Very efficient procedures exists for
checking satisfiability of difference logic formulas [10]. A number of theories have
been studied apart from standard arithmetic ones (e.g., the theory of bit-vector
arithmetic to model machine arithmetic).

Active Learning of Combinatorial Features for Interactive Optimization 341

1. procedure SMT-solver(ϕ)
2. ϕ′ = α(ϕ)
3. while (true)
4. (r,M) ← SAT(ϕ′)
5. if r = unsat then return unsat

6. (r,J) ← T-Solver(β(M))
7. if r = sat then return sat

8. C ← ∨l∈J ¬α(l)
9. ϕ′ ← ϕ′ ∧ C

Fig. 2. Pseudocode for a basic lazy SMT-solver

3.1 Satisfiability Modulo Theory Solvers

The most successful SMT solvers can be grouped into the two main approaches
named eager and lazy. The eager approach consists of developing theory-specific
and efficient translators which translate a query formula into an equisatisfiable
propositional one, much like compilers do when optimizing the code generated
from a high-level program. Lazy approaches, on the other hand, work by building
efficient theory solvers, inference systems specialized on a theory of interest.
These solvers are integrated as submodules into a generic SAT solver. In the rest
of the paper we will focus on this latter class of SMT solvers, which we integrated
in our optimization algorithm. The simplest approach for building a lazy SMT-
solver consists of alternating calls to the satisfiability and the theory solver
respectively, until a solution satisfying both solvers is retrieved or the problem
is found to be unsatisfiable. Let ϕ be a formula in a certain theory T , made of a
set of n predicates A = {a1, . . . , an}. A mapping α maps ϕ into a propositional
formula α(ϕ) by replacing its predicates with propositional variables pi = α(ai).
The inverse mapping β replaces propositional variables with their corresponding
predicates, i.e., β(pi) = ai. For example, consider the following formula in a
non-linear theory T:

(cos(x) = 3 + sin(y)) ∧ (z ≤ 8) (2)

Then, p1 = α(cos(x) = 3 + sin(y)) and p2 = α(ai ≤ 8). Note that the truth
assignment p1 = true, p2 = false is equivalent to the statement (cos(x) =
3 + sin(y)) ∧ (z > 8) in the theory T.

Figure 2 reports the basic form [11] of an SMT algorithm. SAT(ϕ) calls the SAT
solver on the ϕ instance, returning a pair (r, M), where r is sat if the instance
is satisfiable, unsat otherwise. In the former case, M is a truth assignment
satisfying ϕ. T-Solver(S) calls the theory solver on the formula S and returns
a pair (r, J), where r indicates if the formula is satisfiable. If r =unsat, J is a
justification for S, i.e any unsatisfiable subset J ⊂ S. The next iteration calls
the SAT solver on an extended instance accounting for this justification.

State-of-the-art solvers introduce a number of refinements to this basic strat-
egy, by pursuing a tighter integration between the two solvers. A common under-
lying idea is to prune the search space for the SAT solver by calling the theory

342 P. Campigotto, A. Passerini, and R. Battiti

solver on partial assignments and propagating its results. Finally, combination
methods exist to jointly employ different theories, see [12] for a basic procedure.

3.2 Weighted MAX-SMT

Weighted MAX-SMT generalizes SMT problems much like weighted MAX-SAT
does with SAT ones. While a body of works exist addressing weighted MAX-
SAT problems, the former generalization has been tackled only recently and very
few solvers have been developed [13,14,15]. The simplest formulation consists
of adding a cost to each or part of the formulas to be jointly satisfied, and
returning the assignment of variables minimizing the sum of the costs of the
unsatisfied clauses, or a satisfying assignment if it exists. The following is a
“weighted version” of Eq. 2:

5 · (cos(x) = 3 + sin(y)) + 12 · (z ≤ 8) (3)

where 5 and 12 are the cost of the violation of the first and the second predicate,
respectively.

Generalizing, consider a true utility function f expressed as a weighted sum
of terms, where a term is the conjunction of up to d predicates defined over the
variables in the theory T . The set of all n possible predicates represents the
search space S of the MAX-SAT solver integrated in the MAX-SMT solver. Our
approach learns an approximation f̂ of f and gets one of its optimizers v from
the MAX-SMT solver. The optimizer (and in general each candidate solution
in the theory T) identifies an assignment p∗ = (p∗1, . . . , p

∗
n) of Boolean values

(p∗i = {true, false}) to the predicates in S. The DM is asked for a feedback on
the candidate solution v and returns a possibly noisy quantitative score s ≈ f(v).
The pair (p∗, s) represents a new training example for our approach. In order
to obtain multiple training examples, we optimize again f̂ with the additional
hard1 constraint generated by the disjunction of all the terms of f̂ unsatisfied
by p∗ . For example, let t1 and t5 be the terms of f̂ unsatisfied by p∗, then the
hard constraint becomes:

(t1 ∨ t5)

If p∗ satisfies all the terms of f̂ , i.e., f̂(p∗) = 0, the additional hard constraint
generated is

(¬p∗1 ∨ ¬p∗2 . . . ∨ ¬p∗n)

which excludes p∗ from the feasible solutions set of f̂ . The generation of the train-
ing examples is iterated till the desired number of examples have been created
or the hard constraints generated made the MAX-SMT problem unsatisfiable.

The learning component of our algorithm is then re-trained, including in the
training set the new collected examples and the approximation of the true utility
function is refined. A new optimization phase can now take place (see Fig. 1).

1 Hard constraints do not have a cost, and they have to be satisfied. On the contrary,
the terms with a cost, which may or may not be satisfied, are called soft constraints.

Active Learning of Combinatorial Features for Interactive Optimization 343

The mechanism creating the training examples is motivated by the tradeoff
between the selection of good solutions (w.r.t. the current approximation of the
true utility function) and the diversification of the search process.

4 Related Works

Active learning is a hot research area and a broad range of different approaches
has been proposed (see [16] for a review). The simplest and most common frame-
work is that of uncertainty sampling: the learner queries the instances on which
it is least certain. However, the ultimate goal of a recommendation or opti-
mization system is selecting the best instance(s) rather than correctly modeling
the underlying utility function. The query strategy should thus tend to suggest
good candidate solutions and still learn as much as possible from the feedback
received. Typical areas where research on this issue is quite popular are single-
and multi-objective interactive optimization [1] and information retrieval [17].
The need to trade off multiple requirements in this active learning setting is
addressed in [18] where the authors consider relevance, diversity and density in
selecting candidates. Note that our approach relies on query synthesis rather
than selection, as de-novo candidate solutions are generated by the SLS algo-
rithm. Nonetheless, our diversification strategies are very simple and could be
significantly improved by taking advantage of the aforementioned literature.

Choosing relevant features according to their weight within the learnt model is
a common selection strategy (see e.g. [19]). When dealing with implicit feature
spaces as in kernel machines, the problem can be addressed by introducing a
hyper-parameter for each input feature, like a feature-dependent variance for
Gaussian kernels [20]. Parameters and hyper-parameters (or their relaxed real-
valued version) are jointly optimized trying to identify a small number of relevant
features. One-norm regularization [6] has the advantage of naturally inducing
sparsity in the set of selected features. Approaches also exist [21] which directly
address the combinatorial problem of zero-norm optimization.

A large body of recent work exists for developing interactive approaches [1]
to multiobjective optimization. A common approach consists of modeling the
utility function as a linear combination of objectives, and iteratively updating
its weights trying to match the DM requirements. Our algorithm allows to deal
with complex non-linear interactions between (Boolean) objectives and, thanks
to the SMT extension, can be applied to a wide range of optimization problems.

Very recent works in the field of constraint programming [22] define the user
preferences in terms of soft constraints and introduce constraint optimization
problems where the data are not completely known before the solving process
starts. In particular, the work in [22] introduces an elicitation strategy for soft
constraint problems with missing preferences, with the purpose of finding the
solution preferred by the DM asking to reveal as few preferences as possible.
Despite the common purpose, this approach is different from ours. A major dif-
ference regards the preference elicitation problem considered. In [22] decision
variables and soft constraints are assumed to be known in advance and the in-
formation uncertainty consists only of missing preference values. On the other

344 P. Campigotto, A. Passerini, and R. Battiti

hand, our settings assume sparsity of the utility function, both in the number of
features (from the whole set of catalog features) and in the selection of the terms
constructed from them. Furthermore, our technique is robust to imprecise infor-
mation from the DM, modeled in terms of inaccurate preference scores for the
candidate solutions. Even if interval-valued constraints [23] have been introduced
to handle uncertainty in the evaluations of the DM, the experiments in [22] do
not consider the case of inconsistent preference information. Finally, while the
technique in [22] combines branch and bound search with preference elicitation
and the adoption of local search algorithms is matter of research, our approach
works straightforwardly with both incomplete and complete search techniques.

5 Experimental Results

The following empirical evaluation demonstrates the versatility and the efficiency
of our approach for the weighted MAX-SAT and the weighted MAX-SMT prob-
lems. The MAX-SMT tool used for the experiments is the “Yices” solver [13].

5.1 Weighted MAX-SAT

The Lasso and the Krr algorithms were tested over a benchmark of randomly
generated utility functions according to the triplet (number of features, number of
terms, max term size), where max term size is the maximum allowed number of
Boolean variables per term. We generate functions for: {(5, 3, 3), (6, 4, 3), (7, 6, 3),
(8, 7, 3), (9, 8, 3), (10, 9, 3)}. Each utility function has two terms with maximum
size. Terms weights are integers selected uniformly at random in the interval
[−100, 0)∪ (0, 100]. We consider as gold standard solution the configuration ob-
tained by optimizing the true utility function.

The number of catalog features is 40. The maximum size of terms is assumed
to be known. The walk probability parameter of the SLS algorithm wp is set
to 0.2. Furthermore, the score values of the training examples are affected by
Gaussian noise, with mean 0 and standard deviation 10.

We run a set of experiments for 10, 20, . . .100 initial training examples, for
the Lasso and the Krr versions of the algorithm. Results are expressed in terms
of the quality of the learnt utility function (Fig. 3) and of the approximation of
the gold solution (Fig. 4). Each point of the curves in the Fig. 3 and 4 is the
mean and the median values, respectively, over 400 runs with different random
seeds.

Fig. 3 shows the quality of the learnt utility function, in terms of the root
mean squared error (rmse) between the true and the predicted values for a
benchmark of 1000 test examples. A better approximation is generated by the
Lasso algorithm for all the considered true utility functions. Furthermore, while
increasing the number of training examples, a faster improvement is observed for
the Lasso w.r.t. the Krr algorithm. Consider, for example, the case of nine terms.
With 40 training examples, the performance of Krr is within 10 units from the
value observed for the Lasso method. When 100 examples are employed, the

Active Learning of Combinatorial Features for Interactive Optimization 345

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

3 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

4 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

6 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

7 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

8 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

9 terms

Fig. 3. Quality of the learnt utility function for an increasing number of training ex-
amples observed for the algorithms at the first iteration. The y-axis reports the root
mean squared error between the true and the predicted values for a benchmark of 1000
test examples. The x -axis contains the number of training examples. The solid blue
and the dashed green lines show the performance of the Lasso and the Krr algorithms,
respectively. See text for details.

mean rmse of the Lasso algorithm is less than value 30, while the performance
of the Krr method does not increase beyond value 50.

The superior performance of the Lasso algorithm is confirmed by the exper-
iments in Fig. 4, reporting the quality of the best configuration at the different
iterations for an increasing number of initial training examples. The best con-
figuration is the configuration optimizing the current approximation of the true
utility function. Its quality is measured in terms of the approximation error w.r.t.
the gold solution.

Considering the simplest problems with three and four terms, the performance
of Krr is comparable with the results obtained by Lasso, except at the first
iteration of Krr in the case of four terms true utility functions, where the gold
solution is not identified even with 100 initial training examples.

However, the Lasso approach outperforms the Krr results when the true util-
ity function includes at least six terms. First, note that the Lasso algorithm
succeeds in exploiting its active learning strategy, and converges rather quickly
to the optimal solution when enough iterations are provided. At the first iter-
ation its approximation error is above 40 even when 30 training examples are
used. At the third iteration, the Lasso algorithm identifies the gold standard
solution, when at least 60 training examples are available. On the other hand,
for true utility functions with more than seven terms Krr fails to improve over
its suboptimal solution when increasing the number of examples and iterations.
As a consequence, the Krr algorithm does not identify the gold solution, even

346 P. Campigotto, A. Passerini, and R. Battiti

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

3 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa
p
e
rf

o
rm

a
n
c
e

4 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

6 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

7 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

8 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

9 terms

Fig. 4. Learning curves for an increasing number of training examples observed for the
two algorithms at different iterations. The y-axis reports the solution quality, while
the x -axis contains the number of training examples. The dashed lines refer to the Krr
algorithm, while the solid lines are for the Lasso algorithm. Furthermore, red, green
and cyan colors show the performance of the algorithms at the first, the second and
the third iteration, respectively. See text for details.

Active Learning of Combinatorial Features for Interactive Optimization 347

in the case of 100 training examples. However, when very few training examples
are available, the Krr algorithm reaches a better approximation than Lasso.

5.2 Weighted MAX-SMT

SMT is a hot research area [11]. However, MAX-SMT techniques are very recent
and there are no well established publicly available benchmarks for weighted
MAX-SMT problems. Existing results [14] indicate that MAX-SMT solvers can
efficiently address real-world problems.

In this work, we modeled a scheduling problem as a MAX-SMT problem. In
detail, a set of five jobs must be scheduled over a given period of time. Each job
has a fixed known duration, the constraints define the overlap of two jobs or their
non-concurrent execution. The true utility function is generated by selecting
uniformly at random weighed terms over the constraints. The solution of the
problem is a schedule assigning a starting date to each job and minimizing the
cost, where the cost of the schedule is the sum of the weights of the violated
terms of the true utility function. The temporal constraints are expressed by
using the difference arithmetic theory. In detail, let si and di, with i = 1 . . . 5, be
the starting date and the duration of the i-th job, respectively. If si is scheduled
before sj , the constraint expressing the overlap of the two jobs is sj − si < di,
while their non-concurrent execution is encoded by sj − si ≥ di Note that there
are 40 possible constraints for a set of 5 jobs. The maximum size of the terms of
the true utility function is three and it is assumed to be known. Their weights
are distributed uniformly at random in the range [1, 100]. Similarly to the MAX-
SAT case, the experimental setting includes Gaussian noise (with mean 0 and
standard deviation 10) affecting the cost values of the training examples.

Fig. 5 depicts the performance of the Lasso algorithm for the cases of 3, 4,
6, 7, 8, 9 terms in the true utility function. The y-axis reports the solution
quality measured in terms of deviation from the gold solution, while the x -axis
contains the number n of training examples at the first iteration. At the following
iterations, n/2 examples are added to the training set (see Sec. 2). Each point
of the curves is the median value over 400 runs with different random seeds.

As expected, the learning problem becomes more challenging while increas-
ing the number of terms. However, the results for the scheduling problem are
promising: our approach identifies the gold standard solution in all the cases.
In detail, less than 40 examples are required to identify the gold solution at
the second iteration. At the third iteration our algorithm needs only 20 training
examples for convergence to the gold solution.

Finally, note that the approach based on Krr does not maintain an explicit
representation of the learnt utility function, and therefore a direct extension to
SMT problems is not possible for the current MAX-SMT solvers which tightly
integrate SAT and theory solvers as discussed in Section 3.

348 P. Campigotto, A. Passerini, and R. Battiti

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

3 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

4 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

6 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

7 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

8 terms

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

train exa

p
e
rf

o
rm

a
n
c
e

9 terms

Fig. 5. Learning curves observed at different iterations of the Lasso algorithm while
solving the scheduling problem. The y-axis reports the solution quality, while the x -axis
contains the number of training examples. Red, green and cyan colors show the per-
formance of the algorithm at the first, the second and the third iteration, respectively.
See text for details.

6 Discussion

We presented an interactive optimization strategy for combinatorial problems
over an unknown utility function. The algorithm alternates a search phase using
the current approximation of the utility function to generate candidate solutions,
and a refinement phase exploiting feedback received to improve the approxima-
tion. One-norm regularization is employed to enforce sparsity of the learned
function. An SLS algorithm addresses the weighted MAX-SAT problem result-
ing from the search phase. We show how to adapt the approach to a large class
of relevant optimization problems dealing with satisfiability modulo theories.
Experimental results on both weighted MAX-SAT and MAX-SMT problems
demonstrate the effectiveness of our approach in focusing towards the optimal
solutions, its robustness as well as its ability to recover from suboptimal initial
choices.

The algorithm can be generalized in a number of directions. The availability
of a quantitative feedback is not necessarily straightforward, especially when a
human DM is involved in the loop. A more affordable request is often that of
ranking sets of candidates according to preference. Our setting can be easily
adapted to this setting by replacing the squared error loss in the learning stage
with appropriate ranking losses. The simplest solution consists of formulating it
as correctly ordering each pair of instances as done in support vector ranking,
and applying 1-norm SVM [24]. More complex ranking losses have been proposed

Active Learning of Combinatorial Features for Interactive Optimization 349

in the literature (see for instance [25]), especially to increase the importance
of correctly ranking the best solutions, and could be combined with 1-norm
regularization.

Our experimental evaluation is focused on small-scale problems, typical of an
interaction with a human DM. In principle, when combined with appropriate
SMT solvers, our approach could be applied to larger real-world optimization
problems, whose formulation is only partially available. In this case, a local
search algorithm rather than a complete solver will be used during the optimiza-
tion stage, as showed in the experiments on the weighted MAX-SAT instances.
However, the cost of requiring an explicit representation of all possible conjunc-
tion of predicates (even if limited to the unknown part) would rapidly produce
an explosion of computational and memory requirements. One option is that
of resorting to an implicit representation of the function to be optimized, like
the one we used in the Krr algorithm. Kernelized versions of zero-norm regu-
larization [26] could be tried in order to enforce sparsity in the projected space.
However, the lack of an explicit formula would prevent the use of all the effi-
cient refinements of SMT solvers, based on a tight integration between SAT and
theory solvers. A possible alternative is that of pursuing an incremental feature
selection strategy and iteratively solving increasingly complex approximations of
the underlying problem. We are currently investigating both research directions.

Finally, we are also considering larger preference elicitation problems, with
both known hard constraints limiting the set of feasible solutions and unknown
user preferences. This setting allows us to address many real-world scenarios.
In the house sale system, for instance, the hard constraints could define the
available house types or locations, and the preferences of the DM would drive
the search within the set of feasible solutions.

References

1. Branke, J., Deb, K., Miettinen, K., S�lowiński, R. (eds.): Multiobjective Optimiza-
tion: Interactive and Evolutionary Approaches. Springer, Heidelberg (2008)

2. Battiti, R., Brunato, M., Mascia, F.: Reactive search and intelligent optimization.
Springer, Heidelberg (2008)

3. Battiti, R., Brunato, M.: Reactive search optimization: Learning while optimizing.
In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, 2nd edn. Int.
Series in Op. Res. & Man. Sci., vol. 146, pp. 543–571. Springer Science, Heidelberg
(2010)

4. Battiti, R., Campigotto, P.: Reactive Search Optimization: Learning While Op-
timizing. An Experiment in Interactive Multi-Objective Optimization. In: VIII
Metaheur. Int. Conf. (MIC 2009), Germany. LNCS, Springer, Heidelberg (2009)

5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)

6. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58, 267–288 (1996)

7. Friedman, J., Hastie, T., Rosset, S., Tibshirani, R.: Discussion of boosting papers.
Annals of Statistics 32, 102–107 (2004)

350 P. Campigotto, A. Passerini, and R. Battiti

8. Suanders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in
dual variables. In: ICML 1998 (1998)

9. Khardon, R., Roth, D., Servedio, R.: Efficiency versus convergence of boolean ker-
nels for on-line learning algorithms. Journal of Artif. Int. Res. 24(1), 341–356 (2005)

10. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

11. de Moura, L., Bjorner, N.: Satisfiability modulo theories: An appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer,
Heidelberg (2009)

12. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

13. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

14. Nieuwenhuis, R., Oliveras, A.: On sat modulo theories and optimization problems.
In: In Theory and App. of Sat. Testing. LNCS, pp. 156–169. Springer, Heidelberg
(2006)

15. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: Foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg
(2010)

16. Settles, B.: Active learning literature survey. Technical Report Computer Sciences
Technical Report 1648, University of Wisconsin-Madison (2009)

17. Radlinski, F., Joachims, T.: Active exploration for learning rankings from click-
through data. In: 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2007), pp. 570–579. ACM Press, New York
(2007)

18. Xu, Z., Akella, R., Zhang, Y.: Incorporating diversity and density in active learning
for relevance feedback. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007.
LNCS, vol. 4425, pp. 246–257. Springer, Heidelberg (2007)

19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

20. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Machine Learning 46(1-3), 131–159 (2002)

21. Kaizhu, H., Irwin, K., Michael, R.: Direct Zero-Norm Optimization for Feature
Selection. In: IEEE International Conference on Data Mining, pp. 845–850 (2008)

22. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies
for soft constraint problems with missing preferences: Properties, algorithms and
experimental studies. Artif. Intell. 174(3-4), 270–294 (2010)

23. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Wilson, N.: Interval-valued soft
constraint problems. Annals of Mat. and Art. Int. 58, 261–298 (2010)

24. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm Support Vector Machines.
In: Neural Information Processing Systems. MIT Press, Cambridge (2003)

25. Chakrabarti, S., Khanna, R., Sawant, U., Bhattacharyya, C.: Structured learning
for non-smooth ranking losses. In: 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2008, pp. 88–96. ACM, New York
(2008)

26. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero norm with
linear models and kernel methods. Journal of Mach. Learn. Res. 3, 1439–1461
(2003)

A Genetic Algorithm Hybridized with the

Discrete Lagrangian Method for Trap Escaping

Madalina Raschip and Cornelius Croitoru

“Al.I.Cuza” University of Iasi, Romania
{mionita,croitoru}@info.uaic.ro

Abstract. This paper introduces a genetic algorithm enhanced with
a trap escaping strategy derived from the dual information presented
as discrete Lagrange multipliers. When the genetic algorithm is trapped
into a local optima, the Discrete Lagrange Multiplier method is called for
the best individual found. The information provided by the Lagrangian
method is unified, in the form of recombination, with the one from the
last population of the genetic algorithm. Then the genetic algorithm is
restarted with this new improved configuration. The proposed algorithm
is tested on the winner determination problem. Experiments are con-
ducted using instances generated with the combinatorial auction test
suite system. The results show that the method is viable.

1 Introduction

Genetic algorithms (GAs) are powerful optimization techniques working with
populations of individuals which are improved each iteration using specific op-
erators. When dealing with difficult real-world problems, they may be trapped
into local optima. Different methods for solving this problem were developed in
literature. Maintaining the population diversity is a preemptive way. A straight-
forward procedure is to increase the mutation rate after a change has been
detected. The loss of diversity is dependent on the selection intensity. Scaling
techniques address the problem for fitness-proportionate selection schemes. Nich-
ing methods assist the selection procedure in order to reduce the effect of the
genetic drift caused by this [1]. The island model [2], the random immigrants [3],
restarting [4] are other examples of techniques used for preserving diversity. The
restarting techniques are used inside genetic algorithms when some threshold is
reached (local convergence is detected typically when no progress has been made
for a long time). The current run is terminated and the algorithm is restarted
with a new seed. Recently, restarting techniques have been applied to complete
algorithms based on backtracking for constraint satisfaction problems, including
the satisfiability problem [5]. They yield good performance improvements.

Recent publications describe hybrid approaches which often lead to faster
and more robust algorithms for hard optimization problems [6]. The traditional
methods come in two distinct flavors: heuristic search algorithms which find a
satisfactory even if not necessarily optimal solution and exact algorithms which

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 351–363, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

352 M. Raschip and C. Croitoru

guaranty for finding a provably optimal solution. Hybrid methods were developed
in order to borrow ideas from both sources.

In particular, the hybridization of metaheuristics with (integer) linear pro-
gramming (LP) techniques have proven to be feasible and useful in practice [7].
The two complementary techniques benefit from the synergy. The information
provided by the LP-relaxed solutions could be exploited inside metaheuristics
for creating promising initial solutions, inside repairing procedures, or to guide
local improvement [7]. Approaches which use dual variables and the relations
between primal and dual variables are also present in literature. For example,
in [8] the shadow prices of the relaxed Multi-constrained Knapsack problem are
used by a genetic algorithm inside a repairing procedure. Ratios based on the
shadow prices give the likeliness of the items to be included in a solution. In [9]
a primal-dual variable neighborhood search for the simple plant location prob-
lem is presented. After a primal feasible solution is obtained using a variable
neighborhood decomposition search, a dual solution which exploits the comple-
mentary slackness conditions is created. The dual solution is transformed into
an exact solution and used to derive a good lower bound and to strengthen next
a Branch and Bound algorithm. The Lagrange multipliers could also be used in-
side metaheuristics. For example, in [11] an approach that combines Lagrangian
decomposition with local search based metaheuristics, like variable neighbor-
hood descent method, was proposed for the design of the last mile in fiber optic
networks.

In [10] a hybrid technique based on duality information is proposed in order to
escape from local optima. When the evolutionary algorithm reaches a local trap,
the method leads the search out of a local optima. It constructs the appropriate
dual relaxed space and improves it. The evolutionary algorithm is then restarted
with a new population of primal individuals generated using the information
from the dual solutions. The method was applied for determining the winner in
combinatorial auctions.

The new approach presented here is based on the ideas from [10], but it uses a
Lagrange Multiplier method inside the genetic algorithm. The Discrete Lagrange
Multiplier (DLM) method is started with the initial solution equal to the best
individual from the genetic algorithm when this is stuck into a local optima. The
DLM method is a general search method based on the Lagrange multipliers (the
dual solutions). The Lagrange method will give a new solution to be used by the
GA in order to escape from the local optima. In contrast to local search methods
that restart from a new starting point when are trapped into a local optima, the
new method moves the search out of a local optima in a direction provided by
the recombination with the DLM solution. In the traditional methods based on
restarts, breaks in the trajectory are made. The new method escapes from a
local optima in a continuous trajectory. The advantage is given by the fact that
the optima may be in the vicinity of the already found local optima.

The method was tested for the winner determination problem (WDP) from
the combinatorial auction field. In combinatorial auctions, multiple distinct items
are sold simultaneously and the bidders may bid on combination of items [12].

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method 353

The valuation for a combination of items is not necessarily equal to the sum of
the individual items. This expressiveness can lead to more efficient allocations,
as the applications in many real-world problems has demonstrated [13]. The
problem of determining the winners is computational complex (NP-complete
and inapproximable) [14].

The paper is organized as follows. Section 2 presents the new approach. In the
following section the winner determination problem together with the application
of the general scheme for the WDP is described. Next, the experimental results
on the generated instances are shown. Finally, conclusions are drawn.

2 The Hybrid Method

The method follows the ideas from [10]. When the genetic search reaches a local
trap, the approach runs the Discrete Lagrange Multiplier method, having as
starting point the best individual from the (primal) genetic algorithm. Because
of time constraints, the DLM method runs only for the best individual.

The Discrete Lagrange Multiplier method is the discrete version of the con-
tinuous Lagrange Multipliers method, which uses difference equations instead
of using differential calculus. The method searches for saddle points in discrete
neighborhoods. It performs ascents in the original-variable subspace and descents
in the Lagrange-multiplier subspace. When the search reaches a local optima,
the DLM method uses the Lagrange multipliers to lead the search out of the
local optima.

The DLM algorithm helps the genetic algorithm to escape from the local op-
tima. The approach restarts the genetic algorithm with the initial configuration
modified: the last population of the genetic algorithm is recombined with the
solution provided by the DLM method. By using the past experience, in the form
of the last population of individuals, and the new information, which continues
the previous direction of search and which is resulted from a DLM run, the algo-
rithm is able to improve its future performance. These steps are iterated several
times, or until an optimum solution is found. The scheme of the algorithm is
presented in Figure 1.

In contrast to [10], the new scheme does not need to transform a primal
solution into a dual one. The dual solutions (the Lagrangian multipliers) are
initialized greedy and their values are changed ’online’ in accordance with the
modified primal solutions. Another benefit of the new scheme is that the DLM
algorithm provides a feasible solution, constructed from the Lagrangian saddle
point found, to be used in restarting the evolutionary algorithm. In the previous
approach, the new primal solutions after restarting are constructed in a greedy
manner from the dual ones.

In [15] a framework based on genetic algorithms and a constrained simulated
annealing method was proposed for solving discrete constrained optimization
problems. The simulated annealing technique provides initial solutions for the
genetic algorithm and could be replaced by the DLM method. The purpose of
using the DLM method in our approach is to escape from local optima.

354 M. Raschip and C. Croitoru

Population p

GA

operators

DLM
search

Lagrangian’s
saddle point

best

Population p+1

combine

Fig. 1. The GA hybridized with the DLM method scheme

3 The Hybrid Method Applied to WDP

3.1 Winner Determination

An auctioneer has a set of goods, M = {1, 2, ..., m} to sell. The buyers (bidders)
submit a set of bids, B = {B1, ..., Bn}. A bid is a tuple Bj = (Sj , pj) where
Sj ⊆ M is a set of goods and pj is a price. The winner determination problem is
to label the bids as winning or losing so as to maximize the auctioneer’s revenue
(the sum of the accepted bid prices) under the constraint that each good is
allocated to at most one bid. The problem can be formulated as an Integer
Linear Programming problem as follows:

max
n∑

j=1

pjxj

s.t.
∑

j|i∈Sj

xj ≤ 1, ∀i = 1, 2, ..., m (WDP)

xj ∈ {0, 1}, ∀j = 1, 2, ..., n

xj = 1 if bid j with price pj is selected in the solution and xj = 0 otherwise.
The definition assumes the free disposal case, i.e. not all items need to be covered.
If there is no free disposal, an equality is used in the constraint formulation.

Different methods for solving the problem were developed. Complete meth-
ods based on the Branch and Bound procedure [16] or linear programming [17]
were designed. Stochastic methods like stochastic local search [18], simulated
annealing [19] and genetic algorithms [20] have also been applied for solving the
problem. A heuristic method based on the Lagrangian relaxation with subgra-
dient optimization is proposed in [21]. The heuristic methods compare well with
CPLEX or with other exact algorithms.

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method 355

3.2 The Discrete Lagrangian Method for WDP

The Lagrange Multiplier methods have been developed for continuous constrained
optimization problems. For a minimization problem, they do descents in the orig-
inal space and ascents in the Lagrange-multiplier space. Equilibrium is reached
when an optimal solution is found.

The Discrete Lagrangian method (DLM) is a global search method which
works on discrete values. It was initially proposed for solving satisfiability prob-
lems [22]. A Lagrangian function determines the search direction. The method
escapes from a local optima by using the information provided by the Lagrange
multipliers.

Define the problem WDP (λ):

max

n∑
j=1

pjxj +
m∑

i=1

[λi(1 −
∑

j|i∈Sj

xj)] (WDP(λ))

s.t.xj ∈ {0, 1}, ∀j = 1, 2, ..., n

for any Lagrangian multiplier vector λ = (λ1, ..., λm) such that λi ≥ 0, for all
i = 1, 2, ..., m, as the discrete Lagrangian formulation of WDP. The formula-
tion where xj ∈ [0, 1] is the classical (continuous) Lagrangian formulation. The
Discrete Lagrangian function is defined as:

L(x, λ) =
n∑

j=1

pjxj +
m∑

i=1

[λi(1 −
∑

j|i∈Sj

xj)]

DLM searches for a saddle-point for the problem WDP (λ). A saddle-point
(x∗, λ∗) of L(x, λ) satisfies the following condition:

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

for all λ sufficiently close to λ∗ and for all x whose Hamming distance between
x∗ and x is 1.

The pseudo-code of the algorithm is given next (Algorithm 1). Note that the
solution x could be unfeasible because is a solution for the problem WDP (λ).

The step of updating the Lagrange multipliers is detailed next. Denote by
s(λ) = (si(λ)), ∀i = 1, 2, ..., m the subgradient vector.

si(λ) = 1 −
∑

j|i∈Sj

xj(λ)

The Lagrange multiplier λk (at iteration k) can be computed from λk−1 using
the following formula:

λk
i = λk−1

i − step size
LB − L(x, λ)
||s(λk−1)||2 si(λk−1) (1)

356 M. Raschip and C. Croitoru

Algorithm 1. DLM WDP(x init)
initialize the solution x (if exists x init then x = x init else set x random, in the
Lagrange space)
initialize the Lagrange multipliers λ (greedy)
step size = 1
while x is not a solution do

find the first (or best) neighbor, x′ of x (at distance 1)
if exists x′ then

replace x with x′

else
update Lagrange multipliers(step size)

end if
if after no consecutive iterations the best solution doesn’t change then

step size/ = 2
end if

end while
return the best feasible solution

where LB is the best lower bound found so far, and ||s(λ)|| is the norm of the
subgradient vector.

||s(λ)|| =

√√√√ m∑
i=1

si(λ)2

The Lagrange multiplier λ can be interpreted as the price for the items. The
subgradient si(λ) denotes the stock of item i. When an item is out of stock, i.e.
si(λ) < 0 (more bids request item i), the price for the item i, λi is increased.
Otherwise, if the item is not allocated si(λ) = 1, the price for the item is lowered
down. When si(λ) = 0, we have balanced the supply and the demand, so the
price of the item is not changed.

3.3 The Scheme of the Hybrid Algorithm for WDP

The genetic algorithm starts with a population of individuals, possible solutions
to the WDP problem. The individuals are evolved to better solutions by using
a selection scheme and specific operators like mutation and crossover.

An individual is encoded by a permutation of bids. A solution is constructed
according to the permutation. A first-fit algorithm is used to decode such a
permutation into a feasible solution. It starts with an empty allocation and it
considers each bid in the order determined by the permutation. A bid is included
in the solution if it satisfies the restrictions together with the previous selected
bids. This representation ensures feasibility of the children. A disadvantage is
that the search space becomes larger because the same solution can be encoded
by multiple permutations.

The scheme of the hybrid algorithm is presented bellow (Algorithm 2). The
initial population is generated randomly. The fitness function is equal to the

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method 357

Algorithm 2. PDLMGA()
init population
while stopping condition not met do

while not trapped into a local optima do
selection
apply operators
local optimization (use best dual relaxed solution)
keep best in population

end while
get best from population
bestDLM ← DLM(best)
recombine population with bestDLM

end while

objective function of the WDP problem, that is the auctioneer’s outcome. A
fitness proportional selection scheme is used, as well as the standard permutation
operators, namely uniform order based crossover and swap mutation.

After the application of the operators, each solution is improved using a local
optimization step. The same optimization method as in [10] is used. An unsatis-
fied bid is selected greedily to be added to the solution. The bid i with the largest
shadow surplus value pi/

∑
j∈Si

yj is considered. The dual prices yj of the best
dual relaxed solution, found at a previous step in DLM is used. The positions
of the new bid and the first bid from permutation in conflict with are swapped.
The assignment of bids is renewed. If the value of the new chromosome is better,
the algorithm continues for a number of iterations; otherwise the optimization
method stops.

The genetic algorithm uses the elitism mechanism; at each iteration the best
solution is kept in population. The algorithm iterates for a number of steps, or
until a local optima is reached.

When the genetic algorithm is stuck into a local optima, the DLM algorithm
is called. The primal starting point for DLM is the best individual from the
GA. All individuals from the last iteration of the GA are recombined using the
crossover operator with the solution found by DLM, transformed into a feasible
one. For constructing a feasible solution from a saddle point, the selected bids
are sorted in decreasing order of the reduced profit, (pi −

∑
j∈Si

yj)/|Si|. The
genetic algorithm is restarted for a number of steps.

4 Experiments

4.1 Experimental Settings

The method was tested on instances from the CATS test suite [23]. Each distribu-
tion models a realistic scenario. For example, the arbitrary distribution simulates
the auction of various electronic components; the regions distribution simulates
the auction of radio spectrum rights; etc. Problems from each of the main dis-
tributions were generated: arbitrary, matching, paths, regions and scheduling.

358 M. Raschip and C. Croitoru

Instances with a variable number of bids and items were generated. The number
of items ranges from 40 to 400 and the number of bids ranges from 50 to 2000.
Ten problem instances were drawn from each distribution.

The optimal solutions were determined using a mixed integer linear program-
ming solver [24]. If the solver could not give a solution in a reasonable amount
of time, the approximation algorithm ALPH [25] was considered. The ALPH
algorithm first runs an approximation algorithm on the linear programming re-
laxation of the problem. Then a hill-climbing algorithm improves the order of
the bids determined early. The ALPH heuristic was run with a small value for
the approximation error parameter of the linear programming phase ε = 0.01.
For eight instances (out of ten generated) from the arbitrary distribution the
LP solver was unable to find an exact solution. Four instances from the regions
distribution were not solved by the LP solver.

The new method, denoted by PDLMGA, uses a population size of 500 indi-
viduals, a crossover probability of 0.6 and a mutation probability of 0.02. The
maximum number of iterations is set to 500 and the number of consecutive iter-
ations without no change of the best was equal to 75. The number of restarts is
set to five. To avoid increasing the execution time, the DLM algorithm used the
step of finding the first best neighbor for the current solution. The algorithm was
stopped after 1500 maximum iterations and the number of consecutive iterations
without no change of the primal best was set to 30.

The PDLMGA method was compared against the stochastic algorithm ALPH,
the stochastic local search approach, Casanova [18] and the previous approach,
the PDGA algorithm [10]. In [25] it was shown that ALPH runs faster than
CPLEX on large problem instances. The ALPH algorithm was run with the
parameter ε equal with 0.2 (the same value as in the experiments from [25]). The
value of the approximation error is greater than the value used in the process
of finding ’the optimum’. The Casanova algorithm adds at each step unsatisfied
bids in a greedy or a random way depending on a specific probability, the ’walk’
probability. Within the profit, the age of a bid is also considered in the greedy
selection. The algorithm was tested with the walk probability of 0.2 and the
novelty probability of 0.02. The θr parameter was 0 (no soft restarting strategy).
The maximum number of steps from Casanova was equal to the product of the
number of individuals and the number of iterations. The number of independent
searches from Casanova was equal to the number of restarts from the genetic
algorithm. The PDGA algorithm has the same settings as the PDLMGA.

4.2 Results

Table 1 displays the results obtained for CATS instances with ’varsize’ bids. The
results are averaged over 20 independent runs for each problem instance, except
for the ALPH algorithm. As measure of comparison we used the gap from opti-
mum which is equal to the difference between the optimum value and the value of
the objective function for the solution found, divided by the optimum value. The
Wilcoxon Signed-Rank non-parametric test is conducted. The test is done for two
approaches: the PDLMGA and one algorithm from ALPH/Casanova/PDGA.

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method 359

Table 1. The average gap (in percents) for CATS instances

Distribution ALPH Casanova PDGA PDLMGA

arbitrary 2.3 10.8 8 3

matching 0.3 5 4.8 6.3

paths 0.3 12.1 6.9 2.2

regions -1 11.4 4.6 1.3

scheduling 0.2 2.2 0.7 0.4

Table 2. The mean and the standard deviation for ten instances of the paths data set

Instance optimal Casanova PDGA PDLMGA
(goods,bids) mean (stdev) mean (stdev) mean (stdev)

(219,1132) 60.71 51.04 (1.11) 51.54 (0.89) 57.77 (0.89)

(61,1198) 26.17 23.31 (0.37) 25.3 (0.17) 25.87 (0.11)

(51,279) 23.73 21.07 (0.58) 23.4 (0.15) 23.66 (0.06)

(302,185) 27.94 25.47 (0.49) 27.83 (0.11) 27.88 (0.09)

(159,1028) 45.7 39.39 (0.78) 40.73 (0.97) 44.33 (0.36)

(129,1913) 41.54 35.24 (0.57) 37.87 (0.8) 40.43 (0.24)

(44,1208) 17.39 15.58 (0.19) 16.9 (0.17) 17.24 (0.08)

(117,970) 43.31 38.53 (0.64) 39.7 (0.61) 42.03 (0.46)

(189,1332) 55.18 47.83 (0.80) 47.41 (1.06) 52.85 (0.42)

(90,789) 38.42 34.37 (0.41) 36.77 (0.27) 37.81 (0.21)

The Null hypothesis was that there is no difference in the performances of the
two algorithms. p-values below 0.05 were considered to be statistically signifi-
cant. In the cases where the differences are significant, the winner is marked in
bold.

The best solutions are provided by the ALPH algorithm (note that ALPH is a
specially constructed algorithm for WDP). The new approach gives statistically
better results than the Casanova algorithm and the PDGA algorithm for almost
all distribution, except the matching data set. For five problems (out of eight)
from the arbitrary distributions and two problems (out of four) from the regions
distribution which are not solved by the LP-solver, the PDLMGA found better
’optima’ than ALPH.

The mean and the standard deviation of the best fitness value found by the
genetic algorithms and Casanova for the instances of the paths distribution are
shown in Table 2. The best means are provided by the PDLMGA approach. The
small values of the standard deviation of the algorithms show that the algorithms
are robust and find good solutions consistently.

Because the new approach is compared against the stochastic local search
algorithm, the time costs need to be considered. The local search approaches are
usually often orders of magnitudes faster. Figure 2 presents the time values (in
seconds) for the two algorithms1.

1 Computer settings: 2GHz Pentium single core processor, 1 GB RAM.

360 M. Raschip and C. Croitoru

 0

 10

 20

 30

 40

 50

 60

 70

arbitrary

m
atching

paths
regions

scheduling

ru
nn

in
g

tim
e

distributions

Casanova
PDLMGA

Fig. 2. The running time of the Casanova and PDLMGA approaches

In our case, the genetic algorithm runs faster than the Casanova approach.
Note that the GA uses a mechanism for early stopping in case of premature
convergence, while Casanova has not included such a mechanism. The DLM
method is simple and runs faster, as you can see from Table 3. Table 3 shows
how much time the new approach it spends for running the DLM method.

Table 3. The percent of time, from the total time of PDLMGA, spent for running
DLM

Distribution arbitrary matching paths regions scheduling

time% 0.21 0.27 0.31 0.19 0.29

How much does improve the new method? Next we analyze the amount of
the improvement achieved by the new method. We compared the new approach
with:

– a random restart algorithm, without the local optimization step (rrGA), and
– the same algorithm, only that the DLM method is started with a random

initial solution (rPDLMGA).

Table 4 shows the differences of the gaps (in percents) between the PDLMGA
and the two previous considered algorithms. The matching data set uses exten-
sively the dual information, when compared with rrGA. Starting the DLM with
a random solution has a weak influence for this data set. For the arbitrary, paths
and regions distributions the information gain is also evident in both cases. The
scheduling distribution is easy when solving with a GA.

The number of restarts. In Table 5 the gap versus the number of restarts
used in the PDLMGA for the paths distribution is represented. For each case

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method 361

Table 4. The differences of the gaps (average and standard deviation) in percents
between the considered algorithms and the PDLMGA

Distribution rrGA rPDLMGA

arbitrary 4.3 (0.09) 3.1 (0.04)

matching 13.5 (0.11) 1 (0.05)

paths 6.2 (0.06) 3.2 (0.02)

regions 3.2 (0.05) 1.7 (0.02)

scheduling 0.7 (0.04) 0 (0)

Table 5. The number of restarts vs. the gap for the paths distribution. For each
configuration the running time is shown (in seconds).

restarts 1 3 5 7

gap 5.5 3 2.2 1.9

time 5.6 11.8 16.5 21.2

the time requirements are also presented. As expected, the accuracy of the al-
gorithm improves when using a larger number of restarts. A trade-off between
performance and computation costs must be kept.

Evaluation on more difficult problems. Further experiments on instances
with a larger number of bids were made. Problems from the matching distribu-
tion with 1000 bids and from paths distribution with 10000 and 20000 bids (and
256 items) were considered. The same parameters were kept for the algorithms,
as in the experiments with smaller instances. The results are presented in Ta-
ble 6. The Wilcoxon Signed-Rank non-parametric test is conducted on pairs of
algorithms, except for ALPH. In cases where the differences are significant (at
the level 0.05) the winner is marked in bold.

Table 6. The average gap (in percents) for larger CATS instances

Distribution instances ALPH Casanova PDGA PDLMGA

matching (10000,256) 5 0.4 16.4 8.2 18.4

paths (10000,256) 10 0.3 20.1 10.6 4.7

paths (20000,256) 5 0.2 21.2 8.8 4.8

The generated instances appear not to be so difficult for the approximative
methods. Casanova is most influenced by the increasing size of the problems. The
solution quality of PDLMGA is superior to the one returned by Casanova and
PDGA for the large paths distributions. For the matching data set, the PDGA
seems to be the best alternative, when comparing the algorithms. ALPH again
finds better solutions.

For difficult problem instances approximative methods are preferred to the
classic ones. In experiments, Casanova outperformed the CASS algorithm, a

362 M. Raschip and C. Croitoru

deterministic approach, on large problem instances [18]. The results found by
the new approach compared favorably to simpler genetic algorithms and some
other local search techniques, like Casanova.

5 Conclusion

The paper investigates the development of a novel hybrid algorithm by combining
techniques from Evolutionary Computing and Integer Programming areas. The
new hybrid evolutionary algorithm uses the dual information in the form of
Lagrange multipliers to escape from a local optima. The method was applied
for an important problem from the combinatorial auction realm. It was tested
on different types of problem instances and the obtained allocations are very
close to the optimal solutions. Although at a first sight, the algorithm seems to
be complex and time consuming, it is fast enough to run in less than a minute
problems with tens of thousands of bids.

Comparisons to other trap escaping strategies are necessary. Applications on
other optimization problems is mandatory for the future work.

References

1. Mahfoud, S.: Niching methods for genetic algorithms. University of Illinois at
Urbana-Champaign (1996)

2. Starkweather, T., Whitley, D., Mathias, K.: Optimization using distributed genetic
algorithms. In: Schwefel, H.P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp.
176–185. Springer, Heidelberg (1991)

3. Cobb, H.G., Grefenstette, J.F.: Genetic algorithms for tracking changing environ-
ments. In: Proceedings of the 5th International Conference on Genetic Algorithms,
pp. 523–530 (1993)

4. Fukunaga, A.S.: Restart scheduling for genetic algorithms. In: Eiben, A.E., Bäck,
T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 357–
366. Springer, Heidelberg (1998)

5. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiabil-
ity and constraint satisfaction problems. Journal of Automated Reasoning 24(1/2),
67–100 (2000)

6. Raidl, G.: A Unified View on Hybrid Metaheuristics. In: Almeida, F., Blesa Aguil-
era, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M.
(eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)

7. Raidl, G., Puchinger, J.: Combining (Integer) Linear Programming Techniques
and Metaheuristics for Combinatorial Optimization. In: Hybrid Metaheuristics,
An Emerging Approach to Optimization. SCI, vol. 114, pp. 31–62 (2008)

8. Pfeiffer, J., Rothlauf, F.: Analysis of Greedy Heuristics and Weight-Coded EAs for
Multidimensional Knapsack Problems and Multi-Unit Combinatorial Auctions. In:
Proceedings of the 9th Conference on Genetic and Evolutionary Computation, p.
1529 (2007)

9. Hansen, P., Brimberg, J., Mladenović, N., Urosević, D.: Primal-dual variable neigh-
bourhood search for the simple plant location problem. INFORMS Journal on
Computing 19(4), 552–564 (2007)

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method 363

10. Raschip, M., Croitoru, C.: A New Primal-Dual Genetic Algorithm: Case Study
for the Winner Determination Problem. In: Cowling, P., Merz, P. (eds.) EvoCOP
2010. LNCS, vol. 6022, pp. 252–263. Springer, Heidelberg (2010)

11. Leitner, M., Raidl, G.: Lagrangian Decomposition, Metaheuristics, and Hybrid
Approaches for the Design of the Last Mile in Fiber Optic Networks. In: Blesa,
M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M.
(eds.) HM 2008. LNCS, vol. 5296, pp. 158–174. Springer, Heidelberg (2008)

12. de Vries, S., Vohra, R.: Combinatorial auctions: A survey. INFORMS Journal on
Computing 15(3), 284–309 (2000)

13. Rassenti, S.J., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for
airport time slot allocation. Bell J. of Economics 13, 402–417 (1982)

14. Rothkopf, M., Pekec, A., Harstad, R.: Computationally manageable combinatorial
auctions. Management Science 44(8), 1131–1147 (1998)

15. Wah, B.W., Chen, Y.X.: Constrained genetic algorithms and their applications in
nonlinear constrained optimization. In: Evolutionary Optimization. International
Series in Operations Research and Management Science, vol. 48(IV), pp. 253–275
(2003)

16. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm
for combinatorial auctions. In: Proceedings of the International Joint Conferences
on Artifficial Intelligence, pp. 1102–1108 (2001)

17. Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Proceedings of
the ACM Conference on Electronic Commerce, pp. 1–12 (2000)

18. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: Proceedings of the 17th National Conference on Artifficial Intelligence,
pp. 22–29 (2000)

19. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Com-
puters and Operations Research 33(8), 2179–2188 (2006)

20. Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal
winner determination problem. Soft Computing 13(8-9), 905–917 (2009)

21. Guo, Y., Lim, A., Rodrigues, B., Tang, J.: Using a Lagrangian Heuristic for a
Combinatorial Auction Problem. In: Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence, pp. 99–103 (2005)

22. Shang, Y., Wah, B.: A Discrete Lagrangian-Based Global-Search Method for Solv-
ing Satisfiability Problems. Journal of Global Optimization 12, 61–99 (1998)

23. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a Universal Test Suite for
Combinatorial Auction Algorithms. In: Proceedings of the ACM Conference on
Electronic Commerce, pp. 66–76 (2000)

24. Berkelaar, M.: ”lp solve - version 5.5”, Eindhoven University of Technology,
http://sourceforge.net/projects/lpsolve/

25. Zurel, E., Nisan, N.: An Efficient Approximate Allocation Algorithm for Combina-
torial Auctions. In: Proceedings of the ACM Conference on Electronic Commerce,
pp. 125–136 (2001)

http://sourceforge.net/projects/lpsolve/

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 364–378, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Greedy Local Improvement of SPEA2 Algorithm to Solve
the Multiobjective Capacitated Transshipment Problem

Nabil Belgasmi1,2, Lamjed Ben Said1,3, and Khaled Ghedira1,3

University of Tunis
1 Research Unit Strategies for Optimizing Information and knowledge (SOIE)

2 Higher School of Computer Sciences (ENSI), Campus Universitaire de La Manouba, 2010
3 Higher Institute of Management (ISG Tunis) Bouchoucha, Le Bardo, 2000

Belgasmi.nabil@gmail.com,
{lamjed.bensaid,khaled.ghedira}@isg.rnu.tn

Abstract. We consider a multi-location inventory system where inventory
choices at each location are centrally coordinated through the use of lateral
Transshipments. This cooperation between different locations of the same
echelon level often leads to cost reduction and service level improvement.
However, when some locations face embarrassing storage capacity limits,
inventory sharing through transshipment may cause undesirable lead time. In
this paper, we propose a more realistic multiobjective transshipment model
which optimizes three conflicting objectives: (1) minimizing the aggregate cost,
(2) maximizing the fill rate and (3) minimizing the transshipment lead time, in
the presence of different storage capacity constraints. We improve the
performance of the well-known evolutionary multiobjective algorithm SPEA2
by adequately applying a multiobjective quasi-gradient local search to some
candidate solutions that have lower density estimation. The resulting hybrid
evolutionary algorithm outperforms NSGA-II and the original SPEA2 in both
spread and convergence. It is also shown that lateral transshipments constitute
an efficient inventory repairing mechanism in a wide range of system
configurations.

Keywords: Evolutionary multiobjective optimization, local search, simulation,
inventory management.

1 Introduction

In the past, research in operations management focused on single-firm analysis. Its
goal was to provide managers in practice with suitable tools to improve the
performance of their firm by calculating optimal inventory quantities, among others.
Nowadays, business decisions are dominated by the globalization of markets and
increased competition among firms. Further, more and more products reach the
customer through supply chains that are composed of independent firms. Following
these trends, research in operations management has shifted its focus from single-firm
analysis to multi-firm analysis, in particular to improving the efficiency and
performance of supply chains under centralized control. The proactive use of
transshipments is an example of such coordination.

 Greedy Local Improvement of SPEA2 Algorithm 365

Referred to as physical pooling of inventories, the transshipment has been widely
used in practice to reduce cost and improve customer service [8]. It is usually
recognized as the monitored movement of material among locations at the same
echelon. It affords a valuable mechanism for correcting the discrepancies between the
locations’ observed demand and their on-hand inventory. Subsequently,
transshipments may reduce costs and improve service without increasing the system-
wide inventories [7].

The study of multi-location models with transshipments is an important
contribution for mathematical inventory theory as well as for inventory practice. The
idea of lateral transshipments is not new. The first study dates back to the sixties. The
two-location-one-period case with linear cost functions was considered by [1]. The N-
location-one-period model was studied by Krishnan [15] where the cost parameters
are the same for all locations. Non-negligible replenishment lead times and
transshipment lead times were incorporated among stocking locations to the multi-
location model in [11]. The effect of lateral transshipment on the service levels in a
two-location-one-period model was studied in [21]. There is a considerable amount of
Supply Chain Management studies in the last past decades. Some papers provided
interesting surveys. Pokharel [17] indicates that various objectives could be
considered for strategic decision making on Supply Chain Network: (1) increasing
service level, (2) decreasing warehouse costs, (3) decreasing total fixed and variable
costs, (4) decreasing lead time (order processing and supply lead times), (5)
consolidating supplier base, (6) increasing supplier reliability, (7) increasing capacity
utilization and (8) increasing total quality of supply. In the same work, it was
developed a two-objective decision-making model for the choice of suppliers and
warehouses for a supply chain network design.

In most of the mentioned researches, transshipment lead times were assumed to be
negligible despite its direct impact on service levels. Moreover, storage capacity at all
system location was assumed to be unlimited. These are two noticeable limitations of
the existent works.

In this study, we, first, incorporate storage capacity constraints into the traditional
transshipment model which leads to a better modeling of real-world situations.
Secondly, we propose a multiobjective transshipment model which minimizes the
aggregate cost and transshipment lead times while maximizing the global fill rate
subject to several predefined storage capacity constraints. We incorporate a greedy
local search into the evolutionary algorithm SPEA2 and compare its performance to
NSGA-II.

The remainder of this paper is organized as follows. In section 2, we formulate the
multiobjective transshipment model. In section 3, we give a brief description of the
multiobjective evolutionary optimization, and we present the hybrid SPEA2 algorithm
(H-SPEA2). In section 4, we show our experimental results. In section 5, we state our
concluding remarks.

2 Model

2.1 Problem Description

We consider the following real life problem where we have n stores selling a single
product. The stores may differ in their cost and demand parameters. The system
inventory is reviewed periodically. At the beginning of the period, and long before the

366 N. Belgasmi, L.B. Said, and K. Ghedira

demands realization, replenishments take place in store i to increase the stock level up
to Si. The storage capacity of each location is limited to Smax,i. In other way, the
replenishment quantities should not exceed Smax,i inventory units. This may be due to
expensive fixed holding costs, or to the limited physical space of the stores. Thus, the
inventory level of store i will be always less or equal to min(Si, Smax,i). After the
replenishment, the observed demands Di which represents the only uncertain event in
the period are totally or partially satisfied depending on the on-hand inventory of local
stores. However, some stores may be run out of stock while others still have unsold
goods. In such situation, it will be possible to move these goods from stores with
surplus inventory to stores with still unmet demands. This is called lateral
transshipment within the same echelon level. It means that stores in some sense share
the stocks. The set of stores holding inventory I+ can be considered as temporary
suppliers since they may provide other stores at the same echelon level with stock
units. Let τij be the transshipment cost of each unit sent by store i to satisfy a one-unit
unmet demand at store j. The transshipment lead time of 1 unit transferred from i to j
is equal to Lij. After the end of the transshipment process, if store i still has a surplus
inventory, it will be penalized by a per-unit holding cost of hi. If store j still has unmet
demands, it will be penalized by a per-unit shortage cost of pj. Fixed cost
transshipment costs are assumed to be negligible in our model. It was proved in [8]
that, in the absence of fixed costs, if transshipments are made to compensate for an
actual shortage and not to build up inventory at another store, there exists an optimal
base stock policy S* for all possible stationary policies. To see the effect of the fixed
costs on a two-location model formulation, see [21].

The following notation is used in our model formulation:

n Number of stores

Si Order quantities for store i

S Vector of order quantities, S = (S1, S2, …, Sn) (Decision variable)

Smax,i Maximum storage capacity of store i

Smax Vector of storage capacities, Smax = (Smax,1 , Smax,2, …, Smax, n)

Di Demand realized at i

D Vector of demands, D = (D1, D2, …, Dn)

hi Unit inventory holding cost at i

pj Unit penalty cost for shortage at j

τij Unit cost of transshipment from i to j

Tij Amount transshipped from i to j

Lij Unit transshipment lead time from i to j

I+ Set of stores with surplus inventory (before transshipment)

I- Set of stores with unmet demands (before transshipment)

 Greedy Local Improvement of SPEA2 Algorithm 367

2.2 Modeling Assumptions

Mainly three assumptions are made in this study to simplify the model. Some
assumptions can be relaxed in further researches.

− Assumption 1 (Lead time): All transshipment lead times are both positive and
deterministic. The case of stochastic transshipment lead times is under
investigation.

− Assumption 2 (Demand): Customers’ demands at each store could be fulfilled
partially either by the local available inventory or by the shipped quantities that
may come from other stores. For example, if a customer orders 100 units, and
finally gets only 30 units, its demand could not be cancelled. The customer should
accept the partial fulfillment of his demand.

− Assumption 3 (Replenishment policy): At the beginning of every period,
replenishments take place to increase inventory position of store i up to Si.

2.3 Model Formulation

2.3.1 Cost Function
Since inventory choices in each store are centrally coordinated, it would be a common
interest among the stores to minimize aggregate cost. At the end of the period, the
system cost is given by (1):

() () () ()
−+ ∈∈

−−+−=
Ij

jjj
Ii

iii DSKSDpDShDSC ,, (1)

The first and the second term on the right hand side of (1) can be respectively
recognized as the total holding cost and shortage cost before the transshipment.
However, the third term is recognized as the aggregate transshipment profit since
every unit shipped from i to j decreases the holding cost at i by hi and the shortage
cost at j by pj. However, the total cost is increased by τij because of the transshipment
cost. Due to the complete pooling policy, the optimal transshipment quantities Tij can
be determined by solving the following linear programming problem (2):

() ()
+ −∈ ∈

−+=
Ii Ij

ijijji
T

TphDSK
ij

τmax, (2)

+

∈

∈∀−≤
−

IiDST
Ij

iiij ,

(3)

−

∈

∈∀−≤
+

IjSDT
Ii

jjij ,

(4)

0≥ijT (5)

In (2), problem K can be recognized as the maximum aggregate income due to the
transshipment. Tij denotes the optimal quantity that should be shipped from i to fill
unmet demands at j. Constraints (3) and (4) say that the shipped quantities cannot
exceed the available quantities at store i and the unmet demand at store j. Since

368 N. Belgasmi, L.B. Said, and K. Ghedira

demand is stochastic, the aggregate cost function is built as a stochastic programming
model which is formulated in (6). The objective is to minimize the expected aggregate
cost with respect to storage capacity constraints that may exist in some locations.

()() () ()()SKSCDSC TRBT

SS
−=Ε min,min (6)

Where CBT denotes the expected cost before the transshipment, called Newsvendor
cost, and KTR denotes the expected aggregate income due to the transshipment. This
decomposition shows the important relationship between both the Newsvendor and
the transshipment problem. By setting very high transshipment costs, i.e. τij > hi + pj,
no transshipments will occur. Problem KTR will then return zero.

2.3.2 Fill Rate Function
One of the most important performance measures of inventory distribution systems is
the fill rate at the lowest echelon stocking locations. The fill rate is equivalent to the
proportion of the satisfied demand. We extend the fill rate formulation given in [21]
to n locations model. Let F be the aggregate fill rate measure after the transshipment
realization:

(7)

Notice that the whole system fill rate would be maximized if we order very large
quantities at the beginning of every period (without exceeding the local storage
capacities). However, this may results in global holding cost increase. If we order
very little quantities Si, we certainly avoid holding costs, but the different locations
will often be unable to satisfy customers’ demands. This badly affects the system fill
rate. Thus, we need to find good solutions taking into account the balance among
costs and service level.

2.3.3 Lead Time Function
The fill rate measure is widely used service criteria to evaluate the performance of
inventory distribution systems. However, it does not take into account the lead times
caused by the transshipment process. In other words, we can have a perfect fill rate
value while making customers waiting for long time. In our attempt to integrate the
lead time in our Transshipment model, and following [16], we suggest this aggregate
performance measure:

 (8)

2.4 Objective Functions Estimation

The considered objective functions are stochastic because of the demand randomness
modeled by the continuous random variables Di with known joint distributions. The
stochastic nature of the problem leads us to compute the expected values of each
objective function. In addition, an analytical tractable expression for problem K given
in (2) exists only in the case of a generalized two-location problem or N-location with

()
()

 +
=

j

j i ijjj

D

TSD
DSF

,min
,

() −+ ∈∈∀= IjIiTLDSLT
ji

ijij ,,,
,

 Greedy Local Improvement of SPEA2 Algorithm 369

identical cost structures [13]. In both cases, the open linear programming problem K
has an analytical solution. But in the general case (many locations with different cost
structures), we can use any linear programming method to solve problem K. In this
study, we used the Simplex Method. The most common method to deal with noise or
randomness is re-sampling or re-evaluation of objective values [3]. With the re-
sampling method, if we evaluate a solution S for N times, the estimated objective
value is obtained as in equation below and the noise is reduced by a factor of N1/2. For
this purpose, draw N random scenarios D1,…,DN independently from each other (in
our problem, a scenario Dk is equivalent to a vector demand Dk=(D1

1 ,…,DN
N). A

sample estimate of f(S), noted E(f(S,D)), is given by:

3 Evolutionary Multiobjective Optimization

Most real world problems have several (usually conflicting) objectives to be satisfied.
A general multiobjective optimization problem has the following form:

[])(),...,(),(min 21 SfSfSf k
Subject to the m inequality constraints and the p equality constraints:

miSgi ,...,2,1,0)(=≥

piShi ,...,2,1,0)(==
The most popular approach to handle multiobjective problems is to find a set of the
best alternatives that represent the optimal tradeoffs of the problem. After a set of
such trade-off solutions are found, a decision maker can then make appropriate
choices. In a simple optimization problem, the notion of optimality is simple. The best
element is the one that realizes the minimum (or the maximum) of the objective
function. In a multiobjective optimization problem, the notion of optimality is not so
obvious. In other words, there is no solution that is the best for all criteria, but there
exists a set of solutions that are better than other solutions in all the search space,
when considering all the objectives. This set of solutions is known as the optimal
solutions of the Pareto set or nondominated solutions. This is the most commonly
adopted notion of optimality. We say a vector of decision variable S* is Pareto
optimal if there does not exist another S such that:

<

=∀≤

joneleastatforSfSf

and

kiSfSf

jj

ii

*),()(

,,2,1*),()(

In other words, this definition says that S* is Pareto optimal if there exists no feasible
vector of decision variable S that would decrease some criterion without causing a
simultaneous increase in at least one criterion. This concept almost always gives not a
single solution, but rather a set of solutions called the Pareto optimal set. The plot of

[]
N

SfVarDSf
N

SfDSf
N

k

k σσ ≈==≈Ε =
)]([),(

1
)(),(

1

370 N. Belgasmi, L.B. Said, and K. Ghedira

the objective functions whose nondominated vectors are in the Pareto optimal set is
called the Pareto front.

Many performance measures were designed either to evaluate the quality of a
given Pareto front (unary metric) or to compare two nondominated sets (binary
metric). In this study, we focus on two well-known unary indicators: Hypervolume
and Spread. The Hypervolume quality indicator computes the volume covered by a
nondominated set of solutions (the region of objective space dominated by the
obtained Pareto front). Higher values of Hypervolume are preferred. The Spread
metric is a diversity indicator that measures the extent of spread achieved among the
obtained solutions. This metric takes a zero value for an ideal distribution. Before
applying it, the objective function values must be normalized.

Evolutionary algorithms are population based metaheuristics that operate on a set
of individuals in order to find trade-off solutions as most as possible. This noticeable
characteristic make them the most adapted to solve multi-objective optimization
problems. Several works have been done in this field. In most cases, as set out in [9],
genetic algorithms are defined to be not enough effective because the crossover and
mutation operators do not allow to intensify the search sufficiently. The mutation
operator is typically expected to make a slight modification to an individual. Its role is
to promote the diversification of individuals while the selection role is to conserve the
best of them. Evolutionary algorithms researchers have suggested several approaches
to overcome the weakness of these search methods and improve their performance by
increasing their convergence rate and solutions diversity. One promising approach is
Hybridization. The most common and effective technique is to incorporate local
search (LS) into evolutionary algorithms. The local search operator replaces or
follows the mutation operator, and then helps to intensify the research in various areas
pointed by the genetic mechanisms: selection and crossover, we call this type of
hybrid algorithms Memetic Algorithms (MAs) [15]. When designing multi-objective
MAs, we face several design issues. Most of them are evoked in single objective case
[6]. These issues can be summarized as follows:

− How to incorporate LS method into MOEAs?

− How to generate neighborhood?

− How long does the LS take?

− How often LS should be performed?

− How to select solutions for LS?

− What is the replacement strategy?

− How to maintain population diversity?

We can classify MAs on the basis of the used LS method type:
− Gradient based schemes: This type of MAs incorporates LS methods that exploit

gradient information. For example, two versions of the NSGA-II [5] algorithm
were hybridized with the sequential quadratic programming (SQP): SBX-NSGA-II
[14and PCX-NSGA-II [19]. All these works have shown good results in terms of
convergence and CPU time.

− Neighborhood based schemes: Here, MAs integrate LS methods that explore
solutions neighborhoods without using gradient information such that MOGLS
[10], PHC-NSGA-II [2] and M-PAES [12].

 Greedy Local Improvement of SPEA2 Algorithm 371

In this study, we used a neighborhood based scheme which integrates a greedy local
search in the main loop of the SPEA2 algorithm that will be presented in the next
section.

3.1 SPEA2: Brief Description

Many multiobjective evolutionary algorithms have been proposed in the last few
years. Comparative studies have shown for large number of test cases that, among all
major multiobjective EAs, Strength Pareto Evolutionary Algorithm (SPEA2) is
clearly superior. The key results of the comparison [22] were: (1) SPEA2 performs
better than SPEA on all test problems and (2) SPEA2 and NSGA-II show the best
overall performance. But in higher dimensional spaces, SPEA2 seems to have
advantages over PESA [4] and NSGA-II. In addition, it was proven that SPEA2 is
less sensitive to noisy function evaluations since it saves the non-dominated solutions
in an archive. At the beginning of the SPEA2 optimization process, an initial
population is generated randomly respecting the different local storage constraints (Si
is less than Smax,i). In our multi-location problem, an individual is a base stock
decision S = (S1, S2,…,Sn) consisting of n genes Si. At each generation, all the
individuals are evaluated. A fine-grained fitness assignment strategy is used to
perform individuals’ evaluation. It incorporates Pareto dominance and density
information (respectively R(i) and D(i) according to [22]). The density function D(i)
can be recognized as a crowding measure computed at a solution i. In other words,
good individuals are the less dominated and the well spaced ones. Good individuals
are conserved in an external set (archive). This is called the environmental selection.
If the archive is full, a truncation operator is used to determine which individuals
should be removed from the archive. The truncation operator is based on the distance
of the k-th nearest neighbor computation method [20]. In other words, an individual is
removed if it has the minimum distance to the other individuals. This mechanism
preserves the diversity of the optimal Pareto front. The archived individuals
participate in the creation of new individuals for the coming generations. These steps
are repeated for a fixed number of generations. The resulting optimal Pareto front is
located in the archive.

3.2 SPEA2 with a Greedy Local Search

Here is the description of SPEA2 hybridized with a greedy local search in order to
improve the spread and the convergence of the resulting Pareto front. The local search
phase introduces two additional parameters: NLS and SNS corresponding respectively
to the Number of individuals on which the Local Search will be applied, and, the Size
of the Neighborhood Set to be generated for each selected individual. SPEA2 fitness
function F(i) of a new generated solution i is based on two important components: the
raw fitness R(i) and the density D(i). The raw fitness R(i) provides a sort of niching
mechanism based on the concept of Pareto dominance whereas the density function
D(i) indicates whether a solution is located in a crowded area or no. After evaluating
each new individual, SPEA2 constructs the elitist archive of the next generation t+1
which consists of the best individuals obtained during the optimization process. At
this step, our greedy local search selects the least crowded individuals according to
the already computed density and samples its neighborhood using a polynomial quasi-
gradient mutation. The idea behind the proposed multiobjective quasi-gradient

372 N. Belgasmi, L.B. Said, and K. Ghedira

mutation is quite simple. If a search direction “d” applied to an individual X leads to
a degradation in all the objective functions, then the opposite direction “-d” may be
more interesting than “d” in finding new good individuals. That is, let Y be the image
of X by the translation of vector “d”. Three cases are possible: (a) Y dominates X,
then Y is returned; (b) Y is equivalent to X, then Y is kept; (c) Y is dominated by X,
that is Fi(Y=X+d) > Fi(X) for all objective functions (minimization problem). Thus, Y
becomes equal to X - d. The obtained set of locally generated individuals is then
evaluated and tested against each selected parents which may replaced by its offspring
if this latter dominates it. Thus, the local search tries to guide the search toward less
explored regions of the objective space. As noticed, there are no additional
computation efforts except those related to the sorting procedure (2.d.a) and to the
evaluations of the sampled neighborhood set. In this study, we used both SBX
crossover operator [19] and polynomial mutation [18] since the considered problem is
continuous, with real-coded decision variables.

The main loop of the hybrid algorithm H-SPEA2 is described as follow:

Input: NP (population size), NA(archive size), T
(number of generations), NLS and SNS.

Output: A (nondominated set)

1) Initialize Population

1.a) Create an initial population P0

1.b) Create empty external set A0 (”archive”)

2) For t = 0 to T

2.a) Evaluate fitness of each individual in Pt and At

2.b) Copy all nondominated individuals in Pt and At
to At+1. If the At+1 size exceeds archive size NA reduce
At+1 using truncation operator. If the At+1 size is
less than archive size then use dominated
individuals in Pt and At to fill At+1.

2.c)Local search phase

• Sort the nondominated individuals in At+1 with
respect to their density estimation values
already computed by SPEA2 in step 2.a) in order
to select NLS worst individuals which have the
lowest density values.

• For each selected individual X:

• Generate SNS new individuals by applying
successive calls to the proposed mutation
MO_QuasiGradient_Mutation(X)

• Add the new individuals to the mating pool.

 Greedy Local Improvement of SPEA2 Algorithm 373

2.d) Perform Binary Tournament Selection with
replacement on At+1 to fill the mating pool.

2.e) Apply crossover and mutation to the mating pool
and update At+1

End FOR

Pseudo-code of the proposed multiobjective quasi-gradient mutation:

Function MO_QuasiGradient_Mutation(X):Y

Input: An evaluated individual X

Output: A new individual Y

1. Apply polynomial mutation on individual X to get a
new individual Y (use a small distribution index
value)

2. Let “d” be the direction from X to Y in the
decision space. That is, d := Y – X.

3. Evaluate the individual Y.

4. If Y is dominated by X, then let Y be the image of
X by the translation of vector “-d”; (Y:=X–d);
Then evaluate the new Y.

5. Return Y.

4 Optimization Results

In this section, we report on our numerical study. We consider a four-location system.
For all system settings (table 1), we maintain the same costs and demand structure:
Shortage cost = $4, holding cost = $2, transshipment costs = $0.5, demands are
random variables uniformly distributed over the interval [0, 200] and Lead time = 5.
We only vary the storage capacity of some stores in order to analyze the resulting
system response.

Table 1. Four systems with different storage capacities. (Infinity) means that storage capacity is
unlimited. (0) means that it is not possible to hold inventory.

 C-0 C-1 C-2 C-3
S(max,1) infinity 100 100 100
S(max,2) infinity infinity 0 0
S(max,3) infinity infinity infinity 0
S(max,4) infinity infinity infinity infinity

374 N. Belgasmi, L.B. Said, and K. Ghedira

Table 2. SPEA2, NSGAII and H-SPEA2 settings

Parameters SPEA2 NSGAII H-SPEA2
Population size 50 200 50
Archive size 200 - 200
Max evaluations 50000 50000 50000
Crossover probability 0,90 0,90 0,90
Mutation probability 0,25 0,25 0,25
(NLS, SNS) - - (5, 20)
Crossover distribution index 10 10 10
Mutation distribution index 20 20 20

4.1 Cost vs. Fill Rate Problem

Figure 1 illustrates the Pareto fronts of Cost/Fill Rate problem (C/F), when C-3
system and H-SPEA2, SPEA2 and NSGA-II are considered. Non-dominated solutions
are well spread over the entire Pareto front obtained by H-SPEA2 optimizer.

Table 3 proves also that our hybrid algorithm outperforms SPEA2 and NSGA-II in
term of spread. The system can achieve high fill rate level (95%) while ensuring a low
cost value ($350). However, increasing the fill rate up to (100%) affects considerably
the cost ($700).This is due to increasing cost of transshipment resulting from the
frequent inventory transfer from stores 1 and 4 to stores 2 and 3 to repair their
embarrassing storage limits (Smax,2=0 and Smax,3=0).

The resulting Pareto fronts are also well spread since we obtained good Spread
metric values. We conclude that our hybrid SPEA2 outperforms NSGA-II and SPEA2
in both convergence and spread. It intensifies the search in the regions where
nondominated individuals suffer from lower density levels, while both NSGA-II and
SPEA2 include density information or crowding distance implicitly into the fitness
assignment strategy.

Fig. 1. Cost vs. Fill rate non-dominated sets of system C-3 instance using H-SPEA2, SPEA2
and NSGA-II

 Greedy Local Improvement of SPEA2 Algorithm 375

Table 3. Comparison of all systems with respect to Hypervolume and Spread metrics for the
two-objective problem (Cost/Fill Rate). Best results are in bold.

Cost vs.
Fill Rate

Hypervolume Spread
Mean Variance

(10-8)
Mean Variance

(10-2)

C-0
NSGA-II 0,9951 15,560 0,7502 0,1863
SPEA2 0,9952 8,050 0,7893 0,2093
H-SPEA2 0,9972 6,235 0,5326 0,1064

C-1
NSGA-II 0,9953 11,556 0,7729 0,1880
SPEA2 0,9952 11,787 0,7918 0,1881
H-SPEA2 0,9954 11,775 0,5144 0,1641

C-2
NSGA-II 0,9919 181,076 0,6288 1,1755
SPEA2 0,9926 69,145 0,6536 1,7226

H-SPEA2 0,9941 9,962 0,4122 1,0036

C-3
NSGA-II 0,9946 4,355 0,8064 0,0142
SPEA2 0,9952 3,104 0,7951 0,0204
H-SPEA2 0,9951 9,941 0,5066 0,0120

4.2 Cost vs. Lead Time

This section deals with the bi-objective problem that minimizes both aggregate cost
and transshipment lead time. Figure 2 illustrates the Pareto front of the problem when
system C-3 and H-SPEA2 are considered. In figure 2, we notice that the Pareto front
is very dense, and nondominated solutions are well spread and diversified. The cost
values vary from $350 to $1600, while lead time varies from 0 to 900 time unit. To
achieve the lowest (highest) cost value, lead time would be considerable (null). This
proves that costs and lead time are very conflicting. The decision maker may think
about providing the system with a sufficient number of transporting vehicles so that
inventory transfers occur simultaneously. When lead times are negligible or null, the
cost reaches its highest value. In fact, "no lead time" means that there are not unsold
units neither unmet demands. This happens only in the case of (a) large ordered
replenishment quantities (all demands are satisfied by on-hand stock) or (b) very high
transshipment costs. Since in our numerical examples all unit transshipment profits
are positive (τij <hi + pj, see formulae (2)), "no lead time" is explained by ordering
large replenishment quantities.

For system C-3, only store 4 will be able to hold such quantities. It will be
considered as an emergency inventory provider, while stores 2 and 3 are its important
"virtual" customers. According to table 4, the resulting Hypervolume values are less
than those of table 3 where very high values (>94%) prove that fill rate and cost are
not very conflicting. H-SPEA2 outperforms SPEA2 and NSGA-II in both
Hypervolume and spread.

376 N. Belgasmi, L.B. Said, and K. Ghedira

Table 4. Comparison of the 4 systems with respect to Hypervolume and Spread metrics for
"Cost/Lead time" problem. Best results are in bold.

Cost vs.
Lead time

Hypervolume Spread

Mean Variance
(10-3) Mean Variance

(10-2)

C-0
NSGA-II 0,6289 0, 250711 0,5358 0, 29433
SPEA2 0,6308 0, 519017 0,5713 0, 43205
H-SPEA2 0,6207 0, 213418 0,4110 0, 12304

C-1
NSGA-II 0,5813 0, 145691 0,5952 0, 19771
SPEA2 0,6013 0, 091115 0,6452 0, 09991
H-SPEA2 0,7001 0, 012015 0,4410 0, 01302

C-2
NSGA-II 0,6392 0, 111331 0,4105 0, 42436
SPEA2 0,6371 0, 265278 0,4767 0, 19322
H-SPEA2 0,6344 0, 101132 0,3395 0, 24770

C-3
NSGA-II 0,6946 0, 148475 0,3812 0, 15594
SPEA2 0,7241 0, 091144 0,4108 0, 17441
H-SPEA2 0,8410 0, 160311 0,2175 0, 09861

Fig. 2. Cost vs. Lead time non-dominated sets of C-3 instance using H-SPEA2, SPEA2 and
NSGA-II

5 Conclusions

This research proposes a multiobjective model for the multi-location transshipment
problem with local storage capacity constraints. The model incorporates optimization
of the aggregate cost; fill rate and transshipment lead time. The SPEA2 algorithm was
improved by a greedy local search that uniformly explores the neighborhood of
candidate solutions having poor density in objective space. There are no extra density
calculations. We only reuse the density values provided by SPEA2 fitness assignment
strategy. Many instances of the problem were solved. Different Pareto fronts were
successfully generated in relatively short computation time. Based on Hypervolume
and Spread metrics, H-SPEA2 is shown to be better than SPEA2 and NSGA-II. In

 Greedy Local Improvement of SPEA2 Algorithm 377

short, the main contribution of this work is an effective use of a simple local search to
improve the exploration and exploitation capabilities of SPEA2. In addition,
experiments indicated that the transshipment is very interesting: it guaranties high
service level even when holding extra inventory is not allowed for some stores.

References

1. Aggarwal, S.P.: Inventory control aspect in warehouses. In: Symposium on Operations
Research. Indian National Science Academy, New Delhi (1967)

2. Bechikh, S., Belgasmi, N., Said, L.B., Ghédira, K.: PHC-NSGA-II: A Novel Multi-
objective Memetic Algorithm for Continuous Optimization. In: Proceedings of the 2008
20th IEEE International Conference on Tools with Artificial Intelligence, ICTAI,
November 03-05, vol. 01, pp. 180–189. IEEE Computer Society, Washington, DC (2008)

3. Beyer, H.-G.: Evolutionary algorithms in noisy environments: Theoretical issues and
guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-
4), 239267 (2000)

4. Corne, D., Knowles, J.D., Oates, M.J.: The Pareto Envelope-Based Selection Algorithm
for Multi-objective Optimisation. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J.,
Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–
848. Springer, Heidelberg (2000)

5. Deb, K., Argawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6(2), 182–197
(2002)

6. El-Mihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid genetic algorithms: A
review. Engineering Letters 3(2), 124–137 (2006)

7. Herer, Y., Rashit, A.: Policies in a general two-location infinite horizon inventory system
with lateral stock transshipments. Department of Industrial Engineering, Tel Aviv
University (1999b)

8. Herer, Y.T., Tzur, M., Yücesan, E.: The multi-location transshipment problem
(Forthcoming in IIE Transactions) (2005)

9. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco (2005)

10. Jaszkiewicz, A.: Genetic local search for multiple objective combinatorial optimization,
Technical Report RA-014/98, Institute of Computing Science, Poznan University of
Technology (1998)

11. Jonsson, H., Silver, E.A.: Analysis of a Two-Echelon Inventory Control System with
Complete Redistribution. Management Science 33, 215–227 (1987)

12. Knowles, J., Corne, D.: M-PAES: A memetic algorithm for multiobjective optimization.
In: Congress on Evolutionary Computation, Piscataway, New Jersey, vol. 1, pp. 325–332
(2000)

13. Krishnan, K.S., Rao, V.R.K.: Inventory control in N warehouses. J. Industrial
Engineering 16(3), 212–215 (1965)

14. Kumar, A., Sharma, D., Deb, K.: A hybrid multi-Objective optimization procedure using
PCX based NSGA-II and sequential quadratic programming. In: Special Session &
Competition on Performance Assessment of Multi-Objective Optimization Algorithms,
CEC 2007, Singapore, pp. 25–28 (2007)

378 N. Belgasmi, L.B. Said, and K. Ghedira

15. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826
(1989)

16. Pan, A.: Allocation of order quantity among suppliers. Journal of Purchasing and Materials
Management 25(3), 36–39 (1989)

17. Pokharel, S.: A two objective model for decision making in a supply chain. International
Journal of Production Economics 111(2), 378–388 (2008)

18. Raghuwanshi, M.M., Kakde, O.G.: Survey on multiobjective evolutionary and real coded
genetic algorithms. In: Proceeding of the 8th Asia Pacific Symposium on Intelligent and
Evolutionary Systems, vol. 11, pp. 150–161 (2004)

19. Sharma, D., Kumar, A., De, K., Sindhya, K.: Hybridization of SBX based NSGA-II and
sequential quadratic programming for solving multiobjective optimization problems. In:
Special Session & Competition on Performance Assessment of Multi-Objective
Optimization Algorithms, CEC 2007, Singapore, pp. 25–28 (2007)

20. Silverman, B.W.: Density estimation for statistics and data analysis. Chapman and Hall,
London (1986)

21. Tagaras, G.: Effects of pooling on the optimization and service levels of two-location
inventory systems. IIE Trans. 21(3), 250–257 (1989)

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design,
Optimisation, and Control, Barcelona, Spain, pp. 19–26 (2002)

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 379–391, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Hybrid Population-Based Incremental Learning Using
Real Codes

Sujin Bureerat

Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University,
40002, Thailand

sujbur@kku.ac.th

Abstract. This paper proposes a hybrid evolutionary algorithm (EA) dealing
with population-based incremental learning (PBIL) and some efficient local
search strategies. A simple PBIL using real codes is developed. The
evolutionary direction and approximate gradient operators are integrated to the
main procedure of PBIL. The method is proposed for single objective global
optimization. The search performance of the developed hybrid algorithm for
box-constrained optimization is compared with a number of well-established
and newly developed evolutionary algorithms and meta-heuristics. It is found
that, with the given optimization settings, the proposed hybrid optimizer
outperforms the other EAs. The new derivative-free algorithm can maintain
outstanding abilities of EAs.

Keywords: Population-Based Incremental Learning, Approximate Gradient,
Evolutionary Direction, Meta-Heuristics, Evolutionary Algorithms.

1 Introduction

Evolutionary algorithms (EAs) or meta-heuristic search algorithms are commonly
known as alternative optimizers to classical mathematical programming (MP) or
gradient-based optimizers. Using EAs is advantageous over MP since they are simple
to implement, more robust, capable of tackling global optimization, and derivative-
free. Nevertheless, the methods have some unavoidable disadvantages since they have
a low convergence rate and require a large number of function evaluations to achieve
optimum results. With no guarantee of convergence, the optimum results obtained
from using EAs are usually classified as near optima. EAs also have a complete lack
of search consistency since, with multiple simulation runs, they are unlikely to find
the same optimum point. As a result of the attractiveness of their ability to tackle
almost all kinds of optimization problems and the aforementioned advantages, many
researchers and engineers have invested considerable effort to improve and develop
evolutionary optimizers. The target is to retain their outstanding abilities and alleviate
their drawbacks. From genetic algorithms (GA) to the countless number of EAs
presently being used in a wide variety of real world applications, only those EAs with
a high searching performance are receiving considerable attention.

Several methods have been used to enhance the search performance of EAs. One of
the most popular and efficient strategies is the use of EAs in combination with

380 S. Bureerat

surrogate models [1, 2]. This hybridization approach is said to be well-established and
successfully implemented on a variety of real world applications. Another approach is
the integration between EAs and their variants. Since the weak and strong points of
EA operators have been thoroughly investigated, their proper combinations can also
improve EA performance [3].

This paper proposes a hybrid evolutionary algorithm dealing with population-based
incremental learning and some efficient local search strategies. The method is
developed to deal with single objective global optimization. A simple PBIL using real
codes is detailed. An evolutionary direction operator and an approximate gradient are
integrated with the main procedure of PBIL. The search performance of the developed
hybrid algorithm while solving 35 box-constrained optimization problems is
compared with a number of well-established and newly developed EAs and meta-
heuristics. It is found that the proposed optimizer can be regarded as one of the best
evolutionary optimizers.

The paper is organized as follows. The following section 2 gives the details of
population-based incremental learning using real codes, evolutionary direction and
approximate gradient operators, and the hybrid algorithm. Section 3 provides the
testing functions for performance comparison. Section 4 shows the comparative
results and assessments of the EAs performance. The paper is concluded in section 5.

2 Hybrid Algorithm

2.1 Population-Based Incremental Learning

The population-based incremental learning was first developed by Baluja as an
alternative search algorithm to genetic algorithm [4]. Unlike most traditional EAs,
PBIL uses the so-called probability vector to estimate a binary population. The
method accomplishes optimization search by improving the probability vector
iteratively. The real-code variants of PBIL have been developed [5-6] but they seem
to be less popular than the original binary-code PBIL. In this paper, we propose PBIL
using real code, which exploits the probability matrix similar to the histogram PBIL
(PBILH) in [6]. Given that the box-constrained optimization problem is of the form:

 Min f(x) (1)

 Li ≤ xi ≤ Ui; i = 1,…, n
x ∈ Rn

where x is the vector of design variables size n×1, f is an objective function, Li are the
lower bounds of x, and Ui are the upper bounds of x.

The probability matrix (P or Pij size n×m) is proposed to deal with real design
parameters in such a way that the feasible range [Li, Ui] of a design variable is divided
into m sections. The element Pij determines the probability that the i-th element of x
will be placed in the range [Li + (j-1)δi, Li + jδi] where δi = (Ui - Li)/m. Generation of a
real-code population can be carried out in a similar manner as with binary PBIL. A
real-code PBIL search starts with a probability matrix P where all elements values are
assigned as 1/m. An initial population according to P is then created with their
corresponding objectives being evaluated while the best individual xbest is detected.
The probability matrix is then updated based upon xbest as

 Hybrid Population-Based Incremental Learning Using Real Codes 381

jR
old

ijjRij LPLP ,,)1(+−=′ (2)

where

))(exp(5.0 2
, rjL jR −−= . (3)

The element r is determined in such a way that xi
best is placed in the range [Li + (r-

1)δi, Li + rδi]. The learning rate LR in Eq. 3 is set to prevent premature convergence.

In order to preserve the condition 1
1

=
=

T

j
ijP , the i-th row of P′ is normalized as:

ij

m

j
ijij PPP ′′=′′

=
)/1(

1

 (4)

As a result, the finally updated Pij is in Eq. 4. The probability matrix and xbest are
iteratively improved until the termination condition is met. The pseudo-code of real-
code PBIL is given in Fig. 1 where t is a generation number, NG is the total number of
generations, and NP is the population size.

Input: NG, NP, n, m, LR
Output: xbest, fbest
Initialization: Pij = 1/m, δi = (Ui - Li)/m, xbest(0) = {}
1: For t = 1 to NG
2: Generate a real code population X(t) from Pij
 2.1: For i = 1 to n
 2.2: For j = 1 to m
 2.3: Randomly generate NP.Pij elements of xi in the interval
 [Li + (j-1)δi, Li + jδi].
 2.4: End
 2.5: Randomly permute the positions of NP elements of xi.
 2.6: Put the NP values of xi in the i-th row of the population matrix X(t).
 2.7: End
3: Evaluate f(t) = fun(X(t)).
3: Find new xbest(t) from X ∪ xbest(t – 1).
4: Update Pij based on the current xbest .
 4.1: For i = 1 to n
 4.2: Find r such that xi

best ∈[Li + (r-1)δi, Li + rδi].
 4.3: Update Pij using Eq. 2 and 3.
 4.4: End
5: End

Fig. 1. Algorithm for real code population-based incremental learning

2.2 Evolutionary Direction Recombination

The evolutionary direction operator was proposed in [7], which is the modification of
the work in [8]. It can be thought of as a special kind of evolutionary recombination.
One operation requires three randomly selected individuals from the current

382 S. Bureerat

population to produce a pair of children. Let the three individuals be x1, x2, and x3
where x1 has the best (minimum) objective among them. An evolutionary direction is
computed as:

cxxxxs +−+−=)()(3121 (5)

where ci = ε.randn, randn is a normally distributed random number with mean zero
and standard deviation one, and ε is a small number to be specified (default value is
0.05). The random vector c is used to prevent a premature convergence. The new
individuals as the product of this evolutionary operator can be obtained as

y1 = x1 + rand.λ(t)s (6)

 y2 = x1 – rand.λ(t)s

where rand ∈ [0,1] is a uniform random number, and λ(t) is the maximum step length
at the t-th generation. The value of λ is set to have greater value earlier. As the
optimization progresses, it becomes smaller. In this work, the maximum step length is
set to be

−

−

−

−
= t

NN
t

GG 1

2146.6
exp6931.0

1

2146.6
exp)(λ , (7)

which means λ(1) = 0.5 and λ(NG) = 0.001.
This strategy is set for local search. Note that the solutions will be treated to satisfy

the bound constraints before performing function evaluation. Fig. 2 illustrates the
evolutionary operation given that c in Eq. 5 is set to be a zero vector for simplicity. In
Fig. 2 a) and b), the solid line arrow is the search direction for y1 whereas the dashed
arrow is the search direction for y2. In Fig.2 a), it is shown that the offspring y1 is
better than y2. However, in Fig. 2 b), y2 has the possibility to be better than y1 and for
this reason the + and – signs are used in Eq. 6.

(a) (b)

Fig. 2. Evolutionary directions

 Hybrid Population-Based Incremental Learning Using Real Codes 383

2.3 Approximate Gradient

The approximate gradient is estimated from the members of a population and their
corresponding objectives [7]. The approximate gradient is calculated exploiting the
relation of the directional derivative. The directional derivative of a function f in the
direction of s at a point x in Rn space, denoted by df/ds can be expressed as:

s

ff

ds

df
fT

s Δ
Δ+−≈=∇)()(xxx

u (8)

where us is a unit vector of s. With the current population size n×NP {x1, …, xNG},
their objectives {f1,…, fNG}, the current best solution xbest, and its objective fbest, the
approximate gradient of f at the point xbest can be computed as:

bA

xx

xx

=

−

−
=∇=∇

−

−

R
best

best

T
R

best

Tbest

ff

ff

ff
11

)(

)(

. (9)

The first R individuals that are closest to xbest are chosen to approximate the
gradient. The value R is set to be greater than n in order to prevent matrix singularity.
Since the matrix A is not a square matrix, Eq. 9 can be solved using the pseudo-
inverse operation; thus, the approximate gradient is termed pseudo-gradient in [7].
Note that pseudo-inverse algorithms are available in both free and commercial
software such as SCILAB and MATLAB. Since ∇f is used for local search rather than
global search, it is also useful to apply a quadratic interpolation to enhance the search
efficiency. Based on the steepest descent method, the search direction is set to be s = -
∇f. Two solutions extended from xbest along the search direction are found as follows:

z1 = xbest + β1.s (10)

 z2 = xbest + β2.s

where β1 ≠ β2 are two randomly generated numbers in the range of (0,1]. The third
solution for this process can be determined by applying a quadratic interpolation
technique. We can assume that the objective function along the search direction is a
quadratic function of the variable β as

f(xbest + β.s) = C1β2 + C2β + C3. (11)

The quadratic function coefficients can be found by solving

=

)(

)(

1

1

100

2

1

3

2

1

2
2
2

1
2

1

z

z

f

f

f

C

C

C best

ββ
ββ (12)

where f(z1) and f(z2) are the objective function values at the points z1 and z2
respectively. Then, the third individual can be found

384 S. Bureerat

z3 = xbest + β3.s (13)

where β3 = -C2/2/C1.
This is equivalent to performing the Powell line search method for one step. In

cases that C1 = 0, which implies that the objective could be a linear function, t3 is
generated at random. Fig. 3 shows the process of evaluating z1, z2, and z3 of the
approximate gradient operator. The solution z3 is treated to be inside the bounds
before performing function evaluation. For z1 and z2, if they are located outside the
feasible region, they will be discarded from the optimization process. Nevertheless,
their function evaluations are counted to the total number of function evaluations.

Fig. 3. Step length determination of an approximate gradient operator

2.4 Hybrid Algorithm

The algorithm of the hybrid PBIL is given in Fig. 4. Initially, the hybrid algorithm
starts with an initial probability matrix of PBIL, an initial real-code population, and an
initial best design solution xbest. NP/2 individuals as the first sub-population are then
created according to the probability matrix. An approximate gradient is estimated
while three new solutions are created from this operation. The rest of the solutions
(approximately NP/2 – 3 solutions) to fill in the current population are created by
using the evolutionary direction operator. After combining the three sub-populations,
the function evaluation is performed. Afterwards, the best individual is detected and
used to update the probability matrix and compute an approximate gradient direction.
The process is repeated until the maximum number of iterations is reached. In this
hybrid algorithm, three sub-populations are created in parallel but the operators share
information during the search since updating a probability matrix and computing an
approximate gradient require xbest for the operation.

 Hybrid Population-Based Incremental Learning Using Real Codes 385

Input: NG, NP, n, m, LR, ε
Output: xbest, fbest
Initialization: Pij = 1/m, δi = (Ui - Li)/m, X(0), f(0), xbest(0)
1: For t = 1 to NG
2: Generate a sub-population X1 (NP/2 solutions) from Pij following the
computational steps 2.1-2.7 in Fig. 1.
 4: Compute an approximate gradient using Eq. 9.
3: Generate 3 individuals X2 from an approximate gradient operator.
4: Generate NP/2 – 3 individuals X3 from an evolutionary direction operator.
3: Combine X(t) = X1 ∪ X2 ∪ X3, and evaluate f(t) = fun(X(t)).
3: Find new xbest(t) from X ∪ xbest(t – 1).
4: Update Pij based on the current xbest using the computational steps 4.1 - 4.4 in
Fig. 1.
5: End

Fig. 4. Algorithm of the Hybrid PBIL

3 Testing Functions

In order to examine the searching performance of the proposed hybrid algorithm, 35
testing functions of box-constrained optimization are posed as detailed in Table 1.
With the exception of F8 [9], all of the functions are taken from [10] and [11] where
their expressions and more details can be tracked back from their given names.
Evolutionary optimizers used to compare with the hybrid algorithm are as follows:

Real-code ant colony optimization (ACO) [10]: The parameters used for
computing the weighting factor and the standard deviation in the algorithm are
set to be ξ 1.0 and q = 0.2 respectively.

Charged system search (CSS) [12]: The number of solutions in the charge memory
is 0.2NP. The charged moving considering rate and the parameter PAR are set to
be 0.75 and 0.5 respectively.

Differential evolution (DE) [13]: DE step size, crossover probability, and refresh
iterations are set as 0.8, 0.5, and 10 respectively. The DE/rand/1/bin strategy is
used.

Continuous tabu search (TS) [14]: The sizes of tabu list and promising list are set
to be 2NP and 0.5NP respectively.

Fireworks algorithm (FA) [15]: The number of fireworks for each generation is
0.25NP, the limit of sparks created with algorithm 1 is NP, the amount of sparks
created with algorithm 2 is 0.25 NP, the floor parameter for rounding the amount
of sparks created with algorithm 1 is 0.004, the ceiling parameter for rounding
the amount of sparks created with algorithm 1 is 0.8, and the maximum
explosion amplitude is 0.5(Ui – Li).

Binary-code genetic algorithm (GA) [9]: The crossover and mutation probabilities
are 1.0 and 0.1 respectively.

Particle swarm optimization [16]: The starting inertia weight, ending inertia
weight, cognitive learning factor, and social learning factor are assigned as 0.5,
0.01, 0.5 and 0.5 respectively.

386 S. Bureerat

Simulated annealing (SA) [17]: During an optimization run, an annealing
temperature is reduced exponentially 10 times from the value of 10 to 0.001. On
each loop, 2n children are created by means of mutation to be compared with
their parent.

Continuous scatter search (SS) [11]: The BLX-α recombination method is used.
The number of high-quality solutions in the reference set is 0.25NP, and the
number of diverse solutions in the reference set is 0.25NP.

Binary PBIL (PB) [4]: The learning rate, mutation shift, and mutation probability
are set as 0.5, 0.2, and 0.05 respectively.

The two algorithms from this paper are real-code PBIL (PR) as detailed in sub-
section 2.1, and real code PBIL in combination with the evolutionary direction and
approximate gradient operators (HPR). The number of columns of the probability
matrix is set to be 10n. Each method is used to solve each optimization problem 30
runs starting with the same initial population. The best results the methods can search
for are taken as near optimum solutions. The number of iterations is set to be 10n
whereas the population size is 7n. In cases of EAs and meta-heuristics that use
different search strategies such as fireworks algorithm, simulated annealing,
continuous scatter search, and charged system search, the number of iterations and
population size may not be the same values as previously mentioned but they will use
the same total number of function evaluations i.e. 10n 7n evaluations.

Table 1. Testing functions

Function no., details [L,U]n Function no., details [L,U]n
1, B2 [10]
2, Beale [11]
3, Booth [11]
4, Easom [10]
5, Goldstein & Price [10]
6, Martin & Gaddy [10]
7, Matyas [11]
8, Penny & Linfield* [9]
9, Powersum [11]
10, Branin [10]
11, Shubert [11]
12, Six Hump
 Camel Back [11]
13, Colville [11]
14, Hartmann 3,4 [10]
15, Shekel [10]
16, Zakharov [10]
17, Hartmann 6,4 [10]

[-50,100]2
[-4.5,4.5]2
[-10,10]2
[-100,100]2
[-2,2]2
[-20,20]2
[-5,10]2
[-5,5]2
[0,2]2
[-5,15]2
[-10,10]2
[-5,10]2

[-10,10]4
[0,4]4
[0,10]4
[-5,10]5
[0,6]6

18, Griewangk [10]
19, Perm [11]
20, Perm0 [11]
21, Cigar [10]
22, Diagonal plane [10]
23, Dixon & Price [11]
24, Levy(n) [11]
25, Powell(n) [11]
26, Rastrigin(n) [10]
27, Rosenbrock [10]
28, Sum Squares [11]
29, Schwefel [11]
30, Trid(n) [11]
31, Ackley(n) [11]
32, Ellipsoid [10]
33, Plane [10]
34, Sphere [10]
35, Tablet [10]

[-5.12,5.12]10
[-15,15]15
[-15,15]15
[-3,7]20
[0.5,1.5]20
[-10,10]20
[-10,10]20
[-4,5]20
[-2.56,5.12]20
[-5,5]20
[-5,10]20
[-500,500]20
[-400,400]20
[-15,30]30
[-3,7]30
[-0.5,1.5]30
[-3,7]30
[-3,7]30

*)516(5.0)516(5.0)(2
2
2

4
21

2
1

4
18 xxxxxxf +−++−=x

4 Comparison Results

For each testing function, each method will produce 30 near optimum values. The
average value of 30 near optimum values obtained from using 12 EAs is found and
normalized using the relation

 Hybrid Population-Based Incremental Learning Using Real Codes 387

Table 2. Comparative results by normalized function values

Fn
No. ACO CSS DE TS FA GA PSO SA SS PB PR HPR
1 0.000 0.035 0.040 0.016 0.050 0.869 0.018 0.032 0.105 1.000 0.019 0.005
2 0.020 0.520 1.000 0.130 0.220 0.265 0.000 0.148 0.542 0.302 0.431 0.058
3 0.014 0.056 0.166 0.005 0.056 1.000 0.015 0.353 0.413 0.778 0.014 0.000
4 0.829 1.000 0.830 0.553 0.997 0.550 0.283 0.988 1.000 0.912 0.529 0.000
5 0.015 1.000 0.439 0.000 0.090 0.836 0.520 0.718 0.687 0.841 0.024 0.144
6 0.001 0.051 0.068 0.003 0.037 0.400 0.001 0.083 0.089 1.000 0.005 0.000
7 0.036 0.109 0.293 0.006 0.099 0.500 0.006 0.501 0.578 1.000 0.016 0.001
8 0.085 0.074 0.051 0.516 0.284 0.159 1.000 0.000 0.193 0.185 0.190 0.188
9 0.009 0.030 0.132 0.002 0.043 0.440 0.119 1.000 0.153 0.658 0.002 0.002
10 1.000 0.076 0.516 0.016 0.149 0.421 0.163 0.069 0.290 0.755 0.041 0.000
11 0.934 0.520 0.862 0.165 0.315 0.346 0.539 0.116 1.000 0.570 0.340 0.000
12 0.038 0.801 0.476 0.273 0.363 0.536 0.998 0.337 0.749 1.000 0.125 0.000
13 0.239 0.186 1.000 0.031 0.319 0.329 0.141 0.154 0.337 0.344 0.165 0.000
14 0.000 1.000 0.002 0.005 0.006 0.036 0.301 0.439 0.023 0.203 0.084 0.004
15 0.052 0.000 0.821 0.623 0.885 0.634 0.454 0.920 0.377 1.000 0.772 0.573
16 0.033 0.017 0.412 0.001 0.020 0.632 0.339 0.180 0.205 1.000 0.006 0.000
17 0.000 1.000 0.051 0.237 0.129 0.191 0.908 0.001 0.531 0.405 0.251 0.247
18 0.704 0.000 1.000 0.163 0.175 0.076 0.150 0.161 0.015 0.040 0.173 0.097
19 0.000 0.462 0.000 0.546 0.619 0.027 0.890 0.000 0.267 0.081 1.000 0.417
20 0.000 0.000 0.002 0.000 0.000 0.000 0.000 1.000 0.000 0.001 0.000 0.000
21 0.000 0.000 0.036 0.002 0.026 0.338 0.179 0.001 0.199 1.000 0.043 0.000
22 0.000 0.014 0.000 0.006 0.000 0.001 1.000 0.000 0.057 0.022 0.022 0.000
23 0.009 0.000 0.114 0.000 0.013 0.166 0.308 0.003 0.022 1.000 0.042 0.007
24 0.030 0.023 0.088 1.000 0.886 0.059 0.320 0.000 0.042 0.212 0.403 0.408
25 0.047 0.000 0.147 0.006 0.011 0.420 0.712 0.005 0.049 1.000 0.061 0.001
26 1.000 0.386 0.588 0.601 0.485 0.176 0.477 0.000 0.470 0.293 0.722 0.379
27 0.076 0.011 0.759 0.000 0.081 0.481 1.000 0.004 0.117 0.860 0.153 0.087
28 0.001 0.000 0.042 0.002 0.024 0.149 0.810 0.001 0.157 1.000 0.036 0.000
29 1.000 0.266 0.468 0.449 0.485 0.130 0.827 0.000 0.795 0.223 0.679 0.507
30 0.110 0.333 0.080 0.429 0.000 0.410 1.000 0.454 0.698 0.515 0.332 0.203
31 0.279 0.074 0.519 0.323 0.264 0.537 1.000 0.000 0.642 0.889 0.331 0.079
32 0.004 0.000 0.041 0.001 0.036 0.119 1.000 0.000 0.179 0.452 0.031 0.004
33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
34 0.007 0.000 0.065 0.000 0.009 0.106 1.000 0.000 0.187 0.319 0.016 0.000
35 0.000 0.000 0.004 0.008 0.001 0.030 1.000 0.000 0.025 0.054 0.232 0.002
total 6.573 8.043 11.113 6.118 7.177 11.370 17.477 7.669 11.192 19.915 7.291 3.414

* PB = binary PBIL, PR = real code PBIL, HPR =Hybrid real-code PBIL

 (14)

where fmin is the average near optimum value of the best method, and fmax is the
average near optimum value of the worst method. By using Eq. 12, the best method
will have whereas the worst method will have . This relative comparison is

given in Table 2 where each value in the table stands for a value. From the results,
the overall top five best performers are the proposed hybrid PBIL algorithm,

minmax

min

ff

ff
f i
i −

−=

0=f 1=f

f

388 S. Bureerat

continuous tabu search, real-code ant colony optimization, fireworks algorithm, real-
code PBIL, and simulated annealing. Clearly, there is no absolute best method. The
proposed hybrid approach is slightly ahead of the second best TS and the third best
ACO. Charged system search and simulated annealing are the two best methods for
large scale objective functions having one optimum. The continuous tabu search uses
the longest computational time for each optimization run. The hybrid PBIL takes a
slightly longer time than the real-code PBIL. Among the PBIL variants, real-code
PBIL outperforms its binary-code counterpart. The searching performance of PBIL is
improved when integrated with the evolutionary direction and approximate gradient
operators. This ranking is made to show the convergence rate of EAs, which means
the hybrid PBIL has a high convergence rate when compared to the other EAs with
the given optimization parameters and conditions.

An alternative EA performance assessment is given in Table 3-4. Table 3 shows
the ranking of the 12 implemented evolutionary algorithms for the first test function.
Firstly the performance matrix size 12×12, whose elements are full of zeros, is
generated. Then, the results obtained from method I and method J are compared using
the statistical t-test at 95% confidence level. In cases that the mean objective function
value from method I is significantly different from that obtained from method J, an
element of the performance matrix is modified. The element at row I and column J of
the matrix is changed to be one if the mean value obtained from method I is higher;
otherwise, element at row J and column I is changed to be one. Having a complete
performance matrix, the values on each column are summed up. The algorithm having
that highest score (ACO in Table 3) is considered the best method while the method
having the lowest total value is the worst for solving this test function.

Table 3. Performance matrix and ranking score using t-test: Function number 1

EAs ACO CSS DE TS FA GA PSO SA SS PB PR HPR
ACO 0 0 0 0 0 0 0 0 0 0 0 0
CSS 1 0 0 0 0 0 0 0 0 0 0 1
DE 1 0 0 1 0 0 1 0 0 0 1 1
TS 1 0 0 0 0 0 0 0 0 0 0 1
FA 1 0 0 1 0 0 1 0 0 0 1 1
GA 1 1 1 1 1 0 1 1 1 0 1 1
PSO 1 0 0 0 0 0 0 0 0 0 0 0
SA 1 0 0 1 0 0 0 0 0 0 0 1
SS 1 0 0 1 0 0 1 0 0 0 1 1
PB 1 1 1 1 1 0 1 1 1 0 1 1
PR 1 0 0 0 0 0 0 0 0 0 0 1
HPR 1 0 0 0 0 0 0 0 0 0 0 0
Total 11 2 2 6 2 0 5 2 2 0 5 9

Ranking 1 6 6 3 6 11 4 6 6 11 4 2

Having determined the performance matrices of all the test functions, the best
method for each design problem will have a score as 1 whereas the worst has 12 as
given in Table 4. After summing up the scores of all the testing functions, the top five
EAs and meta-heuristics are: the hybrid PBIL, continuous tabu search, real-code ant
colony optimization, simulated annealing, and charged system search. The order of
the top five methods is slightly different from that in the first comparison. Among the

 Hybrid Population-Based Incremental Learning Using Real Codes 389

PBIL versions, real-code PBIL outperforms binary PBIL, the worst method in this
study. The hybrid PBIL is superior to the real-code PBIL, which means the inclusion
of an evolutionary direction and an approximate gradient helps enhance PBIL search
performance. Charged system search is the best method for larger scale testing
functions having one optimum solution while the proposed hybrid approach is the
best for multi-modal small scale functions.

Table 4. Comparative results by ranking

Function
No. ACO CSS DE TS FA GA PSO SA SS PB PR HPR
1 1 6 6 3 6 11 4 6 6 11 4 2
2 2 9 9 4 6 6 1 5 9 6 9 3
3 3 6 8 2 6 11 3 8 10 11 3 1
4 6 6 6 4 6 4 1 6 6 6 3 1
5 1 8 6 1 4 8 7 8 8 8 1 4
6 2 6 6 3 6 11 3 6 6 12 5 1
7 3 6 8 2 6 9 3 9 9 9 3 1
8 3 3 2 11 5 5 12 1 5 5 5 5
9 4 4 7 2 4 10 7 11 7 11 2 1
10 11 3 9 2 6 9 7 3 8 11 3 1
11 10 5 10 3 4 5 5 2 10 5 5 1
12 2 7 7 5 5 7 7 4 7 7 3 1
13 7 4 12 1 7 7 3 4 7 7 4 1
14 1 12 2 3 3 6 10 10 6 9 8 3
15 1 1 8 5 10 5 4 10 3 12 8 5
16 6 4 9 2 4 11 9 7 7 12 3 1
17 1 12 3 5 4 5 11 1 10 9 5 5
18 11 1 12 7 7 4 7 6 2 3 7 4
19 3 7 1 9 10 4 11 1 6 5 12 7
20 4 1 4 2 4 4 4 12 4 4 4 2
21 3 1 7 5 6 11 9 4 9 12 8 2
22 4 8 1 7 4 6 12 1 11 9 9 1
23 4 1 9 1 5 10 11 3 7 11 8 5
24 3 2 6 11 11 4 8 1 4 7 8 8
25 6 1 9 3 5 10 11 3 6 11 6 2
26 12 5 9 9 6 2 6 1 6 3 11 4
27 4 2 10 1 5 9 10 2 5 10 7 7
28 3 1 8 5 6 9 11 3 9 11 7 2
29 12 3 5 5 5 2 10 1 10 3 9 5
30 2 5 2 7 1 8 12 8 11 8 5 4
31 4 2 8 6 4 8 12 1 10 11 6 2
32 4 1 7 3 7 9 12 2 10 11 6 4
33 1 11 1 1 1 1 1 1 1 1 12 1
34 5 1 8 4 5 9 12 3 10 11 7 2
35 3 1 6 6 4 8 12 2 8 10 11 5
total 152 156 231 150 188 248 268 156 253 292 217 104

5 Conclusions and Discussion

The real-code PBIL is developed to deal with box-constrained optimization. The
hybridization of the real-code PBIL with the evolutionary directions and approximate
gradient is proposed. The new method is derivative-free and capable of maintaining
the outstanding advantages of traditional EAs e.g. global optimization. From the
comparative results, it is shown that the proposed hybrid approach is one of the best
EAs. In fact, it is the overall best method based on the assessment in this work. The

390 S. Bureerat

main real-code PBIL is used for global search while the evolutionary direction and
approximate gradient are efficient for local search. Nevertheless, it should be noted
that the comparative results rely on specific optimization settings such as crossover
and mutation probabilities of GA, and number of fireworks in FA. The future work
will be the implementation of an approximate gradient, an evolutionary direction, and
some other efficient evolutionary operators for constrained optimization problems,
and multiobjective optimization.

Acknowledgments. The author is grateful of the support from the Thailand
Research Fund (TRF). Many thanks are also directed to my colleague, Peter Warr, for
his careful proofreading.

References

1. Farina, M., Amato, P.: Linked Interpolation-Optimization Strategies for Multicriteria
Optimization Problems. Soft Computing 9, 54–65 (2005)

2. Srisoporn, S., Bureerat, S.: Geometrical Design of Plate-Fin Heat Sinks Using
Hybridization of MOEA and RSM. IEEE Transactions on Components and Packaging
Technologies 31, 351–360 (2008)

3. Kaveh, A., Talatahari, S.: Particle Swarm Optimizer, Ant Colony Strategy and Harmonic
Search Scheme Hybridized for Optimization of Truss Structures. Computer and
Structures 87, 1245–1287 (2009)

4. Baluja, S.: Population-Based Incremental Learning: a Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning. Technical Report
CMU_CS_95_163, Carnegie Mellon University (1994)

5. Sebag, M., Ducoulombier, A.: Extending Population-Based Incremental Learning to
Continuous Search Spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P.
(eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)

6. Yuan, B., Gallagher, M.: Playing in Continuous Spaces: Some Analysis and Extension of
Population-Based Incremental Learning. In: CEC 2003, CA, USA, pp. 443–450 (2003)

7. Bureerat, S., Cooper, J.E.: Evolutionary Optimisation Using Evolutionary Direction and
Pseudo-Gradient. In: 1st ASMO UK/ISSMO, Ilkley, UK, pp. 81–87 (1999)

8. Yamamoto, K., Inoue, O.: New Evolutionary Direction Operator for Genetic Algorithms.
AIAA 33, 1990–1993 (1995)

9. Lindfield, G., Penny, J.: Numerical Methods Using MATLAB. Ellis Horwood, England
(1995)

10. Socha, K., Dorigo, M.: Ant Colony Optimization for Continuous Domains. European
Journal of Operational Research 185, 1155–1173 (2008)

11. Herrera, F., Lozano, M., Molona, D.: Continuous Scatter Search: An Analysis of the
Integration of Some Combination Methods and Improvement Strategies. European Journal
of Operational Research 169, 450–476 (2006)

12. Kaveh, A., Talatahari, S.: A Novel Heuristic Optimization Method: Charged System
Search. Acta Mechanica 213, 267–289 (2010)

13. Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Adaptive Scheme for
Global Optimization over Continuous Spaces. Technical Report TR-95-012. International
Computer Science Institute, Berkeley, CA (1995)

 Hybrid Population-Based Incremental Learning Using Real Codes 391

14. Teh, Y.S., Rangaiah, G.P.: Tabu Search for Global Optimization of Continuous Functions
with Application to Phase Equilibrium Calculations. Computers and Chemical
Engineering 27, 1665–1679 (2003)

15. Tan, Y., Zhu, Y.: Fireworks Algorithm for Optimization. In: Tan, Y., Shi, Y., Tan, K.C.
(eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010)

16. Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective Particle Swarm Optimizers: a
Survey of the State-of-the-Art. Int. J. of Computational Intelligence Research 2, 287–308
(2006)

17. Bureerat, S., Limtragool, J.: Structural Topology Optimisation Using Simulated Annealing
with Multiresolution Design Variables. Finite Element in Analysis and Design 44, 738–
747 (2008)

Pareto Autonomous Local Search

Nadarajen Veerapen and Frédéric Saubion

LERIA, Université d’Angers, 49045 Angers, France
{nadarajen.veerapen,frederic.saubion}@univ-angers.fr

Abstract. This paper presents a study for the dynamic selection of op-
erators in a local search process. The main purpose is to propose a generic
autonomous local search method which manages operator selection from
a set of available operators, built on neighborhood relations and neighbor
selection functions, using the concept of Pareto dominance with respect
to quality and diversity. The latter is measured using two different met-
rics. This control method is implemented using the Comet language
in order to be easily introduced in various constraint local search algo-
rithms. Focusing on permutation-based problems, experimental results
are provided for the QAP and ATSP to assess the method’s effectiveness.

1 Introduction

Metaheuristics are now widely adopted as efficient solving methods for combi-
natorial optimization and constraint satisfaction problems. Nevertheless, these
approaches often require a fair amount of knowledge of the problem as well as of
the solving method. A recent development has been to consider building generic
high level control strategies in an effort to make optimization techniques easier
to use [4].

Focusing on local search (LS) techniques, a good LS algorithm [9] should
explore the search space effectively in the quest for the optimum solution. This
involves balancing two generally diverging objectives: intensification (converging
towards a local optimum) with diversification (suitably sampling different areas
of the search space). The effectiveness of those two strategies is largely depen-
dent on the chosen neighborhood structure(s). This balance can be controlled
by means of basic operations (i.e., moves) that are applied along the search pro-
cess. Therefore, an increasing number of works now attempt at building more
autonomous algorithms [8]. Of course this trend has been explored for LS al-
gorithms in the context of Reactive Search [1], based on seminal works such as
reactive tabu [2] or adaptive simulated annealing [12]. For instance in [10], an
adaptive LS uses several neighborhood relations. Nevertheless, as recently men-
tioned in [14], most LS algorithms handle diversity and quality as two opposite
objectives and thus use alternate stages of diversification and intensification,
sometimes in a supervised way and focus most of the time on the quality of
the current incumbent solution, but may introduce prohibition mechanisms to
avoid local optima trapping. Agreeing with the remarks of [14], we believe that
more coordination can be achieved between these two objectives, which can be

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 392–406, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Pareto Autonomous Local Search 393

assessed by the target quality/diversity balance fluctuating in response to the
state of the search process.

Recent works in evolutionary algorithms provide new techniques for adaptive
operator selection. Compass [16] evaluates the performance of an operator as a
scalarization of fitness improvement from parent to offspring, variation in quality
and execution time. In [6], a Dynamic Multi-Armed Bandit is used to select the
operator that maximizes a sum of two quantities, the first one representing the
performance of the operator and the second ensuring that an operator is selected
an infinite number of times. Using the Compass principles, an adaptive local
search algorithm has been presented in [20]. In these works the performance
of an operator is defined w.r.t. a static target balance between quality versus
diversity.

In this paper, we first consider a generic algorithmic model for local search as a
selection process of move operators from a set of available ones, which combine a
neighborhood relation and a neighbor selection within this neighborhood. Then
the purpose of the algorithm is to choose and apply a operator on the current
incumbent solution to progressively build a search path. Therefore, our attempt
is twofold : 1) to introduce a new compromise between quality and diversity in
the search and 2) to provide a control framework that is able to use general
purpose operators for a wide range of problems in order to provide optimization
facilities to non expert users by relieving them from algorithm design and tuning.

We present local search control features for solving permutation problems,
i.e. those whose configuration can be modeled as permutations. This general
framework allows us to define various operators by combining basic permutation
neighborhoods and selectors.

At each step of the search, the operators are selected according to the Pareto
dominance principle, computed w.r.t. the recorded performance in intensification
and diversification of each operator. Moreover, since our purpose is to provide
a generic development framework for local search users, our control features are
inserted in Comet [24], which is a language dedicated to the design of local
search algorithms with constraint handling facilities. In order to outline the
generality of our controller, we then test our implementation on two well known
permutation problems: the Quadratic Assignment Problem and the Asymmetric
Traveling Salesman Problem.

The rest of this paper is organized in 4 sections. Section 2 establishes the def-
initions to deal with neighborhoods, neighborhood selectors and operators for
permutation problems. In Section 3 we present the control framework, two dis-
tance metrics and the Pareto selection method. This is followed by test protocol
and results in Section 4. Finally, Section 5 ends with concluding remarks and
some possibilities for further investigation.

2 Neighborhood, Selectors and Operators

The purpose of this section is to provide a formal description of the permutation
based problems and their associated operators. In [21], the authors propose such

394 N. Veerapen and F. Saubion

a formal review of different neighborhoods and they define distances associated
to these neighborhoods. As mentioned above, since our goal is to dynamically
manage operators according to their behavior and properties we are thus particu-
larly interested in such metrics. Nevertheless, in [21], the authors deal with single
operator methods and the metrics that could be used to assess the diversity of
a local search path are indeed fully dependent of the operator.

Here, we aim at providing a generic and simple description of the neighbor-
hood and the operators that can be useful to define new operators and to manage
their application according to their impact on the search process. Our purpose is
also to provide a framework to compare neighborhoods and selectors in a multi
operator local search procedure.

2.1 General Definitions

In this section, our purpose is to clearly define the neighborhood and the selec-
tion of the neighbor and thus the operators, together with the different notions
associated to the search process.

Neighborhood. Let S be the search space of candidate solutions. A neighbor
relation is an irreflexive binary relation N ⊆ S2 over the search space. In most
cases, the relation is also symmetric.

Search Paths. Given a neighbor relation N we define the set of search paths
as PN = {s1 · · · sn ∈ S∗|∀i > 1, (si−1, si) ∈ N}, where S∗ classically denotes
the set of words constructed over S . Therefore, any pair (s, s′) of elements
of S, such that (s, s′) ∈ N+,1 defines an equivalence class over the set PN ,
which corresponds to all the paths that link s to s′. We may denote this subset
by PN /(s, s′). In most of the cases, the neighborhood should be complete, i.e.
∀s, s′ ∈ S,PN /(s, s′) �= ∅.

Distances. The neighbor relation actually defines the declarative structure of
the search space. We may thus define the distance between s and s′ as dN (s, s′) =
minp∈PN/(s,s′)|p|, where |p| is the classic word length. By definition, we impose
dN (s, s) = 0. Note that we may require N to be symmetric if we want d to be
a distance.

Combining Neighborhoods. In order to express more complex neighborhood
structures, we denote N ◦N ′ the composition and N ∪N ′ the union, which are
the most commonly used neighborhood constructors. A neighborhood composed
with itself is denoted by N 2 and Nn+1 = N ◦ Nn.

Search Landscape. Turning now to the search landscape, we first introduce an
ordering relation < over S that corresponds to the order induced by the fitness
function of the problem. Note that we consider here only minimization problems,
which is general enough.
1 N+ is the transitive closure of N .

Pareto Autonomous Local Search 395

Operational Landscape. We now have to introduce the operational structure
of local search in order to move through the neighborhood relation.

In this context, a selector is a function that performs a selection over a neigh-
borhood, eventually guided by the ordering < and is defined as σ : S × 2S

2 �→ S
(here the selection returns only one neighbor), such that (s, σ(s,N)) ∈ N= (the
reflexive closure of S to include identity). An operator is then defined by a pair
(N , σ).

Again, we consider the paths induced by an operator

Po =
⋃
n>1

{s1 · · · sn ∈ S∗|o = (N , σ), ∀i > 1, si = σ(si−1,N)}

In order to simplify the notation, we use o(s) = σ(s,N) when o = (N , σ) since
o can be viewed as a function on S. We denote o ◦ o′ the composition between
operators, o2 the composition of o with itself and on+1 = o ◦ on.

Here, we should note that we only have the inclusion Po ⊆ PN , since some
neighborhood paths cannot be necessarily constructed by the operators as soon
as it includes a selection process among the neighbors. Moreover, if there exists
a path in Po from s to s′, there does not necessarily exist a path from s′ to s.
Therefore, due to this non symmetric aspect of operators it is not obvious to
use a simple distance over the paths created by the operators. Now we may han-
dle multiple neighborhoods local search by composing or joining neighborhood
relations.

2.2 Permutations

We now focus on permutations which correspond to the encoding that we will
use in our problems. Our purpose is to propose a comprehensive view of the
possible operators that could be used in this context.

Let Π(n) be the search space, i.e. set of all permutations of the set {0, 1, . . . , n−
1}. If π ∈ Π(n) and 0 ≤ i ≤ n − 1, then πi denotes element i in π.

As described in [21] we may use a set of basic neighborhood relations induced
by the basic possible permutations.

Swap NS (s, s′) ∈ NS iff s = (π0, . . . , πi, πi+1, . . . , πn−1)
and s′ = (π0, . . . , πi+1, πi, . . . , πn−1) for some i.

Exchange NE (s, s′) ∈ NE iff s=(π0, . . . , πi−1, πi, πi+1,. . . , πj−1, πj , πj+1, . . . , πn−1)
and s′ = (π0, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn−1) for
some i and some j.

Insertion NI (s, s′) ∈ NI iff s=(π0, . . . , πi−1, πi, πi+1, . . . , πj−1, πj , πj+1, . . . , πn−1)
and s′ = (π0, . . . , πi−1, πi+1, . . . , πj−1, πi, πj , πj+1, . . . , πn−1) for
some i and some j.

Edge Exch. NEE (s, s′) ∈ NEE iff s=(π0,. . . , πi−1, πi, πi+1,. . . , πj−1, πj , πj+1,. . . , πn−1)
and s′=(π0, . . . , πi, πj , πj−1, . . . , πi+1, πj+1, . . . , πn−1) for i + 1 < j.

It is easy to see that the neighborhood constructed by NS can also be con-
structed by NE and NI . Therefore, ordering relations can be defined to classify

396 N. Veerapen and F. Saubion

the neighborhood in order to highlight the relationships between the distances
they induce (see [21] for more details).

We may now propose several classic selection functions in order to build op-
erators.

Random σR such that σ(s,N) is any randomly chosen s′ such that (s, s′) ∈ N
Best Improve σBI such that σ(s,N) is a minimal element s′ according to the order

<, such that (s, s′) ∈ N
Best Improve k σBIk such that σ(s,N) is an uniformly selected element s′ ∈ K, K

being the set of k-best elements according to the order <, such that
(s, s′) ∈ N

Improve σI such that σ(s,N) is any element s′ such that (s, s′) ∈ N and s′ < s.

Tournament k σT k such that σ(s,N) is an element s′ such that K is a subset of k
elements that are in relation with s in N and s′ is the best of these k
elements.

3 Operator Control for Local Search

The aim of our method is to select from a given set of operators the appropriate
one to apply at each iteration (Fig. 1). This requires evaluating the efficiency of
the operators based on their previous behavior and selecting one which is capa-
ble of advancing the search process, either for intensification or diversification
purposes.

Statistics

Operator
Selection

Evaluation

Application
Parameters

Operator
Application

Current
Search State

Fig. 1. Overview

Our objective is to have an approach as generic as possible for solving per-
mutation problems. As such, our solving method involves four distinct modules.

– Permutation problem definition and search process
– Path (sliding window) Manager.
– Operator Manager.
– Operator Store (An operator is a neighborhood to which is associated a

selector).

Pareto Autonomous Local Search 397

For the user, solving a new permutation problem only involves defining a
procedure to read the instance data and specifying the objective function and
constraints. Optionally, the user can add new operators to the Operator Store
and provide a method to generate initial solutions other than random ones.

Our implementation is written in Comet [24]. We believe that this constraint-
based local search language provides interesting avenues for our work because
of its focus on making local search easier and it already provides simple mech-
anisms for manipulating neighborhoods and selectors. Our program builds on
those intuitive features and could be considered a plug-in for Comet. Indeed,
the one line instructions in the main loop of the general algorithmic outline (Al-
gorithm 1) each correspond to one line calls to our plug-in. We think that this
genericity and simplicity (modulo a minimum amount of knowledge needed to
define the problem) allied to the inherent ease-of-use of Comet is a good step
in empowering end-users of optimization software.

define problem as instance of Permutation Problem
add operators to Operator Store
initialize Path Manager
initialize Operator Manager
s← initial solution
s∗ ← s
repeat

op← select Operator
s← op(s)
Update Path Manager with s
Update Operator Manager with measures of s
if s is better than s∗ then s∗ ← s

until end condition reached
return s∗

Algorithm 1. General algorithmic outline

Our approach is meant to be as generic as possible but has some shortcomings.
In practice (for operators more complex than simple exchanges), the user is
required to provide the function to compute the delta in evaluating a candidate
solution since it is dependent on the objective function.

3.1 Metrics

As mentioned in the introduction, an important issue in the control is to assess
the balance diversification/intensification by means of metrics that can evaluate
the efficiency of an operator w.r.t. the visited search path in order to choose the
next move. We propose here to handle simultaneously two criteria, quality and
diversity, to manage this balance as a compromise.

Quality. Quality is measured directly using the objective function. The relative
change in quality when applying an operator op to a solution s is given by

ΔQ =
eval(op(s)) − eval(s)

eval(s) + 1

398 N. Veerapen and F. Saubion

Distance. Diversity is a natural concept when considering populations of so-
lutions in evolutionary algorithms. This is less intuitive in local search which
produces one solution at each iteration. This notion has been investigated for
instance in [22] and in [13]. We could consider the diversity of the path of the
search (the sequence of solutions already found) or a sliding window of this path.
Instead we choose to try to measure the difference between the path and the cur-
rent candidate solution c = op(s). We propose two different perspectives: first,
how different the path is compared to c at the variable level; second, how far c
is from the path in terms of the numbers of operations between them.

The L1 (Manhattan) distance between two vectors p and q is defined as
d1(p, q) =

∑n
i=1 |pi − qi|. We use a simple metric measuring the L1 distance

between representations of the candidate solution and the centroid of the path.
The dimensions of the points representing the solutions are the binary variables,
xa,b, the value of which is 1 in the candidate solution, where xa,b = 1 implies
that variable a is assigned value b for assignment problems or that a is followed
by b for ordering problems. The centroid therefore corresponds to the frequencies
of xa,b = 1 in the path.

More formally, let X = {1, . . . , n} such that there exists a bijection g from X
to the set of variables representing the solutions where Y is the domain of these
variables. Let fs : X → Y be the function representing the values assigned to
the variables of solution s. Let Pi,j be the path from iteration i through j, i ≤ j.
Then

dP
1 (c, Pi,j) =

1
n
×

n∑
k=1

(
1 − occ(Pi,j , xk,fc(k))

|Pi,j |
)

where occ(Pi,j , xa,b) returns the number times xa,b = 1 in Pi,j .
Next, we use the basic neighborhood distance presented in Section 2 and the

idea is to compare the effective search path with the optimal path that may have
been built with this reference neighborhood relation.

Thus we define distance

dP
N (pk, Pi,j) =

j∑
l=i

|Pl,k|
dN (pl, pk)

, i ≤ j ≤ k

Using a sufficiently simple operator, dP
N can be used to evaluate the ex-

ploratory characteristics of more complex operators. We suggest the use of the
simple exchange operator, NE , for this purpose. An algorithm to compute dNE

is presented in [21].

3.2 Operator Selection

We now provide some insights on the selection process that is used to choose
the move operator at each search step. Given two vectors u and v of equal
cardinality p and considering a maximization problem, u dominates v if

Pareto Autonomous Local Search 399

uk ≥ vk, ∀k ∈ {1, . . . , p} with at least one strict inequality. This is often referred
to as Pareto dominance.

We consider the population of two-dimensional vectors representing the per-
formance of each operator. In this paper the performance corresponds to the
average ΔQ and dP over an independent sliding window of length m for each
operator. The initial performance of each operator is calculated by applying each
of them once to the initial solution. If an operator has not been used in the last
m iterations, the sliding window for this operator will not be empty: it will con-
tain at least one element (and at most m elements) computed before those m
last iterations.

The operator to use at each iteration of the algorithm is selected by fair
random choice, that is with a probability proportional to its utility value [18].
We define the utility value of an operator as the number of operators which it
dominates to which we add an ε to ensure a non-zero utility value.

4 Experiments

We test our method on the QAP and the ATSP. These problems were chosen
because their solutions are easy to model as a single array of variables. The
Quadratic Assignment Problem (QAP) models the problem of finding a mini-
mum cost allocation of facilities into locations, taking the costs as the sum of all
possible distance-flow products [15]. The Asymmetric Traveling Salesman Prob-
lem (ATSP) involves finding a minimum weight Hamiltonian tour in a directed
graph [7]. Initial solutions for the QAP are randomly generated and the nearest
neighbor construction heuristic is used for the ATSP. In these experiments, we
use 10 operators:

O1 (σI ,NE), the first-improving exchange between two variables.
O2 (σBI,NE), the best exchange between two variables.
O3 (σBI5,NE), random choice among the 5-best exchanges between two vari-

ables.
O4 (σBI,NE)2, two consecutive best exchanges between two variables. The

variables exchanged in the first step are forbidden in the second.
O5 (σBI,NE)3, three consecutive best exchanges between two variables. The

variables exchanged in previous steps are forbidden in the following steps.
O6 (σT 3!,N 2

E), best exchange between 3 randomly chosen variables.
O7 (σT 4!,N 3

E), best exchange between 4 randomly chosen variables.
O8 (σT 5!,N 4

E), best exchange between 5 randomly chosen variables.
O9 (σT 6!,N 5

E), best exchange between 6 randomly chosen variables.
O10 (σR,N 3

E), three consecutive random exchanges between two variables.

As described below, these 10 operators provide very poor results for the ATSP.
We therefore add operator O11. The 3-opt [7] move (σBI,N 2

EE) involves selecting
the best solution obtained by breaking 3 edges and rebuilding new edges in such
a way that no sub-path is reversed.

400 N. Veerapen and F. Saubion

In these experiments, we focus on different neighborhoods built on NE , which
seems to be a good intermediate level of neighborhood. As in above, other neigh-
borhoods could also be used (indeed they can also be expressed in terms of NE).
Further works could investigate larger sets of combinations as it has been done
for evolutionary algorithms in [17].

4.1 Experimental Protocol

The test instances used are from QAPLIB [3] for the QAP and from TSPLIB [19]
for the ATSP. Each (algorithm, instance) pair is replicated 30 times. The sliding
window length is arbitrarily set to 100 and ε = 1 for the selection process. All
runs were allowed a maximum of 40 000 iterations. We use the non-parametric
paired Wilcoxon signed-rank test [5,23]. Given two algorithms A and B, the null
hypothesis is: the medians of the distribution of solutions generated by A and
B are equal. It is rejected with a confidence level of 95%.

4.2 Results and Discussion

Table 1 shows the results for the QAP and Table 2 those of the ATSP. The
average percentage difference between the best known value (BKV) and the fair
random choice for the following utility values: Uniform distribution, Quality,
number of Pareto dominated solutions using distance dP

1 (ParDom dP
1) and dis-

tance dP
NE

(ParDom dP
NE

). The results for Robust Tabu Search for the QAP
(RoTS) are also provided for comparison (of course more recent works on LS
obtain better results than RoTS, e.g. [11]). Our purpose here is just to provide a
simple baseline, reimplemented in Comet, and to show that our method, using a
non optimized set of operators may achieve interesting results. The best results
for each instance are indicated in bold font (RoTS results are not considered
because they are better or equal in all but two instances). For Table 2, column
ParDom10 contains the results when using only the same 10 operators used for
the QAP with distance dP

1 .
For the QAP ParDom dP

1 and ParDom dP
NE

manage to share most of the
bold font results between the two of them. However, based on the Wilcoxon
test, ParDom dP

1 seems to be the best algorithm when compared to uniform
selection (p-value 0.02, when comparing the means) and quality-proportional
selection (p-value 0.08). In contrast, results for ParDom dP

NE
are not statistically

significant. The results thus appear to show that ParDom dP
1 is better than

ParDom dP
NE

(although the null hypothesis cannot be rejected when they are
compared to one another).

For the ATSP, using only the 10 operators that were used for the QAP is not
effective. This is easy to explain because none of them take the cyclic nature of
ATSP solutions into consideration. Adding the 3-opt operator produces a marked
improvement. With only one ATSP-specific operator, the population of operators
remains very biased against the ATSP. This results in a stronger improvement
than with the QAP when comparing the 3 non-trivial selection methods with
uniform selection. Here, ParDom dP

1 and ParDom dP
NE

share the best results

Pareto Autonomous Local Search 401

Table 1. Experimental Results for the QAP

Instance BKV Uniform Quality ParDom dP
1 ParDom dP

NE
RoTS

bur26a 5426670 0.000244 0.001629 0.000000 0.004015 0.000000
bur26c 5426795 0.000061 0.000000 0.000059 0.000002 0.000000
bur26f 3782044 0.000000 0.000000 0.000000 0.000000 0.000000

chr25a 3796 11.790306 10.353003 10.189673 9.381454 7.093783

els19 17212548 0.000000 0.000000 0.000000 0.000000 0.000000

kra30a 88900 0.470416 0.488939 0.499888 0.730034 0.067267
kra30b 91420 0.110698 0.124335 0.063881 0.098666 0.023408

nug20 2570 0.000000 0.000000 0.000000 0.000000 0.000000
nug30 6124 0.12279556 0.091444 0.057478 0.050947 0.014370

sko42 15812 0.163167 0.148832 0.090817 0.115608 0.029598
sko49 23386 0.266655 0.194703 0.186265 0.193962 0.125203
sko56 34458 0.212781 0.196955 0.229497 0.292762 0.118753

tai30a 1818146 1.131385 1.178607 0.794332 0.633736 0.512898
tai35a 2422002 1.538266 1.391353 0.943254 0.745479 0.762013
tai50a 4941410 1.847374 1.815764 1.377229 1.363935 1.391181

tai30b 637117113 0.150888 0.107800 0.103892 0.129518 0.026246
tai50b 458821517 0.173836 0.186702 0.269760 0.537427 0.150598

wil50 48816 0.076696 0.074429 0.079400 0.090216 0.053425

between them but with a significant proportion for ParDom dP
NE

. In terms of
statistical significance both Pareto dominance selections over 11 operators are
indeed better than uniform and quality selection. When comparing ParDom dP

1

to ParDom dP
NE

, the null hypothesis can be rejected. This strongly shows that
ParDom dP

NE
is the better one for the ATSP.

Fig. 2(a) shows the cumulative frequency of applications of operators for an
arbitrary run of the QAP and Fig. 3 shows the same for the ATSP. One can
observe that the operators are clearly separated into two groups: one whose
frequency is higher than average (0.1) and one lower. Closer examination reveals
that the former is the group which improves quality the most while the latter is
the one which perturbs the solutions the most without improving quality.

The operator which is selected the most is the one which has managed to con-
sistantly improve the solution while modifying a number of variables of the solu-
tion at the same time over its last 100 applications. As can be seen in Fig. 2(a),
operator O5 performs very well at the start of the search. Its performance then
drops off but gradually increases back to the level of the other best performing
operators, with the search stagnating at the end. This illustrates the fact that
one operator is not always the best during the whole duration of the search and
that it is important for the selection mechanism to be influenced by the stage of
the search. In contrast, in Fig. 3, operator O11 always remains the most selected
operator. This is to be expected since it is the only one which is specific to the
ATSP and therefore consistantly outperforms the other operators. The operators
which are good for quality in the QAP remain of interest for the ATSP.

402 N. Veerapen and F. Saubion

Table 2. Experimental Results for the ATSP

Instances BKV ParDom10 Uniform Quality ParDom dP
1 ParDom dP

NE

br17 39 0.000000 0.000000 0.000000 0.000000 0.000000

p43 5620 0.202847 0.009490 0.002372 0.001779 0.000593

ry48p 14422 4.309620 0.661721 0.347155 0.204086 0.168955

ft53 6905 12.608255 1.108858 0.517982 0.186338 0.172822
ft70 38673 5.891276 0.749791 0.455787 0.080849 0.048268

ftv33 1286 7.550544 0.000000 0.000000 0.000000 0.000000
ftv35 1473 5.489930 0.495587 0.072415 0.067889 0.031681
ftv38 1530 6.141612 0.718954 0.429194 0.305011 0.259259
ftv44 1613 9.070056 0.725356 0.378177 0.237652 0.252118
ftv47 1776 11.006006 0.478604 0.191441 0.138889 0.114489
ftv55 1608 14.195688 0.972222 0.213516 0.136816 0.093284
ftv64 1839 17.130687 1.386623 0.781222 0.554649 0.580025
ftv70 1950 17.042735 1.540171 0.919658 0.635897 0.637607
ftv90 1579 25.429597 2.180705 1.253958 0.975301 0.821195
ftv100 1788 24.571216 2.839299 1.498881 1.168904 1.047726
ftv110 1958 31.089547 4.375213 2.667688 2.378277 2.311883
ftv120 2166 25.386273 3.464143 2.368421 2.136042 2.132964
ftv130 2307 22.831961 4.838896 2.781390 2.417281 2.265569
ftv140 2420 32.836088 4.720386 3.286501 3.004132 2.965565
ftv150 2611 32.370739 5.581514 3.993361 3.150772 3.292481
ftv160 2683 35.242887 5.998261 3.467511 3.473723 3.334576
ftv170 2755 33.393829 5.929825 3.680581 3.097816 3.553539

kro124p 36230 18.522587 2.327813 1.358451 1.150520 1.055479

rbg323 1326 7.986425 0.072901 0.012569 0.000000 0.000000
rbg358 1163 9.203210 0.005732 0.000000 0.000000 0.000000
rbg403 2465 1.150778 0.000000 0.000000 0.000000 0.000000
rbg443 2720 1.455882 0.000000 0.000000 0.000000 0.000000

To explain why quality-improving operators are selected more often, we can
notice that modifying a solution to make it better also requires modifying its
variables and thus the distance from the last solution. Quality-improving opera-
tors are therefore more likely to dominate operators whose sole action is to cause
perturbations in the solution.

Fig. 2(b) displays the number of operators dominated by each operator over a
subset of the search in Fig. 2(a) (shaded region). It can be observed that there are
times in the search where one operator dominates almost all others, thus having
the highest chance of being selected. This increased probability is reflected in the
cumulative frequency graph. We can observe that in the few hundred iterations
prior to iteration 7 000, no operator is considered to be much better than the
others. This, in effect, reduces the selection process to a simple uniform selection.
A more discriminating selection then emerges as different operators seem more
suited to the following portion of the search.

Pareto Autonomous Local Search 403

 0

 0.05

 0.1

 0.15

 0.2

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
u

m
u

la
ti
v
e

 o
p

e
ra

to
r

u
s
a

g
e

 f
re

q
u

e
n

c
y

Iterations

O1
O2
O3
O4
O5
O6
O7
O8
O9

O10

(a) Cumulative selection frequency.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5000 6000 7000 8000 9000 10000

N
u
m

b
e
r

o
f

o
p
e
ra

to
rs

 d
o
m

in
a
te

d

Iterations

(b) Number of operators dominated corresponding to the shaded iterations in (a).

Fig. 2. QAP tai50a sample run

Another interesting observation, especially in Fig. 3, is that a marked increase
in the usage frequency of an operator often implies the opposite for another
operator.

Fig. 4 is a snapshot of part the search on a QAP instance. It features the best
value as well as the current value of the objective function plotted alongside the
distance of the new solution from the path. It highlights that the control, man-
aging the compromise between quality and diversity, is able to escape from local
optima but also to reach good solutions. The correlation between our distance
measure and the quality also appears clearly.

Although the detailed results are not reported in this paper, we can note that
if we add 5 clones of an operator that does nothing, the performance gap widens
between the proposed selection method and uniform selection. If we only use the
best operator for intensification and the best operator for diversification and set
ε to 0.1 (1 being too similar to uniform selection), the results are worse than for
10 operators.

404 N. Veerapen and F. Saubion

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5000 10000 15000 20000

C
u

m
u

la
ti
v
e

 o
p

e
ra

to
r

u
s
a

g
e

 f
re

q
u

e
n

c
y

Iterations

O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11

Fig. 3. ATSP ftv55 sample run

 0

 0.2

 0.4

 0.6

 0.8

 1

 3500 3600 3700 3800 3900 4000 4100 4200 4300
 5.4e+06

 5.45e+06

 5.5e+06

 5.55e+06

 5.6e+06

 5.65e+06

 5.7e+06

 5.75e+06

 5.8e+06

 5.85e+06

D
is

ta
n
c
e
 d

1

O
b
je

c
ti
v
e
 V

a
lu

e

Iterations

d1
Best Value

Current Value

Fig. 4. Final part of the search for one run of QAP bur26a

5 Conclusion

In this paper we have presented a generic method, which manages local search
operators for permutation problems, as well as two metrics to measure the dis-
tance of a solution from a subsection of the search path. This method was imple-
mented in Comet with the objective of making it generic and easy to use from
an end-user’s perspective. The numerical results of the tests run on the QAP
and ATSP have shown that the algorithm was effective but very much open to
many improvements.

At present, the selection process favors the operators which maintain a coop-
erative balance between intensification and diversification, i.e., the operators in
the middle of the Pareto curve. The next milestone in our work will be to intro-

Pareto Autonomous Local Search 405

duce a reactive element to the process. Another important question to investigate
is the handling of restarts (and not only small perturbation moves as used in this
paper), either as an “external” restart upon reaching some condition or as an “in-
ternal” restart, that is, as an operator in itself. Obviously, testing the genericity of
the approach on additional problems is also required, in particular problems with
constraints and ones which require the exploration of non-feasible solutions.

Acknowledgements. This work was supported by Microsoft Research through its
PhD Scholarship Programme.

References

1. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.
Springer, Heidelberg (2008) (incorporated)

2. Battiti, R., Tecchiolli, G.: The reactive tabu search. Informs Journal On Comput-
ing 6(2), 126–140 (1994)

3. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – a quadratic assignment problem
library. Journal of Global Optimization 10(4), 391–403 (1997)

4. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
Heuristics: an emerging direction in modern search technology. In: Handbook of
Metaheuristics, pp. 457–474 (2003)

5. Chiarandini, M., Paquete, L., Preuss, M., Ridge, E.: Experiments on metaheuris-
tics: Methodological overview and open issues. Technical Report DMF-2007-03-003,
The Danish Mathematical Society (2007)

6. DaCosta, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pp. 913–920. ACM, Atlanta (2008)

7. Gutin, G., Punnen, A.P.: The traveling salesman problem and its variations.
Springer, Heidelberg (2002)

8. Hamadi, Y., Monfroy, E., Saubion, F.: What Is Autonomous Search? In: Hybrid
Optimization: The Ten Years of CPAIOR. Springer, Heidelberg (2010)

9. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

10. Hu, B., Raidl, G.R.: Variable neighborhood descent with self-adaptive
neighborhood-ordering. In: Proc. of the 7th EU Meeting on Adaptive, Self-Adaptive
and Multilevel Metaheuristics (2006)

11. Hussin, M.S., Stützle, T.: Hierarchical iterated local search for the quadratic as-
signment problem. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M.,
Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 115–129. Springer, Heidelberg
(2009)

12. Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control and Cy-
bernetics 25, 33–54 (1996)

13. Linhares, A.: The structure of local search diversity. In: Math 2004: Proceedings of
the 5th WSEAS International Conference on Applied Mathematics, pp. 1–5. World
Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2004)

14. Linhares, A., Yanasse, H.H.: Search intensity versus search diversity: a false trade
off? Applied Intelligence 32(3), 279–291 (2010)

406 N. Veerapen and F. Saubion

15. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.:
A survey for the quadratic assignment problem. European Journal of Operational
Research 176(2), 657–690 (2007)

16. Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G.,
Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199,
pp. 256–265. Springer, Heidelberg (2008)

17. Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for
evolutionary algorithms. Journal of Heuristics (2010)

18. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Metaheuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic
Publishers, Dordrecht (2004)

19. Reinelt, G.: TSPLIB - a traveling salesman problem library. Informs Journal On
Computing 3(4), 376–384 (1991)

20. Robet, J., Lardeux, F., Saubion, F.: Autonomous control approach for local search.
In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2009. LNCS, vol. 5752, pp.
130–134. Springer, Heidelberg (2009)

21. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

22. Sidaner, A., Bailleux, O., Chabrier, J.J.: Measuring the spatial dispersion of evolu-
tionary search processes: Application to walksat. In: Collet, P., Fonlupt, C., Hao,
J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 77–90.
Springer, Heidelberg (2002)

23. Sprent, P.: Applied Nonparametric Statistical Methods. Chapman & Hall, London
(1989)

24. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press,
Cambridge (2005)

Transforming Mathematical Models Using

Declarative Reformulation Rules

Antonio Frangioni1 and Luis Perez Sanchez2

1 Dipartimento di Informatica, Università di Pisa, Polo Universitario della Spezia,
Via dei Colli 90, 19121 La Spezia, Italy

frangio@di.unipi.it
2 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3,

56127 Pisa, Italy
perez@di.unipi.it

Abstract. Reformulation is one of the most useful and widespread ac-
tivities in mathematical modeling, in that finding a “good” formulation
is a fundamental step in being able so solve a given problem. Currently,
this is almost exclusively a human activity, with next to no support from
modeling and solution tools. In this paper we show how the reformula-
tion system defined in [13] allows to automatize the task of exploring the
formulation space of a problem, using a specific example (the Hyperplane
Clustering Problem). This nonlinear problem admits a large number of
both linear and nonlinear formulations, which can all be generated by
defining a relatively small set of general Atomic Reformulation Rules
(ARR). These rules are not problem-specific, and could be used to re-
formulate many other problems, thus showing that a general-purpose
reformulation system based on the ideas developed in [13] could be
feasible.

1 Introduction

It is a striking discovery that while the term reformulation is ubiquitous in
mathematics (e.g. [4, 9, 14, 16]), there are few formal definitions and theoretical
characterizations of the concept. Some are limited to syntactic reformulations,
i.e., those that can be obtained by application of algebraic rewriting rules to the
elements of a given model [11]. These reformulations are capable of exploiting
syntactical structure of the model, such as presence of particular algebraic terms
in parts of its algebraic description [7]. While being very relevant, these do not
include all transformations that have shown to be of practical use.

Indeed, oftentimes reformulations are based on nontrivial theorems which link
the properties of two seemingly very different structures. Some notable examples
are the equivalent representations of a polyhedron in terms of extreme points and
faces (which underpins a number of important approaches such as decomposition
methods, and has many relevant special cases such as the path formulation and
the arc formulation of flows [1]) and the equivalence between the optimal solu-
tion value of a convex problem and that of its dual. These reformulations require
a higher view of the concept of structure of a model, i.e., a semantic structure

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 407–422, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

408 A. Frangioni and L. Perez Sanchez

which considers the mathematical properties of the entire represented mathe-
matical objects as opposed to these of small parts of their algebraic description;
we therefore refer to them as semantic reformulations. Proper definitions of re-
formulation capable of capturing this concept are thin on the ground.

For instance, an attempt was made in [15] by demanding that a bijection exists
between the feasible regions of the two models and that one objective function
is obtained by applying a monotonic univariate function to the other, which are
extremely strict conditions. A view based on complexity theory was proposed
in [2], but since it requires a polynomial time mapping between the problems
it already cuts off a number of well-known reformulation techniques where the
mapping is pseudo-polynomial [6] or even exponential in theory [3, 5, 8], but
quite effective in practice. Only recently a wider attempt at formalizing the
definition of formulation has been done which covers several techniques such as
reformulation based on the preservation of the optimality information, changes
of variables, narrowing, approximation and relaxation [11, 12].

However, a general formal definition of reformulation is not enough; the aim
is to identify classes of reformulation rules for which automatic search in the
formulation space is possible. In this sense, syntactic reformulations, being some-
what more limited in scope and akin to rewriting systems, may prove to have
stronger properties that allow more efficient specialized search strategies. Yet,
defining appropriate more general classes of semantic reformulations is also nec-
essary in order for the system to be able to cover a large enough set of possible
reformulations.

In this paper we showcase the modeling capabilities of the i-dare (Intelligence-
Driven Automatic Reformulation Engine) system developed in [13] by using a
specific example (the Hyperplane Clustering Problem). This nonlinear problem
admits a large number of both linear and nonlinear formulations, which can all
be generated by defining a relatively small set of general Atomic Reformulation
Rules (ARR) on a set of properly defined structures described in §2.

The ARRs are a key component of the i-dare reformulation system (i-dare(t))
[13]; it informally defines a reformulation rule based on the fact that we can trans-
form structure A into B if and only if A’s input is transformable into B’s input, and
B’s output is transformable into A’s output. ARRs are defined between two struc-
tures; in the i-dare system, structures are classes that are derived from the hier-
archy in Figure 1 where d LeafProblem C represents the atomic structures, and d Block C

represents the structures that are composed of other structures. The composition
of structures is controlled by the arrangement of the sub-structure’s shared vari-
ables. i-dare exploits the power of a declarative language (in particularFLORA-2
[17]) for the definition of the structures and of the ARRs.

ARRs are divided in two classes, Algebraic ARRs (ARR
∑

) and Algorithmic
ARRs (ARRA). The ARR

∑
s defines the transformation of the input and output

using solely algebraic operation, whereas the ARRAs need the intervention of an
algorithmic approach for reformulation the input and/or output. In this paper,
for space reasons, we only concentrate on the former. Further, we will not define
formally the concept of ARR, which is described in details in [13]. The aim

Transforming Mathematical Models Using Declarative Reformulation Rules 409

d_Component_C

d_LeafProblem_C d_Block_C

Fig. 1. i-dare(lib) hierarchy

here is to show that a relatively small set of general (algebraic) ARRs suffice
for producing a large number of both linear and nonlinear formulations for the
problem. These ARRs are not problem-specific, and could be used to reformulate
many other problems, thus showing that a general-purpose reformulation system
based on the ideas developed in [13] could be feasible.

2 Structures

One of the main i-dare potentialities is the capacity of declaring and relating
structures that contain a specific semantic value. In this section we will focus on
creating a set of global structures that will allow us to build models by combining
them.

For instance we may declare some simple structures just to define a binary
variable (BV), continuous variable (CV), relation and a constant.

d S ing l eBV C : : d LeafProb l em C
[

a rg s −> [v = d va r]
] .

d S ing l eCV C : : d LeafProb l em C
[

a rg s −> [v = d va r]
] .

d R e l a t i on C : : d LeafProb l em C
[

a rg s −> [r e l = d r e l]
] .

d Constant C : : d LeafProb l em C
[

a rg s −> [c = d cons t ant]
] .

We may also define, for example a vector of continuous variables,
d VectorCV C : : d LeafProb l em C
[

d im va r −> [D] ,
a r g s −> [v = d vec to r (d var , [D])]

] .

Considering more complex structures, we can create for instance a product be-
tween a CV and a BV,
d ProdBC C : : d Block C
[

i d s −> [b i n , cont] ,
subsC −> [d S ing l eBV C , d S ing l eCV C] ,
l i n k −> [([X] , d a l l) , ([Y] , d a l l)]
r p l R −> [b i n = 1 , cont = 1]

] .

Moreover we can declare a structure to represent a semi-continuous expression,
like f ∗x, where f is a continuous structure (i.e. using only CVs) and x is a BV.
d SemiCont inuous C : : d Block C
[

i d s −> [c t , bv] ,
subsC −> [d Component C , d S ing l eBV C] ,
l i n k −> [([X] , d a l l) , ([Y] , d a l l)] ,
r p l R −> [c t = 1 , bv = 1]

] .

410 A. Frangioni and L. Perez Sanchez

Considering operators like | · | (absolute value), we can create further struc-
tures. For instance the following leftmost structure represents |∑i vici|, where
vi is a CV and ci is a constant, and the rightmost represents its non-vectorial
version.
d VAbs C : : d LeafProb l em C
[

d im va r −> [D] ,
a r g s −> [

v = d vec to r (d var , [D]) ,
c = d vec to r (d constant , [D])

]
] .

d SAbs C : : d LeafProb l em C
[

a rg s −> [
v = d var ,
c = d cons t ant

]
] .

Structures representing specific collections of constraints and/or optimization
problems can also be defined, like Linear Programs (d LP C); Mixed-Integer Lin-
ear Programs (d MILP C); Semi-Assignment Constraints (d SemiAssign C), and Com-
plementary Constraints (d ProdCC C) defined by xy = 0 where x, y ≥ 0 are CVs.

d LP C : : d LeafProb l em C
[

d im va r −> [c o l s , cons] ,
a r g s −> [

x = d vec to r (d var , [c o l s]) ,
c = d vec to r (d constant , [c o l s]) ,
A = d vec to r (d constant , [cons , c o l s]) ,
b = d vec to r (d constant , [cons]) ,
r e l s = d vec to r (d re l , [cons]) ,
d i r = d d i r e c t i o n

]
] .

d MILP C : : d LeafProb l em C
[

d im va r −> [cons , co l sR , c o l s I] ,
a r g s −> [

x r = d vec to r (d var , [c o l sR]) ,
x i = d vec to r (d var , [c o l s I]) ,
c r = d vec to r (d constant , [c o l sR]) ,
c i = d vec to r (d constant , [c o l s I]) ,
Ar = d vec to r (d constant , [cons , c o l sR]) ,
Ai = d vec to r (d constant , [cons , c o l s I]) ,
b = d vec to r (d constant , [cons]) ,
r e l s = d vec to r (d re l , [cons]) ,
d i r = d d i r e c t i o n

]
] .

d SemiAss ign C : : d LeafProb l em C
[

d im va r −> [D] ,
a r g s −> [

v = d vec to r (d var , [D])
]

] .

d ProdCC C : : d LeafProb l em C
[

a rg s −> [
x = d var ,
y = d va r

]
] .

Beside those specific structures we can define a structure to represent a general
constraint f =</=/>= c, where c is a constant, and f can be any component. Like-
wise we could define a minimization objective function,

d Con s t r a i n t C : : d Block C
[

i d s −> [e xp r , r e l , c] ,
subsC −> [d Component C , d Re l a t i on C , d Constant C] ,
l i n k −> [([X] , d a l l) , ([] , d a l l) , ([] , d a l l)] ,
r p l R −> [e xp r=1, r e l = 1 , c = 1]

] .

d OFMin C : : d Block C
[

i d s −> [e xp r] ,
subsC −> [d Component C] ,
l i n k −> [([X] , d a l l)] ,
r p l R −> [e xp r = 1]

] .

Note that in d Constraint C, d Relation C and d Constant C are helper structures to put
a single relation and/or a constant inside a block. Also, observe that if expr (as
well as rel and c) has free indices, they must be equal to the free indices in
the constraint. Therefore no internal replication is allowed (also in the case of
d OFMin C).

Transforming Mathematical Models Using Declarative Reformulation Rules 411

2.1 Compositions

Once we have the single structures we may want to compose them to obtain
more complex structures. The following structure combines two structures that
share a set of variables,
d Compos i t i on C : : d Block C
[

i d s −> [p1 , p2] ,
subsC −> [d Component C , d Component C] ,
l i n k −> [([X ,Y] , d a l l) , ([X, Z] , d a l l)] ,
r p l R −> [p1 = 1 , p2 = 1]

] .

Observe that both substructures share a set of variables (X) and have indepen-
dent sub-sets of variables (Y and Z).

Another composition case can be based on the internal replication of a sub-
structure.
d IndCompos i t i on C : : d Block C
[

i d s −> [s] ,
subsC −> [d Component C] ,
l i n k −> [([X] , d a l l)]

] .

Notice that the internal structure s can be replicated inside of d IndComposition C, im-
plying that each replication will have an independent set of variables. Therefore,
the substructures are completely separable. This fact will prove useful during
reformulations, while integrating narrowings of d IndComposition C. We can specify a
general behavior by saying that d IndComposition C will sum all isolated terms and
concatenate all constraints.

3 Creating a Model

In this section we propose the representation of a Hyperplane Clustering Problem
(HCP) using an i-dare model. In a HCP we have a set of points p = {pi | i ∈
M} ∈ R

D and we want to find the set of N hyperplanes w = {wj1x1 + . . . +
wjdxd = w0

j | j ∈ N} ∈ R
D and an assignment of points to hyperplanes such

that the distances from the hyperplanes to their assigned points are minimized.
HCP can be algebraically defined by the following MINLP,

min
∑
i∈M

∑
j∈N

|wjpi − w0
j |xij (3.1)

s.t.
∑
j∈N

xij = 1 ∀i ∈ M (3.2)

∑
k∈D

|wjk| = 1 ∀j ∈ N (3.3)

w ∈ R
N×D, w0 ∈ R

N , x ∈ {0, 1}M×N

Note HCP has a parameter p ∈ R
M×D, and dimensions N, M, D ⊂ N.

To model HCP we will use a combination of the previously specified structures.
Note that (3.1) is an objective function containing products between absolute
values and BVs; (3.2) is a semi-assignment; and (3.3) is a constraint containing
absolute value operations. Hence, we can build the following model.

412 A. Frangioni and L. Perez Sanchez

Dimensions, indices and Properties

d dimens ion (D) . d dimens ion (N) . d dimens ion (M) .
d i ndex (i , M) . d i ndex (j , N) . d i ndex (k , D) .

p : d cons t ant .
p : d prope r t y
[

dims −> [M, D]
] .

w : d va r .
w : d prope r t y
[

dims −> [N, D]
] .

w0 : d va r .
w0 : d prope r t y
[

dims −> [D]
] .

x : d va r .
x : d prope r t y
[

dims −> [M, N] ,
l owe r −> 0 ,
upper −> 1

] .

Structures
vab so f : d VAbs C
[

a rg s −> [
v = $ ([$(w(j , k) , [k]) , w0(j)]) ,
c = $ ([$(p (i , k) , [k]) , 1])

] // f r e e i n d s i , j
] .

bvof : d S ing l eBV C
[

a rg s −> [
v = x (i , j)

] // f r e e i n d s i , j
] .

s em i o f : d SemiCont inuous C
[

subs −> [ab s o f , bvof] ,
subVP −> [[(w, w0)] , [x]] ,
f r e e I −> [i , j]

] .

i n d o f : d I ndCompos i t i on C
[

subs −> [s em i o f] ,
subVP −> [[(w, w0 , x)]]

] .

o f : d OFMin C
[

subs −> [i n d o f] ,
subVP −> [[(w, w0 , x)]]

] .

semiac : d SemiAss ign C
[

a rg s −> [
v = $(x (i , j) , [j])

] // f r e e i n d s i
] .

s ab s c : d SAbs C
[

a rg s −> [
v = w(j , k) ,
c = 1 ,

] // f r e e i n d s j , k
] .

r e l : d R e l a t i on C
[

a rg s −> [r e l = ’= ’]
] .

c : d Constant C
[

a rg s −> [c = 1]
] .

i n d c 1 : d IndCompos i t i on C
[

subs −> [s ab s c] ,
subVP −> [[(w)]] ,
f r e e I −> [j]

] .

c o n s t r a i n t : d Con s t r a i n t C
[

subs −> [i ndc1 , r e l , c] ,
subVP −> [[w] , [[]] , [[]]] ,
f r e e I −> [j]

] .

i n d c 2 : d IndCompos i t i on C
[

subs −> [semiac] ,
subVP −> [[(x)]]

] .

i n d c 3 : d IndCompos i t i on C
[

subs −> [c o n s t r a i n t] ,
subVP −> [[(w)]]

] .

cmpdc : d Compos i t i on C
[

subs −> [i ndc2 , i n d c 3] ,
subVP −> [[[] , x] , [[] , w]]

] .

fcmp : d Compos i t i on C
[

subs −> [of , cmpdc] ,
subVP −> [[(x ,w) , w0] ,

[(x ,w) , []]]
] .

HCP : d Fo rmu l a t i on
[

r oo t −> fcmp ,
d imen s i on s −> [D,M,N] ,
i n d i c e s −> [i , j , k] ,
p r o p e r t i e s −> [w,w0 , p , x]

] .

The diagram in Figure 2 shows the HCP formulation by representing only the
name and class of the structures used, plus the relations between them:

Fig. 2. HCP Formulation

Transforming Mathematical Models Using Declarative Reformulation Rules 413

4 Reformulations

In this section we will introduce some of the reformulations that can be created
based on the previously defined structures. One usual goal when reformulating
nonlinear problems is to remove the nonlinear elements, e.g. by adding the proper
additional variables and constraints. We will use the classes d MILP C and d LP C as
the main goals in the ARRs to be presented herein. Most of the reformulation
rules exposed in this section were extracted from [10].

In some the cases, the generated MILP and LP will have no objective function
(i.e. the cost is constant), so we will not specify the direction parameter, because
it is irrelevant. In other cases, when integrating two MILPs, for instance, we will
use the fact that the d direction type is evaluated as 1 if equal to min and −1 if
equal to max. So depending on the unified direction we want to produce, we will
transform the cost constants of the objective function.

4.1 ProdBC to MILP

A product between a BV b and a CV x ∈ [0..U], can be substituted by a con-
tinuous variable w ∈ [0..U] and the constraints: w − Ub ≤ 0, w − x ≤ 0 and
x + Ub − w ≤ U . So we can build the following ARR

∑
.

d ProdBC to MILP ARR : d ARR Algebra i c
[

A −> d ProdBC C (? , ?) ,
B −> d MILP C ,
indexA −> [1=(i , i 1) , 2= j] ,
i ndexB −> [] ,
d imRe l −> [c o l s I =1, c o l sR=2, cons =3] ,
arg map −> [

B . . c i = 0 ,
B . . cR = $ ([0 , 1]) ,
B . . Ai = $ ([

[$(−1∗ up (A . . cont . . v) , [i 1 , i])] ,
[$(0 , [i 1 , i])] ,
[$(up (A . . cont . . v) , [i 1 , i])]

]) ,
B . . Ar = $ ([

[$(c s([1−> j =1, 0]) , [i 1 , j])] ,
[$(c s([1−> j =1, −1]) , [i 1 , j])] ,
[$(c s([1−> j =0, −1]) , [i 1 , j])]

]) ,
B . . r e l s = ’=<’,
B . . b = $ ([0 , 0 , up (A . . cont . . v)]) ,
B . . x i = l owe r (0) ,
B . . x i = upper (1) ,
B . . x r = l owe r (0) ,
B . . x r = upper (up (A . . cont . . v)) ,
B . . x r = [v=1, aux=1]

] ,
ans map −> [

A . . b i n . . v = B . . x i ,
A . . cont . . v = B . . x r (v)

]
] .

Note that the objective function of the generated MILP has a non-zero constant
for the variable that must substitute bx, and the rest of the constants are 0.
The utility of this objective function constants will be seen when reformulating
d OFMin C and d Constraint C. Most of the ARRs proposed in the rest of the section
are written in a similar way to the one previously exposed. Therefore, we will
avoid the specification of the ARR subclass (in i-dare(t) language) due to space
limitations (for the complete set of ARR consult [13]).

414 A. Frangioni and L. Perez Sanchez

4.2 SAbs to Composition
If we consider a structure involving a term |pv| (d SAbs C, p is a constant and v is
a CV), this term can be reformulated so that it is differentiable, by adding two
CVs t+, t− ∈ [0.. + ∞]; replacing |pv| by t+ + t−; and adding the constraints
pv−t+−t− = 0 and t+t− = 0. This reformulation involves a linear substructure,
plus a complementary constraint (xy = 0). So we can define an ARR

∑
that

transforms d SAbs into a composition between a d LP C and a d ProdCC C. Notice
that the substitution of |pv| may be expressed by defining the c constants in
d LP C with 0 for v and 1 for t+ and t−.

4.3 VAbs to LP
Considering now a term |∑i pivi| we can apply a similar reformulation to the
one defined in the previous section. However in this case we will consider that the
term is inside a minimization function (the same way can be done for d SAbs C).
In this case, the complementary constraint can be eliminated because we are
minimizing t+ + t−, so due to the function’s direction, at a global optimum,
one of t+ or t− will have value zero. Therefore implying the complementary
constraint. In this case we used a condition inside the ARR

∑
indicating that

A must have a parent d OFMin C inside the block’s tree, thus it must be inside a
minimization function.

4.4 SemiContinuous to MILP
If we manage to narrow a d SemiContinuous C until the point of knowing that it has
an d LP C inside, then we can easily transform d SemiContinuous C into a d MILP C. As-
sume the LP has the form (leftmost equation)

minc
T

x

s.t. Ax = b

xi ∈ [0..Bi]

min
∑

i

cixiy

s.t. Ax = b

xi ∈ [0..Bi], y ∈ {0, 1}

min
∑

i

wi

s.t. Ax = b

wi − Biy ≤ 0 ∀(i)

wi − xi ≤ 0 ∀(i)

xi + Biy − wi ≤ Bi ∀(i)

wi, xi ∈ [0..Bi], y ∈ {0, 1}

then the fact of multiplying this LP by a BV y (only in the objective func-
tion) creates the following MINLP (previous center equation). This MINLP
can be reformulated into a MILP by applying the same mechanism used for
d ProdBC to MILP ARR (cf. §4.1). We may add a CV wi ∈ [0..Bi] to substitute each
product xiy, and then add the constraints wi − Biy ≤ 0, wi − xi ≤ 0 and
xi + Biy −wi ≤ Bi. Resulting in the MILP present in the rightmost part of the
previous equations.

4.5 ProdCC to MILP

When in presence of a complementary constraint xy = 0, we can substitute it by
the following MILP constraints, x−Mz ≤ 0 and y + Mz ≤ M , where z ∈ {0, 1}

Transforming Mathematical Models Using Declarative Reformulation Rules 415

and M is a sufficiently large number. Since d ProdCC C represents a constraint, the
generated MILP will have no objective function.

4.6 SemiAssign to MILP

The semi-assignment constraint
∑

i yi = 1, has trivial transformation into a
MILP with no CVs.

4.7 Constraint to MILP

Having a d Constraint C with its substructure narrowed to a MILP, allows us to
transform the whole constraint structure into a MILP. We will assume that the
objective function (

∑
i cixi) of the inner MILP will represent, regardless of its

direction, a last row of the LHS matrix of the new generated MILP. This last row
is obtained by combining

∑
i cixi with the d Relation C and d Constant C substructures

of d Constraint C. Therefore the resulting MILP will include all constraints of the
inner MILP plus

∑
i cixi d rel d constant. Notice that an ARR

∑
to reformulate

d Constraint C(d LP C, ? , ?) into d LP C can be created in an analogous way.

4.8 OFMin to MILP

The reformulation of a d OFMin C with the inner structure narrowed to a MILP
is even more direct that the d Constraint C case, because the objective function is
left as it is, except for the sign transformation depending on the inner MILP
direction. Again in this case the reformulation from d OFMin(d LP C) to d LP C can
be done in an analogous way.

4.9 IndComposition to MILP

The d IndComposition C structure with the inner structure narrowed to MILP, can
be reformulated into a single MILP, by mixing the inner replicated structures.
For instance if the inner MILP has a free index j then each MILPj has an
independent set of variables with respect to the other MILPj′ , with j �= j′.
Therefore the resulting MILP can be composed as shown in Figure 3.

The cj constants will be multiplied by the direction of MILPj in order to
unify the objective function to a minimization. Applying this composition we

Fig. 3. Independent Composition of N MILP subproblems

416 A. Frangioni and L. Perez Sanchez

can define the following ARR
∑

to reformulate a d IndComposition C(d MILP C) into a
single d MILP C. We could define a similar reformulation to integrate several d LP C

into a single d LP C.

4.10 Composition to MILP

When the composition of two structures, with shared variables (d Composition C),
has both substructures narrowed to MILP, it can be reformulated into a single
MILP. The main difficulty in this case are the common variables, for instance
assume we have an inner MILP1 with variables x, y and another inner MILP2

with variables x, z (note that x are the shared variables), then to integrate both
of them into a single MILP we need to,
– create the objective function min(d1c1

x + d2c2
x)x + c1

yy + c2
zz, and

– create the constraints A1
xx+A1

yy ≤ / = / ≥ b1 and A2
xx+A2

zz ≤ / = / ≥ b2.
where
– d1 and d2 are the directions of MILP1 and MILP2, respectively;
– c1

x and cx
2 are the costs related with the shared variables of MILP1 and

MILP2, respectively;
– c1

y and cz
2 are the costs related with the independent variables of MILP1

and MILP2, respectively;
– A1

x and A2
x are the LHS matrices related with the shared variables of MILP1

and MILP2, respectively;
– A1

y and A2
z are the LHS matrices related with the independent variables of

MILP1 and MILP2, respectively; and
– b1 and b2 are the RHS vectors of MILP1 and MILP2, respectively.

The diagram in Figure 4 is a representation of this composition.

Fig. 4. Composition of two MILP subproblems with shared variables

By using this integration mechanism we can define the ARR
∑

to reformulate
d Composition C(d MILP C, d MILP C) into d MILP C. Other combinations of d MILP C and
d LP C as substructures of d Composition C can conduct to similar ARR

∑
to treat

those cases. We only have to be careful with the resulting structure, that it is
always d MILP C except for the case when both substructures are d LP C (in that
case the generated structure must be d LP C.

5 Applying the ARR
∑

s to HCP

Taking the HCP formulation we defined in §3, we could apply a combination of
the previously defined ARR

∑
s until finally obtain a MILP formulation. To show

Transforming Mathematical Models Using Declarative Reformulation Rules 417

how the HCP formulation is modified by the application of the ARR
∑

we will
use the HCP algebraic formulation combined with the graphical representation,
pointing out the latest reformulation applied. To do so, we will dim all the model
except for the structure being transformed, and the new structure obtained will
have a gray background color (instead of white). We will start from the original
HCP formulation (see Figure 5).

min
∑

i∈M

∑
j∈N

|wjpi − w
0
j |xij

s.t.
∑

j∈N

xij = 1 ∀i ∈ M (5.1)

∑
k∈D

|wjk| = 1 ∀j ∈ N (5.2)

w ∈ R
N×D

, w
0 ∈ R

N
, x ∈ {0, 1}M×N

Fig. 5. HCP non-linear formulation

min
∑

i∈M

∑
j∈N

(t+
ij

xij + t
−
ij

xij)

s.t. t
+
ij

− t
−
ij

= wjpi − w
0
j ∀i ∈ M, j ∈ N (5.3)

(5.1), (5.2)

w ∈ R
N×D

, w
0 ∈ R

N
,

x ∈ {0, 1}M×N
, t

+
ij

, t
−
ij

∈ [0..B]

Fig. 6. Transforming VAbs to LP

First we apply the ARR
∑

d VAbs to LP oncond OFMin ARR (§4.3) to the structure
vabsof in the formulation (see Figure 6). A new structure of class d LP C substitutes
the structure vabsof, even if in the actual reformulated model vabsof is exchanged
with the track structure tr (vabsof, d LP C). To keep the example simple we will
only show the tail of the track structures.

We can now reformulate semicof by applying the ARR
∑

d SemiContinuous LP SingleBV to MILP ARR (cf. §4.4), see Figure 7. Observe that semicof

meets the criteria for this reformulation, since it has a substructure of class
d LP C and another of class d SingleBV C.

418 A. Frangioni and L. Perez Sanchez

min
∑

i∈M

∑
j∈N

(y+
ij

+ y
−
ij

)

s.t. y
+
ij

− t
+
ij

≤ 0 ∀i ∈ M, j ∈ N (5.4)

y
+
ij

− Bxij ≤ 0 ∀i ∈ M, j ∈ N (5.5)

t
+
ij

+ Bxij − B − y
+
ij

≤ 0 ∀i ∈ M, j ∈ N (5.6)

y
−
ij

− t
−
ij

≤ 0 ∀i ∈ M, j ∈ N (5.7)

y
−
ij

− Bxij ≤ 0 ∀i ∈ M, j ∈ N (5.8)

t
−
ij

+ Bxij − B − y
−
ij

≤ 0 ∀i ∈ M, j ∈ N (5.9)

(5.3), (5.1), (5.2)

w ∈ R
N×D

, w
0 ∈ R

N
, x ∈ {0, 1}M×N

,

t
+
ij

, t
−
ij

∈ [0..B], y
+
ij

, y
−
ij

∈ [0..B]

Fig. 7. Transforming semi-continuous LP to MILP

Since d IndComposition C has a substructure of type d MILP C, then we can apply
the ARR

∑
d IndComposition MILP to MILP ARR (cf. §4.9). Notice that the MILP has the

same free indices semicof had in the original model (i ∈ M, j ∈ N), so this refor-
mulation will integrate the ‖M‖∗‖N‖ replications of the inner MILP. Moreover,
after doing this we can apply the ARR

∑
d OFMin MILP to MILP ARR (cf. §4.8), since

of has d MILP C has its inner structure, see Figure 8.

Fig. 8. IndComposition to MILP and OFMin to MILP

Figure 9 moves to the constraints part, staring by reformulating sabsc using
ARR

∑
d SAbs to Composition LP ProdCC ARR (cf. §4.2).

Although in this case the complexity of the model augmented a little bit, this
will allow us to simplify it further by applying ARR

∑
d ProdCC to MILP ARR (cf.

§4.5) to the d ProdCC C structure class, that can be seen in Figure 10.

Transforming Mathematical Models Using Declarative Reformulation Rules 419

min
∑

i∈M

∑
j∈N

(y+
ij

+ y
−
ij

)

s.t.
∑

k∈D

u
+
jk

+ u
−
jk

= 1 ∀j ∈ N (5.10)

u
+
jk

− u
−
jk

= wjk ∀j ∈ N, k ∈ D

(5.11)

u
+
jk

u
−
jk

= 0 ∀j ∈ N, k ∈ D (5.12)

(5.4) − (5.9), (5.3), (3.2)

w ∈ R
N×D

, w
0 ∈ R

N
, x ∈ {0, 1}M×N

,

t
+
ij

, t
−
ij

∈ [0..B], y
+
ij

, y
−
ij

∈ [0..B], u
+
jk

, u
−
jk

∈ [0..B]

Fig. 9. Transforming SAbs to Composition

min
∑

i∈M

∑
j∈N

(y+
ij

+ y
−
ij

)

s.t. u
+
jk

≤ Bzjk ∀j ∈ N, k ∈ D (5.13)

u
−
jk

≤ B(1 − zjk) ∀j ∈ N, k ∈ D (5.14)

(5.11), (5.10), (5.4) − (5.9),

(5.3), (3.2)

w ∈ R
N×D

, w
0 ∈ R

N
, x ∈ {0, 1}M×N

,

t
+
ij

, t
−
ij

∈ [0..B], y
+
ij

, y
−
ij

∈ [0..B],

u
+
jk

, u
−
jk

∈ [0..B], z ∈ {0, 1}N×D

Fig. 10. Transforming ProdCC to MILP

Observe that at this point the algebraic representation is in MILP form. How-
ever, the formulation still have to undergo some other reformulations to be com-
pletely transformed into a d MILP C, see Figure 11.

Note how in this example the reformulations are applied only when the nar-
rowing requisites are met. Only at that point the corresponding ARR

∑
can be

applied to transform the structure. Thanks the the deductive power of FLORA-2 ,
the system easily detects which ARRs it can apply to a certain (maybe interme-
diate) formulation, allowing the creation of all possible reformulations.

420 A. Frangioni and L. Perez Sanchez

Fig. 11. Rest of the reformulations

6 Discussion

This paper show, with a relatively simple example, how the i-dare system allows
to automatically produce a large set of reformulations of a given mathematical
model based on a small set of general structures and Automatic Reformula-
tion Rules. This system matches the capabilities of the framework envisioned in
[11, 12], which covers a large number of real-life problems and reformulation tech-
niques. However, our system also allows to deal with algorithmic reformulation
rules that are out of reach for frameworks based exclusively on algebraic tech-
niques, and it makes explicit use of the concept of structure to allow exploiting
reformulation rules based on the semantic (as opposed to purely syntactic) mean-
ing of each block. Our system also provide explicit algorithmic notions for its
definition of reformulation, exploiting the power of declarative languages, unlike
e.g. that of [15]. On the other hand, [2] manages the idea of mapping functions;
while in theory it has the same power that our reformulation system has, we
propose a reformulation system defined over a precise modeling language, that
allows us to algorithmically and algebraically deduce reformulations. i-dare(t)
offers a way of determining which structures can be reformulated and how they

Transforming Mathematical Models Using Declarative Reformulation Rules 421

will be reformulated, obtaining at the end of the process valid formulations and
data ready to be given to the solvers.

As the example shows, a small set of structures and reformulation rules pro-
duces a large set of possible formulations. One of the main design goals of
i-dare(t) is extensibility, i.e., the fact that one can easily define new structures
and reformulation rules to cover all kinds of algebraic reformulations [11]. By do-
ing so in a general way, i.e., defining reformulation rules for general models rather
than for specific applications, the system can then exploit reformulations devel-
oped for a specific model for entirely different classes of problems. This means
that a system like i-dare could act as a central repository for reformulation
techniques, allowing more effective sharing of these ideas between researchers
and practitioners and fostering a positive feedback loop whereby researchers in
reformulation techniques find a much wider audience for their work, while prac-
titioners have access to sophisticated reformulation techniques that they would
be unlikely to develop (or even use) themselves. We believe that such a system
could have a substantial positive impact both on the research in reformulation
techniques and, possibly more importantly, on the practice of the solution of
mathematical models.

References

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and
Applications. Prentice Hall, Englewood Cliffs (1993)

[2] Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and
mixed 0-1 programming problems. Journal of Optimization Theory and Applica-
tions 93(2), 273–300 (1997)

[3] Ben Amor, H., Desrosiers, J., Frangioni, A.: On the Choice of Explicit Stabilizing
Terms in Column Generation. Discrete Applied Mathematics 157(6), 1167–1184
(2009)

[4] Bjorkqvist, J., Westerlund, T.: Automated reformulation of disjunctive constraints
in minlp optimization. Computers and Chemical Engineering 23, S11–S14 (1999)

[5] Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column generation.
Springer, Heidelberg (2005)

[6] Frangioni, A., Gendron, B.: 0-1 Reformulations of the Multicommodity Capaci-
tated Network Design Problem. Discrete Applied Mathematics 157(6), 1229–1241
(2009)

[7] Frangioni, A., Gentile, C.: SDP Diagonalizations and Perspective Cuts for a Class
of Nonseparable MIQP. Operations Research Letters 35(2), 181–185 (2007)

[8] Frangioni, A., Scutellà, M.G., Necciari, E.: A Multi-exchange Neighborhood for
Minimum Makespan Machine Scheduling Problems. Journal of Combinatorial Op-
timization 8, 195–220 (2004)

[9] Judice, J., Mitra, G.: Reformulation of mathematical programming problems as
linear complementarity problems and investigation of their solution methods.
Journal of Optimization Theory and Applications 57(1), 123–149 (1988)

[10] Liberti, L.: Reformulation techniques in mathematical programming, in prepara-
tion. Thèse d’Habilitation à Diriger des Recherches, Université Paris IX

[11] Liberti, L.: Reformulations in mathematical programming: Definitions and sys-
tematics. RAIRO-RO 43(1), 55–86 (2009)

422 A. Frangioni and L. Perez Sanchez

[12] Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical program-
ming: a computational approach. In: Abraham, A., Hassanien, A.-E., Siarry, P.,
Engelbrecht, A. (eds.) Foundations of Computational Intelligence. SCI, vol. 3, pp.
153–234. Springer, Berlin (2009)

[13] Sanchez, L.P.: Artificial Intelligence Techniques for Automatic Reformulation and
Solution of Structured Mathematical Models. PhD thesis, University of Pisa (2010)

[14] Sherali, D., Adams, W.P.: A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Do-
drecht (1999)

[15] Sherali, H.: Personal communication (2007)
[16] van Roy, T.J., Wolsey, L.A.: Solving mixed integer programming problems using

automatic reformulation. Operations Research 35(1), 45–57 (1987)
[17] Yang, G., Kifer, M., Wan, H., Zhao, C.: Flora-2: User’s Manual

Learning Heuristic Policies –

A Reinforcement Learning Problem

Thomas Philip Runarsson

School of Engineering and Natural Sciences
University of Iceland

tpr@hi.is

Abstract. How learning heuristic policies may be formulated as a re-
inforcement learning problem is discussed. Reinforcement learning algo-
rithms are commonly centred around estimating value functions. Here a
value function represents the average performance of the learned heuristic
algorithm over a problem domain. Heuristics correspond to actions and
states to solution instances. The problem of bin packing is used to
illustrate the key concepts. Experimental studies show that the rein-
forcement learning approach is compatible with the current techniques
used for learning heuristics. The framework opens up further possibilities
for learning heuristics by exploring the numerous techniques available in
the reinforcement learning literature.

1 Introduction

The current state of the art in search techniques concentrate on problem specific
systems. There are many examples of effective and innovative search methodolo-
gies which have been adapted for specific applications. Over the last few decades,
there has been considerable scientific progress in building search methodologies
and customizing these methodologies. This has usually been achieved through
hybridization with problem specific techniques for a broad scope of applications.
This approach has resulted in effective methods for intricate real world problem
solving environments and is commonly referred to as heuristic search. At the
other extreme an exhaustive search could be applied without a great deal of
proficiency. However, the search space for many real world problems is too large
for an exhaustive search, making it too costly. Even when an effective search
method exists, for example mixed integer programming, real world problems
frequently do not scale well, see eg. [6] for a compendium of so-called NP
optimization problems. In such cases heuristics offer an alternative approach
to complete search.

In optimization the goal is to search for instances x, from a set of instances X ,
which maximize a payoff function f(x) while satisfying a number of constraints.
A typical search method starts from an initial set of instances. Then, iteratively,
search operators are applied locating new instances until instances with the
highest payoff are reached. The key ingredient to any search methodology is thus
the structure or representation of the instances x and the search operators that

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 423–432, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

424 T. Philip Runarsson

manipulate them. The aim of developing automated systems for designing and
selecting search operators or heuristics is a challenging research objective. Even
when a number of search heuristics have been designed, for a particular problem
domain, the task still remains of selecting those heuristics which are most likely
to succeed in generating instances with higher payoff. Furthermore, the success
of a heuristic will depend on a particular case in point and the current instance
when local search heuristics are applied. For this reason additional heuristics
may be needed to guide and modify the search heuristics in order to produce
instances that might otherwise not be created. These additional are so-called
meta-heuristics. Hyper-heuristics are an even more general approach where the
space of the heuristics themselves is searched [4].

A recent overview on methods of automating the heuristic design process
is given in [2,5]. In general we can split the heuristic design process into two
parts; the first being the actual heuristic h or operator used to modify or create
instance1 x ∈ X , the second part being the heuristic policy π(φ(x), h), the
probability of selecting h, where φ(x) are features of instance x, in the simplest
form φ(x) = x. Learning a heuristic h can be quite tricky for many applications.
For example, for a designed heuristic space h ∈ H there may exist heuristics that
create instances x /∈ X or where the constraints are not satisfied. For this reason
most of the literature in automating the heuristic design process is focused on
learning heuristic policies [15,12,3], although sometimes not explicitly stated.

The main contribution of this paper is on how learning heuristics can be
put in a reinforcement learning framework. The approach is illustrated for the
bin packing problem. The focus is on learning a heuristic policy and the actual
heuristics will be kept as simple and intuitive as possible. In reinforcement learn-
ing policies are found directly or indirectly, via a value functions, using a scheme
of reward and punishment. To date only a handful of examples [15,11,1,10] exist
on applying reinforcement learning for learning heuristics. However, ant system
have also many similarities to reinforcement learning and can be thought of as
learning a heuristic policy, see [7,8]. Commonly researchers apply reinforcement
learning only to a particular problem instance, not to the entire problem domain
as will be attempted here.

The literature of reinforcement learning is rich in applications which can be
posed as Markov decision processes, even partially observable ones. Reinforce-
ment learning methods are also commonly referred to as approximate dynamic
programming [13], since commonly approximation techniques are used to model
policies. Posing the task of learning heuristic within this framework opens up a
wealth of techniques for this research domain. It also may help formalize better
open research questions, such as how much human expertise is required for the
design of a satisfactory heuristic search method, for a given problem domain
f ∈ F?

The following section illustrates how learning heuristics may be formulated
as a reinforcement learning problem. This is followed by a description of the
bin-packing problem and a discussion of commonly used heuristic for this task.

1 So called construction heuristics versus local search heuristics.

Learning Heuristic Policies – A Reinforcement Learning Problem 425

Section 4 illustrated how temporal difference learning can be applied to learning
heuristic policies for bin packing and the results compared with classical heuris-
tics as well as those learned using genetic programming in [12]. Both off-line
and on-line bin packing are considered. The paper concludes with a summary of
main results.

2 Learning Heuristics – A Reinforcement Learning
Problem

In heuristic search the goal is to search for instances x, which maximize some
payoff or objective f(x) while satisfying a number of constraints set by the
problem. A typical search method starts from an initial set of instances. Then,
iteratively, heuristic operators h are applied locating new instances until in-
stances with the highest payoff are reached. The key ingredients to any heuristic
search methodology is thus; the structure or representation of the instances x,
the heuristic h ∈ H, the heuristic policy, π, and payoff f(x). Analogously,
it is possible to conceptualise heuristic search in the reinforcement learning
framework [14] as pictured below. Here the characteristic features of our instance
φ(x) is synonymous to a state in the reinforcement learning literature and
likewise the heuristic h to an action. Each iteration of the search heuristic is
denoted by t. The reward must be written as follows:

f(x) =
T∑

t=0

c(xt) (1)

where T denotes the final iteration, found by some termination criteria for the
heuristic search. For many problems one would set c(xt) = 0 for all t < T and
then c(xT) = f(xT). For construction heuristics T would denote the iteration
for when the instance has been constructed completely. For some problems, the
objective f(x) can be broken down into a sum as shown in (1). One such example
is the bin packing problem. Each time a bin new bin needs to be opened a reward
of c(x) = −1 is given else 0.

It is the search agent’s responsibility to update its heuristic policy based on
the feedback from the particular problem instance f ∈ F being searched. Once
the search has been terminated the environment is updated with a new problem
instance sampled from F . This way a new learning episode is initiated. This
makes the heuristic learning problem noisy. The resulting policy learned, how-
ever, is one that maximizes the average performance over the problem domain,
that is

max
π

1
|F|
∑
f∈F

f(x(f)
T) (2)

where x
(f)
T is the solution found by the learned heuristic policy for problem f .

The average performance over the problem domain corresponds to the so called
value function in reinforcement learning. Reinforcement learning algorithms are
commonly centred around estimating value functions.

426 T. Philip Runarsson

Problem instance

Search

Heuristic policy
RewardState

φ(xt) c(xt)

ht = π(φ(xt))

c(xt+1)

φ(xt+1) (environment)

(agent)

Fig. 1. Learning heuristic search as a reinforcement learning problem

3 Bin Packing

Given a bin of size W̄ and a list of items of sizes w1, w2, . . . , wn, each item must
be in exactly one bin,

n∑
i=1

zi,j = 1, j = 1, . . . , m (3)

where zi,j is 1 if item i is in bin j. The bins should not overflow, that is

m∑
j=1

zi,j <= W̄xj , i = 1, . . . , n (4)

where xj is 1 when bin j is used else 0. The objective is to minimize the number
of bins used,

min
z,x

m∑
j=1

xj (5)

The number of decision variables are therefore (n+1)m binary variables, where m
is an upper estimate on the number of bins needed. The bin packing problem is a
combinatorial NP-hard problem. Problem instance can be generated quite easily
from this problem domain by randomly sampling the weights w from some known
distribution. Previous studies, see for example [12], have used a discrete uniform
distribution U(wmin, wmax) and kept the number of items n fixed. Clearly one
would expect that different distributions of w would result in different heuristic
policies. However, hand crafted heuristics found in the literature often do not
take into account the weight distribution.

There are two heuristic approaches to solving the bin packing problem, one
is on-line in nature and the other off-line. In the on-line case on must pack each
weight in the order in which they arrive, that is w1 first, then w2 and so on.

Learning Heuristic Policies – A Reinforcement Learning Problem 427

In the off-line case the order does not matter, in essence you have been given
all the weights at the same time. The common on-line heuristics include first-
fit (FF) and best-fit. First-fit places the next item to be packed into the first
bin j with with sufficient residual capacity or gap. The best fit searches for the
bin with the smallest but sufficient capacity. Both methods have a worst case
number of bins needed of 17/10OPT(w) +2, where OPT is the optimal number
of bins. An off-line version of FF is first fit decreasing (FFD), where the weights
have been placed in a non-increasing order. Using this new order the largest
unpacked item is always packed into the first possible bin. A new bin is opened
when needed and all bins stay open. The number of bins used by FFD is at most
11/9OPT(w) + 6/9. A modification of FFD [9] also exists and numerous other
variations may be found in the literature.

4 Illustrative Example Using Bin-Packing

Now the techniques described above are illustrated for the bin-packing problem.
We consider the problem domain F where n = 100 and items w ∼ U(wmin, wmax)
= U(20, 80) are to be packed into bins of size W̄ = 150. Both on-line and off-line
approaches to bin packing will be studied. As with most reinforcement learning
methods a value function will be approximated. The value function approximates
the expected value of the solutions found f(xT) over the domain F . For example,
in bin packing the aim is to minimize the number of bins used, and so the value
function approximates the mean number of bins used by the heuristic search
algorithm for the entire problem domain. The optimal policy π is the one that
is greedy with respect to this value function. There are in principle two types of
value functions, so-called value function V π and heuristic-state value function
Qπ. A policy greedy with respect to the heuristic-state value function is the
optimal policy, defined as follows,

h∗
t = argmax

h∈H
Qπ(φ(xt), h), (6)

however, for a state value function a one step lookahead must be performed

h∗
t = argmax

h∈H
V π(φ(x(h)

t+1)) (7)

where φ(x(h)
t+1) is the resulting (post-heuristic) state when heuristic h is applied

to solution instance xt. The reinforcement learning algorithm applied here is
known as temporal difference learning. The learned policy is one that minimizes
the mean number of bins used for the problem domain. The temporal difference
learning formula is simply

V (φ(xt)) = V (φ(xt)) + α
(
V (φ(xt+1)) + c(xt+1) − V (φ(xt))

)
(8)

and

Q(φ(xt), ht) = Q(φ(xt), ht)+α
(
Q(φ(xt+1), ht+1)+c(xt+1)−Q(φ(xt, ht))

)
(9)

where 0 < α < 1 is a step size parameter which needs to be tuned.

428 T. Philip Runarsson

The heuristic h for bin packing will usually be simply the assignment of
a weight wi to a particular bin j given that there is sufficient capacity. Two
heuristics are illustrated below. In one approach the heuristic chooses in what
order the weights should be assigned to a bin, but the learned heuristic policy
decides in which bin the item should be placed. Another approach uses the
learned heuristic policy to select the weight to be assigned but the heuristic
selects the bin to place the weight in. Both of these are so-called construction
heuristics. Each iteration step t corresponds to a weight being assigned and
so T = n. The cost occurred at each iteration t can be −1 when a new bin is
opened else 0. Alternatively the cost can be at all times zero, but at the terminal
iteration the negative number of bins opened or even the negative mean number
of gaps created.

4.1 On-Line Bin Packing

In on-line bin packing the items have independent and identically distributed
(IID) weights sampled from the distribution U(20, 80). The heuristic simply
selects one item after the other. If the item will not fit in any open bin the
heuristic will open a new bin and place the item there. If the item fits in more
than one open bin then the learned heuristic policy is used to select the most
appropriate bin. Having decided on the heuristic one must select an appropriate
state description for the solution instance x. In this case the current total weight
Wj of a bin j under consideration seems appropriate. The post-heuristic state
would then simply be Wj +wi, where we are considering placing the next weight
wi in bin j. This state description, which is simply the content of a single bin, is
clearly not rich enough to predict how many bins will be opened in the future.
Nevertheless, one may be able to predict the final gap, i.e. (W̄ − Wj), for the
bins. The cost function in this case would be the mean gap created. The temporal
difference (TD) learning scheme would then be as follows:

V (Wj) = V (Wj) + α
(
V (Wj + wi) − V (Wj)

)
(10)

and once all bins have been packed a final update is performed for all bins opened
as

V (Wj) = V (Wj) + α
(
(W̄ − Wj) − V (Wj)

)
(11)

The heuristic policy is one which is greedy with respect to V , i.e. the bin chosen
for item wi is

j = argmin
j,Wj+wi≤W̄

V (Wj + wi) (12)

The noise needed to drive the learning process is created by generating new
problem instances or items to be packed within each new episode of the temporal
difference learning algorithm2. Figure 2 shows the value function learned using
the TD algorithm, the expected gap versus bin weight for on-line packing.

2 Learning parameter α = 0.001.

Learning Heuristic Policies – A Reinforcement Learning Problem 429

0 50 100 150
0

5

10

15

20
IID items

W

E
xp

ec
te

d
ga

p

Fig. 2. Expected gap as a function of bin weight for on-line packing

0 50 100 150
0

5

10

15

20
Decreasing items

W

E
xp

ec
te

d
ga

p

Fig. 3. Expected gap as a function of bin weight for off-line packing

There we can see that one should avoid leaving gaps of around size 10 to 20,
this seems reasonable since the smallest item weight is 20 and so it becomes
impossible to fill this gap. The policy learned is, therefore, very specific to the
distribution of weights being packed, as one may expect. The learned heuristic
policy is specialized for the problem domain in question.

4.2 Off-Line Bin Packing

The simplest off-line heuristic approach to bin-packing is FFD. We can repeat
the exercise in the last section by ordering the items to be packed in a decreasing
order. Now the distribution is no longer IID and the predicted gap, shown in
figure 3, is completely different. The regions of smaller expected gaps seen are
now smaller than those in figure 2 and as a result the performance of the learned
heuristic is better. The mean number of bins packed now is 35.01, or a savings
of one bin on average.

We now illustrate how the reinforcement learning framework is able to imple-
ment the histogram-matching approach in [12] for off-line packing. In [12] a part
of the heuristic value function is found using genetic programming (GP). The
problem instance domain is extended in their study to include W̄ = 150, 75, 300

430 T. Philip Runarsson

and weight distributions U(20, 80), U(1, 150), U(30, 70), U(1, 80) when W̄ = 150,
for example. In this case the heuristic selects the bin with the smallest gap and
the learned heuristic policy is defined as follows:

w∗ = argmin
w

{GP (w)}(gt(w) − ot(w)
)

(13)

where gt(w) is the number of gaps of size w and ot(w) the number of unpacked
items of size w. Initially there are no gaps (g0 = 0) and o0 is simply a histogram
of the items weights to be packed. Integer weights are assumed such that the
maximum number of bins needed for the gap histogram (g) is W̄ and wmax for
the items (o). New gaps are created once bins are filled and when new ones are
opened. The GP (w) function in the above formulation is part of the heuristic
value function discovered by a genetic program and

GP (w) =
{

wmax + wmin + w

W̄
+ 10−4

}
(14)

was found to be very robust [12]. The same state description will now be used
to learn the decision value function using temporal difference learning. Here Q
values are used, where the decisions made are the weights assigned to a bin. In
[12] the bins are selected in such a manner that the bin with the smallest gap
is selected, i.e. best fit. However, this gap is only available as long as gt(wi) >
ot(wi). The same heuristic strategy for selecting a bin is used here. The temporal
difference (TD) formulation is as follows:

Q(st, wt) = Q(st, wt) + α
(
Q(st+1, wt+1) + ct+1 − Q(st, wt)

)
(15)

were the state st = gt(wt) − ot(wt) and ct+1 is 1 if a new bin was opened else
0. The value of a terminal state is zero as usual, i.e. Q(sn+1, ·) = 0. The weight
selected follows then the policy

wt = argmin
w,ot(w)>0

Q(st, w) (16)

The value function now tells us the expected number of bins that will be
opened given the current state st and taking decision wt, at iteration t while
following the heuristic policy π. The number of bins used is, therefore,

∑n
i=1 ci.

However, for more general problems the cost of a solution is not known until
the complete solution has been built. So an alternative formulation is to have
no cost during search (ct = 0, t = 1, . . . , n) and only at the final iteration give a
terminal cost which is the number of bins used, i.e. cn+1 = m.

Figure 4 below shows the moving average number of bins used as a function of
learning episodes3. The noise is the result from generating new problem instance
at each episode. When the performance of this value function is compared with

3 α = 0.01, slightly larger than before.

Learning Heuristic Policies – A Reinforcement Learning Problem 431

0 2000 4000 6000 8000 10000

34

36

38

40

42

episode (e)

0.
95

#B
in

s e−
1+

0.
05

*#
B

in
s e Moving average of number of bins used versus learning episodes

Fig. 4. Moving average number of bins used as a function of learning episodes. Each
new episode generates a new problem instance, hence the noise.

the one in [12] on 100 test problems, no statistical difference in the mean number
of bins used is observed, μGP = 34.27 and μTD = 34.53. These results improve
on the off-line approach of first-fit above.

5 Summary and Conclusions

The challenging task of heuristic learning was put forth as a reinforcement
learning problem. The heuristics are assumed to be designed by the human de-
signer and correspond to the actions in the usual reinforcement learning setting.
The states represent the solution instances and the heuristic policies learned
decide when these heuristics should be used. The simpler the heuristic the more
challenging it becomes to learn a policy. At the other extreme a single powerful
heuristic may be used and so no heuristic policy need be learned (only one action
possible).

The heuristic policy is found indirectly by approximating a value function,
whose value is the expected performance of the algorithm over the problem
domain as a function of specific features of a solution instance and the applied
heuristics. It is clear that problem domain knowledge will be reflected in the
careful design of features, such as we have seen in the histogram-matching
approach to bin packing, and in the design of heuristics. The machine learning
side is devoted to learning heuristic policies.

The exploratory noise needed to drive the reinforcement learning is intro-
duced indirectly by generating completely new problem instance at each learning
episode. This very different from the reinforcement learning approaches com-
monly seen in the literature for learning heuristic search, where usually only
a single problem (benchmark) instance is considered. One immediate concern,
which needs to be addressed, is the level of noise encountered during learning
for when a new problem instance is generated at each new episode. Although
the bin packing problems tackled in this paper could be solved, figure 4 shows
that convergence may also be an issue. One possible solution to this may be to
correlate the instances generated.

432 T. Philip Runarsson

References

1. Bai, R., Burke, E.K., Gendreau, M., Kendall, G., McCollum, B.: Memory length
in hyper-heuristics: An empirical study. In: IEEE Symposium on Computational
Intelligence in Scheduling, SCIS 2007, pp. 173–178. IEEE, Los Alamitos (2007)

2. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Ex-
ploring hyper-heuristic methodologies with genetic programming. Computational
Intelligence, 177–201 (2009)

3. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: A genetic programming
hyperheuristic approach for evolving two dimensional strip packing heuristics.
IEEE Transactions on Evolutionary Computation (2010) (to appear)

4. Burke, E.K., Kendall, G.: Search methodologies: introductory tutorials in opti-
mization and decision support techniques. Springer, Heidelberg (2005)

5. Burker, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
classification of hyper-heuristic approaches. In: Handbook of Metaheuristics, pp.
449–468 (2010)

6. Crescenzi, P., Kann, V.: A compendium of NP optimization problems. Technical re-
port, http://www.nada.kth.se/~viggo/problemlist/compendium.html (accessed
September 2010)

7. Dorigo, M., Gambardella, L.: A study of some properties of Ant-Q. In: Ebeling, W.,
Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141,
pp. 656–665. Springer, Heidelberg (1996)

8. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (2002)

9. Floyd, S., Karp, R.M.: FFD bin packing for item sizes with uniform distributions
on [0, 1/2]. Algorithmica 6(1), 222–240 (1991)

10. Meignan, D., Koukam, A., Créput, J.C.: Coalition-based metaheuristic: a self-
adaptive metaheuristic using reinforcement learning and mimetism. Journal of
Heuristics, 1–21

11. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
Applied Optimization 86, 523–544 (2003)

12. Poli, R., Woodward, J., Burke, E.K.: A histogram-matching approach to the evo-
lution of bin-packing strategies. In: IEEE Congress on Evolutionary Computation,
CEC 2007, pp. 3500–3507 (September 2007)

13. Powell, W.B.: Approximate Dynamic Programming: Solving the curses of dimen-
sionality. Wiley-Interscience, Hoboken (2007)

14. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT
Press, Cambridge (1998)

15. Zhang, W., Dietterich, T.G.: A Reinforcement Learning Approach to Job-shop
Scheduling. In: Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pp. 1114–1120. Morgan Kaufmann, San Francisco (1995)

http://www.nada.kth.se/~viggo/problemlist/compendium.html

Continuous Upper Confidence Trees

Adrien Couëtoux1,2, Jean-Baptiste Hoock1, Nataliya Sokolovska1,
Olivier Teytaud1, and Nicolas Bonnard2

1 TAO-INRIA, LRI, CNRS UMR 8623,
Université Paris-Sud, Orsay, France

2 Artelys, 12 rue du Quatre Septembre Paris, France

Abstract. Upper Confidence Trees are a very efficient tool for solv-
ing Markov Decision Processes; originating in difficult games like the
game of Go, it is in particular surprisingly efficient in high dimensional
problems. It is known that it can be adapted to continuous domains
in some cases (in particular continuous action spaces). We here present
an extension of Upper Confidence Trees to continuous stochastic prob-
lems. We (i) show a deceptive problem on which the classical Upper
Confidence Tree approach does not work, even with arbitrarily large
computational power and with progressive widening (ii) propose an im-
provement, termed double-progressive widening, which takes care of the
compromise between variance (we want infinitely many simulations for
each action/state) and bias (we want sufficiently many nodes to avoid a
bias by the first nodes) and which extends the classical progressive widen-
ing (iii) discuss its consistency and show experimentally that it performs
well on the deceptive problem and on experimental benchmarks. We
guess that the double-progressive widening trick can be used for other
algorithms as well, as a general tool for ensuring a good bias/variance
compromise in search algorithms.

1 Introduction

Monte-Carlo Tree Search [3] is now widely accepted as a great tool for high-
dimensional games [9] and high-dimensional planning [10]; its most well known
variant is Upper Confidence Trees [7]. It is already adapted to continuous do-
mains [12,11], but not for arbitrary stochastic transitions; this paper is devoted
to this extension.

In section 2, we will present Progressive Widening (PW), a classical improve-
ment of UCT in continuous or large domains. We will see that PW is not sufficient
for ensuring a good behavior in the most general setting; a simple but not triv-
ial modification, termed double-PW, is proposed and validated. Experiments
(section 3) will show that this modification makes UCT for Markov Decision
Processes compliant with high-dimensional continuous domains with arbitrary
stochastic transition.

In all the paper, #E denotes the cardinal of a set E.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 433–445, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

434 A. Couëtoux et al.

2 Progressive Widening for Upper Confidence Trees

Progressive strategies have been proposed in [4,2] for tackling problems with
big action spaces; they have been theoretically analyzed in [13], and used for
continuous spaces in [11,12]. We will here (i) define a variant of progressive
widening (section 2.1), (ii) show why it can’t be directly applied in some cases
(section 2.2), (iii) define our version (section 2.3).

2.1 Progressive Widening

Consider an algorithm, choosing between options O = {o1, o2, . . . , on, . . . } at
several time steps. More formally, this is as follows:

R0 = 0
for t = 1, t = 2, t = 3, . . . do

Choose an option o(t) ∈ O.
Test it: get a reward rt.
Cumulate the reward: Rt = Rt−1 + rt.

end for

The goal is to design the ”Choose” method so that the cumulated reward
increases as fast as possible. An option (terminology of bandits) is equivalent
to an action (terminology of reinforcement learning) or a move (terminology of
games).

Many papers have been published on such problems, in particular around
upper confidence bounds [8,1]. Upper Confidence Bounds, in its simplest version,
proceeds as follows:

Upper confidence bound algorithm with parameter k.
R0 = 0
for t = 1, t = 2, t = 3, . . . do

Choose an option o(t) ∈ O maximizing scoret(o) defined as follows:
totalRewardt(o) =

∑
1≤l≤t−1,ol=o rl

nbt(o) =
∑

1≤l≤t−1,ol=o 1

scoret(o) = totalRewardt(o)
nbt(o)+1 +kucb

√
log(t)/(nbt(o) + 1) (+∞ if nbt(o) =

0)
Test it: get a reward rt.
Cumulate the reward: Rt = Rt−1 + rt.

end for

Continuous Upper Confidence Trees 435

Variants of the score function are termed “bandit algorithms”; there are plenty
of variants of the score formula; this is essentially independent of the aspects
investigated in this paper.

A trouble in many mathematical works around such problems is that the
set O is usually assumed small in front of the number of iterations. More pre-
cisely, the behavior of the algorithm above is trivial for t ≤ #O. [14] proposed
the use of a constant s such that nbt(o) = 0 ⇒ scoret(o) = s; this is the
so-called First Play Urgency algorithm. There are other specialized efficient
tools for bandits used in “trees” such as rapid action value estimates [6,5];
however these tools assume some sort of homogenity between the actions at
various time steps. [3,13,2] proposed progressive strategies for big/infinite sets
of arms. The principle is as follows for some constants C > 0 and α ∈]0, 1[
(as it is independent of the algorithm used for choosing an option, within a
given pool of possible options, we do not explicitly write a score function as
above):

Progressive widening with constants C > 0 and α ∈]0, 1[.
R0 = 0
for t = 1, t = 2, t = 3, . . . do

Let k = �Ctα�.
Choose an option o(t) ∈ {o1, . . . , ok}.
Test it: get a reward rt.
Cumulate the reward: Rt = Rt−1 + rt.

end for

The key point is that the chosen option is restricted to have index ≤ k; the
complete set O = {o1, o2, . . . } is not allowed. This algorithm has the advan-
tage that it is anytime: we do not have to know in advance at which value
of t the algorithm will be stopped. [3] applied it successfully in the very effi-
cient CrazyStone implementation of Monte-Carlo Tree Search [4]. Upper Con-
fidence Tree (or Monte-Carlo Tree Search) is not a simple setting as above:
when applying an option, we reach a new state; one can think of Monte-Carlo
Tree Search (or UCT) as having one bandit in each possible state s of the re-
inforcement learning problem, for choosing between (infinitely many) options
o1(s), o2(s), . . . , on(s), The algorithm is as follows, for a task in which all
the reward is obtained in the final state1. The last line of the algorithm (return-
ing the most simulated action from S) is often surprising for people who are not
used to MCTS; it is known as much better than choosing the action with best
expected reward.

1 This assumption (that the reward is null except in the final state) simplifies the
writing, but is not necessary for the work presented here.

436 A. Couëtoux et al.

Progressive Widening (PW) applied in state s with constants C > 0
and α ∈]0, 1[.
Input: a state s.
Output: an action.
Let nbV isits(s)← nbV isits(s) + 1
and let t = nbV isits(s)
Let k = �Ctα�.
Choose an option o(t)(s) ∈ {o1(s), . . . , ok(s)} maximizing scoret(s, o) defined
as follows:

totalRewardt(s, o) =
∑

1≤l≤t−1,ol(s)=o rl(s)
nbt(s, o) =

∑
1≤l≤t−1,ol=o 1

scoret(s, o) = totalRewardt(s,o)
nbt(s,o)+1 + kucb

√
log(t)/(nbt(s, o) + 1)

(+∞ if nbt(o) = 0)
Test it: get a state s′.

UCT algorithm with progressive widening
Input: a state S, a time budget.
Output: an action a.
Initialize: ∀s, nbSims(s) = 0
while Time not elapsed do

// starting a simulation.
s = S.
while s is not a terminal state do

Apply progressive widening in state s for choosing an option o.
Let s′ be the state reached from s when choosing action o.
s = s

′

end while
// the simulation is over; it started at S and reached a final state.

Get a reward r = Reward(s) // s is a final state, it has a reward.
For all states s in the simulation above, let rnbV isits(s)(s) = r.

end while
Return the action which was simulated most often from S.

It is important to keep in mind that the progressive widening algorithm is
applied in each visited state; some states might be visited only once, or never,
and some other states are visited very often. MCTS with progressive widening
or progressive strategies is the only version of MCTS which works in continuous
action spaces [12,11]; however, it was applied only with the property that ap-
plying a given action a in a given state s can lead to finitely many states only.
We will see in section 2.2 that this methodology (the algorithm above) does not
work as is in the case in which there is a null probability of reaching twice the
same state when applying the same action in the same state (i.e. typically it
does not work for stochastic transitions with continuous support).

Continuous Upper Confidence Trees 437

2.2 Why It Does Not Work as Is for Randomized Transitions in
Continuous Domains

We have presented UCT with progressive widening. In this section we will show
why it is not sufficient for a consistent behavior (i.e. for a convergence toward
maximum expected reward) in some cases, in particular when the transitions
are stochastic and never lead twice to the state - one can think of the case of a
Gaussian additive noise, or any other noise such that states can be reached only
once.

Let us assume now that we have an infinite (discrete or continuous) domain
of options. This is not too much a trouble for progressive widening: if α ∈]0, 1[,
and if the ot are a good approximation of the set of possible actions (typically,
in continuous domains, we assume that the set {oi; i ≥ 1} is dense in the set of
actions and the reward has some smoothness properties), then asymptotically,
good actions are explored, and all these explored actions are sampled infinitely
often [13].

Let us now consider what happens if we have randomized transitions. Assume
that for a state s and an action a, we can reach infinitely many transitions.
Consider such a state s, and assume that we visit it infinitely often; we would
like the algorithms to have two characteristics:

1. infinitely many actions (a1, α2, a3, . . .) will be explored (for reducing the bias
due to the choice of actions);

2. all states that can be reached from s are themselves explored infinitely often
(for reducing the variance due to random exploration).

We do not have a mathematical proof that these two requirements are enough,
but they look quite reasonnable: in order to approximate a continuous set of
actions, and unless we have an efficient pruning to a finite set of actions, we
will have to explore infinitely many actions; and if we consider only finitely
many possible consequences of an action whereas the real support is infinite we
will miss important facts and it is hard to believe that the algorithm can be
consistent.

For classical score functions, progressive widening will ensure the first prop-
erty. But the second property will not be ensured, as in continuous domains with
stochastic transitions, nothing ensures that we will reach twice the same state,
whenever we play infinitely often a given action a in a given state s. This will
be illustrated on the Trap problem later.

The following section is devoted to proposing a solution to this problem.

2.3 Proposed Solution: Double Progressive Widening

Section 2.1 has presented the known form of progressive widening, and section
2.2 has shown that in some cases it does not work (namely, when there are pairs
(s, a) such that, with probability one, applying a in s infinitely often does not
lead to visiting the following states infinitely often). In this section, we propose
the use of a second form of progressive widening in MCTS, as follows:

438 A. Couëtoux et al.

Double Progressive Widening (DPW) applied in state s with constants
C > 0 and α ∈]0, 1[.
Input: a state s.
Output: a state s′.
Let nbV isits(s)← nbV isits(s) + 1
and let t = nbV isits(s)
Let k = �Ctα�.
Choose an option o(t)(s) ∈ {o1(s), . . . , ok(s)} maximizing scoret(s, o) defined as
follows:

totalRewardt(s, o) =
∑

1≤l≤t−1,ol(s)=o rl(s)

nbt(s, o) =
∑

1≤l≤t−1,o(l)(s)=o 1

scoret(s, o) = totalRewardt(s,o)
nbt(s,o)+1

+kucb

√
log(t)/(nbt(s, o) + 1) (+∞ if nbt(o) = 0)

Let k′ = �Cnbt(s, o(t)(s))
α�

if k′ > #Childrent(s, o(t)(s)) // progressive widening on the random part then
Test option o(t)(s); get a new state s′

if s′ �∈ Childrent(s, o(t)) then
Childrent+1(s, o(t)) = Childrent(s, o(t)) ∪ {s′}

else
Childrent+1(s, o(t)) = Childrent(s, o(t))

end if
else

Childrent+1(s, o(t)) = Childrent(s, o(t))
Choose s′ in Childrent(s, o(t)) // s′ is chosen with probability
nbt(s, o, s

′)/nbt(s, o)
end if

UCT algorithm with DPW
Input: a state S.
Output: an action a.
Initialize: ∀s, nbSims(s) = 0
while Time not elapsed do

// starting a simulation.
s = S.
while s is not a terminal state do

Apply DPW in state s for choosing an option o.
Let s′ be the state given by DPW.
s = s′

end while
// the simulation is over; it started at S and reached a final state.

Get a reward r = Reward(s) // s is a final state, it has a reward.
For all states s in the simulation above, let rnbV isits(s)(s) = r.

end while
Return the action which was simulated most often from S.

This algorithm is not so intuitive, for the second progressive widening part.
The idea is as follows:

Continuous Upper Confidence Trees 439

– If k′ is large enough, we consider adding one more child to the pool of visited
children: we simulate a transition and get a state s′. If we get an already
visited child, then we go to this child; otherwise, we create a new child.

– If k′ is not large enough, then we sample one of the previously seen children.
As they are not necessarily equally likely, we select a child proportionally to
the number of times it has been generated.

The algorithm has been designed with a “consistency” objective in mind,
which is twofolds:

– Infinite visiting: we want that if a node is visited infinitely often, then we
generate infinitely many children, and each of these children is itself visited
infinitely often. By induction, this property ensures that all created nodes
are visited infinitely often. Progressive widening and the UCB formula (or
many other formulas in fact) ensure this property.

– Propagation: the average reward of any node visited infinitely often converges
to a limit and this limit (for a non-terminal node) is the average reward
corresponding to its children which have best asymptotic average reward.
This property is ensured by the careful sampling in the progressive widening.

3 Experiments

In section 3.1 we present a deceptive problem designed specifically for pointing
out the inconsistency of the classical PW approach. In section 3.2 we treat a
more real problem.

3.1 Trap Problem

In this section we present the toy problem, aimed at being (i) deceptive for the
simple progressive widening (ii) as simple as possible. We provide our experi-
mental results as well.

Problem Description. This problem has been designed to clearly illustrate
the weakness of the simple progressive widening. In this problem, one has to
make two successive decisions, in order to maximize the reward. As we will see,
the optimal policy is to make a risky move at the first step, in order to be able
to obtain the maximum reward on the second (and last) step. The state will
be denoted x, and is initialized at x0 = 0. At each time step t the decision is
denoted dt ∈ [0, 1]. Let R > 0 be the noise amplitude at each time step. At a
time step t, given the current state xt and a decision dt, we have:

xt+1 = xt + dt + R × Y,

Y being a random variable following a uniform distribution on [0, 1].
The trap problem relies on five positive real numbers: the high reward h, the

average reward a, the initial ramp length l, and the trap width w. The high

440 A. Couëtoux et al.

reward will be given if and only if we cross the trap, otherwise we obtain 0. If we
stay on the initial ramp, we get the average reward. We thus define the reward
function r(·) as follows:

r(x) =

⎧⎨⎩
a if x < l
0 if l < x < l + w
h if x > l + w

The objective is to maximize r(x0) + r(x1), the cumulated reward.
The shape of the reward function is shown in Fig.1.

Fig. 1. Shape of the reward function: Trap problem

Experimental Results. We compare simple progressive widening and dou-
ble progressive widening on the trap problem. In our experiments, we used the
following settings: a = 70, h = 100, l = 1, w = 0.7, R = 0.01. With these
parameters, the optimal behavior is to have the first decision d0 ∈ [0.7, 1] and
d1 ≥ 1.7 − d0. If one makes optimal decisions, one has an expected reward of
r∗ = 170. That is the reward toward which the Double progressive widening
version of Monte Carlo Tree Search converges. However, the Simple progressive
widening version does not reach this optimal reward. Worse, as we increase the
computation time, it becomes less efficient, converging toward a local optimum,
140.

The mean values of the rewards are shown in Fig. 2 and the medians of
the rewards are shown in Fig. 3. Each point is computed according to 100
simulations.

3.2 The Power Management Problem

In this section we present a real world problem. We show our experimental results
for various settings of the power management problem.

Continuous Upper Confidence Trees 441

Fig. 2. Mean of the reward, for the trap problem with a = 70, h = 100, l =
1, w = 0.7, R = 0.01. The estimated standard deviations of the rewards are
STDDPW = [13.06, 12.88, 12.88, 12.06, 14.70, 0, 0] for Double PW and STDSPW =
[7.16, 7.16, 8.63, 9.05, 0, 0, 0] for Simple PW - the differences are clearly significant,
where STD means standard deviation.

Problem Description. The experimental setup is an energy stock management
problem. We have finitely many energy stocks (nuclear stocks, water stocks), each
of them can be used to produce electricity; we can also produce electricity with
classical thermal plants, that are more costly. The problem is to find the right
tradeoff between

– using stocks now (in order to save up money), with the risk that later we
might have peaks of demands, leading to very high costs if we do not have
enough stocks.

– keeping stocks for later (in order to avoid the trouble above), with the risk
that we might have too much in a stock if there is no big peak of demand.

Also, even for a fixed amount of water used from the stocks, we have to decide
which stock we want to use. In particular, stocks above a given level are lost
(because we have to get rid of water when the level is too high). All stocks are
not equivalent: some of them have stronger inflows than others, and the used
part of some stocks is transfered to other stocks whereas others are not or not
to the same. One can think of a graph of reservoirs, water used in a given stock
being forwarded to another stock given by the graph. In our implementation,
the demand is a function of the time, determined in advance. The inflows, how-
ever, follow a lognormal distribution. Hence, they take different values from one
simulation to the other.

442 A. Couëtoux et al.

Fig. 3. Median of the reward, for the trap problem with a = 70, h = 100, l = 1,
w = 0.7, R = 0.01

The code of the problem can be found in http://www.lri.fr/~couetoux/
stock.cpp or requested by email.

Small Size Experiments. We consider here 2 stocks only and 5 time
steps. We compare the Q-learning algorithm from the Mash project http://
mash-project.eu/, our progressive widening Monte-Carlo Tree Search ap-
proach, a greedy algorithm only maximizing the short term, and a blind planner
optimizing a sequence of decisions regardless of stock levels. Results are pre-
sented in Fig. 4. We plot the median values of cumulated reward as a function
of time. It is easy to see that the Simple and Double PW MCTS achieve the
best performance, compared to Blind, Greedy, and Q-learning approaches. In
this particular (power management) problem, decisions are strongly associated
with stock levels (states). The performance of the Blind is poor, since it makes
illegal decisions rather often. Our implementation of the Q-learning suffers from
the same phenomenon.

Bigger Size Experiments. We here switch to 6 stocks and 21 time steps,
corresponding to 3 time steps per day, one week, with an expected increase of
demand at some point during the week. Results are presented in Fig. 5. Note,
that the conclusion is the same as for the small scale problem, described above:
the proposed Simple and Double PW MCTS are very competitive compared
to other tested methods. We did not include the results of the Q-learning. In this

http://www.lri.fr/~couetoux/stock.cpp
http://www.lri.fr/~couetoux/stock.cpp
http://mash-project.eu/
http://mash-project.eu/

Continuous Upper Confidence Trees 443

Fig. 4. The power management problem. Median values of cumulated reward with 2
stocks and 5 time steps.

Fig. 5. The power management problem. Median values of cumulated reward. Exper-
iments with 6 stocks and 21 time steps.

444 A. Couëtoux et al.

setting, the Q-learning obtained rather poor rewards. For the sake of clarity of
results of other approaches, we do not show the performance of the Q-learning
on Fig 5.

4 Conclusion

We have modified progressive widening in order to make it compliant with contin-
uous domains with general noise. Experimentally, the “double-PW” modification
was very efficient on deceptive problems aimed at pointing out the weaknesses
of simple PW; we conjecture that for some problems, both versions are roughly
equivalent, and for some problems the double PW is much better. On the other
hand, on a realistic problem, the modification had disappointingly little effect.
The formal proof of the consistency of the double PW (i.e. the convergence to
the optimal reward for wide classes of Markov Decision Processes) has not been
given and is the main further work.

References

1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The Jour-
nal of Machine Learning Research 3, 397–422 (2003)

2. Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, H., Bouzy, B.: Progressive
Strategies for Monte-Carlo Tree Search. In: Wang, P., et al. (eds.) Proceedings
of the 10th Joint Conference on Information Sciences (JCIS 2007), pp. 655–661.
World Scientific Publishing Co. Pte. Ltd., Singapore (2007)

3. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: Ciancarini, P., van den Herik, H.J. (eds.) Proceedings of the 5th Inter-
national Conference on Computers and Games, Turin, Italy (2006)

4. Coulom, R.: Computing elo ratings of move patterns in the game of go. In: Com-
puter Games Workshop, Amsterdam, The Netherlands (2007)

5. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: AAAI 2008: Proceedings of the 23rd National Conference on Artificial Intelli-
gence, pp. 259–264. AAAI Press, Menlo Park (2008)

6. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: ICML
2007: Proceedings of the 24th International Conference on Machine Learning, pp.
273–280. ACM Press, New York (2007)

7. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

8. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6, 4–22 (1985)

9. Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rimmel, A., Teytaud, O., Tsai,
S.-R., Hsu, S.-C., Hong, T.-P.: The Computational Intelligence of MoGo Revealed
in Taiwan’s Computer Go Tournaments. IEEE Transactions on Computational
Intelligence and AI in Games (2009)

10. Nakhost, H., Müller, M.: Monte-carlo exploration for deterministic planning. In:
Boutilier, C. (ed.) IJCAI, pp. 1766–1771 (2009)

Continuous Upper Confidence Trees 445

11. Rolet, P., Sebag, M., Teytaud, O.: Optimal active learning through billiards and
upper confidence trees in continous domains. In: Proceedings of the ECML Con-
ference (2009)

12. Rolet, P., Sebag, M., Teytaud, O.: Optimal robust expensive optimization is
tractable. In: Gecco 2009, p. 8. ACM, Montréal (2009)

13. Wang, Y., Audibert, J.-Y., Munos, R.: Algorithms for infinitely many-armed ban-
dits. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

14. Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte-
Carlo Go. In: IEEE Symposium on Computational Intelligence and Games, Hon-
olulu, Hawaii, pp. 175–182 (2007)

Towards an Intelligent Non-stationary

Performance Prediction of Engineering Systems

David J.J. Toal and Andy J. Keane

Computational Engineering and Design Group, School of Engineering Sciences,
University of Southampton, Southampton, U.K., SO17 1BJ

djjt@soton.ac.uk

Abstract. The analysis of complex engineering systems can often be
expensive thereby necessitating the use of surrogate models within any
design optimization. However, the time variant response of quantities of
interest can be non-stationary in nature and therefore difficult to rep-
resent effectively with traditional surrogate modelling techniques. The
following paper presents the application of partial non-stationary krig-
ing to the prediction of time variant responses where the definition of
the non-linear mapping scheme is based upon prior knowledge of either
the inputs to, or the nature of, the engineering system considered.

Keywords: Performance Prediction, Non-Stationary Kriging.

1 Introduction

Surrogate modelling strategies are often employed in the design optimization of
engineering systems as the cost of the computational simulations involved pro-
hibit direct optimization[1]. Similarly, determining the performance of a system
may require a transient analysis of that system over a period of time. A predictor
of the time variant response throughout a design space would therefore reduce
the overall cost of such analyzes within any design optimization.

While the variation of the quantities of interest throughout the design space
may be relatively stationary the variation of these quantities within the time
domain may be non-stationary as the inputs to the system are changed through-
out the cycle. A transient thermo-mechanical analysis of an engine, for example,
may involve the variation of prescribed temperatures and pressures over time.

The following paper demonstrates the application of partial non-stationary
kriging to the prediction of the time variant response of an engineering system
throughout a design space. This strategy assumes that whilst the time variant
response is non-stationary the response with respect to variations in the sys-
tem’s design is stationary. A non-linear mapping scheme[2] is then employed
within the time domain to map the non-stationary response to one which can
be approximated by a stationary correlation function. The mapping scheme is
represented by a piecewise linear variation in a density function which consists of
several controlling knots. The placement of these knots within the time domain
can reflect the inputs, and changes, within a simulation.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 446–449, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Intelligent Non-stationary Performance Prediction 447

The approach of Romero et al.[3], which considers observed responses as time-
correlated spatial processes could be considered as an alternative to the method
proposed here. However, Romero et al. assume that data is available at discrete
time steps whereas the current method is more general in nature.

2 Partial Non-stationary Kriging

Partial non-stationary kriging is a combination of stationary and non-stationary
kriging. A number of variables within the model are assumed to be stationary
and the remaining are assumed to be non-stationary. Given a black box function
this distinction can be difficult to determine but for the purposes of time variant
response prediction we assume that only time is non-stationary.

The assumption that the objective functions of two designs, xi and xj are
similar when close together, can be modelled statistically by assuming that the
correlation between two random variables, Y (xi) and Y (xj) is given by,

Corr[Y (xi), Y (xj)] = exp

(
−

d∑
l=1

10θ(l) |x(l)
i − x

(l)
j |p(l)

−
d+e∑

m=d+1

10θ(l+1) |f(x(m)
i) − f(x(m)

j)|p(m)

)
, (1)

where d defines the number of variables assumed stationary and e defines the
number assumed non-stationary. The hyperparameters θ and p determine the
rate of correlation decrease and the degree of smoothness of the response respec-
tively. The non-linear mapping is defined by,

f(x(l)) =
∫ x(l)

0

g(x′)dx′ , (2)

where the univariate density function, g(x), is represented by a piecewise linear
function defined by K + 1 knots of density function value 10ηk and position ζk.

The kriging hyperparameters θ and p as well as the magnitudes of the den-
sity function are unknowns and can be determined via a maximization of the
concentrated log-likelihood function[4],

φ = −n

2
ln(σ̂2) − 1

2
ln(|R|) , (3)

with the mean, μ̂, and variance, σ̂2, given by,

μ̂ =
1T R−1y

1T R−11
and σ̂2 =

1
n

(y − 1μ̂)T R−1(y − 1μ̂) , (4)

where R denotes the correlation matrix defined by Equation 1. Although this
optimization can prove costly due to the O(n3) factorization of R, the cost
can be reduced and the efficiency of the optimization improved through the
consideration of an adjoint of the concentrated likelihood function[5]. Predictions
are made using the standard kriging predictor[4] and Equation 1.

448 D.J.J. Toal and A.J. Keane

3 Engine Casing Temperature Response Prediction

Consider the intercasing section from an aero engine shown in Figure 1(a). The
parameterization of this geometry permits modifications to the casing thick-
ness, flange thickness and height and the thrust linkage setting angle. A thermal
analysis of 20 different designs, defined by a random latin hypercube, is carried
out over an arbitrary operating cycle. The prescribed temperature on the inner
casing surface varies linearly from T1 to T2, see Figure 1(b), over a cycle.

(a)

0 0.2 0.4 0.6 0.8 1
250

300

350

400

450

500

550

600

650

700

Normalised Time

T
e
m

p
e
ra

tu
re

 (
K

)

Intercasing Front Temperature (T
1
)

Intercasing Rear Temperature (T
2
)

(b)

Fig. 1. Compressor intercasing geometry (a) and cycle definition (b)

The data from each of the 20 simulations is used to construct a partial non-
stationary kriging model of the variation of mean temperature with changes to
the design of the intercasing. As previously noted, the time domain is modelled as
non-stationary with the design variables modelled as stationary. The non-linear
mapping of the time domain, however, requires an appropriate parameterization
of the density function. In this instance, the knots are placed in accordance
with the changes to the simulation inputs i.e. the ramp points of Figure 1(b)
determine where the knots are placed in the time domain. In this case knots are
placed at every ramp point with an additional two knots in between.

During each thermal analysis the mean casing temperature is recorded at ev-
ery time step. As there are approximately 32 time steps per analysis the surro-
gate model is constructed from 640 data points. Naturally the additional data in
the time domain increases the cost of the correlation matrix factorization. This
is countered by retaining only those temperatures corresponding to the ramp
points of Figure 1(b) and a random subset in between. This produces something
akin to a random sampling plan through the time domain. Using this strategy
the effort required during the SQP optimization of the hyperparameters can be
reduced. By considering a subset of only 15 time steps the cost of the hyperpa-
rameter optimization for this example can be reduced by 80% from 34 minutes
to approximately 6.5 minutes. Given an optimized set of hyperparameters the
complete dataset can then be used in the predictor.

Figure 2 demonstrates the accuracy of a partial non-stationary prediction of
the time variant response of an unsampled design. The partial non-stationary

Intelligent Non-stationary Performance Prediction 449

0 0.2 0.4 0.6 0.8 1
200

300

400

500

Normalised Time

M
ea

n
T

em
pe

ra
tu

re
 (

K
)

True Response
Kriging
PNS Kriging

Fig. 2. Predictions of the time variant response of an unsampled intercase design

kriging model predicts the true response extremely well giving a r2 correlation of
0.9998, and a root mean squared error of 0.48. Conversely a traditional stationary
kriging prediction results in a r2 of 0.9016 and RMSE of 12.43.

4 Conclusions

A partial non-stationary kriging strategy incorporating prior knowledge of sim-
ulation inputs to help define the non-linear mapping scheme has been presented
and applied to the prediction of the time variant response of a compressor in-
tercasing throughout a design space. The presented technique has been demon-
strated to be more accurate than stationary kriging and can be modified further
to predict the time variant response of other engineering systems.

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 234344 (www.crescendo-fp7.eu).

References

1. Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing Surrogate-Assisted Evo-
lutionary Computation. IEEE Transactions on Evolutionary Computation 14(3),
329–355 (2010)

2. Xiong, Y., Chen, W., Apley, D., Ding, X.: A Non-Stationary Covariance-Based
Kriging Method for Metamodelling in Engineering Design. International Journal
for Numerical Methods in Engineering 71(6), 733–756 (2007)

3. Romero, D.A., Amon, C., Finger, S., Verdinelli, I.: Multi-Stage Bayesian Surrogates
for the Design of Time-Dependent Systems. In: Proceedings of DETC 2004, Salt
Lake City, Utah, USA, September 28-October 2 (2004)

4. Jones, D.: A Taxonomy of Global Optimization Methods Based on Response Sur-
faces. Journal of Global Optimization 21(4), 345–383 (2001)

5. Toal, D.J.J., Bressloff, N.W., Keane, A.J., Holden, C.M.E.: The Development of a
Hybridized Particle Swarm for Kriging Hyperparameter Tuning. Engineering Opti-
mization 43(6), 675–699 (2011)

Local Search for Constrained Financial Portfolio

Selection Problems with Short Sellings

Luca Di Gaspero1, Giacomo di Tollo2, Andrea Roli3, and Andrea Schaerf1

1 DIEGM, Università degli Studi di Udine, via delle Scienze 208,
I-33100, Udine, Italy

{l.digaspero,schaerf}@uniud.it
2 LERIA, Université d’Angers en Pays-de-Loire, 2, Boulevard Lavoisier,

F-49045 Angers Cedex 01, France
giacomodt@gmail.com

3 DEIS, Alma Mater Studiorum Università di Bologna, via Venezia 52,
I-47023 Cesena, Italy
andrea.roli@unibo.it

1 Introduction

The Portfolio Selection Problem [7] is amongst the most studied issues in finance.
In this problem, given a universe of assets (shares, options, bonds, . . .), we are
concerned in finding out a portfolio (i.e., which asset to invest in and by how
much) which minimizes the risk while ensuring a given minimum return. In the
most common formulation it is required that all the asset shares have to be
non-negative. Even though this requirement is a common assumption behind
theoretical approaches, it is not enforced in real-markets, where the presence of
short positions (i.e., assets with negative shares corresponding to speculations on
falling prices) is intertwined to long positions (i.e., assets with positive shares).

Realistic portfolio selection under short selling is recently receiving more at-
tention amongst scholars (see, e.g., [4]), but often the computational phase is not
discussed properly in terms of strategies used and models at hand; furthermore
most approaches are aimed in determining single risk/return points [5].

The aim of this paper is instead to draw out the whole efficient frontier in pres-
ence of realistic short selling constraints. We extend our previous metaheuristic
approach for Portfolio Selection [3] to the case of short sellings and we propose a
new set of benchmark instances, constructed from real-world market data. Our
solver favorably compares with a Mixed Quadratic Programming formulation of
the problem solved with IBM ILOG CPLEX 12.2.

2 The Portfolio Selection Problem with Short Sellings

A common hypothesis in financial theory is that information about future asset
prices is contained in their current and historical prices, so that returns can be
treated as stochastic variables. In the most common approach, all information
about return realization and deviation risk are described by the return expected
value and its variance.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 450–453, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Local Search for Constrained Financial Portfolio Selection Problems 451

Given a target return R and a set of n assets A = {1, . . . , n}, each of them is
characterized by an expected return ri and any pair of assets (i, j) has associated
the covariance of expected returns denoted by σij . In this setting, the formal
statement of the Portfolio Selection Problem is the following:

min
n∑

i=1

n∑
j=1

σijxixj (1)

subject to
n∑

i=1

rixi ≥ R (2)

n∑
i=1

xi = 1 (3)

In the equations above, xi ∈ R is the proportion of money invested in asset
i. Positive values of xi are classical investments, while negative values represent
short sellings.

By solving the problem for a set of values of R it is possible to estimate the
efficient frontier (called EF). In this work, we construct the EF by solving the
problem for 100 equally distributed values of R. The investor can then choose
the portfolio depending on specific risk/return requirements.

Since we are allowing short sellings, additional constraints on the portfolio in
case of short sellings are imposed by law. For instance, US regulation T imposes
to warrant the investor position with a collateral, to provide against the case
in which the price of the sold asset rises instead of falling. In our model this
is represented by introducing a risk-free asset n + 1 (i.e., whose variance and
covariances are zero), whose return is rn+1. The investment in the risk-free asset
must be no less than a proportion γ of the overall sum of the short positions.

xn+1 ≥ −γ ·
n∑

i=1

min{0, xi} (4)

Furthermore, it is also imposed a limit in the total (short and long) exposure:

n+1∑
i=1

|xi| ≤ 2 (5)

Additional constraints are added to this basic formulation to encompass prac-
tical behaviors. For example, for facilitating the portfolio management and re-
ducing its management costs, the number of assets in the portfolio should be
limited. To this aim, for each asset we introduce an integer variable zi, which is
equal to 1 if the asset is in the long part of the portfolio, −1 if it is in the short
part, and 0 otherwise. The constraint can be expressed as follows:

n∑
i=1

|zi| ≤ k (6)

452 L. Di Gaspero et al.

Another constraint can be introduced to limit the share invested in single
assets, e.g., to avoid excessive exposure to a specific asset or to avoid the cost
of administrating very small portions of assets. Therefore, on each asset we are
imposing a minimum and maximum proportion: (εi and δi respectively) allowed
to be held/sold for each asset in a portfolio, so that either xi = 0 or εi ≤ |xi| ≤ δi

(i = 1 . . . n); in other words, the portion of the portfolio for a specific asset must
obey the following inequality:

εizi ≤ xi ≤ δizi (7)

The introduction of these constraints makes the problem a Mixed Integer
Quadratic Program, which is NP-complete [1]. Moreover, it is worth to observe
that in our model the collateral asset n+1 is not counted in the number of assets
that compose the portfolio (6) nor it is bounded by constraint (7).

3 Local Search

The solution algorithm we propose is an extension of a solution method proposed
for the long-only Portfolio Selection Problem [3]. In this solver local search works
on the search space composed by assignments to the integer variables zi, thus
selecting the assets to be included in the portfolio and in which of its parts
(long or short). Instead, the asset proportions xi are determined by solving a
Quadratic Programming (QP) subproblem that models the optimal assignment
of proportions to the selected assets.

The neighborhood relation is the set union of the basic moves that manage
the insertion, deletion, or replacement of an asset either in the long or in the
short part. That is, a move consists in changing the value of one zi variable, or
swapping the value of two of them.

We implemented a steepest descent (SD) strategy. At each step, the algorithm
searches for the best solution in the whole neighborhood and it stops when no
further improvement is possible. Other local search strategies are currently under
investigation but preliminary results show that SD outperforms them.

In the current implementation, the Local Search part is developed in C++
using EasyLocal++ [2], while QP is solved by means of the Fortran QPB
routine available from the Galahad library [6].

4 Experiments

We experimented our techniques on several instances obtained from real stock
markets. The instances are available and fully described at http://satt.diegm.
uniud.it/portfolio/. To the purpose of comparing the efficacy of our tech-
nique, we have also developed an exact solver for the full MIQP problem formu-
lation using the IBM ILOG CPLEX C++ library (rel. 12.2).

For space limits we report only the results on one instances, namely the biggest
one in the dataset. The exact solver was stopped after 24 hours of computation

http://satt.diegm.uniud.it/portfolio/
http://satt.diegm.uniud.it/portfolio/

Local Search for Constrained Financial Portfolio Selection Problems 453

Return

D
is

ta
n
c
e
 f
ro

m
 E

F

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

● ●

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Method
●● sd

cplex

Return

T
im

e

10
1.5

10
2

10
2.5

10
3

10
3.5

10
4

10
4.5

● ● ● ● ● ●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

● ●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Method
●● sd

cplex

Fig. 1. Results on us nasdaq composite-2001-2006-m (2235 assets)

and it was able to compute only 50 frontier points. Results are shown in Fig-
ure 1. Our method clearly outperforms the exact implementation in terms of
running times (1-2 orders of magnitude less) and it is consistently able to obtain
the optimal results. This behavior is confirmed by the experiments on all the
remaining instances.

References

[1] Bienstock, D.: Computational study of a family of mixed-integer quadratic pro-
gramming problems. Mathematical Programming 74, 121–140 (1996)

[2] Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flex-
ible design of local search algorithms. Software — Practice & Experience 33(8),
733–765 (2003)

[3] Di Gaspero, L., Di Tollo, G., Roli, A., Schaerf, A.: Hybrid metaheuristics for con-
strained portfolio selection problem. Quantitative Finance (2010) ISSN 1469-7688
(published online), doi:10.1080/14697680903460168

[4] Shannon, E., Johnson, G., Vikram, S.: An empirical analysis of 130/30 strategies:
Domestic and international 130/30 strategies add value over long-only strategies.
The Journal of Alternative Investments (2007)

[5] Gilli, M., Schumann, E., di Tollo, G., Cabej, G.: Constructing long-short portfolios
with the omega ratio. Technical Report 08-34, Swiss Finance Institute (2008)

[6] Gould, N.I.M., Orban, D., Toint, P.L.: GALAHAD, a library of thread-safe fortram
90 packages for large-scale nonlinear optimization. ACM Transactions on Mathe-
matical Software 29(4), 353–372 (2003)

[7] Markowitz, H.: Portfolio selection. Journal of Finance 7(1), 77–91 (1952)

Clustering of Local Optima
in Combinatorial Fitness Landscapes

Gabriela Ochoa1, Sébastien Verel2, Fabio Daolio3, and Marco Tomassini3

1 School of Computer Science, University of Nottingham, Nottingham, UK
2 INRIA Lille - Nord Europe and University of Nice Sophia-Antipolis, France

3 Information Systems Department, University of Lausanne, Lausanne, Switzerland

Abstract. Using the recently proposed model of combinatorial landscapes: lo-
cal optima networks, we study the distribution of local optima in two classes of
instances of the quadratic assignment problem. Our results indicate that the two
problem instance classes give rise to very different configuration spaces. For the
so-called real-like class, the optima networks possess a clear modular structure,
while the networks belonging to the class of random uniform instances are less
well partitionable into clusters. We briefly discuss the consequences of the find-
ings for heuristically searching the corresponding problem spaces.

1 Introduction

We have recently introduced a model of combinatorial landscapes: Local Optima Net-
works (LON) [1,2], which allows the use of complex network analysis techniques [3]
for studying fitness landscapes and problem difficulty in combinatorial optimization.
The model, inspired by work in the physical sciences on energy surfaces[4], is based
on the idea of compressing the information given by the whole problem configura-
tion space into a smaller mathematical object which is the graph having as vertices
the local optima and as edges the possible transitions between them. This character-
ization of landscapes as networks has brought new insights into the global structure
of the landscapes studied. Moreover, some network features have been found to corre-
late and suggest explanations for search difficulty on the studied domains. Our initial
work considered binary search spaces and the NK family of abstract landscapes [1,2].
Recently, we have turned our attention to more realistic combinatorial spaces (permuta-
tion spaces), specifically, the Quadratic Assignment Problem (QAP) [5]. In this article,
we focus on a particular characteristic of the optima networks using the QAP, namely,
the manner in which local optima are distributed in the configuration space. Several
questions can be raised. Are they uniformly distributed, or do they cluster in some non-
homogeneous way? If the latter, what is the relation between objective function values
within and among different clusters and how easy is it to go from one cluster to another?
Knowing even approximate answers to some of these questions would be very useful to
further characterize the difficulty of a class of problems and also, potentially, to devise
new search heuristics or variation to known heuristics that take advantage of this infor-
mation. This short paper starts to address some of these questions. The sections below
summarize our methodology and preliminary results.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 454–457, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Clustering of Local Optima in Combinatorial Fitness Landscapes 455

2 Methodology

The Quadratic Assignment Problem: The QAP is a combinatorial problem in which
a set of facilities with given flows has to be assigned to a set of locations with given dis-
tances in such a way that the sum of the product of flows and distances is minimized. A
solution to the QAP is generally written as a permutation π of the set {1, 2, ..., n}. The
cost associated with a permutation π is: C(π) =

∑n
i=1

∑n
j=1 aijbπiπj , where n de-

notes the number of facilities/locations and A = {aij} and B = {bij} are referred to as
the distance and flow matrices, respectively. The structure of these two matrices charac-
terizes the class of instances of the QAP problem. For the statistical analysis conducted
here, the two instance generators proposed in [6] for the multi-objective QAP were
adapted for the single-objective QAP. The first generator produces uniformly random
instances where all flows and distances are integers sampled from uniform distribu-
tions. The second generator produces flow entries that are non-uniform random values.
The instances produced have the so called “real-like” structure since they resemble the
structure of QAP problems found in practical applications. For the purpose of commu-
nity detection, 200 instances were produced and analyzed with size 9 for the random
uniform class, and 200 of size 11 for the real-like instances class. Problem size 11 is
the largest one for which an exhaustive sample of the configuration space was compu-
tationally feasible in our implementation.

Local Optima Networks: In order to define the local optima network of the QAP in-
stances, we need to provide the definitions for the nodes and edges of the network. The
vertexes of the graph can be straightforwardly defined as the local minima of the land-
scape. In this work, we select small QAP instances such that it is feasible to obtain the
nodes exhaustively by running a best-improvement local search algorithm from every
configuration (permutation) of the search space. The neighborhood of a configuration
is defined by the pairwise exchange operation, which is the most basic operation used
by many meta-heuristics for QAP. This operator simply exchanges any two positions
in a permutation, thus transforming it into another permutation. The neighborhood size
is thus |V (s)| = n(n − 1)/2. The edges account for the transition probability between
basins of attraction of the local optima. More formally, the edges reflect the total prob-
ability of going from basin bi to basin bj , which is the average over all s ∈ bi of the
transition probabilities to solutions s

′ ∈ bj .The reader is referred to [5] for a more
detailed exposition.

We define a Local Optima Network (LON) as being the graph G = (S∗, E) where the
set of vertices S∗ contains all the local optima, and there is an edge eij ∈ E with weight
wij = p(bi → bj) between two nodes i and j iff p(bi → bj) > 0. Notice that since each
maximum has its associated basin, G also describes the interconnection of basins.

The study of LONs for the QAP instances [5], showed that the networks are dense.
Indeed, they are complete or almost complete graphs, which is inconvenient for cluster
detection algorithms. Therefore, we opted for filtering out the networks edges keeping
the more likely transitions (which are the most relevant for heuristic search). In filter-
ing, we first replace the directed graph by an undirected one (wij = wij+wji

2), and then
suppress all edges that have wij smaller than the value making the α-quantile (α = 0.05

456 G. Ochoa et al.

in experiments) in the weights distribution. Such a less dense network provides a coarser
but clearer view of the fitness landscape backbone, and can be used for minima cluster
analysis.

3 Results and Discussion

Clusters or communities in networks can be loosely defined as being groups of nodes
that are strongly connected between them and poorly connected with the rest of the
graph. Community detection is a difficult task, but today several good approximate
algorithms are available [7]. Here we use two of them: (i) a method based on greedy
modularity optimization, and (ii) a spin glass ground state-based algorithm, in order
to double check the community partition results. Figure 1 shows the modularity score
(Q) distribution calculated for each algorithm/instance-class. In general, the higher the
value of Q of a partition, the crisper the community structure [7]. The plot indicates
that the two instance classes are well separated in terms of Q, and that the community
detection algorithm does not seem to have any influence on such a result.

The modularity measurements (Fig. 1) indicate that real-like instances have signifi-
cantly more minima cluster structure than the class of random uniform instances of the
QAP problem. This can be appreciated visually by looking at Fig. 2 where the commu-
nity structures of the LON of two particular instances are depicted. Although these are
the two particular cases with the highest Q values of their respective classes, the trends
observed are general. For the real-like instance (Fig. 2, left) one can see that groups of
minima are rather recognizable and form well separated clusters (encircled with dotted
lines), which is also reflected in the high corresponding modularity value Q = 0.79.
Contrastingly, the right plot represents a case drawn from the class of random uniform
instances. The network has communities, with a Q = 0.53, although they are hard to
represent graphically, and thus are not shown in the picture.

rl.1 uni.1 rl.2 uni.2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

M
od

ul
ar

ity
 Q

Fig. 1. Boxplots of the modularity score Q on the y-axis with respect to class problem (rl stands
for real-like and uni stands for random uniform) and community detection algorithm (1 stands
for fast greedy modularity optimization and 2 stands for spin glass search algorithm).

Clustering of Local Optima in Combinatorial Fitness Landscapes 457

Fig. 2. Community structure of the filtered LONs for two selected instances: real-like (Left);
uniform (Right). Node sizes are proportional to the corresponding basin size. Darker colors mean
better fitness. The layout has been produced with the R interface to the igraph library.

Our analysis so far, considers only small instances, and even in this case, the local op-
tima networks show an interesting modular structure. We argue that for larger instances,
the modular structure will also be present or even increased. In order to study larger in-
stances, we are currently exploring adequate sampling algorithms. Our results may have
consequences in the design of effective heuristic search algorithms. For example, on the
random uniform instances a simple local heuristic search, such as hill-climbing, should
be sufficient to quickly find satisfactory solutions since they are homogeneously dis-
tributed. In contrast, in the real-like case they are much more clustered in regions of the
search space. This leads to more modular optima networks and using multiple parallel
searches, or large neighborhood moves would probably be good strategies. These ideas
clearly deserve further investigation.

References

1. Tomassini, M., Vérel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: The
NK landscape case. Phys. Rev. E 78(6), 066114 (2008)

2. Vérel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality.
IEEE Trans. on Evol. Comp. (2010) (to appear)

3. Doye, J.P.K.: The network topology of a potential energy landscape: a static scale-free net-
work. Phys. Rev. Lett. 88, 238701 (2002)

4. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–
256 (2003)

5. Daolio, F., Vérel, S., Ochoa, G., Tomassini, M.: Local optima networks of the quadratic assign-
ment problem. In: IEEE Congress on Evolutionary Computation, CEC 2010, pp. 3145–3152.
IEEE Press, Los Alamitos (2010)

6. Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic
assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)

7. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

Multi-Objective Optimization with an Adaptive

Resonance Theory-Based Estimation of
Distribution Algorithm: A Comparative Study

Luis Mart́ı, Jesús Garćıa, Antonio Berlanga, and José M. Molina

Universidad Carlos III de Madrid, Group of Applied Artificial Intelligence
Av. de la Universidad Carlos III, 22. Colmenarejo, Madrid 28270, Spain
{lmarti,jgherrer}@inf.uc3m.es, {aberlan,molina}@ia.uc3m.es

http://www.giaa.inf.uc3m.es/

Abstract. The introduction of learning to the search mechanisms of op-
timization algorithms has been nominated as one of the viable approaches
when dealing with complex optimization problems, in particular with
multi-objective ones. One of the forms of carrying out this hybridiza-
tion process is by using multi-objective optimization estimation of dis-
tribution algorithms (MOEDAs). However, it has been pointed out that
current MOEDAs have a intrinsic shortcoming in their model-building
algorithms that hamper their performance.

In this work we argue that error-based learning, the class of learning
most commonly used in MOEDAs is responsible for current MOEDA
underachievement. We present adaptive resonance theory (ART) as a
suitable learning paradigm alternative and present a novel algorithm
called multi-objective ART-based EDA (MARTEDA) that uses a Gaus-
sian ART neural network for model-building and an hypervolume-based
selector as described for the HypE algorithm. In order to assert the
improvement obtained by combining two cutting-edge approaches to op-
timization an extensive set of experiments are carried out. These experi-
ments also test the scalability of MARTEDA as the number of objective
functions increases.

1 Introduction

Multi-objective optimization has received a lot of attention by the evolution-
ary computation community leading to multi-objective evolutionary algorithms
(MOEAs) (cf. [1]). A multi-objective optimization problem (MOP) can be ex-
pressed as the problem in which a set of M objective functions f1(x), . . . , fM (x)
with should be jointly optimized;

min F (x) = 〈f1(x), . . . , fM (x)〉 ; x ∈ D ; (1)

where D ⊆ R
n is known as the feasible set and could be expressed as a set of

restrictions over the decision set, R
n . The image set of D produced by function

vector F (·), O ⊆ R
M , is called feasible objective set or criterion set (see [2] for

details on notation).

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 458–472, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.giaa.inf.uc3m.es/

Multi-Objective Optimization with an ART-Based EDA 459

The solution to this problem is a set of trade-off points. The adequacy of a
solution can be expressed in terms of the Pareto dominance relation [3]. The
solution of (1) is the Pareto-optimal set, D∗; which is the subset of D that
contains all elements of D that are not dominated by other elements of D. Its
image in objective space is called Pareto-optimal front, O∗.

There is a class of MOPs that are particularly appealing because of their inher-
ent complexity: the so-called many-objective problems [4]. These are problems
with a relatively large number of objectives. It has been shown that “estab-
lished” approaches fail to yield adequate solutions because of the exponential
relation between the dimension of the objective space and the amount of re-
sources, in particular population size, required to solve the problem correctly.
Although somewhat counterintuitive and hard to visualize for a human decision
maker, these problems are not uncommon in real-life engineering practice. For
example, [5] details some relevant real problems of this type.

Many-objective problems have been addressed from three main fronts:

1. the design of better fitness assignment (selection) functions;
2. the use of objective reduction strategies, and;
3. application of better search (variation) methods

There has been has been a relatively large body of work on the first two issues.
For example, it has been shown that the use performance indicators and some
forms of relaxed Pareto dominance for the fitness assignment task allows the
resulting algorithm to cope with higher dimension problems (cf. [6, 7, 8]). Simi-
larly, some works have focused on the reduction of the amount of objectives to
a minimum by eliminating redundant or irrelevant objectives (cf. [9, 10, 11]).

The third direction remains to be properly explored. Here, a viable approach
is to employ cutting-edge evolutionary algorithms that could effectively deal with
high-dimensional problems more efficiently.

The incorporation of learning as part of the search processes has been nom-
inated as a viable way of dealing with that third issue [12]. There are some
approaches that perform this task by providing hybrid evolutionary/machine
learning method, like, for example, the learnable evolution model (LEM) [13].
However, these efforts seem to have been concentrated on single-objective opti-
mization (c. f. [14, 15]).

Another form of carrying out this task is to resort to estimation of distribu-
tion algorithms (EDAs) [16]. This is because of EDAs capacity of learning the
problem structure. EDAs replace the application of evolutionary operators with
the creation of a statistical model of the fittest elements of the population in a
process known as model-building. This model is then sampled to produce new
elements. Nevertheless, the so-called multi-objective EDAs (MOEDAs) [17] have
not live up to their a priori expectations. This is can be attributed to the fact that
most MOEDAs have limited themselves to transforming single-objective EDAs
into a multi-objective formulation by including an existing multi-objective fitness
assignment function.

This straightforward extrapolation has prompted the existence of a number of
shortcomings en current MOEDAs. We have recognized three of them, in

460 L. Mart́ı et al.

particular, those derived from the incorrect treatment of outstanding but isolated
elements of the population (outliers); the loss of population diversity, and that too
much computational effort is being spent on finding an optimal population model.

The performance issue of current MOEDAs has been traced back to the their
underlying learning paradigm: the dataset-wise error minimization learning, or
error-based learning, for short [18]. This class of learning, in different forms, is
shared by most machine learning algorithms. It implies that model is tuned in
order to minimize a global error measured across the dataset. In this type of
learning isolated data is not taken into account because of their little contribu-
tion to the overall error and therefore they do not take an active part of learning
process. This assertion is in part supported by the fact that most the approaches
that had a better performance in comparative experiments like [18] do not ex-
actly conform to the error-based scheme. That is why, other learning paradigms
should be assessed.

Adaptive resonance theory (ART) [19] is a theory of human cognition that has
seen a realization as a family of neural networks. It relies on a learning scheme
denominated match-based learning and on intrinsic topology self-organization.
These features make it interesting as a case study as model-building approach.
Match-based learning equally weights isolated and clustered data [20], and, there-
fore, the algorithm does not disregard outliers. Similarly, self-organization makes
possible the on-the-fly determination the model complexity required to correctly
represent the data set, thus eliminating the need of an external algorithm for
that task.

In this work we argue that error-based learning, the class of learning most com-
monly used in MOEDAs is responsible for current MOEDA underachievement.
We discuss in detail ART-based learning as a viable alternative and present a
novel algorithm called multi-objective ART-based EDA (MARTEDA) that uses
a Gaussian ART neural network [21] for model-building and an hypervolume-
based selection as described for the hypervolume estimation algorithm for mul-
tiobjective optimization (HypE) [8]. We experimentally show that thanks to
MARTEDA’s novel model-building approach and an indicator-based population
ranking the algorithm it is able to outperform similar MOEDAs and MOEAs.
Elements of MARTEDA have been discussed in some preliminary works [22],
but it has not yet been presented in detail.

The remaining part of the work proceeds as we discuss the model-building
issue. Following that we describe the Gaussian ART network that is used as start
point for our model-building algorithm. Subsequently, MARTEDA is introduced,
describing how the HypE selection and Gaussian ART are blended together
in a MOEDA framework. Section 5 presents and discusses the results of the
comparative experiments involving MARTEDA and a selection of other current
state-of-the-art algorithms dealing with a set of community accepted problems.
These problems are configured with an progressive number of objectives (3, 6,
9 and 12) in order to assess the performance of our proposal in the context of
many-objective optimization. Finally, some conclusive remarks and future lines
of research are outlined.

Multi-Objective Optimization with an ART-Based EDA 461

2 The Model-Building Issue

Notwithstanding the diverse efforts dedicated to providing usable model-building
methods for EDAs the nature of the problem itself has received relatively low
attention. An analysis of the results yielded by current multi-objective EDAs and
their scalability with regard to the number of objective leads the identification
of certain issues that might be hampering the obtention of substantially better
results with regard to other evolutionary approaches.

Data outliers issue is a good example of insufficient comprehension of the
nature of the model-building problem. In machine-learning practice, outliers are
handled as noisy, inconsistent or irrelevant data. Therefore, outlying data is
expected to have little influence on the model or just to be disregarded.

However, that behavior is not adequate for model-building. In this case, is
known beforehand that all elements in the data set should be take into account
as they represent newly discovered or candidate regions of the search space and
therefore must be explored. Therefore, these instances should be at least equally
represented by the model and perhaps even reinforced.

Another weakness of most MOEDAs (and most EDAs, for that matter) is
the loss of population diversity. This is a point that has already been made, and
some proposals for addressing the issue have been laid out [23,24,25,26,27]. This
loss of diversity can be traced back to the above outliers issue of model-building
algorithms.

The incorrect treatment of outliers and the loss of population diversity can
be attributed the error-based learning approaches that take place in the most
MOEDAs. Error-based learning is rather common in machine learning algo-
rithms. It implies that model topology and parameters are tuned in order to
minimize a global error measured across the learning data set. This type of
learning isolated data is not taken into account because of their little contribu-
tion to the overall error and therefore they do not take an active part of learning
process. In the context of many problems this behavior makes sense, as isolated
data can be interpreted as spurious, noisy or invalid data.

That is not the case of model-building, as we have already argued. In model-
building all data is equally important and, furthermore, isolated data might have
a bigger significance as they represent unexplored zones of the current optimal
search space. This assessment is supported by the fact that most the approaches
that had a better performance do not follow the error-based scheme, like the
k-means algorithm, randomized leader algorithm and the growing neural gas
network [18]. That is why, perhaps another classes of learning, like instance-
based learning or match-based learning would yield a sizable advantage.

3 Model Building with Adaptive Resonance Theory

Adaptive Resonance Theory (ART) neural networks are capable of fast, stable, on-
line, unsupervised or supervised, incremental learning, classification, and predic-
tion following a match-based learning scheme [19]. Match-based learning is com-
plementary to error-based learning.During training, ART networks adjust previously-

462 L. Mart́ı et al.

learned categories in response to familiar inputs, and create new categories dy-
namically in response to inputs different enough from those previously seen. A
vigilance test allows to regulate the maximum tolerable difference between any
two input patterns in a same category. It has been pointed out that ART networks
are not suitable for some classes of classical machine-learning applications [20],
however, what is an inconvenience in that area is a feature in our case.

3.1 Gaussian ART for Model-Building

There are many variations of ART networks. Among them, the Gaussian ART
[21] is most suitable for model-building since it capable of handling continuous
data. The result of applying Gaussian ART is a set of nodes each representing
a local Gaussian density. These nodes can be combined as a Gaussian mixture
that can be used to synthesize new individuals.

Gaussian ART creates classes of similar inputs. A match tracking mechanism
induces the creation of more specific classes when the prediction of the network
differs from the expected output at some degree.

Gaussian ART has a layer of afferent or input nodes, F1, and a classification
layer, F2. The F2 layer stores classes of inputs. Its activation is a combined
measure of the similarity of the input and the prototype of each class, and the
size of the given class.

For the model-building task we have modified the original formulation of the
network to make it more suited for the task. When an input x ∈ R

n is presented
to the input layer it is propagated to the F2 layer. F2 has N∗ units, with N of
them committed. Each committed unit models a local density of the input space
using Gaussian receptive fields with mean μj and standard deviation σj . A unit
is activated if it satisfies the match criterion. That is, the match function,

Gj = exp

(
−1

2

n∑
i=1

(
xi − μji

σji

)2
)

, j = 1, . . . , N , (2)

must be greater than the F2 vigilance parameter, ρ; according to this, the input
strength of a unit is computed as

gj =
{ ηj∏n

i=1 σji
Gj , if Gj > ρ

0 otherwise
, ρ > 0 , (3)

where ηj is a measure of the unit a priori activation probability. This is different
from the original Gaussian ART network where only one unit was allowed be
active after an input presentation.

After the presentation of an input, if no F2 unit is active, then an uncommitted
unit must be committed. The task of detecting when an input is not sufficiently
coded in F2 is accomplished by the F2 gain control, G, that fires if no committed
units are active. The signal

Γ =
{

1 if maxj=1,...,N gj = 0
0 otherwise (4)

is used to commit an uncommitted unit.

Multi-Objective Optimization with an ART-Based EDA 463

The activation of each unit is then calculated normalizing the unit’s input
strength,

vj =
gj∑N
l=1 gl

. (5)

As other ART networks, this model is an on-line learning neural network.
Therefore, all adaptation processes have local rules. In F2, μj and σj are updated
using a learning rule based on the gated steepest descent learning rule. ηj is
updated to represent the cumulative category activation,

ηj (t + 1) = ηj (t) + vj , (6)

and, therefore, the amount of training that has taken place in the jth unit. The
use of ηj equally weights inputs over time with the intention to measure their
sample statistics.

Learning the first and second moments of the input is

μji (t + 1) =
(
1 − η−1

j vj

)
μji (t) + η−1

j vjxi , (7)

λji (t + 1) =
(
1 − η−1

j vj

)
λji (t) + η−1

j vjx
2
i . (8)

The standard deviation,

σji (t + 1) =
√

λji (t + 1) − μji (t + 1)2 , (9)

is calculated using (7) and (8).
Gaussian ART is initialized with all units uncommitted (N = 0). Learning

takes place in active (vj > 0) F2 units following (7)–(9). However if no F2
units becomes active an uncommitted unit is committed and therefore N is
incremented. The new unit is indexed by N and initialized with vN = 1, ηN = 0.
Learning will proceed as usual but a constant γ2

i will be added to each λNi to
set σNi = γi. The value of γi has a direct impact on the quality of learning. A
larger γi slows down learning in its corresponding input feature but warranties
a more robust convergence.

The local Gaussian densities resulting from the described algorithm can be
combined to synthesize a Gaussian mixture. This Gaussian mixture is then used
can be used by the EDA to generate new individuals.

4 Multi-Objective ART-Based EDA

The multi-objective ART-based EDA (MARTEDA) is a MOEDA that uses the
previously described Gaussian ART network as its model-building algorithm.
Although it intends to deal with the issues raised by the previous discussion,
it was also designed with scalability in mind, since it is expected to cope with
many-objective problems. It also exhibits an elitist behavior, as it has proved
itself a very advantageous property. Finally, thanks to the combination of fitness
assignment and model-building it promotes diversity preservation.

464 L. Mart́ı et al.

MARTEDA maintains a population, Pt, of npop individuals; where t is a given
iteration. The algorithm’s workflow is similar to other EDAs. It starts with a
random initial population P0 of individuals.

At a given iteration t the algorithm determines the set P̂t containing the best
	α |Pt|
 elements. ∣∣∣P̂t

∣∣∣ = 	α |Pt|
 = 	αnpop
 . (10)

Different selection strategies can be applied. However, indicator-based selec-
tion seems to have a superior performance in complex and many-objective prob-
lems. The hypervolume-based selection have many theoretical features, like being
the only indicator that have the properties of a metric and the only to be strictly
Pareto monotonic [28] but has the drawback of being computationally intensive
to compute.

A lot of research has focused on improving the computational complexity of
this indicator [29, 30, 31, 32]. The exact computation of the algorithm has been
shown to be #P-hard [33] in the number of objectives. #P problems are the
analogous of NP for counting problems [34]. Therefore, all algorithms calculating
a hypervolume must have an exponential runtime with regard to the number of
objectives if P�=NP, something that seems to be true [35].

The HypE algorithms attempt to circumvent this problem by estimating the
value of the hypervolume by means of a Monte Carlo simulation. The detailed
description of this procedure is out of the scope of this paper, and, therefore we
invite the interested reader to consult the corresponding paper.

A Gaussian ART network is then trained using P̂t as its training data set. In
order to have a controlled relation between size of P̂t and the maximum size of
the network, Nmax, these two sizes are bound by the rate γ ∈ (0, 1],

Nmax =
⌈
γ
∣∣∣P̂t

∣∣∣⌉ = �γ 	αnpop
 . (11)

The trained GNG network is a model of P̂t. The network can be interpreted
as a Gaussian mixture, as explained in the previous section. Therefore it can
be used to sample new individuals. In particular, 	ω |Pt|
 new individuals are
synthesized.

The local Gaussian densities resulting from the described algorithm can be
combined to synthesize the Gaussian mixture with parameters Θ,

P (x|Θ) =
1
N

N∑
i=1

P (x|μi, σi) . (12)

Each Gaussian density is formulated as

P (x|μi, σi) =
1

(2π)n/2|Σi|1/2
exp
(
−1

2
(x − μi)

�
Σ−1

i (x − μi)
)

, (13)

Multi-Objective Optimization with an ART-Based EDA 465

with the covariance matrices Σi defined as a diagonal matrix with its non-zero
elements set to the values of the deviations σi. The Gaussian mixture can be
used by the EDA to generate new individuals. These new individuals are created
by sampling the P (x|Θ). The generation of randomly distributed numbers that
follow a given distribution has been dealt in depth by many authors. In our case,
we applied the Box-Muller transformation [36].

Each one of these individuals substitute a randomly selected ones from the
section of the population not used for model-building Pt \ P̂t. The set obtained
is then united with the best elements, P̂t, to form the population of the next
iteration Pt+1. Some other substitution strategies could be used in this step. For
example, the new individuals could substitute the worst individuals of Pt \ P̂t.
We have chosen the previously described approach because it promotes diversity
and avoids stagnation.

Iterations are repeated until a given stopping criterion is met. The output of
the algorithm is a subset of Pt that contains the non-dominated solutions, P∗

t .

5 Experimental Study

The results of the experiments involving MARTEDA, some current state-of-
the-art MOEDAs and MOEAs in a selection of current community-accepted
problems are reported in this section.

The Walking Fish Group (WFG) problem toolkit [37] is a toolkit for creating
complex synthetic multi-objective test problems. The WFG test suite exceeds
the functionality of previous existing test suites. These include: non-separable
problems, deceptive problems, a truly degenerate problem, a mixed shape Pareto
front problem, problems scalable in the number of position related parameters,
and problems with dependencies between position- and distance-related param-
eters. The WFG test suite provides a better form of assessing the performance
of optimization algorithms on a wide range of different problems.

From the set of nine problems WFG4 to WFG9 were selected because of the
simplicity of their Pareto-optimal front that lies on the first orthant of a unit
hypersphere. This decision was also caused by the high computational cost of
the experiments being carried out and by the length restriction imposed upon
this contribution. Each problem was configured with 3, 6, 9 and 12 objective
functions. For all cases the decision space dimension was fixed to 30.

Besides applying MARTEDA to the aforementioned problems some other
MOEDAs and MOEAs are also assessed in order to provide a comparative ground
for the tests. One algorithm is of particular interest, the MONEDA [38] algo-
rithm. This approach was previously proposed by the authors to deal with the
model-building issue of MOEDAs and MARTEDA is supposed to be an im-
provement over it. However, as MONEDA used the less-performing NSGA-II
selection, we have also tested MONEDA with the HypE selection, in order to
have some basis for comparison.

Besides MONEDA, we also tested the näıve MIDEA [39], and MrBOA [40]
MOEDAs and the SMS-EMOA [41], HypE [8] and NSGA-II [1] MOEAs. One

466 L. Mart́ı et al.

Parameters:
� γ, initial deviations.
� npop, population size.
� α ∈ (0, 1], selection percentile.
� ω ∈ (0, 1], substitution percentile.

Algorithm:
t← 0.
Randomly generate the initial population P0 with npop indi-
viduals.
repeat

Sort population Pt using the HypE+ ranking algorithm.
Extract first α |Pt| elements the sorted Pt to P̂t.
A Gaussian ART with P̂t as training data set.
Sample �ω |Pt|� from the network.
Substitute randomly selected individuals of Pt\P̂t with the
new individuals to produce P ′

t.
Pt+1 = P̂t ∪ P ′

t.
t = t + 1.

until end condition = true
Determine the set of non-dominated individuals of Pt, P∗

t .
return P∗

t as the algorithm’s solution.

Fig. 1. Algorithmic representation of MARTEDA

of the purposes of this study is to assess the parameter robustness of the al-
gorithms. That is why the same parameter values have been for all problems,
only increasing the population size as the number of objectives grows. For each
problem/dimension pair each algorithm was executed 30 times.

The quality of the solutions is determined by the use of the hypervolume
indicator [42].

The stochastic nature of evolutionary algorithms prompts the use of statistical
tools in order to reach a valid judgement of the quality of the solutions and how
different algorithms compare with each other. Box plots [43] are one of such
representations and have been repeatedly applied in our context. Although box
plots allows a visual comparison of the results and, in principle, some conclusions
could be deduced out of them. Nevertheless, in order to reach a substantiated
judgement it is necessary go beyond reporting the descriptive statistics of the
performance indicators. For this task is required to carry out a set of statistical
inferences that would support any judgements made from the data.

The statistical validity of the judgment of the results calls for the applica-
tion of statistical hypothesis tests. It has been previously remarked by different
authors that the Mann-Whitney-Wilcoxon U test [44] is particularly suited for
experiments in the context of multi-objective evolutionary optimization [42].
This test is commonly used as a non-parametric method for testing equality
of population medians. In our case we performed pair-wise tests on the signifi-
cance of the difference of the indicator values yielded by the executions of the
algorithms. A significance level, α, of 0.05 was used for all tests.

Multi-Objective Optimization with an ART-Based EDA 467

WFG4 WFG5 WFG6 WFG7 WFG8 WFG9
0

1

2

3

4

5

6

MART
MON/H
MON/NS
n.MID.
MrBOA
HypE
SMS-EM
NSG-II

Fig. 2. Mean values of the performance index of MARTEDA (MART), MONEDA with
HypE (MON/H) or NSGA-II selection (MON/NS), näıve MIDEA (n.MID), MrBOA,
HypE, SMS-EMOA (SMS-EM) and NSGA-II (NSG-II) across the different problems,
P̄p ().

The visual analysis of the results is rather difficult as it implies cross-examining
and comparing the results presented separately. That is why we decided to adopt
a more integrative representation such as the one proposed in [45]. That is,
for a given set of algorithms A1,. . . , AK , a set of P test problem instances
Φ1,m,. . . ,ΦP,m, configured with m objectives, the function δ(·) is defined as

δ (Ai, Aj , Φp,m) =
{

1 if Ai � Aj solving Φp,m

0 in other case , (14)

where the relation Ai � Aj defines if Ai is significantly better than Aj when
solving the problem instance Φp,m, as computed by the statistical tests previously
described.

Relying on δ(·), the performance index Pp,m(Ai) of a given algorithm Ai when
solving Φp,m is then computed as

Pp,m (Ai) =
K∑

j=1;j �=i

δ (Ai, Aj , Φp,m) . (15)

This index intends to summarize the performance of each algorithm with regard
to its peers.

Figs. 2 and 3 exhibit the results computing the performance indexes grouped
by problems and dimensions.

Fig. 2 represents the mean performance indexes yielded by each algorithm
when solving each problem in all of its configured objective dimensions,

P̄p (Ai) =
1

|M|
∑

m∈M
Pp,m (Ai) . (16)

468 L. Mart́ı et al.

M=3 M=6 M=9 M=12
0

1

2

3

4

5

6

MART
MON/H
MON/NS
n.MID.
MrBOA
HypE
SMS-EM
NSG-II

Fig. 3. Mean values of the performance index across the different space dimensions,
P̄m. See Fig. 2 for a description of the acronyms.

It is worth noticing that MARTEDA has better overall results with respect
to the other algorithms in all problems. As it could be expected, the use of
indicator-based selection in MONEDA has yielded better results than the origi-
nal MONEDA. Indicator-based MONEDA and the indicator-based MOEAs have
a similar performance. It can be hypothesized that these results can be biased by
the three objective problems, having dramatic differences in their results with
respect to the rest of the dimensions considered.

This situation is clarified in Fig. 3, which presents the mean values of the
index computed for each dimension

P̄m (Ai) =
1
P

P∑
p=1

Pp,m (Ai) . (17)

In this case MARTEDA is shown to clearly outperform the rest in more than
three dimensions. Still, another important conclusion can be extracted. For more
than three objectives, the MOEDAs that attempt to tackle the model-building
issue (MONEDA and MARTEDA) and that also exploit indicator-based selec-
tion have outperformed the rest of the methods. This is very important, as it
transcends the particular results of a given algorithm but instead casts some
light on what should be the proper trend of development in this field.

Finally, the above experiments lead us to hypothesize that thanks to the treat-
ment of the outliers in the model-building data-set, the MARTEDA approach
manages to overcome the difficulties that hampers the rest of the methods. An-
other important result is that MARTEDA was able to yield good results across a
varied set of problems without tuning its parameters in every case. This implies
that MARTEDA has a certain degree of robustness regarding its parameters.

Multi-Objective Optimization with an ART-Based EDA 469

6 Final Remarks

In this paper we have explored the model-building issue of MOEDAs and the
requirements it imposes on its supporting learning paradigm. We put forward
adaptive resonance theory as a alternative learning paradigm. Based on it, we in-
troduced a novel algorithm called multi-objective ART-based EDA (MARTEDA)
that uses a Gaussian ART neural network for model-building and the hyper
volume-based selection described for the HypE algorithm. We showed that by us-
ing this novel model-building approach and an indicator-based population rank-
ing the algorithm is able to outperform similar MOEDAs and MOEAs.

Still, the main conclusion of this work is that we provide strong evidences
that further research must be dedicated to the model-building issue in order to
make current MOEDAs capable of dealing with complex multi-objective prob-
lems with many objectives. In spite of the fact that obviously further studies are
necessary, these extensive experiments have provided solid ground for the use of
MARTEDA in a real-world application context.

Acknowledgements

This work was supported by projects CICYT TIN2008-06742-C02-02/TSI, CI-
CYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and
DPS2008-07029-C02-02.

References

1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. In: Genetic and Evolutionary Computation,
2nd edn. Springer, New York (2007)

2. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Op-
erations Research & Management Science, vol. 12. Kluwer, Norwell (1999)

3. Pareto, V.: Cours D’Économie Politique. F. Rouge, Lausanne (1896)
4. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflict-

ing objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784
(2007)

5. Stewart, T., Bandte, O., Braun, H., Chakraborti, N., Ehrgott, M., Göbelt, M., Jin,
Y., Nakayama, H., Poles, S., Di Stefano, D.: Real-world applications of multiobjec-
tive optimization. In: Branke, J., Deb, K., Miettinen, K., S�lowiński, R. (eds.) Multi-
objective Optimization. LNCS, vol. 5252, pp. 285–327. Springer, Heidelberg (2008)

6. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based
methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer,
Heidelberg (2007)

7. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo
sampling. In: Beckmann, M., Künzi, H.P., Fandel, G., Trockel, W., Basile, A.,
Drexl, A., Dawid, H., Inderfurth, K., Kürsten, W., Schittko, U., Ehrgott, M., Nau-
joks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for
Sustainable Energy and Transportation Systems. LNEMS, vol. 634, pp. 313–326.
Springer, Berlin (2010)

470 L. Mart́ı et al.

8. Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization. TIK Report 286, Computer Engineering and Networks
Laboratory (TIK), ETH Zurich (2008)

9. Deb, K., Saxena, D.K.: Searching for Pareto–optimal solutions through dimension-
ality reduction for certain large–dimensional multi–objective optimization prob-
lems. In: 2006 IEEE Conference on Evolutionary Computation (CEC 2006), pp.
3352–3360. IEEE Press, Piscataway (2006)

10. Brockhoff, D., Zitzler, E.: Dimensionality reduction in multiobjective optimization:
The minimum objective subset problem. In: Waldmann, K.H., Stocker, U.M. (eds.)
Operations Research Proceedings 2006, pp. 423–429. Springer, Heidelberg (2007)

11. Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E.: On handling a large number
of objectives a posteriori and during optimization. In: Knowles, J., Corne, D.,
Deb, K. (eds.) Multi–Objective Problem Solving from Nature: From Concepts to
Applications. Natural Computing Series, pp. 377–403. Springer, Heidelberg (2008)

12. Corne, D.W.: Single objective = past, multiobjective = present,??? = future. In:
Michalewicz, Z. (ed.) 2008 IEEE Conference on Evolutionary Computation (CEC),
Part of 2008 IEEE World Congress on Computational Intelligence (WCCI 2008).
IEEE Press, Piscataway (2008)

13. Michalski, R.S.: Learnable evolution model: Evolutionary processes guided by ma-
chine learning. Machine Learning 38, 9–40 (2000)

14. Sheri, G., Corne, D.W.: The simplest evolution/learning hybrid: LEM with KNN.
In: IEEE World Congress on Computational Intelligence, pp. 3244–3251. IEEE
Press, Hong Kong (2008)

15. Sheri, G., Corne, D.W.: Learning-assisted evolutionary search for scalable function
optimization: LEM(ID3). In: IEEE World Congress on Computational Intelligence.
IEEE Press, Barcelona (2010)

16. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New
Evolutionary Computation: Advances on Estimation of Distribution Algorithms.
Springer, Heidelberg (2006)

17. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution
algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications. SCI, pp. 223–248.
Springer, Heidelberg (2006)

18. Mart́ı, L., Garćıa, J., Berlanga, A., Coello Coello, C.A., Molina, J.M.: On current
model-building methods for multi-objective estimation of distribution algorithms:
Shortcommings and directions for improvement. Technical Report GIAA2010E001,
Grupo de Inteligencia Artificial Aplicada, Universidad Carlos III de Madrid, Col-
menarejo, Spain (2010)

19. Grossberg, S.: Studies of Mind and Brain: Neural Principles of Learning, Percep-
tion, Development, Cognition, and Motor Control. Reidel, Boston (1982)

20. Sarle, W.S.: Why statisticians should not FART. Technical report, SAS Institute,
Cary, NC (1995)

21. Williamson, J.R.: Gaussian ARTMAP: A neural network for fast incremental learn-
ing of noisy multidimensional maps. Neural Networks 9, 881–897 (1996)

22. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: Moving away from error-based
learning in multi-objective estimation of distribution algorithms. In: Branke, J.,
Alba, E., Arnold, D., Bongard, J., Brabazon, A., Butz, M.V., Clune, J., Cohen,
M., Deb, K., Engelbrecht, A., Krasnogor, N., Miller, J., O’Neill, M., Sastry, K.,
Thierens, D., Vanneschi, L., van Hemert, J., Witt, C. (eds.) GECCO 2010: Pro-
ceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,
pp. 545–546. ACM Press, New York (2010)

Multi-Objective Optimization with an ART-Based EDA 471

23. Ahn, C.W., Ramakrishna, R.S.: Multiobjective real-coded Bayesian optimization
algorithm revisited: Diversity preservation. In: GECCO 2007: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, pp. 593–600.
ACM Press, New York (2007)

24. Shapiro, J.: Diversity loss in general estimation of distribution algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 92–101. Springer, Heidelberg
(2006)

25. Yuan, B., Gallagher, M.: On the importance of diversity maintenance in estimation
of distribution algorithms. In: GECCO 2005: Proceedings of the 2005 Conference
on Genetic and Evolutionary Computation, pp. 719–726. ACM Press, New York
(2005)

26. Peña, J.M., Robles, V., Larrañaga, P., Herves, V., Rosales, F., Pérez, M.S.: GA-
EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution
algorithms. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI),
vol. 3029, pp. 361–371. Springer, Heidelberg (2004)

27. Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation
for the maximum clique problem. IEEE Transactions on Evolutionary Computa-
tion 9(2), 192–200 (2005)

28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

29. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculat-
ing hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38
(2006)

30. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension–sweep al-
gorithm for the hypervolume indicator. In: 2006 IEEE Congress on Evolutionary
Computation (CEC 2006), pp. 1157–1163 (2006)

31. Beume, N., Rudolph, G.: Faster S–metric calculation by considering dominated
hypervolume as Klee’s measure problem. In: Kovalerchuk, B. (ed.) Proceedings of
the Second IASTED International Conference on Computational Intelligence, pp.
233–238. IASTED/ACTA Press (2006)

32. Beume, N.: S–metric calculation by considering dominated hypervolume as Klee’s
measure problem. Evolutionary Computation 17(4), 477–492 (2009); PMID:
19916778

33. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersec-
tions of high–dimensional geometric objects. Computational Geometry 43(6-7),
601–610 (2010)

34. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading (1994)
35. Deolalikar, V.: P �=NP. Technical report, Hewlett Packard Research Labs, Palo Alto,

CA, USA (2010)
36. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.

Annals of Mathematical Statistics 29, 610–611 (1958)
37. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test

problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2006)

472 L. Mart́ı et al.

38. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: Scalable
multiobjective optimization with a neural estimation of distribution algorithm. In:
Keizer, M., Antoniol, G., Congdon, C., Deb, K., Doerr, B., Hansen, N., Holmes,
J., Hornby, G., Howard, D., Kennedy, J., Kumar, S., Lobo, F., Miller, J., Moore,
J., Neumann, F., Pelikan, M., Pollack, J., Sastry, K., Stanley, K., Stoica, A., Talbi,
E.G., Wegener, I. (eds.) GECCO 2008: 10th Annual Conference on Genetic and
Evolutionary Computation, pp. 689–696. ACM Press, New York (2008); EMO
Track “Best Paper” Nominee

39. Bosman, P.A.N., Thierens, D.: The naive MIDEA: A baseline multi–objective EA.
In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 428–442. Springer, Heidelberg (2005)

40. Ahn, C.W.: Advances in Evolutionary Algorithms. In: Theory, Design and Practice.
Springer, Heidelberg (2006) ISBN 3-540-31758-9

41. Beume, N., Naujoks, B., Emmerich, M.: SMS–EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Re-
search 181(3), 1653–1669 (2007)

42. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich (2006)

43. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data
Analysis. Wadsworth, Belmont (1983)

44. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Annals of Mathematical Statistics 18, 50–60
(1947)

45. Bader, J.: Hypervolume-Based Search for Multiobjective Optimization: Theory and
Methods. PhD thesis, ETH Zurich, Switzerland (2010)

Multi-Objective Differential Evolution with

Adaptive Control of Parameters and Operators

Ke Li1, Álvaro Fialho2, and Sam Kwong1

1 Department of Computer Science, City University of Hong Kong, Hong Kong
jerryli3@student.cityu.edu.hk, cssamk@cityu.edu.hk

2 LIX, École Polytechnique, Palaiseau, France
fialho@lix.polytechnique.fr

Abstract. Differential Evolution (DE) is a simple yet powerful evolu-
tionary algorithm, whose performance highly depends on the setting of
some parameters. In this paper, we propose an adaptive DE algorithm
for multi-objective optimization problems. Firstly, a novel tree neighbor-
hood density estimator is proposed to enforce a higher spread between
the non-dominated solutions, while the Pareto dominance strength is
used to promote a higher convergence to the Pareto front. These two
metrics are then used by an original replacement mechanism based on
a three-step comparison procedure; and also to port two existing adap-
tive mechanisms to the multi-objective domain, one being used for the
autonomous selection of the operators, and the other for the adaptive
control of DE parameters CR and F. Experimental results confirm the
superior performance of the proposed algorithm, referred to as Adap-
MODE, when compared to two state-of-the-art baseline approaches, and
to its static and partially-adaptive variants.

Keywords: Multi-Objective Optimization, Differential Evolution, Tree
Neighborhood Density, Parameter Control, Adaptive Operator Selection.

1 Introduction

Differential Evolution, proposed by Storn and Price [15], is a popular and effi-
cient population-based, direct heuristic for solving global optimization problems
in continuous search spaces. The main benefits brought by DE are its simple
structure, ease of use, fast convergence speed and robustness, which enables it
to be widely applied to many real-world applications. For the generation of new
solutions (trial vectors), each individual (target vector) is combined with others
by means of different forms of weighted sums (mutation strategies). Originally, in
case the newly generated solution has a better fitness value than its correspond-
ing parent, it replaces its parent in the population for the next generation. The
aim of these iterations is basically to find a proper direction for the search pro-
cess towards the optimum, by following the quality distribution of the solutions
in the current population.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 473–487, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

474 K. Li, Á. Fialho, and S. Kwong

One of the possible application domains of DE are the Multi-objective Opti-
mization Problems (MOPs), which exist everywhere in real-world applications,
such as engineering, financial, and scientific computing. The main difficulty in
these cases lies in providing a way to compare the different solutions, as the
involved multiple criteria might compete with one another, besides possibly not
being directly comparable. Multi-Objective Evolutionary Algorithms (MOEAs)
tackle this issue by searching for the set of optimal trade-off solutions, the so-
called Pareto optimal set: the aim is not only to approach the Pareto optimal
front as closely as possible, but also to find solutions that are distributed over
the Pareto optimal front as uniformly as possible, in order to better satisfy all
the different objectives considered. Needless to say, to be applied to MOPs, the
DE original scheme needs to be adapted according to the mentioned aims.

Many different types of DE variants proposed to tackle MOPs can be found
in the literature, such as GDE3 [12], and DEMO [17]. We refer the reader to
[2] for a recent comprehensive survey of DE, including its application to MOPs.
But the performance of DE largely depends on the definition of some parame-
ters. Besides the crossover rate CR, and the mutation scaling factor F, there is
the need of choosing which mutation strategies, from the many available ones,
should be used for the generation of new solutions, and at which rate each of the
chosen strategies should be applied. The setting of these parameters is usually a
crucial and very time-consuming task: the optimal values for them do not only
depend on the problem at hand, but also on the region of the search space that is
being explored by the current population, while solving the problem. Following
the intuition of the Exploration versus Exploitation (EvE) balance, exploration
tends to be more beneficial in the early stages of the search (consequently more
exploratory mutation strategies, high values for F and CR), while more exploita-
tion should be promoted when getting closer to the optimum (respectively, more
fine-tuning operators, and a smaller value for F).

A prominent paradigm to automate the setting of these parameters on-line,
i.e., while solving the problem, is the so-called Adaptive parameter control. It
constantly adapts the values of the parameters based on feedbacks received from
the search process. Some algorithms have been recently proposed for the on-line
adaptation of CR and F, and for the autonomous control of which of the strate-
gies should be applied at each instant of the search, the latter being commonly
referred to as Adaptive Operator Selection (AOS). Some DE algorithms using
adaptive methods can be found in the literature, such as SaDE [16], JADE [21],
jDE [1] and ISADE [11]. Regarding DE for MOPs, there also exists some pi-
oneering works, such as JADE2 [20] and OW-MOSaDE [10]. However, to the
best of our knowledge, the employment of both adaptive parameter control of
CR and F, and adaptive operator (mutation strategy) selection, is still relatively
scarce in the domain of MOPs.

In this work, we employ an adaptive parameter control of CR and F slightly
different from the one employed by the JADE method [21], which adapts their
values based on the recent success rate of the search process; and an AOS mech-
anism inspired from the PM-AdapSS-DE method [9], which uses the Probability

Multi-Objective DE with Adaptive Control of Parameters and Operators 475

Matching mechanism to select between the available mutation strategies, based
on the normalized relative fitness improvements brought by their recent appli-
cations. The main contribution of this work lies in the porting of these adaptive
methods to the multi-objective domain. More specifically, a novel method is pro-
posed to partially evaluate the fitness of the solutions, referred to as Tree Neigh-
borhood Density (TND) estimator. The aggregation of the TND with the Pareto
Dominance Strength (brought from the SPEA2 [23] method) is the information
used by the AOS mechanism to keep its operator preferences up-to-date, and by a
novel replacement mechanism based on a three-step comparison scheme. Lastly,
the output of this replacement mechanism defines the success rates used for the
adaptive parameter control of CR and F. The resulting algorithm, referred to as
Adaptive Multi-Objective DE (Adap-MODE), is assessed in the light of a set of
multi-objective benchmark functions, and shows to achieve significantly better
results than other state-of-the-art approaches (NSGA-II [4] and GDE3 [12]) and
than its static and partially-adaptive variants in most of the cases.

The remainder of this paper is organized as follows. Firstly, the background
and some related work are briefly reviewed in Section 2. Then, our proposed
algorithm is described in detail in Section 3. After that, some experimental
results are analyzed in Section 4. Finally, Section 5 concludes this paper and
gives possible directions for further work.

2 Related Work

The performance of an Evolutionary Algorithm (EA) strongly depends on the
setting of some of its parameters. Section 2.1 will briefly overview the different
ways of doing parameter setting in EAs, focusing on the kind of approach used
in this work, referred to as Adaptive Parameter Control. Then, Section 2.2 will
survey more specifically the Adaptive Operator Selection (AOS) paradigm.

2.1 Parameter Setting in Evolutionary Algorithms

There are different ways of doing parameter setting in EAs, as acknowledged by
the well-known taxonomy proposed by Eiben et al. in [6]. In the higher level,
there is the separation between Parameter Tuning and Parameter Control meth-
ods. Parameter Tuning methods set the parameters off-line, based on statistics
over several runs; besides being computationally expensive, it provides a single
parameter setting, that remains static during all the run. Parameter Control
methods continuously adapt the parameters on-line, i.e., while solving the prob-
lem; these methods are further sub-divided into three branches, as follows.

The Deterministic methods adapt the parameter values according to pre-
defined (deterministic) rules; but the definition of these rules already defines
a complex optimization problem per se, besides hardly adapting to different
problems. The Self-Adaptive methods adapt the parameter values for free, by
encoding them within the candidate solution and letting the evolution take care
of their control; in this case, however, the search space of the parameter values

476 K. Li, Á. Fialho, and S. Kwong

is aggregated to that of the problem, what might significantly increase the over-
all complexity of the search process. Lastly, the Adaptive methods control the
parameter values based on feedback received from the previous search steps of
the current optimization process.

In this work, we use an adaptive method very similar to the one proposed
in the JADE algorithm [21], which controls the values of DE crossover rate CR
and mutation scaling factor F based on the recent success rate (more details in
Section 3.4). Another example of adaptive method proposed for the same aim is
the SaDE [16] algorithm. Furthermore, another kind of adaptive method is also
used in our algorithm, the AOS, surveyed in the following.

2.2 Adaptive Operator Selection

A recent paradigm, referred to as Adaptive Operator Selection (AOS), proposes
the autonomous control of which operator (or mutation strategy in the case of
DE) should be applied at each instant of the search, while solving the problem,
based on their recent performance. A general AOS method usually consists of two
components: the Credit Assignment scheme defines how each operator should be
rewarded based on the impacts of its recent applications on the search progress;
and the Operator Selection mechanism decides which of the available operators
should be applied next, according to their respective empirical quality estimates,
which are built and constantly updated by the rewards received. Each of these
components will now be briefly overviewed in turn.

Credit Assignment
The most common way of assessing the impact of an operator application is the
fitness improvement achieved by the offspring generated by its application, with
respect to a baseline individual. In [9], the fitness improvement with respect to
its parent is considered, while [3] use as baseline individual the best individual
of the current population.

Based on this impact assessment, different ways of assigning credit to the
operators can be found, in addition to the common average of the recent fit-
ness improvements. In [19], a statistical technique rewards the operators based
on their capability of generating outlier solutions, arguing that rare but highly
beneficial improvements might be more important than frequent small improve-
ments. Along the same line, in [8] each operator is rewarded based on the extreme
(or maximal) fitness improvement recently achieved by it. In the quest for a more
robust rewarding, in [7] a rank-based scheme is proposed. In multi-modal prob-
lems, however, the diversity is also important; in [14], both diversity variation
and fitness improvement are combined to evaluate the operator application.

Operator Selection
The Operator Selection mechanism usually keeps an empirical quality estimate
for each operator, built by the received rewards, which is used to guide its se-
lection. The most popular method for Operator Selection is referred to as Prob-
ability Matching (PM) [18]: basically, the probability of selecting each operator

Multi-Objective DE with Adaptive Control of Parameters and Operators 477

is proportional to its empirical quality estimate with respect to the others; this
is the method used in this work, more details in Section 3.3.

Other more complex Operator Selection methods worth to be mentioned are:
the Adaptive Pursuit (AP) [18], originally proposed for learning automata, em-
ploys a winner-takes-all strategy to enforce a higher exploitation of the best
operator; and the Dynamic Multi-Armed Bandit (DMAB) [8], which tackles the
Operator Selection problem as yet another level of the Exploration vs. Exploita-
tion dilemma, efficiently exploiting the current best operator, while minimally
exploring the others, inspired from the multi-armed bandit paradigm.

3 Adaptive Multi-Objective DE

The general framework of the proposed adaptive Differential Evolution (DE)
algorithm for multi-objective problems is illustrated in Fig. 1. As can be seen,
it is divided into three modules. In the middle, there is the main cycle of the
DE algorithm, represented here by only three steps for the sake of brevity: once
after every generation, the fitness (see Section 3.1) of each offspring is evaluated
by the sum of its Pareto Dominance (PD) strength and its Tree Neighborhood
Density (TND). While the PD enforces convergence towards the Pareto front,
the TND promotes diversification between the non-dominated solutions. These
two measures are separately used by the Replacement mechanism, that decides
which of the individuals should be maintained for the next generation by means
of an original three-step comparison procedure (Section 3.2).

Fig. 1. The framework of the proposed adaptive Differential Evolution algorithm

Two adaptive mechanisms are employed in parallel. On the right side, there is
the AOS module, inspired from the PM-AdapSS-DE algorithm [9]. And on the
left side, there is the Adaptive Parameter Control module slightly modified from
the JADE algorithm [21]. Both adaptive mechanisms are described, respectively,
in Sections 3.3 and 3.4. Although these are adaptive mechanisms brought from
the literature, it is worth noting that in this work they are originally ported to
the multi-objective domain, by receiving inputs based on the special aggregation
between the PD and the novel TND measures.

478 K. Li, Á. Fialho, and S. Kwong

3.1 Fitness Evaluation

In multi-objective optimization, the aims of the search can be said to be two-
fold. On the one hand, the solutions found should approach as much as possible
to the Pareto front. On the other hand, the non-dominated solutions should
be distributed over the Pareto front as uniformly as possible, in order to have
satisfiable solutions for all the different objectives. In this work, we use the Pareto
Dominance (PD) strength proposed in the SPEA2 algorithm [23] to enforce the
first issue (convergence). For the second issue, we propose a novel measure to
promote spread between the non-dominated solutions, referred to as the Tree
Neighborhood Density (TND). The fitness of each individual is assessed by an
aggregation of these two criteria, as described in the following.

Pareto Dominance Strength
In order to calculate the Pareto Dominance (PD) strength, we use the mechanism
proposed in the SPEA2 algorithm [23]. The only difference is that the external
archive to store elite individuals is not implemented here. Briefly, a strength
value S(i) is assigned to each individual i in the population P , representing the
number of solutions it dominates. If solely based on this criterion, the fitness of
each individual i, referred to as PD(i) here, would be calculated as:

PD(i) =
∑

j∈P,j�i

S(j) (1)

i.e., the sum of the strengths of all the individuals that dominate individual
i. Intuitively, the smaller the better, with PD(i) = 0 corresponding to a non-
dominated solution; whereas a large PD(i) means that the individual i is dom-
inated by many others.

Tree Neighborhood Density
As previously mentioned, the Tree Neighborhood Density (TND) is a novel esti-
mation proposed to enforce a higher level of spread between the non-dominated
solutions. For the sake of a clearer discussion, some definitions and terminologies
are firstly given as follows.

Definition 1 (Tree crowding density). Let T be a minimum spanning tree
connecting all the individuals of population P . For any individual i in P , let di

be the degree of i in T , i.e., the number of edges of T connected to i; and let
these edges be {li,1, li,2, . . . , li,di}. The tree crowding density of i is estimated as:

Tcrowd(i) =
di∑

j=1

li,j/di (2)

Definition 2 (Tree neighborhood). Let ri = max{li,1, li,2, . . . , li,di}. A circle
centered in individual i, with radius ri, is defined as the tree neighborhood of i.

Multi-Objective DE with Adaptive Control of Parameters and Operators 479

Definition 3 (Membership of individual on the tree neighborhood).
Let the Euclidean distance between individuals i and j be denoted as disti,j. The
individual j is considered as a member of the tree neighborhood of i if and only
if disti,j ≤ ri (denoted as i �T j).

Based on these definitions, the calculation procedure for the Tree Neighbor-
hood Density (TND) is implemented as follows:
1. The Euclidean distance between each individual of the population P with

the other NP − 1 individuals is calculated;
2. A minimal spanning tree T connecting all individuals is generated;
3. The tree crowding density for each individual i in T is assessed, and the

corresponding tree neighborhood is generated;
4. For each individual i, the degrees of the individuals pertaining to its tree

neighborhood are summed:

sumdegrees(i) =
∑
j∈U

dj , where U = {j|j ∈ P, i �T j} (3)

5. Then, the Tree Neighborhood Density of individual i is calculated as:

TND(i) =

∑
j∈U (1/T crowdj)
sumdegrees(i)

(4)

6. Finally, the TND values of all individuals are normalized:

nTND(i) =
TND(i) − TNDmin

TNDmax − TNDmin
. (5)

where nTND(i) is the normalized TND of individual i, and TNDmax and
TNDmin indicate, respectively, the maximum and minimum TND in the
current population.

In the same way as for the PD measure, the smaller TND the better. The
underlying motivation for its proposal can be explained as follows. The whole
set of solutions in the population can be regarded as a connected graph, with the
Euclidean minimum spanning tree of this graph being an optimized structure
that reflects the distribution of the solutions of the current population in the
search space. Then, for a given individual, the corresponding neighborhood can
be defined by the other individuals connected to it, and finally, the crowdedness
of this neighborhood can be said to represent its density.

Aggregated Fitness Evaluation
Based on the aforementioned discussion, the fitness value (to be minimized) of
each individual i is calculated as the sum of both criteria:

f(i) = PD(i) + nTND(i) (6)

It is worth noting that only the TND measure is normalized between 0 and 1.
Hence, evolution proceeds by firstly minimizing PD, i.e., approaching the Pareto
front; and then, as soon as some non-dominated solutions (i.e., with PD = 0)
are found, nTND becomes significant in the fitness evaluation, and a higher
spread between the non-dominated solutions is promoted.

480 K. Li, Á. Fialho, and S. Kwong

3.2 Replacement Mechanism

At each generation, each of the NP parental solutions is used to generate other
NP offspring solutions. In the original DE algorithm, the offspring replaces its
parent in the next generation if it has a better fitness value. In the case of multi-
objective optimization, a different replacement mechanism is needed in order to
incorporate the already mentioned properties of this kind of problem. To this
aim, a three-step comparison method is proposed in this work, as follows.

Starting from the mixed population of size 2×NP , containing the NP parental
and the NP offspring individuals, firstly, the Pareto dominance relationship is
considered: each pair (parent, offspring) is compared at a time, and the domi-
nated one is immediately rejected.

In case the mixed population is still bigger than NP , the replacement mech-
anism proceeds to the second step, which uses the non-dominated sorting method
proposed in the NSGA-II algorithm [4]. Briefly, at each round, the non-dominated
individuals of the mixed population are chosen to survive to the next generation,
and are removed from the mixed population. This is done iteratively up to the
completion of the population for the next generation (i.e., NP chosen individuals
after the first and second steps), or until there are no less than NP individuals
with assigned rank values in the population.

If there are still individuals to be filtered for the next generation, the third
step finally considers the TND values. At each iteration, the individual that has
the lowest TND (i.e., the most crowded individual) is maintained, until the exact
number of individuals for the completion of the new population is achieved.

3.3 Adaptive Operator Selection

As surveyed in Section 2.2, to implement the AOS paradigm, there is the need
of defining two elements, the Credit Assignment and the Operator Selection
mechanisms. The approaches used in this work will be now detailed in turn.

Credit Assignment: Normalized Relative Fitness Improvement
The Credit Assignment scheme is inspired from the one used in the PM-AdapSS-
DE algorithm [9]; the differences are the use of a different and normalized calcu-
lation of the relative fitness improvements (which showed to perform better after
some preliminary experiments) and in the already described fitness evaluation,
specially designed for multi-objective optimization.

The impact of each operator application i is evaluated as the normalized
relative fitness improvement ηi achieved by it, measured as:

ηi =
|pfi − cfi|

|fbest − fworst| (7)

where fbest (respectively fworst) is the fitness value of the best (respectively the
worst) solution in the current population; pfi and cfi are the fitness values of
the (parent) target vector and its offspring, respectively. As in [9], in case no
improvement is achieved i.e., pfi − cfi ≥ 0, ηi is set to zero.

Multi-Objective DE with Adaptive Control of Parameters and Operators 481

All the normalized relative fitness improvements achieved by the application of
operator (mutation strategy in this case) a ∈ {1, . . . , K} during each generation
g are stored in a specific set Ra. Following [9], at the end of each generation g, a
unique credit (or reward) is assigned to each operator, calculated as the average
of all the normalized relative fitness improvements achieved by it:

ra(g) =
|Ra|∑
i=1

Ra(i)
|Ra| · (8)

Operator Selection: Probability Matching
The Operator Selection mechanism used is the Probability Matching (PM) [18].
Formally, let the strategy pool be denoted by S = {s1, . . . , sK} where K > 1. The
probability vector P (g) = {p1(g), . . . , pK(g)}(∀t : pmin ≤ pi(g) ≤ 1;

∑K
i=1 pi(g) =

1) represents the selection probability of each operator at generation g. At the
end of every generation, the PM technique updates the probability pa(g) of each
operator a based on the received reward ra(g), as follows. Firstly, the empirical
quality estimate qa(g) of operator a at generation g is updated as [18]:

qa(g + 1) = qa(g) + α [ra(g) − qa(g)] (9)

where α ∈ (0, 1] is the adaptation rate; the selection probability is updated as:

pa(t + 1) = pmin + (1 − K · pmin)
qa(g + 1)∑K
i=1 qi(g + 1)

. (10)

where pmin ∈ (0, 1) is the minimal selection probability value of each operator,
used to ensure that all the operators have a minimal chance of being selected.
The rationale for this minimal exploration is that the operators that are currently
performing badly might become useful at a further moment of the search [18].

3.4 Adaptive Parameter Control of CR and F

The parameter adaptation method used here is similar to that used in the JADE
algorithm [21]. Let CRa

i denote the crossover rate for the individual i using
operator a ∈ {1, . . . , K}. At each generation, CRa

i is independently generated
according to a normal distribution with mean μa

CR and standard deviation 0.1:

CRa
i = norm(μa

CR, 0.1) (11)

being regenerated whenever it exceeds 1. All successful crossover rates at gen-
eration g for operator a are stored in a specific set denoted as Sa

CR. The mean
μa

CR is initialized to a user defined value and updated after each generation as:

μa
CR = (1 − c) · μa

CR + c · mean(Sa
CR) (12)

where c is a constant and mean(Sa
CR) is the arithmetic mean of values in Sa

CR.
An analogous adaptation mechanism is used for the scaling factor F a

i . After
some preliminary experiments, a difference with respect to the JADE algorithm
[21] at this point is that the mean value μa

F is calculated by the root-mean-square
of the values in Sa

F , instead of Lehmer mean.

482 K. Li, Á. Fialho, and S. Kwong

4 Performance Comparison

In this section, three different empirical comparisons are presented. Firstly, the
proposed Adap-MODE is compared with two state-of-the-art MOEAs, namely,
NSGA-II [4] and GDE3 [12]. Then, in order to assess the benefits brought by
the combined use of both adaptive parameter control modules, Adap-MODE is
compared with four static variants, each using one of the four mutation strate-
gies and a fixed values for control parameters (CR = 0.5, F = 1.0). Lastly, we
compare Adap-MODE with its “partially-adaptive” variants, namely, the same
MODE but using only AOS (and CR = 0.5, F = 1.0), and the same MODE
but using only the adaptive parameter control of CR and F (and the mutation
strategies being uniformly selected). This latter is done in order to evaluate the
gain achieved by the combination of both modules, compared with each of the
modules being independently applied.

4.1 Experimental Settings

For the sake of a fair empirical comparison, the parameters of the two state-of-
the-art MOEAs are set as in the respective original papers. For the NSGA-II
[4], ηc = ηm = 20, pc = 0.9, pm = 1/D, with D representing the dimension of
the problem; and for GDE3 [12], CR = 0.5, F = 1.0. For the parameters of the
proposed Adap-MODE method, the PM adaptation rate is set to α = 0.3 and
minimal probability pmin = 0.05, as in [9]; and the parameter c for the adaptive
parameter control of CR and F is set to 0.1, as in [21], with CR and F being
both initialized to 0.2. Lastly, the DE population size is set to 100.

In this work, the AOS mechanism implemented in Adap-MODE is used to
select between the following four DE mutation strategies: (1) DE/rand/1/bin, (2)
DE/current-to-rand/1/bin, (3) DE/rand/2/bin, and (4) DE/rand-to-best/2/bin.
These are the same strategies used in some previous works [16,9]; no theoretical
or empirical analysis was preliminary performed for their choice. It is worth
highlighting that the AOS scheme is generic: any other set of mutation strategies
could be considered here.

In order to compare the performance of the proposed and baseline approaches,
ZDT [22] and DTLZ [5] test suites are considered as benchmark functions. The
maximum number of generations is set to 300 for ZDT, and to 500 for DTLZ.

Two assessment metrics are used to quantitatively evaluate the performance
of each algorithm at the end of each run, averaged over 50 runs. The Uniform
Assessment (UA) metric [13] is used to evaluate the spread of the solutions,
while the Hyper-Volume (HV) [24] is a comprehensive performance indicator.
Generally, for the values of both UA and HV, the larger the better.

4.2 Experimental Results

The comparative results, for each of the are presented in Tables 1 to 3. Follow-
ing the central limit theorem, we assume that the sample means are normally
distributed; therefore, the paired t-test statistical test at 95% confidence level

Multi-Objective DE with Adaptive Control of Parameters and Operators 483

Table 1. Comparative results of NSGA-II, GDE3 and Adap-MODE

NSGA-II GDE3 Adap-MODE S

ZDT1
UA 4.433e-1/3.56e-2 2.359e-1/4.42e-2 8.080e-1/1.62e-2 †
HV 3.65960/3.00e-4 3.65990/3.55e-4 3.66193/3.15e-5 †

ZDT2
UA 4.391e-1/4.68e-2 2.551e-1/4.98e-2 8.069e-1/1.89e-2 †
HV 3.32618/3.21e-4 3.32673/3.06e-4 3.32853/4.19e-5 †

ZDT3
UA 4.252e-1/4.49e-2 2.069e-1/4.17e-2 7.660e-1/1.98e-2 †
HV 4.80650/5.13e-2 4.81433/1.95e-4 4.81463/4.81e-4 †

ZDT4
UA 4.173e-1/4.69e-2 2.403e-1/4.64e-2 8.055e-1/1.85e-2 †
HV 3.65413/4.04e-3 3.63033/1.84e-1 3.66201/5.33e-4 †

ZDT6
UA 4.529e-1/4.86e-2 2.226e-1/4.67e-2 7.896e-1/2.27e-2 †
HV 3.03090/1.51e-3 3.04029/2.67e-4 3.04183/1.62e-5 †

DTLZ1
UA 3.742e-1/4.44e-2 5.256e-1/3.58e-2 8.246e-1/1.48e-2 †
HV 0.967445/1.95e-3 0.965469/9.45e-4 0.973582/2.75e-4 †

DTLZ2
UA 3.688e-1/3.78e-2 4.868e-1/3.30e-2 8.236e-1/1.84e-2 †
HV 7.33017/2.70e-2 7.31392/9.05e-3 7.40523/1.14e-2 †

DTLZ3
UA 3.353e-1/7.92e-2 4.857e-1/4.09e-2 8.304e-1/1.72e-2 †
HV 6.41853/1.80e+0 5.85267/2.37e+0 7.32465/5.76e-1 †

DTLZ4
UA 4.404e-1/9.19e-2 2.532e-1/3.91e-2 2.654e-1/2.99e-2 ‡
HV 6.90792/7.55e-1 5.46000/1.10e+0 7.02943/5.46e-1 †

DTLZ5
UA 3.930e-1/4.63e-2 4.379e-1/3.85e-2 7.866e-1/1.82e-2 †
HV 6.10048/1.42e-3 6.08543/1.83e-3 6.10548/4.40e-3

DTLZ6
UA 2.939e-1/5.19e-2 2.652e-1/4.33e-2 7.759e-1/2.18e-2 †
HV 5.86932/7.09e-2 6.10187/2.12e-3 6.10732/4.88e-3 †

DTLZ7
UA 4.102e-1/3.96e-2 4.491e-1/3.70e-2 7.723e-1/1.86e-2 †
HV 13.15151/8.55e-2 13.19772/9.29e-2 13.46486/7.43e-2 †

is adopted to compare the significance between two competing algorithms, with
the † indicating that Adap-MODE is significantly better than all its competitors
in the corresponding Table, and ‡ representing that the best competitor signifi-
cantly outperforms Adap-MODE. Moreover, the best results for each metric on
each problem function are highlighted in boldface.

Starting with the comparison between Adap-MODE and the two state-of-the-
art MOEAs, namely NSGA-II and GDE3, the results are presented in Table 1.
These results clearly show that Adap-MODE is the best choice when compared
to its competitors: it achieves the best results in 23 out of the 24 performance
metrics, performing significantly better in 22 of them. The only exception is
for the UA metric in the DTLZ4 problem, in which NSGA-II wins. It is worth
noting that Adap-MODE performs around two times better than its competitors
w.r.t. the uniformity metric UA in most of the functions, what might be largely
attributed to the use of the proposed tree neighborhood density estimator by
the fitness assignment.

Table 2 compares the performance of Adap-MODE with four static variants of
it, each using one of the four available mutation strategies, without any adaptive
parameter control. From these results, it becomes clear that there is no single

484 K. Li, Á. Fialho, and S. Kwong

Table 2. Comparative results of Adap-MODE and its pure versions, following the
same order of the problems as in Table 1

Str.1 Str.2 Str.3 Str.4 Adap-MODE S

UA 7.9e-1/1.9e-2 7.9e-1/1.9e-2 7.4e-1/2.6e-2 4.1e-1/5.2e-2 8.1e-1/1.6e-2 †
HV 3.662/3.4e-5 3.662/3.4e-5 3.656/2.2e-3 1.902/3.9e-1 3.662/3.1e-5

UA 7.9e-1/1.5e-2 8.0e-1/1.9e-2 7.2e-1/2.7e-2 3.6e-1/6.3e-2 8.1e-1/1.9e-2
HV 3.328/3.4e-5 3.328/3.9e-5 3.319/4.6e-3 1.905/2.4e-1 3.328/4.2e-5 ‡
UA 7.7e-1/2.1e-2 7.5e-1/2.7e-2 5.1e-1/8.0e-2 3.4e-1/2.7e-2 7.6e-1/1.9e-2
HV 4.815/6.4e-5 4.814/1.6e-3 4.775/1.3e-2 1.781/3.4e-1 4.814/4.8e-4 ‡
UA 8.1e-1/1.7e-2 8.0e-1/1.6e-2 8.0e-1/1.9e-2 3.3e-1/3.9e-2 8.0e-1/1.8e-2
HV 3.636/1.0e-1 3.662/3.8e-5 3.649/8.6e-2 0.0/0.0 3.662/5.3e-4

UA 7.9e-1/1.9e-2 8.1e-1/2.0e-2 8.2e-1/1.9e-2 7.6e-1/4.6e-2 7.9e-1/2.2e-2 ‡
HV 3.042/1.7e-5 3.042/2.4e-5 3.042/1.5e-5 3.041/3.1e-3 3.042/1.6e-5

UA 8.3e-1/2.1e-2 8.2e-1/1.7e-2 8.2e-1/1.5e-2 4.7e-1/4.3e-2 8.2e-1/1.5e-2
HV 0.97/1.0e-3 0.97/5.6e-4 0.969/7.1e-4 0.0/0.0 0.973/2.7e-4 †
UA 8.1e-1/1.8e-2 8.0e-1/2.0e-2 8.0e-1/1.9e-2 7.9e-1/2.5e-2 8.2e-1/1.8e-2
HV 7.348/1.4e-2 7.337/1.4e-2 7.335/7.8e-3 7.303/8.8e-3 7.405/1.1e-2 †
UA 8.0e-1/1.8e-2 3.5e-1/3.9e-2 3.4e-1/3.2e-2 4.0e-1/3.9e-2 8.3e-1/1.7e-2 †
HV 6.538/2.0 0.0/0.0 0.0/0.0 0.0/0.0 7.324/5.7e-1 †
UA 2.5e-1/3.8e-2 2.4e-1/3.3e-2 2.5e-1/3.0e-2 2.3e-1/3.0e-2 2.6e-1/2.9e-2 †
HV 5.58/1.1 6.639/4.8e-1 6.359/7.7e-1 5.971/1.1 7.029/5.4e-1 †
UA 7.4e-1/2.2e-2 7.2e-1/2.3e-2 7.2e-1/2.1e-2 7.3e-1/2.8e-2 7.8e-1/1.8e-2 †
HV 6.073/3.4e-3 6.067/3.4e-3 6.065/3.9e-3 6.052/5.3e-3 6.105/4.4e-3 †
UA 7.9e-1/2.0e-2 7.9e-1/2.1e-2 7.9e-1/1.7e-2 7.6e-1/2.5e-2 7.7e-1/2.2e-2 ‡
HV 6.107/4.4e-3 6.106/4.2e-3 6.108/5.4e-3 5.764/1.0 6.107/4.9e-3

UA 7.6e-1/1.8e-2 7.7e-1/1.6e-2 7.4e-1/2.2e-2 5.1e-1/1.3e-1 7.7e-1/1.8e-2
HV 13.412/5.6e-2 13.427/4.8e-2 13.346/7.3e-2 7.735/3.7 13.46/7.4e-2 †

mutation strategy that is the best over all the functions. For example, for the
ZDT2 function, strategy 2 is the best in terms of HV, while strategy 1 is the
winner for ZDT3. It is also worth noting that strategy 4 performs worst, while
strategies 1 and 3 are the most competitive ones. This kind of situation motivates
the use of the AOS paradigm. And indeed, Adap-MODE remains the best option
in most of the functions, while achieving very similar performance in others.

The last comparative results, shown in Table 3, presents the performance of
Adap-MODE compared with its “partially”-adaptive variants, one using only
the AOS, and the other using only the adaptive parameter control of CR and
F. From these results, it is not clear which of the adaptive modules is the most
beneficial for the performance of Adap-MODE: at some functions, the “AOS
only” method is better than the “parameter control only” one, while in others
the opposite occurs. But these results clearly demonstrate that the combined
use of both adaptive modules is better than their sole use, what is shown by the
fact that Adap-MODE significantly outperforms them in most of functions, in
terms of both UA and HV.

Multi-Objective DE with Adaptive Control of Parameters and Operators 485

Table 3. Comparative results of Adap-MODE, Adap-MODE with AOS only and
Adap-MODE with parameter control only

CR/F(fixed)+AOS CR/F(adapt.)+Unif.OS Adap-MODE S

ZDT1
UA 7.860e-1/2.08e-2 7.851e-1/2.42e-2 8.080e-1/1.62e-2 †
HV 3.66162/2.97e-4 3.66066/2.69e-4 3.66193/3.15e-5 †

ZDT2
UA 7.809e-1/2.02e-2 7.793e-1/1.71e-2 8.069e-1/1.89e-2 †
HV 3.32840/3.13e-4 3.32612/5.27e-4 3.32853/4.19e-5 †

ZDT3
UA 7.538e-1/2.83e-2 7.487e-1/1.52e-2 7.660e-1/1.98e-2 †
HV 4.81448/1.18e-3 4.81228/1.18e-3 4.81463/4.81e-4

ZDT4
UA 8.127e-1/2.30e-2 7.486e-1/6.12e-2 8.055e-1/1.85e-2
HV 3.64150/1.43e-1 3.65409/4.26e-2 3.66201/5.33e-4 †

ZDT6
UA 7.626e-1/2.34e-2 8.078e-1/2.34e-2 7.896e-1/2.27e-2 ‡
HV 3.04179/3.22e-5 3.04183/4.93e-5 3.04183/1.62e-5

DTLZ1
UA 8.247e-1/1.80e-2 8.200e-1/1.73e-2 8.246e-1/1.48e-2
HV 0.969925/5.41e-4 0.917842/1.25e-1 0.973582/2.75e-4 †

DTLZ2
UA 8.096e-1/2.01e-2 8.224e-1/1.56e-2 8.236e-1/1.84e-2
HV 7.33762/1.10e-2 7.40368/9.20e-3 7.40523/1.14e-2

DTLZ3
UA 6.365e-1/1.44e-1 8.289e-1/1.42e-2 8.304e-1/1.72e-2
HV 7.13704/3.70e-1 4.59535/2.92e+0 7.32465/5.76e-1 †

DTLZ4
UA 2.092e-1/3.32e-2 9.814e-2/4.33e-3 2.654e-1/2.99e-2 †
HV 6.78321/6.03e-1 4.66216/1.09e+0 7.02943/5.46e-1 †

DTLZ5
UA 7.334e-1/2.26e-2 7.792e-1/1.95e-2 7.866e-1/1.82e-2 †
HV 6.07005/3.69e-3 6.10649/3.78e-3 6.10548/4.40e-3

DTLZ6
UA 7.739e-1/2.32e-2 7.876e-1/2.00e-2 7.759e-1/2.18e-2 ‡
HV 6.10841/5.67e-3 6.10640/4.14e-3 6.10732/4.88e-3

DTLZ7
UA 7.621e-1/1.83e-2 7.634e-1/1.70e-2 7.723e-1/1.86e-2 †
HV 13.42436/6.19e-2 13.43145/7.25e-2 13.46486/7.43e-2 †

5 Conclusion

In this paper, we propose a new DE algorithm for multi-objective optimization
that uses two adaptive mechanisms in parallel: the Adaptive Operator Selection
mechanism, to control which operator should be applied at each instant of the
search; and the Adaptive Parameter Control, that adapts the values of the DE
parameters CR and F while solving the problem. A tree neighborhood density
estimator is proposed and, combined with the Pareto dominance strength mea-
sure, is used in order to evaluate the fitness of each individual. Additionally,
a novel replacement mechanism is proposed, based on a three-step comparison
procedure. As a consequence, the adaptive methods employed by the proposed
algorithm, inspired from recent literature, are originally ported to the multi-
objective domain.

Numerical experiments demonstrate that the proposed Adap-MODE is capa-
ble of efficiently adapting to the characteristics of the region that is currently
being explored by the algorithm, by efficiently selecting appropriate operators
and their corresponding parameters. Adap-MODE is shown to outperform two
state-of-the-art MOEAs, namely NSGA-II [4] and GDE3 [12], in most of the

486 K. Li, Á. Fialho, and S. Kwong

functions. It also performs significantly better, in most of the functions, than
the same MODE with static parameters, and than the partially-adaptive vari-
ants using each of the two adaptive modules.

But there is still a lot of space for improvements. Firstly, for the fitness eval-
uation, more sophisticated schemes to control the balance between both conver-
gence and spread could be analyzed. Regarding the AOS implementation, other
schemes have already shown to perform better than PM in the literature and
should also be analyzed in the near future, such as the Adaptive Pursuit [18]
and the Dynamic Multi-Armed Bandit [8]; a more recent work, that also use
bandits, reward the operators based on ranks [7], thus achieving a much higher
robustness w.r.t. different benchmarking situations. In the same way, there are
different alternatives for the adaptive parameter control of CR and F that could
be further explored.

Another issue that deserves further exploration is related to the (hyper) pa-
rameters of the adaptive modules. In the case of Adap-MODE, the AOS requires
the definition of the adaptation rate α and the minimum probability pmin, while
the adaptive parameter control requires the setting of c. In this work, these
parameters were set as in the original references, but further analysis of their
sensitivity should be done. Ideally, Adap-MODE and the other methods used as
baseline should also be all compared again, after a proper off-line tuning phase.
Another important baseline would be the same MODE with off-line tuned CR,
F, and mutation application rates.

Lastly, the extra computational time resulting from the use of these adaptive
schemes should be further analyzed; although it is true to say that, in real-world
problems, the fitness evaluation is usually the most computationally expensive
step, all the rest becoming negligible.

Acknowledgement

This work is supported by Hong Kong RGC GRF Grant 9041353(CityU 115408).

References

1. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

2. Das, S., Suganthan, P.N.: Differential evolution – a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. (in press)

3. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proc. ICGA,
pp. 61–69 (1989)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

5. Deb, K., Thiele, L., Laummans, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., et al. (eds.) Evolutionary
Multiobjective Optimization, pp. 105–145. Springer, Heidelberg (2005)

Multi-Objective DE with Adaptive Control of Parameters and Operators 487

6. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

7. Fialho, Á., Ros, R., Schoenauer, M., Sebag, M.: Comparison-based adaptive strat-
egy selection with bandits in differential evolution. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G., et al. (eds.) PPSN XI. LNCS, vol. 6238, pp. 194–203.
Springer, Heidelberg (2010)

8. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008)

9. Gong, W., Fialho, A., Cai, Z.: Adaptive strategy selection in differential evolution.
In: Branke, J., et al. (eds.) Proc. GECCO. ACM, New York (2010)

10. Huang, V.L., Zhao, S.Z., Mallipeddi, R., Suganthan, P.N.: Multi-objective opti-
mization using self-adaptive differential evolution algorithm. In: Proc. CEC, pp.
190–194. IEEE, Los Alamitos (2009)

11. Jia, L., Gong, W., Wu, H.: An improved self-adaptive control parameter of differ-
ential evolution for global optimization. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.)
Computational Intelligence and Intelligent Systems. CCIS, vol. 51, pp. 215–224.
Springer, Heidelberg (2009)

12. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differ-
ential evolution. In: Proc. CEC, pp. 443–450. IEEE, Los Alamitos (2005)

13. Li, M., Zheng, J., Xiao, G.: Uniformity assessment for evolutionary multi-objective
optimization. In: Proc. CEC, pp. 625–632. IEEE, Los Alamitos (2008)

14. Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for
evolutionary algorithms. J. Heuristics (2010)

15. Price, K.V.: An introduction to differential evolution. In: Corne, D., et al. (eds.)
New Ideas in Optimization, pp. 79–108. McGraw-Hill, New York (1999)

16. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Trans. Evol. Com-
put. 13, 398–417 (2009)

17. Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimiza-
tion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005.
LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

18. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In:
Beyer, H.-G., et al. (eds.) Proc. GECCO, pp. 1539–1546. ACM, New York (2005)

19. Whitacre, J., Pham, T., Sarker, R.: Use of statistical outlier detection method in
adaptive evolutionary algorithms. In: Proc. GECCO, pp. 1345–1352. ACM, New
York (2006)

20. Zhang, J., Sanderson, A.C.: Self-adaptive multi-objective differential evolution with
direction information provided by archived inferior solutions. In: Proc. CEC, pp.
2806–2815. IEEE, Los Alamitos (2008)

21. Zhang, J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

22. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evol. Comput. 8, 173–195 (2000)

23. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al.
(eds.) Evolutionary Methods for Design, Optimisation and Control with Applica-
tion to Industrial Problems, pp. 95–100. CIMNE (2002)

24. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271
(1999)

Distribution of Computational Effort in

Parallel MOEA/D

Juan J. Durillo1, Qingfu Zhang2, Antonio J. Nebro1, and Enrique Alba1

1 Department Lenguajes y Ciencias de la Computación, University of Málaga, Spain
{durillo,antonio,eat}@lcc.uma.es

2 The School of Computer Science and Electronic Engineering, University of Essex,
Wivenhoe Park, Colchester, CO4 3SQ, U.K.

qzhang@essex.ac.uk

Abstract. MOEA/D is a multi-objective optimization algorithm based
on decomposition, which consists in dividing a multi-objective problem
into a number of single-objective sub-problems. This work presents two
variants, called pMOEA/Dv1 and pMOEA/Dv2, of a new parallel model
of MOEA/D that have been developed under the observation that differ-
ent sub-problems may require different computational effort, and thus,
demand different number of evaluations. Our interest in this paper is
to analyze whether the proposed models are able of outperforming the
MOEA/D in terms of the quality of the computed fronts. To cope with
this issue, our proposals have been evaluated using a benchmark com-
posed of eight problems and the obtained results have been compared
against MOEA/D-DE, an extension of the original MOEA/D where new
individuals are generated by an operator taken from differential evolu-
tion. Our experiments show that some configurations of pMOEA/Dv1
and pMOEA/Dv2 have been able to compute fronts of higher quality
than MOEA/D-DE in many of the evaluated problems, giving room for
further research in this line.

1 Introduction

A multi-objective optimization problem (MOP) requires to reconcile several con-
flicting objectives. A solution is Pareto optimal if any improvement in one ob-
jective leads to deterioration in at least one other objective. The Pareto front of
a MOP is the set of all the Pareto optimal solutions in the objective space. In
many applications, a decision marker would like to have a good approximation
of the Pareto front for selecting their preferred tradeoff solutions.

Multi-objective Evolutionary Algorithms (MOEAs) aim at finding a number
of Pareto optimal solutions to approximate the Pareto front in a single run. Many
MOEAs have been developed during the last twenty years. Most of current pop-
ular MOEAs are Pareto dominance based, in which the fitness of an individual
solution is mainly determined by dominance relationships with other individuals.
Very recently, some effort has been made to develop other MOEA paradigms.
MOEA/D [8] is such an example. It decomposes a MOP into a number of sin-
gle objective optimization sub-problems. The objective of each sub-problem is

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 488–502, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Distribution of Computational Effort in Parallel MOEA/D 489

a (linear or nonlinear) weighted aggregation of all the individual objectives in
the MOP. Neighborhood relations among these sub-problems are defined based
on the distances among their aggregation weight vectors. Each sub-problem is
optimized in MOEA/D by using information mainly from its neighboring sub-
problems. The MOEA/D framework has been studied and used with success for
dealing with a number of multi-objective problems [8][5][9].

For continuous multi-objective problems, three different versions of MOEA/D
have been designed, namely, MOEA/D with SBX operator (MOEA/D-SBX),
MOEA/D with DE operators (MOEA/D-DE), and MOEA/D with Dynamic Re-
source Allocation (MOEA/D-DRA). In MOEA/D-SBX [8], SBX crossover and
polynomial mutation operators are used for generating new solutions. A solution
is allowed to mate only with its neighbors and a new solution could replace any
old solutions in its neighborhood if it is better than them. In MOEA/D-DE [5],
differential evolution operators are used for generating new solutions. To encour-
age diversity, two extra measures are used in MOEA/D-DE. One is that a new
solution is allowed to replace only a small number of old solutions, the other is
that a solution, with a very low probability, can mate with any other solution
in the population. Aiming at further improvement, MOEA/D-DRA [9] assigns
different amounts of computational effort to different sub-problems according to
their utilities, which are estimated during the search.

A parallel version of MOEA/D-DE, called pMOEA/D, has been suggested in
[7] and linear speedup has been observed when using up to 8 cores. In this work,
based on the ideas of dynamic resource allocation and pMOEA/D, we propose
two new parallel models of MOEA/D. The major purpose of our work is to study
whether or not those models outperform MOEA/D-DE on a set of benchmark
problems.

To cope with this issue, we first present a new parallel model consisting on
the use of several disjoint partitions of the population. This model is similar to
the one we previously proposed in [7] or the one proposed by Branke et al. in [1].
However, while in this last work the divisions are made in the search space, in
our proposal, as well as in [7], the search space is the same as for the original
MOP in each partition, being only modified the objectives to compute.

Although in this paper we have considered MOEA/D-DE, our approach is
easily applicable to any version of MOEA/D. Then, taken this model as starting
point we propose two different versions, called pMOEA/Dv1 and pMOEA/Dv2,
that are based on different mechanisms for distributing the computational effort
among the different partitions employed. The experiments carried out in this
work will show that it is possible to improve the results obtained by MOEA/D,
giving room to open new research lines in that direction.

The contributions of this paper are the following:
– We propose a new parallel model for MOEA/D.
– Two versions of that model, named pMOEA/Dv1 and pMOEA/Dv2, have

been developed by considering different ways of balancing the computational
effort.

– We have compared the behavior of those versions over a benchmark of bi-
objective problems belonging to the LZ09 family [5].

490 J.J. Durillo et al.

The rest of the paper is organized as follows. First, we describe MOEA/D in
the next section. The parallel model for MOEA/D is presented in Section 3. In
Section 4, we extend this model by incorporating a mechanism for balancing the
computational effort among different sub-problems. Sections 5 and 6 are devoted
to describing the experiments we have performed and to analyzing the obtained
results. Finally, the conclusions and lines of future work are presented in 7.

2 Sequential MOEA/D

Consider the following multi-objective optimization problem:

minimize F (x) = (f1(x), . . . , fm(x)) (1)
subject to x ∈ Ω

MOEA/D employs an aggregation approach to decompose (1). In principle, any
aggregation approach works. In this paper, we make use of the Tchebycheff aggre-
gation approach [6], where the scalar optimization problems (i.e., sub-problems)
are in the form

minimize gte(x|λ, z∗) = max1≤i≤m{λi|fi(x) − z∗i |} (2)
subject to x ∈ Ω

where z∗ = (z∗1 , . . . , z∗m)T is the reference point, i. e., z∗i = max{fi(x)|x ∈ Ω}.
λ = (λ1, . . . , λm) is a weight vector, i.e. λi ≥ 0 for all i = 1, . . . , m and

∑m
i=1 λi =

1. For each Pareto optimal point x∗ there exists a weight vector λ such that
x∗ is the optimal solution of (2) and each optimal solution of (2) is a Pareto
optimal solution of (1). Therefore, one is able to obtain different Pareto optimal
solutions by solving a set of single objective optimization problem defined by
the Tchebycheff approach with different weight vectors.

MOEA/D chooses a set of uniformly distributed weight vectors λ1, . . . , λN ,
and decompose (1) into N single objective optimization subproblems. The ob-
jective of the i-th subproblem is gte(x|λi, z∗).

During the search, MOEA/D maintains:

– a population of N points x1, . . . , xN ∈ Ω, where xi is the current solution
to the i-th subproblem;

– FV 1, . . . , FV N , where FV i is the F -value of xi, i.e., FV i = F (xi) for each
i = 1, . . . , N ;

– z = (z1, . . . , zm)T , where zi is the best value found so far for objective fi, z
is used to substitute z∗i in computing gte during the search.

For each i = 1, . . . , N , set B(i) = {i1, . . . , iT } where λi1 , . . . , λiT are the T closest
weight vectors to λi in terms of Euclidean distance. The neighborhood of xi is
{xk|k ∈ B(i)}.

For each i = 1, . . . , N at each generation, MOEA/D does the following:

Distribution of Computational Effort in Parallel MOEA/D 491

Step 1. Selection of Mating/Update Range: Uniformly randomly generate a
number rand from (0, 1). Then set

P =
{

B(i) if rand < δ,
{1, . . . , N} otherwise.

where 0 < δ < 1 is a prefixed control parameter.
Step 2. Reproduction: Randomly select three current solutions from {xk|k ∈

P}. Apply genetic operators on them to generate a new solution y, and
reply y if y is not feasible. Compute F (y).

Step 3. Update of z: For each j = 1, . . . , m, if zj > fj(y), then set zj = fj(y).
Step 4. Update of Solutions : Set c = 0 and then do

While {c = nr or P is empty}
1. Randomly pick an index j from P .
2. If g(y|λj , z) ≤ g(xj |λj , z), then set xj = y, FV j = F (y).
3. Remove j from P and set c = c + 1.

End of While Loop
where nr is a predetermined control parameter.

More details about this MOEA/D variant can be found in [5], a DE operator
and a polynomial mutation operator are used in Step 2 as genetic operator in [5].

3 A Parallel Model of MOEA/D

The parallel model we propose here for MOEA/D consists in defining a number
of partitions of the whole population, as in [7]. Each partition is composed by a
number of different sub-problems and is to be evolved in parallel. As we indicated
in previous section, each sub-problem is defined by a given weight vector, λ,
which has as many components as objectives in the target MOP. The closer the
vectors, the closer the solutions they define into the Pareto front. In order to
define the partitions, we sort these vectors by mean of one of their components,
and we assign the first closest (N/Number of sub-problems) weights to the first
partition, the next closest (N/Number of sub-problems) to the second partition,
and so on. The idea is that each partition computes a small region of the Pareto
front. Fig. 1 depicts an example of how this method works for three partitions.

The main difference between this approach and [7] lies in the way in which
neighborhood are defined. In the latter, they are defined taking into account
the whole population, as in the original MOEA/D algorithm. As a consequence,
neighborhoods could be defined across different partitions. In our approach, the
neighborhood of each solution is defined by considering only sub-problems that
belong to the same partition. Our motivation for doing so is that we are interested
in isolating each partition in order to better analyze its behavior.

Additionally, this model reduces the number of possible concurrent access
to the same solution in comparison with pMOEA/D. While in that algorithm
a sub-problem can be accessed by different processors (considering that every
partition is assigned by a different processor), in the model proposed here each

492 J.J. Durillo et al.

f1

f2

Partition 1 Partition 2 Partition 3

W_(1) W_(2) W_(3) W_(4) W_(5) W_(6) W_(7) W_(8) W_(9) W_(10) W_(11) W_(12)

Pareto front

W_(i) weight used for computing S_(i)

S_(1)

S_(2)

S_(3)

S_(4)

S_(5)

S_(6)

S_(7)

S_(8)

S_(9)

S_(10)

S_(11)
S_(12)

Fig. 1. Distribution of the Pareto front into different partitions. Notation: S (i) and
W (j) refer to sub-problemi and weightj , respectively.

sub-problem is accessed only by one. Thus, under the assumption of considering
an enough number of sub-problems, we can see our model as a set of independent
MOEA/D instances executing in each partition, and, hence, working each of
them in finding a part of the Pareto front. It is worth to notice that this model
can easily be implemented in a parallel system by just defining as many partitions
as available cores/processors and then assigning each of those partitions to a
different core/processor. Finally, as done in MOEA/D-DE, in a small number
of cases (10% of the total number of performed evaluations) a partition could
select a sub-problem from the whole population (i.e., from other partitions).
This mechanism allows partitions to share information, and it can be seen as a
migration of solutions.

Fig. 2 includes an example of Pareto front computed by this model when
solving the LZ09 F2 problem. In this figure, we can see different sub-fronts,
represented by a different symbols. Each of these sub-fronts has been generated
by a different partition (in this example we have made use of only four partitions).
As we see, all the partitions have succeeded in converging towards the optimal
Pareto front (authors unfamiliar with this problem, please refer to [5]).

4 Extending the Proposed Parallel Model

In the previous section, we have proposed a parallel model of MOEA/D and we
have shown that it was possible to compute an accurate Pareto front by using
it. As in the original MOEA/D algorithm, in this parallel model all the sub-
problems are considered as having the same degree of difficulty. Hence, the same

Distribution of Computational Effort in Parallel MOEA/D 493

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
LZ09_F2

MOEAD
Partition 1
Partition 2
Partition 3
Partition 4

Fig. 2. Computed front for the LZ09 F2 problem with a partitioned MOEA/D

(d)(c)

(b)(a)

Fig. 3. Landscapes of different sub-problems defined for the LZ09 F2 problem

computational effort is allocated to each of them. However, this is not a realistic
approximation. An example supporting this claim is depicted in Fig.3. This figure
shows the landscape of four different sub-problems using four different weights in
the LZ09 F2 problem. More specifically, these landscapes show the value that the
objective function associated to each sub-problem takes for every combination
of the two first decision variables defining the LZ09 F2. For simplicity, the rest
of decision variables has been fixed to the optimal value for each sub-problem.

Focusing on the analysis of the figure, we can observe that not all the land-
scapes have the same degree of difficulty. For example, the landscape represented
in (a) could be the simplest one and it could be solved in a fast manner by a
gradient-based method. As long as we move from left to right and from top to

494 J.J. Durillo et al.

bottom, it is possible to see how these landscapes presents a higher number of
peaks and local optima. This way, one may think that sub-problem (d), for ex-
ample, would require a higher computational effort than problem (a) for being
solved. As a consequence, it is reasonable to think that by balancing the compu-
tational effort among the different sub-problems it would be possible to reduce
the number of required evaluations for solving the problem. The idea is to avoid
performing more function evaluations in those sub-problems which have already
converged towards their optimal solution, and to perform a higher number of
evaluations in the rest of sub-problems, as done in MOEA/D-DRA [9]. In this
last algorithm the number of performed evaluations in each sub-problem de-
pended on how fast that sub-problem converged towards their optimal solution.
Our aim is to extend the parallel model proposed before for taking advantage of
this fact, in such a way that different computational efforts can be allocated to
different partitions depending on their behavior.

Thus, the success of our proposal lies in an accurate balance of the computa-
tional effort; however, this information is not known beforehand. Our approach
has consisted in determining in running time which partition is performing bet-
ter or worse than others, and to adapt dynamically the evaluations performed
in each partition. In order to accomplish this idea, we need:

– A way of measuring the advance of each partition with respect to the others,
and

– a way of dynamically assigning different computational efforts to different
partitions.

Regarding to the first point, we have considered in this work an adaptation of
the method used in MOEA/D-DRA, where the authors define a way of quanti-
fying the utility of each point based on the differences in the fitness in different
iterations (Equation 3). In this work, we have adapted it for measuring the util-
ity of one partition instead of a single point. Specifically, we have considered
that the utility of a partition in a given iteration, t, is given by the mean of the
utility of the points included into that partition.

utility(t) =
{

1 ifΔ(t − 1) ≤ 0.001;
(0.95 + 0.05 ∗ Δ(t−1)

0.001 ∗ utility(t− 1)) otherwise

Δ(t) =
g(x(t−1)|λ, z∗) − g(x(t)|λ, z∗)

g(x(t−1)|λ, z∗)
(3)

where x(t) refers to decision variables at iteration t.
For dealing with the second issue we have considered two different alternatives:

1. to dynamically change the number of evaluations performed in each parti-
tion, and

2. to dynamically change the size of some partitions.

These alternatives give rise to two different versions of our parallel model,
namely pMOEA/Dv1 and pMOEA/Dv2 respectively.

Distribution of Computational Effort in Parallel MOEA/D 495

4.1 pMOEA/Dv1

Let us start describing the first alternative. The idea beyond this version is very
simple: based on their utility, some partitions are executed for a higher number
of evaluations than others. The procedure for doing so is defined as follows:

– Step 1. Evolve each partition by using a given number of evaluations.
– Step 2. Compute the utility of each partition.
– Step 3. Distribute the evaluations between partitions based on the utility

of each particle (the higher the utility of a given partition, the higher the
number of evaluations assigned to that partition).

– Step 4. Perform the number of evaluations assigned to each partition.
– Step 5. If the number of maximum evaluations has not been performed, go

to Step 2.

The underlaying idea of this approach consists in giving more chances to those
partitions that show a good utility. Once a partition has converged, its utility
should be close to zero (no improvements of the fitness are possible for that
partition), and, as a consequence the rest of evaluations are mainly distributed
among the rest of partitions. A drawback of this approach is that a partition
could also get stuck in a local minimum, reporting no utility. In this case, the
communication mechanism among the partitions described before is the only
way of escaping from that situation.

For implementing this approach there are two key factors which should be
taken into account:

– How many evaluations should be performed among all the partitions before
recomputing their utility, and

– how to distribute these evaluations among the partitions.

In this paper, the number of evaluations has been determined empirically af-
ter a set of preliminary experiments by using pMOEA/Dv1 with four partitions.
Considering a total number of 150,000 function evaluations, these experiments
showed that the overall best results were obtained when 30,000 function evalu-
ations were performed (steps 1 and 4) before recomputing their utility. In order
to determine how to distribute those evaluations, we have proceed as follows:

– Step 1. The utility of each partition i, ui, has been determined.
– Step 2. The total utility, utotal, has been defined as

∑N
i ui, being N the

number of partitions.
– Step 3. A probability of being selected, pi, is assigned to each partition, with

pi proportional to the contribution of ui to utotal.
– Step 4. Based on its probability a partition is selected.
– Step 5. A number of 1,000 function evaluations is allocated to the selected

partition.
– Step 6. If the total number of function of evaluations has not reached the

maximum (30,000 in our case), goto Step 4.

496 J.J. Durillo et al.

4.2 pMOEA/Dv2

The second alternative consists in dynamically changing the size of the partitions.
In particular, whenever the algorithm detects that a partition has no utility for
several consecutive iterations, the size of that partition is augmented by taking
individuals from other partitions. The way in which a partition size is increased
is depicted in Fig. 4. The procedure consists in taking those sub-problems whose
weight vectors are the closest to the weight vectors defining the sub-problems
already included in the partition.

It is worth noting that in this alternative there are two cases in which a
partition is augmented:

– When partition is stuck in a local minimum. In this case, the effect of this
mechanism is twofold:
• We increase the diversity of the stuck partition by adding new sub-

problems, thus increasing the chances of escaping from that local mini-
mum.

• We decrease the number of sub-problems of other partitions, thus letting
them (as with the first alternative) to converge faster.

– When all the solutions in this partition have converged. This way, new added
sub-problems could benefit from the already known solutions.

In this approach, there are also two key issues which should be considered in
order to implement it:

– When to consider that a partition should be augmented, and
– how many new individuals are added to that partition.

As with pMOEA/Dv1, in this paper those parameters have been fixed after
carrying out a preliminary set of experiments. In particular, these experiments
showed that the best results were obtained when a partition is increased in 20
individuals if it had no utility for five consecutive iterations.

5 Experimentation

In this section, we evaluate the two parallel versions of MOEA/D, comparing
them against the original algorithm.

For assessing the performance of algorithms we have used the following qual-
ity indicators: hypervolume (IHV) [10], and additive epsilon indicator (I1

ε+) [4].
The former indicator measures the convergence and diversity of an approxima-
tion to the Pareto front of a problem while the latter indicator only measures
convergence. In the case of the I1

ε+ indicator, the lower the value, the better the
quality of the results. Conversely, for the IHV indicator, higher values of the
indicator mean approximations to the Pareto front of better quality.

All the algorithms evaluated in this work have been implemented using jMetal
[3], a framework aimed multi-objective optimization with metaheuristics. As our
intention in this work is to evaluate the effectiveness of our models, we have
considered here a sequential implementation of pMOEA/Dv1 and pMOEA/Dv2,
simulating a concurrent behavior.

Distribution of Computational Effort in Parallel MOEA/D 497

Fig. 4. Partitions with variable size

5.1 Configuration

In this work, we have used the same parameter settings proposed in [8] for all
the evaluated algorithms:

– Population size: 300
– Stopping condition: 150,000 function evaluations
– Weight vectors: we have used the values provided in [9]
– Control parameters in DE: CR = 1.0, F = 0.5
– Polynomial mutation operators: pm = 1/n (n is the number of decision

variables), distribution index = 20
– Rest of parameters: T = 20, δ = 0.9, nr = 2

For the parallel models proposed here, we have considered a number of parti-
tions ranging between 2 and 8.

5.2 Benchmark

For evaluating our proposals, we have considered as a benchmark the bi-objective
problems belonging to the LZ09 benchmark [5]. These problems are labelled as
LZ09 F1, LZ09 F2, . . . , LZ09 F9 but LZ09 F6, which has three objectives.

6 Analysis of the Results

This section is devoted to analyzing the obtained results. For each combination
of algorithm and problem we have made 100 independent runs, and we report

498 J.J. Durillo et al.

Table 1. Median and IQR of the I1
ε+ indicator for pMOEA/Dv1 in the considered

benchmark

MOEA/D pMOEA/Dv1 (2) pMOEA/Dv1 (4) pMOEA/Dv1 (8)
Problem x̃IQR x̃IQR x̃IQR x̃IQR

LZ09 F1 4.06e − 037.0e−04 4.27e − 036.6e−04 3.98e − 036.7e−04 5.66e − 031.7e−03
LZ09 F2 1.03e − 024.0e−03 9.49e − 033.7e−03 9.48e − 035.2e−03 1.22e − 026.9e−03
LZ09 F3 1.64e − 012.1e−01 5.81e − 022.1e−01 4.83e − 022.1e−01 4.57e − 022.4e−01
LZ09 F4 5.69e − 022.3e−02 3.10e − 021.8e−02 1.97e − 021.2e−02 2.66e − 022.2e−02
LZ09 F5 7.89e − 022.4e−02 7.28e − 022.4e−02 7.37e − 023.2e−02 8.77e − 022.1e−01
LZ09 F7 3.33e − 023.4e−02 2.56e − 021.7e−02 2.86e − 029.3e−03 9.85e − 027.3e−02
LZ09 F8 1.85e − 011.0e−01 2.71e − 012.0e−01 3.54e − 011.1e−01 2.84e − 011.5e−01
LZ09 F9 1.61e − 021.6e−02 1.09e − 029.3e−03 1.30e − 025.1e−03 1.80e − 028.3e−03

Table 2. Statistical comparison between each configuration of pMOEA/Dv1 for the
I1

ε+ indicator

pMOEA/Dv1 (2) pMOEA/Dv1 (4) pMOEA/Dv1 (8)
MOEA/D – – � � – � � � – – � � – � � – � � – � – � � –
pMOEA/Dv1 (2) � – – � – – � – � � – – � � – �
pMOEA/Dv1 (4) � � – � – � � �

the median, x̃, and the interquartile range, IQR, as measures of location (or
central tendency) and statistical dispersion, respectively. The best result for each
problem has a gray colored background. For the sake of a better understanding,
we have also used a clear grey background to indicate the second best result;
this way, we can visualize at a glance the most salient techniques.

Let us start by analyzing the results obtained by the first approach. Tables 1
and 3 summarize the values obtained in the I1

ε+ and IHV indicators, respectively.
In these tables, MOEA/D refers to MOEA/D-DE, and pMOEA/Dv1 (X) refers
to our approach, being X the number of partitions employed (as we mentioned
before, ranging from 2 to 8).

Focusing on the I1
ε+ indicator (Table 1), we observe that pMOEA/Dv1 has

obtained the best results in this indicator when using two and four partitions.
Actually, it has yielded the best values in three problems, and the second best in
other two when two partitions are used, and three best values and four second
best value when the number of partition is four. This way, these results indicate
that it is possible to improve the convergence towards the Pareto optimal front
when using up to four partitions.

For each pair of variants we have also analyzed if the differences between them
are statistically confident. To cope with this issue, we have applied the Wilcoxon
rank sum test, a non-parametric statistical hypothesis test, which allows us to
make pairwise comparisons between algorithms to know about the significance of
the obtained data [2]. A confidence level of 95% (i.e., significance level of 5% or p-
value under 0.05) has been used in all the cases, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. In each
cell, the eight considered MOPs are represented with a symbol. Three different
symbols are used:“–” indicates that there hast not been statistical significance
between the algorithms, “�” means that the algorithm in the row has yielded
better results than the algorithm in the column with statistical confidence, and

Distribution of Computational Effort in Parallel MOEA/D 499

Table 3. Median and IQR of the IHV indicator for pMOEA/Dv1 in the considered
benchmark

MOEA/D pMOEA/Dv1 (2) pMOEA/Dv1 (4) pMOEA/Dv1 (8)
Problem x̃IQR x̃IQR x̃IQR x̃IQR

LZ09 F1 6.64e − 019.0e−05 6.64e − 019.9e−05 6.64e − 012.4e−04 6.64e − 013.1e−04
LZ09 F2 6.61e − 016.4e−04 6.61e − 016.6e−04 6.60e − 016.4e−04 6.59e − 012.3e−03
LZ09 F3 6.22e − 015.6e−02 6.54e − 015.0e−02 6.56e − 014.2e−02 6.54e − 016.4e−02
LZ09 F4 6.56e − 012.6e−03 6.60e − 011.7e−03 6.61e − 018.0e−04 6.59e − 012.5e−03
LZ09 F5 6.48e − 014.4e−03 6.49e − 015.9e−03 6.48e − 011.1e−02 6.44e − 015.1e−02
LZ09 F7 6.60e − 017.9e−03 6.61e − 013.4e−03 6.60e − 011.5e−03 6.43e − 012.4e−02
LZ09 F8 5.58e − 016.0e−02 4.81e − 011.6e−01 4.05e − 011.2e−01 4.45e − 011.5e−01
LZ09 F9 3.27e − 012.1e−03 3.27e − 011.2e−03 3.26e − 011.3e−03 3.24e − 011.3e−03

Table 4. Statistical comparison between each configuration of pMOEA/Dv1 for the
IHV indicator

pMOEA/Dv1 (2) pMOEA/Dv1 (4) pMOEA/Dv1 (8)
MOEA/D � � � � – � � – � � � � – – � – � � – � � � � �
pMOEA/Dv1 (2) – � – � – – � � � � – � � � � �
pMOEA/Dv1 (4) � � – � � � – �

Table 5. Median and IQR of the I1
ε+ Indicator for pMOEA/Dv2 in the considered

benchmark

MOEA/D pMOEA/Dv2 (2) pMOEA/Dv2 (4) pMOEA/Dv2 (8)
Problem x̃IQR x̃IQR x̃IQR x̃IQR

LZ09 F1 4.06e − 037.0e−04 4.15e − 033.0e−04 4.35e − 034.8e−04 4.28e − 035.8e−04
LZ09 F2 1.03e − 024.0e−03 6.90e − 031.7e−03 7.98e − 034.6e−03 8.48e − 031.9e−03
LZ09 F3 1.64e − 012.1e−01 1.10e − 028.2e−03 4.86e − 026.5e−02 4.18e − 024.3e−02
LZ09 F4 5.69e − 022.3e−02 4.69e − 021.9e−02 4.34e − 021.7e−02 4.49e − 022.1e−02
LZ09 F5 7.89e − 022.4e−02 6.53e − 022.6e−02 7.57e − 021.5e−02 7.27e − 022.2e−02
LZ09 F7 3.33e − 023.4e−02 6.87e − 027.4e−02 8.43e − 021.2e−01 6.19e − 026.5e−02
LZ09 F8 1.85e − 011.0e−01 2.49e − 017.9e−02 2.75e − 011.6e−01 2.92e − 012.2e−01
LZ09 F9 1.61e − 021.6e−02 9.37e − 035.6e−03 1.70e − 021.1e−02 1.80e − 029.0e−02

“�” is used when the algorithm in the column has been statistically better than
the algorithm in the row.

Table 2 summarizes the results of that statistical analysis for the epsilon
indicator. This table confirms the results described above. In fact, we can observe
that by using up to four partitions, pMOEA/Dv1 has equaled or improved the
results of the original algorithm in all the problems but one (LZ09 F8). We can
also observe that the configuration with eight partitions has been worse than
the others in most of the cases.

Regarding to the IHV indicator, we observe in Table 3 that pMOEA/Dv1
configured with two partitions has been the most salient algorithm in the com-
parison, obtaining either the best or second best value in practically all the
problems. In this case, with more than four partitions the approach has not
been able to outperform the original MOEA/D.

Focusing on the results of the statistical tests (Table 4), pMOEAD/v1 (2) has
been statistically better than MOEA/D in two out of the eight problems, and
statistically worse in other two (in the rest of the cases there are not statistical
differences between them). As long as the number of partitions increase, the
results have been of lower quality than those obtained by MOEA/D.

500 J.J. Durillo et al.

Table 6. Statistical comparison between each configuration of pMOEA/Dv2 for the
I1

ε+ indicator

pMOEA/Dv2 (2) pMOEA/Dv2 (4) pMOEA/Dv2 (8)
MOEA/D – � � � � � � � � � � � – � � – � � � � – – � –
pMOEA/Dv2 (2) – � � – � – – � – � � – � – � �
pMOEA/Dv2 (4) – – – – – – – –

Table 7. Median and IQR of the IHV indicator for pMOEA/Dv2 in the considered
benchmark

MOEA/D pMOEA/Dv2 (2) pMOEA/Dv2 (4) pMOEA/Dv2 (8)
Problem x̃IQR x̃IQR x̃IQR x̃IQR

LZ09 F1 6.64e − 019.0e−05 6.64e − 019.6e−05 6.64e − 019.6e−05 6.64e − 017.4e−05
LZ09 F2 6.61e − 016.4e−04 6.62e − 014.0e−04 6.62e − 011.2e−03 6.61e − 018.6e−04
LZ09 F3 6.22e − 015.6e−02 6.61e − 011.3e−03 6.57e − 011.5e−02 6.58e − 019.8e−03
LZ09 F4 6.56e − 012.6e−03 6.58e − 013.1e−03 6.59e − 013.3e−03 6.57e − 013.1e−03
LZ09 F5 6.48e − 014.4e−03 6.51e − 015.5e−03 6.48e − 014.9e−03 6.47e − 017.7e−03
LZ09 F7 6.60e − 017.9e−03 6.51e − 012.0e−02 6.47e − 013.4e−02 6.52e − 011.8e−02
LZ09 F8 5.58e − 016.0e−02 4.99e − 017.8e−02 5.02e − 017.7e−02 4.75e − 019.8e−02
LZ09 F9 3.27e − 012.1e−03 3.27e − 011.4e−03 3.27e − 011.1e−03 3.24e − 012.3e−02

Table 8. Statistical comparison between each configuration of pMOEA/Dv2 for the
IHV indicator

pMOEA/Dv2 (2) pMOEA/Dv2 (4) pMOEA/Dv2 (8)
MOEA/D � � � � � � � � – � � � – � � – � – � – – � � �
pMOEA/Dv2 (2) – – � – � – – – � � � – � – – �
pMOEA/Dv2 (4) � � – � – – – �

Let us analyze pMOEA/Dv2 now. In this case, the data summarizing the
experiments are included in tables 5, 7, 6, and 8. We will refer to this version as
pMOEA/Dv2 (X), where X indicates the number of partitions.

Proceeding as before, we start by analyzing the results of the I1
ε+ indicator,

summarized in Table 5. In this case, the configuration with two partitions has
been the most salient of the comparison (best value of the indicator in four out
of the eight analyzed problems, and second best value in other two cases).

If we pay attention to the statistical analysis (Table 6), we observe that the
alternative with two partition has been better than MOEA/D in five out of the
eight evaluated problems and it has obtained worse values in only two out of
these eight problems. When four partitions are used, our approach has improved
the results of the MOEA/D in three problems and worsened the results in other
three ones. It is worth mentioning that increasing the number of partitions in
more than four has not provided any advantage.

The results of the IHV indicator are summarized Table 7. In this case the
best and second best value are mainly distributed between the configurations
making use of two and four partitions. Attending to the comparison between
pairs (included in Table 8), the conclusions are similar to the previous analyzed
cases: pMOEA/Dv2 has been able to outperform original MOEA/D in various
problems when is configured up to four partitions.

Summarizing this section, we have shown that by distributing the computa-
tional effort it has been possible to improve the results obtained by MOEA/D

Distribution of Computational Effort in Parallel MOEA/D 501

in some problems, in particular the convergence of the obtained Pareto front
approximations. Regarding to the number of partitions, we have also observed
that using more than four partitions has not been convenient. An explanation for
this behavior could be that each partition is focused on computing a very small
part of the Pareto front and, as a consequence, the diversity on these partitions
is very small.

7 Conclusions and Future Work

In this work, we have proposed a new parallel model of MOEA/D, consisting in
dividing the population of MOEA/D into a number of disjoint partitions. Under
the evidence that some points of the Pareto front require a higher computational
effort than others, we have designed two extensions of this model by including
a mechanism for balancing the computational effort. This mechanism consists
in performing a higher number of evaluations in some partitions in the parallel
search of parts of the Pareto front.

Those two new versions (using a number of partitions between 2 and 8) have
been evaluated using the LZ09 benchmark. For assessing the quality of the results
we have made use of the I1

ε+ and the IHV indicators.
Our experiments have shown that our proposals have been able to improve

the results of MOEA/D in many cases, particularly in terms of convergence,
when a number of partitions up to four has been used. On the other hand, there
are a few problems where the proposed schemes for balancing the computational
effort have resulted in worse Pareto approximations.

This work is a first approximation to the complex issue of dynamically adjust-
ing the search effort, in the context of the modern multi-objective metaheuristic
MOEA/D, with the idea of giving more computing power to those sub-problems
which have to find more complex solutions in the Pareto front. Consequently,
there is big room for carrying out research on it. Some ideas are hybridizing the
two proposed versions and analyzing other schemes of balancing the computa-
tional effort among the different partitions.

Acknowledgments. This work has been partially funded by the “Consejeŕıa
de Innovación, Ciencia y Empresa”, Junta de Andalućıa under contract P07-
TIC-03044 DIRICOM project, http://diricom.lcc.uma.es and the Spanish
Ministry of Science and Innovation and FEDER under contract TIN2008-06491-
C04-01 (the M∗ project). Juan J. Durillo is supported by grant AP-2006-03349
from the Spanish Ministry of Education and Science.

References

1. Branke, J., Schmeck, H., Deb, K., Reddy, M.,, S.: Parallelizing multi-objective evo-
lutionary algorithms: cone separation. In: Congress on Evolutionary Computation,
CEC 2004, vol. 2, pp. 1952–1957 (2004)

2. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

502 J.J. Durillo et al.

3. Durillo, J.J., Nebro, A.J., Alba, E.: The jmetal framework for multi-objective op-
timization: Design and architecture. In: Proceedings of the IEEE 2010 Congress
on Evolutionary Computation, pp. 4138–4325 (2010)

4. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Technical Report 214, Computer Engineer-
ing and Networks Laboratory (TIK), ETH Zurich (2006)

5. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 2(12), 284–302 (2009)

6. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Norwell (1999)
7. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective

metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073,
pp. 303–317. Springer, Heidelberg (2010)

8. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 1(6), 712–731
(2007)

9. Zhang, Q., Zhou, A., Li, H.: The performance of a new version of MOEA/D on
cec09 unconstrained mop test instances. Technical Report CES-491, School of CS
& EE, University of Essex (2009)

10. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

Multi Objective Genetic Programming for

Feature Construction in Classification Problems

Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi

Università degli Studi di Milano-Bicocca,
Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo),

20126 Milan, Italy
{mauro.castelli,luca.manzoni,vanneschi}@disco.unimib.it

Abstract. This work introduces a new technique for features construc-
tion in classification problems by means of multi objective genetic pro-
gramming (MOGP). The final goal is to improve the generalization
ability of the final classifier. MOGP can help in finding solutions with a
better generalization ability with respect to standard genetic program-
ming as stated in [1]. The main issue is the choice of the criteria that
must be optimized by MOGP. In this work the construction of new fea-
tures is guided by two criteria: the first one is the entropy of the target
classes as in [7] while the second is inspired by the concept of margin
used in support vector machines.

1 Introduction

Genetic programming (GP) has been successfully applied in problems of differ-
ent domain. In particular genetic programming has been widely used in those
problems characterized by a high dimensionality of the space of the features. In
this kind of problems common machine learning techniques are not able to find
a good approximation of the global optimum due to the complexity of the space
of the features. To overcome this problem, features space reduction can be used;
typically the idea is to consider only the most relevant features in the original
set of features and to use these features to guide the search [6,3]. This tech-
nique is quite simple and there are several straightforward methods to choose
the most relevant features [5]. The most important problem is that these tech-
niques do not consider the interaction between features and, in many cases, they
can only represent linear relations between variables (features). The use of MO
optimization to derive near optimal feature extraction was proposed in [12].

It is important to underline that the problem of features selection is that
of finding a subset of the original features of a dataset while in the features
construction problem the focus is the definition of new features starting from
the original ones.

Existing features extraction and construction methods can be divided in two
main classes: the wrapper approach in which the final learner is used as an in-
dicator for the appropriateness of the constructed features and the non-wrapper

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 503–506, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

504 M. Castelli, L. Manzoni, and L. Vanneschi

approach in which the process of feature construction is performed as a prepro-
cessing phase. This work falls in the second category and the main aim is to
build a set of new features that can provide a better classification performance
with respect to the original set of features.

Genetic Programming has been used as a features construction method [11,4]
especially in problems characterized by a high dimensionality of the space of the
features. In [7] the authors proposed the use of GP for features construction in
classification problems and the experimental results clearly show that this ap-
proach is effective in improving the classification accuracy. The idea is to extend
and improve the work proposed in [7] by using a multi objective optimization
approach.

2 Methods

In the proposed work a well known multi objective optimization algorithm called
NSGA-II [2] is used. The main issue in using multi-optimization techniques is
to find a way to combine the fitness values given by all the chosen criteria. The
majority of the multi-optimization algorithms uses in some way the concept of
Pareto set. The NSGA and NSGA-II [2] algorithms also share the same ba-
sic idea. For details about the accurate definition of the NSGA and NSGA-II
algorithm the reader is referred to [2].

Regarding the use of MOGP for features construction the idea is to use GP
to build new variables starting from the original set of features. Every individ-
ual in the population represents a candidate feature built up by combining the
original features. In particular the terminal set is composed of the original set of
features while the function set contained the four binary operators +, −, ∗, and
/ (protected as in [8]). Each GP run produces an individual that represents the
best new feature to classify instances of a certain target class c. If the problem
consists of n target classes, n MOGP run are performed and at each run the
best tree represents a new feature.

In MOGP the search process is guided by two different criteria. The first
one is the entropy of a class while the second criteria is the average difference
between the distribution of a class and the distributions of the other classes.
To evaluate the defined criteria it is necessary to build the class distribution.
To build the distribution of a particular class we consider the mean and the
standard deviation of a class with respect to a candidate new feature (that is a
tree). Assuming that the class data follow a normal distribution, it is possible
to determine the limit of the distribution by the following formula:

μ − 3σ ≤ xc ≤ μ + 3σ

where xc is the value of the candidate new feature for an instance of a class c
and μ and σ are mean and standard deviation of the class with respect to the
candidate new feature. Having the class distribution for a particular class c, it
is possible to measure the level of uncertainty of the class interval. The level of
uncertainty can be measured by means of the entropy. The concept of entropy is

Multi Objective GP for Feature Construction in Classification Problems 505

widely used in information theory where entropy is a measure of the uncertainty
associated with a random variable. The term by itself in this context usually
refers to the Shannon entropy [10], which quantifies, in the sense of an expected
value, the information contained in a message, usually in bits. Equivalently, the
Shannon entropy is a measure of the average information content one is missing
when one does not know the value of the random variable. In our application
entropy for the interval I can be calculated as follows:

Entropy(I) =
∑
c∈C

−pI(c) log2 (pI(c))

where pI(c) denotes the probability for an instance of the class c to belong to
the interval I.

The use of entropy in features construction problem is also proposed in [7].
In this work a second criterion that must guide genetic programming through
the search process is proposed. In particular, entropy could be a useful criteria
to construct new features that are able to produce better generalization perfor-
mances. The problem is that entropy does not consider the distribution of other
classes. So the algorithm builds features with the lowest entropy value but does
not consider the distance from the other class distributions. This is an important
point, especially if we consider that test data does not follow exactly the same
distribution represented by training data. Hence it may happen that features
extracted considering only entropy values are not able to classify test instances
with a good accuracy. Considering the distance between the distribution of the
current considered class c and the previously defined distributions can help in
building features with a high discriminative power.

The idea is that given two individual t1 and t2 and built the distributions for
a certain class c1 if the entropy values derived from distributions built up using
t1 and t2 are closer, we must prefer the distribution with the highest distance
from all the other class distributions. This can intuitively improve classification
performances and can also help in reducing the number of misclassified instances.
The second criterion is in some way equivalent to the maximization of the margin
when support vector machines are used. While the usage of entropy is useful in
dividing the search space, the usage of the second criterion maximizes the margin
between different area of the search space.

To calculate the degree of difference between two distributions d1 and d2 the
cumulative distribution function (cdf) is considered. In probability theory and
statistics, the cumulative distribution function describes the probability that
a real-valued random variable X with a given probability distribution will be
found at a value less than x. Having the cdf of d1 and d2 it is possible to
compare the two distributions and the result obtained by the comparison of
the cdf values can be confirmed by a Kolmogorov-Smirnov test (K-S test) [9].
This test is a form of minimum distance estimation used as a nonparametric
test of equality of probability distributions. The Kolmogorov-Smirnov statistic
quantifies the distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution, or between

506 M. Castelli, L. Manzoni, and L. Vanneschi

the empirical distribution functions of two samples. For further details the reader
is referred to [9].

So the GP search is guided by the minimization of the entropy and by the
maximization of the margin (that is the difference between the distribution of
the considered class and other classes distributions).

3 Conclusions

The use of multi-objective optimization can aid GP in finding solutions with a
better generalization ability as reported in [1]. In features construction problems
the use of MO optimization can also help in finding new features that can be
useful in creating a robust model for the considered classification problem.

References

1. Castelli, M., Manzoni, L., Silva, S., Vanneschi, L.: A comparison of the generalization
ability of different genetic programming frameworks. In: WCCI 2010: Proceedings of
IEEE World Congress on Computational Intelligence. Springer, Heidelberg (2010)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

3. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1-2),
273–324 (1997)

4. Krawiec, K.: Genetic programming-based construction of features for machine
learning and knowledge discovery tasks. Genetic Programming and Evolvable Ma-
chines 3(4), 329–343 (2002)

5. Lee, C., Lee, G.G.: Information gain and divergence-based feature selection for
machine learning-based text categorization. Inf. Process. Manage. 42(1), 155–165
(2006)

6. Neshatian, K., Zhang, M.: Genetic programming and class-wise orthogonal trans-
formation for dimension reduction in classification problems. In: O’Neill, M., Van-
neschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A.,
Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 242–253. Springer, Heidel-
berg (2008)

7. Neshatian, K., Zhang, M., Johnston, M.: Feature construction and dimension re-
duction using genetic programming. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 160–170. Springer, Heidelberg (2007)

8. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008), http://lulu.com, http://www.gp-field-guide.org.uk

9. Pollard, J.H.: A handbook of numerical and statistical techniques. Cambridge Uni-
versity Press, Cambridge (1977)

10. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob.
Comput. Commun. Rev. 5(1), 3–55 (2001)

11. Smith, M.G., Bull, L.: Genetic programming with a genetic algorithm for feature
construction and selection. Genetic Programming and Evolvable Machines 6(3),
265–281 (2005)

12. Zhang, Y., Rockett, P.: Domain-independent feature extraction for multi-
classification using multi-objective genetic programming. Pattern Analysis & Ap-
plications 13, 273–288 (2010), 10.1007/s10044-009-0154-1

http://lulu.com
http://www.gp-field-guide.org.uk

Sequential Model-Based Optimization for
General Algorithm Configuration

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{hutter,hoos,kevinlb}@cs.ubc.ca

Abstract. State-of-the-art algorithms for hard computational problems often ex-
pose many parameters that can be modified to improve empirical performance.
However, manually exploring the resulting combinatorial space of parameter set-
tings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated
approaches for solving this algorithm configuration problem have led to substan-
tial improvements in the state of the art for solving various problems. One promis-
ing approach constructs explicit regression models to describe the dependence of
target algorithm performance on parameter settings; however, this approach has
so far been limited to the optimization of few numerical algorithm parameters
on single instances. In this paper, we extend this paradigm for the first time to
general algorithm configuration problems, allowing many categorical parameters
and optimization for sets of instances. We experimentally validate our new al-
gorithm configuration procedure by optimizing a local search and a tree search
solver for the propositional satisfiability problem (SAT), as well as the commer-
cial mixed integer programming (MIP) solver CPLEX. In these experiments, our
procedure yielded state-of-the-art performance, and in many cases outperformed
the previous best configuration approach.

1 Introduction

Algorithms for hard computational problems—whether based on local search or tree
search—are often highly parameterized. Typical parameters in local search include
neighbourhoods, tabu tenure, percentage of random walk steps, and perturbation and
acceptance criteria in iterated local search. Typical parameters in tree search include de-
cisions about preprocessing, branching rules, how much work to perform at each search
node (e.g., to compute cuts or lower bounds), which type of learning to perform, and
when to perform restarts. As one prominent example, the commercial mixed integer
programming solver IBM ILOG CPLEX has 76 parameters pertaining to its search strat-
egy [1]. Optimizing the settings of such parameters can greatly improve performance,
but doing so manually is tedious and often impractical.

Automated procedures for solving this algorithm configuration problem are useful
in a variety of contexts. Their most prominent use case is to optimize parameters on a
training set of instances from some application (“offline”, as part of algorithm develop-
ment) in order to improve performance when using the algorithm in practice (“online”).
Algorithm configuration thus trades human time for machine time and automates a task
that would otherwise be performed manually. End users of an algorithm can also apply

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 507–523, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

508 F. Hutter, H.H. Hoos, and K. Leyton-Brown

algorithm configuration procedures (e.g., the automated tuning tool built into CPLEX
versions 11 and above) to configure an existing algorithm for high performance on prob-
lem instances of interest.

The algorithm configuration problem can be formally stated as follows: given a pa-
rameterized algorithm A (the target algorithm), a set (or distribution) of problem in-
stances I and a cost metric c, find parameter settings of A that minimize c on I . The
cost metric c is often based on the runtime required to solve a problem instance, or, in
the case of optimization problems, on the solution quality achieved within a given time
budget. Various automated procedures have been proposed for solving this algorithm
configuration problem. Existing approaches differ in whether or not explicit models are
used to describe the dependence of target algorithm performance on parameter settings.

Model-free algorithm configuration methods are relatively simple, can be applied
out-of-the-box, and have recently led to substantial performance improvements across
a variety of constraint programming domains. This research goes back to the early
1990s [2, 3] and has lately been gaining momentum. Some methods focus on optimiz-
ing numerical (i.e., either integer- or real-valued) parameters (see, e.g., [4, 5]), while
others also target categorical (i.e., discrete-valued and unordered) domains [6, 7, 8, 9].
The most prominent configuration methods are the racing algorithm F-RACE [5] and
our own iterated local search algorithm PARAMILS [7, 8]. A recent competitor is the ge-
netic algorithm GGA [9]. F-RACE and its extensions have been used to optimize various
high-performance algorithms, including iterated local search and ant colony optimiza-
tion procedures for timetabling tasks and the travelling salesperson problem [6, 5]. Our
own group has used PARAMILS to configure highly parameterized tree search [10] and
local search solvers [11] for the propositional satisfiability problem (SAT), as well as
several solvers for mixed integer programming (MIP), substantially advancing the state
of the art for various types of instances. Notably, by optimizing the 76 parameters of
CPLEX—the most prominent MIP solver—we achieved up to 50-fold speedups over
the defaults and over the configuration returned by the CPLEX tuning tool [1].

While the progress in practical applications described above has been based on
model-free optimization methods, recent progress in model-based approaches promises
to lead to the next generation of algorithm configuration procedures. Sequential model-
based optimization (SMBO) iterates between fitting models and using them to make
choices about which configurations to investigate. It offers the appealing prospects of
interpolating performance between observed parameter settings and of extrapolating to
previously unseen regions of parameter space. It can also be used to quantify impor-
tance of each parameter and parameter interactions. However, being grounded in the
“black-box function optimization” literature from statistics (see, e.g., [12]), SMBO has
inherited a range of limitations inappropriate to the automated algorithm configuration
setting. These limitations include a focus on deterministic target algorithms; use of
costly initial experimental designs; reliance on computationally expensive models; and
the assumption that all target algorithm runs have the same execution costs. Despite
considerable recent advances [13, 14, 15], all published work on SMBO still has three
key limitations that prevent its use for general algorithm configuration tasks: (1) it only
supports numerical parameters; (2) it only optimizes target algorithm performance for

Sequential Model-Based Optimization for General Algorithm Configuration 509

single instances; and (3) it lacks a mechanism for terminating poorly performing target
algorithm runs early.

The main contribution of this paper is to remove the first two of these SMBO lim-
itations, and thus to make SMBO applicable to general algorithm configuration prob-
lems with many categorical parameters and sets of benchmark instances. Specifically,
we generalize four components of the SMBO framework and—based on them—define
two novel SMBO instantiations capable of general algorithm configuration: the simple
model-free Random Online Adaptive Racing (ROAR) procedure and the more sophisti-
cated Sequential Model-based Algorithm Configuration (SMAC) method. These meth-
ods do not yet implement an early termination criterion for poorly performing target
algorithm runs (such as, e.g., PARAMILS’s adaptive capping mechanism [8]); thus, so
far we expect them to perform poorly on some configuration scenarios with large cap-
times. In a thorough experimental analysis for a wide range of 17 scenarios with small
captimes (involving the optimization of local search and tree search SAT solvers, as
well as the commercial MIP solver CPLEX), SMAC indeed compared favourably to the
two most prominent approaches for general algorithm configuration: PARAMILS [7, 8]
and GGA [9].

The remainder of this paper is structured as follows. Section 2 describes the SMBO
framework and previous work on SMBO. Sections 3 and 4 generalize SMBO’s compo-
nents to tackle general algorithm configuration scenarios, defining ROAR and SMAC,
respectively. Section 5 experimentally compares ROAR and SMAC to the existing state
of the art in algorithm configuration. Section 6 concludes the paper.

2 Existing Work on Sequential Model-Based Optimization (SMBO)

Model-based optimization methods construct a regression model (often called a response
surface model) that predicts performance and then use this model for optimization. Se-
quential model-based optimization (SMBO) iterates between fitting a model and gath-
ering additional data based on this model. In the context of parameter optimization, the
model is fitted to a training set {(θ1, o1), . . . , (θn, on)} where parameter configuration
θi = (θi,1, . . . , θi,d) is a complete instantiation of the target algorithm’s d parameters
and oi is the target algorithm’s observed performance when run with configuration θi.
Given a new configuration θn+1, the model aims to predict its performance on+1.

SMBO has its roots in the statistics literature on experimental design for global
continuous (“black-box”) function optimization. Most notable is the efficient global op-
timization (EGO) algorithm by Jones et al. [12], which is, however, limited to
optimizing continuous parameters for noise-free functions (i.e., the performance of
deterministic algorithms). Bartz-Beielstein et al. [13] were the first to use the EGO
approach to optimize algorithm performance. Their sequential parameter optimization
(SPO) toolbox–which has received considerable attention in the evolutionary algorithms
community–provides many features that facilitate the manual analysis and optimiza-
tion of algorithm parameters; it also includes an automated SMBO procedure for op-
timizing numerical parameters on single instances. We studied the components of this
automated procedure, demonstrated that its intensification mechanism mattered most,
and improved it in our SPO+ algorithm [14]. In [15], we showed how to reduce the

510 F. Hutter, H.H. Hoos, and K. Leyton-Brown

Algorithm Framework 1: Sequential Model-Based Optimization (SMBO)
R keeps track of all target algorithm runs performed so far and their performances (i.e.,
SMBO’s training data {([θ1, x1], o1), . . . , ([θn, xn], on)}),M is SMBO’s model, �Θnew

is a list of promising configurations, and tfit and tselect are the runtimes required to fit the
model and select configurations, respectively.

Input :Target algorithm A with parameter configuration space Θ; instance set
Π ; cost metric ĉ

Output :Optimized (incumbent) parameter configuration, θinc

1 [R, θinc] ← Initialize(Θ, Π)
2 repeat
3 [M, tfit] ← FitModel(R)

4 [�Θnew , tselect] ← SelectConfigurations(M, θinc, Θ)

5 [R, θinc] ← Intensify(�Θnew, θinc, M, R, tfit + tselect, Π , ĉ)
6 until total time budget for configuration exhausted
7 return θinc

overhead incurred by construction and use of response surface models via approximate
GP models. We also eliminated the need for a costly initial design by interleaving ran-
domly selected parameters throughout the optimization process, and by exploiting the
fact that different algorithm runs take different amounts of time. The resulting time-
bounded SPO variant, TB-SPO, is the first practical SMBO method for parameter op-
timization given a user-specified time budget. Although it was shown to significantly
outperform PARAMILS in certain cases, it is still limited to the optimization of numeri-
cal algorithm parameters on single problem instances.

In Algorithm Framework 1, we give pseudocode for the time-bounded SMBO frame-
work of which TB-SPO is an instantiation: in each iteration, it fits a model, selects a list
of promising parameter configurations and performs target algorithm runs on (a subset
of) these, until a given time bound is reached. This time bound is related to the combined
overhead due to fitting the model and selecting promising configurations. In the follow-
ing, we generalize the components of this algorithm framework, extending its scope to
tackle general algorithm configuration problems with many categorical parameters and
sets of benchmark instances.

3 Random Online Aggressive Racing (ROAR)

In this section, we first generalize SMBO’s Intensify procedure to handle multiple in-
stances, and then introduce ROAR, a very simple model-free algorithm configuration
procedure based on this new intensification mechanism.

3.1 Generalization I: An Intensification Mechanism for Multiple Instances

A crucial component of any algorithm configuration procedure is the so-called intensifi-
cation mechanism, which governs how many evaluations to perform with each
configuration, and when to trust a configuration enough to make it the new current
best known configuration (the incumbent). When configuring algorithms for sets of

Sequential Model-Based Optimization for General Algorithm Configuration 511

Procedure 2: Intensify(�Θnew, θinc, M, R, tintensify , Π , ĉ)
ĉ(θ, Π ′) denotes the empirical cost of θ on the subset of instances Π ′ ⊆ Π , based on the
runs in R; maxR is a parameter, set to 2 000 in all our experiments

Input :Sequence of parameter settings to evaluate, �Θnew; incumbent parameter setting,
θinc; model,M; sequence of target algorithm runs, R; time bound, tintensify ;
instance set, Π ; cost metric, ĉ

Output :Updated sequence of target algorithm runs, R; incumbent parameter setting, θinc

1 for i := 1, . . . , length(�Θnew) do
2 θnew ← �Θnew [i]
3 if R contains less than maxR runs with configuration θinc then
4 Π ′ ← {π′ ∈ Π | R contains less than or equal number of runs using

θinc and π′ than using θinc and any other π′′ ∈ Π}
5 π ← instance sampled uniformly at random from Π ′

6 s← seed, drawn uniformly at random
7 R← ExecuteRun(R, θinc, π, s)

8 N ← 1
9 while true do

10 Smissing ← 〈instance, seed〉 pairs for which θinc was run before, but not θnew

11 Storun ←random subset of Smissing of size min(N, |Smissing |)
12 foreach (π, s) ∈ Storun do R← ExecuteRun(R, θnew , π, s)
13 Smissing ← Smissing \ Storun

14 Πcommon ← instances for which we previously ran both θinc and θnew

15 if ĉ(θnew, Πcommon) > ĉ(θinc, Πcommon) then break
16 else if Smissing = ∅ then θinc ← θnew; break
17 else N ← 2 ·N
18 if time spent in this call to this procedure exceeds tintensify and i ≥ 2 then break

19 return [R, θinc]

instances, we also need to decide which instance to use in each run. To address this
problem, we generalize TB-SPO’s intensification mechanism. Our new procedure im-
plements a variance reduction mechanism, reflecting the insight that when we compare
the empirical cost statistics of two parameter configurations across multiple instances,
the variance in this comparison is lower if we use the same N instances to compute
both estimates.

Procedure 2 defines this new intensification mechanism more precisely. It takes as
input a list of promising configurations, �Θnew, and compares them in turn to the current
incumbent configuration until a time budget for this comparison stage is reached.1 In
each comparison of a new configuration, θnew, to the incumbent, θinc, we first perform
an additional run for the incumbent, using a randomly selected 〈instance, seed〉 com-
bination. Then, we iteratively perform runs with θnew (using a doubling scheme) until
either θnew’s empirical performance is worse than that of θinc (in which case we reject
θnew) or we performed as many runs for θnew as for θinc and it is still at least as good
as θinc (in which case we change the incumbent to θnew). The 〈instance, seed〉 combi-

1 If that budget is already reached after the first configuration in �Θnew, one more configuration
is used; see the last paragraph of Section 4.3 for an explanation why.

512 F. Hutter, H.H. Hoos, and K. Leyton-Brown

nations for θnew are sampled uniformly at random from those on which the incumbent
has already run. Similar to the FOCUSEDILS algorithm [7, 8], θinc and θnew are always
compared using only instances on which they have both been run. However, every com-
parison in Procedure 2 is based on a different randomly selected subset of instances and
seeds, while FOCUSEDILS’s Procedure “better” uses a fixed ordering to which it can be
very sensitive.

3.2 Defining ROAR

We now define Random Online Aggressive Racing (ROAR), a simple model-free in-
stantiation of the general SMBO framework (see Algorithm Framework 1).2 This sur-
prisingly effective method selects parameter configurations uniformly at random and
iteratively compares them against the current incumbent using our new intensification
mechanism. We consider ROAR to be a racing algorithm, because it runs each candidate
configuration only as long as necessary to establish whether it is competitive. It gets its
name because the set of candidates is selected at random, each candidate is accepted
or rejected online, and we make this online decision aggressively, before enough data
has been gathered to support a statistically significant conclusion. More formally, as an
instantiation of the SMBO framework, ROAR is completely specified by the four com-
ponents Initialize, FitModel, SelectConfigurations, and Intensify. Initialize performs a
single run with the target algorithm’s default parameter configuration (or a random con-
figuration if no default is available) on an instance selected uniformly at random. Since
ROAR is model-free, its FitModel procedure simply returns a constant model which is
never used. SelectConfigurations returns a single configuration sampled uniformly at
random from the parameter space, and Intensify is as described in Procedure 2.

4 Sequential Model-Based Algorithm Configuration (SMAC)

In this section, we introduce our second, more sophisticated instantiation of the general
SMBO framework: Sequential Model-based Algorithm Configuration (SMAC). SMAC
can be understood as an extension of ROAR that selects configurations based on a model
rather than uniformly at random. It instantiates Initialize and Intensify in the same way
as ROAR. Here, we discuss the new model class we use in SMAC to support cate-
gorical parameters and multiple instances (Sections 4.1 and 4.2, respectively); then,
we describe how SMAC uses its models to select promising parameter configurations
(Section 4.3).

4.1 Generalization II: Models for Categorical Parameters

The models in all existing SMBO methods of which we are aware are limited to nu-
merical parameters. In this section, we discuss the new model class SMAC uses to also
handle categorical parameters.

2 We previously considered random sampling approaches based on less powerful intensification
mechanisms; see, e.g., RANDOM∗ defined in [15].

Sequential Model-Based Optimization for General Algorithm Configuration 513

SMAC’s models are based on random forests [16], a standard machine learning tool
for regression and classification.3 Random forests are collections of regression trees,
which are similar to decision trees but have real values (here: target algorithm perfor-
mance values) rather than class labels at their leaves. Regression trees are known to
perform well for categorical input data; indeed, they have already been used for model-
ing the performance of heuristic algorithms (e.g., [18, 19]). Random forests share this
benefit and typically yield more accurate predictions [16]; they also allow us to quantify
our uncertainty in a given prediction. We construct a random forest as a set of B regres-
sion trees, each of which is built on n data points randomly sampled with repetitions
from the entire training data set {(θ1, o1), . . . , (θn, on)}. At each split point of each
tree, a random subset of
d · p� of the d algorithm parameters is considered eligible to
be split upon; the split ratio p is a parameter, which we left at its default of p = 5/6. A
further parameter is nmin, the minimal number of data points required to be in a node if
it is to be split further; we use the standard value nmin = 10. Finally, we set the number
of trees to B = 10 to keep the computational overhead small.4 We compute the random
forest’s predictive mean μθ and variance σ2

θ for a new configuration θ as the empirical
mean and variance of its individual trees’ predictions for θ.

Model fit can often be improved by transforming the cost metric. In this paper, we
focus on minimizing algorithm runtime. Previous work on predicting algorithm runtime
has found that logarithmic transformations substantially improve model quality [20] and
we thus use log-transformed runtime data throughout this paper; that is, for runtime ri,
we use oi = ln(ri). (SMAC can also be applied to optimize other cost metrics, such
as the solution quality an algorithm obtains in a fixed runtime; other transformations
may prove more efficient for other metrics.) However, we note that in some models
such transformations implicitly change the cost metric users aim to optimize [17]. We
avoid this problem in our random forests by computing the prediction in the leaf of
a tree by “untransforming” the data, computing the user-defined cost metric, and then
transforming the result again.

4.2 Generalization III: Models for Sets of Problem Instances

There are several possible ways to extend SMBO’s models to handle multiple instances.
Most simply, one could use a fixed set of N instances for every evaluation of the tar-
get algorithm run, reporting aggregate performance. However, there is no good fixed
choice for N : small N leads to poor generalization to test data, while large N leads to a

3 In principle, other model families can also be used. Notably, one might consider Gaussian pro-
cesses (GPs), or the projected process (PP) approximation to GPs we used in TB-SPO [15].
Although GPs are canonically defined only for numerical parameters, they can be extended
to categorical parameters by changing the kernel function. We defined such a kernel function,
based on the weighted Hamming distance between two parameter configurations. However,
there is a more significant obstacle to using GPs to support general algorithm configuration:
response variable transformations distort the GP cost metric, which is particularly problem-
atic for multi-instance models. Further information, including the definition of the weighted
Hamming distance kernel function, can be found in the extended version of this paper [17].

4 An optimization of these three parameters might improve performance further. We plan on
studying this in the context of an application of SMAC to optimizing its own parameters.

514 F. Hutter, H.H. Hoos, and K. Leyton-Brown

prohibitive N -fold slowdown in the cost of each evaluation. (This is the same problem
faced by the PARAMILS instantiation BASICILS(N) [7].) Instead, we explicitly integrate
information about the instances into our response surface models. Given a vector of fea-
tures xi describing each training problem instance πi ∈ Π , we learn a joint model that
predicts algorithm runtime for combinations of parameter configurations and instance
features. We then aggregate these predictions across instances.

Instance Features. Existing work on empirical hardness models [21] has demonstrated
that it is possible to predict algorithm runtime based on features of a given problem in-
stance. Most notably, such predictions have been exploited to construct portfolio-based
algorithm selection mechanisms, such as SATzilla [20]. For SAT instances in the form
of CNF formulae, we used 126 features including features based on graph represen-
tations of the instance, an LP relaxation, DPLL probing, local search probing, clause
learning, and survey propagation. For MIP instances we computed 39 features, includ-
ing features based on graph representations, an LP relaxation, the objective function,
and the linear constraint matrix. Both sets of features are detailed in the extended ver-
sion of this paper [17]. To reduce the computational complexity of learning, we applied
principal component analysis (see, e.g., [22]), to project the feature matrix into a lower-
dimensional subspace spanned by the seven orthogonal vectors along which it has max-
imal variance. For new domains, for which no features have yet been defined, SMAC
can still be applied with an empty feature set or simple domain-independent features,
such as instance size or the performance of the algorithm’s default setting (which, based
on preliminary experiments, seems to be a surprisingly effective feature). Note that in
contrast to per-instance approaches, instance features are only needed for the training
instances: the end result of algorithm configuration is a single parameter configuration
that is used without a need to compute features for test instances.

Predicting Performance Across Instances. So far, we have discussed models trained
on pairs (θi, oi) of parameter configurations θi and their observed performance oi.
Now, we extend this data to include instance features. Let xi denote the vector of
features for the instance used in the ith target algorithm run. Concatenating parame-
ter values, θi, and instance features, xi, into one input vector yields the training data
{([θ1, x1], o1), . . . , ([θn, xn], on)}. From this data, we learn a model that takes as input
a parameter configuration θ and predicts performance across all training instances. To
achieve this, we do not need to change random forest construction: all input dimensions
are handled equally, regardless of whether they refer to parameter values or instance
features. The prediction procedure changes as follows: within each tree, we first predict
performance for the combinations of the given configuration and each instance; next,
we combine these predictions with the user-defined cost metric (e.g., arithmetic mean
runtime across instances); finally, we compute means and variances across trees.

4.3 Generalization IV: Using the Model to Select Promising Configurations in
Large Mixed Numerical/Categorical Configuration Spaces

The SelectConfiguration component in SMAC uses the model to select a list of promis-
ing parameter configurations. To quantify how promising a configuration θ is, it uses
the model’s predictive distribution for θ to compute its expected positive improvement

Sequential Model-Based Optimization for General Algorithm Configuration 515

(EI(θ)) [12] over the best configuration seen so far (the incumbent). EI(θ) is large for
configurations θ with low predicted cost and for those with high predicted uncertainty;
thereby, it offers an automatic tradeoff between exploitation (focusing on known good
parts of the space) and exploration (gathering more information in unknown parts of the
space). Specifically, we use the E[Iexp] criterion introduced in [14] for log-transformed
costs; given the predictive mean μθ and variance σ2

θ of the log-transformed cost of a
configuration θ, this is defined as

EI(θ) := E[Iexp(θ)] = fminΦ(v) − e
1
2 σ2

θ+μθ · Φ(v − σθ), (1)

where v := ln(fmin)−μθ

σθ
, Φ denotes the cumulative distribution function of a standard

normal distribution, and fmin denotes the empirical mean performance of θinc.5

Having defined EI(θ), we must still decide how to identify configurations θ with
large EI(θ). This amounts to a maximization problem across parameter configuration
space. Previous SMBO methods [13, 14, 15] simply applied random sampling for this
task (in particular, they evaluated EI for 10 000 random samples), which is unlikely to
be sufficient in high-dimensional configuration spaces, especially if promising configu-
rations are sparse. To gather a set of promising configurations with low computational
overhead, we perform a simple multi-start local search and consider all resulting config-
urations with locally maximal EI.6 This search is similar in spirit to PARAMILS [7, 8],
but instead of algorithm performance it optimizes EI(θ) (see Equation 1), which can
be evaluated based on the model predictions μθ and σ2

θ without running the target al-
gorithm. More concretely, the details of our local search are as follows. We compute
EI for all configuations used in previous target algorithm runs, pick the ten configura-
tions with maximal EI, and initialize a local search at each of them. To seamlessly han-
dle mixed categorical/numerical parameter spaces, we use a randomized one-exchange
neighbourhood, including the set of all configurations that differ in the value of exactly
one discrete parameter, as well as four random neighbours for each numerical parame-
ter. In particular, we normalize the range of each numerical parameter to [0,1] and then
sample four “neighbouring” values for numerical parameters with current value v from
a univariate Gaussian distribution with mean v and standard deviation 0.2, rejecting
new values outside the interval [0,1]. Since batch model predictions (and thus batch EI
computations) for a set of N configurations are much cheaper than separate predictions
for N configurations, we use a best improvement search, evaluating EI for all neigh-
bours at once; we stop each local search once none of the neighbours has larger EI.
Since SMBO sometimes evaluates many configurations per iteration and because batch
EI computations are cheap, we simply compute EI for an additional 10 000 randomly-
sampled configurations; we then sort all 10 010 configurations in descending order of
EI. (The ten results of local search typically had larger EI than all randomly sampled
configurations.)

5 In TB-SPO [15], we used fmin = μ(θinc) + σ(θinc). However, we now believe that setting
fmin to the empirical mean performance of θinc yields better performance overall.

6 We plan to investigate better mechanisms in the future. However, we note that the best problem
formulation is not obvious, since we desire a diverse set of configurations with high EI.

516 F. Hutter, H.H. Hoos, and K. Leyton-Brown

Having selected this list of 10 010 configurations based on the model, we interleave
randomly-sampled configurations in order to provide unbiased training data for future
models. More precisely, we alternate between configurations from the list and addi-
tional configurations sampled uniformly at random. Since Intensify always compares at
least two configurations against the current incumbent, at least one randomly sampled
configuration is evaluated in every iteration of SMBO. In finite configuration spaces,
thus, each configuration has a positive probability of being selected in each iteration.
In combination with the fact that Intensify increases the number of runs used to eval-
uate each configuration unboundedly, this allows us to prove that SMAC (and ROAR)
eventually converge to the optimal configuration when using consistent estimators of
the user-defined cost metric.7 The proof is very simple and uses the same arguments as
a previous proof about FocusedILS (see [8]); we omit it here and refer the reader to the
extended version of this paper [17].

5 Experimental Evaluation

We now compare the performance of SMAC, ROAR, TB-SPO [15], GGA [9], and
PARAMILS (in particular, FOCUSEDILS 2.3) [8] for a range of configuration scenarios
that involve minimizing the runtime of SAT and MIP solvers. In principle, our ROAR
and SMAC methods also apply to optimizing other cost metrics, such as the solution
quality an algorithm can achieve in a fixed time budget; we plan on studying their em-
pirical performance for this case in the near future.

5.1 Experimental Setup

Configuration scenarios. We considered a diverse set of 17 algorithm configuration
problem instances (so-called configuration scenarios) that had been used previously to
analyze PARAMILS [8, 1] and TB-SPO [15].8 These scenarios involve the configuration
of the local search SAT solver SAPS (4 parameters), the tree search solver SPEAR (26
parameters), and the most widely used commercial mixed integer programming (MIP)
solver, IBM ILOG CPLEX (76 parameters); references for these algorithms, as well as
details on their parameter spaces, are given in the extended version of this paper [17].
In all 17 configuration scenarios, we terminated target algorithm runs at κmax = 5 sec-
onds, the same per-run captime used in previous work for these scenarios. In previous
work, we have also applied PARAMILS to optimize MIP solvers with very large per-run
captimes (up to κmax = 10 000s), and obtained better results than the CPLEX tun-
ing tool [1]. We believe that for such large captimes, an adaptive capping mechanism,
such as the one implemented in ParamILS [8], is essential; we are currently working on

7 This proof does not cover continuous parameters, since they lead to infinite configuration
spaces; in that case, we would require additional smoothness assumptions to prove conver-
gence.

8 All instances we used are available at http://www.cs.ubc.ca/labs/beta/Projects/AAC

http://www.cs.ubc.ca/labs/beta/Projects/AAC

Sequential Model-Based Optimization for General Algorithm Configuration 517

integrating such a mechanism into SMAC.9 In this paper, to study the remaining com-
ponents of SMAC, we only use scenarios with small captimes of 5s. In order to enable
a fair comparison with GGA, we changed the optimization objective of all 17 scenarios
from the original PAR-10 (penalized average runtime, counting timeouts at κmax as
10 ·κmax, which is not supported by GGA) to simple average runtime (PAR-1, counting
timeouts at κmax as κmax). 10 However, one difference remains: we minimize the run-
time reported by the target algorithm, but GGA can only minimize its own measurement
of target algorithm runtime, including (sometimes large) overheads for reading in the
instance.

Parameter transformations. Some numerical parameters naturally vary on a non-
uniform scale (e.g., a parameter θ with an interval [100, 1600] that we discretized to
the values {100, 200, 400, 800, 1600} for use in PARAMILS). We transformed such
parameters to a domain in which they vary more uniformly (e.g., log(θ) ∈ [log(100),
log(1600)]), un-transforming the parameter values for each call to the target
algorithm.

Comparing configuration procedures. We performed 25 runs of each configuration
procedure on each configuration scenario. For each such run ri, we computed test per-
formance ti as follows. First, we extracted the incumbent configuration θinc at the point
the configuration procedure exhausted its time budget; SMAC’s overhead due to the
construction and use of models were counted as part of this budget. Next, in an offline
evaluation step using the same per-run cutoff time as during training, we measured the
mean runtime ti across 1 000 independent test runs of the target algorithm parameter-
ized by θinc. In the case of multiple-instance scenarios, we used a test set of previously
unseen instances. For a given scenario, this resulted in test performances t1, . . . , t25
for each configuration procedure. We report medians across these 25 values, visualize
their variance in boxplots, and perform a Mann-Whitney U test to check for significant
differences between configuration procedures. We ran GGA through HAL [23], using
parameter settings recommended by GGA’s author, Kevin Tierney, in e-mail communi-
cation: we set the population size to 70, the number of generations to 100, the number
of runs to perform in the first generation to 5, and the number of runs to perform in
the last generation to 70. We used default settings for FOCUSEDILS 2.3, including ag-
gressive capping. We note that in a previous comparison [9] of GGA and FOCUSEDILS,
capping was disabled in FOCUSEDILS; this explains its poor performance there and its
better performance here.

9 In fact, preliminary experiments for configuration scenario CORLAT (from [1], with κmax =
10 000s) highlight the importance of developing an adaptive capping mechanism for SMAC:
e.g., in one of SMAC’s run, it only performed 49 target algorithm runs, with 15 of them timing
out after κmax = 10 000s, and another 3 taking over 5 000 seconds each. Together, these runs
exceeded the time budget of 2 CPU days (172 800 seconds), despite the fact that all of them
could have safely been cut off after less than 100 seconds. As a result, for scenario CORLAT,
SMAC performed a factor of 3 worse than PARAMILS with κmax = 10 000s. On the other
hand, SMAC can sometimes achieve strong performance even with relatively high captimes;
e.g., on CORLAT with κmax = 300s, SMAC outperformed PARAMILS by a factor of 1.28.

10 Using PAR-10 to compare the remaining configurators, our qualitative results did not change.

518 F. Hutter, H.H. Hoos, and K. Leyton-Brown

With the exception of FOCUSEDILS, all of the configuration procedures we study
here support numerical parameters without a need for discretization. We present results
both for the mixed numerical/categorical parameter space these methods search, and—
to enable a direct comparison to FOCUSEDILS—for a fully discretized configuration
space.

Computational environment. We conducted all experiments on a cluster of 55 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE Linux
11.1. We measured runtimes as CPU time on these reference machines.

5.2 Experimental Results for Single Instance Scenarios

In order to evaluate our new general algorithm configuration procedures ROAR and
SMAC one component at a time, we first evaluated their performance for optimizing
the continuous parameters of SAPS and the mixed numerical/categorical parameters
of SPEAR on single SAT instances; multi-instance scenarios are studied in the next
section. To enable a comparison with our previous SMBO instantiation TB-SPO, we
used the 6 configuration scenarios introduced in [15], which aim to minimize SAPS’s
runtime on 6 single SAT-encoded instances, 3 each from quasigroup completion (QCP)
and small world graph colouring (SWGCP). We also used 5 similar new configuration
scenarios, which aim to minimize SPEAR’s runtime for 5 single SAT-encoded instances,
2 from a hard distribution of IBM bounded model checking (IBM) and 3 from software
verification (SWV). For more information and references for these instances, please
see [17]. The time budget for each algorithm configuration run was 30 CPU minutes,
exactly following [15].

The model-based approaches SMAC and TB-SPO performed best in this compari-
son, followed by ROAR, FOCUSEDILS, and GGA. Table 1 shows the results achieved
by each of the configuration procedures, for both the full parameter configuration space
(which includes numerical parameters) and the discretized version we made for use
with FOCUSEDILS. For the special case of single instances and a small number of all-
numerical parameters, SMAC and TB-SPO are very similar, and both performed best.11

While TB-SPO does not apply in the remaining configuration scenarios, our more gen-
eral SMAC method achieved the best performance in all of them. ROAR performed well
for small but not for large configuration spaces: it was among the best (i.e., best or not
significantly different from the best) in most of the SAPS scenarios (4 parameters) but
only for one of the SPEAR scenarios (26 parameters). Both GGA and FOCUSEDILS per-
formed slightly worse than ROAR for the SAPS scenarios, and slightly (but statistically
significantly) worse than SMAC for most SPEAR configuration scenarios. Figure 1 vi-
sualizes each configurator’s 25 test performances for all scenarios. We note that SMAC

11 In fact, in 1 of the 6 scenarios for which TB-SPO is applicable, it performed better than
SMAC. This is because for all-numerical parameters, projected process (PP) models per-
formed better than random forest (RF) models. In further experiments (not reported here,
see [17]), we evaluated a version of SMAC based on PP instead of RF models; its median
performance was slightly better than TB-SPO’s, but the two were statistically indistinguish-
able in all 6 scenarios. With categorical parameters, SMAC performed better with the RF
models we use here.

Sequential Model-Based Optimization for General Algorithm Configuration 519

Table 1. Comparison of algorithm configuration procedures for optimizing parameters on single
problem instances. We performed 25 independent runs of each configuration procedure and report
the median of the 25 test performances (mean runtimes across 1 000 target algorithm runs with
the found configurations). We bold-faced entries for configurators that are not significantly worse
than the best configurator for the respective configuration space, based on a Mann-Whitney U
test. The symbol “—” denotes that the configurator does not apply for this configuration space.

Scenario Unit
Full configuration space Discretized configuration space

SMAC TB-SPO ROAR F-ILS GGA SMAC TB-SPO ROAR F-ILS GGA
SAPS-QCP-MED [·10−2s] 4.70 4.58 4.72 — 6.28 5.27 — 5.25 5.50 6.24

SAPS-QCP-Q075 [·10−1s] 2.29 2.22 2.34 — 2.74 2.87 — 2.92 2.91 2.98
SAPS-QCP-Q095 [·10−1s] 1.37 1.35 1.55 — 1.75 1.51 — 1.57 1.57 1.95

SAPS-SWGCP-MED [·10−1s] 1.61 1.63 1.70 — 2.48 2.54 — 2.58 2.57 2.71

SAPS-SWGCP-Q075 [·10−1s] 2.11 2.48 2.32 — 3.19 3.26 — 3.38 3.55 3.55

SAPS-SWGCP-Q095 [·10−1s] 2.36 2.69 2.49 — 3.13 3.65 — 3.79 3.75 3.77

SPEAR-IBM-Q025 [·10−1s] 6.24 — 6.31 — 6.33 6.21 — 6.30 6.31 6.30
SPEAR-IBM-MED [·100 s] 3.28 — 3.36 — 3.35 3.16 — 3.38 3.47 3.84

SPEAR-SWV-MED [·10−1s] 6.04 — 6.11 — 6.14 6.05 — 6.14 6.11 6.15

SPEAR-SWV-Q075 [·10−1s] 5.76 — 5.88 — 5.83 5.76 — 5.89 5.88 5.84

SPEAR-SWV-Q095 [·10−1s] 8.38 — 8.55 — 8.47 8.42 — 8.53 8.58 8.49

and ROAR often yielded more robust results than FOCUSEDILS and GGA: for many
scenarios some of the 25 FOCUSEDILS and GGA runs did very poorly.

Our new SMAC and ROAR methods were able to explore the full configuration
space, which sometimes led to substantially improved performance compared to the
discretized configuration space PARAMILS is limited to. Comparing the left vs the right
side of Table 1, we note that the SAPS discretization (the same we used to optimize
SAPS with PARAMILS in previous work [7, 8]) left substantial room for improvement
when exploring the full space: roughly 1.15-fold and 1.55-fold speedups on the QCP
and SWGCP instances, respectively. GGA did not benefit as much from being allowed
to explore the full configuration space for the SAPS scenarios; however, in one of the
SPEAR scenarios (SPEAR-IBM-MED), it did perform 1.15 times better for the full space
(albeit still worse than SMAC).

5.3 Experimental Results for General Multi-instance Configuration Scenarios

We now compare the performance of SMAC, ROAR, GGA, and FOCUSEDILS on six
general algorithm configuration tasks that aim to minimize the mean runtime of SAPS,
SPEAR, and CPLEX for various sets of instances. These are the 5 BROAD configuration
scenarios used in [8] to evaluate PARAMILS’s performance, plus one further CPLEX
scenario, and we used the same time budget of 5 hours per configuration run.

Overall, SMAC performed best in this comparison: as shown in Table 2 its perfor-
mance was among the best (i.e., statistically indistinguishable from the best) in all 6
configuration scenarios, for both the discretized and the full configuration spaces. Our
simple ROAR method performed surprisingly well, indicating the importance of the
intensification mechanism: it was among the best in 2 of the 6 configuration scenar-
ios for either version of the configuration space. However, it performed substantially
worse than the best approaches for configuring CPLEX—the algorithm with the largest
configuration space; we note that ROAR’s random sampling approach lacks the guid-
ance offered by either FOCUSEDILS’s local search or SMAC’s response surface model.

520 F. Hutter, H.H. Hoos, and K. Leyton-Brown

S T R F G

0.05

0.1

0.15

QCPmed
S T R F G

0.2

0.25

0.3

0.35

QCP−q075
S T R F G

1

1.5

2

2.5

QCP−q095
S T R F G

0.15

0.2

0.25

0.3

0.35

0.4

SWGCP−med
S T R F G

0.2

0.4

0.6

0.8

SWGCP−q075
S T R F G

0.2

0.4

0.6

0.8

SWGCP−q095

(a) SAPS (4 continuous parameters)

S R F G

0.62

0.64

0.66

0.68

IBMq025
S R F G

3

3.5

4

4.5

IBMmed
S R F G

0.6

0.61

0.62

0.63

SWVmed
S R F G

0.5

1

1.5

2

2.5

SWVq075
S R F G

1

1.5

2

2.5

3

3.5

SWVq095

(b) SPEAR (26 parameters; 12 of them continuous and 4 integral)

Fig. 1. Visual comparison of configuration procedures’ performance for setting SAPS and
SPEAR’s parameters for single instances. For each configurator and scenario, we show boxplots
for the 25 test performances underlying Table 1, for the full configuration space (discretized for
FOCUSEDILS). ‘S’ stands for SMAC, ‘T’ for TB-SPO, ‘R’ for ROAR, ‘F’ for FOCUSEDILS,
and ‘G’ for GGA.

GGA performed slightly better for optimizing CPLEX than ROAR, but also significantly
worse than either FOCUSEDILS or SMAC. Figure 2 visualizes the performance each con-
figurator achieved for all 6 scenarios. We note that—similarly to the single instance
cases—the results of SMAC were often more robust than those of FOCUSEDILS and
GGA.

Although the performance improvements achieved by our new methods might not
appear large in absolute terms, it is important to remember that algorithm configuration
is an optimization problem, and that the ability to tease out the last few percent of
improvement often distinguishes good algorithms. We expect the difference between
configuration procedures to be clearer in scenarios with larger per-instance runtimes.
In order to handle such scenarios effectively, we believe that SMAC will require an
adaptive capping mechanism similar to the one we introduced for PARAMILS [8]; we
are actively working on integrating such a mechanism with SMAC’s models.

As in the single-instance case, for some configuration scenarios, SMAC and ROAR
achieved much better results when allowed to explore the full space rather than FOCUSED-
ILS’s discretized search space. Speedups for SAPS were similar to those observed in the
single-instance case (about 1.15-fold for SAPS-QCP and 1.65-fold for SAPS-SWGCP),
but now we also observed a 1.17-fold improvement for SPEAR-QCP. In contrast, GGA
actually performed worse for 4 of the 6 scenarios when allowed to explore the full
space.

Sequential Model-Based Optimization for General Algorithm Configuration 521

Table 2. Comparison of algorithm configuration procedures for benchmarks with multiple in-
stances. We performed 25 independent runs of each configuration procedure and report the me-
dian of the 25 test performances (mean runtimes across 1 000 target algorithm runs with the
found configurations on a test set disjoint from the training set). We bold-face entries for config-
urators that are not significantly worse than the best configurator for the respective configuration
space. We also list performance of the default configuration, and of the configuration found by
the CPLEX tuning tool (see [1]); note that on the test set this can be worse than the default.

Scenario Unit
Default CPLEX Full configuration space Discretized configuration space

Tuning Tool SMAC ROAR F-ILS GGA SMAC ROAR F-ILS GGA
SAPS-QCP [·10−1s] 11.8 — 7.05 7.52 — 7.84 7.65 7.65 7.62 7.59

SAPS-SWGCP [·10−1s] 25.0 — 1.77 1.8 — 2.82 2.94 3.01 2.91 3.04

SPEAR-QCP [·10−1s] 3.27 — 1.65 1.84 — 2.21 1.93 2.01 2.08 2.01
SPEAR-SWGCP [·100 s] 1.62 — 1.16 1.16 — 1.17 1.16 1.16 1.18 1.18

CPLEX-REGIONS100 [·10−1s] 7.40 8.60 3.45 6.67 — 4.37 3.50 7.23 3.23 3.98
CPLEX-MIK [·100 s] 4.87 3.56 1.20 2.81 — 3.42 1.24 3.11 2.71 3.32

S R F G

0.6

0.7

0.8

0.9

SAPS−QCP
S R F G

0.2

0.3

0.4

SAPS−SWGCP
S R F G

0.15

0.2

0.25

0.3

SPEAR−QCP
S R F G

1.15

1.2

1.25

1.3

1.35

SPEAR−SWGCP
S R F G

0.3

0.4

0.5

0.6

0.7

0.8

CPLEX−regions100
S R F G

1

2

3

4

CPLEX−MIK

Fig. 2. Visual comparison of configuration procedures for general algorithm configuration scenar-
ios. For each configurator and scenario, we show boxplots for the runtime data underlying Table
2, for the full configuration space (discretized for FOCUSEDILS). ‘S’ stands for SMAC, ‘R’ for
ROAR, ‘F’ for FOCUSEDILS, and ‘G’ for GGA.

6 Conclusion

In this paper, we extended a previous line of work on sequential model-based optimiza-
tion (SMBO) to tackle general algorithm configuration problems. SMBO had previously
been applied only to the optimization of algorithms with numerical parameters on single
problem instances. Our work overcomes both of these limitations, allowing categorical
parameters and configuration for sets of problem instances. The four technical advances
that made this possible are (1) a new intensification mechanism that employs blocked
comparisons between configurations; an alternative class of response surface models,
random forests, to handle (2) categorical parameters and (3) multiple instances; and (4)
a new optimization procedure to select the most promising parameter configuration in
a large mixed categorical/numerical space.

We presented empirical results for the configuration of two SAT algorithms (one
local search, one tree search) and the commercial MIP solver CPLEX on a total of
17 configuration scenarios with small per-run captimes for each target algorithm run.
Overall, our new SMBO procedure SMAC yielded statistically significant—albeit some-
times small—improvements over all of the other approaches on several configuration

522 F. Hutter, H.H. Hoos, and K. Leyton-Brown

scenarios, and never performed worse. In contrast to FOCUSEDILS, our new methods are
also able to search the full (non-discretized) configuration space, which led to further
substantial improvements for several configuration scenarios. We note that our new in-
tensification mechanism enabled even ROAR, a simple model-free approach, to perform
better than previous general-purpose configuration procedures in many cases; ROAR
only performed poorly for optimizing CPLEX, where good configurations are sparse.
SMAC yielded further improvements over ROAR and—most importantly—also state-
of-the-art performance for the configuration of CPLEX.

In future work, we plan to improve SMAC to better handle configuration scenarios
with large per-run captimes for each target algorithm run; specifically, we plan to in-
tegrate PARAMILS’s adaptive capping mechanism into SMAC, which will require an
extension of SMACs models to handle the resulting partly censored data. While in this
paper we aimed to find a single configuration with overall good performance, we also
plan to use SMAC’s models to determine good configurations on a per-instance basis.
Finally, we plan to use these models to characterize the importance of individual param-
eters and their interactions, and to study interactions between parameters and instance
features.

Acknowledgements

We thank Kevin Murphy for many useful discussions on the modelling aspect of this
work. Thanks also to Chris Fawcett and Chris Nell for help with running GGA through
HAL, to Kevin Tierney for help with GGA’s parameters, and to James Styles and Mauro
Vallati for comments on an earlier draft of this paper. We gratefully acknowledge sup-
port from a postdoctoral research fellowship by the Canadian Bureau for International
Education (FH), support from NSERC through HH’s and KLB’s respective discovery
grants, and from the MITACS NCE through a seed project grant.

References

[1] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer pro-
gramming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140,
pp. 186–202. Springer, Heidelberg (2010)

[2] Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic repair
method for constraint-satisfaction and scheduling problems. AIJ 58(1), 161–205 (1992)

[3] Gratch, J., Dejong, G.: Composer: A probabilistic solution to the utility problem in speed-up
learning. In: Proc. of AAAI 1992, pp. 235–240 (1992)

[4] Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental de-
sign and local search. Operations Research 54(1), 99–114 (2006)

[5] Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an overview.
In: Empirical Methods for the Analysis of Optimization Algorithms. Springer, Berlin (2010)

[6] Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring
metaheuristics. In: Proc. of GECCO 2002, pp. 11–18 (2002)

[7] Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search.
In: Proc. of AAAI 2007, pp. 1152–1157 (2007)

[8] Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm
configuration framework. JAIR 36, 267–306 (2009)

Sequential Model-Based Optimization for General Algorithm Configuration 523

[9] Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the au-
tomatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp.
142–157. Springer, Heidelberg (2009)

[10] Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting Verification by Automatic Tuning of
Decision Procedures. In: Proc. of FMCAD 2007, pp. 27–34 (2007)

[11] KhudaBukhsh, A., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically build-
ing local search SAT solvers from components. In: Proc. of IJCAI 2009 (2009)

[12] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black
box functions. Journal of Global Optimization 13, 455–492 (1998)

[13] Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: Proc.
of CEC 2005, pp. 773–780. IEEE Press, Los Alamitos (2005)

[14] Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investigation of
model-based parameter optimisation: SPO and beyond. In: Proc. of GECCO 2009 (2009)

[15] Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: Time-bounded sequential param-
eter optimization. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 281–298.
Springer, Heidelberg (2010)

[16] Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
[17] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general

algorithm configuration (extended version). Technical Report TR-2010-10, UBC Computer
Science (2010), http://www.cs.ubc.ca/∼hutter/papers/10-TR-SMAC.pdf

[18] Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications: A
regression tree based approach. In: Proc. of CEC 2004, pp. 1111–1118 (2004)

[19] Baz, M., Hunsaker, B., Brooks, P., Gosavi, A.: Automated tuning of optimization software
parameters. Technical Report TR2007-7, Univ. of Pittsburgh, Industrial Engineering (2007)

[20] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm se-
lection for SAT. JAIR 32, 565–606 (2008)

[21] Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM 56(4), 1–52 (2009)

[22] Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, 2nd edn.
Springer Series in Statistics. Springer, Heidelberg (2009)

[23] Nell, C., Fawcett, C., Hoos, H.H., Leyton-Brown, K.: HAL: A framework for the automated
analysis and design of high-performance algorithms. In: LION-5 (to appear, 2011)

http://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf

Generalising Algorithm Performance in Instance
Space: A Timetabling Case Study

Kate Smith-Miles and Leo Lopes

School of Mathematical Sciences, Monash University, Victoria 3800, Australia
{kate.smith-miles,leo.lopes}@sci.monash.edu.au

Abstract. The ability to visualise how algorithm performance varies
across the feature space of possible instance, both real and synthetic,
is critical to algorithm selection. Generalising algorithm performance,
based on learning from a subset of instances, creates a “footprint” in
instance space. This paper shows how self-organising maps can be used
to visualise the footprint of algorithm performance, and illustrates the
approach using a case study from university course timetabling. The
properties of the timetabling instances, viewed from this instance space,
are revealing of the differences between the instance generation methods,
and the suitability of different algorithms.

Keywords: Algorithm Selection, Timetabling, Hardness Prediction,
Phase Transition, Combinatorial optimisation, Instance Difficulty.

1 Introduction

Understanding the performance of optimisation algorithms for a class of pro-
blems involves studying the behaviour of the algorithms across an instance space
defined by some measurable features or characteristics of the instances. The pro-
perties of the instances that we study to test the power of an algorithm are often
defined by the source of the instances. Typically, instances used for testing opti-
misation algorithms either come from real world optimisation problems or they
are synthetically generated via some instance generation procedure. However, it
is often challenging to synthetically generate instances that are real-world-like
[1]. If we intend to develop algorithms for the purpose of applying them to tackle
real-world problems though, we need to understand the performance of the algo-
rithms in the part of the feature space corresponding to the real-world instances.
How do we visualise if a set of synthetic instances are similar to a small set of
real-world instances? In addition, we may be interested to discover the types of
instances that result in an algorithm excelling or failing, regardless of whether
those instances are real-world-like.

All of these concerns are addressed by developing an understanding of the
generalisation performance of algorithms across instance space. Corne and Rey-
nolds [2] have noted that when claiming a certain algorithm performance it is
important to make clear the boundaries of that performance in instance space.
The performance of the algorithm on studied instances can be generalised to

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 524–538, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Generalising Algorithm Performance in Instance Space 525

unseen instances in the same region of instance space. They introduced the idea
of a “footprint” in instance space as a means to visualise the generalisation re-
gion, and noted that “understanding these footprints, how they vary between
algorithms and across instance space dimensions, may lead to a future platform
for wiser algorithm-choice decisions” [2]. Using two features at a time, the foot-
prints of algorithm performance were shown in an instance space defined by two
features of the problem under study (a scheduling problem and a vehicle rou-
ting problem). For problems with more than two significant features that define
classes of instances though, a different visualisation approach will be needed.

In this paper we explore further these ideas of footprints and generalisation
of algorithm performance in high dimensional instance spaces. We propose the
use of self-organising feature maps to visualise a high-dimensional feature space
as a two-dimensional map, where the generalisation footprint of algorithm per-
formance can be clearly seen. We have previously shown how these maps can be
used to visualise the relationship between features of instances and algorithm
performance [3]. Using a case study of course timetabling, we demonstrate how
this view of the instance space is also revealing of the relationship between the
instance generation method and the resulting features of the instances. Conse-
quently, the limitations of synthetic instance generation methods when trying to
create real-world-like instances can be explained. We consider the performance
of two highly competitive algorithms across three classes of instances: real-world
Udine timetabling instances [4], synthetically generated instances [5], and ins-
tances that have been iteratively refined via a learning process to resemble a
seed set of real-world instances [6]. We seek to understand the regions of ins-
tance space where each algorithm is superior to the other, and whether the
footprint of the algorithm’s strong performance includes the region of real-world
instances. By providing this kind of analysis of algorithm performance we hope
to enable context-specific advice to be given on algorithm selection, particularly
in practical real-world settings.

The remainder of this paper is as follows: In Section 2 we describe the time-
tabling meta-data for our case study. In particular, we describe the three classes
of instances of course timetabling and how they were generated, we provide a
comprehensive list of features of the timetabling problem that we will use to
define the instance space (both from the timetabling characteristics and features
of the underlying graph colouring problem), we discuss the two algorithms in
our algorithm portfolio, and how we measure the performance of the algorithms
on the instances. Once our meta-data has been defined in this way, the analysis
of the relationship between features of the instances and algorithm performance
can begin. In Section 3 we present some data mining approaches to understan-
ding the relationships in the meta-data. We begin with a self-organising feature
map to visualise the high-dimensional feature space as a two-dimensional map of
the instance space. The footprints of each algorithm and the regions correspon-
ding to the types of instances seen in practise are shown. We also partition the
instance space using a decision tree to provide rules describing the differences
between the classes of instances, and the differences between the performance

526 K. Smith-Miles and L. Lopes

of the two algorithms in terms of the features of the instances. In Section 4 we
discuss these findings and draw conclusions.

2 Course Timetabling
Timetabling is better described as a class of problems, rather than a single pro-
blem type. This research focuses on the Udine Timetabling problem, also known
as Curriculum-based Course Timetabling (heretofore CTT) problem. CTT was
used for track 3 of the 2007 International Timetabling Competition (ITC2007).
Our choice of CTT as a case study was motivated by several factors: the exis-
tence of instance generators as well as real-world instances; and access to two of
the top five search procedures from ITC2007.

In the interest of space we describe the problem only briefly here. A detailed
description of the problem can be found in [7].

CTT arises because students follow specific tracks along the coursework that
leads to a degree. For example: a typical first semester engineering curriculum
could be Calculus, Linear Algebra, Physics, Introduction to Computing, and
Introduction to a subject of study, such as Mechanical Engineering (ME) or
Chemical Engineering (ChE). Lectures for Introduction to ME can be scheduled
at the same time as those for Introduction to ChE, but not at the same time as
those for the first four courses. The instructor assigned to each course must also
be available at the times for each lecture.

The set of conflicts within a particular instance of the CTT can be described
as a conflict graph G(V, E), where V is a set of vertices corresponding to “events”
that need to be timetabled, and E is a set of edges connecting any two vertices
when the events cannot occur at the same time. We can describe conflicts in this
manner for both teachers and the curriculum.

There are also soft constraints, which incur penalties when they are violated,
but do not invalidate the solution. If ME has 40 first-year students and ChE
has 30, then the first four courses should be taught in a room with capacity
for at least 70 students, while Introduction to ME and Introduction to ChE
can be taught in rooms with capacity for 40 and 30 students respectively. All
lectures for the same course should ideally be in the same room, and should
be distributed throughout the week. Finally, the lectures from each curriculum
should run consecutively.

This description is sufficient to describe the meta-data for our experiment
using the framework in [8].
– The problem space P is the union of three sets of instances: the original 21

from the competition [4]; a set of 4500 obtained using the generator in [5]; and
another set of 4500 from [6]. The latter set was generated specifically to be
differentiating of performance and similar to the original 21 instances, after
our previous work showed that the 21 instances were not particularly discri-
minating of two highly competitive solvers, and that the random generator
created instances that were dissimilar to real instances [9]. After excluding
from P instances whose optimal solution violated a hard constraint (this was
proved using an integer programming model), 8199 instances remained.

Generalising Algorithm Performance in Instance Space 527

– The performance space Y is the sum of violations of soft constraints after
600s of computational work.

– The algorithm space A comprises two solvers: Algorithm A (TSCS1) is a
Tabu Search over a weighed constraint satisfaction problem written in C++.
Algorithm B (SACP [10]) is a constraint propagation code combined with
Simulated Annealing written in Java. Of the 8199 instances in P , 3694 re-
sulted in draws; on 2409 instances TSCS won; and on 2096 instances SACP
won.

– The feature space F is summarised in Table 1. In addition to straightforward
features (like number of events), we use features related to landmarking [13]
(obtained by running the DSATUR algorithm [14], which is optimal for bi-
partite graphs); features related to the conflicts, thus related to the under-
lying Graph Colouring problem and features that come from the application
(Timetabling).

3 Visualising Instance Space

Now that we have assembled the meta-data for course timetabling based on two
competitive algorithms, we are in a position to analyse the meta-data with a
view to understanding the instance space and its properties. We seek to identify
the various types of instances within the instance space and to understand the
effect of instance generation method on the properties of the instances. We also
seek to visualise the generalisation footprint of each algorithm’s performance
behaviours, and to determine the parts of instance space where one algorithm
dominates the other. In order to visualise the high dimensional instance space
(defined by the set of 32 candidate features in Table 1) we will be employing
self-organising maps that produce a topologically-preserved mapping to a two
dimensional space.

3.1 Self-Organising Feature Maps

Self-Organising Feature Maps (SOFMs) are the most well known unsupervised
neural network approach to clustering. Their advantage over traditional cluste-
ring techniques such as the k-means algorithm lies in the improved visualisation
capabilities resulting from the two-dimensional map of the clusters. Often pat-
terns in a high dimensional input space have a very complicated structure, but
this structure is made more transparent and simple when they are clustered in a
lower dimensional feature space. Kohonen [15] developed SOFMs as a way of au-
tomatically detecting strong features in large data sets. SOFMs find a mapping
from the high dimensional input space to low dimensional feature space, so the
clusters that form become visible in this reduced dimensionality. They can be
viewed as an approximation to a nonlinear generalisation of principle component
analysis.
1 The 3rd-placed solver in ITC 2007, by Astuta, Nonobe, and Irabaki. The authors

have not published a paper on this solver.

528 K. Smith-Miles and L. Lopes

Table 1. All features used in the meta-data. For features that are computed for every
node, both the mean and standard deviation of the resulting distribution are used.

Feature name Description
Size related features: those that define the dimension of the problem (3 features).
Number of
Courses

Number of courses, independently of how many
lectures are in each course.

Number of
Events Sum of lectures across all courses.

Number of
Rooms Total number of rooms available.

Landmarking features: obtained from landmarking the instance by running the
DSATUR algorithm [11] (2 features).
DSATUR
Solution Upper bound on the number of colours

DSATUR Colour
Sum

Sum of colour values over all nodes (DSATUR tries
to minimise this quantity)

Graph Colouring features: from each of the conflict graphs G(V, E), where V is a
course, and E is a conflict between two courses, generated by: the curricula; the
teacher availability; and the combination of both constraints (21 features):

Edge Density |E|
(|V |−1)2

Node Clustering
Index[12] mean
and standard
deviation

For each node v ∈ V , the edge density of the graph
induced by v and its immediate neighbours.

Unweighted
Event Degree
mean and
standard
deviation

The degree of each node v.

Weighted Event
Degree mean
and standard
deviation

The sum of the enrolments of all neighbours of v.

Timetabling features: features that come from the constraints unique to
timetabling, as opposed to conflicts, which are more closely related to Graph
Colouring (6 features) .

Slack Total seats in all the rooms - Total seats required
by all the courses.

One Room
events Number of events that will only fit in one room

Event Size mean
and standard
deviation

Number of students in each course

Room Options
mean and
standard
deviation

The number of rooms into which each course can
fit without penalty.

Generalising Algorithm Performance in Instance Space 529

The architecture of the SOFM is a feed-forward neural network with a single
layer of neurons arranged into a rectangular array. Figure 1 depicts the archi-
tecture with n inputs connected via weights to a 3 × 3 array of 9 neurons. The
number of neurons used in the output layer is determined by the user.

Fig. 1. Architecture of Self-Organising Feature Map

Fig. 2. Varying neighbourhood sizes around winning neuron m

When an input pattern is presented to the SOFM, each neuron calculates how
similar the input is to its weights. The neuron whose weights are most similar
(minimal distance d in input space) is declared the winner of the competition for
the input pattern, the weights of the winning neuron are strengthened to reflect
the outcome, and the learning is shared with neurons in the neighbourhood of
the winning neuron. This creates a process of global competition, followed by
local cooperation. Figure 2 provides an example of how a neighbourhood Nm

can be defined around a winning neuron m. Initially the neighbourhood size
around a winning neuron is allowed to be quite large to encourage the regional
response to inputs. As the learning proceeds however, the neighbourhood size
is slowly decreased so that the response of the network becomes more localised.

530 K. Smith-Miles and L. Lopes

The localised response, which is needed to help clearly differentiate distinct input
patterns, is also encouraged by varying the amount of learning received by each
neuron within the winning neighbourhood. The winning neuron receives the most
learning at any stage, with neighbours receiving less the further away they are
from the winning neuron. If we denote the size of the neighbourhood around
winning neuron m at time t by Nm(t), then the amount of learning that every
neuron i within the neighbourhood of m receives is determined by:

c = α(t)e−
‖ri−rm‖

σ2(t) (1)

where ri − rm is the physical distance (number of neurons) between neuron i
and the winning neuron m. The two functions α(t) and σ2(t) are used to control
the amount of learning each neuron receives in relation to the winning neuron.
These functions are usually slowly decreased over time. The amount of learning
is greatest at the winning neuron (where i = m and ri = rm) and decreases the
further away a neuron is from the winning neuron, as a result of the exponential
function. Neurons outside the neighbourhood of the winning neuron receive no
learning.

Like all neural network models, the learning algorithm for the SOFM follows
the basic steps of presenting input patterns, calculating neuron outputs, and up-
dating weights. The weight update rule, for all neurons within the neighbourhood
of the winning neuron m for a given input pattern xi is:

wji(t + 1) = wji(t) + c[xi − wji(t)]

with c as defined by equation (1). For neurons outside the neighbourhood of
the winning neuron, c = 0. The initialisation stage involves setting the weights
to small random values, setting the initial neighbourhood size Nm(0) to be large
(but less than the number of neurons in the smallest dimension of the array),
and setting the values of the parameter functions to be between 0 and 1. The
algorithm iterates through all of the input patterns repeatedly, with diminishing
neighbourhood size and decaying functions α(t) and σ2(t) each time, until even-
tual convergence of the weights.

3.2 Visualising the Instance Space

In order to determine the features most likely to be predictive of algorithm
performance, a correlation analysis was employed. Wherever a feature had a
correlation greater than 0.7 with the performance metric of either algorithm, it
was selected for inclusion as a feature for the SOFM. The selected features were:

– From the graph built from both curriculum and teacher conflicts:
• the minimum colours and the colour sum (from the DSATUR algorithm);

the clustering index; the edge density; the mean and standard deviation
of the unweighted event degree;

– From the graph built only from curriculum conflicts; and from the graph
built only from teacher conflicts:

Generalising Algorithm Performance in Instance Space 531

• the edge density; the mean and standard deviation of the unweighted
event degree;

– Timetabling features:
• The mean and standard deviation of Event Size and Room Options;

slack; the number of one room events, courses, events, and rooms.

The instance space is therefore characterised by a set of 8199 course timetabling
instances, each defined by a set of 21 features related to both the properties of
the timetabling environment and the underlying graph colouring problem.

All features were normalised to the range [0,1] using variance. The software
package Viscovery SOMine [16] was used to generate the SOFM, using a rec-
tangular map of approximate ratio 100:52 based on the dimensions of the plane
spanned by the two largest eigenvectors of the correlation matrix of the features
(i.e. the first two principal components of the correlation matrix). The final map
contains 2030 neurons arranged in 58 rows and 35 columns. 48 complete presen-
tations of all 8199 instances were required to achieve convergence, with a decay
factor of 0.5 applied to the functions α(t) and σ2(t). The initial neighbourhood
size was 7. While these values were chosen arbitrarily based on past experience,
experimentation with different values showed that the resulting maps were quite
robust.

Fig. 3. Five clusters in instance space (top) and the distribution of the three classes
of instances across instance space (bottom). The real-world Udine instances are shown
as black, the synthetic instances as grey, and the refined synthetic instances as white

Figure 3 shows that there are five natural clusters of instances in the 21-
dimensional feature space when projected onto a two-dimensional map of ins-
tance space. Instances that belong to the same cluster are similar (according to

532 K. Smith-Miles and L. Lopes

Euclidean distance in 21-dimensional feature space) to each other, and signifi-
cantly different from other instances in other clusters. The lower map in Figure
3 shows the location of the three classes of instances across the instance space.
We find the small set of real-world Udine instances (shown as black regions) all
located in the top-centre of the map (top right corner of cluster 2). Clusters 3,
4 and 5 contain predominantly the synthetic instances (shown as grey regions
of the lower map) generated from the synthetic generator [5], and are not in the
same region as the real-world instances. The instances that we have modified to
be more "real-world-like" [6] (shown as white region on the map) surround the
Udine instances and are therefore quite similar based on their features, but more
diverse.

In order to determine which features make an instance more real-world like, we
can inspect the distribution of features across the map. A subset of the features
relating to the timetabling environment are shown in Figure 4, and some of the
features relating to the underlying graph colouring problem are shown in Figure
5. Here we see that one of the main differences between the Udine instances
and our real-world-like instances is the mean and standard deviation of the
degree of the teacher conflict graph (significantly smaller in the Udine instances).
In addition, the mean and standard deviation of the event size is significantly
smaller for the Udine instances. Thus we have obtained some immediate feedback
on how to make our real-world-like instances more similar to the Udine instances.

The synthetic instances [5] are clearly quite different in distribution from
the Udine instances. The main observations about these differences are revealed
in the map by considering the boundary separating clusters 2 and 3, which
correlates quite closely with the distribution of colorsum, the number of courses
and mean room options.

It should be noted that no information about the class of instance was used
to generate the clusters, only features of the timetabling problem and the under-
lying graph colouring problem. Yet the three classes of instances are clearly seen
as quite distinguishable in this instance space. We now examine the performance
of the two algorithms across the instance space with a view to visualising the
footprint of their generalisation.

3.3 Visualising the Footprints of Algorithm Performance

Once the clusters have formed based on similarity of features of the instances,
we can now superimpose additional information such as the performance of al-
gorithms on those instances. The penalty of each algorithm for instances across
the map is shown in the top row of Figure 6, with Algorithm A (TSCS) shown
on the left and Algorithm B (SACP) on the right. Visually, these two algorithms
appear to be very competitive with each other, producing low penalty solutions
to instances in cluster 1, high penalty solutions to the difficult instances at the
bottom of cluster 3, and similar penalties to each other across the map. The
difference in penalty (Algorithm A minus Algorithm B) is shown in the lower
left of Figure 6, and reveals that there is little difference in the performance of
the algorithms on the synthetic instances in clusters 3, 4 and 5. Only instances in

Generalising Algorithm Performance in Instance Space 533

Fig. 4. The distribution of timetabling based features across instance space (white
represents a minimal value of the feature and black represents a maximal value of the
feature)

Fig. 5. The distribution of graph based features across instance space (white represents
a minimal value of the feature and black represents a maximal value of the feature)

534 K. Smith-Miles and L. Lopes

Fig. 6. The performance of each algorithm across instance space. The penalty obtained
by Algorithm A (TSCS) is shown top left, and Algorithm B (SACP) is shown top right.
The difference in penalty between Algorithm A and B is shown bottom left (penalty
of Algorithm A minus penalty of Algorithm B), and the relative difference is shown
bottom right. White represents a minimal value and black represents a maximal value.

clusters 1 and 2 provide the opportunity for each algorithm to show its relative
power. Since a difference of 1 penalty point is less meaningful for a high penalty
solution than a low penalty solution, we also show the relative difference in al-
gorithm performance on the bottom right of Figure 6. The relative difference is
calculated as the ratio of the difference in penalty to the mean penalty for each
instance, which reduces the impact of small differences in high penalty solutions.

Clearly, the boundary between cluster 2 and 3 provides some kind of partition
across instance space to separate those instances that elicit identical performance
from both algorithms from those instances that present unique challenges to each
algorithm. It is also clear that there are some instances in clusters 1 and 2 where
Algorithm A outperforms Algorithm B, and others where the reverse is true.
Unfortunately, the regions where one algorithm clearly outperforms the other
are not so well defined. There is a region spreading from the top left corner of
the map diagonally down through cluster 2 where the relative difference is large
and positive (i.e. Algorithm A has a much higher penalty than Algorithm B, and
therefore Algorithm B is the superior algorithm for such instances). Returning
to the features however, it is difficult to see a single feature that explains this
diagonal pattern (possibly slack, colorsum and number of courses, but the super-
ior performance of Algorithm B does not continue into cluster 1 where colorsum
and number of courses are also high). Likewise, the superior performance of Al-
gorithm A in cluster 1 (and a small region just over the boundary into cluster
2) is not well explained by any of the features of the instances.

Generalising Algorithm Performance in Instance Space 535

So while we have features that are clearly capable of distinguishing between
the classes of instances (real world versus synthetic), and whether the instances
will be discriminating of algorithm performance (or just elicit a tied outcome), it
would appear that the selected features are not ideal for completely explaining
the conditions under which Algorithm A outperforms Algorithm B and vice
versa. It is possible that this is a problem with the chosen method of analysis
(self organising maps), and so we now employ other machine learning methods
to see if we can automate the discovery of relationships.

3.4 Partitioning the Instance Space via Decision Trees

Decision trees can be very powerful tools for elucidating rules that can help ex-
plain performance differences between algorithms. However, extraordinary care
must be taken in designing the experiment, especially to ensure class balance
and avoid bias.

In these experiments, we perform training on a random subset of each class
of cardinality equal to the cardinality of the class with the fewest elements to
help control bias.

Node competition real-world-like synthetic
1. Root 21 21 21
2. Teacher Clustering Index Mean< 0.4 21 (100%) 0 0
3. Teacher Clustering Index Mean≥ 0.4 0 21 (50%) 21 (50%)
4. One Room Events < 2.5 0 20 (87%) 3 (13%)
5. One Room Events ≥ 2.5 0 1 (5%) 18 (95%)

Fig. 7. A decision tree that describes features that can be used to determine the
origin of the instance. Unfortunately, these features do not help predict algorithm
performance.

Figure 7 summarises a decision tree experiment run on a subset of P obtai-
ned by randomly sampling 21 instances (the number of real instances from the
ITC2007 competition) from each of the synthetic and real-world-like instances,
then trying to separate all three types of instances. While the clustering index
of the teacher conflict graph can be easily used to separate the real instances
from the synthetic ones, such separation is inconsequential, at least if the goal
is to compare these two solvers. The tree in Figure 8 , obtained by randomly
sampling an equal number of instances on which each solver won or there was
a draw, illustrates that while it is possible to learn some aspects of the rela-
tionships between the features and which solver will win, the most important
features are distinct from those in Figure 7.

Another word of caution illustrated by Figure 8 is that simply counting wins
can be a dangerous way to decide which solver is superior to the other. These
data show that in problems in which the DSATUR colour sum is low, there is not
a significant difference between the solvers, and that in the remaining instances,

536 K. Smith-Miles and L. Lopes

Node SACP wins Tie TSCS wins
1. Root 2096 2096 2096
2. DSATUR colour sum ≤ 393 339 (17%) 1486 (76%) 126 (7%)
3. DSATUR colour sum > 393 1757 (41%) 610 (14%) 1970 (45%)
4. Slack< 112 1337 (63%) 216 (10%) 567 (27%)
5. Slack ≥ 112 420 (19%) 394 (18%) 1403 (63%)

Fig. 8. A decision tree that describes features that can be used to determine which
algorithm will win. The results are insightful but inconclusive.

SACP wins on those instances in which there is little slack. This tree, therefore,
supports the argument that SACP is the better solver on hard instances, since it
provides evidence that SACP wins where there is little slack and heuristics have
difficulty reducing conflicts. In contrast, if only raw performance data excluding
feature information is used, a statistically strong conclusion would be reached
that TSCS wins more often overall in P , and that the difference in mean per-
formance is greater than 0. This conclusion would hold even in the subset of P
composed exclusively of real-world-like instances.

It is up to the reader of a specific research paper to decide whether or not it
is important to them that a solver wins on a subset of instances that is harder.
However, having that information – as opposed to relying on statistics over an
entire instance set – is valuable independent of any subjective consideration.
Furthermore, the information is supported by a repeatable (and challengeable),
concrete experiment.

4 Conclusions

In this paper we have shown, through a case study of university course timeta-
bling, that data mining techniques like self-organising feature maps and decision
trees can be used to explore the high-dimensional feature space that defines an
instance space. Specifically, the instance space can be visualised with a view to
understanding the applicability of synthetic instance generators to real-world
instances, and examining the generalisation footprint of algorithm performance.
For our case study, we have utilised a comprehensive set of features based on
both timetabling and graph colouring properties. We have demonstrated that
these features create an instance space where the differences between real-world
and synthetically generated instances are readily visualised. The effectiveness of
different algorithms can then be superimposed across the instance space and the
footprint can be visualised. For our chosen algorithms we have been able to par-
tition the instance space to separate instances that elicit tied performance from
these two highly competitive algorithms, from those instances where one algo-
rithm outperforms the other. The chosen features have proven to be insufficient,
however, for discovering the properties of instances that make SACP outperform
TSCS, or vice versa. The footprint of both algorithms, where they performs well,
includes the Udine real-world instances (which is why both algorithms perfor-

Generalising Algorithm Performance in Instance Space 537

med well in the competition), but as we move away from the Udine instances in
the instance space, we find some regions where one algorithm dominates. The
boundaries of these regions are less well defined based on the current features.
It remains for future research to consider additional features of instances that
could distinguish between these two competitive algorithms, and the relationship
between landscape metrics [17,18,19] and algorithm performance should also be
considered.

The ability to generate instances that are both discriminating of algorithm
performance and real-world-like is critical for progress in understanding the
strengths and weaknesses of various algorithms, and ensuring that the right
algorithm is being selected to avoid deployment failures for practical applica-
tions [9]. Analysis of the kind presented in this paper provides a starting point
to examine the characteristics of a set of instances, and enables feedback into
the instance generation process [6] to develop a meaningful set of instances to
drive future research developments.

References

1. Hill, R., Reilly, C.: The effects of coefficient correlation structure in two-dimensional
knapsack problems on solution procedure performance. Management Science, 302–
317 (2000)

2. Corne, D., Reynolds, A.: Optimisation and Generalisation: Footprints in Instance
Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI.
LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010)

3. Smith-Miles, K., van Hemert, J., Lim, X.: Understanding TSP Difficulty by Lear-
ning from Evolved Instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS,
vol. 6073, pp. 266–280. Springer, Heidelberg (2010)

4. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J.,
Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated
timetabling: The second international timetabling competition. INFORMS Journal
on Computing 22(1), 120–130 (2010)

5. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: Decomposition, reformula-
tion, and diving in university course timetabling. Computers & Operations Re-
search 37(3), 582–597 (2010)

6. Lopes, L., Smith-Miles, K.: Generating applicable synthetic instances for branch
problems, under review (2011)

7. Gaspero, L.D., McCollum, B., Schaerf, A.: The second international timetabling
competition (itc-2007): Curriculum-based course timetabling (track 3). Technical
report, DIEGM, University of Udine (2007)

8. Rice, J.: The Algorithm Selection Problem. Advances in Computers 15, 65–117
(1976)

9. Lopes, L., Smith-Miles, K.: Pitfalls in Instance Generation for Udine Timetabling.
In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 299–302. Springer,
Heidelberg (2010)

10. Müller, T.: Itc2007 solver description: A hybrid approach. In: Proceedings of the
Seventh PATAT Conference (2008)

11. Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In:
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
pp. 245–284 (1996)

538 K. Smith-Miles and L. Lopes

12. Beyrouthy, C., Burke, E., Landa-Silva, D., McCollum, B., McMullan, P., Parkes,
A.: Threshold effects in the teaching space allocation problem with splitting. Eu-
ropean Journal of Operational Research (EJOR) (2008) (under review)

13. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmar-
king various learning algorithms. In: Proceedings of the Seventeenth International
Conference on Machine Learning Table of Contents, pp. 743–750. Morgan Kauf-
mann Publishers Inc., San Francisco (2000)

14. Wood, D.: An algorithm for finding a maximum clique in a graph. Operations
Research Letters 21(5), 211–217 (1997)

15. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics 43(1), 59–69 (1982)

16. SOMine, V.: Eudaptics software Gmbh
17. Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a

hybrid local search for the multiobjective quadratic assignment problem. In: Soft
Computing Systems: Design, Management and Applications, pp. 271–279 (2002)

18. Bierwirth, C., Mattfeld, D., Watson, J.: Landscape regularity and random walks
for the job-shop scheduling problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP
2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)

19. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 539–551, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Hybrid Fish Swarm Optimisation Algorithm for
Solving Examination Timetabling Problems

Hamza Turabieh1 and Salwani Abdullah2

1 Computer Science Department, Faculty of Science and Information Technology
Zarka University, Jordan

turabieh@zp.edu.jo
2 Data Mining and Optimisation Research Group (DMO)

Center for Artificial Intelligence Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

salwani@ftsm.ukm.my

Abstract. A hybrid fish swarm algorithm has been proposed to solve exam
timetabling problems where the movement of the fish is simulated when
searching for food inside water (refer as a search space). The search space is
categorised into three categories which are crowded, not crowded and empty
areas. The movement of fish (where the fish represents the solution) is
determined based on a Nelder-Mead simplex search algorithm. The quality of
the solution is enhanced using a great deluge algorithm or a steepest descent
algorithm. The proposed hybrid approach is tested on a set of benchmark
examination timetabling problems in comparison with a set of state-of-the-art
methods from the literature. The experimental results show that the proposed
hybrid approach is able to produce promising results for the test problem.

Keywords: Exam Timetabling, Fish Swarm Algorithm.

1 Introduction

Timetabling problems present a challenging problem area for researchers across both
operational research and artificial intelligence. This kind of problems can be classified
as scheduling problems. This concept can be defined based on Fox and Sadeh-
Koniecpol [15] as follows:

“Scheduling selects among alternative plans, and assigns resources and times to

each activity so that they obey the temporal restrictions of activities and the capacity
limitations of a set of shared resources.”

The examination timetabling problem is a popular problem in the academic world for
schools or higher educational institutes which are concerned with allocating exams
into a limited number of time slots (periods) subject to a set of constraints so that no
students should sit for two or more exams at the same time and the scheduled exams
must not exceed the room capacity.

540 H. Turabieh and S. Abdullah

Up to date, many approaches have been introduced to solve examination
timetabling problems. Carter [9] categorised these approaches into four types:
sequential methods, cluster methods, constraint-based methods and generalised
search. Petrovic and Burke [26] added the following categories: hybrid evolutionary
algorithms, meta-heuristics, multi-criteria approaches, case based reasoning
techniques, hyper-heuristics and adaptive approaches.

Graph colouring heuristics methods seem to be the earliest algorithms applied in
this problem, followed by stochastic search methods such as simulated annealing,
tabu search, genetic algorithm etc., that are considered as meta-heuristic approaches.
In general, these approaches can be classified into two categories i.e. single-based
approach and population-based approach. Single-based approach such as simulated
annealing [2], large neighbourhood search [1] and tabu search [17] in general works
on a single solution and try to find a better solution in a solution space. On the other
hand, population-based approaches start with many solutions and then try to obtain
optimal solution(s) in the whole search space. The most common population-based
approaches are evolutionary algorithms [11], ant colony algorithms [12], artificial
immune systems [22] etc. In this work, we deal with a hybrid population-based
approach that combine the good properties of a single-based approach (a great deluge
algorithm in this case) and a population-based approach (i.e. fish swarm algorithm) to
solve uncapacitated examination timetabling problem. We try to create a balance
between the exploration (generated by the fish swarm algorithm) and exploitation
(generated by the great deluge algorithm). These algorithms are discussed in details in
Section 3 and Section 4.2, respectively. Interested readers can refer to [20], [23], [29]
[30], and [31] for a comprehensive survey on timetabling.

The rest of the paper is organised as follows. The next section describes the
examination timetabling problem in details. Section 3 presents a fish swarm algorithm
followed by the hybrid approach in Section 4. Experimental results of comparing the
proposed hybrid approach with other algorithms from the literature are reported and
discussed in Section 5. Finally, Section 6 concludes this paper with brief concluding
comments and discussion on the future work.

2 Uncapacitated Examination Timetabling Problem

In this work, the formulations of examination timetabling problem have been adapted
from the description presented in Burke et al. [6]. The problem consists of:

• Ei is a collection of N examinations (i=1,…,N).
• T is the number of timeslots.
• C=(cij)NxN is the conflict matrix where each record, denoted by cij (i,j

∈{1,…,N}), represents the number of students taking exams i and j.
• M is the number of students.
• tk (1≤tk≤T) specifies the assigned timeslots for exam k (k∈{1,…,N}.

The specifications of the uncapacitated examination timetabling problems are shown

in Table 1 as taken from [29].

 A Hybrid Fish Swarm Optimisation Algorithm 541

Table 1. Specifications of the uncapacitated examination timetabling problem

Datasets Number of
timeslots

Number of
examinations

Number of
students

Conflict matrix
density

car91 32 543 18419 0.14

car92 35 682 16925 0.13

ear83I 24 190 1125 0.29

hec92I 18 81 2823 0.42

kfu93 20 461 5349 0.06

lse91 18 381 2726 0.06

sta83I 13 139 611 0.14

tre92 23 261 4360 0.18

uta92I 35 622 21267 0.13

ute92 10 184 2750 0.08

yor83I 21 181 941 0.27

Only one hard constraint is considered for uncapacitated exam timetabling which is
no students should be required to sit two examinations simultaneously.

In this problem, we formulate an objective function which tries to spread out
students’ exams throughout the exam period (Expression (1)) that is treated as a soft
constraint.

M

iF
N

i

−

=

1

1

)(
min (1)

Where:

),(.)(
1

ji

N

ij
ij ttproximityciF

+=

=

(2)

 ≤−≤

=
−

otherwise

ttif
ttproximity ji

tt

ji

ji

0

5||12/2
),(

||5
 (3)

Subject to:

−

= +=

=
1

1 1

0),(.
N

i
ji

N

ij
ij ttc λ where

 =

=
otherwise

ttif
tt

ji
ji

0

1
),(λ (4)

Equation (2) presents the cost for an exam i which is given by the proximity value
multiplied by the number of students in conflict. Equation (3) represents a proximity
value between two exams [8]. Equation (4) represents a clash-free requirement so that
no student is asked to sit two exams at the same time. The clash-free requirement is
considered to be a hard constraint.

3 The Fish Swarm Optimisation Algorithm

Studying the behavior of fish through searching for food attracts a lot of researchers due
to its ability to find foods in a large searching area. In this section, we present the idea of
fish swarming algorithm, that simulates the behavior of a fish inside water (search

542 H. Turabieh and S. Abdullah

space) while they are searching for food. Fish swarm algorithm has been successfully
applied on many optimisation problem such as in [14], [16], [18], [19], [21], [32], and
[33]. In this work, the fish swarm algorithm works on selected solutions rather than all
solutions, with an aim to reduce the computational time. We will use the words “fish”
and “solution” interchangeably throughout the paper. The basic point of a fish swarm
algorithm is the visual scope (area). We categorised three possible cases for the visual
scope for Soli (where Sol represents a solution) as in Figure 1:

• Empty visual: no solution is closed to Soli .
• Crowded visual: many solutions are closed to Soli.
• Not crowded visual: a few solutions are closed to Soli.

A visual scope for a selected solution Soli can be represented as the scope of closed
solutions. The determination of the number of solutions that are closed to Soli is based
on the number of solutions inside the visual scope. The visual is used to determine the
closeness of two solutions which is based on the distance (solution quality) between
two solutions (i.e. f(x’) – f(x)). Note that in this work, if the distance is less or equal to
10, then the solution x’ is closed to x. The category of the visual scope is determined
based on the following mechanism:

θ≤
populationofsize

solutionsclosedofNumber

Fig. 1. A representation of solutions in the search space

where θ is set to 0.5. Note that all the constant values used in this algorithm are
obtained through some preliminary experiments. If the number of the closed solution
is more than the size of the visual scope, then the visual scope is considered as a
crowded area. The size of visual scope is calculated as:

1
2

+PopulationofSize

 A Hybrid Fish Swarm Optimisation Algorithm 543

 i.e. in other words, the visual scope is considered as a crowded area if the number of
the closed solution inside this visual scope is at least greater than half of the
population size.

The simulation behavior of the fish swarm algorithm can be described in three
steps i.e. swarming, chasing and searching behaviors which are based on the category
of the visual scope as shown in Figure 2. If the visual scope is a crowded area then a
searching behavior is employed; if the visual scope is a not crowded area then a
swarming or a chasing behavior is applied; if the visual scope is empty, then a chasing
behavior is applied. The details of the simulation behavior of the fish swarm
algorithm that is employed in this work are discussed as below:

Input
m: size of population
Set Iteration =1
Initialization Phase

 (x1,x2,…,xm) Construction();
Improvement Phase
While termination condition is not satisfied do
 Select a solution using Roulette Wheel Selection (RWS) Soli

Set best solution as Solbest;
 Compute the visual for Soli
 if visual scope is an empty area then
 Soli’= Steepest descent(Soli)
 else
 if visual scope is a crowded area then

Apply a multi-decay rate great deluge to obtain Soli’
as in Fig 5.

 else
 Central Location = compute the central point of visual
 if Central Location is better than Soli then

Estimated quality = Central Location;
Apply a standard great deluge (swarming
behavior) as in [13] to obtain SoliA;

else
Estimated quality = Best Solution, Solbest;
Apply a standard great deluge (chasing behavior)
as in [13] to obtain SoliA;

end if
 if Solbest < Soli then

Estimated quality = Best Solution, Solbest;
Apply a standard great deluge (chasing behavior)
as in [13] to obtain SoliB;

 else
 SoliB = Steepest descent(Soli)
 end if
 Soli’ = min{SoliA , SoliB}
 end if
 end if
 Soli’’ = min{Soli,Soli’} // Update solution
 Iteration++
end while

Fig. 2. The pseudo code for the fish swarm algorithm

544 H. Turabieh and S. Abdullah

A. Swarming or Chasing behavior

A fish (solution) swarms towards a central point (which is an average of the visual
scope) of the search area. This behavior is applied if and only if the central point (in
terms of the quality of the solution) is better than the selected solution Soli.
Otherwise, a fish will chase a best solution so far. These behaviors are represented
by a great deluge algorithm (see Section 4.2) where a central point or a best
solution is treated as an estimated quality, respectively. However, if the visual
scope is empty, a chasing behavior that employed a steepest descent algorithm is
employed.

B. Searching behaviour

In this behavior, a Nelder-Mead simplex algorithm [21] (as in Section 4.1) is used
to determine the movement directions of the fish. There are three directions called a
Contraction-External (CE), a Reflection (R) and an Expansion (E). These
movement directions are later to be used to intelligently control the multi decay rate
in the great deluge algorithm. Note that the details on the multi decay rate great
deluge algorithm are discussed in Section 4.2.

4 The Hybrid Approach

The main issue of hybridising a fish swarm algorithm and the great deluge (or
steepest descent) algorithm is to combine the advantages these algorithms. Before the
great deluge is employed, a Nelder-Mead simplex method is used to calculate the
expected location (estimated quality value) of the selected solution in the population.
Nelder-Mead simplex method is a very efficient local search method procedure but its
convergence is extremely sensitive to the selected starting point, thus a great deluge
algorithm is hybridised in order to control the convergence by using a multi decay
rate that control the level of accepting a worse solution during the search process. The
following two subsections will describe Nelder-Mead simplex algorithm and a multi
decay rate great deluge algorithm, respectively.

4.1 Nelder-Mead Simplex Algorithm

Nelder-Mead simplex algorithm has been proposed by Nelder and Mead [25] which is
a local search method designed for unconstrained optimisation without using gradient
information. This algorithm tries to find an approximation of a local optimum of a
problem with N variables. The method is based on the theory of simplex, which is a
special polytope of N + 1 vertices in N dimensions. The operations of this method
rescale the simplex based on the local behavior of the function by using four basic
procedures: reflection, expansion, contraction external and shrinkage. In this work
only three values have been estimated based on Nelder-Mead simplex algorithm
which they are as follows:

 A Hybrid Fish Swarm Optimisation Algorithm 545

Fig. 3. Nelder-Mead simplex search algorithm

• Contraction_External(CE) =]
2

]
2

[
[]

2
[

3
21

21
x

xx
xx ++

−+

• Reflection(R) = Contraction_External]
2

]
2

[
[

3
21 x

xx ++

−

• Expansion(E) = Reflection]
2

]
2

[
[

3
21 x

xx ++

−

The three expected locations (estimated values) will be used within the multi decay
rate great deluge algorithm in order to control the great deluge decay rate in accepting
a worse solution. Figure 3 represents the three possible new locations for the x3 in the
search space (i.e. at CE, R or E).

4.2 Multi Decay Rate Great Deluge Algorithm

In this work, we applied a great deluge algorithm [13] that can intelligently control
the decay rate based on the estimated value calculated using Nelder-Mead simplex
algorithm. The great deluge algorithm always accepts a better solution, and a worse
solution is accepted in order to escape from local minimum. The acceptance of the
worse solution is controlled by the decay rate that later will affect the performance of
searching behavior. Figure 4 illustrates the changing of the decay rate at different
estimated values.

Fig. 4. Changing decay rate at different estimated values (Contraction-External, Reflection and
Expansion)

546 H. Turabieh and S. Abdullah

Figure 5 represents the pseudo code of the proposed multi decay rate great deluge
algorithm.

Calculate estimated qualities based on Nelder-Mead Simplex Algorithm
Contraction-External (CE), Reflection (R), and Expansion (E)) (see
Section 4.1);
Calculate the force decay rate, βCE = Contraction_External/NumOfIte;
Calculate the force decay rate, βR = Reflection/NumOfIte;
Calculate the force decay rate, βE = Expansion/NumOfIte;
Set initial decay rate as Contraction_External (CE) i.e. β = βCE;
Set level = βCE;
Set maximum number of iteration, NumOfIte;
Iteration ← 1;
do while (iteration < NumOfIte)

Define neighbourhood (N1 and N2) of Soli by randomly assigning
exam to a valid timeslot to generate a new solution called Soli*;
Calculate f(Soli*);
if (f(Soli*) < f(Solbest)) where Solbest represents the best solution
found so far
 Soli ← Soli*;
 Solbest ← Soli*;
else
 if (f(Soli*)≤ level)
 Soli← Soli*;
end if
if Solbest< Reflection (R)
 β = βR;

 else
 if Solbest< Expansion (E)
 β = βE;
end if
level = level - β;
Iteration++

end while

Fig. 5. The pseudo code for the multi decay rate great deluge algorithm

Two different neighbourhood structures and their explanation are outlined as follows:
N1: Select two exams at random and swap timeslots.
N2: Choose a single exam at random and move to a new random feasible timeslots.

5 Simulation Results

In order to test our proposed algorithm, we employed it over uncapacitated
examination timetabling datasets that was introduced by Carter et al. [8]. The details
of datasets can also be found in [29]. The proposed algorithm was programmed using
Matlab and simulations were performed on the Intel Pentium 4 2.33 GHz computer.
The parameter settings used in this work are shown in Table 2.

Table 2. Parameters setting

Parameter Iteration Population size GD-iteration Steepest descent
iteration

Visual

Value 1000000 50 2000 2000 10

 A Hybrid Fish Swarm Optimisation Algorithm 547

Table 3. Results

Instance Best Avg. Median Q1 Q3
car91 4.81 4.93 4.90 4.84 4.92
car92 4.11 4.33 4.19 4.17 4.53
ear83I 36.10 36.54 36.47 36.33 35.58
hec92I 10.95 11.34 11.01 11.00 11.36
kfu93 13.21 13.43 13.60 13.33 13.75
lse91 10.20 10.54 10.65 10.51 10.93
sta83I 159.74 159.93 159.82 159.81 159.96
tre92 8.00 8.45 8.36 8.35 8.51

uta92I 3.32 3.62 3.53 3.33 3.70
ute92 26.17 26.77 26.65 26.55 26.81
yor83I 36.23 36.55 36.42 36.33 36.71

a) b)

c) d)

Fig. 6. Convergence using fish swarm optimization algorithm (a) car91 dataset convergence;
(b) car92 dataset convergence; (c) tre92 dataset convergence; (d) ute92 dataset convergence.

The experiment carried out in this section attempts to space out students’ examination
throughout the examination period. Termination condition is the number of
generations (i.e. 1,000,000 generations). The best, average, median together with the
upper and lower quartiles results are reported in Table 3 which is out of 11 runs.

548 H. Turabieh and S. Abdullah

From Table 3, we can see that our approach is able to obtain good enough results
since the difference between best and average for all datasets is in between (0.08 to
0.35) except for ear83I. We believe the algorithm is robust since the difference
between best and average is small and also the difference between the upper and
lower quartiles is in between (0.03 to 0.44), again except for ear83I. This shows that
the solutions obtained are close to each other at the solution search space.

Figures 6 (a), (b), (c) and (d) show the behavior of our algorithm when exploring
the search space on car91, car92, tre92 and ute92 datasets, respectively. The x-axis
represents the number of generations, while the y-axis represents the overall penalty
cost. These graphs demonstrate how the hybrid algorithm explores the search space.
Note that the timetable quality is measured by taking the average penalty per student.
The curves show that the algorithm begins with initial solutions and rapidly improves
the quality of the timetable. For most of the cases (except for car92), the graphs show
no improvement on the quality of solutions at about 200000 iterations (for tre92) and
400000 iterations (for car91and ute92). For the car92 dataset, the algorithm is still
able to reduce the penalty cost even after 1000000 iterations. This shows that given
extra processing time, the quality of solution on certain datasets might be able to be
enhanced further.

Table 4. Comparison of our results with other approaches in the literature

Instance
Our

approach

Merlot
et al.
[24]

Casey and
Thompson

[10]

Côté et
al.

[11]

Yang and
Petrovic

[34]

Turabieh and
Abdullah

[3]
car91 4.81 5.1 5.4 5.2 4.50 4.80
car92 4.11 4.3 4.2 4.2 3.93 4.10
ear83I 36.10 35.1 34.2 34.2 33.7 34.92
hec92I 10.95 10.6 10.2 10.2 10.83 10.73
kfu93 13.21 13.5 14.2 14.2 13.82 13.00
lse91 10.20 10.5 14.2 11.2 10.35 10.01
sta83I 159.74 157.3 134.9 157.2 158.35 158.26
tre92 8.00 8.4 8.2 8.2 7.92 7.88

uta92I 3.32 3.5 - 3.2 3.14 3.20
ute92 26.17 25.1 25.2 25.2 25.39 26.11
yor83I 36.23 37.4 37.2 36.2 36.35 36.22

Instance
Caramia et

al.
[7]

Abdullah
and Burke

[1]

Qu and
Burke
[28]

Qu et
al.

[27]

Burke et
al.
[5]

Burke and
Bykov

[4]
car91 6.6 4.1 5.16 5.11 4.6 4.42
car92 6.0 4.8 4.16 4.32 3.9 3.74
ear83I 29.3 36.0 35.86 35.56 32.8 32.76
hec92I 9.2 10.8 11.94 11.62 10.0 10.15
kfu93 13.8 15.2 14.79 15.18 13.0 12.96
lse91 9.6 11.9 11.15 11.32 10.0 9.83
sta83I 158.2 159.0 159 158.88 156.84 157.03
tre92 9.4 8.5 8.6 8.52 7.9 7.75

uta92I 3.5 3.6 3.59 3.21 3.2 3.06
ute92 24.4 26.0 28.3 28 24.8 24.82
yor83I 36.2 36.2 41.81 40.71 34.9 34.84

 A Hybrid Fish Swarm Optimisation Algorithm 549

Table 4 shows the comparison of our final results in terms of penalty cost
compared to other recent published results in the literature. The best results are
presented in bold. Our algorithm is capable to find a good enough feasible timetables
for all eleven cases. Even though, our algorithm is not able to obtain new best results,
but from Table 4 we can see that the algorithm works reasonably well across all
datasets and we did not perform the worse in any of the datasets, even the complexity
of the datasets are different (based on the conflict density value). We believe this is
because the capability of the proposed hybrid approach that can make a balance
between exploration and exploitation during the search process that help to minimise
the objective function values and give competitive results for the uncapacitated
examination timetabling problem compared to other algorithm in the literature.

6 Conclusion and Future Work

In this paper, a simulation of fish swarm algorithm has been applied on uncapacitated
exam timetabling problems. The search space has been categorised into three
categories, which are crowded, not crowded and empty areas. The movement of each
fish (solution) is based on its location in the search space. Intelligent decay rate have
been proposed for great deluge algorithm based on the hybridisation with the Nelder–
Mead simplex algorithm. The obtained results are good enough and we strongly
believe that categorising the search space enhances the exploration process while
intelligent controlling the decay rate enhances the exploitation process. Our future
work will aim to test this algorithm on International Timetabling Competition dataset
(ITC2007) for both exam and course timetabling problems.

References

[1] Abdullah, S., Burke, E.K.: A Multi-start large neighbourhood search approach with local
search methods for examination timetabling. In: International Conference on Automated
Planning and Scheduling (ICAPS 2006), Cumbria, UK, pp. 334–337 (2006)

[2] Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual sequence simulated
annealing with round-robin approach for university course timetabling. In: Cowling, P.,
Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 1–10. Springer, Heidelberg (2010)

[3] Turabieh, H., Abdullah, S.: An integrated hybrid approach to the examination timetabling
problem. OMEGA (2011), doi:10.1016/j.omega.2010.12.005

[4] Burke, E.K., Bykov, Y.: Solving exam timetabling problems with the flex-deluge
algorithm. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 370–
372. Springer, Heidelberg (2007) ISBN: 80-210-3726-1

[5] Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable
neighbourhood approaches to university exam timetabling. European Journal of
Operational Research 206, 46–53 (2010)

[6] Burke, E.K., Kingston, J., de Werra, D.: Applications to timetabling. In: Gross, J.,
Yellen, J. (eds.) Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC Press
(2004)

550 H. Turabieh and S. Abdullah

[7] Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination timetabling.
In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer,
Heidelberg (2001)

[8] Carter, M.W., Laporte, G., Lee, S.: Examination timetabling: Algorithmic strategies and
applications. Journal of the Operational Research Society 47(3), 373–383 (1996)

[9] Carter, M.W.: A survey of practical applications of examination timetabling algorithms.
Operations Research 34(2), 193–202 (1986)

[10] Casey, S., Thompson, J.: GRASPing the examination scheduling problem. In: Burke,
E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244. Springer,
Heidelberg (2003)

[11] Côté, P., Wong, T., Sabourin, R.: A hybrid multi-objective evolutionary algorithm for the
uncapacitated exam proximity problem. In: Burke, E.K., Trick, M.A. (eds.) PATAT
2004. LNCS, vol. 3616, pp. 294–312. Springer, Heidelberg (2005)

[12] Dowsland, K., Thompson, J.: Ant colony optimization for the examination scheduling
problem. Journal of the Operational Research Society 56(4), 426–438 (2005)

[13] Dueck, G.: New Optimization Heuristics. The great deluge algorithm and the record-to-
record travel. Journal of Computational Physics 104, 86–92 (1993)

[14] Fernandes, E.M.G.P., Martins, T.F.M.C., Rocha, A.M.A.C.: Fish Swarm Intelligent
Algorithm for Bound Constrained Global Optimization. In: Proceedings of the
International Conference on Computational and Mathematical Methods in Science and
Engineering, CMMSE 2009, June 30 , July 1-3 (2009)

[15] Fox, M.S., Sadeh-Koniecpol, N.: Why is scheduling so difficult? A csp perspective. In:
Proceedings of the European Conference on Artificial Intelligence, pp. 754–767 (1990)

[16] Gao, S., Yang, J.Y.: Swarm intelligence algorithms and applications. China Waterpower
Press, Beijing (2006)

[17] Gaspero, L.D., Schaerf, A.: Tabu search techniques for examination timetabling. In:
Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer,
Heidelberg (2001)

[18] Jiang, M., Mastorakis, N., Yuan, D., Lagunas, M.A.: Image segmentation with improved
artificial fish swarm algorithm. In: Mastorakis, N., Mladenov, V., Kontargyri, V.T. (eds.)
Proceedings of the European Computing Conference. Lecture Notes in Electrical
Engineering, vol. 28, pp. 133–138. Springer, Heidelberg (2009) ISBN: 978-0-387-84818-
1

[19] Jiang, M., Wang, Y., Pfletschinger, S., Lagunas, M.A., Yuan, D.: Optimal multiuser
detection with artificial fish swarm algorithm. In: Huang, D.-S., Heutte, L., Loog, M.
(eds.) ICIC 2007. CCIS, vol. 2, pp. 1084–1093. Springer, Heidelberg (2007)

[20] Lewis, R.: A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum 30(1), 167–190 (2008)

[21] Li, X.L., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animate:
fish swarm algorithm. System Engineering Theory and Practice 11, 32–38 (2002)

[22] Malim, M.R., Khader, A.T., Mustafa, A.: Artificial immune algorithms for university. In:
Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 234–245. Springer,
Heidelberg (2007)

[23] McCollum, B.: A perspective on bridging the gap between theory and practice in
university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS,
vol. 3867, pp. 3–23. Springer, Heidelberg (2007)

[24] Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the
Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT
2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

 A Hybrid Fish Swarm Optimisation Algorithm 551

[25] Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer
Journal 7, 308–313 (1965)

[26] Petrovic, S., Burke, E.K.: Chapter 45: University timetabling. In: Leung, J. (ed.)
Handbook of Scheduling: Algorithms Models and Performance Analysis. CRC Press,
Boca Raton (2004)

[27] Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid
heuristics for exam timetabling and graph colouring problems. European Journal of
Operational Research (EJOR) 198(2), 392–404 (2009)

[28] Qu, R., Burke, E.K.: Hybridisations within a graph based hyper-heuristic framework for
university timetabling problems. Journal of Operational Research Society (JORS) 60,
1273–1285 (2009)

[29] Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search
methodologies and automated system development for examination timetabling. Journal
of scheduling, 55–89 (2009)

[30] Sadeh, N., Kaujnunn, M.: Micro-opportunistic scheduling: The micro-boss factory
scheduler. In: Intelligent Scheduling, pp. 99–135. Morgan Kaufmann, San Francisco
(1994)

[31] Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2),
87–127 (1999)

[32] Wang, C.-R., Zhou, C.-L., Ma, J.-W.: An improved artificial fish swarm algorithm and
its application in feed-forward neural networks. In: Proceedings of the Fourth
International Conference on Machine Learning and Cybernetics, pp. 2890–2894 (2005)

[33] Wang, X., Gao, N., Cai, S., Huang, M.: An Artificial Fish Swarm Algorithm Based and
ABC Supported QoS Unicast Routing Scheme in NGI. In: Min, G., Di Martino, B.,
Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp.
205–214. Springer, Heidelberg (2006)

[34] Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in
Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 247–269. Springer, Heidelberg (2005)

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 552–566, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Sandpile Mutation Operator for Genetic Algorithms

C.M. Fernandes1,2, J.L.J. Laredo1, A.M. Mora1, A.C. Rosa2, and J.J. Merelo1

1 Department of Architecture and Computer Technology, University of Granada, Spain
2 LaSEEB-ISR-IST, Technical Univ. of Lisbon (IST)
{cfernandes,acrosa}@laseeb.org

{jjmerelo,juanlu.jimenez,amorag77}@gmail.com

Abstract. This paper describes an alternative mutation control scheme for Ge-
netic Algorithms (GAs) inspired by the Self-Organized Criticality (SOC) the-
ory. The strategy, which mimics a SOC system known as sandpile, is able to
generate mutation rates that, unlike those given by other methods of adaptive
parameter control, oscillate between very low values and cataclysmic muta-
tions. In order to attain the desired behaviour, the sandpile is not just attached to
a GA; it is also modified in an attempt to link its rates to the stage of the search,
i.e., the fitness distribution of the population. Due to its characteristics, the
sandpile mutation arises as a promising candidate for efficient and yet simple
and context-independent approach to dynamic optimization. An experimental
study confirms this assumption: a GA with sandpile mutation outperforms a re-
cently proposed SOC-based GA for dynamic optimization. Furthermore, the
proposed method does not increase traditional GAs’ parameter set.

1 Introduction

Many industrial applications have dynamic components that lead to variations of the
fitness function — i.e., the problem is defined by a time-varying fitness function —
and Genetic Algorithms (GAs) [1] characteristics make them candidate tools to solve
this class of problems. However, issues like genetic diversity, premature convergence,
exploration-exploitation balance and re-adaptation, may require, in dynamic optimiza-
tion, rather different approaches. Self-Organized Criticality (SOC) [3] can provide
solutions to the difficulties intrinsic to non-stationary problems.

SOC describes a property of complex systems that consists of a critical state
formed by self-organization at the border of order and chaos. While order in this
context means that the system is working in a predictable regime where small distur-
bances have only local impact, chaos is an unpredictable state sensitive to initial
conditions or small disturbances. One of the characteristics of SOC is that small dis-
turbances can lead to the so-called avalanches, i.e., events that are spread spatially or
temporally through the system. Such events occur independently of the initial state
and the same perturbation may lead to small or large avalanches, which show a pow-
er-law proportion between their size and quantity. This means that large (catastrophic)
events may hit the system from time to time and reconfigure it.

When combined with a GA, SOC systems can introduce large amounts of genetic
novelty into the population, periodically, in an unsupervised and non-deterministic
manner, as shown in [14]. In fact, SOC has already been applied to Evolutionary

 The Sandpile Mutation Operator for Genetic Algorithms 553

Computation in the past [6, 12, 13, 14]. The present work, which follows a different
approach, describes a mutation operator for binary GAs based on a SOC model called
sandpile [3] and investigates its performance on dynamic optimization problems. The
sandpile mutation is able to evolve periods of low mutation rate values punctuated by
macro mutation peaks and is a promising candidate to deal with dynamic problems.
Previous results [9] confirm these assumptions. In this paper, we present an enhanced
version of the method and follow a different experimental methodology.

The paper is structured as follows. A state-of-the-art review is provided in Section
2 and the sandpile model and the sandpile mutation are introduced in Section 3. Sec-
tion 4 describes the experiments and discusses the results. Finally, Section 5 con-
cludes the paper and discusses future lines of research.

2 SOC in Evolutionary Computation

Strategies for controlling GAs’ parameters are usually divided into three categories
[8]: deterministic, adaptive and self-adaptive. Deterministic methods, which change
the values according to deterministic rules, may be useful when developing GAs for
problems of which the characteristics are known. However, they are not robust and
usually do not maintain the performance when switching to different problems or
even different instances. In these situations, adaptive methods are more suitable since
the variation depends indirectly on the problem and the search stage. However, adap-
tive control requires strategies that may depend, for instance, on population geno-
types, phenotypes or fitness. Self-adaptive methods follow the same intuition that led
to GAs, by allowing the values to evolve together with the solutions to the problem.
Nevertheless, and according to Bäck et al. [2], this method, when applied to binary
GAs, may slow down the convergence of the standard GA or deteriorate the best
fitness values. Besides, self-adaptive GAs enlarge the search space by codifying the
parameters in the chromosome.

Another approach is possible. SOC may be used in GAs for controlling the parameter
values, diversity or population size and possibly overcoming the difficulties inherent to
other control methods. Previous works suggest that the task is feasible and, in some
situations, may improve the algorithms’ performance. Extremal Optimization [4], for
instance, is an optimization algorithm based on SOC that evolves a single solution to the
problem by means of local search and modification. By plotting the fitness of the solu-
tion, it is possible to observe distinct stages of evolution, where improvement is dis-
turbed by brief periods of dramatic decrease in the quality of the solution.

In the realm of Evolutionary Computation, Krink et al. [10] proposed two control
schemes — later extended to cellular GAs [11] — based on the sandpile. The model’s
equations are computed offline in order to obtain the “power-law values”, which are
then used during the run to control the number of individuals that will be replaced by
randomly generated solutions (SOC mass extinction model) or the mutation probabili-
ty of the algorithm (SOC mutation model).

Tinós and Yang [12] were also inspired by SOC to create a sophisticated Random
Immigrants GA (RIGA) [11], called Self-Organized Random Immigrants GA
(SORIGA). The rules of SORIGA’s dynamics are the following. In each generation,
the algorithm replaces the worst individual of the population and its neighbors
(determined by the individuals’ indexes in the population) by random solutions.

554 C.M. Fernandes et al.

Because this strategy by itself does not guarantee that the system exhibits SOC beha-
vior — the new chromosomes are quickly replaced by the fittest chromosomes in the
population —, the random solutions are stored in a subpopulation and the chromo-
somes from the main population are not allowed to replace the new individuals. By
plotting the extent of extinction events, which shows a power-law proportion between
the size and their frequency, the authors argue that the model exhibits SOC [14].

Our proposal differs from previous approaches. Power-law values are not previous-
ly computed, like in [12] and [13]. This feature may be very important when tackling
dynamic problems, because large avalanches can be linked (online) to changes in the
environment. In addition, SORIGA, the closest method to the one presented in this
paper, gives new genetic material to the population by inserting new chromosomes
in each generation, while the sand pile mutation may completely reconfigure the pop-
ulation’s alleles in only one generation. The tests in Section 4 demonstrate that the
GA with sandpile mutation is able to outperform SORIGA.

3 The Sandpile Model and the Sandpile Mutation

In 1987, Bak et al. [3] identified the SOC phenomenon in a model called the sandpile,
a cellular automaton where each cell of the lattice keeps a value that corresponds to
the slope of the pile. In its simplest form, the sand pile is a linear lattice of sites , , . . . where “sand” is randomly dropped, one grain at a time. The number of
grains deposited on site is represented by the function , which may be referred
as the height of the pile. The grains accumulate in the lattice as long as the height
difference between adjacent sites does not exceed a threshold value. If that happens,
the grain topples from site to the adjacent sites, and if the height difference between
the following adjacent also exceeds the threshold, then the grain topples again. The
toppling only stops when the grain reaches a site were the slope does not exceed the
value defined as threshold. Considering the whole system, it may be stated that the
toppling stops when the pile reaches the equilibrium state.

The process can be generalized to two dimensions (the case that matters for this
paper). Grains of sand are randomly dropped on the lattice where they pile up and
increment the values of the slopes x, y . Then, if the slope at site , is bigger
than critical , the grains are distributed by its neighboring sites (a von Neumann
neighborhood is considered here. If one of those sites also exceeds the threshold val-
ue, the avalanche continues.

If the lattice is previously driven (initialized) to a critical state, we then see ava-
lanches of all sizes, from a single tumble to events that reconfigure almost the entire
pile. The likelihood of an avalanche is in power-law proportion to the size of the
event, and avalanches are known to occur at all size scales. Large avalanches are very
rare while small ones appear very often. Without any fine-tuning of parameters, the
system evolves to a non-equilibrium critical state: SOC.

A two-dimensional sandpile model can be constructed with simple rules. In this
straightforward design, the number of grains of sand in a cell , characterizes its
state. The update rule states that if a cell has fours grains of sand in it, it loses four,
and from each of its four immediate neighbor cell (von Neumman neighborhood) with
four or more grains in it, it gains one. The sandpile mutation uses this description of
the two-dimensional model in order to evolve self-regulated mutation rates.

 The Sandpile Mutation Operator for Genetic Algorithms 555

Sand pile Mutation

for grains do
 drop grain at random within the bounds of the lattice , , 1
 if , and 0, 1.0 >
 mutate (flips the bit with probability 0.5)
 avalanche , , 4 1, 1, 1 , 1 , 1 1
 and update lattice recursively

: normalized fitness associated with solution over which the grain has been dropped

Fig. 1. Pseudo-code of the sand pile mutation

First, the GA’s population is linked to a lattice with 1, … and 1, … , where is the population size and is the chromosome length. For in-
stance, the first gene of the first chromosome is linked to the 1,1 , the second gene of
the first chromosome is linked to cell 1,2 and so on. Then, the sandpile is initialized
so that it is near critical state when the GA starts. This is done by running the algo-
rithm of the model, without linking it to the GA, until the rate of dropping sand is
approximately equal to the rate at which the sand is falling of the sides of the table.
Then, in each generation, the individuals are selected, recombined and evaluated (no
mutation at this stage). After that, the solutions are ranked according to their fitness,
each individual is mapped into the lattice and grains are randomly dropped on the
lattice thus incrementing the cells’ values , . When a cell reaches the critical
value 4, an avalanche occurs if a value randomly generated from a uniform
distribution between 0 and 1.0 is higher than the normalized fitness of the individual
associated with the cell. This way, fitter individuals have less chances of being mu-
tated. After a first avalanche, the neighboring cells are recursively updated and the
avalanche may proceed through the lattice. (See the pseudo-code in Fig. 1.)

The sandpile mutation has one restriction that is not present in the sandpile model:
if a cell is already involved in an avalanche, and the recursive nature of the process
has not allowed it to complete its sequence, then the cell is ignored. This restriction
eliminates hypothetical avalanche cycles and several mutations of the same gene. One
more details must be referred: if a cell reaches but there is no mutation (due to the
fitness test), then the grain is discarded.

The critical issue here is the value. Please note that the chromosomes are eva-
luated before being mutated by the sand pile scheme. This is the only way to assure
that fitness values influence the mutation, but then the next selection stage is working
with values that do not correspond to the current genotype. A possible solution could
be to re-evaluate the entire population after the mutation stage, but this would double
the computational effort. The first version of the sandpile mutation [15] assumed the
apparent drawback of selecting individuals with outdated fitness values and defined

 as:

556 C.M. Fernandes et al.

 . (1)

where is the index of the chromosome associated with the cell , ,
is the lowest fitness in the population and is the highest. However, and
although the results published in [9] were quite promising, further tests [10] showed
that the algorithm’s efficiency when compared to other algorithms was not as notice-
able as expected after the preliminary tests. A modified version was then tested, im-
proving consistently the first sandpile mutation:

 . (2)

where is the average fitness of chromosome parents. This way,
the sandpile mutation acts right after the new population is created by selection and
crossover, and before evaluation. Since fitter parents have more chance to generate
fitter offspring, this approach may be a good approximation to the original idea.

Another modification was made when handling the exception . When this equality occurs the GA may have fully converged, and
therefore it may be more suited to set 0 for all , meaning that the mutation
surely occurs after an avalanche. This way, the sand pile is “open” for massive muta-
tions. Finally, to avoid extra difficulties in testing the algorithm, the mutation type is
set to flip the bit with probability 0.5 (i.e., in case of mutation, the allele flips with a
probability of 0.5). A bit-flip mutation (i.e., the alleles flip with a probability of 1.0)
could bias the results towards the algorithm in some test functions, like the trap func-
tions, for instance. The global and local optima of these problems are, respectively,
strings of 1s and strings of 0s. If a population has converged to the local optimum, a
massive bit-flip mutation can lead the population to the global optimum, thus taking
advantage of the problem’s structure.

In the taxonomy of evolutionary solutions to dynamic optimization, a Generational
GA with the sand pile mutation (GGASM) may be classified as a diversity maintenance
strategy [6], along with the already referred RIGA and SORIGA. The Elitism-based
Immigrants GA (EIGA) is another diversity maintenance strategy, recently proposed
in [16]. EIGA is a very simple strategy that in every generation replaces a fraction
of the population by mutated copies of the best solution of the previous generation
(with mutation probability). The results reported in [16] situate it as a state-of-the-
art GA for dynamic optimization. For that reason, EIGA was introduced in the test
set, together with SORIGA and a standard Generational GA (GGA).

There are other types of evolutionary approaches to dynamic optimization, such as
memory schemes [5], reaction to changes [7] and multi-population approaches [6],
but for now these are left out of the experimental setup since they usually rely on a
different premises (reactive algorithms, for instance, require that changes are easy to
detect) or are more suited for a specific type of dynamics (memory, for instance, loses
efficiency when the changes are not cyclic).

 The Sandpile Mutation Operator for Genetic Algorithms 557

4 Test Set and Results

The experiments were conducted on dynamic versions of trap functions, royal road
R1 problem and 0 1 knapsack problem. Therefore, we have quasi-deceptive func-
tions (order-3 traps), deceptive functions (order-4 traps), non-deceptive functions
(Royal Road) and constrained combinatorial problems (knapsack) as base-functions
for constructing the non-stationary problems.

4.1 Functions

The knapsack version used in these experiments is described in [15]. The Royal Road
R1 function is defined by:

x (3)

where is the number of schemata , … , , is set as 1 if is an in-
stance of and 0 otherwise, and 8 for all ; a 64-bit string was used and each
schema is composed of 8 contiguous bits.

A trap function is a piecewise-linear function defined on unitation (the number of
ones in a binary string) that has two distinct regions in the search space, one leading
to a global optimum and other leading to the local optimum. Depending on its para-
meters, traps may be deceptive or not. The traps in these experiments are defined by: ,1 , (4)

where is the unitation function and is the problem size (and also the fitness of
the global optimum). With these definitions, order-3 traps are in the region between
deceptive and non-deceptive, while order-4 traps are deceptive. For this study, 30-bit
and 40-bit problems were designed by juxtaposing ten order-3 and order-4 traps.

4.2 Methodology

The test environment proposed in [15] was used to create a dynamic experimental
setup based on the functions described above. With this problem generator, it is poss-
ible to construct dynamic problems with different degrees of severity and speed —
i.e., the extent of the changes and the frequency of the changes, respectively — using
stationary base-functions with binary variables. This is accomplished by applying a
binary mask to the solutions, thus shifting the fitness landscape. The generator has
two parameters that control the severity of the changes and their frequency: is a
value between 0 and 1.0 that controls the severity of changes and defines the num-
ber of generations between changes. In this paper, we use the number of evaluations
ε between changes, where is the population size. Since, without the popu-
lation size value, does not give enough information on the computational cost re-
quired between each change, we think that using ε is more suited for discussing the
performance of GAs on dynamic optimization problems.

558 C.M. Fernandes et al.

Fig. 2. Order-3 dynamic traps: averaged offline performance with different (population size).
Best value (and standard deviation) in each graph is shown. SORIGA’s (number of immi-
grants introduced in the population) is set to . EIGA’s (ratio of mutated copies of the best
solution that are introduced in the population) is set to . , and .

The experiments were designed by setting, for each of the stationary base-
functions, 1200, 2400, 24000, 48000 and 0.05, 0.3, 0.6, 0.95 , thus
making 16 different dynamic scenarios of each type of problem. Every run covered 10 periods of changes. For each experiment, 30 independent runs were executed with
the same 30 random seeds. This methodology is similar to the one in [14], in which
SORIGA is tested with 10 periods of changes and the of the fastest scenario is set
to 1200.

We are particularly interested in the GAs’ performance when varying the mutation
probability, because diversity maintenance strategies may shift the optimal mutation
probability values (i.e., the values that maximize the performance). Therefore, it is
of extreme importance to test the GAs under a reasonable range of values, so that
the results don’t become biased towards some of the approaches. A similar proceed-
ing was conducted when tuning the parameter the of GGASM, which was set to
several values in the range 32⁄ to , where is the population size and is
the chromosome dimension. The population size also affects the performance of the
GAs, not only in stationary problems, but also in dynamic environments. In this study,
the algorithms were tested with 30, 60 and 120.

24.10
±0.27

20

22

24

26

1/(16×l) 1/(4×l) 1/l 4/l

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce

SORIGA

28.11
±0.15

23

25

27

29

1/(16×l) 1/(4×l) 1/l 4/l

SORIGA

24.71
±0.33

20

22

24

26

1/(16×l) 1/(4×l) 1/l 4/l

av
er

ag
ed

 o
ff

lin
e

pe
rf

or
m

an
ce

mutation probablity, pm

EIGA

n = 30

n = 60

n = 120

28.15
±0.15

23

25

27

29

1/(16×l) 1/(4×l) 1/l 4/l
mutation proability, pm

EIGA

 The Sandpile Mutation Operator for Genetic Algorithms 559

ε = 2400 ε = 24000

Fig. 3. Order-4 dynamic traps: offline performance. 60. GGASM: 8⁄ if 2400; 32⁄ if 24000. EIGA: 1⁄ if 2400; 2⁄ if 24000. SORIGA: 1 16⁄ if 2400; 1 4⁄ if 24000.

Table 1. Kolmogorov-Smirnov tests with 0.05 level of significance. + signs when GGASM is
significantly better than the specified GA, − signs when GGASM is significantly worst, and ≈
signs when the differences are not statistically significant (i.e., the null hypothesis is not
rejected). Order 3 and Knapsack: ; order-4 and Royal Road: ; see [10] for
and values.

ρ →

or
de

r-
3 GGA ≈ − − ≈ ≈ − − ≈ ≈ ≈ + + ≈ ≈ + +

SORIGA + ≈ ≈ + + ≈ ≈ + + + + + + + + +
EIGA ≈ − − ≈ ≈ ≈ ≈ ≈ + + + + + + + +

or
de

r-
4 GGA − ≈ ≈ − ≈ ≈ ≈ ≈ + + + + + + + +

SORIGA ≈ + + + ≈ + + + + + + + + + + +
EIGA − ≈ ≈ − ≈ ≈ ≈ − + + + ≈ + + + +

R
. R

oa
d GGA + ≈ ≈ ≈ ≈ + ≈ ≈ ≈ + + + + + + +

SORIGA + ≈ − − + ≈ − − + ≈ − − + + ≈ −

EIGA ≈ ≈ + ≈ + + + ≈ + + + + + + + +

K
na

ps
ac

k GGA − − + + − ≈ + + + + ≈ − + + + ≈
SORIGA ≈ + + + ≈ + + + + + + + + + + +

EIGA − − + + − − + + + + − − + + + −

Uniform crossover was chosen in order to avoid taking advantage of the trap func-

tion building blocks tight linkage. Every algorithm in the test set uses binary tourna-
ment. Preliminary tests demonstrated that a high crossover probability together with
an elitist strategy maximize the performance of the GA, therefore, we use GAs with

29

30

31

32

33

34

35

ρ = 0.05 ρ = 0.3 ρ = 0.6 ρ = 0.95

of
fli

ne
 p

er
fo

rm
an

ce

severity

SORIGA

EIGA

GGASM

33

34

35

36

37

38

39

ρ = 0.05 ρ = 0.3 ρ = 0.6 ρ = 0.95

severity

560 C.M. Fernandes et al.

2-elitism and 1.0. The offline performance, as defined in [15] (best-of-
generation fitness values averaged over the total number of runs and over the data
gathering period), is used to evaluate the GAs: 1G 1R (5)

where is the number of generations, is the number of runs and is the best-of-
generation fitness of generation of run of a GA on a specific problem. The output
of the experiments generated a large amount of data that cannot be entirely analyzed
and described in this paper. The analysis is thus limited to some fundamental issues.

4.3 Results

As expected, different algorithms require different values in order to maximize
their performance. Fig. 2 shows EIGA and SORIGA’s offline performance in order-3
traps, averaged over the results in scenarios with different severity. First, it is clear
that SORIGA’s optimal performance values are worst than EIGA, although the differ-
ence is not statistically significant when 24000. Those optimal values are at-
tained with different mutation probability values: while SORIGA attains the best
performance with values in the range 1 16⁄ to 1 4⁄ , EIGA’s best per-
formance is attained with 1⁄ . In addition, the graphics show that the perfor-
mance also depends on the population size: small populations (30 and 60 individuals)
are more efficient. Similar behavioral patterns have been observed in the other
problems. These results demonstrate that experimental studies involving diversity
maintenance GAs for dynamic optimization problems must include preliminary tests
covering a wide range of mutation probability values and different population size
values.

Another relevant outcome of the experiments conducted for this investigation is il-
lustrated by Fig. 3, which shows the results attained by the best configurations in
order-4 traps. In general, GGASM outperforms the other GAs when frequency of

Fig. 4. Dynamic royal road R1: offline performance. . GGASM: 32⁄ ;
EIGA: 1⁄ .

10

20

30

40

50

ρ = 0.05 ρ = 0.3 ρ = 0.6 ρ = 0.95

of
fli

ne
 p

er
fo

rm
an

ce

severity

EIGA

GGA SM

24

34

44

54

64

ρ = 0.05 ρ = 0.3 ρ = 0.6 ρ = 0.95
severity

 The Sandpile Mutation Operator for Genetic Algorithms 561

changes is lower. In faster environments, the algorithm is not so efficient, although, in
this case (and also in the knapsack problem), it still outperforms SORIGA. As for
EIGA, it is in general better than GGASM in the fastest scenarios (1200), except
in the Royal Road function, in which the GA with the sandpile mutation is always
better or at least equivalent to EIGA. Please note that the optimal may also depend
on the frequency of change, as seen in Fig. 3.

Table 1 summarizes the experiments and illustrates the previous comments by dis-
playing the non-parametric statistical tests performed on the offline performance
values attained by the best configurations of each algorithm in each type of problem.
For each scenario, GGASM’s result is compared with the other GA’s offline perfor-
mance using a paired Kolmogorov-Smirnov test with 0.05 level of significance. The
null hypothesis states that the datasets from which the offline performance and the
standard deviation are calculated are drawn from the same distribution. In general,
GGASM is better than SORIGA and it is at least competitive with EIGA (in slower
scenarios it clearly outperforms EIGA).

The exception is the behavior of SORIGA and GGASM in Royal Road dynamic prob-
lems. In this case, SORIGA is the best GA when severity is high, while the sandpile
mutation outperforms the other algorithms when severity is low. On the other hand,
GGASM attains better or equivalent results as EIGA in every Royal Road dynamic prob-
lem. As shown in Fig. 4, the GA with the sandpile mutation outperforms EIGA in most
of the Royal Road scenarios, even when 2400. These results demonstrate that the
sandpile mutation may improve a generational GA’s performance on dynamic optimiza-
tion problems with different characteristics, as well as two state-of-the-art GAs for dy-
namic optimization, especially when the period between changes is not very small. The
next section analyses the mutation rates’ distribution of GGASM and tries to shed some
light on the working mechanisms of the sandpile mutation.

Table 2. Order-4 traps. Mutation rate median values. / .

 . 0.0011 0.0007 . 0.0021 0.0011 . 0.0023 0.0014 . 0.0010 0.0009

4.4 Mutation Rate Analysis

As demonstrated in the previous section, the optimal may vary according to the
dynamics of the problem. The same happens with the parameter , which defines the
number of grains that are dropped over the sandpile in each generation. Being a
parameter of the new algorithm, it is important to, at least, give some hints on how it
must be set. In our experiments, optimal lies between /32 and /2,
depending on the problem, and for now we haven’t devised any rule to avoid testing
and hand-tuning the parameter. This complicates the GA’s parameter tuning, but the

562 C.M. Fernandes et al.

same happens with in a standard GA. A positive trait, though, is that previous results
[10] suggest that GAs are less sensitive to than to .

This section investigates how the mutation rates vary during the run, and if their
distribution somehow reflects the type of dynamics. For that purpose, in each genera-
tion, the population before and after the sandpile mutation operator (i.e., before and
after all the grains are dropped) is compared. The mutation rate in generation is
then defined as the ratio between the number of alleles that flipped and the size of the
sandpile, as defined by Equation 6, where , 1 if the gene of the chromo-
some has mutated, and 0 otherwise (is the population size and is the chromo-
some length). Percentage is given by 100. ∑ ∑ ,

 (6)

If we compute the median values of the mutation rates over 30 independent runs
and over the data gathering period, an interesting pattern shows up — see Error! Not
a valid bookmark self-reference.. The median varies with the severity of the
changes. The scenarios with 0.05 and 0.95 have similar values, but if one
takes a closer look into the mutation rate values during the run, it is clear that low and
high severity give rise to a rather different behavior. Fig. 5 shows the mutation rate
values during 400 generations of a GGASM run on order-4 scenarios with 24000. When comparing the curves of , it is clear that the dynamics of the mutation
is different for each case. With 0.95, there is more activity in the macro-mutation
region.

Fig. 6 addresses the same issue with a different perspective, by plotting the log-log
of the mutation rates and their abundance. We see that the shapes of the log-log are
different: with 0.05 there is more activity in the medium range (1~5%), while

Fig. 5. Order-4 dynamic trap problems. GGASM online mutation rate. Population size: 60.
Grain rate: 32⁄ . ε 24000. 0.95 shows more activity at higher rates (30%). In general, and as expected,
the graphics show that low rates arise more frequently than high rates. Such a distri-
bution was the main objective of this work.

0%

10%

20%

30%

40%

50%

0 800 1600 2400 3200 4000

m
ut

at
io

n
ra

te
 (×

10
0%

)

generations

ρ = 0.05

0%

10%

20%

30%

40%

50%

0 800 1600 2400 3200 4000
generations

ρ = 0.95

 The Sandpile Mutation Operator for Genetic Algorithms 563

The previous experiment suggests that the sandpile may be adapting the mutation
rates’ distribution to the severity of the changes. Another experiment was designed in
order to investigate if there are differences in the distribution when varying the period
between changes while maintaining the other parameters. For that purpose, the maxi-
mum number of evaluations was fixed at 600000, and three problems were con-
structed, by setting to random (that is, is randomly generated from a uniform
distribution between 0 and 1.0 at the arrival of a new change) and to 6000, 24000
and 120000. The resulting distributions, in Fig. 7, show that one of the effects of
increasing is an attenuation of the activity in the high range (~30%), and a decrease
of smaller rates (~3%). That is, like severity, seems to affect the distribution of
GGASM mutation rates.

These experiments give some hints on the reasons why GGASM is able to improve
other GAs performance on some dynamic problems. As intended, the sandpile muta-
tion is able to evolve slow and medium mutation rates punctuated by mutation

Fig. 6. Logarithm of the mutation rates abundance plotted against their values

Fig. 7. Mutation rates distribution. Order-3 traps; ; 16⁄

bursts that reconfigure almost 50% of the alleles in the population. These macro-
mutations can help the population to escape full convergence or local optima, thus
giving the GA a chance to track the moving optimum. However, when the problems
are fast (i.e.,there are only a few generations between changes), the sandpile may lack

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

0% 1% 10% 100%

qu
an

ti
ty

mutation rate (×100%)

ρ = 0.05

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

0% 1% 10% 100%
mutation rate (×100%)

ρ = 0.95

1E+00

1E+01

1E+02

1E+03

1E+04

1 10 100

qu
an

ti
ty

mutation rate (×100%)

ε = 6000

1 10 100
mutation rate (×100%)

ε = 24000

1 10 100
mutation rate (×100%)

ε = 120000

564 C.M. Fernandes et al.

the necessary time between each change for that state in which large avalanches are
likely to occur, and therefore it is not able to improve standard GAs’ performance. As
a matter of fact, in the experiments conducted for these investigations, neither
SORIGA nor EIGA were able to clearly outperform GGA in the low and medium
severity scenarios of the fastest problems (1200 , a result that suggests that a
standard evolutionary search may be the best choice to tackle such kind of
problems.

These last experiments, although they shed some light on the working mechanisms
of the sandpile mutation, need to be extended in order fully understand the self-
regulated behaviour of the sandpile mutation.

5 Conclusions and Future Work

This paper describes an online mutation rate adjustment strategy for GAs based on the
SOC theory. Since dynamic optimization requires a particular balance between explo-
ration and exploitation to provide the algorithm with means to track the optimum
when the function changes, new strategies need to be devised in order to deal with
this issue. Due to its characteristics, SOC is a promising candidate for improving
traditional GAs abilities to deal with dynamic problems. Our approach uses SOC at
the mutation level, providing the GA with a self-regulated mutation rate that reflects
the search stage and the dynamics of the problem.

The algorithm was compared with two state-of-the art approaches to dynamic op-
timization — one of them, SORIGA, is also based on SOC. The sandpile GA demon-
strated to outperform SORIGA consistently over the entire test set, except in the Roy-
al Road low severity problems. When compared to EIGA, an efficient algorithm for
dynamic optimization recently proposed, the sandpile mutation showed to improve its
performance on lower frequency scenarios, while being competitive in faster prob-
lems. The paper also provides an analysis of the distribution of the mutation rates
throughout the run. The algorithm seems to be able to adapt the distribution to the
type of problem. Finally, parameter replaces ; therefore, the size of the GAs’
parameter space does not increase.

Future research will focus on the mutation rates’ distribution; metrics are needed in
order to understand how the rates vary with the type of problem and the genetic diver-
sity during the run should be investigated so that the working mechanisms of the
operator can be understood. In addition, an in-depth comparison with EIGA is in
course, so that the potential of the sandpile can be fully acknowledged. In particular,
we intend to study it in even faster scenarios and increase the periods of changes to
50, as in [16].

It is also of great importance to study the behavior of the sandpile mutation with
problems (such as the knapsack) in which the variables forming the building-blocks
are not near-encoded, or, alternatively, to devise a sandpile-like model in which the
avalanches do not spread trough adjacent cells. Finally, the structure of the sandpile
itself may be affecting the performance of the operator, and other topologies (such as
a torus lattice) should be tested.

 The Sandpile Mutation Operator for Genetic Algorithms 565

Acknowledgements. This work has been partially funded by FCT, Ministério da
Ciência e Tecnologia, his Research Fellowship SFRH/BPD/66876/2009, also sup-
ported by FCT (ISR/IST plurianual funding) through the POS_Conhecimento Pro-
gram. In addition, this paper has also been funded in part by the Spanish MICYT
projects NoHNES (TIN2007-68083) and TIN2008-06491-C04-01, and the Junta de
Andalucía P06-TIC-02025 and P07-TIC-03044.

References

1. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Ox-
ford (1996)

2. Bäck, T., Eiben, A.E., van der Vart, N.A.L.: An Empirical Study on GAs ”Without Para-
meters”. In: Schoenauer, M., et al. (eds.) Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature (PPSN VI), pp. 315–324. Springer, London
(2000)

3. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise.
Physical Review of Letters 59, 381–384 (1987)

4. Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Complexity 8(2), 57–
62 (2003)

5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. of the 1999 Congress on Evolutionary Computation, pp. 1875–1882. IEEE
Press, Los Alamitos (1999)

6. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic Pub-
lishers, Norwell (2002)

7. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in
GAs having continuous, time-dependent nonstationary environments. Tech. Report AIC-
90-001, Naval Research Laboratory, Washington, USA (1990)

8. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algo-
rithms. IEEE Trans. on Evolutionary Computation 3(2), 124–141 (1999)

9. Fernandes, C.M., Merelo, J.J., Ramos, V., Rosa, A.C.: A Self-Organized Criticality Muta-
tion Operator for Dynamic Optimization Problems. In: Proc. of the 2008 Genetic and Evo-
lutionary Computation Conference, pp. 937–944. ACM, New York (2008)

10. Fernandes, C.M.: Diversity-enhanced GAs for dynamic optimization. Ph.D Thesis, Tech.
U. Lisbon (2009),
http://geneura.ugr.es/pub/tesis/PhD-CFernandes.pdf

11. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Parallel Problem
Solving from Nature II, pp. 137–144. North-Holland, Amsterdam (1992)

12. Krink, T., Rickers, P., René, T.: Applying self-organized criticality to Evolutionary Algo-
rithms. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-
P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 375–384. Springer, Heidelberg
(2000)

13. Krink, T., Thomsen, R.: Self-Organized Criticality and mass extinction in Evolutionary
Algorithms. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation
(CEC 2001), vol. 2, pp. 1155–1161. IEEE Press, Los Alamitos (2001)

14. Tinós, R., Yang, S.: A self-organizing RIGA for dynamic optimization problems. Genetic
Programming and Evolvable Machines 8, 255–286 (2007)

566 C.M. Fernandes et al.

15. Yang, S., Yao, X.: Experimental study on PBIL algorithms for dynamic optimization
problems. Soft Computing 9(11), 815–834 (2005)

16. Yang, S.: Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic
Environments. Evolutionary Computation 16(3), 385–416 (2008)

Self-adaptation Techniques Applied to

Multi-Objective Evolutionary Algorithms

Saúl Zapotecas Mart́ınez�, Edgar G. Yáñez Oropeza,
and Carlos A. Coello Coello��

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación
México D.F. 07300, MÉXICO
saul.zapotecas@gmail.com,

eyanez@computacion.cs.cinvestav.mx,

ccoello@cs.cinvestav.mx

Abstract. In spite of the success of evolutionary algorithms for dealing
with multi-objective optimization problems (the so-called multi-objective
evolutionary algorithms (MOEAs)), their main drawback is the fine-
tuning of their parameters, which is normally done in an empirical way
(using a trial-and-error process for each problem at hand), and usually
has a significant impact on their performance. In this paper, we present a
self-adaptation methodology that can be incorporated into any MOEA,
in order to allow an automatic fine-tuning of parameters, without any
human intervention. In order to validate the proposed mechanism, we
incorporate it into the NSGA-II, which is a well-known elitist MOEA
and we analyze the performance of the resulting approach. The results
reported here indicate that the proposed approach is a viable alternative
to self-adapt the parameters of a MOEA.

1 Introduction

The design of mechanisms that allow to automate the fine-tuning of the parame-
ters of an evolutionary algorithm (EA) has been subject of a considerable amount
of research throughout the years [1,2]. When dealing with optimization problems
having several (often conflicting) objectives (the so-called multi-objective opti-
mization problems), the fine-tuning of parameters gets even more complicated,
since we aim to converge to a set of solutions (the so-called Pareto optimal set).
Because of such complexity, the design of online and self-adaptation mechanisms
have been scarce within the multi-objective evolutionary algorithms (MOEAs)
literature (see for example [3,4,5]).

The main goal of this work is to define a multi-objective evolutionary algorithm
that does not require any user-defined parameters. In order to achieve such a goal,

� The first author acknowledges support from CINVESTAV-IPN and CONACyT to
pursue graduate studies at CINVESTAV-IPN.

�� The third author acknowledges support from CONACyT project number 103570.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 567–581, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

568 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

we define different techniques to self-adapt the main parameters of a well-known
MOEA (the NSGA-II [6]). The resulting approach is then validated using 12 test
problems taken from the specialized literature. Results are compared with respect
to those obtained with the original NSGA-II. As will be seen, the obtained results
are very competitive and indicate that the proposed approach can be a viable al-
ternative to automate the fine-tuning of parameters of a MOEA.

The remainder of this paper is organized as follows. In Section 2, we present
the previous related work reported in the specialized literature. In Section 3,
we describe in detail our proposed self-adaptation approach. In Section 4, we
validate our proposed approach using standard test problems and performance
measures reported in the specialized literature. Finally, in Section 5 we present
our conclusions and provide some possible paths for future research.

2 Previous Related Work

The interest in reducing the number of parameters of a MOEA, has been studied
by relatively few researchers. Apparently, the first attempt to self-adapt the
parameters of a MOEA was the one reported by Kursawe [7]. His proposal was
to provide individuals in the population of a MOEA with a set of step lengths
for each objective function. The aim of Kursawe’s work, however, was to be able
to deal with dynamic environments rather than automating the fine-tuning of
parameters of a MOEA.

Other authors have only focused on the self-adaptation of a single operator.
For example, Büche et al. [8] proposed to use Kohonen’s self-organizing maps to
adapt the step length of a MOEA’s mutation operator.

Tan et al. [9] proposed the incrementing multi-objective evolutionary
algorithm (IMOEA) with adopts an adaptive population size whose value is
computed based on the online discovered trade-off surface and the desired popu-
lation distribution density. IMOEA relies on a convergence metric that is based
on Pareto dominance and a performance measure called “progress ratio”, which
was proposed by Van Veldhuizen [10]. Additionally, IMOEA also incorporates
dynamic niching (i.e., the user does not need to define a niche radius for per-
forming fitness sharing).

Kumar and Rockett [11] proposed the Pareto converging genetic algorithm
(PCGA). This MOEA uses a systematic approach based on Pareto rank his-
tograms for assessing convergence towards the Pareto front.

Abbass [3] proposed the self-adaptive Pareto differential evolution (SPDE)
which extends a MOEA called Pareto differential evolution (PDE) [12] with
self-adaptive crossover and mutation operators. In SPDE, both the crossover
and the mutation rates are treated as additional decision variables which are
added to the chromosomic string and are affected by the evolutionary process.

Zhu and Leung [13] proposed a parallel multi-objective genetic algorithm
which is implemented in an island model and has an asynchronous self-adjustable
mechanism. This mechanism adopts certain information about the current sta-
tus of each island and uses it to focus the search effort towards non-overlapping
regions of the search space.

Self-Adaptation Techniques Applied to MOEAs 569

Toscano and Coello [4] proposed the micro genetic algorithm 2 (μGA2) which
is a parameterless version of the micro genetic algorithm (μGA) for multi-
objective optimization previously introduced by the same authors [14]. The new
approach adopts several self-adaptation mechanisms to select the type of encod-
ing (binary or real-numbers), and the type of crossover operator (from several
available). For this sake, it executes several μGAs in parallel and performs a
comparison of their results. The μGA2 also incorporates a mechanism based on
a performance measure in order to decide when to stop iterating.

Mart́ı et al. [15] proposed a mechanism that gathers information about the
solutions obtained so far. This information is accumulated and updated using a
discrete Kalman filter and is used to decide when to stop a MOEA.

Zielinski and Laur [16] proposed a mechanism for self-adapting three im-
portant parameters in a multi-objective particle swarm optimization: inertia,
the cognitive component and the social component. The proposed mechanism
is based on a design of experiments technique called evolutionary operation
(EVOP). The authors adopt analysis of variance in a two-level factorial design
[17] (i.e., two values are considered for each parameter being self-adapted) to de-
termine the effect of each combination of parameters. The information obtained
from the analysis of variance allows to determine how should the parameters be
modified. The approach defines a measure of “success” based on Pareto domi-
nance, which is used to guide the search.

Trautmann et al. [5] proposed a new convergence criteria for MOEAs. This
mechanism consists of analyzing the performance of a MOEA through its iter-
ative process with respect to three well-known performance measures: genera-
tional distance [10], hypervolume [18] and spread [6]. In this way, if there is not
a significant variance of these performance measures, it is possible to conclude
that the MOEA has converged to the real Pareto front and the evolutionary
process is consequently stopped.

None of these previous approaches, however, constitutes a full proposal of
a self-adaptation framework for MOEAs, which is precisely what we introduce
here, with certain specific mechanisms specifically tailored for the NSGA-II.

3 Our Proposed Approach

Our approach consists of two phases. In the first of them, an analysis of variance
(ANOVA) [19] of a MOEA, using a certain set of test problems and performance
measures is undertaken. This analysis is meant to provide us with the set of
parameters to which the MOEA under study is most sensitive. In our study,
we adopted the NSGA-II as our baseline MOEA, but any other state-of-the-art
MOEA could be used as well (e.g., SPEA2 [18]).

In the second phase of our proposed approach (called here NSGA-IIself adap),
we introduce some specific self-adaptation techniques that are used to automat-
ically tune the values of the most sensitive parameters identified in the first
phase.

Next, we will provide a summary of the results obtained from our ANOVA
and will also describe the self-adaptation mechanisms that we propose to use.

570 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

3.1 Phase 1: Sensitivity Analysis

As indicated before, in order to define the parameters to which the NSGA-II
is most sensitive, we performed an analysis of variance. For this analysis, we
adopted five problems taken from the Zitzler-Deb-Thiele (ZDT) [20] and from
the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suites [21]. The problems were
selected in such a way that different features were covered (e.g., non-convexity,
disconnected Pareto fronts, etc.) using two and three objectives. The problems
chosen for the study are presented next.

– ZDT3: The true Pareto front of this problem is disconnected (in two di-
mensions), consisting of several noncontiguous convex parts.

– ZDT4: This problem contains 219 false Pareto fronts and, therefore, tests
the ability of a MOEA to deal with multifrontality.

– DTLZ5: The true Pareto front of this problem is a curve formed by a set
of well-distributed solutions.

– DTLZ6: The true Pareto front of this problem is unimodal, biased, with a
many-to-one mapping and is hard to converge to it.

– DTLZ7: The true Pareto front of this problem is disconnected (in three
dimensions).

In Table 1, we show the parameters and the values that we used for the
ANOVA. For each test problem, we performed 20 independent runs using each of
the possible combinations of parameters from those indicated in
Table 1.

For evaluating the performance of each set of parameters, we used two perfor-
mance measures: inverted generational distance (IGD) [10] and the multiplica-
tive unary ε-indicator (Iε) [22] (using the true Pareto front of each problem).

The analysis of results led us to conclude that both the crossover rate and the
crossover type (for binary encoding) could take a fixed value, since no variation
of these parameters had significant effect on the performance of the NSGA-II.
Thus, we decided to adopt a crossover rate Pc = 0.7 and two-points crossover
for binary encoding. Our study indicated that these values produced the best
overall performance for the NSGA-II.

Table 1. Analyzed parameters

Parameter Values

Population size 100, 200 and 500
Number of generations 100, 200 and 500
Crossover rate 0.5, 0.7 and 1.0
Mutation rate 0.001, 0.1 and 0.3
Encoding Real and binary
Crossover type Two-point and uniform crossover for binary encoding

SBX and uniform crossover for real numbers encoding
Mutation type Uniform mutation for binary encoding

Parameter-based and boundary mutation for real numbers encoding

Self-Adaptation Techniques Applied to MOEAs 571

3.2 Self-adaptation of Parameters

The analysis indicated that the variation of the other parameters of the NSGA-II
had a greater impact on performance and, therefore, we incorporated them into
our proposed self-adaptation scheme. In Fig. 1, we show the general scheme of
our self-adaptive MOEA and the corresponding details are presented next.

Initially, a population of 100 individual is randomly generated. For each in-
dividual of the population, the type of encoding to be adopted (real or binary)
is randomly assigned. The mutation rate and the individual’s chromosome are
also randomly initialized using the corresponding encoding. For the individuals
with real numbers encoding, it is necessary to define, in a random way, the type
of mutation and crossover to be used. This is unnecessary when using binary en-
coding, as was indicated before (see Section 3.1), since fixed values and operators
are adopted in that case.

In this work, we assume that all the test problems use real numbers for their
decision variables. When using binary encoding, a decoding is evidently needed
to transform the binary numbers of each chromosome into real numbers (an
accuracy of eight decimal places is adopted in that case). After doing this, the
ranking mechanism of the original NSGA-II is applied.

The tournament selection adopted in our case is different from that of the
original NSGA-II, because parents are only selected from individuals that have
the same encoding. This way, appropriate crossover and mutation operators are
applied to individuals having the same encoding. The specific type of crossover
and mutation to be applied are chosen from those available (see Sections 3.4
and 3.5) for each type of encoding. The details about the use of these genetic
operators are provided in Sections 3.4 and 3.5, respectively.

Once the offspring population is obtained, both the parents and the offspring
populations are merged with the purpose of selecting from them to the best
individuals for the next generation. For this task, the crowding comparison

1. t=0
2. Initialize the population;
3. Encode the individuals;
4. Evaluate the population;
5. Rank the Population;
6. while (there are no improvements according to the hypervolume) do
7. Select the parents // using the same encoding between the individuals;
8. Perform crossover;
9. Encode the offspring population;
10. Evaluate the offspring population;
11. Join the parent and offspring population;
12. Perform the elitism procedure;
13. Performed the Inheritance-Fertilization procedure;
14. if (t ≥ 100) then
15. Perform a hypervolume analysis
16. Add/remove individuals
17. end if
18. t = t + 1;
19. end while

Fig. 1. Our proposed self-adaptation techniques coupled to the NSGA-II

572 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

operator of the original NSGA-II is adopted to generate a total ordering of
the individuals, so that the best half is selected [6].

Our approach introduces an additional step called the inheritance-fertilization
procedure. This is a mechanism that we propose for diversifying the population.
This procedure is applied at each generation and its details are discussed in
Section 3.6.

Finally, the stopping criterion is defined using the hypervolume performance
measure [23]. Specifically, what we do is to check if there is a change in the
hypervolume value of the individuals in the population. If no significant change
is detected after several iterations, then the MOEA is stopped. The details of
this mechanism are discussed in Section 3.7.

3.3 The Individual

In evolutionary algorithms, the individual is commonly represented by a sin-
gle chromosomic string (i.e., haploids are normally adopted). However, in our
proposed approach, we adopt diploids, since we simultaneously encode the indi-
vidual in binary and real-numbers representation. This is a pragmatic solution
to deal with the encoding of each individual, since in our approach, the type of
representation could change during the self-adaptation process.

In our case, an individual includes the following elements: the type of encod-
ing (real numbers or binary), the decision variables of the problem, the mutation
rate, the type of crossover, the type of mutation, the parents and the fertility.
Additionally, each individual also has the parameters from the original NSGA-II
(the rank, which relates to Pareto dominance and the crowding distance value,
which relates to diversity). Fig. 2 shows the parameters contained in each indi-
vidual. Since each individual has two possible representations (real numbers or
binary), the decision variables and the rates of the operators will be encoded
and initialized using the corresponding representation. The type of crossover in-
dicates the crossover operator that was used to generate that individual. This
operator will also be used to decide which type of crossover will be used in case
the individual is selected for breeding. Similarly, the type of mutation refers to
the specific mutation operator that will be applied on the individual that con-
tains it. Since the type of crossover and the type of mutation are already fixed
for binary encoding, these parameters are not included in an individual. The

Type of encoding
Decision variables

Mutation rate
Type of crossover
Type of mutation

Parents
Fertility

Crowding distance
Rank

Fig. 2. Definition of each individual in our proposed approach

Self-Adaptation Techniques Applied to MOEAs 573

parameters called parents and fertility are used in the inheritance-fertilization
procedure which will be explained below.

3.4 Crossover Operator

Since the tournament takes place only among individuals with the same type
of encoding, the parents selected for breeding will also have the same encoding
among themselves.

As indicated before, when using binary encoding, two-points crossover is al-
ways adopted in the traditional way [24]. When using real numbers encoding, we
have five types of crossover operators available: (1) Simulated Binary Crossover
(SBX) [25], (2) simple crossover [26], (3) uniform crossover [27], (4) intermediate
crossover [28] and (5) two-points crossover [24].

In order to choose the type of operator to be applied to each pair of individuals,
we employ a probabilistic event using a probability p = 0.9. If this event returns
true, we use the crossover type of the best parent (in terms of its rank). If
this event returns false, then we employ another probabilistic event, but using
a probability p = 0.5. If this second event returns true again, we choose the
type of crossover that was adopted to generate the best parent (in terms of its
rank). Otherwise, we choose the type of crossover of the other parent. If both
parents have the same rank, we choose the type of crossover in a random manner
between them.

The mutation rate is encoded (in binary or as a real number) in the chromo-
somic string. Thus, the mutation rate can be affected by the crossover operator.
When using real numbers encoding, the crossover operator is applied using a
probability p = 0.5 for two-points, simple and uniform crossover. For intermedi-
ate recombination, we adopt k = 0. SBX is applied as suggested in [6].

Finally, each child generated by the crossover operator inherits the type of
encoding and the type of crossover from its best parent (in terms of rank).

3.5 Mutation Operator

For binary encoding, the mutation rate is defined within the interval (0.001, 0.3)
and is also encoded in the chromosome. Mutation is applied to the decision
variables first, and then to the mutation rate as well. Then, the type of encoding
is mutated (or not) using a probability p = 0.5. If the type of encoding changes
(binary �→ real) then the decision variables and the mutation rate are represented
using real numbers.

Since there are different types of crossover and mutation operators available
(for real-numbers representation), if an individual changes its encoding from bi-
nary to real numbers, then we need to define new values for the type of operators
to be adopted. In our case, we define such values in a random way.

Since the range of the mutation rate is different for each encoding (in real
numbers encoding, the mutation rate is in the range (1/L, 0.5), where L is the
number of decision variables), we use a linear mapping to transform the mutation
rate from one encoding to the other (i.e., (0.001, 0.3) �→ (1/L, 0.5)). The muta-
tion rate defined for real numbers encoding ensures that at least one decision

574 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

variable will get mutated. It also guarantees that more than 50% of the decision
variables will be mutated. For perturbing the type of crossover and mutation to
be adopted, we perform a similar mapping. Here, we use a mapping defined by
(0.001, 0.3) �→ (1/8, 0.8).

If the type of crossover or mutation has to be changed then the new types
are defined in a random way. Finally, as in the binary case, an individual can
change its type of encoding (real�→binary). In this case, the decision variables and
mutation rate would be transformed to their equivalent binary representation.
The type of crossover and mutation are removed because they are both fixed for
binary encoding.

3.6 Inheritance-Fertilization Operator

When the NSGA-II selects the population for the next generation, the parent and
offspring populations are merged. The inheritance-fertilization operator identifies
the parents and offspring that have been selected to constitute the following
generation. Thus, each child has information about who were his parents and
viceversa. Once the parents and children have been identified, the mechanism
detects parents which have not produced children that had been selected during
a certain number of generations (in this work we used a gap of five generations).
If this is the case, the parameters of this individual are perturbed.

The mutation of the parameters of each parent is performed according to its
encoding, as was indicated before. The same applies to the perturbation of the
type of encoding, crossover and mutation (see Section 3.5).

When using the inheritance-fertilization operator, the decision variables are
not perturbed. However, the type of encoding can be modified. The aim of this
operator is to maintain diversity in the population. The underlying assumption of
this operator is that if the children generated by the parents selected in previous
generations are not good (in terms of their ranking), is because the genetic
operators are not working properly. Thus, they must be modified so that better
results can be achieved and that is precisely what the operator does.

3.7 Stopping Criterion and a Varying Population Size

We adopted the hypervolume performance measure [29] to detect when the al-
gorithm has converged (i.e., when no further improvement is found) and we use
that as the stopping criterion of our approach. The hypervolume (also known as
the S metric or the Lebesgue Measure) of a set of solutions measures the size of
the portion of objective space that is dominated by those solutions collectively.

The number of generations and the size of the population play an important
role in MOEAs. However, it is well-known that it is unnecessary to have an ex-
tremely large population to perform a better search. It is possible to use a modest
population size, as long as we have a good mechanism to maintain diversity and we
run the MOEA during a sufficiently large number of generations [3]. These aspects
were taken into account for the design of the strategy that is explained next.

Initially, the population size is set to 100 individuals. After 100 generations,
we start applying hypervolume at each generation. If after 30 generations, there

Self-Adaptation Techniques Applied to MOEAs 575

is no improvement in the hypervolume, then 100 new individuals (randomly
generated) are added to the population. If some improvement is detected, then
the counter is reset so that we start counting again 30 more generations, and
repeat this process until no improvement is detected.

Once the 100 new individuals have been added, we continue with the second
phase at which we run our MOEA during 20 more generations and check again
for improvements in the hypervolume. If no improvement is detected, then we
generate 300 new (random) individuals. On the contrary, if some improvement is
detected, then, we reduce the population size from 200 to 100. We keep the best
half, using Pareto ranking and the crowding comparison operator of the original
NSGA-II. Then, the counter is reset again and the search continues, aiming to
find 30 consecutive generations without any improvement, before adding 100
new individuals.

Once the population reaches 500 individuals, we enter the third stage. At
that point, we run the MOEA for 40 generations. If no improvement in the
hypervolume is detected, we consider that the algorithm has converged and we
stop the execution of our MOEA. However, if there is an improvement in the
hypervolume during these 40 generations, we remove 300 individuals from the
population using the same procedure indicated before. In this case, the counter
is reset to 30 generations, so that we try to obtain 60 consecutive generations
without any improvements in the hypervolume before stopping the execution
of the MOEA. Since the hypervolume requires a reference vector, we use the
same in all cases, to avoid any errors in its calculation. The complete process is
graphically depicted in Fig. 3.

Fig. 3. Graphical illustration of the stopping criterion and the adaptive population
size mechanisms

4 Experimental Results

In order to validate the performance of our proposed approach, we compared
its results with respect to those obtained by the original NSGA-II using twelve
problems taken form ZDT [20] (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6) and the
DTLZ [21] (DTLZ1, DTLZ2, DTLZ3,DTLZ4, DTLZ5, DTLZ6 and DTLZ7) test
suites. We adopted three performance measures to assess our results: Inverted
Generational Distance (IGD) [10], the multiplicative unary ε-indicator (Iε) [22]
and Spread (S) [6].

576 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

4.1 Experimental Setup

We performed 20 independent runs per problem per approach. Since our ap-
proach does not require any extra parameters, we define only the parameters for
the NSGA-II: crossover probability Pc = 0.7, mutation probability Pmr = 0.1.
For the genetic operators (SBX and PBM) we used a crossover index ηc = 1 and
a mutation index ηm = 50. The parameters presented above, were used because
the ANOVA of the NSGA-II showed a better performance when adopting them.
Additionally, we established a populations size N = 500 which is precisely the
number of solutions that our proposed approach reports at the end of each run.

Since the stopping criteria used for our approach does not have a fixed number
of generations, in order to define the number of generations to be performed by
the original NSGA-II we experimented with two different criteria:

1. Average number of evaluations: In this case, we used the average (over
all runs) number of objective function evaluations performed by our self-
adaptive approach to set the number of generations1 of the NSGA-II.

2. Average number of generations: In this case, we used instead the average
number of generations (over all runs) performed.

In Tables 2 and 3, we show the average of number of objective function eval-
uations and the average of the number of generations in which our proposed
approach was stopped.

Table 2. Number of generations for the ZDT test suite

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Evaluations
238 241 353 611 858

Average
Generations

630 643 960 1676 2016
Average

Table 3. Number of generations for the DTLZ test suite

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Evaluations
138 115 170 106 90 99 117

Average
Generations

379 324 497 289 248 250 306
Average

Thus, in order to obtain the number of generations during which the original
NSGA-II would run, we used either the average of the number of fitness function
evaluations (this variant was called NSGA-IIeval) or the average of the number
of generations (this variant was called NSGA-IIgen).

1 Knowing the total number of objective function of evaluations and the population
size, it is straightforward to obtain the total number of generations.

Self-Adaptation Techniques Applied to MOEAs 577

4.2 Discussion of Results

The results obtained by NSGA-IIeval, NSGA-IIgen and NSGA-IIself adap (our
self-adaptive approach) are summarized in Tables 4 to 9. Each table displays
both, the mean and the standard deviation (σ) of each performance measure,
for each test problem. The best results are shown in boldface.

Table 4. Results of IGD for the ZDT test suite

NSGA − IIeval NSGA − IIgen NSGA − IIself adap

average (σ) average (σ) average (σ)

ZDT1 0.000058 (0.000002) 0.000058 (0.000002) 0.000056 (0.000001)
ZDT2 0.000059 (0.000002) 0.000059 (0.000002) 0.000058 (0.000003)
ZDT3 0.000132 (0.000007) 0.000132 (0.000006) 0.000127 (0.000007)
ZDT4 0.000083 (0.000004) 0.000084 (0.000004) 0.000093 (0.000004)
ZDT6 0.002230 (0.000191) 0.002230 (0.000191) 0.000018 (0.000002)

Table 5. Results of Iε for the ZDT test suite

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

ZDT1 1.002235 (0.000322) 1.002152 (0.000225) 1.002214 (0.000373)
ZDT2 1.001938 (0.000440) 1.001967 (0.000317) 1.001792 (0.000346)
ZDT3 1.001863 (0.000393) 1.001830 (0.000226) 1.002024 (0.000609)
ZDT4 1.001709 (0.000316) 1.001674 (0.000324) 1.001916 (0.000420)
ZDT6 1.140147 (0.011069) 1.140147 (0.011069) 1.001409 (0.000171)

Table 6. Results of S for the ZDT test suite

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

ZDT1 0.65008 (0.040356) 0.663761 (0.034663) 0.542132 (0.029852)
ZDT2 0.666593 (0.037943) 0.662773 (0.035102) 0.539112 (0.025966)
ZDT3 0.746819 (0.036011) 0.732614 (0.030007) 0.612249 (0.021919)
ZDT4 0.556536 (0.019120) 0.578010 (0.041313) 0.801464 (0.044060)
ZDT6 0.788426 (0.024690) 0.796272 (0.024848) 0.856744 (0.046337)

Table 7. Results of IGD for the DTLZ test suite

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

DTLZ1 0.005666 (0.006462) 0.001938 (0.003133) 0.002161 (0.003941)
DTLZ2 0.000172 (0.000004) 0.000168 (0.000004) 0.000174 (0.000005)
DTLZ3 0.250904 (0.098975) 0.055570 (0.032845) 0.012097 (0.013000)
DTLZ4 0.000547 (0.000009) 0.000542 (0.000008) 0.000558 (0.000030)
DTLZ5 0.000015 (0.000002) 0.000023 (0.000002) 0.000037 (0.000013)
DTLZ6 0.015200 (0.002084) 0.002186 (0.000930) 0.000094 (0.000034)
DTLZ7 0.000817 (0.000125) 0.000579 (0.000062) 0.000389 (0.000016)

IGD performance measure. In Tables 4 and 7, we can see that our proposed
approach outperforms the NSGA-II in most of the test problems adopted with
respect to IGD. However, in five of the twelve adopted problems (ZDT4, DTLZ1,
DTLZ2, DTLZ4 and DTLZ5), our algorithm was outperformed by the original

578 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

Table 8. Results of Iε for the DTLZ test suite

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

DTLZ1 1.1904444 (0.181980) 1.066070 (0.082606) 1.079437 (0.123285)
DTLZ2 1.049461 (0.006330) 1.047081 (0.006184) 1.046300 (0.005485)
DTLZ3 10.176407 (3.861924) 2.667639 (0.900274) 1.396945 (0.380866)
DTLZ4 1.042668 (0.004336) 1.040609 (0.004801) 1.039888 (0.004084)
DTLZ5 1.001418 (0.000338) 1.001947 (0.000312) 1.002976 (0.001318)
DTLZ6 1.732627 (0.082842) 1.103957 (0.040262) 1.008537 (0.004132)
DTLZ7 1.081822 (0.021139) 1.057326 (0.011657) 1.026261 (0.003132)

Table 9. Results of S for the DTLZ test suite

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

DTLZ1 0.974938 (0.190992) 0.576810 (0.087172) 0.546923 (0.160001)
DTLZ2 0.429743 (0.022495) 0.429741 (0.017543) 0.490002 (0.034583)
DTLZ3 1.188861 (0.085993) 0.955311 (0.117838) 0.931206 (0.336853)
DTLZ4 0.412915 (0.019106) 0.424239 (0.018287) 0.453508 (0.036211)
DTLZ5 0.523047 (0.092002) 0.717033 (0.018537) 0.746702 (0.018931)
DTLZ6 0.972776 (0.067786) 0.782302 (0.025047) 0.804278 (0.013795)
DTLZ7 0.478671 (0.038158) 0.440922 (0.030344) 0.531645 (0.021466)

NSGA-II. Evidently, the original NSGA-II is not significantly better than our
proposed approach (the NSGA-IIself adap), for these specific test problems.

Iε performance measure. In Tables 5 and 8, we can see that our proposed
approach outperforms the NSGA-II in seven of the twelve test problems adopted
with respect to Iε. Although for ZDT1, ZDT3, ZDT4, DTLZ1 and DTLZ5 the
original NSGA-II is better, our algorithm is not significantly worse.

S performance measure. Tables 6 and 9 show that our proposed approach
was outperformed by the NSGA-II in most of the test problems adopted (seven
out of twelve) with respect to spread. However, we do not consider this to be
a major drawback, since our self-adaptation mechanisms were focused on con-
vergence rather than on spreading solutions along the Pareto front and in terms
of convergence, we found better results in most cases. We believe that the use
of additional individuals in the population, in order to maintain diversity, is
the main reason why our proposed approach does not reach the same quality of
results with respect to spread as the original NSGA-II.

5 Conclusions and Future Research

In this paper, we have presented self-adaptation mechanisms for a MOEA, aim-
ing to have an approach that does not require any manual fine-tuning of its
parameters. It is important to emphasize, however, that the parameters are not
removed. Instead, we use mechanisms that automatically define them using in-
formation gathered during the search, so that no user intervention is required.

Self-Adaptation Techniques Applied to MOEAs 579

Our results indicate that our proposed approach is able to outperform the
original NSGA-II in several test problems, with respect to convergence, with the
advantage of not requiring any empirical fine-tuning of parameters. Thus, we
believe that our proposal can be a viable alternative for end-users who want to
apply an out-of-the-box NSGA-II in a certain application, without having much
knowledge about evolutionary computation techniques.

Since self-adaptation mechanisms are, in general, hard to define (particularly
in the context of MOEAs), in order to simplify things, we tailored most of the
mechanisms described here to the specific selection scheme and density estimator
adopted by the NSGA-II. However, as part of our future work, we are interested
in defining more general versions of some of the self-adaptation mechanisms in-
troduced here, so that they are applicable to more than one MOEA. We are
interested in strengthening our algorithm through a finer tuning of its param-
eters. We aim to achieve this by using more complicated functions such as the
Walking-Fish-Group (WFG) [30] and CEC’2009 [31] test problems. Addition-
ally, we are also interested in adding self-adaptation mechanisms that improve
the spread of solutions produced by our approach. In that regard, the use of
archiving techniques may be useful.

References

1. Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

2. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. Springer, Berlin (2007) ISBN 978-3-540-69431-1

3. Abbass, H.A.: The Self-Adaptive Pareto Differential Evolution Algorithm. In:
Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 831–836. IEEE
Service Center, Piscataway (2002)

4. Toscano Pulido, G., Coello Coello, C.A.: The Micro Genetic Algorithm 2: To-
wards Online Adaptation in Evolutionary Multiobjective Optimization. In: Fon-
seca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS,
vol. 2632, pp. 252–266. Springer, Heidelberg (2003)

5. Trautmann, H., Ligges, U., Mehnen, J., Preuß, M.: A Convergence Criterion for
Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing.
In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008.
LNCS, vol. 5199, pp. 825–836. Springer, Heidelberg (2008)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

7. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwe-
fel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer,
Heidelberg (1991)

8. Büche, D., Guidati, G., Stoll, P., Koumoutsakos, P.: Self-Organizing Maps for
Pareto Optimization of Airfoils. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G.,
Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439,
pp. 122–131. Springer, Heidelberg (2002)

9. Tan, K., Lee, T., Khor, E.: Evolutionary Algorithms with Dynamic Population
Size and Local Exploration for Multiobjective Optimization. IEEE Transactions
on Evolutionary Computation 5(6), 565–588 (2001)

580 S. Zapotecas Mart́ınez, E.G. Yáñez Oropeza, and C.A. Coello Coello

10. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and Com-
puter Engineering. Graduate School of Engineering. Air Force Institute of Tech-
nology, Wright-Patterson AFB, Ohio (1999)

11. Kumar, R., Rockett, P.: Improved Sampling of the Pareto-Front in Multiobjective
Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic
Algorithm. Evolutionary Computation 10(3), 283–314 (2002)

12. Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto-frontier Differential Evolu-
tion Approach for Multi-objective Optimization Problems. In: Proceedings of the
Congress on Evolutionary Computation 2001 (CEC 2001), vol. 2, pp. 971–978.
IEEE Service Center, Piscataway (2001)

13. Zhu, Z.Y., Leung, K.S.: Asynchronous Self-Adjustable Island Genetic Algorithm
for Multi-Objective Optimization Problems. In: Congress on Evolutionary Compu-
tation (CEC 2002), vol. 1, pp. 837–842. IEEE Service Center, Piscataway (2002)

14. Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjec-
tive optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)

15. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: A Cumulative Evidential
Stopping Criterion for Multiobjective Optimization Evolutionary Algorithms.
In: Thierens, D. (ed.) 2007 Genetic and Evolutionary Computation Conference
(GECCO 2007), vol. 1. ACM Press, London (2007)

16. Zielinski, K., Laur, R.: Adaptive Parameter Setting for a Multi-Objective Particle
Swarm Optimization Algorithm. In: 2007 IEEE Congress on Evolutionary Com-
putation (CEC 2007), pp. 3019–3026. IEEE Press, Singapore (2007)

17. Myers, R.H., Montgomery, D.C.: Response Surface Methodology-Process and Prod-
uct Optimization Using Designed Experiments. John Wiley and Sons, Chichester
(2002)

18. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

19. Lindman, H.R.: Analysis of variance in complex experimental designs. SIAM
Rev. 18(1), 134–137 (1976)

20. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

21. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evo-
lutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R.
(eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Ap-
plications, pp. 105–145. Springer, USA (2005)

22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

23. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland (1999)

24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Reading (1989)

25. Deb, K., Agrawal, R.B.: Simulated Binary Crossover for Continuous Search Space.
Complex Systems 9, 115–148 (1995)

26. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996)

Self-Adaptation Techniques Applied to MOEAs 581

27. Syswerda, G.: Uniform Crossover in Genetic Algorithms. In: Schaffer, J.D. (ed.)
Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9.
Morgan Kaufmann Publishers, San Mateo (1989)

28. Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, New York
(1995)

29. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

30. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test
Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2006)

31. Li, H., Zhang, Q.: Multiobjective Optimization Problems With Complicated Pareto
Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 13(2), 284–302 (2009)

Analysing the Performance of Different

Population Structures for an Agent-Based
Evolutionary Algorithm

J.L.J. Laredo, J.J. Merelo, C.M. Fernandes, A.M. Mora,
M.G. Arenas, P.A. Castillo, and P. Garcia-Sanchez

Department of Architecture and Computer Technology
University of Granada, Spain

juanlu@geneura.ugr.es

1 Introduction

The Evolvable Agent model is a Peer-to-Peer Evolutionary Algorithm [4] which
focuses on distributed optimisation over Peer-to-Peer infrastructures [7]. The
main idea of the model is that every agent (i.e. individual) is designated as a
peer (i.e. network node) and adopts a decentralised population structure defined
by the underlying Peer-to-Peer protocol newscast [3]. That way, the population
structure acquires a small network diameter which allows a fast dissemination of
the best solutions. Additionally, speed of propagation holds with scaling network
sizes due to the logarithmic growth of the network diameter.

In that context, this work aims to compare performances of the approach
considering two additional population structures other than newscast: a ring
and a Watts-Strogatz [9] topology. Figure 1 shows snapshots for the different
population structures.

Fig. 1. From left to right: ring, Watts-Strogatz and newscast population structures

Given that regular lattices represent a common approach to fine-grained Evo-
lutionary Algorithms in the literature (e.g. see the review of Tomassini in [8]),
we have chosen a ring population structure as the instance to compare the per-
formance of regular lattices against a newscast population structure.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 582–585, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Analysing the Performance of Different Population Structures 583

Additionally, the Watts-Strogatz method represents an easy and understand-
able model for creating a small-world population structure. This way, it will
be possible to compare two different methods (i.e. Watts-Strogatz and news-
cast) for generating the same sub-type of complex network. The interest here
goes a step further than in the case of the ring since there are many P2P
protocols designed to work as small-world networks. Therefore, we aim to es-
tablish whether the performance of the newscast population structure lie in
its small-world structure so that may be extended to other protocols imple-
menting the same kind of topologies (e.g. any Distributed Hash Table
(DHT) [5]).

2 Experiments and Results

The following experiment aims to compare the influence of the previously ex-
plained decentralised population structures on the scalability of the Evolvable
Agent model when tackling a 2-trap function [1]. To that aim, optimal popula-
tion sizes were estimated using the bisection method by Sastry in [6] for different
instances of increasing size (L = 12, 24, 36, 48, 60).

Figure 2 depicts the scalability of the population size and the number of
evaluations for the different population structures in the problem under study.
Results show that the ring structure is able to scale better than its counterparts
with respect to the population size. Nevertheless, the analysis drastically changes
with respect to the computational efforts. In such case, the ring population scales
worse than the small-world ones requiring therefore a larger time to converge to
optimal solutions.

In addition, the comparison between the two small-world methods (Watts-
Strogatz and newscast) shows that scalabilities are quite similar and there is no
clear trend of an approach outperforming the other with both requiring equiva-
lent times to solution.

Fig. 2. Scalability of the Evolvable Agent model using a Ring, Watts-Strogatz and
Newscast population structures in 2-trap function for optimal population sizes N (left)
and the number of evaluations to solution (right). Results are depicted in a log-log scale
as a function of the length of the chromosome, L.

584 J.L.J. Laredo et al.

Fig. 3. Best fitness convergence on a 2-trap instance for L = 60 and a population size
of N = 135. Graphs plotted represent the average of 50 independent runs.

Table 1. Wilcoxon test comparing the best fitness distribution of the Evolvable Agent
model using a Ring, Watts-Strogatz and Newscast population structures. Results are
obtained over 50 independent runs.

Problem Instance Algorithm Avg. Fitness ±σ Wilcoxon Test Significantly different?

2-Trap
L=60 Ring 53.88±1.21 W=2429 p-value=2.22e-16 yes
N=135 Watts-Strogatz 57.26±1.52 W=1386 p-value=0.335 no

M. Eval.= 5535 Newscast 57.6±1.38 - -

With respect to the convergence of the algorithm, Figure 3 shows both small-
world approaches having a better progress in fitness than the ring one in the
larger problem instance under study (i.e. L = 60). In fact, either Watts-Strogatz
or newscast reach the same quality in solutions at the maximum number of
evaluations.

The Wilcoxon analysis [2] in Table 1 shows that differences in fitness be-
tween newscast and ring population structures are statistically significant which
confirms previous results on the different convergences of the approaches. Nev-
ertheless, such differences do not appear when comparing newscast with the
Watts-Strogatz method.

3 Conclusions

This paper analyses the Evolvable Agent model using different decentralised
population structures in order to assess their influence on the performance of the
algorithm. A ring topology and the Watts-Strogatz method are considered for
comparison against the newscast method which allows a decentralised execution
of the approach in a P2P system.

Results show that the ring approach needs smaller population sizes than news-
cast to guarantee a reliable convergence but, in turn, it requires of a larger num-
ber of evaluations which translates into a larger times to solution. On the other

Analysing the Performance of Different Population Structures 585

hand, the Watts-Strogatz method has a similar performance and does not present
statistical differences with respect to the results obtained using newscast. There-
fore, the small-world population structures generated by both methods promote
equivalent algorithmic performances. We find that fact promising since such a
property may extend to other small-world based P2P protocols.

Acknowledgements

This work has been supported by the Junta de Andalucia projects P08-TIC-
03903 and P08-TIC-03928, and FCT (ISR/IST plurianual funding), Ministério
da Ciência e Tecnologia, through the POS Conhecimento Program (SFRH /
BPD / 66876 / 2009).

References

1. Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Norwell (1987)

2. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’
2005 special session on real parameter optimization. Journal of Heuristics 15(6),
617–644 (2009)

3. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Techni-
cal Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Science,
Amsterdam, The Netherlands (October 2002)

4. Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: Evag: A scalable peer-
to-peer evolutionary algorithm. In: Genetic Programming and Evolvable Machines
(2010)

5. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: ACM SIGCOMM, pp. 161–172 (2001)

6. Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms.
Technical Report 2002004, University of Illinois at Urbana-Champaign, Urbana, IL
(2001)

7. Steinmetz, R., Wehrle, K.: What is this peer-to-peer about? In: Steinmetz, R.,
Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485, pp.
9–16. Springer, Heidelberg (2005)

8. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Natural Computing Series. Springer-Verlag New York, Inc.,
Secaucus (2005)

9. Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Na-
ture 393, 440–442 (1998)

EDACC - An Advanced Platform for the

Experiment Design, Administration and
Analysis of Empirical Algorithms

Adrian Balint, Daniel Diepold, Daniel Gall, Simon Gerber,
Gregor Kapler, and Robert Retz

Ulm University,
Institute of Theoretical Computer Science,

89069 Ulm, Germany
{adrian.balint,daniel.diepold,daniel.gall,simon.gerber,

gregor.kapler,robert.retz}@uni-ulm.de

Abstract. The design, execution and analysis of experiments using he-
uristic algorithms can be a very time consuming task in the development
of an algorithm. There are a lot of problems that have to be solved
throughout this process. To speed up this process we have designed and
implemented a framework called EDACC, which supports all the tasks
that arise throughout the experimentation with algorithms. A graphical
user interface together with a database facilitates archiving and man-
agement of solvers and problem instances. It also enables the creation of
complex experiments and the generation of the computation jobs needed
to perform the experiment. The task of running the jobs on an arbitrary
computer system (or computer cluster or grid) is taken by a compute
client, which is designed to increase computation throughput to a maxi-
mum. Real-time monitoring of running jobs can be done with the GUI or
with a web frontend, both of which provide a wide variety of descriptive
statistics and statistic testing to analyze the results. The web frontend
also provides all the tools needed for the organization and execution of
solver competitions.

1 Introduction

Many problems that come from practical applications or from theory are known
to be very hard to solve. This means that the time for solving these problems
increases exponentially with the size of the input. The class of NP-complete
problems is probably the most well known class of such problems. Formerly,
proving that a problem was NP-complete meant that the design of a practical
algorithm for this problem would be useless because of the estimated exponential
time of the algorithm. The situation changed drastically with the development of
heuristics, meta-heuristics and approximation algorithms for hard combinatorial
problems. The size of the problems that can be solved by these kind of algorithms
has increased continuously over the years.

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 586–599, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

EDACC 587

interesting
idea

(re)design
algorithm

(re)implement
algorithm

run
algorithm

analyze
results

satisfactory
results

publish
resultsno

yes

Fig. 1. A typical work flow for the development of empirical algorithms

This progress can be seen as the result of a paradigm change from “algorithms
are fast if they have a theoretical good upper bound for their runtime” to “algo-
rithms are fast if they are fast in practical experiments”. This should not mean
that theoretical results are not important any more, but rather that the design
of algorithms has become oriented towards practical applications.

With this paradigm change methodologies have also changed a lot. A
theoretical analysis of heuristics is not possible in most cases, and has been
replaced by an empirical evaluation like the ones used in engineering. Most devel-
opment of empirical algorithms now follows an engineering scheme like the one in
figure 1.

With the use of new methodologies new problems arise. After the design and
implementation phase the algorithm has to be tested and evaluated, which in
most cases is a very time consuming task. The first problem that an algorithm
designer encounters is the collection and selection of instances on which the
solver will be evaluated. A lack of publicly available repositories can hinder this
task. Dependent on the set of instances chosen for the evaluation a parameter
configuration for the algorithm has to be chosen. This problem can be very often
solved by automated procedures like ParamILS [5]. Having the instances and
the parameters for the evaluation the user has to choose a computing system. A
multi-core computer or a cluster or even a grid can speed up the computations
drastically, but at the same time the problem of equally distributing the work-
load arises, which in most cases is solved by some home brewed scripts. After
finishing the computation the results have to be gathered from the computing
systems and the important information has to be extracted from the output by
some parsing procedures. To find out to what extent the results are satisfactory
some statistical tests have to be applied. Comparing the performance of the own
algorithm with others demands further elaborated statistics.

The processes of evaluation and analysis are seldom reproducible between
different researchers, because of the complexity of the process and the lack of
common methods. This is probably the reason why most of the communities
working on empirical algorithms periodically organize competitions. The purpose
of these competitions is to provide the same evaluation and analysis environment
for all the algorithms. A problem with these competitions is that the underlying
evaluation system consists of scripts and databases that are not freely available.

588 A. Balint et al.

The system EDACC (Experiment Design and Administration for Computer
Clusters) overcomes most of these problems. The previous version of EDACC [1]
was restricted to SAT-solvers and SAT-instances). EDACC is capable of manag-
ing solvers with their parameters, instances, creating experiment jobs, running
them on arbitrary computing systems ranging from multi-core computers to
large scale grids, collecting the results and processing them. Advanced meth-
ods for automatically extracting and archiving information from the results and
from the instances are provided for users. EDACC also provides a large vari-
ety of statistical tests and descriptive statistics to analyze the results. To make
the organization and execution of competitions with EDACC possible, also a
competition mode that follows a widely accepted scheme is provided.

The paper is organized as follows. Chapter 2 gives an overview over the system.
Chapter 3 describes the methods for extracting information from instances and
from the results. The wide range of possibilities for statistically analyzing this
information is presented in chapter 4. Chapter 5 describes the competition mode
of the system. Some implementation details and related work is given in chapters
6 and 7. Chapter 8 concludes with some outlooks.

2 EDACC - Overview of the Main Components

A detailed description of the core functionalities of EDACC restricted to the
SAT problem was given in [1]. We have considerably extended EDACC to be
able to handle arbitrary solvers and instances. All further improvements such as
information extraction, statistical analysis and the competition mode, are new
features described in this work. To make this paper self-contained an overview
of the components of EDACC is given.

Before describing the main components some entities that will be used through
the rest of the paper are defined. A solver is an implementation of an algorithm
that works on some input and has an output. The behavior of a solver is con-
trolled by arbitrarily many parameters. A solver together with some fixed param-
eters is called a solver configuration. The input to a solver is called an instance.
Any information that can be computed from an instance is called an instance
property. A computing system is defined as the computer, computer cluster, or
grid on which a solver is tested. When running a solver on a computing system
computational limits can be imposed (e.g. maximum computation time or maxi-
mum memory). An experiment is the cartesian product of some set of algorithm
configurations, a set of instances, a set of computing systems, and some compu-
tational limits. An element of an experiment is a job. When the computation of
a job is finished it will have a result. Any information that is computed from a
result is a result property.

The main components of EDACC are:

1. database (DB)
2. graphical user interface client (GUI)
3. compute client (CC)
4. web frontend (WF)

EDACC 589

The DB is responsible for storing and archiving all the information about the
entities defined above. Examples for such information are for solvers the name,
version, author, binary, MD5 checksum and the source code. For instances we
store the filename, the instance, and the MD5 checksum. The DB also acts as
the mediator between GUI, CC, and WF.

The GUI is split into two modes: manage DB mode and experiment mode.
The first mode provides all the necessary DB-operations e.g. create, remove, up-
date and delete (CRUD) for solvers, parameters and instances. As the number
of instances stored in the DB can be very large a categorization of the instances
into a hierarchical class model is provided. There are two types of classes: source
classes and user classes. The first one specifies the source of the instances. The
second one enables the user to create its own collection of instances from different
source classes. The class generation process can be done manually or automat-
ically by using the names and the hierarchies of the directories from where the
instances are imported.

The work flow of EDACC usually starts by adding solvers, specifying their
parameters, and by adding instances and categorizing them into classes. When
all the solvers and instances are available in the DB, the user can switch to the
experiment mode. After providing some general information, e.g. a name and
description of the experiment, the user can select and configure the solvers to be
used in the experiment. There are a lot of solver configuration possibilities e.g.
enabling or disabling parameters, automated generation of seeds for probabilistic
solvers, linking seeds between solvers, for minimizing the variance, and many
more.

Next, the instances to use for the created experiment have to be chosen.
This operation is alleviated by the instance classes and by filters, enabling a
fast selection process. To restrict the consumption of resources like cpu time or
memory different limitations can be imposed on the solvers. If the tested solvers
are probabilistic there is the possibility to configure the number of repetitions.
After choosing a computation system (for which some basic information has to be
provided), the user can generate the jobs for the experiment and the distribution
package, which is an archive containing the compute client and a configuration
file. The configuration file contains information about the DB connection, the
experiment and the target compute system.

Copying the distribution package to the computing system and starting the
CC will start the processing of the jobs. The CC consists of three programs:
launcher, watcher and verifier. The launcher fetches jobs from the DB and passes
them to the watcher, which monitors the use of resources and imposes the de-
sired limitations (At the moment we use the runsolver program from the SAT
Competition to achieve this [7]). When a solver finishes, the verifier is used to
check the result of the solver, and upon completion the launcher writes all results
back to the DB. The verifier is characteristic for each kind of instance and can
be replaced or not invoked at all.

There are no limitations on how many CC’s are running at the same time. If
the computing system is a computer cluster or a grid, then the CC can be run on

590 A. Balint et al.

Fig. 2. A snapshot of the job browser within the experiment mode of the GUI, while
monitoring the progress of an experiment

all nodes to increase throughput. If the nodes have multi-core CPU’s the client
can make use of this by starting multiple jobs on a node. Crashes of parts of
the computing system will not affect the processing of the experiment, because
failed jobs are computed by other CC’s. A nice feature worth mentioning is
that instances or solvers can be added and deleted during computation, without
having to stop the CC’s. When a CC finishes a job it writes the results (e.g.
CPU time, output of solver, watcher and verifier) back to the DB and picks
another job until all jobs are completed. During the computation of the jobs the
job browser from the GUI or the WF enables real-time monitoring of the jobs
(see Fig. 2). When all jobs of an experiment are finished, the user can extract
information from the results and from the instances, and use it for descriptive
statistics or statistical tests, that can be performed within the GUI or WF. These
features are described in detail in the next chapters.

3 Information Extraction

To analyze the results of an experiment different kinds of statistics can be used.
The more information about the experiment’s results and instances are available,
the more powerful these statistics can be. To make the analysis more easy for
the user, EDACC supports a variety of information extraction mechanisms. All
the information extracted through these mechanisms can be saved in the DB
and used for statistics or can be exported.

We differentiate between two kinds of information, depending on the source.
Any information that can be computed from the input instances is called an

EDACC 591

instance property (IP). All other information is called a result property (RP).
The sources of RP’s are: the parameters of the solver, and the outputs (stdout,
stderr) of the solver, launcher, watcher and verifier.

Most of the information researchers are interested in is present in some out-
put file, and can be easily extracted by a parser procedure. However there are
a lot of information, e.g. the “hardness” of an instance or the “qualitiy” of a
solution, that requires advanced information processing. To cover both of these
scenarios, we provide two major mechanisms to extract IP’s and RP’s : by an in-
ternally defined parser, that can work with regular expressions, or by an external
program.

Before starting to extract information, the user has to define the properties
in the EDACC GUI by specifying the name, value type, description, source and
the regular expression or external program. The value type of the property can
be chosen from several predefined types like boolean, integer, float or string. To
make the information extraction as flexible as possible, the user is also able to
define further types and also to specify if the property has multiple occurrences.
If the property’s computation mechanism is an external program, the user has
to provide a binary and a parameter line to run the program. The stdout output
of the program is then interpreted as the value of the property.

Properties are stand-alone entities, and do not require the existence of in-
stances or of results. Starting the computation of a property creates a link be-
tween the property and the instance or the result. The link contains the value
of the property.

The computation of properties can take a long time, depending on the com-
plexity and size of the input. To take advantage of current multi-core computer
architectures EDACC can parallelize the computation of properties.

3.1 Instance Properties

Instance properties can be computed in the manage DB mode of EDACC and
are independent of the existence of an experiment. Information about instances
can be also parsed from the instance filenames. This can be very useful when
the filename encodes different properties. After their computation, IP’s can be
displayed within the GUI, or can even be used to filter instances, according to
certain values of a property. This feature can be very useful when selecting the
instances for an experiment. Further, all computed IP’s are available for use in
the WF.

3.2 Result Properties

Result properties can be computed in the experiment mode of EDACC and
assume the existence of an experiment. Most of the RP’s, excepting those com-
puted from solver parameters, can be computed only when a job is finished
and the output files of solver, launcher, watcher (and verifier) are available in
the DB. The computation of result properties can be started during the com-
putation of an experiment because EDACC will take only finished jobs into

592 A. Balint et al.

consideration. Thereby preliminary analysis of the results and their properties is
possible. Computed RP’s can be displayed in the result browser or can be used
in the WF. There are some predefined RP’s within EDACC that do not have to
be computed: the result time (the time it took to compute the result) and the
parameters of a solver.

4 Analysis and Statistical Evaluation

Through its information extraction mechanism, EDACC provides a lot of infor-
mation about an experiment. Having all this sort of information in the same DB
we have extended the GUI and the WF to provide also descriptive statistics and
statistical tests. This can be for example used to measure the performance of
algorithms, to find out correlations between some properties of the results or to
simply have a graphical representation of the results. This enables the user to
directly analyze the results without having to export the data, and then process
them within a statistical program.

The information that can be used for analysis is stored in the DB within IP’s
and RP’s. We differentiate between two scenarios in which analysis is performed.
Analysis of a single solver or comparison of two or more solvers. We also have
to differentiate between single runs or multiple runs of a solver on the same
instance. If multiple runs are available, the information used for statistics can
be chosen by the user from median, mean, all runs or only a single specified run.

To improve the statistical methods the user has also the ability to select the
instances used for the analysis. For example when analyzing the results of SAT
solvers on random instances containing 3-SAT, 5-SAT, and 7-SAT instances,
the user might be only interested in 3-SAT. This can be performed by choosing
only the 3-SAT instances for the analysis. Instance selection is provided for all
methods.

A RP distribution plot (see Fig. 3) and a nonparametric kernel density esti-
mation is provided for the analysis of the results of a single solver on an arbitrary
instance by means of an arbitrary RP. To analyze the results of a solver on all in-
stances (or a selection) the user can use scatter plots. The compared information
can be an IP with a RP, like for example number of variables vs. CPU time or
two RP’s, like memory-usage vs CPU-time. Beside the scatter plots we also com-
pute the Spearman rank correlation coefficient and the Pearson product-moment
correlation coefficient.

A scatter plot (see fig. 4 for a run time comparison) together with the two men-
tioned correlation tests is provided for the comparison of two solvers by means of
an arbitrary result property. When the comparison is limited to one instance we
also provide RP distributions comparisons together with a Kolmogorow-Smirnow
two-sample test and a Mann-Whitney-U Test (Wilcoxon rank sum test). The
RP distribution comparison plot can be also done for all solvers but without the
tests.

A well founded comparison of the performance of two solvers can also be done
with the help of a probabilistic domination test by means of an arbitrary RP.

EDACC 593

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

CPU Time (s)

P
(s

o
lv

e
 w

it
h
in

 x
 s

e
c
o
n
d
s
)

Runtime Distributions

TNM

Sparrow

Fig. 3. Comparison of the runtime distri-
bution of two solvers

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
p
a
rr

o
w

 C
P

U
 T

im
e

TNM CPU Time

TNM vs. Sparrow

Fig. 4. Scatter plot to compare the run-
time of two solvers

Within this tests instances are split into three categories. The first category con-
tains the instances where the first solver probabilistically dominates the second
one. The second one contains the instances where the second solver probabilis-
tically dominates the first one and the third category contains the instances
where no probabilistic domination can be found because of the crossing of the
RP distributions.

Analyzing one result property for one or more solvers can be done by a box
plot or by a cactus plot (number of solved instances within a given amount of
the RP’s see Fig. 7) .

Finally EDACC can export the generated plots in a huge variety of file formats
including vector graphics. To support third-party analysis tools IP’s and RP’s
can also be exported to the widespread csv-format.

5 EDACC - Competition Mode

Solver competitions can be an incentive for researchers to implement new ideas,
to improve existing solver and spark interest in the field. Recurring competitions
can show the progress in the development of solvers by comparing new solvers
with reference solvers from previous competitions. They can also help to identify
challenging instances for state-of-the-art solvers. The results of such a compe-
tition can be used by researchers to identify the strengths and weaknesses of
solvers and instances and to guide further development.

There are several competitions in the field of empirical algorithms, for exam-
ple the ”SAT Competition”[6][7], the ”SAT-Race”[8], the ”SMT-COMP”[9] or
“CASC” [3]. Running such competitions is an organizational challenge and comes
with the inevitable need for tools to make it possible to run dozens of solvers on

594 A. Balint et al.

a huge set of instances in a multi-computer environment and then retrieve and
process the results for competition purposes. The competitions mentioned above
do have such internal tools and web interfaces, but to our knowledge they are not
publicly available. To make the organization of competitions to everybody possi-
ble, (who has the computational resources) we decided to extend EDACC to be
able to provide all required functionalities for the organization of competitions.

We first started by analyzing the existing competition systems to find out
their commonalities and to identify interesting or missing features.

From an abstract point of view all competitions have:

1. static web pages to provide information about rules and the course of events
2. user administration to control the access to the results
3. an execution system to run solvers and manage the results
4. dynamic web pages to present the results

As necessary, interesting or missing features we have identified:

1. Plausibility and verifiability of the steps taken in all competition phases by
providing participants real-time access to all relevant information.

2. The results have to be reproducible, which means all required information
(e.g. starting command, seeds, input files, output files) should be easily ac-
cessible through a web interface.

3. Various forms of presentation of the results with cross linking and filtering.
4. Different graphical presentations of the results, including interactive ele-

ments such as clickable points in plots that lead to detailed information.
5. All graphical presentations are exportable both as image and as numerical

data.
6. Descriptive statistics and statistical tests for analysis of the results.
7. Clean encapsulation of the ranking system enabling easy implementation of

new ranking systems.

We have extended the WF of EDACC to provide together with the GUI and CC
all of these features. Further we have added a phase system (see Fig. 5) to specify
the course of events during a competition. The phases also specify which actions
should be taken by whom and control the access to the various information.

Announce
competition

1. Category definition 2. Registration/Submission

3. Solver
testing

4. Solver
resubmission

5. Competition
6. Release

results

7. Release
results

to public

Fig. 5. The phases of a competition

EDACC 595

Next we are going to describe the organization of a competition with the
EDACC WF by describing each phase, and pointing out the interesting features
that are provided. The access control to different kinds of information (e.g. own
results, all results, statistics, etc.) can be configured by the organizers for each
phase individually, according to their competition policies. Through the descrip-
tion of the phases an exemplary access control is given.

In the first phase the organizers of the competition define the competition
categories (which actually can be seen as sub-competitions). A category is defined
by the instances it will contain and should give the competitors an orientation
where to submit their solvers. In EDACC, each category will be represented by
an experiment. In this phase competitors have access only to general information,
rules and the schedule. The WF provides containers for these static web pages.

In the second phase, competitors are requested to create an account for the
web interface. After login they can submit their solvers (i.e. source code or bi-
nary), which are directly saved within the DB. They have to provide detailed
information about their solvers like the parameters and the competition cate-
gory where the solver should participate. Instances can also be submitted by
specifying the origin, type and the category it would suit best. Submitted in-
stances will be then available to organizers in the EDACC DB. During this phase
competitors have no access to other competitors’ solvers nor instances. The WF
together with the DB provides the necessary access controls.

The solver testing phase is used to ensure that the submitted solvers are able
to run on the computing system of the competition. Within the EDACC GUI
organizers create test experiments, corresponding to each of the competition
categories. Creating this experiments is straightforward, because solvers and
instances are already in the DB. Each solver will be tested in all categories it
was submitted to. The experiments are then run on the competition computing
system with the help of the CC. Competitors have the possibility to real-time
monitor their solvers through the WF (results of other solvers are not visible).
Registration and submission of solvers or instances is no longer possible within
the WF. From this phase on results are accessible in several forms1:

1. By solver configuration: The results for all instances computed by a solver
configuration.

2. By instance: The results of all solver configurations.
3. By solver configuration and instance (if multiple runs are allowed): multiple

jobs of each solver configuration on an instance are accumulated and some
descriptive statistics like the minimum, maximum, median and mean runtime
displayed.

4. Single result: The result of a single job, including the output of solver,
launcher, watcher and verifier and also all result properties that where com-
puted for this result.

During a solver resubmission phase, competitors have the opportunity to sub-
mit solver updates if bugs or compatibility issues with the computing system
1 An example for the results of a competition can be found at
http://edacc.informatik.uni-ulm.de/

http://edacc.informatik.uni-ulm.de/

596 A. Balint et al.

Fig. 6. View of the WF showing the result
phase of a competition.

Fig. 7. Cactus plot (cumulative distri-
bution function for run-time) of the re-
sults during the run of a competition.

occurred during the test phase. The organizers can then rerun the testing ex-
periments with the updated solvers.

Similar to the testing phase, in the competition phase organizers create exper-
iments based on the competition categories and choose the solvers and instances
for each experiment. This task is again accomplished with the help of the GUI.
The experiments are then run on the computing system and competitors have
the possibility to monitor the results of their own solvers online (and of others
if configured so by the organizers).

In the release phase competitors gain access to the results of all competing
solvers. Before making the results available to the wide public a ranking has
to be calculated. The ranking can either be calculated dynamically by the web
application or simply displayed after a manual calculation. We implemented a
simple, exemplary ranking using the number of correct results and breaking
ties by the accumulated CPU time. Further rankings can be easily encapsulated
within the application. Also available in this phase is the complete spectrum of
descriptive statistics and statistical tests described in chapter 4. For pointing out
interesting results or correlations the organizer have the possibility to extract
instance or result properties within the GUI and make them available within
the WF.

In a last phase, instances, results and possibly solver source codes and binaries
are made publicly available on the web interface without requiring registration.

6 Implementation Details

The first component of EDACC, the DB, requires an user-account on a MySQL
5.1 database with read and write access. The location of the DB plays no role.
The needed tables are generated by EDACC itself. The GUI of EDACC is written
in Java and is independent of the operating system of the computer. It needs
only the Java virtual machine version 6. For the statistical evaluation, the R
programming language should also be installed on the computer.

EDACC 597

The compute client consists of three sub programs: the launcher, the watcher
and the verifier. The launcher builds a DB-connection, and is responsible for
fetching the jobs and all necessary files, providing them to the watcher. The
launcher is written in C and was tested only on unix-like systems. The watcher
starts the solver, and monitors the consumption of resources on the computing
system. If some limits are exceeded the solver will be stopped. At the moment
we use the runsolver code of Olivier Roussel from the SAT Competition as a
watcher. The watcher is a replaceable component in EDACC. The verifier is
problem dependent and has to be provided by the user. If the results of the
solver can be trusted (e.g. the solver contains a verifier procedure) the verifier
can be omitted.

A MySQL proxy is provided to make the execution of the CC on computer
clusters possible, where the nodes do not have Internet access, except for a login
node. In such a scenario the MySQL-proxy running on the login node provides
the DB-connection for the CC’s. This feature was tested on several computer
clusters.

The web interface for the competition mode is implemented as Python WSGI
(Web Server Gateway Interface) application. The application uses a web frame-
work and several open source libraries which are available on most platforms.
All competition specific data like user accounts, instance types and the phase of
the competition are stored in the central DB. To generate plots and calculate
statistics it uses an interface library to the statistical computing language R.

The code of EDACC components is open source and is released under the
MIT License (excepting the watcher, which has an GPLv3 license). The code is
available at the project site: http://sourceforge.net/projects/edacc/.

7 Related Work

We are not aware of the existence of an experimentation system for empiri-
cal algorithms that provides all the functionalities of EDACC within the same
platform. Parts of EDACC’s functionalities are provided by different systems or
tools. GridTPT [4] for example supports the testing of SMT solvers and their
distribution on computer clusters supporting a master/slave architecture. It is
also able to parse information from the output and present some statistics as
scatter plots.

The different competitions like [7] and the SMT Competition [9] systems
have several tools similar to our WF but they lack the possibility to perform
advanced analysis of the results and are not freely available nor portable to
other computing systems.

8 Conclusion and Future Work

In this work we have introduced EDACC, a platform for the design, adminis-
tration and analysis of experiments on empirical algorithms. EDACC consists
of four major components, the database, a graphical user interface, a compute

http://sourceforge.net/projects/edacc/

598 A. Balint et al.

client and a web frontend. The DB is the central information storage of EDACC
and provides the communication link between GUI, CC and WF. The GUI en-
ables the user to manage solvers, their parameters and instances within the DB.
It also enables the design and creation of complex experiments and their ad-
ministration on different computing systems. The compute client performs the
computation of the experiment jobs on arbitrary computing systems ranging
from multi-core computers to large scale grids. The architecture of the compute
client is designed to use the allocated resources to a maximum, increasing the
computational throughput. Crashes of parts of the computational system do not
affect the processing of experiment jobs, as failed jobs can be recomputed by
other CC’s. During the computation of an experiment the GUI and the WF
provide a job browser to monitor the jobs. They also provide a wide variety of
statistical analysis methods like descriptive statistics and statistical tests. For
organizing solver competitions the WF provides all necessary functionalities like
user administration, and different dynamic web pages for monitoring the course
of events. The statistical analysis possibilities are also provided for the compe-
tition mode, enabling a fast evaluation of the results.

We think that researchers, that study empirical algorithms, can drastically
speed up their experimental and analysis work by using EDACC as their exper-
imental platform.

In the further development of EDACC we plan to integrate an automatic
parameter optimizing procedure. Together with the distributed computing pos-
sibilities of EDACC, the optimization process could be sped up. We also plan
to integrate different priority policies for processing the jobs within an exper-
iment. For the competition mode of the WF an automated compilation of the
source code (which is submitted by the competitors) on the computing system
is planed.

Acknowledgments. We would like to thank the bwGrid [2] project for pro-
viding the test environment, and Borislav Junk and Raffael Bild for the first
version of the launcher code. We would also like to thank Geoff Sutcliffe for
fruitful suggestions regarding the first version of this paper.

References

1. Balint, A., Gall, D., Kapler, G., Retz, R.: Experiment design and administration
for computer clusters for SAT-solvers (EDACC). JSAT 7, 77–82 (2010); system
description

2. bwGRiD, member of the German D-Grid initiative, funded by the Ministry for Edu-
cation and Research (Bundesministerium für Bildung und Forschung) and the Min-
istry for Science, Research and Arts Baden-Württemberg (Ministerium für Wis-
senschaft, Forschung und Kunst Baden-Württemberg), http://www.bw-grid.de

3. Sutcliffe, G.: The CADE-22 Automated Theorem Proving System Competition
CASC-22. AI Communications Journal 23(1), 47–60 (2010)

4. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: GridTPT: a distributed
platform for Theorem Prover. In: Proc. Workshop on Practical Aspects of Auto-
mated Reasoning 2010 (2010)

http://www.bw-grid.de

EDACC 599

5. Hutter, F., Hoos, H., Stützle, T.: Automatic Algorithm Configuration based on
Local Search. In: AAAI 2007 (2007)

6. Le Berre, D., Simon, L.: The Essentials of the SAT 2003 Competition. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 452–467.
Springer, Heidelberg (2004)

7. The SAT Competition Homepage, http://www.satcompetition.org
8. SAT-Race 2010 Homepage, http://baldur.iti.uka.de/sat-race-2010/
9. Barrett, C., De Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories

Competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 20–23. Springer, Heidelberg (2005)

10. Homepage of the project, http://sourceforge.net/projects/edacc/

http://www.satcompetition.org
http://baldur.iti.uka.de/sat-race-2010/
http://sourceforge.net/projects/edacc/

HAL: A Framework for the Automated Analysis
and Design of High-Performance Algorithms

Christopher Nell, Chris Fawcett, Holger H. Hoos, and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{cnell,fawcettc,hoos,kevinlb}@cs.ubc.ca

Abstract. Sophisticated empirical methods drive the development of
high-performance solvers for an increasing range of problems from in-
dustry and academia. However, automated tools implementing these
methods are often difficult to develop and to use. We address this issue
with two contributions. First, we develop a formal description of meta-
algorithmic problems and use it as the basis for an automated algorithm
analysis and design framework called the High-performance Algorithm
Laboratory. Second, we describe HAL 1.0, an implementation of the core
components of this framework that provides support for distributed ex-
ecution, remote monitoring, data management, and analysis of results.
We demonstrate our approach by using HAL 1.0 to conduct a sequence of
increasingly complex analysis and design tasks on state-of-the-art solvers
for SAT and mixed-integer programming problems.

1 Introduction

Empirical techniques play a crucial role in the design, study, and application of
high-performance algorithms for computationally challenging problems. Indeed,
state-of-the-art solvers for prominent combinatorial problems, such as proposi-
tional satisfiability (SAT) and mixed integer programming (MIP), rely heavily
on heuristic mechanisms that have been developed and calibrated based on ex-
tensive computational experimentation. Performance assessments of such solvers
are also based on empirical techniques, as are comparative analyses of competing
solvers for the same problem. Advanced algorithm design techniques based on
empirical methods have recently led to substantial improvements in the state of
the art for solving many challenging computational problems (see, e.g., [1,2,3]).

Empirical analysis and design techniques are often used in an ad-hoc fashion,
relying upon informal experimentation. Furthermore, despite a growing body of
literature on advanced empirical methodology, the techniques used in practice are
often rather elementary. We believe that this is largely due to the fact that many
researchers and practitioners do not have sufficient knowledge of, or easy access
to, more sophisticated techniques, and that implementations of these techniques
are often difficult to use, if publicly available at all. At the same time, it is clear
that much can be gained from the use of advanced empirical techniques.

To address the need for easy access to powerful empirical techniques, we de-
veloped HAL, the High-performance Algorithm Laboratory – a computational

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 600–615, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

HAL: Automated Analysis and Design of High-Performance Algorithms 601

environment for empirical algorithmics. HAL was conceived to support both
the computer-aided design and the empirical analysis of high-performance al-
gorithms, by means of a wide range of ready-to-use, state-of-the-art analysis
and design procedures [4]. HAL was also designed to facilitate the develop-
ment, dissemination, and ultimately wide adoption of novel analysis and design
procedures.

By offering standardized, carefully designed procedures for a range of empirical
analysis and design tasks, HAL aims to promote best practices and the
correct use of advanced empirical methods. In particular, HAL was designed to
support the use and development of fully automated procedures for the empiri-
cal analysis and design of high-performance algorithms. Since they operate upon
algorithms, we refer to these procedures as meta-algorithmic procedures (or meta-
algorithms). Example meta-algorithmic analysis procedures include the charac-
terization of algorithm performance on a set of benchmark instances using a
solution cost distribution, as well as the comparison of two algorithms’ perfor-
mance using the Wilcoxon signed-rank test (see, e.g., [5]). Meta-algorithmic de-
sign procedures are rapidly gaining prominence and include configuration
procedures, such as ParamILS [6,7] and GGA [8], and portfolio builders like
SATzilla [9,1].

During the early stages of developing HAL, we realized that appropriately for-
malized notions of meta-algorithmic procedures, and of the tasks accomplished
by these procedures, would provide an ideal foundation for the system. This
conceptual basis promotes ease of use, by inducing a natural categorization of
analysis and design procedures and by facilitating the use of multiple (or al-
ternative) analysis or design procedures. For example, configuration procedures
like ParamILS and GGA solve the same fundamental problem, and with HAL
it is easy to conduct analogous (or even parallel) experiments using either of
them. Furthermore, HAL’s foundation on meta-algorithmic concepts facilitates
the combination of various procedures (such as configuration and algorithm se-
lection [10]) and their sequential application (such as configuration followed by
comparative performance analysis), as well as the application of analysis or de-
sign procedures to other meta-algorithmic procedures (as in the automated con-
figuration of a configurator). Finally, meta-algorithmic concepts form a solid
basis for realizing HAL in a convenient and extensible way.

HAL also offers several other features important for work in empirical algorith-
mics. First, to support large computational experiments, HAL uses a database
to collect and manage data related to algorithms, benchmark instances, and ex-
perimental results. Second, while HAL can be used on a stand-alone computer,
it also supports distributed computation on computer clusters. Third, it allows
researchers to archive experiment designs into a single file, including settings,
instances, and solvers if unencumbered by license restrictions. Another user can
load the file into HAL and replicate exactly the same experiment.

HAL is also designed to facilitate the development and critical assessment
of meta-algorithmic procedures. To this end, it is realized as an open environ-
ment that is easy to extend, and offers strong support for recurring tasks such
as launching, monitoring, and analyzing individual algorithm runs. In short,

602 C. Nell et al.

HAL allows developers to focus more on building useful and powerful meta-
algorithmic procedures and less on the infrastructure required to support them.
We hope that this will help to bring about methodological progress in empiri-
cal algorithmics, and specifically in the development of novel meta-algorithmic
procedures, incorporating contributions from a broad community of researchers
and practitioners.

HAL shares some motivation with other systems supporting the empirical
study of algorithms. Paver [11] performs automated performance analysis of
optimization software through a web-based interface, but requires that input
data be collected by separate invocation of a different tool, and thus is unsuitable
for automated techniques that perform concurrent data collection and analysis.
EDACC [12] is an experiment management framework which, like HAL, supports
distributed execution on compute clusters and centralized data storage, accessed
via a unified web interface; unlike HAL, EDACC is focused only on the SAT

problem, and more fundamentally does not provide any support for automated
meta-algorithmic design procedures. Overall, HAL is the only environment of
which we are aware that is designed for the development and application of
general-purpose meta-algorithmic analysis and design techniques.

The remainder of this paper is structured as follows. In Section 2, we describe
in more detail our vision for HAL and the meta-algorithmic concepts underly-
ing it. In Section 3, we explain how HAL 1.0, our initial implementation of the
HAL framework, provides an extensible environment for empirical algorithmics
research. We illustrate the use of HAL 1.0 with a sequence of analysis and design
tasks for both SAT and MIP in Section 4: first characterizing one solver’s perfor-
mance, next comparing alternative solvers, and finally automating solver design
using proven meta-algorithmic techniques. Finally, in Section 5 we summarize
our contributions and discuss ongoing work.

2 HAL: A Framework for Meta-algorithmics

The concepts of meta-algorithmic analysis and design procedures are fundamen-
tal to HAL. In this section we formally introduce these concepts, discuss benefits
we can realize from this formal understanding, and outline HAL’s high-level de-
sign.

2.1 Meta-algorithmic Problems

We begin by defining a (computational) problem as a high-level specification of
a relationship between a space of inputs and a corresponding space of outputs.
An instance of a problem p is any set of values compatible with its input space,
and a solution to an instance is a set of values compatible with its output space
and satisfying the relationship required by p. For example, SAT can be defined
as:
Input: 〈V, φ〉, where V is a finite set of variables, and φ is a Boolean formula in

conjunctive normal form containing only variables from V or their negations;

HAL: Automated Analysis and Design of High-Performance Algorithms 603

Output: s =
{

true if ∃K : V �→ {true, false} such that φ = true under K;
false otherwise.

Thus, 〈V = {a, b, c}, φ = (¬b∨c)∧ (a∨b∨¬c)〉 is an example of a SAT instance
with solution s = true.

An algorithm is any well-defined computational procedure that takes some
set of inputs and produces some set of outputs. We say an algorithm A solves a
problem p if it accepts any instance of p as a subset of its inputs, and a solution to
that instance is identified in its outputs when executed. We observe that A may
include inputs and/or outputs other than those required by p, and distinguish
three types of algorithm inputs: the algorithm-independent problem instance
to be solved, algorithm-specific parameters that qualitatively affect behaviour
while solving the instance, and any other settings that might be required (e.g.,
a CPU time budget or a random seed). We refer to algorithms that have pa-
rameters as parameterized, and to the rest as parameterless. Any parameterized
algorithm can be made parameterless by instantiating all of its parameters with
specific values. Thus, a parameterized algorithm defines a space of parameterless
algorithms.

A meta-algorithmic problem is a problem whose instances contain one or more
algorithms, and a meta-algorithm, or meta-algorithmic procedure, is an algo-
rithm that solves some meta-algorithmic problem. We refer to algorithms that
serve as (part of) a meta-algorithm’s input as target algorithms, and to the
problems target algorithms solve as target problems. An analysis problem is a
meta-algorithmic problem whose solution must include a statement about the
target algorithm(s); a design problem is a meta-algorithmic problem whose so-
lutions must include one or more algorithms. Finally, we refer to an algorithm
that solves an analysis problem as an analysis procedure, and one that solves a
design problem as a design procedure.

Meta-algorithmic analysis problems are ubiquitous, even if they are not always
solved by automated procedures. Consider the task of evaluating a solver on
a benchmark instance set, using various statistics and diagnostic plots. This
corresponds to the single-algorithm analysis problem:
Input: 〈A, I, m〉, where A is a parameterless target algorithm, I is a distribu-

tion of target problem instances, and m is a performance metric;
Output: 〈S, T 〉, where S is a list of scalars and T a list of plots; and where

each s ∈ S is a statistic describing the performance of A on I according to
m, and each t ∈ T is a visualization of that performance.

One meta-algorithmic procedure for solving this problem might collect runtime
data for A, compute statistics including mean, standard deviation, and quan-
tiles, and plot the solution cost distribution over the instance set [5]; other proce-
dures might produce different plots or statistics. We can similarly define pairwise
comparison, whose instances contain two parameterless algorithms, and whose
output characterizes the two algorithms’ relative strengths and weaknesses.

Now consider the use of ParamILS [6,7] to optimize the performance of a
SAT solver. ParamILS is a meta-algorithmic design procedure that approxi-
mately solves the algorithm configuration problem:

604 C. Nell et al.

Input: 〈A, I, m〉, where A is a parameterized target algorithm, I is a distribu-
tion of target problem instances, and m is a performance metric;

Output: A∗, a parameterless algorithm for the target problem; where A∗ corre-
sponds to an instantiation of A’s parameters to values that optimize aggregate
performance on I according to m.

We can similarly define the per-instance portfolio-based algorithm selection prob-
lem, which is approximately solved by SATzilla [9,1]:
Input: 〈A, I, m〉, where A is a finite set of parameterless target algorithms, I

is a distribution of target problem instances, and m is a performance metric;
Output: A′, a parameterless algorithm for the target problem; where A′ exe-

cutes one A ∈ A for each input instance, optimizing performance according
to m.

Other variations also fit within the framework. Since we consider a parameterized
algorithm to be a space of parameterless algorithms, portfolio-based selection can
be seen as a special case of the generalizationof configuration sometimes referred to
as per-instance configuration, restricted to finite sets of target algorithms. Gener-
alizing differently, we can arrive at the parallel portfolio scheduling problem, which
requires that A′ executes multiple algorithms from A in parallel and returns the
first solution found, allocating computational resources to optimize the expected
aggregate performance on I according to m. Finally, one can further generalize to
per-instance parallel portfolio scheduling, where A′ executes multiple algorithms
fromA for each input instance and returns the first solution found, allocating com-
putational resources to optimize performance according to m.

We note a parallel between meta-algorithmic problems and the idea of design
patterns from software engineering, which describe recurrent problems arising
frequently in a given environment, along with solutions for them [13]. Meta-
algorithmic problems identify challenges that arise regularly in algorithm de-
velopment and present specific solutions to those challenges. However, choosing
between design patterns relies on understanding the benefits and drawbacks of
each. The same holds in the meta-algorithmic context; we hope that HAL will
prove useful for developing such understanding.

2.2 The High-Performance Algorithm Laboratory

HAL has been designed to align closely with the conceptual formalization from
Section 2.1, thereby providing a unified environment for the empirical anal-
ysis and design of high-performance algorithms via general meta-algorithmic
techniques. In particular, HAL allows explicit representation of arbitrary prob-
lems and algorithms (including input and output spaces), problem instances and
distributions, and performance metrics. Meta-algorithmic problems in HAL are
simply problems whose input (and perhaps output) spaces are constrained to in-
volve algorithms; likewise, meta-algorithmic procedures are realized as a special
case of algorithms. HAL presents a unified user interface that gives the user easy
and uniform access to a wide range of empirical analysis and design techniques
through a task-basked workflow. For example, users can design experiments

HAL: Automated Analysis and Design of High-Performance Algorithms 605

simply by selecting a meta-algorithmic problem of interest (e.g., configuration), a
meta-algorithmic procedure (e.g., ParamILS), and additional information that
specifies the meta-algorithmic problem instance to be solved (e.g., a target al-
gorithm, a distribution of target instances, and a performance metric).

This design provides the basis for five desirable characteristics of HAL. First,
it allows HAL to work with arbitrary problems, algorithms and meta-algorithmic
design and analysis techniques. Second, it enables HAL to automatically archive
and reuse experimental data (avoiding duplication of computational effort, e.g.,
when rerunning an experiment to fill in missing data), and to serve as a central
repository for algorithms and instance distributions. Third, it makes it easy to
support packaging and distribution of complete experiments (including target al-
gorithms, instances, and other experiment settings) for independent verification,
for example to accompany a publication. Fourth, it facilitates the straightfor-
ward use (and, indeed, implementation) of different meta-algorithmic procedures
with compatible input spaces; in particular including procedures that solve the
same meta-algorithmic problem (e.g., two algorithm configuration procedures).
Finally, it simplifies the construction of complex experiments consisting of se-
quences of distinct design and analysis phases.

To support a wide range of meta-algorithmic design and analysis procedures,
HAL allows developers to contribute self-contained plug-in modules relating to
specific meta-algorithmic problems and their associated procedures. A plug-in
might provide a new procedure for a relatively well-studied problem, such as
configuration. Alternately, it might address new problems, such as robustness
analysis or algorithm simplification, and procedures for solving them drawing on
concepts such as solution cost and quality distributions, runtime distributions,
or parameter response curves. In the long run, the value of HAL to end users
will largely derive from the availability of a library of plug-ins corresponding to
cutting-edge meta-algorithmic procedures. Thus, HAL is an open platform, and
we encourage members of the community to contribute new procedures.

To facilitate this collaborative approach, HAL is designed to ensure that the
features offered to end users are mirrored by benefits to developers. Perhaps most
importantly, the separation of experiment design from runtime details means
that the execution and data management features of HAL are automatically
provided to all meta-algorithmic procedures that implement the HAL API. The
API also includes implementations of the fundamental objects required when
building a meta-algorithm, and makes it easier for developers to implement new
meta-algorithmic procedures. Adoption of this standardized API also stream-
lines the process of designing hybrid or higher-order procedures. For example,
both Hydra [10] and ISAC [14] solve algorithm configuration and per-instance
portfolio-based selection problems; implementation using HAL would allow the
underlying configuration and selection sub-procedures to be easily replaced or
interchanged. Finally, as we continue to add meta-algorithmic procedures to
HAL, we will compile a library of additional functionality useful for implement-
ing design and analysis procedures. We expect this library to ultimately include
components for exploring design spaces (e.g., local search and continuous opti-
mization), machine learning (e.g., feature extraction and regression/classification

606 C. Nell et al.

methods), and empirical analysis (e.g., hypothesis testing and plotting), adapted
specifically for the instance and runtime data common in algorithm design sce-
narios.

3 The HAL 1.0 Core Infrastructure

The remainder of this paper describes an implementation of HAL’s core function-
ality, HAL 1.0, which is now available online.1 The system is essentially complete
in terms of core infrastructure (i.e., experiment modelling, execution manage-
ment, and user interface subsystems), and includes five meta-algorithmic pro-
cedures, focused on two meta-algorithmic analysis problems—single algorithm
analysis and paired comparison—and the meta-algorithmic design problem of
configuration. These procedures are further described in Section 4, where we
present a case study illustrating their use. As discussed above, we intend to add
a variety of additional meta-algorithmic procedures to HAL in the next release,
and hope that still others will be contributed by the broader community.

This section describes HAL 1.0’s core infrastructure. We implemented HAL
1.0 in Java, because the language is platform independent and widely used, its
object orientation is appropriate for our modular design goals, and it offers rel-
atively high performance. The HAL 1.0 server has been tested primarily under
openSUSE Linux and Mac OS X, and supports most POSIX-compliant oper-
ating systems; basic Windows support is also provided. The web-based UI can
provide client access to HAL from any platform. HAL 1.0 interfaces with Gnu-
plot for plotting functionality, and (optionally) with R for statistical computing
(otherwise, internal statistical routines are used), MySQL for data management
(otherwise, an embedded database is used), and Grid Engine for cluster com-
puting.

In the following subsections, we describe HAL 1.0’s implementation in terms
of the three major subsystems illustrated in Figure 1. While these details are
important for prospective meta-algorithm contributors and illustrative to readers
in general, one does not need to know them to make effective use of HAL 1.0.

3.1 Experiment Modelling

The components of the experiment modelling subsystem correspond to the con-
cepts defined in Section 2. This subsystem includes most of the classes exposed to
developers using the HAL API, including those that are extensible via plug-ins.

We will consider the running example of a user designing an experiment with
HAL 1.0, which allows us to describe the Java classes in each subsystem. The
user’s first step is to select a meta-algorithmic problem to solve. The Problem
class in HAL 1.0 encodes the input and output Spaces defined by a particu-
lar computational problem. (We hereafter indicate Java classes by capitalizing
and italicizing their names.) The relationship between the inputs and outputs
is not explicitly encoded, but is implicitly identified through the name of the

1 hal.cs.ubc.ca

hal.cs.ubc.ca

HAL: Automated Analysis and Design of High-Performance Algorithms 607

Problem itself. Individual variables in a Space are represented by named Do-
mains ; functionality is provided to indicate the semantics of, and conditional
interdependencies between, different variables. HAL 1.0 supports a variety of
Domains, including Boolean-, integer-, and real-valued numerical Domains, cat-
egorical Domains, and Domains of other HAL objects.

Once a problem is selected, the user must import an InstanceDistribution
containing target problem Instances of interest. HAL 1.0 currently supports
finite instance lists, but has been designed to allow other kinds of instance dis-
tributions such as instance generators. The Instance class provides access to
problem-specific instance data, as well as to arbitrary sets of Features and user-
provided Tags (used, e.g., to indicate encoding formats that establish compati-
bility with particular Problems or Algorithms). An Instance of a target problem
typically includes a reference to the underlying instance file; an Instance of a
meta-algorithmic problem contains the Algorithms, Instances, and Metrics that
define it.

The next step in experiment specification is to choose one or more target
algorithms. In HAL 1.0, the Algorithm class encodes a description of the input
and output spaces of a particular algorithm Implementation. For external tar-
get algorithms, the Implementation specifies how the underlying executable is
invoked, and how outputs should be parsed; for meta-algorithmic procedures, it
implements the relevant meta-algorithmic logic. Note that the base Implementa-
tion classes are interfaces, and meta-algorithmic procedures added via plug-ins
provide concrete implementations of these. Input and output spaces are encoded
using the Space class, and an Algorithm may be associated with a set of Tags
that identify the Problems that the algorithm solves, and compatible Instances
thereof. Two Algorithm subclasses exist: a ParameterizedAlgorithm includes con-
figurable parameters in its input space, and a ParameterlessAlgorithm does not.
Before execution, an Algorithm must be associated with a compatible Instance
as well as with Settings mapping any other input variables to specific values.

The final component needed to model a meta-algorithmic experiment is a
performance metric. A Metric in HAL 1.0 is capable of performing two basic
actions: first, it can evaluate an AlgorithmRun (see Section 3.2) to produce a
single real value; second, it can aggregate a collection of such values (for example,
over problem instances, or over separate runs of a randomized algorithm) into
a single final score. HAL 1.0 includes implementations for commonly-used per-
formance metrics including median, average, penalized average runtime (PAR),
and average solution quality, and it is straightforward to add others as required.

3.2 Execution and Data Management

The execution subsystem implements functionality for conducting experiments
specified by the user; in HAL 1.0, it supports execution on a local system, on
a remote system, or on a compute cluster. It also implements functionality for
cataloguing individual resources (such as target algorithms or instance distribu-
tions) and for archiving and retrieving the results of runs from a database.

608 C. Nell et al.

Fig. 1. Infrastructural overview of HAL 1.0. Dashed arrows indicate composition; solid
arrows, inheritance. Key components are shaded. Note the distinct subsystems, with
interactions between them (double arrows) typically moderated by AlgorithmRuns.

Once our user has completely specified an experiment, he must define the
environment in which execution is to occur. An Environment in HAL 1.0 is
defined by ExecutionManagers which are responsible for starting and monitoring
computation and a DataManager which is responsible for performing archival
functions. When an algorithm run request is made, the Environment queries
the DataManager to see if results for the run are already available. If so, these
results are fetched and returned; if not, the request is passed to an Execution-
Manager for computation and automatic output parsing. In either case, results
are returned as an AlgorithmRun object which allows monitoring of the run’s
elapsed CPU time, status, and individual output value trajectories both in real
time during execution and after completion. It also exposes functionality for
early termination of runs and uses this to enforce runtime caps.

HAL 1.0 includes three ExecutionManager implementations. The LocalExe-
cutionManager performs runs using the same machine that runs HAL 1.0, and
the SSHExecutionManager performs runs on remote machines using a secure
shell connection. The SGEClusterExecutionManager distributes algorithm runs
to nodes of a compute cluster managed by Oracle Grid Engine (formerly Sun
Grid Engine). The Environment can be configured to use different Execution-
Managers in different situations. For example, for analysis of an algorithm on
target problems that require a particularly long time to solve, the user might
specify an Environment in which the parent meta-algorithm is executed on the
local machine, but target algorithm runs are distributed on a cluster. Alterna-
tively, when target algorithm runs are relatively short but require a platform
different than the one running HAL 1.0, the user might specify an Environment
in which all execution happens on a single remote host.

HAL 1.0 includes two DataManager implementations. By default, a subclass
employing an embedded SQLite database is used. However, due to limitations

HAL: Automated Analysis and Design of High-Performance Algorithms 609

of SQLite in high-concurrency applications, a MySQL-backed implementation is
also provided. These DataManagers use a common SQL schema based on the
same set of fundamental meta-algorithmic concepts to store not only experimen-
tal results, but also information sufficient to reconstruct all HAL objects used
in the context of a computational experiment. We note that external problem
instances and algorithms are not directly stored in the database, but instead at
recorded locations on the file system, along with integrity-verifying checksums.
This eliminates the need to copy potentially large data files for every run, but
presently requires that all compute nodes have access to a shared file space.

3.3 User Interface

The user interface subsystem provides a remotely-accessible web interface to
HAL 1.0, via an integrated WebServer. Many classes have associated Object-
Servlets in the WebServer, which provide interface elements for their instantia-
tion and modification. The ObjectServlets corresponding to Problems are used
to design and execute experiments; the servlet for a given Problem automat-
ically makes available all applicable meta-algorithmic procedures. Additional
ObjectServlets allow the user to specify and examine objects such as Algorithms,
InstanceDistributions, Settings, and Environments. A StatusServlet allows the
user to monitor the progress and outputs of experiments both during and after
execution, by inspecting the associated AlgorithmRun objects. Finally, the in-
terface allows the user to browse and maintain all objects previously defined in
HAL, as well as to export these objects for subsequent import by other users.

4 Case Study: Analysis and Design with HAL 1.0

We now demonstrate HAL 1.0 in action. Specifically, we walk through two work-
flow scenarios that could arise for a typical user. In this way, we also present the
five meta-algorithmic procedures that are available in HAL 1.0. The outputs of
these procedures are summarized in Table 1, and in the following figures (ex-
ported directly from HAL 1.0). Exports of experiment designs are available on
the HAL website to facilitate independent validation of our findings.

Scenario 1: Selecting a MIP Solver. In this scenario, a user wants to se-
lect between two commercial mixed-integer program (MIP) solvers, IBM ILOG
Cplex

2 12.1 and Gurobi
3 3.01, on the 55-instance mixed integer linear pro-

gramming (MILP) benchmark suite constructed by Hans Mittelmann.4 Our user
sets a per-target-run cutoff of 2h and uses penalized average runtime (PAR-10) as
the performance metric (PAR-k counts unsuccessful runs at k times the cutoff).

Scenario 2: Adapting a SAT Solver. In this scenario, a user aims to adapt
a stochastic tree search solver for SAT, version 1.2.1 of Spear [15], to achieve

2 ibm.com/software/integration/optimization/cplex
3 gurobi.com
4 plato.asu.edu/ftp/milpf.html

ibm.com/software/integration/optimization/cplex
gurobi.com
plato.asu.edu/ftp/milpf.html

610 C. Nell et al.

strong performance on the 302-instance industrial software verification (SWV)
benchmark training and test sets used by Hutter et al. [16]. Our user sets a per-
target-run cutoff of 30s and evaluates performance by mean runtime (PAR-1).

Computational Environment. All experiments were performed on a Grid En-
gine cluster of 55 identical dual-processor Intel Xeon 3.2GHz nodes with 2MB
cache and 4GB RAM running openSUSE Linux 11.1. Runtime data was archived
using a dedicated MySQL server with the same machine specifications. Individ-
ual target algorithm runs for Scenario 1 experiments were distributed across
cluster nodes, and for Scenario 2 experiments were consolidated on single nodes.
Reported runtimes indicate CPU time used, as measured by HAL 1.0.

4.1 The Single-Algorithm Analysis Problem

In both scenarios, our user begins by analyzing single algorithms individually.

Analysis Procedure 1: SCD-Based Analysis. This comprehensive approach
to single-algorithm analysis takes as input a single target algorithm, a set of
benchmark instances, and some additional settings including a maximum num-
ber of runs per target instance, a maximum CPU time per target run, a max-
imum number of total target runs, and a maximum aggregate runtime budget.
It collects runtime data for the target algorithm on the instance distribution (in
parallel, when specified) until a stopping criterion is satisfied. Summary statis-
tics are computed over the instance distribution, and a solution cost distribution
plot (SCD; see, e.g., Ch. 4 of [5]), illustrating (median) performance across all
target runs on each instance, is produced.

Scenario 1(1). Cplex is the most prominent mixed-integer programming solver.
Here, our user measures its performance on the MILP instance set using the
SCD-Based Analysis procedure; as Cplex is deterministic, it is run only once
per instance. The resulting summary statistics are shown in Table 1, and the
SCD appears in the left pane of Figure 2.

Scenario 2(1). Spear was originally optimized for solving SAT instances from
several applications, but was later prominently used for software verification in
particular. In this phase of the case study, our user assesses the original, manually
optimized version of Spear on the SWV test set. The summary statistics from an
SCD-based analysis (performing 20 runs per instance as Spear is randomized)
are shown in Table 1 and the SCD in the top left pane of Figure 3.

4.2 The Pairwise Comparison Problem

Now our user performs pairwise comparisons between different solvers.

Analysis Procedure 2: Comprehensive Pairwise Comparison. This
procedure performs SCD-Based Analysis on two given algorithms, generates
a scatter plot illustrating paired performance across the given instance set,
and performs Wilcoxon signed-rank and Spearman rank correlation tests. The
Wilcoxon signed-rank test determines whether the median of the paired

HAL: Automated Analysis and Design of High-Performance Algorithms 611

Fig. 2. Comparison of Cplex and Gurobi on the MILP benchmark set. In the SCD,
median runtimes are indicated by vertical lines.

Fig. 3. Analysis of Spear designs on SWV test set. Top row, original vs. intuitively
modified design; bottom row, original vs. best configured design (from ParamILS).

performance differences between the two algorithms across the instance set is sig-
nificantly different from zero; if so, it identifies the better-performing algorithm.
The Spearman rank correlation test determines whether a significant monotonic
performance correlation exists between them. Both tests are non-parametric,
and so appropriate for the non-Gaussian performance data frequently seen in
empirical algorithm analysis.

Scenario 1(2). Our user aims to compare Cplex with Gurobi, a relatively
recent commercial MIP solver. He uses HAL’s Comprehensive Pairwise Com-
parison procedure on the MILP benchmark set for this task. Statistics on the
performance of the two solvers are shown in Table 1. As can be seen from Fig-
ure 2, which presents the combined SCD plot and the performance correlation

612 C. Nell et al.

plot, Gurobi outperformed Cplex on most instances; the Wilcoxon signed-
rank test indicated that this performance difference was significant at α = 0.05
(p = 0.024). This result is consistent with Mittelmann’s observations using the
MILP benchmark set. A Spearman correlation coefficient of ρ = 0.86 (p = 0.0)
reflects the strong correlation seen in the scatter plot. However, the slightly
better performance of Cplex observed for a number of instances suggests a
potential for modest performance gains by using automated portfolio-based al-
gorithm selection techniques (see, e.g., [1]), which we plan to support in HAL in
the near future.
Scenario 2(2). When adapting an algorithm to a new class of benchmark in-
stances, algorithm designers often apply intuition to making important design
choices; these choices are often realized by setting parameters of the algorithm
to certain values. For example, Hutter et al. [16] provide an intuitive explanation
of the strong performance of one particular configuration of Spear in solving
software verification instances. Our user follows their qualitative description to
manually obtain a configuration of Spear that he then compares against the
default on the SWV test set (based on 20 runs per instance) using the Com-
prehensive Pairwise Comparison procedure; the results are shown in Figure 3
and Table 1. Overall, the modified configuration achieved better (PAR-1) per-
formance than the default, as expected. However, as clearly seen from the SCDs
and from the scatter plot, this was accomplished by sacrificing performance on
easy instances for gains on hard instances. The Wilcoxon signed-rank test deter-
mined that if all instances were weighted equally, the median paired performance
difference over the full benchmark set was not significantly different from zero
at α = 0.05 (p = 0.35). The inter-instance correlation was significant, however,
with ρ = 0.97 (p = 0.0).

4.3 The Algorithm Configuration Problem

In Scenario 2(2) above, our user observed that Spear’s performance can be
improved by manually modifying its parameters. Seeking further performance
gains, he turns to automatic configuration. HAL 1.0 supports three procedures
for this meta-algorithmic design problem.

Design Procedure 1: Automated Configuration using ParamILS. HAL
1.0 supports the FocusedILS variant of the local-search-based ParamILS con-
figurator [7]. The original Ruby implementation is augmented by using an adapter
class to implement the plugin in HAL 1.0.

Design Procedure 2: Automated Configuration using GGA. HAL 1.0
includes a plugin that interfaces with the original implementation of GGA, which
employs a gender-based genetic algorithm [8]. Unfortunately, sources for this
procedure are not available, and because of copyright restrictions we are unable
to further distribute the executable supplied to us by its authors.

Design Procedure 3: Automated Configuration using ROAR. HAL 1.0
also supports the Random Online Aggressive Racing (Roar) procedure, a simple
yet powerful model-free implementation of the general Sequential Model-Based

HAL: Automated Analysis and Design of High-Performance Algorithms 613

Table 1. Summary of case study results. Reported statistics are in terms of PAR-10
for Cplex and Gurobi, and PAR-1 for Spear; units are CPU seconds. Only the best
design in terms of training set performance is reported for each configuration procedure.

Training Set Test Set
Algorithm q25 q50 q75 mean stddev q25 q50 q75 mean stddev

Cplex 26.87 109.93 360.59 9349.1 24148.9
Gurobi 13.45 71.87 244.81 1728.8 9746.0

Spear default 0.13 0.80 10.78 6.78 10.62
Spear modified 0.19 0.89 4.35 3.40 6.31
Spear ParamILS 0.22 0.80 2.63 1.72 2.54 0.19 0.80 2.21 1.56 2.22
Spear GGA 0.22 0.90 1.96 2.00 3.36 0.16 0.90 1.72 1.72 3.39
Spear Roar 0.22 0.92 2.70 1.91 2.59 0.19 0.91 2.41 1.82 2.98

Optimization (SMBO) framework [17]. Roar was implemented entirely within
HAL 1.0, and serves as an example of developing meta-algorithmic design pro-
cedures within the HAL framework.
Unlike Roar and GGA, ParamILS requires sets of discrete values for all target
algorithm parameters; therefore, when using ParamILS, HAL 1.0 automatically
discretizes continuous parameters. Unlike ParamILS and Roar, GGA requires
all target runs to be performed on the same host machine, and GGA’s authors
recommend against the use of performance metrics other than average runtime.
Scenario 2(3) Because the three configuration procedures are easily interchange-
able in HAL 1.0, our user runs all of them. He performs 10 independent runs of
each configurator on the SWV training set, and sets a time budget of 3 CPU
days for each run. For some of Spear’s continuous parameters, our user indi-
cates that a log transformation is appropriate. In these cases, HAL performs the
transformations automatically when calling each configurator; it also automat-
ically discretizes parameters for ParamILS. Our user validates the performance
of each of the 30 final designs on the training set using the SCD-Based Analy-
sis procedure with 20 runs per instance. He then compares the design with the
best training performance found by each of the procedures against the default
configuration using the Comprehensive Pairwise Comparison procedure on the
test set, again performing 20 runs per instance. Results are shown in Figure 3
and Table 1. The best design found by each configurator was substantially bet-
ter than both the default and the intuitively-modified configuration in terms of
PAR-1, with ParamILS producing slightly better results than GGA, and with
GGA in turn slightly better than Roar. In all cases, the performance difference
with respect to the default was significant at α = 0.05 according to the Wilcoxon
signed rank test (p = {7.8, 9.7, 0.002}× 10−3 for ParamILS, Roar, and GGA
respectively).

5 Conclusions and Future Work

In this work we introduced HAL, a versatile and extensible environment for
empirical algorithmics, built on a novel conceptual framework that formalizes
meta-algorithmic problems and procedures. HAL facilitates the application of

614 C. Nell et al.

advanced empirical methods, including computationally intensive analysis and
design tasks. It also supports the development and critical assessment of novel
empirical analysis and design procedures. The first implementation of our frame-
work, HAL 1.0, can address arbitrary target problems; can run experiments on
local machines, remote machines, or distributed clusters; and offers detailed ex-
periment monitoring and control, both before, during and after execution. HAL
1.0 provides a versatile API for developing and deploying new meta-algorithmic
analysis and design procedures. Using this API, we developed plugins imple-
menting two performance analysis tasks and supporting three state-of-the-art
automated algorithm configurators. We demonstrated the use of all five proce-
dures in a case study involving prominent solvers for MIP and SAT.

Our group continues to actively develop and extend the HAL framework. We
are currently working on adding support for additional meta-algorithmic design
procedures, such as SATzilla [1], the Hydra instance-based portfolio-builder
[10], and the Sequential Model-Based Optimization framework [17]. We are also
working on adding new analysis procedures, such as comparative analysis of more
than two algorithms and scaling analyses. Finally, we plan to improve HAL’s
support for execution of experiments on Windows platforms, and on computer
clusters running Torque. Ultimately, we hope that the HAL software framework
will help to promote the use of state-of-the-art methods and best practices in
empirical algorithmics, and to improve the state of the art in solving challenging
computational problems through the use of advanced empirical techniques.

Acknowledgements. We thank Frank Hutter for partly implementing Roar and

testing HAL, and Meinolf Sellmann and Kevin Tierney for their support in using GGA.

Our research has been funded by the MITACS NCE program, by individual NSERC

Discovery Grants held by HH and KLB, and by an NSERC CGS M held by CN.

References

1. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. JAIR 32, 565–606 (2008)

2. Chiarandini, M., Fawcett, C., Hoos, H.H.: A modular multiphase heuristic solver
for post enrollment course timetabling (extended abstract). In: PATAT (2008)

3. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

4. Hoos, H.H.: Computer-aided design of high-performance algorithms. Technical Re-
port TR-2008-16, University of British Columbia, Computer Science (2008)

5. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, USA (2004)

6. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: AAAI (2007)

7. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

HAL: Automated Analysis and Design of High-Performance Algorithms 615

8. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

9. Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., Hoos, H.H.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

10. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In: AAAI (2010)

11. Mittelmann, H.D., Pruessner, A.: A server for automated performance analysis of
benchmarking data. Opt. Meth. Soft. 21(1), 105–120 (2006)

12. Balint, A., Gall, D., Kapler, G., Retz, R.: Experiment design and administration
for computer clusters for SAT-solvers (EDACC). JSAT 7, 77–82 (2010)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, New York (1995)

14. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – Instance-specific
algorithm configuration. In: ECAI (2010)

15. Babić, D.: Exploiting Structure for Scalable Software Verification. PhD thesis,
University of British Columbia, Vancouver, Canada (2008)

16. Hutter, F., Babić, D., Hoos, H.H., Hu, A.: Boosting verification by automatic
tuning of decision procedures. In: FMCAD (2007)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration (extended version). Technical Report TR-2010-10,
University of British Columbia, Computer Science (2010)

Hyperion – A Recursive Hyper-Heuristic
Framework

Jerry Swan, Ender Özcan, and Graham Kendall

Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
School of Computer Science, University of Nottingham,

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
{jps,exo,gxk}@cs.nott.ac.uk

Abstract. Hyper-heuristics are methodologies used to search the space
of heuristics for solving computationally difficult problems. We describe
an object-oriented domain analysis for hyper-heuristics that orthogo-
nally decomposes the domain into generative policy components. The
framework facilitates the recursive instantiation of hyper-heuristics over
hyper-heuristics, allowing further exploration of the possibilities implied
by the hyper-heuristic concept. We describe Hyperion, a JavaTM class
library implementation of this domain analysis.

1 Introduction

The idea of combining the strength of multiple (meta-)heuristics goes back to the
1960s ([1], [2]) with the term hyper-heuristics being introduced by Denzinger et
al. [3]. There has been recent interest in using hyper-heuristics to tackle combi-
natorial problems. One approach is to employ heuristics as primitive operators,
guided to (and hopefully beyond) local optima by a portfolio of meta-heuristics,
with the choice of meta-heuristic to apply at each decision-point being deter-
mined by a hyper-heuristic. The underlying idea is that hyper-heuristic activity
tends to explore the space of local (and hence hopefully global) optima by using a
set of lower-level (meta-)heuristics. There are two main types of hyper-heuristics,
categorised by whether they are used for selecting or generating heuristics (see
[4] for the former and [5] for the latter). For further detail on hyper-heuristics
the reader is referred to [6], [7], [8] and [9].

We describe an object-oriented domain analysis for hyper-heuristics that or-
thogonally decomposes the domain into generative policy components [10]. This
decomposition yields a generative algorithm framework that facilitates rapid pro-
totyping and allows the components that contribute to an algorithm’s success
to be identified in a procedural fashion. In addition, we add facilities for recur-
sively aggregating hyper-heuristics via the hierarchical nesting of local search
neighborhoods. To the knowledge of the authors, there has been no explicit in-
vestigation of the effect of instantiating hyper-heuristics to a depth greater than
2, i.e. instantiating hyper-heuristics over hyper-heuristics (perhaps recursively)
rather than simply over meta-heuristics. The facility for nesting algorithms to an

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 616–630, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hyperion – A Recursive Hyper-Heuristic Framework 617

arbitrary (and possibly dynamically-determined) depth therefore allows further
exploration of the possibilities implied by the hyper-heuristic concept.

2 Domain Analysis

The widespread adoption of design patterns as reusable elements of domain
vocabulary has lead to the development of a number of popular local search
frameworks (e.g. [11], [12],[13]). Although these offer a diversity of approaches
for high-level control, the essential nature of local search is present in some
elemental domain concepts (albeit appearing under different names). We present
them here in the vocabulary used by Fink and Voß [11] in their generic C++

class library, HotFrame:

State. This type parameter represents an element of the solution-space.

ObjectiveFunction. A measure of the quality of a State.

Heuristic. This interface abstracts the mechanism for transforming an initial
State into some other State of (hopefully) superior quality.

Neighborhood. This defines some finite neighborhood of a State.

HotFrame also makes use of a NeighborhoodSelectionPolicy, layered
upon Neighbourhood and having instances that include random neighbor,
best neighbor, and best improving neighbor. Metaheuristics directly supported
by HotFrame include iterated local search (from which random search and
varieties of hillclimbing can be configured), together with varieties of simulated
annealing and tabu search (the latter being configurable with a number of tabu
strategies, including static and reactive tabu).

In addition to the identification of ubiquitous domain vocabulary, we were also
strongly influenced in our domain decomposition by the approach of Özcan et al.
[9], which achieves a highly-modular decomposition of hyper-heuristics as applied
to the domain of fixed-length vectors of bits. Özcan et al. describe four separate
hyper-heuristic frameworks in which primitive operations and meta-heuristics
(in their case a variety of hillclimbers) are conditionally applied in turn. These
four frameworks are conceptually parameterized by the choice of primitive opera-
tors, meta-heuristics and heuristic selection mechanisms. They also introduce an
acceptance policy mechanism with instances that include unconditional accep-
tance; improving operations only; Metropolis-Hastings probabalistic acceptance
of unimproving moves, and a variant of Great-Deluge.

To the knowledge of the authors, the only other hyper-heuristic framework
is Hy-flex [14]. In contrast to the solution-domain frameworks above, Hy-

flex is concerned with building reusable elements for common problem domains,
and currently supports modules for SAT; one-dimensional bin-packing; permu-
tation flow-shop and personnel scheduling. In the following sections, we describe
Hyperion, a JavaTM class library for the hyperheuristic solution-domain that
respects the entity relationships that hold between the key domain concepts,

618 J. Swan, E. Özcan, and G. Kendall

generalizes the framework of Özcan et al. and facilitates the hierarchical nesting
of meta-heuristics.

3 The Hyperion Hyper-Heuristic Framework

We employ object-oriented and generative programming methods [10] to de-
compose the problem domain, resulting in the key concepts (implemented either
directly as classes or generatively via parameterized types) illustrated in Fig. 1-3.

ObjectiveFn
:State

Heuristic
:State

Metaheuristic
:State

ChoiceFunction
:State

RPHC
:State

NAHC
:State

SAHC
:State

RMHC
:State

IteratedLocalSearch
:State

ReinforcementLearning
:State

TabuSearch
:State

11

AntCycleSystem

:State

:Node

:Link

EvolutionStrategy
:State

GDHC
:State

Fig. 1. Main interfaces and concrete meta-heuristics

Figure 1 depicts the heirarchy for Heuristic and some of its concrete spe-
cialisations. The polymorphic update method in the Heuristic class represents
a single iteration of the algorithm. Formally, the method signature is:

update : Transition〈State〉 → Transition〈State〉

where State is a generic type, as denoted by the bracket conventions) and Tran-

sition is the generically-typed 5-tuple

(from : State, fromV alue : R, operator : Operator, to : State, toV alue : R)

with operator being a descriptor for the operation instance applied. The seman-
tics are that the heuristic should return a result in which the to State represents
the perturbation of the from State of its argument via a single application of
the subclass algorithm. In [11], the existence of many-to-one relationships be-
tween state-space and objective function and state-space and neighborhood are

Hyperion – A Recursive Hyper-Heuristic Framework 619

IterableLocality

+neighbours()

:State

RandomAccessLocality

+getNeighbour ()

:State

GenerativeLocality

+randomNeighbour()

:State

IterableGenerativeLocality
:State

BitFlipLocalityPermutationSwapLocality
Hyperlocality

:State

Heuristic
:State

1*

Fig. 2. Abstract and concrete localities

acknowledged, but for efficiency purposes in the implementation, the State con-
cept is actually in one-to-one correspondence with its objective function. Our
formulation using explicit “pass-though” of tuples representing transitions in the
implied search graph (with their caching of objective values of states) allows us
to achieve the desired decoupling of states, objective values and neighborhoods
without loss of efficiency. Note that, in the domain of hyper-heuristics, the decou-
pling of states and neighborhoods is essential, since we need to interoperably con-
sider multiple neighborhoods (perhaps operating at different hierarchical levels)
over the same state representation. Figure 2 depicts the heirarchy for Locality,
the Hyperion term for the ubiquitous concept of local search neighbourhood. In
contrast to the singular HotFrame neighborhood concept, the Hyperion con-
cept is factored into three - IterableLocality, GenerativeLocality and
RandomAccessLocality. IterableLocality defines some neighborhood of
a state, successive elements of which are accessed via the Iterator design pattern
[15], GenerativeLocality provides for the creation of randomly-generated
neighbors and RandomAccessLocality allows a neighbor to be accessed via
an integer index in O(1) time. The rationale for factoring out these concepts is to
reduce the implementation burden for custom neighborhoods. There is explicit
support within Hyperion for bit-flip and permutation-swap neighborhoods. By
way of example, the interface for BitFlipLocality is given in Listing 1. Hyperion

adopts a similar neighborhood selection policy approach to HotFrame, addi-
tionally providing stochastic tie-breaking and proportional, rank and tournament
selection. We incorporate the acceptance policies of [9] as a generic parameter,
and provide the following policies (depicted in Fig. 3):

620 J. Swan, E. Özcan, and G. Kendall

������ � ��	 � � �	

 �� �� � � ���	
 � � � �
�����
 �
����		�����	
����� �����	��� �
�

������ �� �� � � ���	
 � � � � � �� � � ��� 	 � � �� � � � �
�

�∗ � � � ∗�
�

�� ������
������ �� � �!"��#�"������� � $�
� � � �� � �����	��� � � �
�

�∗ � � � ∗�
�

�� ������
������ $�
� � � ��� �����	��� �
!��%��!"��#� � $�
� � � �� � �����	��� � � & �� � �
�

�∗ � � � ∗�
�

�

��
��� �� '��"��� (�� 	�
�� ���������	
���� ���������
��� ���
��� ��������

All Moves (AM). Unconditionally accepts all generated states.
Only Improving (OI). Accepts only states that improve on the objective value

of the previously generated state.
Improving and Equal (IE). As OI, but states of equal objective value are

also accepted.
Exponential Monte Carlo (EMC). A worsening move is accepted by this

policy with the probability of pt = e−
Δfu

C , where Δf is the change in objec-
tive value in the t-th iteration, C is a counter for successive worsening moves
and u is the unit time (e.g., in minutes) that measures the duration of the
heuristic execution [16].

Simulated Annealing (SA). This policy accepts unimproving states with
probability pt = e−

Δf/N
1−t/D , where Δf is the change in objective value in

the t-th iteration, D is the maximum number of iterations and N is the
maximum possible fitness change [17], [18], [19].

Great Deluge (GD). A variant of the algorithm given in [20], this policy ac-
cepts states that are improving or equal relative to a dynamically-determined
value that is linearly interpolated from initial to optimal (or best-known)
values via the iteration count.

The hillclimbing meta-heuristics implemented in Hyperion are combinatorial
generalizations of the bitwise hillclimbing variants described in [21]. Each

Hyperion – A Recursive Hyper-Heuristic Framework 621

HyperheuristicFramework
:State

FrameworkA
:State

FrameworkB
:State

AcceptancePolicy
:State

 1

 1

OnlyImproving
:State

AllMoves
:State

ExponentialMonteCarlo
:State

GreatDeluge
:State

ImprovingAndEqual
:State

FrameworkC
:State

FrameworkD
:State

Metaheuristic
:State

Fig. 3. Frameworks and acceptance policies

hillclimber iteratively replaces the current solution (conditional upon the accep-
tance policy) with a solution chosen from the current neighborhood according
to a neighbor selection policy. Steepest Ascent Hillcimbing (SAHC) evaluates all
neighbors and chooses the one with the best objective value. In Random Muta-
tion Hill Climbing (RMHC), the selection policy is to choose a random neighbor.
Generalized Davis Hill Climbing (GDHC) is a generalization of Davis’s random
bit climber, in which successive neighbour selections are determined by succes-
sive indices of a permutation function. Next Ascent Hillclimbing (NAHC) is
then given by instantiating GDHC with the identity permutation and RPHC is
GDHC with a random permutation function.

Other heuristic selection strategies implemented in [21] include Choice Func-
tion (CF) [4], Simple Random (SR) and Greedy (GR). CF is directly imple-
mented in Hyperion, SR is equivalent to RMHC and GR may be achieved by
instantiating IteratedLocalSearch with a BestNeighbour selection pol-
icy (optionally with stochastic tie-breaking). Other meta-heuristics implemented
within Hyperion include Reinforcement Learning [22] [23], Evolutionstrategië
[24], Tabu Search [25] and Ant-Cycle System [26]:

ReinforcementLearning (RL). Heuristics are ranked (ranking scores are con-
strained to a fixed range) with scores increasing or decreasing as a function
of the heuristic’s performance.

Evolutionstrategië (ES). This is a population-based approach in which the
number of mutations applied to offspring is an typically a function of some
aspect of parent state.

622 J. Swan, E. Özcan, and G. Kendall

Tabu Search (TS). This restricts the local search neighbourhood by maintain-
ing a (potentially adaptive) mechanism for identifying prohibited transitions.

Ant Cycle System (ACS). This maintains a graph of solution components
which is repeatedly traversed by a collection of agents. Components from
each traversal are assembled into a complete solution in a problem-specific
manner.

Since ES is population-based, there is no entirely satisfactory way for it im-
plement the single-solution-based update method. We have elected to achieve
this by returning the best population member encountered so far and treating
the input from state as a hint for conditionally reseeding the population. TS is
parameterized by a TabuPolicy in a similar manner to HotFrame, since de-
sign investigation of a variety of alternative tabu policy signatures revealed that
the HotFrame approach was the most loosely-coupled of all the alternatives
considered. For each of these meta-heuristics, except ACS, the neighborhood is
specified via a Locality parameter. In [9], hillclimbers feature as both meta-
heuristics and hyper-heuristics, but are implemented separately in each case.
By contrast, Hyperion facilitates the creation of hyper-heuristics from existing
meta-heuristics via the Hyperlocality specialization of RandomAccessLo-

cality. By adapting a sequence of heuristics into a locality, a Hyperlocality

(listing 2) allows the same algorithm implementation to be used in either case.
Listing 3 shows the use of Hyperlocality to recursively instantiate a collection
of hillclimbers.

The four frameworks described by Özcan et al. are shown in Fig. 3 in the
context of hyperion and the detail of their internal operation is given in Fig. 4.

In these frameworks, primitive heuristics and hillclimbers (or more gener-
ally in Hyperion, meta- or hyper- heuristics) can be partitioned into separate
groups. If we denote the application of a framework-selected primitive heuristic
by h, a framework-selected higher-order (i.e. meta- or hyper-) heuristic by H
and a predetermined higher-order heuristic by P , then the operation of a single
invocation of the update method on these these frameworks can be described by
the following grammar:

FA ::= h|H
FB ::= hP |H
FC ::= hP

FD ::= hH

The underlying idea is that this pattern of interaction between primitive and
higher-order heuristics will promote solution diversity [9].

Hyperion – A Recursive Hyper-Heuristic Framework 623

������ � ��	 � � �	

 ����� � ��	 �
 ��� �	�� �
�����
 �	�������������	�
��� �	�� �
�

����	� �
��� ���	����
 � �
 � � �	�� � � ���	−� � � �
 � �
 � � �

������ ���� � � � � 	 �
 � � � �
��� ���	����
 � �
 � � �	�� � � �� �
�

��
 � ���	−� � � �
 � �
 � � � ���
�

 !"���
��
������ #�	��
 �
��� �	�� �
$��%�
$�&��� � #�	��
 �
�� � �	�� � � ' ��
���(�
�

����� ���	−� � � �
 � �
 � � � $�� �
���(� � ���	�� � � � �
�

 !"���
��
������ �� ��
$�&�������
)� � #�	��
 �
�� � �	�� � � �
�

����� ���	−� � � �
 � �
 � � � �
) � � � �
�

�

��
��� �� ������� *�� ��	�� ��������	�
��

624 J. Swan, E. Özcan, and G. Kendall

������ � ��	 � � �	

 ������� � � � � �	
�� �
�

������
�	��� ����� �
���� �������� � � � � � ����� � �
�� � � � � � � � � � � �����	�������������� ����� � � � � � � � � � �

��� ������ �������� �
�

� � � ������ �������� � �
���� ��� � � �!� ���!�	���"#���� ��� � � $

��
� � � � ������ �������� %% � �
���� ! � �� � � � � � �	
 � � � � � � � � � � � � � $

��
�

�
���� �������� � � � � � ����� � � �	 % �� � � � � � � � � � �

� � � � � � � � � ������ �������� − & � $
���� ! � �� � � � � � �	
 � � � � ��� ����� � ��� � � �� ����� �� �	 �

� $
'

'

�������������������������������

���	��
�	��� ����� �
���� �������� � � � � � ����� � �
! � �� � � � � � �	
 � � � � �����	�������������� ����� � � � � � � � � � �
�

���� �������� � � � � � ����� �
� � � � � � � % ��� ��������� �������� � � � � � ����� � ��� $

� � � � � � (��� � ��� ���) ����� �� � � � � � � � � � � $
� � � � � � (��� � ��� ���) ����� �� � � � � � � � � � � $
� � � � � � (��� � ��� *��) ����� �� � � � � � � � � � � $
� � � � � � (��� � ��� �+�) ����� �� � � � � � � � � � � $
���� � � � � � � $

'
'

��
���� �� �������,� ������������� �- �����.�������	
���

Hyperion – A Recursive Hyper-Heuristic Framework 625

Hyper-heuristic

Problem Domain

Mutational

heuristics

Hill-climbing

heuristics

Low level

heuristics

Hyper-heuristic

Problem Domain

Mutational

heuristics

Hill-climbing

heuristics

Low level

heuristics

select select

If a mutational

heuristic is

selected

Apply HC

Hyper-heuristic

Problem Domain

Mutational

heuristics

Low level

heuristics

select

Apply HC

Hyper-heuristic1

Problem Domain

Mutational

low level

heuristics

Hill-climbing

low level

heuristics

select

and apply

Hyper-heuristic2

select

and apply

Fig. 4. Internal operation of top-level frameworks

3.1 Design-Space of Hyper-Heuristics

In [8], Burke et al. describe a design space for hyper-heuristics that has two or-
thogonal dimensions. The first dimension represents selection versus generation
and the second the source of feedback during learning (online,offline or none).
Both dimensions are further partitioned by the nature of the search space (con-
structive or pertubative). If we instantiate Hyperion with State taken to be
some representation of solution state S, then this corresponds to selective hyper-
heuristics. If instead we take State to be some type representing the mapping
S → S, then this corresponds to generative hyper-heuristics. The only explicitly
constructive heuristic implemented in Hyperion is ACS, which is additionally
parameterized by Node and Link types, representing the vertices and edges of
the graph of partial solutions traversed by the agents of the ACS. If we employ
ACS as a hyperheuristic over some complete solution state, then a path in the
graph of partial solutions corresponds to a sequence of lower-level heuristics and
an adaptor function is used to yield the resulting complete solution state via
by the sequential application of these heuristics to the from state. In general
therefore, heuristics may be considered as constructive or perturbative as re-
quired, employing adaptors as necessary for interoperability with other solution
representations. By virtue of this modularity of decomposition, Hyperion facil-
itates a wide variety of hyperheuristic strategies. In particular, the approaches
adopted in [27], [28] and [29] may all be considered as specific configurations of
Hyperion components.

626 J. Swan, E. Özcan, and G. Kendall

Table 1. Average heuristic values obtained over 100 runs of 3-SAT instances

Problem instance RPHC RMHC SAHC SA NAHC
uf20-01.cnf 2.96 4.36 6.85 8.42 11.54
uf20-02.cnf 3.14 4.16 6.08 7.09 9.84
uf20-03.cnf 3.37 4.99 7.56 9.24 12.35
uf20-04.cnf 3.23 5.27 8.11 10.0 13.67
uf20-05.cnf 3.84 5.75 9.13 10.97 15.32
uf20-06.cnf 3.29 5.0 7.35 9.02 12.37
uf20-07.cnf 2.91 3.93 5.55 6.78 9.07
uf20-08.cnf 3.07 4.7 6.89 8.32 11.2
uf20-09.cnf 3.07 4.71 6.84 8.41 11.88
uf20-010.cnf 2.76 4.19 6.16 7.49 10.23
uf20-011.cnf 2.9 3.76 5.84 6.81 9.88
uf20-012.cnf 2.2 2.82 4.38 4.96 7.33
uf20-013.cnf 3.42 5.24 7.82 9.79 13.17
uf20-014.cnf 2.92 4.4 6.68 8.2 11.29
uf20-015.cnf 2.67 3.71 5.49 6.49 9.2
uf20-016.cnf 2.82 4.12 6.26 7.53 10.34
uf20-017.cnf 2.55 3.94 5.75 7.2 9.76
uf20-018.cnf 3.56 5.65 8.64 10.69 14.6
uf20-019.cnf 3.28 5.26 7.85 9.67 13.17
uf20-020.cnf 3.21 4.66 7.06 8.54 12.0

percentage solved 3.7% 8.55% 10.35% 8.25% 2.9%

3.2 Application to SAT

We illustrate the use of the framework classes via application to the well-known
boolean satisfiability problem (SAT). The palette of meta-heuristics is obtained
from some class MyMetaheuristics, which is identical to code for the hyperhill-
climbers described in listing 3, together with an instantiation of simulated an-
nealing that has a geometric annealing schedule in which the parameters are
dynamically determined by sampling the state-space [30]. The client-code for
applying ‘Framework A’ to the SAT domain using a simple heuristic measure of
the number of unsatisfied clauses is given in listing 4. Table 1 gives the average
heuristic values obtained from 100 applications of this framework to the first 20
instances of the 3-SAT uf20-91 SATLIB problem set (http://www.cs.ubc.ca/
~hoos/SATLIB/benchm.html) [31]. All instances have 20 variables and 91 clauses
and are known to be satisfiable. RPHC can be seen to give better average per-
formance in all cases, but if we consider the percentage of cases that are actually
solved (as given in the bottom row of Table 1), we see that SAHC converges in
the highest number of cases and RPHC gives the second worst performance.

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Hyperion – A Recursive Hyper-Heuristic Framework 627

������� �������� 	
�������� 	 � � �

���	
� �
�� 	 � 	� ������
�

���
� �
�� 	
�� �������������� � !!!!! �
���
� �
�� 	
�� "#$��"�������%�������&�'�(�' � ! �
�� � �� � � � � � � � 	 � �
 � � � � � � � � � � � � ����� � � � � � � � � � �

���	
� ���
� ��
� ���) �� � ��* + , �*� - ����� ���.�������
�

�� � ��* / � 0���� � 1 � � � �� � � � � 2�/3!−4 2�/3! −! !3	 ��/ 1 �
%�5 ��/ � ��6%�5 	 ��67���%�) / � 0���� - �
�
8����9�5�:;��(�����< ��� � � � � � �5� � ���

��������� / ��6%0����) ��/ - �
' � � �: ������� � � � � � :;��(�����< < ��� � � � � � � � � � � � � �

������������ ��� 	 � � � � � � � � �)
��� ;� �5 0 � �'�� 0 � � �) ��/ 	 *�����(��
0��) - - =

"#$��"�������%�������&�'�(�' - �

;��(����� � � � � � 0 � ��� ;��(�����) ��/ 	 *�����(��
0��) - - �
���������$�0 ���:;��(�����< �������� � ��� �00��9��:

;��(����� <)- �
���) ������� � � � � � :;��(�����< 0* > � �� � � � � � � � � � � � � -
�

5���?����:;��(�����< /���?��� � ��� 5���?����:
;��(����� <)
0* =
�������� =
�������������� - �

;��(����� � � � � 0 �� /���?��� 	 ��0�) � � � � � 0 = � �� � � � � � �5� - �

�� 90�� � ��� � � � � � �5� 	 90���/) � � � � 0 � - �
������ 	 ��� 	 � � � � � 0 �) 1 0* > 1 @ 0* @ 1 = 9 0�� > 1 @ 90�� - �

A
A

A

�
�
�� �� %0���� ��6� /�� ��� ��09��

4 Conclusion and Future Work

We have presented an object-oriented analysis of the hyper-heuristic domain,
incorporating generic versions of the decomposition given in [9] to produce a
JavaTM implementation (available from http://hyperion-java.sourceforge.
net) that recursively aggregates local search neighborhoods to generate hyper-
heuristics from meta-heuristics without the necessity for source-code duplication.

http://hyperion-java.sourceforge.net
http://hyperion-java.sourceforge.net

628 J. Swan, E. Özcan, and G. Kendall

In addition, it is possible to combinatorially instantiate hyper-heuristics from
collections of policy components, with the additional possibility that instantia-
tion can recurse over available meta-heuristics to some dynamically-determined
depth.

Recursion is thus of value as a facility for source code re-use. In addition, by
altering the given examples of recursive instantiation to make a stochastic choice
of lower-level (hyper-)heuristics, Hyperion can also be considered as a gener-
ation mechanism for strongly-typed genetic programming [32] in the domain of
hyper-heuristics. Future work includes an investigation of the effect of recursion
depth in the context of building-blocks in ‘hierarchical iff’ functions [33]. There
are also a number of aspects of the current framework implementation that we
believe could be improved upon. As discussed above, single-state and population-
based meta-heuristics do not interoperate in an entirely satisfactory manner. A
more loosely-coupled scheme for mediating interactions between heuristics is cur-
rently under development. Another significant improvement would be a change
in the level of abstraction from that of local search neighborhoods to local search
frames, the analogy being with stack frames in a conventional programming lan-
guage. A frame encapsulates an algorithm instantiated over a locality and comes
equipped with a parameter schema detailing not only the set of permissible pa-
rameter values but also other information pertinent to searching the parameter
space (e.g. whether first or second derivatives exist for a parameter).

References

1. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop
scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp.
225–251. Prentice-Hall, Inc., New Jersey (1963)

2. Crowston, W., Glover, F., Thompson, G., Trawick, J.: Probabilistic and param-
eter learning combinations of local job shop scheduling rules. In: ONR Research
Memorandum. GSIA, vol. 117, Carnegie Mellon University, Pittsburgh (1963)

3. Denzinger, J., Fuchs, M., Fuchs, M.: High Performance ATP Systems by combining
several AI Methods. In: Proceedings of the 4th Asia-Pacific Conference on SEAL,
IJCAI, pp. 102–107 (1997)

4. Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

5. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: Ex-
ploring Hyper-heuristic Methodologies with Genetic Programming. In: Kacprzyk,
J., Jain, L.C., Mumford, C.L., Jain, L.C. (eds.) Computational Intelligence. Intel-
ligent Systems Reference Library, vol. 1, pp. 177–201. Springer, Heidelberg (2009)

6. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodolo-
gies: Introductory Tutorials in Optimization and Decision Support Techniques, pp.
529–556. Springer, Heidelberg (2005)

7. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer, Dor-
drecht (2003)

Hyperion – A Recursive Hyper-Heuristic Framework 629

8. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics. International Series in Operations Research and Man-
agement Science, vol. 146, pp. 449–468. Springer, US (2010)

9. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intell. Data Anal. 12, 3–23 (2008)

10. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley Professional, Reading (2000)

11. Fink, A., Voß, S.: Hotframe: A heuristic optimization framework. In: Voß, S.,
Woodruff, D. (eds.) Optimization Software Class Libraries. OR/CS Interfaces Se-
ries, pp. 81–154. Kluwer Academic Publishers, Boston (2002)

12. Gaspero, L.D., Schaerf, A.: Easylocal++: An Object-oriented Framework for the
flexible design of Local-Search Algorithms. Softw., Pract. Exper. 33, 733–765 (2003)

13. Voudouris, C., Dorne, R., Lesaint, D., Liret, A.: iOpt: A Software Toolkit for
Heuristic Search Methods. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 716–
729. Springer, Heidelberg (2001)

14. Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.A.: HyFlex: A Flexible Framework for the Design and Analysis
of Hyper-heuristics. In: Multidisciplinary International Scheduling Conference
(MISTA 2009), Dublin, Ireland, pp. 790–797 (2009)

15. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design patterns: Abstrac-
tion and reuse of object-oriented design. In: Wang, J. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

16. Ayob, M., Kendall, G.: A monte carlo hyper-heuristic to optimise component place-
ment sequencing for multi head placement machine. In: Proceedings of the Interna-
tional Conference on Intelligent Technologies (InTech 2003), Chiang Mai, Thailand,
pp. 132–141 (2003)

17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

18. Bai, R., Kendall, G.: An investigation of automated planograms using a simulated
annealing based hyper-heuristics. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.)
Metaheuristics: Progress as Real Problem Solver, pp. 87–108. Springer, Heidelberg
(2005)

19. Burke, E., Kendall, G., Misir, M., Özcan, E.: Monte carlo hyper-heuristics for exam-
ination timetabling. Annals of Operations Research 2, 1–18 (2010), 10.1007/s10479-
010-0782-2

20. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-
to record travel. Journal of Computational Physics 104, 86–92 (1993)

21. Mitchell, M., Holland, J.H.: When will a genetic algorithm outperform hill climb-
ing? In: Proceedings of the 5th International Conference on Genetic Algorithms,
vol. 647. Morgan Kaufmann Publishers Inc., San Francisco (1993)

22. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. J.
Artif. Intell. Res. (JAIR) 4, 237–285 (1996)

23. Özcan, E., Misir, M., Ochoa, G., Burke, E.: A reinforcement learning - great-
deluge hyper-heuristic for examination timetabling. International Journal of Ap-
plied Metaheuristic Computing, 39–59 (2010)

24. Herdy, M.: Application of the evolutionsstrategie to discrete optimization problems.
In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 188–192.
Springer, Heidelberg (1991)

25. Glover, F.: Tabu Search - Part I. INFORMS Journal on Computing 1, 190–206
(1989)

630 J. Swan, E. Özcan, and G. Kendall

26. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
27. Ortiz-Bayliss, J.C., Özcan, E., Parkes, A.J., Terashima-Marin, H.: Mapping the

performance of heuristics for constraint satisfaction, pp. 1–8 (2010)
28. Hyde, M., Özcan, E., Burke, E.K.: Multilevel search for evolving the acceptance

criteria of a hyper-heuristic. In: Proceedings of the 4th Multidisciplinary Int. Conf.
on Scheduling: Theory and Applications, pp. 798–801 (2009)

29. Ersoy, E., Özcan, E., Uyar, C.: Memetic algorithms and hyperhill-climbers. In:
Baptiste, P., Kendall, G., Kordon, A.M., Sourd, F. (eds.) 3rd Multidisciplinary
Int. Conf. On Scheduling: Theory and Applications, pp. 159–166 (2007)

30. White, S.: Concepts of scale in simulated annealing. In: Proc. Int’l Conf. on Com-
puter Design, pp. 646–651 (1984)

31. Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Gent,
I.P., Maaren, H.V., Walsh, T. (eds.) SAT 2000 (2000), SATLIB is available online
at www.satlib.org

32. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3,
199–230 (1995)

33. Iclanzan, D., Dumitrescu, D.: Overcoming hierarchical difficulty by hill-climbing
the building block structure. In: GECCO 2007: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, pp. 1256–1263. ACM, New
York (2007)

www.satlib.org

The Cross-Domain Heuristic Search Challenge –

An International Research Competition

Edmund K. Burke1, Michel Gendreau2, Matthew Hyde1, Graham Kendall1,
Barry McCollum3, Gabriela Ochoa1, Andrew J. Parkes1, and Sanja Petrovic1

1 Automated Scheduling, Optimisation and Planning (ASAP) Group, School of
Computer Science, University of Nottingham, Nottingham, UK

2 CIRRELT, University of Montreal, Canada
3 School of Electronics, Electrical Engineering and Computer Science,

Queen’s University, Belfast, UK

Abstract. The first Cross-domain Heuristic Search Challenge (CHeSC
2011) seeks to bring together practitioners from operational research,
computer science and artificial intelligence who are interested in devel-
oping more generally applicable search methodologies. The challenge is
to design a search algorithm that works well, not only across different in-
stances of the same problem, but also across different problem domains.
This article overviews the main features of this challenge.

1 Introduction

The Cross-domain Heuristic Search Challenge1 differs from other competitions in
search and optimisation, as it aims to measure performance over several problem
domains rather than just one. We propose a software framework (HyFlex) fea-
turing a common software interface for dealing with different combinatorial opti-
misation problems. HyFlex provides the algorithm components that are problem
specific. In this way, we liberate algorithm designers from needing to know the
details of the problem domains and also prevent them from incorporating addi-
tional problem specific information in their algorithms. Efforts can instead be
focused on designing high-level strategies to intelligently combine the provided
problem-specific algorithmic components. The competition is organised and run
by the Automated Scheduling, Optimisation and Planning (ASAP) group at the
University of Nottingham, Nottingham, UK; with contributions from Queen’s
University, Belfast, UK; Cardiff University, UK; and the Ecole Polytechnique,
Montreal, Canada. Members of these groups will not be allowed to enter the
competition.

2 The HyFlex Framework

HyFlex (Hyper-heuristics Flexible framework) [1] is a Java object oriented frame-
work for the implementation and comparison of different iterative general-purpose
1 http://www.asap.cs.nott.ac.uk/chesc2011/

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 631–634, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.asap.cs.nott.ac.uk/chesc2011/

632 E.K. Burke et al.

Heuristic Repository

Problem Domain

Problem representation
Problem instance
Evaluation function
Initial (current) solution
Others…

Domain Barrier

Collect and manage domain-independent information :
number of heuristics, changes in evaluation function, a new
solution or not, distance between two solutions, etc.

Hyper-heuristic

H1

…H2

Hn

Fig. 1. Hyper-heuristic conceptual framework featuring the domain barrier [2,3]

heuristic search algorithms (also called hyper-heuristics). The framework ap-
peals to modularity and is inspired by the notion of a domain barrier between
the low-level heuristics and the hyper-heuristic [2,3] (Figure 1). HyFlex pro-
vides a software interface between the hyper-heuristic and the problem do-
main layers, thus enabling a clearly defined separation, and communication
protocol between the domain specific and the domain independent algorithm
components.

HyFlex extends the conceptual framework discussed in [2,3] (Figure 1) int that
a population of solutions (instead of a single incumbent solution) is maintained
in the problem layer. Also, a richer variety of low-level heuristics is provided. An-
other relevant antecedent to HyFlex is PISA [4], a text-based software interface
for multi-objective evolutionary algorithms, which divides the implementation
of an evolutionary algorithm into an application-specific part and an algorithm-
specific part. HyFlex differs from PISA in that its interface is not text-based but
instead given by an abstract Java class. HyFlex is not tied to evolutionary algo-
rithms. It allows the implementation of most single-point and population-based
search methods. Moreover, it provides a rich variety of combinatorial optimisa-
tion problems including real-world instance data. Each HyFlex problem domain
module consists of:

1. A routine to initialise randomised solutions in the population.
2. A set of heuristics to modify solutions classified into four groups:

mutational : makes a (randomised) modification to the current solution.
ruin-recreate : destroys part of the solution and rebuilds it using a con-

structive procedure.
local search : searches in the neighbourhood of the current solution for an

improved solution.
crossover : takes two solutions, combines them and returns a new solution.

3. A varied set of instances that can be easily loaded.
4. A population of one or more solutions that has to be administered.

The Cross-Domain Heuristic Search Challenge 633

For testing purposes, four domain modules are provided each containing
around 10 low-level heuristics of the types discussed above, and 10 instances
of medium to hard difficulty. The domains provided are: permutation flowshop,
one dimensional bin packing, Boolean satisfiability (MAX-SAT) and personnel
scheduling. Technical reports describing the details of each of these modules,
are available at the competition Web site (‘Documentation’ section: http://www.
asap.cs.nott.ac.uk/chesc2011/documentation.html).

3 Challenge Description and Scoring System

For the competition, a number instances from each of these four test domains will
be considered (including both training and hidden instances). Additionally, at
least two hidden domains will also form part of the competition. These additional
domains will be revealed only after the competition has been completed. For each
instance, a single run will be conducted, and all the competing algorithms will
start from the same initial solution generated from the same random seed. The
run time will be limited to 10 minutes (measured in CPU time) on a modern
PC running Windows XP. This figure was selected empirically after extensive
testing on our problem domains’ hardest instances. A benchmarking program
(for both Windows and Linux) is available from the Web site that will report
the time it takes a competitor’s computer to execute a set of instructions that
in the competition computer takes 10 minutes (600 seconds). It is worth noting
that all the competitors will be run on a standard machine therefore creating a
“level playing field”.

In order to compare the performance of the competing hyper-heuristics and
declare the winner, we will use a scoring system inspired by Formula 1. Before
2010, the Formula 1 system had the following structure. The top eight drivers
scored 10, 8, 6, 5, 4, 3, 2 and 1 points respectively, in each race. These points
are added for all the events, and the winner is the driver accumulating the most
points. This is adapted for the cross-domain challenge as follows. Let us assume
that m instances (considering all the domains) and n competing algorithms in
total are considered. For each experiment (instance) an ordinal value ok is given
representing the rank of the algorithm compared to the others (1 ≤ ok ≤ n).
The top eight ranking algorithms will receive the points as in the Formula 1
system described above, and the remaining algorithms will receive no points.
The points will be added across the m instances, and the winner will be the
algorithm accumulating the most points. Therefore, if for example, five problem
domains are considered with five instances each, the maximum possible score is
250 points. For solving ties we will also follow Formula 1. Full details can be
seen on the competition Web site (‘Scoring System’ section: http://www.asap.

cs.nott.ac.uk/chesc2011/scoring.html).

4 Final Remarks

Extensive tests (some of them published in [5]), have confirmed that a rich set of
state-of-the-art hyper-heuristics can be implemented with HyFlex. Both single

http://www.asap.cs.nott.ac.uk/chesc2011/documentation.html
http://www.asap.cs.nott.ac.uk/chesc2011/documentation.html
http://www.asap.cs.nott.ac.uk/chesc2011/scoring.html
http://www.asap.cs.nott.ac.uk/chesc2011/scoring.html

634 E.K. Burke et al.

point and population based search algorithms can be designed. The Java jar file
implementing the framework can be downloaded from the website, which also
provides a tutorial, several examples, and the relevant software and academic
documentation. An additional interesting feature is the Leaderboard, a table
ranking participants according to their best score on a rehearsal competition
conducted every week. This rehearsal competition is based on a set of results
submitted by the participants who chose to do so. Note that only the results,
and not the algorithms, are required for the Leaderboard submissions.

The prize fund is 3,000 GBP to be split between the first, second and third
place competitors. The winners will be announced at OR53 (UK Operational
Research Society conference, to be held in Nottingham, UK in September 6 -
8, 2011) and their registration fee will be waived. Our goal is to both promote
research into more general search methodologies, and also to gain a deeper un-
derstanding of the algorithm design principles and machine learning techniques
that work well in practice.

Acknowledgments. We would like to thank Aptia solutions Ltd, EventMap
Ltd, Staff Rostering Solutions Ltd, the PATAT steering committee and the UK
Operational Research Society for sponsoring the competition and providing the
prize money.

References

1. Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.A.: HyFlex: A flexible framework for the design and analysis of hyper-
heuristics. In: Multidisciplinary International Scheduling Conference (MISTA 2009),
Dublin, Ireland, pp. 790–797 (August 2009)

2. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001)

3. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer, Dor-
drecht (2003)

4. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Program-
ming Language Independent Interface for Search Algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

5. Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.A., Gendreau, M.: Iterated local search vs. hyper-heuristics: Towards
general-purpose search algorithms. In: IEEE Congress on Evolutionary Computation
(CEC 2010), Barcelona, Spain, pp. 3073–3080 (July 2010)

Author Index

Abdullah, Salwani 539
Aguirre, Hernán E. 91
Akama, Kiyoshi 203
Alba, Enrique 488
Alpaydın, Ethem 1
Arbelaez, Alejandro 46
Arenas, M.G. 582
Aslan, Özlem 1
Awad, Wasan Shakr 308

Balint, Adrian 586
Barrera, Julio 226
Battiti, Roberto 336
Baumgartner, Lukas 76
Bect, Julien 176
Belgasmi, Nabil 364
Bello, Rafael 253
Benassi, Romain 176
Berlanga, Antonio 458
Blum, Christian 76
Bonnard, Nicolas 433
Bontempi, Gianluca 106
Bureerat, Sujin 379
Burke, Edmund K. 631

Campigotto, Paolo 336
Castelli, Mauro 503
Castillo, P.A. 582
Coello Coello, Carlos A. 567
Couëtoux, Adrien 433
Croitoru, Cornelius 351

Daolio, Fabio 454
Dhaenens, Clarisse 31, 116, 238
Diepold, Daniel 586
Di Gaspero, Luca 450
di Tollo, Giacomo 450
Doerner, Karl F. 61
Durillo, Juan J. 488

Fawcett, Chris 600
Fernandes, C.M. 552, 582
Fialho, Álvaro 473
Flores, Juan J. 226
Frangioni, Antonio 407

Gall, Daniel 586
Garćıa, Jesús 458
Garcia-Sanchez, P. 582
Gendreau, Michel 631
Gerber, Simon 586
Ghedira, Khaled 364
Gunawan, Aldy 278

Hamadi, Youssef 46
Hartl, Richard F. 61
Hayashi, Akira 191
Higuchi, Tetsuya 218
Hoock, Jean-Baptiste 433
Hoos, Holger H. 507, 600
Humeau, Jérémie 31
Hutter, Frank 507
Hyde, Matthew 631

Ingimundardottir, Helga 263
Iwata, Kazunori 191
Izui, Kazuhiro 161

Jourdan, Laetitia 31, 116, 238

Kampouridis, Michael 16
Kaneko, Satoshi 191
Kapler, Gregor 586
Keane, Andy J. 446
Kendall, Graham 616, 631
Kobayashi, Takumi 218
Kritzinger, Stefanie 61
Kwong, Sam 473

Laredo, J.L.J. 552, 582
Lau, Hoong Chuin 131, 278
Leyton-Brown, Kevin 507, 600
Li, Ke 473
Liefooghe, Arnaud 31, 116, 238
Lindawati, 131, 278
Lo, David 131
Lopes, Leo 524
López, Rodrigo 226

Manzoni, Luca 503
Marmion, Marie-Eléonore 238
Mart́ı, Luis 458

636 Author Index

Mart́ınez, Yailen 253
McCollum, Barry 631
Melab, Nouredine 321
Merelo, J.J. 552, 582
Molina, José M. 458
Mora, A.M. 552, 582
Munawar, Asim 203
Munetomo, Masaharu 203

Nebro, Antonio J. 488
Nell, Christopher 600
Nishiwaki, Shinji 161
Nowé, Ann 253

Ochoa, Gabriela 454, 631
Otsu, Nobuyuki 218
Özcan, Ender 616

Parkes, Andrew J. 631
Passerini, Andrea 336
Perez Sanchez, Luis 407
Petrovic, Sanja 631

Raschip, Madalina 351
Retz, Robert 586
Ribeiro, Celso C. 146
Roli, Andrea 450
Rosa, A.C. 552
Rosseti, Isabel 146
Runarsson, Thomas Philip 263, 423

Said, Lamjed Ben 364
Sato, Hiroyuki 91
Saubion, Frédéric 392

Schaerf, Andrea 450
Schmid, Verena 76
Smith-Miles, Kate 524
Sokolovska, Nataliya 433
Souza, Reinaldo C. 146
Suárez, Juliett 253
Suematsu, Nobuo 191
Swan, Jerry 616

Talbi, El-Ghazali 321
Tanaka, Kiyoshi 91
Tenne, Yoel 161
Teytaud, Olivier 433
Toal, David J.J. 446
Tomassini, Marco 454
Tricoire, Fabien 61
Tsang, Edward 16
Turabieh, Hamza 539
Turco, Alessandro 293

Van Luong, Thé 321
Vanneschi, Leonardo 503
Vazquez, Emmanuel 176
Veerapen, Nadarajen 392
Verel, Sébastien 31, 116, 238, 454

Wahib, Mohamed 203

Yáñez Oropeza, Edgar G. 567
Ye, Jiaxing 218
Yıldız, Olcay Taner 1

Zapotecas Mart́ınez, Saúl 567
Zhang, Qingfu 488

	Title
	Preface
	Organization
	Table of Contents
	Main Track (Regular Papers)
	Multivariate Statistical Tests for Comparing Classification Algorithms
	Introduction
	Pairwise Comparison
	Univariate Case
	Multivariate Case

	Analysis of Variance
	Univariate Case
	Multivariate Case

	Experiments
	Setup
	Results

	Conclusions
	References

	Using Hyperheuristics under a GP Framework for Financial Forecasting
	Introduction
	Presentation of EDDIE 8
	Hyperheuristics Framework
	Heuristics and Operators
	The Framework

	Experimental Setup
	Results
	Conclusion
	References

	On the Effect of Connectedness for Biobjective Multiple and Long Path Problems
	Introduction
	Background
	Multiobjective Combinatorial Optimization
	Local Search and Connectedness
	The Single-Objective Long k-Path Problem

	The Biobjective Long k-Path Problem
	Definition
	Experimental Analysis

	The Biobjective Multiple k-Path Problem
	Definition
	Experimental Analysis

	Conclusions and Future Works
	References

	Improving Parallel Local Search for SAT
	Introduction
	Background
	The Propositional Satisfiability Problem
	Local Search for SAT
	Refinements

	Previous Work
	Complete Methods for Parallel SAT
	Incomplete Methods for Parallel SAT
	Cooperative Algorithms

	Knowledge Sharing in Parallel Local Search for SAT
	Using Best Known Configurations
	Weighting Best Known Configurations
	Restart Policy

	Experiments
	Experimental Settings
	Practical Performances with 4 Cores
	Practical Performances with 8 Cores
	Hardware Impact

	Conclusions and Future Work
	References

	Variable Neighborhood Search for the Time-Dependent Vehicle Routing Problem with Soft Time Windows
	Introduction
	Problem Description
	Solution Method
	Initial Solution
	Shaking
	Local Search
	Acceptance Decision

	Computational Results
	Conclusion
	References

	Solving the Two-Dimensional Bin Packing Problem with a Probabilistic Multi-start Heuristic
	Introduction
	Organization of the Paper

	Related Work
	A New ILP Model
	The Proposed Algorithm
	Probabilistic LGFi
	Multi-start Algorithm

	Experimental Evaluation
	Problem Instances
	Parameter Setting
	Computational Results

	Conclusions
	References

	Genetic Diversity and Effective Crossover in Evolutionary Many-objective Optimization
	Introduction
	Analysis of Pareto Optimal Solutions in Many-objective 0/1 Knapsack Problem
	Mating Based on Proximity in Objective Space
	Related Works
	Local Recombination

	Controlling Crossed Genes for Crossover
	Problem of Local Recombination in MaOPs
	CCG for Two-Point Crossover (CCGTX)
	CCG for Uniform Crossover (CCGUX)

	Preparation
	Algorithms and Selection Methods
	Problems, Parameters and Metrics

	Experimental Results and Discussion
	Diversity of Genes in the Population Obtained by Conventional Crossover
	Effects of Local Recombination in MaOPs
	Effects of CCGTX in MaOPs
	Effects of CCGUX in MaOPs

	Conclusions
	References

	An Optimal Stopping Strategy for Online Calibration in Local Search
	Introduction
	The Bruss Algorithm
	The Estimation of the Probability of Success in Local Exploration
	Illustration of the Approach
	Experiments
	Conclusion and Future Work
	References

	Analyzing the Effect of Objective Correlation on the Efficient Set of MNK-Landscapes
	Introduction
	Background
	Multiobjective Combinatorial Optimization
	Metaheuristics for Multiobjective Combinatorial Optimization
	NK- and MNK-Landscapes

	MNK-Landscapes: Multiobjective NK-Landscapes with Correlation
	Definition
	Correlation between Objective Functions

	Analysis of the Efficient Set Properties
	Cardinality of the Efficient Set
	Number of Supported Efficient Solutions
	Connectedness of the Efficient Set

	Discussion
	References

	Instance-Based Parameter Tuning via Search Trajectory Similarity Clustering
	Introduction
	Preliminaries
	Automated Parameter Configuration Problem
	One-Size-Fits-All Configurator
	Instance-Based Configurator
	Performance Metric

	Solution Approach
	Search Trajectory Similarity
	Search Trajectory Representation
	Similarity Calculation
	Clustering Method
	Training and Testing Phases

	Experimental Design
	Experiment Settings
	Validity and Statistical Significant Measurement
	Experimental Setup

	Empirical Evaluation
	Performance Comparison
	Comparison on Feature Selection
	Sensitivity Analysis on Different Initial Sequence Configurations
	Computational Results
	Discussion

	Conclusion and Future Works
	References

	Effective Probabilistic Stopping Rules for Randomized Metaheuristics: GRASP Implementations
	Introduction and Motivation
	GRASP and Experimental Environment
	Normal Approximation for GRASP Iterations
	Probabilistic Stopping Rule
	Concluding Remarks
	References

	A Classifier-Assisted Framework for Expensive Optimization Problems: A Knowledge-Mining Approach
	Introduction
	Background
	Expensive Optimization Problems
	Simulator Infeasible Vectors

	Proposed Framework
	The Model
	The Classifier
	The Framework

	Performance Analysis
	Test Problem and Benchmarks
	Knowledge-Mining the Classifier

	Summary
	References

	Robust Gaussian Process-Based Global Optimization Using a Fully Bayesian Expected Improvement Criterion
	Introduction
	Efficient Global Optimization
	The Expected Improvement Sampling Criterion for a Gaussian Process
	Classical Parametrized Covariance Functions
	The EGO Algorithm
	The Case of Deceptive Functions

	Fully Bayesian One-Step Lookahead Optimization
	Student EI
	Numerical Experiments
	Optimization of a Deceptive Function
	Comparison on Sample Paths of a Gaussian Process

	References

	Hierarchical Hidden Conditional Random Fields for Information Extraction
	Introduction
	Hierarchical Hidden Conditional Random Fields
	Information Extraction
	Paper Organization

	HHMMs
	Representing an HHMM as a DBN

	HHCRFs
	Model
	Parameter Estimation

	Sentence Representation
	Hierarchical Models for Information Extraction
	Upper and Lower Levels
	Model Learning
	Inference

	Experiments
	Data
	Retrieved Results
	Performance Evaluation
	Results

	Conclusion
	References

	Solving Extremely Difficult MINLP Problems Using Adaptive Resolution Micro-GA with Tabu Search
	Introduction
	Related Work
	GAs for Solving MINLP Problems

	The Proposed Algorithm
	Variables Encoding and Genetic Operators
	Constraint Handling
	Micro GA
	Adaptive Resolution Approach
	Local Search
	Avoiding Redundancy

	Results
	Environment and Parameters
	Results and Discussion

	Conclusions and Future Work
	References

	Adaptive Abnormality Detection on ECG Signal by Utilizing FLAC Features
	Introduction
	Architecture of the Proposed Framework
	Preprocessing in Frequency Domain
	Local Auto-correlation on Complex Fourier Values (FLAC) for ECG
	Complex Subspace Method

	Experiments
	Conclusions
	References

	Gravitational Interactions Optimization
	Introduction
	Review GSA GIO and CSS
	Newton's Law of Universal Gravitation
	Gravitational Interactions Optimization
	Gravitational Interactions for Unimodal Optimization
	Gravitational Interactions for Multimodal Optimization

	Experiments
	Test Functions
	Results

	Conclusions
	References

	On the Neutrality ofFlowshop Scheduling Fitness Landscapes
	Motivations
	Background
	Definition of the Permutation Flowshop Scheduling Problem
	Neighborhood and Local Search
	Fitness Landscape

	Neutral Networks Analysis for the Permutation Flowshop Scheduling Problem
	Experimental Design
	Neutral Degree
	Typology of Neutral Networks

	Exploiting Neutrality to Solve the FSP
	Reaching Portals
	How to Guide the Search?

	Discussion
	References

	A Reinforcement Learning Approach for the Flexible Job Shop Scheduling Problem
	Introduction
	Flexible Job Shop Scheduling Problem
	Problem Formulation
	Previous Approaches
	Dispatching Rules

	Reinforcement Learning
	Q-Learning

	The Proposed Approach: Learning / Optimization
	Pseudo-code of the Algorithm
	Example

	Experimental Results
	Instances
	Parameters
	Comparative Study

	Conclusions and Future Work
	References

	Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling
	Introduction
	Priority Dispatch Rules for Job-Shop Scheduling
	Logistic Regression
	Experimental Study
	Data Generation
	Training Size and Accuracy
	Comparison with Single Priority Dispatching Rules
	Robustness towards Data Distributions
	Fixed Weights

	Summary and Conclusion
	References

	Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach
	Introduction
	Automated Tuning Framework
	Screening Phase
	Exploration Phase
	Exploitation Phase

	Experimental Results
	Traveling Salesman Problem (TSP)
	Quadratic Assignment Problem (QAP)

	Conclusion
	References

	MetaHybrid: Combining Metamodels and Gradient-Based Techniques in a Hybrid Multi-Objective Genetic Algorithm
	GA Elements: Focus on Elitism
	SQP Elements: Focus on Constraints
	Metamodels Derivatives
	Hybridization in a Parallel Environment
	Tests
	ZDT4
	CEC '09 UP2
	Rotated OSY
	CTP2
	Sym-Part
	Lennard-Jones

	Conclusions
	References

	Designing Stream Cipher Systems Using Genetic Programming
	Introduction
	Stream Cipher Systems
	Genetic Programming and Simulated Annealing
	Simple Genetic Programming Method
	Function Library
	Representation Scheme
	Fitness Function
	Algorithm Parameters
	The Design Algorithm

	Simulated Annealing Programming Method
	Adaptive Genetic Programming Method
	Results
	Conclusion
	References

	GPU-Based Multi-start Local Search Algorithms
	Introduction
	Parallel Local Search Algorithms and GPU Computing
	Parallel Models of LS Algorithms
	GPU Computing

	Design and Implementation of Multi-start Local Search Algorithms on GPU
	Multi-start Local Search Algorithms Based on the Iteration-Level
	Design of Multi-start Local Search Algorithms Based on the Algorithmic-Level
	Memory Management of Multi-start Local Search Algorithms on the Algorithmic-Level

	Experiments
	Measures of the Efficiency of Multi-start Algorithms Based on the Algorithmic-Level
	Measures of the Efficiency of Large GPU-Based Implementations

	Discussion and Conclusion
	References

	Active Learning of Combinatorial Features for Interactive Optimization
	Introduction
	Overview of Our Approach
	Satisfiability Modulo Theory
	Satisfiability Modulo Theory Solvers
	Weighted MAX-SMT

	Related Works
	Experimental Results
	Weighted MAX-SAT
	Weighted MAX-SMT

	Discussion
	References

	A Genetic Algorithm Hybridized with the Discrete Lagrangian Method for Trap Escaping
	Introduction
	The Hybrid Method
	The Hybrid Method Applied to WDP
	Winner Determination
	The Discrete Lagrangian Method for WDP
	The Scheme of the Hybrid Algorithm for WDP

	Experiments
	Experimental Settings
	Results

	Conclusion
	References

	Greedy Local Improvement of SPEA2 Algorithm to Solve the Multiobjective Capacitated Transshipment Problem
	Introduction
	Model
	Problem Description
	Modeling Assumptions
	Model Formulation
	Objective Functions Estimation

	Evolutionary Multiobjective Optimization
	SPEA2: Brief Description
	SPEA2 with a Greedy Local Search

	Optimization Results
	Cost vs. Fill Rate Problem
	Cost vs. Lead Time

	Conclusions
	References

	Hybrid Population-Based Incremental Learning Using Real Codes
	Introduction
	Hybrid Algorithm
	Population-Based Incremental Learning
	Evolutionary Direction Recombination
	Approximate Gradient
	Hybrid Algorithm

	Testing Functions
	Comparison Results
	Conclusions and Discussion
	References

	Pareto Autonomous Local Search
	Introduction
	Neighborhood, Selectors and Operators
	General Definitions
	Permutations

	Operator Control for Local Search
	Metrics
	Operator Selection

	Experiments
	Experimental Protocol
	Results and Discussion

	Conclusion
	References

	Transforming Mathematical Models Using Declarative Reformulation Rules
	Introduction
	Structures
	Compositions

	Creating a Model
	Reformulations
	ProdBC to MILP
	SAbs to Composition
	VAbs to LP
	SemiContinuous to MILP
	ProdCC to MILP
	SemiAssign to MILP
	Constraint to MILP
	OFMin to MILP
	IndComposition to MILP
	Composition to MILP

	Applying the ARRs to HCP
	Discussion
	References

	Learning Heuristic Policies – A Reinforcement Learning Problem
	Introduction
	Learning Heuristics – A Reinforcement Learning Problem
	Bin Packing
	Illustrative Example Using Bin-Packing
	On-Line Bin Packing
	Off-Line Bin Packing

	Summary and Conclusions
	References

	Continuous Upper Confidence Trees
	Introduction
	Progressive Widening for Upper Confidence Trees
	Progressive Widening
	Why It Does Not Work as Is for Randomized Transitions in Continuous Domains
	Proposed Solution: Double Progressive Widening

	Experiments
	Trap Problem
	The Power Management Problem

	Conclusion
	References

	Main Track (Short Papers)
	Towards an Intelligent Non-stationary Performance Prediction of Engineering Systems
	Introduction
	Partial Non-stationary Kriging
	Engine Casing Temperature Response Prediction
	Conclusions
	References

	Local Search for Constrained Financial Portfolio Selection Problems with Short Sellings
	Introduction
	The Portfolio Selection Problem with Short Sellings
	Local Search
	Experiments
	References

	Clustering of Local Optima in Combinatorial Fitness Landscapes
	Introduction
	Methodology
	Results and Discussion
	References

	Special Session: IMON
	Multi-Objective Optimization with an Adaptive Resonance Theory-Based Estimation of Distribution Algorithm: A Comparative Study
	Introduction
	The Model-Building Issue
	Model Building with Adaptive Resonance Theory
	Gaussian ART for Model-Building

	Multi-Objective ART-Based EDA
	Experimental Study
	Final Remarks
	References

	Multi-Objective Differential Evolution with Adaptive Control of Parameters and Operators
	Introduction
	Related Work
	Parameter Setting in Evolutionary Algorithms
	Adaptive Operator Selection

	Adaptive Multi-Objective DE
	Fitness Evaluation
	Replacement Mechanism
	Adaptive Operator Selection
	Adaptive Parameter Control of CR and F

	Performance Comparison
	Experimental Settings
	Experimental Results

	Conclusion
	References

	Distribution of Computational Effort in Parallel MOEA/D
	Introduction
	Sequential MOEA/D
	A Parallel Model of MOEA/D
	Extending the Proposed Parallel Model
	pMOEA/Dv1
	pMOEA/Dv2

	Experimentation
	Configuration
	Benchmark

	Analysis of the Results
	Conclusions and Future Work
	References

	Multi Objective Genetic Programming for Feature Construction in Classification Problems
	Introduction
	Methods
	Conclusions
	References

	Special Session: LION-PP
	Sequential Model-Based Optimization for General Algorithm Configuration
	Introduction
	Existing Work on Sequential Model-Based Optimization (SMBO)
	Random Online Aggressive Racing (ROAR)
	Generalization I: An Intensification Mechanism for Multiple Instances
	Defining ROAR

	Sequential Model-Based Algorithm Configuration (SMAC)
	Generalization II: Models for Categorical Parameters
	Generalization III: Models for Sets of Problem Instances
	Generalization IV: Using the Model to Select Promising Configurations in Large Mixed Numerical/Categorical Configuration Spaces

	Experimental Evaluation
	Experimental Setup
	Experimental Results for Single Instance Scenarios
	Experimental Results for General Multi-instance Configuration Scenarios

	Conclusion
	References

	Generalising Algorithm Performance in Instance Space: A Timetabling Case Study
	Introduction
	Course Timetabling
	Visualising Instance Space
	Self-Organising Feature Maps
	Visualising the Instance Space
	Visualising the Footprints of Algorithm Performance
	Partitioning the Instance Space via Decision Trees

	Conclusions
	References

	Special Session: Self* EAs
	A Hybrid Fish Swarm Optimisation Algorithm for Solving Examination Timetabling Problems
	Introduction
	Uncapacitated Examination Timetabling Problem
	The Fish Swarm Optimisation Algorithm
	The Hybrid Approach
	Nelder-Mead Simplex Algorithm
	Multi Decay Rate Great Deluge Algorithm

	Simulation Results
	Conclusion and Future Work
	References

	The Sandpile Mutation Operator for Genetic Algorithms
	Introduction
	SOC in Evolutionary Computation
	The Sandpile Model and the Sandpile Mutation
	Test Set and Results
	Functions
	Methodology
	Results
	Mutation Rate Analysis

	Conclusions and Future Work
	References

	Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms
	Introduction
	Previous Related Work
	Our Proposed Approach
	Phase 1: Sensitivity Analysis
	Self-adaptation of Parameters
	The Individual
	Crossover Operator
	Mutation Operator
	Inheritance-Fertilization Operator
	Stopping Criterion and a Varying Population Size

	Experimental Results
	Experimental Setup
	Discussion of Results

	Conclusions and Future Research
	References

	Analysing the Performance of Different Population Structures for an Agent-Based Evolutionary Algorithm
	Introduction
	Experiments and Results
	Conclusions
	References

	Special Session: LION-SWAP
	EDACC - An Advanced Platform for the Experiment Design, Administration and Analysis of Empirical Algorithms
	Introduction
	EDACC - Overview of the Main Components
	Information Extraction
	Instance Properties
	Result Properties

	Analysis and Statistical Evaluation
	EDACC - Competition Mode
	Implementation Details
	Related Work
	Conclusion and Future Work
	References

	HAL: A Framework for the Automated Analysis and Design of High-Performance Algorithms
	Introduction
	HAL: A Framework for Meta-algorithmics
	Meta-algorithmic Problems
	The High-Performance Algorithm Laboratory

	The HAL 1.0 Core Infrastructure
	Experiment Modelling
	Execution and Data Management
	User Interface

	Case Study: Analysis and Design with HAL 1.0
	The Single-Algorithm Analysis Problem
	The Pairwise Comparison Problem
	The Algorithm Configuration Problem

	Conclusions and Future Work
	References

	Hyperion – A Recursive Hyper-Heuristic Framework
	Introduction
	Domain Analysis
	TheHyperion Hyper-Heuristic Framework
	Design-Space of Hyper-Heuristics
	Application to SAT

	Conclusion and Future Work
	References

	The Cross-Domain Heuristic Search Challenge – An International Research Competition
	Introduction
	The HyFlex Framework
	Challenge Description and Scoring System
	Final Remarks
	References

	Author Index

