
Some Combinatorial Results towards State

Recovery Attack on RC4�

Apurba Das1, Subhamoy Maitra1, Goutam Paul2, and Santanu Sarkar1

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India

{contactadasbesu,sarkar.santanu.bir}@gmail.com, subho@isical.ac.in
2 Department of Computer Science and Engineering, Jadavpur University,

Kolkata 700 032, India
goutam.paul@ieee.org

Abstract. A stream cipher has an unobservable internal state that is
updated in every step and a keystream output (bit or word) is generated
at every state transition. State recovery attack on stream cipher attempts
to recover the hidden internal state by observing the keystream. RC4 is
a very widely used commercial stream cipher that has a huge internal
state. No known state recovery attack on RC4 is feasible in practice and
the best so far has a complexity of 2241 (Maximov et al., CRYPTO 2008).
In this paper, we take a different approach to the problem. RC4 has a
secret index j of size one byte. We perform a combinatorial analysis of
the complexity of RC4 state recovery under the assumption that the val-
ues of j are known for several rounds. This assumption of knowledge of
j is reasonable under some attack models, such as fault analysis, cache
analysis, side channel attacks etc. Our objective is not to devise an un-
conditional full state recovery attack on RC4, but to investigate how
much information of j leaks how much information of the internal state.
In the process, we reveal a nice combinatorial structure of RC4 evolution
and establish certain interesting results related to the complexity of state
recovery.

Keywords: Cryptanalysis, RC4, State Recovery Attack, Stream
Cipher.

1 Introduction

RC4 is one of the most popular stream ciphers with the following structure. It
requires an array S of size N (typically, 256), which contains a permutation of
the integers {0, . . . , N − 1}, two indices i, j and the secret key array K. Given
a secret key k of l bytes (typically 5 to 32), the array K of size N is such that
K[y] = k[y mod l] for any y, 0 ≤ y ≤ N − 1.

� This paper is based on the M. Tech. (CS) dissertation work of the first author under
the supervision of second author at Indian Statistical Institute, Kolkata.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 204–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Some Combinatorial Results towards State Recovery Attack on RC4 205

The permutation S is initialized as the identity permutation. Then RC4
proceeds in two phases: the Key Scheduling Algorithm (KSA) and the Pseudo-
Random Generation Algorithm (PRGA). The KSA uses the secret key to scram-
ble the permutation and the PRGA uses the scrambled permutation to generate
the keystream bytes that are bitwise XOR-ed with the plaintext bytes in the
sender end (during encryption) and with the ciphertext bytes at the receiver
end (during decryption).

Below we describe the KSA and the PRGA briefly. All additions performed
are addition modulo N , unless otherwise specified.

KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;

Scrambling:
For i = 0, . . . , N − 1

j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

PRGA
Initialization:

i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

RC4 can be completely broken if one can reconstruct the permutation SG

by observing the keystream output bytes. Such attacks are called state recovery
attacks.

The RC4 state consists of two 8-bit indices i and j and a permutation of 256
possible 8-bit elements. Thus, the size of the state space is 28! × (28)2 ≈ 21700,
making the exhaustive search completely infeasible.

In [1], it has been estimated that this kind of attack would require around 2779

complexity. Later in [6], an improved idea has been presented that estimates a
complexity of 2731. A much improved result [3] in this area shows that the
permutation can be recovered in around 2241 complexity, rendering RC4 insecure
when the key length is more than 30 bytes. Fortunately, this result does not affect
RC4 for the typical secret key size of 5 to 16 bytes.

In this paper, we revisit the problem of state recovery from a combinatorial
view point. We model the problem under different assumptions and investigate
how the time complexity of performing full state recovery differs from one model
to another.

Let St be the permutation, zt be the keystream output byte and it, jt be the
indices after t many rounds of RC4 PRGA, t ≥ 1. We also denote the initial
values of these variables before the PRGA starts by S0, i0, j0 (note that z0 does
not exist).

2 Previous Works on State Recovery

The works [1,4] independently discovered for the first time that a branch and
bound strategy reduces the complexity for recovering the internal state much
below that of exhaustive search.



206 A. Das et al.

The basic idea of [1] is as follows. At any point of time, there are four un-
knowns, namely, jG

r , SG
r [iGr ], SG

r [jG
r ], S−1

r [zr]. One can simulate the PRGA and
guess these unknown values in order to continue when necessary. The recur-
sion steps backward if a contradiction is reached, due to the previously wrong
guesses. If some M (out of N) many permutation entries are a-priori known,
the complexity is reduced further. For N = 256, the complete attack requires a
complexity of around 2779. The time complexity of the attack for various values
of N and M are provided in Tables D.1 and D.2 in [2, Appendix D.4].

In [4], the cycle structures in RC4 are analyzed in detail and a “tracking”
attack is developed that recovers the RC4 state, if a significant fraction of the
full cycle of keystream bits is generated. For example, the state of a 5 bit RC4-
like cipher can be obtained from a portion of the keystream using 242 steps,
while the nominal key-space of the system is 2160.

The work [5] showed that Knudsen’s attack [1] requires 2220 search complex-
ity if 112 entries of the permutation are known and presents an improvement
whereby state recovery with the same complexity requires prior knowledge of
only 73 permutation entries in certain cases.

In [6], an improvement over [1] is presented using a tree representation of
RC4. At time-step r, the nodes are distributed at r + 1 levels. Nodes at level
h, 0 < h ≤ r, refer to the set of all possible positions in SG

r−h where zr can be
found. The nodes are connected by the branches which represent the conditions
to pass from one node to another. In order to find the internal state, such a tree
of general conditions is searched by hill-climbing strategy. This approach reduces
the time complexity of the full RC4 state recovery from 2779 to 2731.

The best known result for state recovery appears in [3] that shows that the
permutation can be recovered in around 2241 complexity. This establishes that
RC4 is not secure when the key length is more than 30 bytes (240 bits). The
basic idea of cryptanalysis in [3] is as follows. Corresponding to a window of
w + 1 keystream output bytes, one may assume that all the jG’s are known,
i.e., jG

r , jG
r+1, . . . , j

G
r+w are known. Thus w many SG

r [iGr ] will be available from
jG
r+1 − jG

r . Then w many equations of the form SG−1

r [zr] = SG
r [iGr ] + SG

r [jG
r ]

will be found where each equation contains only two unknowns (instead of four
unknowns jG, SG[iG], SG[jG], SG−1

[z] as in [1]). Some precomputation is per-
formed to identify a certain position in the keystream where the internal state
is compliant to a specific pattern. A d-order pattern is a tuple A = {i, j, U, V },
where U and V are two vectors from Zd

N with pairwise distinct elements. At
time step r, the internal state is compliant with A if iGr = i, jG

r = j, and d cells
of SG

r with indices from U have corresponding values from V . A pattern A is
called w-generative if for any internal state compliant with A, the next w clock-
ings allow to derive w equations of the form SG−1

r [zr] = SG
r [iGr ] + SG

r [jG
r ], i.e.,

if consecutive w values of jG are known. The strategy is to look for d-order w-
generative patterns with small d and large w. Whenever the observed keystream
indicates such patterns of the internal state, iterative recovery of the unknowns
is done and the window w is dynamically expanded. A general time complexity
estimate is performed in [3], and simulation results for scaled-down version of



Some Combinatorial Results towards State Recovery Attack on RC4 207

RC4 (i.e. smaller N) are reported. The authors claim that the success rate of
the full attack is at least 98%.

A very recent work [7] revisits the method [3] and presents an iterative prob-
abilistic reconstruction and discusses how one can practically approach the com-
plexity of [3].

3 State Recovery with Known j: Theoretical Analysis

Our initial study on state recovery assumes that the index j is known for each
round in the RC4 PRGA. If the index j is known at each round of the PRGA,
then the value at updated location i of the S array before the current round is
known. Therefore, after the swap operation in the current round of PRGA, the
value at updated location j in the S array can be determined with probability
1. But that does not ensure that the value at updated location i would be
determined after the swap operation, because of the fact that the value at the
updated location j may not be known before the swap operation.

Therefore, the only problem here is to deterministically compute the value of
the updated location j before the swap operation. For this, we use an auxiliary
integer array guess of size N initially marked EMPTY . We use this array to
simulate the hidden permutation S.

Our goal is to gradually fill the EMPTY locations of the array guess by the
correct values of the permutation S. In the process, we perform swaps in the
array guess in tandem with the swaps in S so that if the array guess becomes
completely filled at some round r, then we can obtain Sr[u] directly from the
values guess[u] for all u in [0, N − 1].

3.1 Without Using the Keystream Bytes

First, we attempt to recover the internal state without using any information
about the keystream bytes zt. Suppose, we observe the evolution of the cipher
from round t onwards. At round t + 1, the value of St[it+1] is known. Therefore,
at the end of the (t + 1)-th round, the value of St+1[jt+1] will be known deter-
ministically. Then that value will be placed in the array guess at location jt+1.
Before this update of array guess, if the value at location jt+1 in guess was not
EMPTY , then that value is to be placed at location it+1 of the array guess,
otherwise the value at location it+1 of the array guess should be updated to
EMPTY .

If we repeat the above procedure for several rounds, the number of known
entries in the array guess increases and eventually, at some round t + m, we
derive N − 1 entries of S. Since S is a permutation over {0, 1, . . . , N − 1},
knowledge of the values in any N − 1 locations reveal the remaining value.

The above discussion is summarized in the form of Algorithm 1.
The complexity of the above algorithm can be expressed in terms of the num-

ber m of rounds that needs to be iterated to fill the array guess. The following
theorem gives the expected value of m.



208 A. Das et al.

Input: {(it+r, jt+r) : r = 0, 1, . . . , M − 1}.
Output: Permutation array St+m for some m ∈ [0, M − 1].

numKnown← 0;1

for u from 0 to N − 1 do2

guess[u]← EMPTY ;3

end
m← 0 ;4

repeat5

guess[it+m+1]← guess[jt+m+1];6

guess[jt+m+1]← jt+m+1 − jt+m;7

m← m + 1;8

numKnown←Number of non-empty entries in the array guess;9

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then10

Fill the remaining single EMPTY location of the array guess;11

for u from 0 to N − 1 do12

St+m[u]← guess[u];13

end

end

Algorithm 1. The algorithm for state recovery when j is known

Theorem 1. The expected number of rounds of Algorithm 1 to recover S com-

pletely is N ·
N∑

k=2

1
k
.

Proof. When k entries are filled, the probability that one more entry would
be filled in the next step is equal to the probability that the difference in the
consecutive j-values (that is a uniformly random number between 0 to N − 1)
computed in Step 7 is distinct from the already present k values. This probability
is clearly pk = N−k

N .
Let Xk denote the number of steps required to fill a new entry in guess, when

k entries of guess are filled. So the total number of steps required to fill N − 1

entries is given by X =
N−2∑

k=0

Xk. Each Xk follows a geometric distribution with

probability pk. Hence, E(Xk) = 1
pk

= N
N−k . By linearity of expectation,

E(X) =
N−2∑

k=1

E(Xk) =
N−2∑

k=0

N

N − k
= N ·

N∑

k=2

1
k

.

��
Substituting N = 256 in the expression for E(X), we get the theoretical ex-
pectation of the number m of rounds required as 1312. If M < 1312, then it
is expected that we would have a partially recovered state. We experiment by
fixing different values of M . For each M , we run RC4 with 100 randomly chosen



Some Combinatorial Results towards State Recovery Attack on RC4 209

secret keys and calculate the average number of permutations bytes recovered.
The results are presented in Table 1.

Table 1. No. of rounds vs. average no. of bytes recovered for Algorithm 1

Rounds M 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

#Bytes Recovered 84 140 179 203 220 232 240 245 248 251 253 254 255

3.2 Using the Keystream Bytes

In the above strategy, information of the keystream bytes zt has not been used.
Knowledge of keystream is a standard assumption in known plaintext attack
model of cryptanalysis. If we use the keystream information, it is likely that
complete state recovery would be possible in smaller number of rounds.

Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . , M − 1)}.
Output: Permutation array St+m for some m ∈ [0, M − 1].
numKnown← 0;1

for u from 0 to N − 1 do2

guess[u]← EMPTY ;3

end
m← 0;4

repeat5

guess[it+m+1]← guess[jt+m+1];6

guess[jt+m+1]← jt+m+1 − jt+m;7

if (guess[it+m+1] �= EMPTY ) AND8

guess[guess[it+m+1] + guess[jt+m+1]] = EMPTY then
guess[guess[it+m+1] + guess[jt+m+1]]← zt+m+1;9

end
if guess[it+m+1] = EMPTY AND zt+m+1 = guess[v] for some v then10

guess[it+m+1]← v − guess[jt+m+1];11

end
m← m + 1;12

numKnown← Number of non-empty entries in the array guess;13

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then14

Fill the remaining single EMPTY location of the array guess;15

for u from 0 to N − 1 do16

St+m[u]← guess[u];17

end

end

Algorithm 2. The algorithm for state recovery when j, z are known

We can use the keystream bytes to recover the state more efficiently in two
ways. Assume that at round t, we know it, jt and at round t + 1, we know



210 A. Das et al.

it+1, jt+1, zt+1. First, we update the contents of the locations it+1 and jt+1 of
guess. Since zt+1 = St+1[St+1[it+1] + St+1[jt+1]], we check whether zt+1 is al-
ready present at some location v in the array guess after the update of the
locations it+1 and jt+1. If so, then St+1[it+1] is found from v − St+1[jt+1] and
is placed in guess[it+1]. If however, zt+1 is not present but St+1[it+1] is known,
then we can fill zt+1 in location guess[it+1] + guess[jt+1] of guess. The detailed
procedure is explained in Algorithm 2.

The following result gives an estimate of the number of rounds that need to
be iterated for full state recovery.

Theorem 2. For Algorithm 2, let Xk denote the number of additional rounds
required to fill the entire guess array, when k locations are already filled. Then

E(Xk) = 1 + (1 − pk)
(
qkE(Xk+1) + (1 − qk)E(Xk)

)

+pk

(
qk+1E(Xk+2) + (1 − qk+1)E(Xk+1)

)
,

where pk = N−k
N and qk = 2pk(1 − pk).

Proof. We call that a success has occurred in a step of Algorithm 2, if a new
entry of guess is filled in that step. Note that the Conditions 8 and 10 cannot
hold together.

We consider two different cases. When k entries are filled, Step 7 may give a
success with probability pk = N−k

N or a failure with probability 1 − pk.

Case I: Failure in Step 7. After a failure in Step 7, which happens with prob-
ability (1−pk), we would have k entries filled. So, the probability that there
would be a new success between Steps 8 and 12 is when either Step 9 gives
a success (with probability pk) and Step 11 gives a failure (with probability
1 − pk) or vice versa. Hence, after a failure in Step 7, the probability that
there would be one more success between Steps 8 and 12 is given by

qk = pk(1 − pk) + (1 − pk)pk = 2pk(1 − pk),

and if there is a success, we would have k +1 entries filled. However, if there
is a failure between Steps 8 and 12, which happens with probability 1 − qk,
then after Step 12, we would have k entries filled. Thus, the contribution of
this part to E(Xk) is given by

(1 − pk)
(
qkE(Xk+1) + (1 − qk)E(Xk)

)
.

Case II: Success in Step 7. After a success in Step 7, we have k + 1 entries
filled. So, the probability that there would be one more success between
Steps 8 and 12 is when either Step 9 gives a success (with probability pk+1)
and Step 11 gives a failure (with probability 1− pk+1) or vice versa. Hence,
after a success in Step 7, the probability that there would be one more success
between Steps 8 and 12 is given by

qk+1 = pk+1(1 − pk+1) + (1 − pk+1)pk+1 = 2pk+1(1 − pk+1),



Some Combinatorial Results towards State Recovery Attack on RC4 211

and if there is a success, we would have K + 2 entries filled. However, if
there is a failure between Steps 8 and 12, which happens with probability
1 − qk+1, then after Step 12, we would have k + 1 entries filled. Hence, the
contribution of this part to E(Xk) is given by

pk

(
qk+1E(Xk+2) + (1 − qk+1)E(Xk+1)

)
.

In addition to the above two contributions, we need to add 1 to E(Xk), as we
have analyzed the situations after one more additional round. So,

E(Xk) = 1 + (1 − pk)
(
qkE(Xk+1) + (1 − qk)E(Xk)

)

+pk

(
qk+1E(Xk+2) + (1 − qk+1)E(Xk+1)

)
.

��
Corollary 1. The expected number of rounds required to completely recover the
RC4 state using Algorithm 2 is given by E(X0), where E(XN−1) = E(XN ) = 0.

Experimental results show that the number m of rounds required to fill the array
A using the improved algorithm is around 550, which is close to the theoretical
value 531 obtained computing E[X0] as stated in Corollary 1. Table 2 shows the
experimental results generated in the same method as in Section 3.1.

Table 2. No. of rounds vs. average no. of bytes recovered for Algorithm 2

Rounds M 100 150 200 250 300 350 400 450 500 550

#Bytes Recovered 112 163 203 229 245 252 255 255.6 255.9 255.99

4 Heuristics for Further Improvement

The number of rounds (which is equal to the number of known j values) required
in Algorithm 2 can be reduced further by applying some heuristics that we
describe in this section.

In Algorithms 1 and 2, information of the new entries filled at any round r
could not be used in any earlier round t < r. We introduce a concept of backward
pass on the auxiliary array guess. Suppose the algorithm begin execution from
round t. After each subsequent round r, we revert everything back to the initial
round t and in the process use the new entries to check if the array guess can be
populated further. After we reach round t, we again perform a forward pass up
to the current round r to further populate the array guess as much as possible.
The improved strategy is presented in Algorithm 3.

Algorithm 3 uses two subroutines. The subroutine backtrack(r, t) presented in
Algorithm 4 performs a backward pass, tracing all state information back from
the current round r to a previous round t < r. On the other hand, the subroutine
processForward(r, t), presented in Algorithm 5 evolves the state information in
the forward direction from a past round r to the current round t > r. Unlike the
previous two algorithms, an additional two dimensional array acc is used, whose
r-th row contains the triplet (ir, jr, zr).



212 A. Das et al.

Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . , M − 1)}.
Output: Permutation array St+m for some m ∈ [0, M − 1].
numKnown← 0;1

m← 0;2

for u from 0 to N − 1 do3

guess[u]← EMPTY ;4

end
acc[0][0] ← it;5

acc[0][1] ← jt;6

for u from 1 to M − 1 do7

acc[u][0] ← it+u;8

acc[u][1] ← jt+u;9

acc[u][2] ← zt+u;10

end
repeat11

it+m+1 ← acc[t + m + 1][0];12

jt+m+1 ← acc[t + m + 1][1];13

zt+m+1 ← acc[t + m + 1][2];14

if guess[it+m+1] = EMPTY then15

guess[it+m+1]← jt+m+1 − jt+m;16

end
backtrack(t + m, t);17

processForward(t, t + m + 1);18

m← m + 1;19

numKnown← Number of non-empty entries in the array guess;20

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then21

Fill the remaining single EMPTY location of the array guess;22

for u from 0 to N − 1 do23

St+m[u]← guess[u];24

end

end

Algorithm 3. The algorithm for state recovery with backward and forward
passes

Subroutine backtrack(r, t)
repeat1

ir ← acc[r][0];2

jr ← acc[r][1];3

swap(guess[ir], guess[jr]);4

r ← r − 1;5

until r = t ;

Algorithm 4. Subroutine backtrack



Some Combinatorial Results towards State Recovery Attack on RC4 213

Subroutine processForward(r, t)
repeat1

ir = acc[r][0];2

jr = acc[r][1];3

zr = acc[r][2];4

swap(guess[ir], guess[jr]);5

if guess[ir] �= EMPTY then6

temp← guess[ir] + guess[jr];7

if guess[temp] = EMPTY then8

guess[temp]← zr;9

end

end
if guess[ir] = EMPTY AND zr = guess[v] then10

guess[ir]← v − guess[jr];11

end
r ← r + 1;12

until r = t ;

Algorithm 5. Subroutine processForward

4.1 Experimental Results

Theoretical analysis of Algorithm 3 is a challenging task. Since the theoretical
analysis is yet open, we present some experimental evidences to support the im-
provements achieved. Experimental result showing the average number of bytes
recovered (over 100 random simulations of RC4) against the number of rounds
used is shown in Table 3.

Table 3. No. of rounds vs. average no. of bytes recovered for Algorithm 3

Rounds M 100 150 200 250

#Bytes Recovered 146 218 240 255

In Figure 1, we plot the number of S[i]’s recovered vs. no. of j’s known (on
the left) and the ratio of the numbers of S[i]’s recovered and j’s known (on
the right). It is interesting to note that though the number of bytes recovered
increases with number of known j’s, the relationship between the two is not
linear. When a few j’s or a lot of j’s are known, less number of bytes are recovered,
compared to when moderate number (around 128) of j’s are known. The reason
behind this is as follows. When a few j’s are known, the probability that more than
one entry would be filled is very low (due to Theorem 2). Also, when many j’s are
known, most of the entries of guess are already filled, so the probability that a new
entry computed is different from the already known ones is very low. Therefore,
maximum information gain is achieved in between these two extreme cases. From
our experiments, we find the maximum gain corresponding to the case when 116
many selected j values are known. A potential future work would be to guess
such 116 j values and then devise a strategy to reconstruct the full state.



214 A. Das et al.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

No. of j values known.

N
o.

 o
f b

yt
es

 r
ec

ov
er

ed
.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

No. of j values known.

R
at

io
 o

f n
um

be
rs

 o
f S

[i]
 k

no
w

n 
an

d 
j k

no
w

n.

Fig. 1. Relationship between no. of permutation bytes recovered and no. of j’s known
for Algorithm 3

5 Conclusion

We show how the knowledge of the secret index j leaks information about the
internal state of RC4 PRGA. Though our analysis does not immediately lead
to a state recovery attack on RC4, it certainly gives insight into the interplay
between the state variables and their dependencies. Full state recovery attack
on RC4 in practically achievable complexity is still an open problem. Currently
the best known state recovery attack requires 2241 complexity [3]. We believe
our work may be extended further to investigate the possibility of RC4 state
recovery in complexity less than 2241.

References

1. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

2. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel (2001)

3. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

4. Mister, S., Tavares, S.E.: Cryptanalysis of RC4-like Ciphers. In: Tavares, S., Meijer,
H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 131–143. Springer, Heidelberg (1999)

5. Shiraishi, Y., Ohigashi, T., Morii, M.: An Improved Internal-state Reconstruction
Method of a Stream Cipher RC4. In: Hamza, M.H. (ed.) Proceedings of Communica-
tion, Network, and Information Security, Track 440-088, New York, USA, December
10-12, pp. 440–488 (2003)

6. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Information Sciences 177, 1715–1727 (2007)

7. Golic, J., Morgari, G.: Iterative Probabilistic Reconstruction of RC4 Internal States.
IACR Eprint Server, eprint.iacr.org, number 2008/348 August 8 (2008)


	Some Combinatorial Results towards State Recovery Attack on RC4
	Introduction
	Previous Works on State Recovery
	State Recovery with Known j: Theoretical Analysis
	Without Using the Keystream Bytes
	Using the Keystream Bytes

	Heuristics for Further Improvement
	Experimental Results

	Conclusion
	References




