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Abstract. Privacy has become a significant concern in modern society
as personal information about individuals is increasingly collected, used,
and shared, often using digital technologies, by a wide range of orga-
nizations. Certain information handling practices of organizations that
monitor individuals’ activities on the Web, data aggregation companies
that compile massive databases of personal information, cell phone com-
panies that collect and use location data about individuals, online so-
cial networks and search engines—while enabling useful services—have
aroused much indignation and protest in the name of privacy. Similarly,
as healthcare organizations are embracing electronic health record sys-
tems and patient portals to enable patients, employees, and business
affiliates more efficient access to personal health information, there is
trepidation that the privacy of patients may not be adequately protected
if information handling practices are not carefully designed and enforced.

Given this state of affairs, it is very important to arrive at a general
understanding of (a) why certain information handling practices arouse
moral indignation, what practices or policies are appropriate in a given
setting, and (b) how to represent and enforce such policies using informa-
tion processing systems. This article summarizes progress on a research
program driven by goal (b). We describe a semantic model and logic of
privacy that formalizes privacy as a right to appropriate flows of personal
information—a position taken by contextual integrity, a philosphical the-
ory of privacy for answering questions of the form identified in (a). The
logic is designed with the goal of enabling specification and enforcement
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of practical privacy policies. It has been used to develop the first com-
plete formalization of two US privacy laws—the HIPAA Privacy Rule
that prescribes and proscribes flows of personal health information, and
the Gramm-Leach-Bliley Act that similarly governs flows of personal
financial information. Observing that preventive access control mecha-
nisms are not sufficient to enforce such privacy policies, we develop two
complementary audit mechanisms for policy enforcement. These mecha-
nisms enable auditing of practical privacy policies, including the entire
HIPAA Privacy Rule. The article concludes with a vision for further
research in this area.

1 Introduction

Privacy has become a significant concern in modern society as personal infor-
mation about individuals is increasingly collected, used, and shared, often using
digital technologies, by a wide range of organizations. Certain information han-
dling practices of organizations that monitor individuals’ activities on the Web,
data aggregation companies that compile massive databases of personal informa-
tion, cell phone companies that collect and use location data about individuals,
online social networks and search engines—while enabling useful services—have
aroused much indignation and protest in the name of privacy (see, for example,
a series of articles in the Wall Street Journal [51]). Similarly, as healthcare orga-
nizations are embracing electronic health record systems and patient portals to
enable patients, employees, and business affiliates more efficient access to per-
sonal health information, there is trepidation that the privacy of patients may
not be adequately protected if information handling practices are not carefully
designed and enforced [29, 43, 49].

Given this state of affairs, it is very important to arrive at a general under-
standing of (a) why certain information handling practices arouse moral indig-
nation, what practices or policies are appropriate in a given setting, and (b)
how to represent and enforce such policies using information processing sys-
tems. This article summarizes progress on a research program driven by goal
(b) [8, 9, 14, 22, 25]. The semantic model in this work is informed by contextual
integrity—a philosphical theory of privacy for answering questions of the form
identified in (a) [40]. Healthcare privacy has been a focus area of application for
much of this work and consequently the examples in the paper are drawn from
that domain. The article concludes with a vision for further research in this area.

Contextual Integrity. The central thesis of contextual integrity is that privacy is
a right to appropriate flow of personal information. The building blocks of this
theory are social contexts and context-relative informational norms. A context
captures the idea that people act and transact in society not simply as individ-
uals in an undifferentiated social world, but as individuals in certain capacities
(roles) in distinctive social contexts, such as healthcare, education, friendship
and employment. Norms prescribe the flow of personal information in a given
context, e.g., in a healthcare context a norm might prescribe flow of personal
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health information from a patient to a doctor and proscribe flows from the doctor
to other parties who are not involved in providing treatment. Norms are a func-
tion of the following parameters: the respective roles of the sender, the subject,
and the recipient of the information, the type of information, and the principle
under which the information is sent to the recipient. Examples of transmission
principles include confidentiality (prohibiting agents receiving the information
from sharing it with others), reciprocity (requiring bi-directional information
flow, e.g., in a friendship context), consent (requiring permission from the in-
formation subject before transmission), and notice (informing the information
subject that a transmission has occured). When norms are contravened, people
experience a violation of privacy. This theory has been used to explain why a
number of technology-based systems and practices threaten privacy by violating
entrenched informational norms. In addition, it provides a prescriptive method
for determining appropriate norms for a context (see [40]).

Semantic Model and Logic of Privacy. The idea that privacy expectations can
be stated using context-relative informational norms is formalized in a seman-
tic model and logic of privacy proposed by the first author and colleagues [8]
and developed further in our follow-up work [22]. At a high-level, the model
consists of a set of interacting agents in roles who perform actions involving per-
sonal information in a given context. For example, Alice (a patient) may send
her personal health information to Bob (her doctor). Following the structure of
context-relative informational norms, each transmission action is characterized
by the roles of the sender, subject, receipient and the type of the information
sent. Interactions among agents give rise to traces where each trace is an alter-
nating sequence of states (capturing roles and knowledge of agents) and actions
performed by agents that update state (e.g., an agent’s knowledge may increase
upon receiving a message or his role might change).

Transmission principles prescribe which traces respect privacy and which
traces don’t. While contextual integrity talks about transmission principles in
the abstract, we require a precise logic for expressing them since our goal is to
use information processing systems to check for violation of such principles. We
were guided by two considerations in designing the logic: (a) expressivity—the
logic should be able to represent practical privacy policies; and (b) enforceabil-
ity—it should be possible to provide automated support for checking whether
traces satisfy policies expressed in the logic.

A logic of privacy that meets these goals is presented in our recent work [25].
We arrive at this enforceable logic by restricting the syntax of the expressive
first-order logic we used in our earlier work to develop the first complete for-
malization of two US privacy laws—the HIPAA Privacy Rule for healthcare
organizations and the Gramm-Leach-Bliley Act for financial institutions [22]1.
These comprehensive case studies shed light on common concepts that arise in
transmission principles in practice—data attributes, dynamic roles, notice and
consent (formalized as temporal properties), purposes of uses and disclosures,

1 This logic, in turn, generalizes the enforceable propositional temporal logic in [8].
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and principals’ beliefs—as well as how individual transmission principles are
composed in privacy policies2. We discuss these insights in Section 2 and their
formalization in the semantic model and logic in Section 3.

Audit Mechanisms for Enforcing Privacy Policies. We observe that access con-
trol mechanisms are not sufficient for enforcing all privacy policies because at
run-time there may not be sufficient information to decide whether certain policy
concepts (e.g., future obligations, purposes of uses and disclosures, and princi-
pals’ beliefs) are satisfied or not. We therefore take the position that audit mecha-
nisms are essential for privacy policy enforcement. The importance of audits has
been recognized in the computer security literature. For example, Lampson [34]
takes the position that audit logs that record relevant evidence during system
execution can be used to detect violations of policy, establish accountability and
punish the violators. More recently, Weitzner et al. [52] also recognize the im-
portance of audit and accountability, and the inadequacy of preventive access
control mechanisms as the sole basis for privacy protection in today’s open infor-
mation environment. However, while the principles of access control have been
extensively studied, there is comparatively little work on the principles of audit.
Our work is aimed at filling this gap. Specifically, we develop two complementary
audit mechanisms for policy enforcement.

Our first insight is that incomplete audit logs provide a suitable abstraction to
model situations (commonly encountered in practice) in which the log does not
contain sufficient information to determine whether a policy is satisfied or vio-
lated, e.g., because of the policy concepts alluded to earlier—future obligations,
purposes of uses and disclosures, and principals’ beliefs. We formalize incom-
plete logs as partial structures that map each atomic formula to true, false or
unknown. We design an algorithm, which we name reduce, to operate iteratively
over such incomplete logs that evolve over time. In each iteration, reduce prov-
ably checks as much of the policy as possible over the current log and outputs
a residual policy that can only be checked when the log is extended with addi-
tional information. We implement reduce and use it to check simulated audit logs
for compliance with the entire HIPAA Privacy Rule. Our experimental results
demonstrate that the algorithm scales to realistic audit logs. These results are
summarized in Section 4 (see [25] for details).

Since privacy policies constrain flows of personal information based on subjec-
tive conditions (such as beliefs) that may not be mechanically checkable, reduce
will output such conditions in the final residual policy leaving them to be checked
by other means (e.g., by human auditors). The second audit algorithm, which
we name Regret Minimizing Audits (RMA), learns from experience to provide
operational guidance to human auditors about the coverage and frequency of
auditing such subjective conditions. At a technical level, we formalize periodic
audits in adversarial environments as an online learning problem over repeated
games of imperfect information. The model takes pragmatic considerations into
2 The model and logic supports information use actions in addition to transmission

actions, so, strictly speaking, it can express policies that are more general than
transmission principles.
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account, such as the periodic nature of audits, the audit budget and the loss that
an organization incurs from privacy violations. RMA is a new regret minimiza-
tion algorithm for this game model. These results are summarized in Section 5
(see [14] for details).

We conclude in Section 6 with a discussion of research directions in this area,
including support for policy composition and evolution, formalizing seemingly
subjective conditions (such as purposes and beliefs), and remaining challenges
in the design of audit mechanisms for detecting policy violations, accountability
mechanisms for appropriately assigning blame when violations are detected, and
incentive mechanisms to deter adversaries from committing violations.

2 Concepts in Privacy Policies

Before discussing the formal details of our semantic model, logic of privacy and
enforcement mechanisms, we provide an informal overview of the basic concepts
in, and the overall structure of, practical privacy policies. Both the concepts
and the overall structure are derived from a thorough analysis of all privacy
requirements in the U.S. laws HIPAA and GLBA, which was started in [8] and
completed in [22]. These concepts are the structure of the privacy laws; abstract
data attributes of a transmission; the ability of agents, which we call principals,
to dynamically alter the role in which they are active and roles to which they
belong; the purpose of a transmission; agents’ beliefs about their environment;
and temporal conditions for both past provisions and future obligations. This
overview simultaneously serves to justify the features of our logic of privacy,
PrivacyLFP, which we formally describe in Section 3.

2.1 Structure of Privacy Policies

Positive and Negative Norms of Transmission. In prior work, the first author and
several colleagues applied the framework of contextual integrity to observe that
privacy expectations inherent in laws like HIPAA and GLBA can, in general, be
stated using context-relative informational norms of two kinds: positive norms
(“may” conditions) and negative norms (“must” conditions) [8]. A transmission
satisfies privacy expectations if any one positive norm and all negative norms
applicable to the context of the transmission are satisfied. In subsequent work,
several of the present authors demonstrated the entire privacy laws in HIPAA
and GLBA can be formalized using this classification [22].

Practically, positive norms represent clauses of a law or policy which state that
a transmission may occur if a condition is satisfied. For example, §164.506(c)(2)
of HIPAA is a positive norm since it allows protected health information to be
disclosed if the disclosure’s purpose is treatment:

“A covered entity may disclose protected health information for treat-
ment activities of a health care provider.”
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In this way, positive norms capture the permitting clauses of a regulation. In
general, out of all positive norms of a policy that apply to a disclosure, only one
needs to be satisfied to deem the disclosure non-contradictory with the policy.

Negative norms represent policy clauses which state that a transmission may
occur only if a condition is satisfied. For example, the core of HIPAA §164.508(a)
(2) is a negative norm since it allows disclosure of psychotherapy notes only if
it is authorized by the patient (modulo a few exceptions):

“A covered entity must obtain an authorization for any use or disclosure
of psychotherapy notes, except [. . . ].”

Negative norms capture the denying clauses of a regulation because transmissions
that do not satisfy the negative norms’ conditions are disallowed. All negative
norms of a policy that apply to a disclosure must be satisfied to prevent a
violation of the policy when the disclosure occurs.

Exceptions to Norms of Transmission. Both positive and negative norms may
contain exceptions. For instance, HIPAA §164.508(a)(2) presented above as a
negative norm has an exception elided by [. . .] earlier: “use [of the notes] by the
originator of the psychotherapy notes for treatment.” Taking this clause as a
canonical example of a negative norm with an exception, we see that exceptions
provide a choice: a disclosure satisfies the policy if either there is evidence of
the patient’s authorization (thereby satisfying the norm’s core), or there is evi-
dence that the disclosure is a use by the notes’ originator for treatment (thereby
satisfying the norm’s exception).

Similarly, positive norms can also have exceptions, though they have a dif-
ferent flavor. For example, §164.512(c)(1) of HIPAA allows a covered entity to
disclose protected health information in reporting cases of abuse or domestic
violence, but §164.512(c)(2) makes the exception that such disclosures are al-
lowed only if the covered entity informs the victim of the report. These kind of
exceptions simply refine the positive norm to a more specific set of conditions.

2.2 Common Concepts in Privacy Policies

Data Attributes. Practical privacy policies define disclosure norms over abstract
attributes of data such as “protected health information” or “psychotherapy
notes”. These abstract attributes of data often possess a hierarchical structure
which the norms must respect. For example, psychotherapy notes are a partic-
ular type of protected health information, so every norm that prohibits flows of
protected health information should also deny the same flows of psychotherapy
notes (unless stated otherwise).

Dynamic Roles. Just as policy norms refer to data attributes, but not to raw
data, so also they usually refer to agents by their roles, not by their names.
Thus, the legality of a particular disclosure usually depends on the role of the
sender and recipient of the disclosure (e.g., a psychiatrist may legally disclose
information to a law enforcement official, etc) and not their identities.
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The roles held by an agent are not static; instead, they evolve over time. For
example, §6803(a) of GLBA suggests that principals may become and cease to
be customers of a financial institution, i.e., roles are dynamic:

“At the time of establishing a customer relationship with a consumer
and not less than annually during the continuation of such relationship,
a financial institution shall provide a clear and conspicuous disclosure to
such consumer [. . . ], of such financial institution’s policies and practices
with respect to [disclosing nonpublic personal information].”

Moreover, this norm suggests that roles can be long-standing. The customer
relationship is one such typically long-standing role since provisions for annual
notices are required. But an agent is not active in the customer role at each mo-
ment of the several years during which he is in a customer relationship. Instead,
he is variously active in the roles of parent, professor, patient, and, occasionally,
customer during those years.

Past Provisions and Future Obligations. Policy norms often refer to events at
different points of time; allowing an agent to opt-in or opt-out of disclosures is
a common example. For example, GLBA §6802(b)(1) requires a financial insti-
tution to allow opt-out:

“A financial institution may not disclose nonpublic personal information
to a nonaffiliated third party unless— [. . . ] the consumer is given the
opportunity, before the time that such information is initially disclosed,
to direct that such information not be disclosed to such third party.”

In other words, this norm makes the temporal requirement that, at some past
time, the consumer was given the opportunity to opt-out of the disclosure and
has not since exercised that opportunity. We use the term provision to refer to
such requirements about past events.

Temporal (time-based) relations in privacy policies are not limited to provi-
sions about the past. For example, HIPAA §164.510(a)(2) requires that covered
entities provide an opportunity to opt-out of disclosures of directory informa-
tion, with an exception for cases in which it is not practicable to provide that
opportunity (e.g., when a patient is in a coma). However, if this exception is
used, then §164.510(a)(3)(ii) demands that:

“The covered health care provider must inform the individual and pro-
vide an opportunity to [opt-out of] uses or disclosures for directory pur-
poses as required by paragraph (a)(2) of this section when it becomes
practicable to do so.”

This imposes a requirement for an event to occur in the future, though there is
no concrete time limit since one cannot predict the time at which it will become
practicable to provide an opportunity to opt-out. We use the term obligation to
refer to such requirements for future events.
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2.3 Subjective Concepts

The three concepts presented in Sections 2.2 are all objective, i.e, information
required to evaluate the concepts in the context of a disclosure may possibly be
available in mechanical form. For example, the attributes of data can be inferred
by analyzing the data, the role of an agent at any given time will usually be
available in a roles’ database and the relative precedence of two events can be
determined from the time stamps of their entries in their respective event logs.
However, privacy policies also often depend on concepts that are subjective, i.e,
have no representation in mechanical form. It is due to dependence on such
concepts that enforcement of practical privacy policies cannot be completely
automated and requires human intervention. In the following we discuss two
such concepts, viz., purposes of use and disclosure and individual beliefs.

Purposes of Uses and Disclosures. Norms for use and disclosure of individual in-
formation often mention the purpose of the use or disclosure, as in §164.506(c)(2)
of HIPAA:

“A covered entity may disclose protected health information for treat-
ment activities of a health care provider.”

In general, determing whether such purpose requirements are respected may
require human input3 Like data attributes, purposes also obey a hierarchical
structure, which must be reflected in PrivacyLFP. For example, the purpose
of administering a blood test should be a refinement, or subpurpose, of the
treatment purpose.

Agents’ Beliefs. Just as a transmission’s intended purpose introduces an element
of subjectivity, so do agents’ beliefs and professional judgment. For example,
HIPAA §164.512(f)(4) states:

“A covered entity may disclose protected health information about an
individual who has died to a law enforcement official for the purpose of
alerting law enforcement of the death of the individual if the covered
entity has a suspicion that such death may have resulted from criminal
conduct.”

The covered entity’s belief that the death may have resulted from criminal
conduct is absolutely crucial to the norm’s meaning. Without this constraint,
§164.512(f)(4) would permit a covered entity to disclose the protected health
information of any deceased person to law enforcement officials.

3 Logic of Privacy and Its Semantic Model

Having informally described the structure of and common concepts in privacy
policies, we present in this section a logic, PrivacyLFP, for representing privacy
3 See Section 6 for a pointer to ongoing work on providing semantics to purpose

requirements in privacy policies.



Understanding and Protecting Privacy 9

policies. We also present the logic’s semantic model. Whereas the syntax of the
logic is used to represent norms of privacy policies and their relation to each
other, the semantic model formalizes relevant contextual information against
which the truth or falsity of such norms is checked during enforcement. Such
contextual information includes, but is not limited to, use and disclosure event
logs, roles’ databases and data attribute information.

3.1 Overview

Technically, PrivacyLFP is first-order logic (predicate logic) with a slightly re-
duced syntax. The main syntactic categories in the logic are: 1) Terms, denoted
t, which are symbolic representations of agents, data, attributes, roles, purposes,
etc and over which variables x may range, 2) Predicates, denoted p, that rep-
resent relations between terms (e.g., Alice is a physician on 09/15/2011), and
3) Formulas, denoted ϕ, that are combinations of predicates using the usual
connectives of logic — ∧ (conjunction), ∨ (disjunction), ⊃ (implication), ∀x.ϕ
(for all instances of variables x, ϕ), ∃x.ϕ (there is some instance of variables x
such that ϕ), � (truth) and ⊥ (falsity).

We represent both positive and negative norms (Section 2.1) as formulas, de-
noted ϕ+ and ϕ−, respectively. The exceptions of a norm are represented as
subformulas of the formula representing the norm and are, therefore, part of the
representation of the norm itself. If the positive norms applicable to a given dis-
closure are ϕ+

1 , . . . , ϕ
+
n whereas the negative norms applicable to the disclosure

are ϕ−
1 , . . . , ϕ

−
m, then the disclosure satisfies the policy if and only if the following

formula is true: (ϕ+
1 ∨ . . . ∨ ϕ+

n ) ∧ (ϕ−
1 ∧ . . . ∧ ϕ−

m). Following standard mathe-
matics conventions, this formula is often abbreviated to (

∨
i ϕ

+
i ) ∧ (

∧
j ϕ

−
j ). In

related work [22], several authors of this paper have formalized all norms from
the HIPAA and GLBA Privacy Rules in this form. Although we do not discuss
this formalization in detail here, an example representative of the formalization
is shown later.

To represent the privacy policy concepts described in Sections 2.2 and 2.3,
we stipulate a specific signature within PrivacyLFP that is inspired by prior
work on the Logic of Privacy and Utility (LPU) [8]. Attributes of data (Sec-
tion 2.2) are represented using symbolic terms (e.g., phi for protected health
information). The hierarchy between data attributes is represented by a predi-
cate attr in(t1, t2), meaning that attribute t1 is a subset of attribute t2, e.g.,
attr in(medications,medical-history). We assume that each disclosed message
is tagged (by its sender) with the attributes of information it carries and the pred-
icate tagged(m, q, t) means that the disclosed message m is tagged as carrying
attribute t about agent q (e.g., a message may carry Alice’s medical-history).

Similar to data attributes, role names (Section 2.2) are represented as symbolic
terms, e.g, physician, covered-entity, etc. The relation between an agent p and
its role r at time τ is represented by the formula inrole(p, r, τ). Including time
in the relation allows accurate representation of dynamism in roles. For example,
by including the time we allow for the possibility that (in our semantic model)
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inrole(Alice, physician, 09/15/2011) is true but inrole(Alice, physician,
09/16/2011) is not (Alice is a physician on 09/15/2011, but not on 09/16/2011).

Events such as use or disclosure of personal records are also represented by
predicates called event predicates. For example, send(p1, p2,m, τ) means that
agent p1 sends message m to agent p2 at time τ . A salient feature of PrivacyLFP
is that it requires that every event predicate include a time argument like τ
in send(p1, p2,m, τ). This time argument can be used to compare the order of
occurence of two events using a relation τ ≤ τ ′ between time points. For example,
the normative statement “if Alice sends a message to Bob, then Bob must later
send a message to Alice” can be represented as: ∀m, τ. (send(Alice,Bob,m, τ) ⊃
(∃m′, τ ′. ((τ ≤ τ ′) ∧ send(Bob,Alice,m′, τ ′)))). We use this representation of
time to encode both provisions and obligations in privacy policies (Section 2.2).
Although PrivacyLFP does not include any explicit temporal operators (e.g., ♦
and � [37]), it is more expressive than two common temporal logics — linear-
time temporal logic (LTL) and timed propositional temporal logic (TPTL), as
shown in related work [22].

Like data attributes, purposes of use and disclosure (Section 2.3) are repre-
sented by symbolic terms (e.g., “treatment”, “healthcare”, etc.). The predicate
purp(m,u) means that the purpose of disclosure of message m is u. Unlike all
other predicates listed above, this predicate is uninterpreted — in any enforce-
ment system only a human expert may decide whether or not the predicate holds
for given m and u. (Later, we explain what uninterpreted means in our semantic
model.)

Similar to disclosure purposes, agents’ beliefs (Section 2.3) are also represented
with uninterpreted predicates. To distinguish such predicates, their names be-
gin with the prefix believes-, e.g., believes-cause-of-death-is-crime(p, q)
may mean that agent p believes that agent q died due to a criminal act. Like the
predicate purp(m,u), predicates beginning with the prefix believes- are also
uninterpreted.

Example 1. We illustrate representation of privacy policies in PrivacyLFP with
the following example that is motivated by similar requirements in HIPAA, but
is simpler and serves as a good illustration.

An entity (e.g., hospital or physician’s office) may send an individual’s
protected health information (phi) to another entity only if the receiving
entity is the individual’s doctor and the purpose of the transmission is
treatment, or the individual has previously consented to the transmis-
sion.

Observe that this policy contains two positive norms separated by the word “or”
in the above quote. Using the descriptions of predicates presented earlier, this
policy can be represented in PrivacyLFP as follows:

ϕpol = ∀p1, p2,m, q, t, τ. (send(p1, p2,m, τ) ∧ tagged(m, q, t))
⊃ attr in(t, phi)
∨ (inrole(p2, doctorOf(q), τ) ∧ purp(m, treatment))
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∨ ∃τ ′. (τ ′ < τ ∧ consents(q, sendaction
(p1, p2, (q, t)), τ ′))

The horizontal line over attr in indicates negation: attr in(t, phi) means that
attribute t is not a subset of attribute phi. In words, the above formula ϕpol

means that if entity p1 sends to entity p2 a message m at time τ and m is tagged
as carrying attribute t of individual q, then either the attribute t is not a form of
protected health information (so the policy does not apply) or the recipient p2

is a doctor of q at time τ (atom inrole(p2, doctorOf(q), τ)) and the purpose of
the disclosure is treatment, or q has consented to this transmission in the past
(last line of ϕpol).

3.2 Syntax of the Logic of Privacy

Although we have discussed the syntax of PrivacyLFP and also illustrated it in
the previous section, we summarize it below. The syntax deviates slightly from
first-order logic because it includes a distinct category of formulas called restric-
tions (denoted c) and requires that all quantifiers contain these restrictions. The
inclusion of restrictions is motivated by practical requirements: In the enforce-
ment algorithm of Section 4, a quantifier’s restriction allow us to finitely compute
all relevant instances of the quantifier, which may otherwise be an infinite set.
We also omit negation for technical convenience and assume that each predicate
p has a dual p that behaves exactly like the negation of p. The negation ϕ of a
formula ϕ can then be defined using De Morgan’s laws, as usual.

Terms t ::= . . .
Atoms P ::= p(t1, . . . , tn)
Formulas ϕ ::= P | � | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀x.(c ⊃ ϕ) | ∃x.(c ∧ ϕ)
Restrictions c ::= P | � | ⊥ | c1 ∧ c2 | c1 ∨ c2 | ∃x.c

3.3 Partial Structures and Semantics

Next, we describe the mathematical structures over which we interpret Priva-
cyLFP and its formal semantics. What mathematical structures are appropriate
for interpreting PrivacyLFP? Like structures of first-order logic, we may expect
the structures of PrivacyLFP to be abstractions of information about the truth
and falsity of the logic’s relations. Thus, a structure could be an abstract data
type encompassing all relevant event logs (to define predicates like send), roles’
databases (to define predicates like inrole), and other auxiliary information
about attribute hierarchies, etc.

However, unlike first-order logic where a structure maps each variable-free
atom (relation) to either true or false, in PrivacyLFP we must also allow for the
possibility that, in some cases, the information about the truth or falsity of a
relation may be unavailable. This is primarily for three reasons. First, the logic
includes subjective concepts like purp(m,u) (message m is disclosed for purpose
u), whose interpretation is unlikely to be available to any mechanized system
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of policy audit. We call such of lack of information subjective incompleteness.
Second, the norms of a privacy policy may contain obligations that are to be
satisfied in future; whether such obligations will hold or not cannot be deter-
mined during enforcement. We call this future incompleteness. Third, certain
logs or databases may be unavailable at the time of policy enforcement, perhaps
because they could not be integrated with the enforcement software. We call this
spatial incompleteness.

To take into account all such potential incompleteness of information and
to force ourselves to design enforcement mechanisms that take into account
incompleteness, we interpret PrivacyLFP over three-valued structures that map
each variable-free atom in the logic to one of three values: true (abbrev. tt),
false (ff) or unknown (uu). Formally, a structure for PrivacyLFP (also called a
partial structure) is a total map L from variable-free atoms of the logic to the
set {tt, ff, uu}.

– Subjective incompleteness may be modeled in a partial structure L by map-
ping every predicate that describes a subjective relation to uu. For example,
we may have L(purp(m,u)) = uu for every m and u. Predicates like purp
may also be called uninterpreted.

– Future incompleteness may be modeled in a partial structure L using the
time argument in every event predicate. For example, we may force L(send
(p1, p2,m, τ)) = uu whenever τ exceeds the time of audit.

– Spatial incompleteness may be modeled in a partial structure by mapping
each predicate that is unavailable to uu. For instance, if the roles database
is not available, then L(inrole(p, r, τ)) = uu for every p, r, and τ .

In Section 4, we describe an audit-based method for enforcement of privacy poli-
cies using three-valued structures for interpreting policies. The method uniformly
accounts for all these forms of incompleteness.

Semantics. We formalize the semantics of logical formulas as the relation L |= ϕ,
read “ϕ is true in the partial structure L”. Restrictions c are a subsyntax of
formulas ϕ, so we do not define the relation separately for them. Ξ[t/x] denotes
substitution of terms t for variables x in the entity Ξ.

- L |= P iff L(P ) = tt
- L |= �
- L |= ϕ ∧ ψ iff L |= ϕ and L |= ψ
- L |= ϕ ∨ ψ iff L |= ϕ or L |= ψ
- L |= ∀x.(c ⊃ ϕ) iff for all t either L |= c[t/x] or L |= ϕ[t/x]
- L |= ∃x.(c ∧ ϕ) iff there exists t such that L |= c[t/x] and L |= ϕ[t/x]

For dual atoms, we define L(P ) = L(P ), where tt = ff, ff = tt, and uu = uu.
We say that a formula ϕ is false on the structure L if L |= ϕ. The following two
properties hold:

1. Consistency: A formula ϕ cannot be simultaneously true and false in the
structure L, i.e., either L 
|= ϕ or L 
|= ϕ
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2. Incompleteness: A formula ϕ may be neither true nor false in a structure L,
i.e., L 
|= ϕ and L 
|= ϕ may both hold.

Consistency means that a policy ϕ cannot be simultaneously violated and sat-
isfied at the same time. Incompleteness means that there is a policy ϕ and a
structure L such that it cannot be determined whether ϕ has been violated in
L or not.

Structure Extension. In practice, event logs and roles’ databases evolve over
time by gathering more information. This leads to a partial order, L1 ≤ L2 on
structures (L2 extends L1), meaning that L2 has more information than L1.
Formally, L1 ≤ L2 if for all variable-free atoms P , L1(P ) ∈ {tt, ff} implies
L2(P ) = L1(P ). Thus, as structures extend, the valuation of an atom may
change from uu to either tt or ff, but cannot change once it is either tt or ff.
The following property holds:

– Monotonicity: L1 ≤ L2 and L1 |= ϕ imply L2 |= ϕ.

Replacing ϕ with ϕ, we also obtain that L1 ≤ L2 and L1 |= ϕ imply L2 |= ϕ.
Hence, if L1 ≤ L2 then L2 preserves both the L1-truth and L1-falsity of every
formula ϕ.

4 Policy Audits over Incomplete Logs

In this section, we summarize an interactive algorithm for auditing system logs
for privacy policy violation. To keep the presentation accessible, we present only
the key ideas of our algorithm here and refer the reader to a technical paper [25]
for details.

Ideally, we want our algorithm to answer the following question: Has a policy
formula ϕ been violated in a (partial) structure L? However, because we allow
the structure to not have conclusive information about every atom, it is, in
general, impossible to answer this question. Consequently, we take an reduction-
based approach: Our algorithm implements a computable function reduce that
takes as input a policy ϕ and a partial structure L, and outputs a residual policy
ψ that contains exactly the parts of ϕ that could not be verified due to lack of
information in L. Such an iteration is written reduce(L, ϕ) = ψ. If and when more
information becomes available, extending L to L′ (L ≤ L′), another iteration
of the algorithm can be used with inputs ψ and L′ to obtain a new formula
ψ′. This process can be continued until the output is either � (no violation)
or ⊥ (violation). A human auditor may augment the iterations by providing
input about the truth or falsity of relevant uninterpreted atoms. By design, our
algorithm satisfies three important properties:

– Termination: Each iteration terminates.
– Correctness: If reduce(L, ϕ) = ψ, then for all extensions L′ of L, L′ |= ϕ iff
L′ |= ψ.

– Minimality: If reduce(L, ϕ) = ψ, then an atom occurs in ψ only if it occurs
in ϕ and its valuation on L is uu.
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Technical details. The technically difficult part of reduce is its treatment of quan-
tifiers over infinite domains. Consider, for instance, the behavior of an algorithm
satisfying the above three properties on input ∀x.ϕ. Because the output must
be minimal, in order to reduce ∀x.ϕ, a naive algorithm will instantiate x with
each possible term and check the truth or falsity of ϕ for that instance on L.
This immediately leads to non-termination if the set of terms is infinite, which
does happen for real policies (e.g., in Example 1, we quantify over messages m
and time points τ , both of which are infinite sets).

Given the need for infinite domains, something intrinsic in quantification must
limit the number of relevant instances of x that need to be checked to a finite
number. To this end, we rely on the restrictions c in quantifiers, ∀x.(c ⊃ ϕ) and
∃x.(c ∧ ϕ), and use the technique of mode analysis from logic programming [2]
to ensure that the restriction c has only a finite number of satisfying instances
in any structure and that these instances are computable.

Briefly, mode analysis requires the policy designer to specify which argument
positions of a predicate can be computed finitely from others. For instance, in
Section 3.1 we assumed that the attributes of a message are written on it in
machine-readable format and, hence, can be computed from the message. De-
noting required inputs by + and computable outputs by −, we may give the pred-
icate tagged(m, q, t) the mode purp(+,−,−), meaning that from the input m,
the outputs q, t can be computed. The mode purp(−,+,+) is incorrect because
given a fixed second and third arguments (attribute), there may be an infinite
number of first arguments (messages) annotated with that attribute, so the latter
set cannot be finitely computed. Similarly, if the predicate mult(x, y, z) means
that x = yz, where x, y, z are integers, then any of the modes mult(+,+,−),
mult(−,+,+), and mult(+,−,+) are okay, but mult(−,−,+) is not. Given the
mode information of all predicates in a policy, a static, linear-time check of
the policy, called a mode check, ensures that there are only a finite number of
instances of free variables that can satisfy a restriction c in the policy.

To actually compute the satisfying instances of a restriction, we define a func-
tion ŝat(L, c) that returns all substitutions σ for free variables of c such that
L |= cσ. This definition assumes a function sat(L, P ) that returns all substitu-
tions σ for free variables of P such that L |= Pσ if all input positions in P are
ground, which itself is implemented by looking up event logs or other databases,
depending on the predicate in P .

Finally, the main audit function reduce(L, ϕ) is defined by induction on ϕ,
using ŝat(L, c) as a helper function when ϕ contains a top-level quantifier. The
problematic case of the quantifiers is now easily dealt with: To reduce ∀x.(c ⊃ ϕ),
we first invoke ŝat(L, c) to find all substitutions for x that satisfy c. Then,
we recursively reduce ϕ after applying each such substitution and the output
of reduce is the conjunction of these reducts. The reduction of ∃x.(c ∧ ϕ) is
identical except that the output is the disjunction of the recursively obtained
reducts.

Formal Properties. We formally prove that the reduce(L, ϕ) is total for policies
ϕ that pass our mode check, it is correct and minimal in the sense mentioned at
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the beginning of this section and that it uses space polynomial in the size of ϕ
and runs in time polynomial in the size of L.

Use for Action-Guidance. Besides audit for policy violations, we expect that
reduce can be used as an action-guidance tool, to inform an agent whether or
not an action she is about to perform would violate the policy. To do this, reduce
can be run on a hypothetical structure that includes all the audit information in
the system and the action to be performed, and a formula that contains relevant
norms from the privacy policy. The formula output by reduce would then be one
of: (1) � (action will not violate the policy), (2) ⊥ (action will violate the policy),
or (3) another formula ψ which lists exactly those undischarged conditions that
must hold for the policy to not be violated by the potential action; the agent
may check those conditions manually before performing the action.

4.1 Related Work

Runtime Monitoring with Temporal Logic. A lot of prior work addresses the
problem of runtime monitoring of policies expressed in Linear Temporal Logic
(LTL) [5, 7, 12, 44, 46, 47] and its extensions [7, 45, 46]. Although similar in
the spirit of enforcing policies, the intended deployment of our work is different:
We assume that system logs are accumulated independently and given to our
algorithm, whereas an integral component of runtime monitoring is accumula-
tion of system logs on the fly. Our assumption about the availability of system
logs fits practical situations like health organizations, which collect transmission,
disclosure and other logs to comply with regulations such as HIPAA even if no
computerized policy enforcement mechanism is in place.

Comparing only the expressiveness of the logic, our work is more advanced
than all existing work on policy enforcement. First, LTL can be encoded in our
logic easily [22]. Second, we allow expressive quantification in our logic, whereas
prior work is either limited to propositional logic [5, 44, 47], or, when quantifiers
are considered, they are severely restricted [7, 45, 46]. A recent exception to such
syntactic restrictions is the work of Basin et al. [12], to which we compare in
detail below. Third, no prior work considers the possibility of incompleteness in
structures, which our reduce algorithm takes into account.

Recent work by Basin et al. [12] considers runtime monitoring over an expres-
sive fragment of Metric First-order Temporal Logic. Similar to our work, Basin
et al. allow quantification over infinite domains, and use a form of mode analysis
(called a safe-range analysis) to ensure finiteness during enforcement. However,
Basin et al.’s mode analysis is weaker than ours; in particular, it cannot relate
the same variable in the input and output positions of two different conjuncts of
a restriction and requires that each free variable appear in at least one predicate
with a finite model. As a consequence, many practical policies (including exam-
ples from the HIPAA Privacy Rule) cannot be enforced in their framework, but
can be enforced in ours (see [25] for additional details).

Formal Frameworks for Policy Audit. Cederquist et al. [18] present a proof-
based system for a-posteriori audit, where policy obligations are discharged by
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constructing formal proofs. The leaves of proofs are established from logs, but
the audit process only checks that an obligation has been satisfied somewhere in
the past. Further, there is no systematic mechanism to instantiate quantifiers in
proofs. However, using connectives of linear logic, the mechanism admits policies
that rely on use-once permissions.

Iterative Enforcement. The idea of iteratively rewriting the policy over evolv-
ing logs has been considered previously [44, 47], but only for propositional logic
where the absence of quantifiers simplifies the problem considerably. Bauer et
al. [5] use a different approach for iterative enforcement: they convert an LTL
formula with limited first-order quantification to a Büchi automaton and check
whether the automaton accepts the input log. Further, they also use a three-
valued semantic model similar to ours, but assume that logs record all informa-
tion about past events (past-completeness). Three-valued structures have also
been considered in work on generalized model checking [17, 27]. However, the
problems addressed in that line of work are different; the objective there is to
check whether there exist extensions of a given structure in which a formula is
satisfied (or falsified).

Compliance Checking. Barth et al. [8] present two formal definitions of compli-
ance of an action with a policy, called strong and weak compliance. An action
is strongly compliant with a policy given a trace if there exists an extension of
the trace that contains the action and satisfies the policy. We do not consider
strong compliance in this paper. An action is weakly compliant with a policy in
Propositional LTL (PLTL) given a trace if the trace augmented with the action
satisfies the present requirements of the policy. However, a weakly compliant
action might incur unsatisfiable future requirements. The technical definition
is stated in terms of a standard tableau construction for PLTL [37] that syn-
tactically separates present and future requirements. Our correctness property
for reduce generalizes weak compliance to a richer class of policies and struc-
tures: PLTL can be encoded in our policy logic, the residual formula generalizes
future requirements, and past-complete traces are a special case of our partial
structures.

In a related paper, Barth et al. [9] present an algorithm that examines audit
logs to detect policy violations and identify agents to blame for policy violations.
While our audit algorithm can be used to detect violations of a much richer class
of policies than the propositional logics considered by Barth et al., it does not
identify agents to be blamed for violations.

Lam et al. [33] represent policy requirements of a part of the HIPAA Privacy
Rule in an extension of Prolog with stratified negation, called pLogic, and use it to
implement a compliance checker for a medical messaging system. The compliance
checker makes decisions about legitimacy of messages entering the system based
on eight attributes attached to each message (such as its sender, intended recip-
ient, subject, type of information and purpose). The prototype tool has a usable
front-end and provides a useful interface for understanding what types of disclo-
sures and uses of personal health information are permitted and forbidden by the
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HIPAAPrivacyRule. However, as recognizedby the authors, the approachhas cer-
tain limitations in demonstrating compliance with the HIPAA Privacy Rule. First,
it does not support temporal conditions. While pLogic uses specialized predicates
to capture that certain events happened in the past, it cannot represent future
obligations needed to formalize many clauses in HIPAA. In contrast, our policy
logic and the reduce algorithm handle temporal conditions, including real-time
conditions. Second, reasoning in pLogic proceeds assuming that all asserted be-
liefs, purposes and types of information associated with messages are correct. In
contrast, since reduce mines logs to determine truth values of atoms, it does not as-
sume facts unless there is evidence in logs to back them up. Typically, a purpose or
belief will be taken as true only if a human auditor (or some other oracle) supplies
evidence to that effect. Finally, our prototype implementation was evaluated with
a formalization of the entire HIPAA Privacy Rule, whereas Lam et al. formalize
only §§164.502, 164.506 and 164.510.

Policy Specification and Analysis. Several variants of LTL have been used to
specify the properties of programs, business processes and security and privacy
policies [8, 11, 22, 26, 36]. The logic we use as well as the formalization of
HIPAA used in our experiments are adapted from our prior work on the logic
PrivacyLFP [22]. PrivacyLFP, in turn, draws inspiration from earlier work on
the logic LPU [8]. However, PrivacyLFP is more expressive than LPU because
it allows first-order quantification over infinite domains.

Further, several access-control models have extensions for specifying usage
control and future obligations [13, 23, 28, 30, 39, 41, 42]. Some of these models
assume a pre-defined notion of obligations [30, 39]. For instance, Irwin et al. [30]
model obligations as tuples containing the subject of the obligation, the actions
to be performed, the objects that are targets of the actions and the time frames
of the obligations. Other models leave specifications for obligations abstract [13,
28, 42]. Such specific models and the ensuing policies can be encoded in our logic
using quantifiers.

There also has been much work on analyzing the properties of policies repre-
sented in formal models. For instance, Ni et al. study the interaction between
obligation and authorization [39], Irwin et al. have analyzed accountability prob-
lems with obligations [30], and Dougherty et al. have modeled the interaction
between obligations and programs [23]. These methods are orthogonal to our
objective of policy enforcement.

Finally, privacy languages such as EPAL [6] and privacyAPI [38] do not in-
clude obligations or temporal modalities as primitives, and are less expressive
than our framework.

5 Periodic Audits with Imperfect Information

Since privacy policies constrain flows of personal information based on subjec-
tive conditions (such as purposes and beliefs) that may not be mechanically
checkable, reduce will output such conditions in the final residual policy leaving
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them to be checked by other means (e.g., by human auditors). Recent stud-
ies have revealed that such subjective conditions are often violated in the real
world in the healthcare domain; violations occur as employees access medical
records of celebrities, family members, and neighbors motivated by general cu-
riosity, financial gain, child custody lawsuits and other considerations that are
not appropriate purposes for accessing patient records [29, 49]. In practice, or-
ganizations like hospitals conduct ad hoc audits in which the audit log, which
records accesses and disclosures of personal information, is examined to deter-
mine whether personal information was appropriately handled.

In this section, we summarize an audit model and algorithm that can pro-
vide guidance to human auditors in this activity [14]. This work presents the
first principled learning-theoretic foundation for audits of this form. Our first
contribution is a repeated game model that captures the interaction between the
defender (e.g., hospital auditors) and the adversary (e.g., hospital employees).
The model includes a budget that constrains the number of actions that the
defender can inspect thus reflecting the imperfect nature of audit-based enforce-
ment, and a loss function that captures the economic impact of detected and
missed violations on the organization. We assume that the adversary is worst-
case as is standard in other areas of computer security. We also formulate a
desirable property of the audit mechanism in this model based on the concept
of regret in learning theory [16]. Our second contribution is a novel audit mech-
anism that provably minimizes regret for the defender. The mechanism learns
from experience and provides operational guidance to the human auditor about
which accesses to inspect and how many of the accesses to inspect. The regret
bound is significantly better than prior results in the learning literature.

Mirroring the periodic nature of audits in practice, we use a repeated game
model [24] that proceeds in rounds. A round represents an audit cycle and,
depending on the application scenario, could be a day, a week or even a quarter.

Adversary Model. In each round, the adversary performs a set of actions (e.g.,
accesses patient records) of which a subset violates policy. Actions are classified
into types. For example, accessing celebrity records could be a different type
of action from accessing non-celebrity records. The adversary capabilities are
defined by parameters that impose upper bounds on the number of actions of
each type that she can perform in any round. We place no additional restrictions
on the adversary’s behavior. In particular, we do not assume that the adversary
violates policy following a fixed probability distribution; nor do we assume that
she is rational. Furthermore, we assume that the adversary knows the defender’s
strategy (audit mechanism) and can adapt her strategy accordingly.

Defender Model. In each round, the defender inspects a subset of actions of each
type performed by the adversary. The defender has to take two competing factors
into account. First, inspections incur cost. The defender has an audit budget
that imposes upper bounds on how many actions of each type she can inspect.
We assume that the cost of inspection increases linearly with the number of
inspections. So, if the defender inspects fewer actions, she incurs lower cost. Note
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that, because the defender cannot know with certainty whether the actions not
inspected were malicious or benign, this is a game of imperfect information [3].
Second, the defender suffers a loss in reputation for detected violations. The
loss is higher for violations that are detected externally (e.g., by an Health and
Human Services audit, or because information leaked as a result of the violation
is publicized by the media) than those that are caught by the defender’s audit
mechanism, thus incentivizing the defender to inspect more actions.

In addition, the loss incurred from a detected violation depends on the type
of violation. For example, inappropriate access of celebrities’ patient records
might cause higher loss to a hospital than inappropriate access of other patients’
records. Also, to account for the evolution of public memory, we assume that
violations detected in recent rounds cause greater loss than those detected in
rounds farther in the past. The defender’s audit mechanism has to take all these
considerations into account in prescribing the number of actions of each type
that should be inspected in a given round, keeping in mind that the defender is
playing against the powerful strategic adversary described earlier.

Note that for adequate privacy protection, the economic and legal structure
has to ensure that it is in the best interests of the organization to invest sig-
nificant effort into auditing. Our abstraction of the reputation loss from policy
violations that incentivizes organizations to audit can, in practice, be achieved
through penalties imposed by government audits as well as through market
forces, such as brand name erosion and lawsuits.

Regret Property. We formulate a desirable property for the audit mechanism
by adopting the concept of regret from online learning theory. The idea is to
compare the loss incurred when the real defender plays according to the strat-
egy prescribed by the audit mechanism to the loss incurred by a hypothetical
defender with perfect knowledge of the number of violations of each type in each
round. The hypothetical defender is allowed to pick a fixed strategy to play in
each round that prescribes how many actions of each type to inspect. The re-
gret of the real defender in hindsight is the difference between the loss of the
hypothetical defender and the actual loss of the real defender averaged over all
rounds of game play. We require that the regret of the audit mechanism quickly
converge to a small value and, in particular, that it tends to zero as the number
of rounds tends to infinity.

Intuitively, this definition captures the idea that although the defender does
not know in advance how to allocate her audit budget to inspect different types
of accesses (e.g., celebrity record accesses vs. non-celebrity record accesses), the
recommendations from the audit mechanism should have the desirable property
that over time the budget allocation comes close to the optimal fixed allocation.
For example, if the best strategy is to allocate 40% of the budget to inspect
celebrity accesses and 60% to non-celebrity accesses, then the algorithm should
quickly converge towards these values.

Audit Mechanism. We develop a new audit mechanism that provably minimizes
regret for the defender. The algorithm, which we name Regret Minimizing Audits
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(RMA), is efficient and can be used in practice. In each round of the game,
the algorithm prescribes how many actions of each type the defender should
inspect. It does so by maintaining weights for each possible defender action and
picking an action with probability proportional to the weight of that action.
The weights are updated based on a loss estimation function, which is computed
from the observed loss in each round. Intuitively, the algorithm learns the optimal
distribution over actions by increasing the weights of actions that yielded better
payoff than the expected payoff of the current distribution and decreasing the
weight of actions that yielded worse payoff.

Our main technical result is that the exact bound on regret for RMA is approx-

imately 2
√

2 lnN
T where N is the number of possible defender actions and T is the

number of rounds (audit cycles). This bound improves the best known bounds of
O

(
N1/3 log N

3√
T

)
for regret minimization over games of imperfect information. The

main novelty is in the way we use a loss estimation function and characterize its
properties to achieve the significantly better bounds. Specifically, RMA follows
the structure of a regret minimization algorithm for perfect information games,
but uses the estimated loss instead of the true loss to update the weights in
each round. We define two properties of the loss estimation function—accuracy
(capturing the idea that the expected error in loss estimation in each round is
zero) and independence (capturing the idea that errors in loss estimation in each
round are independent of the errors in other rounds)—and prove that any loss
estimation function that satisfies these properties results in regret that is close
to the regret from using an actual loss function. Thus, our bounds are of the
same order as regret bounds for perfect information games. The better bounds
are important from a practical standpoint because they imply that the algorithm
converges to the optimal fixed strategy much faster.

5.1 Related Work

Zhao et al. [53] recognize that rigid access control can cause loss in productivity
in certain types of organizations. They propose an access control regime that
allows all access requests, but marks accesses not permitted by the policy for
posthoc audit coupled with punishments for violating policy. They assume that
the utility function for the organization and the employees are known and use a
single shot game to analyze the optimal behavior of the players. Our approach
of using a permissive access control policy coupled with audits is a similar idea.
However, we consider a worst-case adversary (employee) because we believe that
it is difficult to identify the exact incentives of the employee. We further recog-
nize that the repeated nature of interaction in audits is naturally modeled as
a repeated game rather than a one-shot game. Finally, we restrict the amount
of audit inspections because of budgetary constraints. Thus, our game model is
significantly more realistic than the model of Zhao et al. [53].

Cheng et al. [19, 20] also start from the observation that rigid access con-
trol is not desirable in many contexts. They propose a risk-based access control
approach. Specifically, they allocate a risk budget to each agent, estimate the
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risk of allowing an access request, and permit an agent to access a resource if
she can pay for the estimated risk of access from her budget. Further, they use
metaheuristics such as genetic programming to dynamically change the security
policy, i.e. change the risk associated with accesses dynamically. We believe that
the above mechanism mitigates the problem of rigid access control in settings
such as IT security risk management, but is not directly applicable for privacy
protection in settings such as hospitals where denying access based on privacy
risks could have negative consequences on the quality of care. Our approach
to the problem is fundamentally different: we use a form of risk-based auditing
instead of risk-based access control. Also, genetic programming is a metaheuris-
tic, which is known to perform well empirically, but does not have theoretical
guarantees [50]. In contrast, we provide mechanisms with provable guarantees.
Indeed an interesting topic for future work is to investigate the use of learning-
theoretic techniques to dynamically adjust the risk associated with accesses in
a principled manner.

Regret Minimization. A regret minimization algorithm is a randomized algo-
rithm for playing in a repeated game. Our algorithm RMA is based on the
weighted majority algorithm [35] for regret minimization. The weighted ma-
jority maintains weights ws for each of the N fixed actions of the defender. wt

s is
the weight of the expert before round t has been played. The weights determine
a probability distribution over actions, pt

s denotes the probability of playing
s at time t. In any given round the algorithm attempts to learn the optimal
distribution over actions by increasing the weights of experts that performed
better than its current distribution and decreasing the weights of experts that
performed worse.
Sleeping Experts. In the setting of [35] all of the actions are available all of
the time. However, we are working in the sleeping experts model where actions
may not be available every round due to budget constraints. Informally, in the
sleeping experts setting the regret of RMA with respect to a fixed action s in
hindsight is the expected decrease in our total loss had we played s in each of
the Ts rounds when s was available.

There are variations of the weighted majority algorithm that achieve low
regret in the sleeping experts setting [15, 16]. These algorithms achieve average
regret bounds:

∀s,
Regret (Alg, s)

Ts
= O

(√
T logN
Ts

)

.

In fact RMA is very similar to these algorithms. However, we are interested in
finding exact (not asymptotic) bounds. We also have to deal with the imperfect
information in our game.

Imperfect Information. In order to update its weight after round t, the weighted
majority algorithm needs to know the loss of every available defender action s.
Formally, the algorithm needs to know Lt(s) for each s ∈ AWAKEt. However,
we only observe an outcome Ot, which allows us to compute

Lt(st) = R(Ot) − C · st,
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the loss for the particular action st played by the defender at time t. There
are several existing algorithms for regret minimization in games with imperfect
information [3, 4, 21, 54]. For example, [3] provides an average regret bound of

∀s,
Regret(Alg, s)

T
= O

(
N1/3 logN

3
√
T

)

.

It is acceptable to have logN in the numerator, but the N1/3 term will make the
algorithm impractical in our setting. The average regret still does tend to 0 as
T → ∞, but the rate of convergence is much slower compared to the case when
only logN is present in the numerator. Other algorithms [4, 21, 54] improve this
bound slightly, but we still have the N1/3 term in the numerator. Furthermore,
[3] assumes that each action s is available in every round. There are algorithms
that deal with sleeping experts in repeated games with imperfect information,
but the convergence bounds get even worse.

Regret minimization techniques have previously been applied in computer
security by Barth et al. [10]. However, that paper addresses a different problem.
They show that reactive security is not worse than proactive security in the
long run. They propose a regret minimizing algorithm (reactive security) for
allocation of budget in each round so that the attacker’s “return on attack”
does not differ much from the case when a fixed allocation (proactive security)
is chosen. Their algorithm is not suitable for our audit setting due to imperfect
information and sleeping experts. In their work, the defender learns the attack
path played by the adversary after each round, and by extension has perfect
knowledge of the loss function for that round. By contrast, RMA must work in the
imperfect information setting. Also, their model considers unknown attack paths
that get discovered over time. This is a special subcase of the sleeping experts
setting, where an expert is awake in every round after she wakes up. They extend
the multiplicative weight update algorithm [35] to handle the special case. In our
setting experts may be available in one round and unavailable in next. RMA was
designed to work in this more general setting.

6 Research Directions

We describe below directions for further research in this area, including support
for policy composition and evolution, formalizing seemingly subjective condi-
tions (such as purposes and beliefs), and remaining challenges in the design
of audit mechanisms for detecting policy violations, accountability mechanisms
for appropriately assigning blame when violations are detected, and incentive
mechanisms to deter adversaries from committing violations.

While our work so far has focused on studying a single policy in one context
(e.g., HIPAA for healthcare), it would be interesting to study situations where
multiple policies from possibly different contexts may be relevant to the disclo-
sure and use of personal information. For example, in the US, transmission of
personal health information is governed not only by the HIPAA Privacy Rule,
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but also by state privacy laws. In Europe, in addition to the EU Directive, mem-
ber states have their own privacy laws. A natural set of research questions arises
in this setting: How should multiple policies from possibly different contexts be
composed? How should conflicts be resolved? Is it possible to develop specifica-
tion and enforcement techniques that are compositional? Is it possible to deal
with policies (e.g., laws) that evolve over time in an incremental manner rather
than requiring a significant rewrite?

As noted earlier, privacy policies often contain obligations based on beliefs
or professional judgment of agents (Section 2.3). Such obligations are subjective
and, in general, cannot be verified automatically by a computer system with-
out human input. One natural question is how to provide human input about
a relevant belief to a computerized audit mechanism. One possibility, already
developed in our implementation of the reduce algorithm of Section 4, is to
simply allow a user to mark a subjective concept as either true or false. An-
other possibility, which we plan to investigate in future, is to use logical rules
to define that a belief is justified if certain principals support certain state-
ments. We plan to use the connective A says ϕ (principal A supports state-
ment ϕ) from authorization logics to represent statements made by principals
and signed certificates to evidence such statements [1]. For example, the rule
(P says injured-by-crime(P )) ⊃ believes-injured-by-crime(Q,P ) may
mean that if principal P says that she was injured by a crime then it is justified
for another individual Q to believe that this is the case, and a certificate signed
by Alice’s private key and containing the statement injured-by-crime(Alice)
could be evidence for the formula (Alice says injured-by-crime(Alice)). Cer-
tificates necessary to justify relevant beliefs may be collected by an audit system
and used to discharge obligations about beliefs automatically.

An approach to semantics and enforcement of privacy policies that place re-
quirements on the purposes for which a governed entity may use personal in-
formation is outlined in a recent article by the first author and colleagues [48].
The paper presents a semantics for purpose requirements using a formal model
based on planning. Specifically, the model is used to formalize when a sequence
of actions is only for or not for a purpose. This semantics serves as a basis for an
algorithm for automated auditing of purpose requirements in privacy policies.
The algorithm takes as input an audit log and a description of an environment
model that the auditee uses in the planning process.

In addition to audit mechanisms that detect violations of policy, an important
research direction is developing a rigorous foundation for accountability and asso-
ciated mechanisms that correctly blame agents responsible for violations. While
the importance of accountability has been recognized in the literature[34, 52],
there has not been much technical work on accountability (see [9, 31, 32] for
some exceptions).

Also, while our work on regret minimizing audits makes no assumptions about
the incentives of adversaries, a worthwhile research direction is to design mech-
anisms that use partial knowledge of the incentives of adversaries to deter them
from committing violations. We expect that a combination of techniques from
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game theory and learning theory could be leveraged to make progress on this
problem.

Finally, while our work has focused on the application domain of healthcare
privacy, an exploration of other domains in which these enforcement mechanisms
could be used would be interesting. Specifically, it would be worthwhile to inves-
tigate whether privacy protection policies adopted by financial institutions, web
services providers (e.g., Google, Microsoft, Amazon) and online social networks
(e.g., Facebook) can be enforced by using and adapting the kinds of mechanisms
being developed in this work.

References

[1] Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access
control in distributed systems. ACM Trans. Program. Lang. Syst. 15(4), 706–734
(1993)

[2] Apt, K.R., Marchiori, E.: Reasoning about Prolog programs: From modes through
types to assertions. Formal Aspects of Computing 6(6), 743–765 (1994)

[3] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32(1), 48–77 (2003)

[4] Awerbuch, B., Kleinberg, R.: Online linear optimization and adaptive routing.
Journal of Computer and System Sciences 74(1), 97–114 (2008)

[5] Baader, F., Bauer, A., Lippmann, M.: Runtime Verification Using a Temporal
Description Logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS,
vol. 5749, pp. 149–164. Springer, Heidelberg (2009)

[6] Backes, M., Pfitzmann, B., Schunter, M.: A Toolkit for Managing Enterprise Pri-
vacy Policies. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 162–180. Springer, Heidelberg (2003)

[7] Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

[8] Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual in-
tegrity: Framework and applications. In: Proceedings of the 27th IEEE Symposium
on Security and Privacy, Oakland, pp. 184–198 (2006)

[9] Barth, A., Datta, A., Mitchell, J.C., Sundaram, S.: Privacy and utility in busi-
ness processes. In: Proceedings of the 20th IEEE Computer Security Foundations
Symposium (CSF), pp. 279–294 (2007)

[10] Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett,
P.L.: A Learning-Based Approach to Reactive Security. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 192–206. Springer, Heidelberg (2010)

[11] Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-
order temporal logic. In: Proceeding of the 15th ACM Symposium on Access
Control Models and Technologies (SACMAT), pp. 23–34 (2010)

[12] Basin, D., Klaedtke, F., Müller, S.: Policy Monitoring in First-Order Temporal
Logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
1–18. Springer, Heidelberg (2010)



Understanding and Protecting Privacy 25

[13] Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provisions and obligations
in policy rule management. Journal of Network and Systems Management 11,
351–372 (2003)

[14] Blocki, J., Christin, N., Datta, A., Sinha, A.: Regret minimizing audits: A learning-
theoretic basis for privacy protection. In: Proceedings of the 24th IEEE Computer
Security Foundations Symposium (CSF), pp. 312–327 (2011)

[15] Blum, A., Mansour, Y.: From External to Internal Regret. In: Auer, P., Meir, R.
(eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 621–636. Springer, Heidelberg
(2005)

[16] Blum, A., Mansour, Y.: Learning, regret minimization, and equilibria. Algorithmic
Game Theory, 79–102 (2007)

[17] Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning About Partial
State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–
182. Springer, Heidelberg (2000)

[18] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini,
G.: Audit-based compliance control. International Journal of Information Secu-
rity 6(2), 133–151 (2007)

[19] Cheng, P.-C., Rohatgi, P.: IT Security as Risk Management: A Research Perspec-
tive. IBM Research Report RC24529 (April 2008)

[20] Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy Multi-Level Security: An Experiment on Quantified Risk-Adaptive Access
Control. In: Proceedings of the IEEE Symposium on Security and Privacy (2007)

[21] Dani, V., Hayes, T.: Robbing the bandit: Less regret in online geometric optimiza-
tion against an adaptive adversary. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete algorithm, p. 943. ACM (2006)

[22] De Young, H., Garg, D., Jia, L., Kaynar, D., Datta, A.: Experiences in the logical
specification of the HIPAA and GLBA privacy laws. In: Proceedings of the 9th
Annual ACM Workshop on Privacy in the Electronic Society (WPES) (2010), Full
version: Carnegie Mellon University Technical Report CMU-CyLab-10-007

[23] Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Obligations and their Interaction
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