

Lecture Notes in Computer Science 7093
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sushil Jajodia Chandan Mazumdar (Eds.)

Information Systems
Security
7th International Conference, ICISS 2011
Kolkata, India, December 15-19, 2011
Proceedings

13

Volume Editors

Sushil Jajodia
George Mason University, Center for Secure Information Systems
4400 University Drive, Fairfax, VA 22030-4422, USA
E-mail: jajodia@gmu.edu

Chandan Mazumdar
Jadavpur University, Center for Distributed Computing
Kolkata 7000032, India
E-mail: chandan.mazumdar@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25559-5 e-ISBN 978-3-642-25560-1
DOI 10.1007/978-3-642-25560-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941662

CR Subject Classification (1998): C.2.0, C.2, E.3, H.3, D.4.6, K.6.5, K.4.4, H.2.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword from the General Chairs

It was a great pleasure for us to organize the 7th International Conference on
Information Systems Security Conference (ICISS) during December 15–19, 2011,
at Jadavpur University, Kolkata, at the same venue where ICISS began its jour-
ney in 2005. The conference has been held every year since then at different
cities in India, the last one (ICISS 2010) was successfully held at Gandhinagar,
Gujrat. We are also happy that this year ICISS was held under the aegis of the
newly formed Society for Research in Information Security and Privacy (SRISP),
which aims to promote research and development in this arena. In the span of
the last 7 years, ICISS has followed a strict reviewing policy and the acceptance
ratio on average has been 25%. This year, out of 105 submissions, the Program
Committee selected 20 full papers and 4 short papers for presentation.

The Program Chairs, Sushil Jajodia and Chandan Mazumdar, with the help
of committed Program Committee members and reviewers did an excellent job
in completing the review process well within the deadline. They were also able
to arrange keynote talks by eminent researchers and practitioners in this field.
We would like to record our appreciation to the Program Committee members
for their painstaking effort in drawing up a high-quality technical program. We
are indebted to David Evans, William Enck, Anupam Dutta and Vipul Goyal for
accepting our invitation to deliver keynote talks. The Tutorial Chair, Sarmistha
Neogy, had to work hard to come up with four tutorial sessions which were of
great help for students and researchers to learn about topics of contemporary
interest in the information security field. We would like to thank the tutoral
speakers, Bjornan Solhaug, Amiya Bhattacharya, Sourav Sengupta and Rajat
Subhra Chakraborty, for agreeing to share their experience.

The Organizing Committee, chaired by Mridul Sankar Barik and Sanjoy Ku-
mar Saha, and the Finance Chair, Anirban Sengupta, worked tirelessly to ensure
that the conference can be conducted without any glitch. The effort made by the
Publicity Chairs, Claudio Agostino Ardagna and Anil K. Kaushik, in promoting
the conference in the international forum is appreciated. We also take this op-
portunity to thank our sponsors and the Industry Chair, Kushal Banerjee, for
their contributions.

December 2011 Arun Kumar Majumdar
Aditya Bagchi

Foreword from the Technical Program Chairs

This volume contains the papers selected for presentation at the 7th International
Conference on Information Systems Security (ICISS 2011) held December 15–19,
2011 in Kolkata, India. Although ICISS was started 7 years ago as an initiative to
promote information security-related research in India, from the very beginning
it was decidedly an international conference attracting strong participation from
researchers from all corners of the globe.

This volume contains four invited papers and 20 long and four short refereed
papers that were presented at the conference. The refereed papers, which were
selected from the 105 submissions, were rigorously reviewed by the Program
Committee members. The resulting volume provides researchers with a broad
perspective of recent developments in information systems security.

A special note of thanks goes to the many volunteers whose efforts made
this conference a success. We wish to thank Anupam Datta, David Evans, Vipul
Goyal, and William Enck for agreeing to deliver the invited talks, the authors for
their worthy contributions, and the referees for their time and effort in reviewing
the papers. We are grateful to Aditya Bagchi and Arun Majumdar for serving
as the General Chairs.

Last, but certainly not least, our thanks go to the members of the Steering
Committee on whom we frequently relied upon for advice throughout the year
and to Jadavpur University, Kolkata, for hosting the conference.

Finally, this was the first year this conference was held under the aegis of
the newly formed Society for Research in Information Security and Privacy
(http://www.srisp.org.in/). This is a necessary step to ensure that information
systems security research continues to expand in India and that this conference
brings together the best in security research from all over the world.

December 2011 Sushil Jajodia
Chandan Mazumdar

Conference Organization

Steering Committee

Sushil Jajodia (Chair) George Mason University, USA
Chandan Mazumdar

(Convener) Jadavpur University, Kolkata, India
Aditya Bagchi Indian Statistical Institute, Kolkata, India
Somesh Jha University of Wisconsin, USA
Arun Kumar Majumdar IIT Kharagpur, India
Anish Mathuria DA-IICT, India
Atul Prakash University of Michigan, USA
Gulshan Rai Department of Information Technology,

Govt. of India
Sriram K. Rajamani Microsoft Research, India
Pierangela Samarati University of Milan, Italy
R. Sekar SUNY, Stonybrook, USA

General Chair

A. K. Majumdar IIT, Kharagpur, India
Aditya Bagchi ISI, Kolkata, India

Program Chair

Sushil Jajodia George Mason University, USA
Chandan Mazumdar Jadavpur University, India

Organizing Chair

Mridul S. Barik Jadavpur University, India
Sanjay Kumar Saha Jadavpur University, India

Publicity Chair

Claudio Agostino Ardagna University of Milan, Italy
Anil K. Kaushik Department of Information Technology,

Govt. of India

Tutorial Chair

Sarmistha Neogy Jadavpur University, India

X Conference Organization

Finance Chair

Anirban Sengupta Jadavpur University, India

Industry Chair

Kushal Banerjee TCS, Kolkata, India

Program Committee

Anish Mathuria DA-IICT, Gandhinagar, India
Atul Prakash University of Michigan, Ann Arbor, USA
Bezawada Bruhadeshwar IIIT, Hyderabad, India
Fabio Massacci University of Trento, Italy
Frédéric Cuppens ENST, France
Goutam Kumar Paul Jadavpur University, India
Guenter Karjoth IBM Zurich Research Laboratory, Switzerland
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Indranil Sengupta IIT, Kharagpur, India
Javier Lopez University of Malaga, Spain
Jonathan Giffin Georgia Tech University, USA
Michiharu Kudo IBM TRL, Japan
Mihai Christodorescu IBM T.J. Watson Research Center, USA
Nasir Memon Polytechnic University, USA
Patrick McDaniel Penn State University USA
Pierangela Samarati University of Milan, Italy
R. Ramanujam Institute of Mathematical Sciences, India
R. Sekar SUNY, Stony Brook, USA
S.K. Gupta IIT, Delhi, India
Sabrina De Capitani

di Vimercati University of Milan, Italy
Samiran Chattopadhyay Jadavpur University, India
Shamik Sural IIT, Kharagpur, India
Shankardas Roy Howard University, USA
Sharad Mehrotra UC Irvine, USA
Shishir Nagaraja IIIT Delhi, India
Shiuh-Pyng Shieh NCTU, Taiwan
Somesh Jha University of Wisconsin, Madison, USA
Steve Barker King’s College London, UK
Subhomoy Maitra ISI Kolkata, India
Subrat Kumar Dash LNMIIT, India
Sukumar Nandi IIT, Guwahati, India

Conference Organization XI

V.N. Venkatakrishnan University of Illinois, Chicago, USA
Vijay Atluri Rutgers University , USA
Vijay Varadharajan Macquarie University, Australia
Yingjiu Li SMU, Singapore
Zutao Zhu Google Inc., USA

External Reviewers

Ardagna, Claudio
Barik, Mridul Sankar
Baskar, A.
Bayram, Sevinc
Bedi, Harkeerat Singh
Bisht, Prithvi
Chakraborty, Sandip
Chakraborty, Suchetana
Cuppens-Boulahia, Nora
Davidson, Drew
De Carli, Lorenzo
Devriese, Dominique
Doudalis, Stelios
Fredrikson, Matthew
Garcia-Alfaro, Joaquin
Gheorghe, Gabriela
Gkoulalas-Divanis, Aris
Harris, William
Hore, Bijit
Hsu, Chia-Wei

Jarecki, Stanislaw
Khadilkar, Vaibhav
Konidala, Divyan
Lai, Junzuo
Li, Bing-Han
Li, Liyun
Luchaup, Daniel
Oktay, Kerim
Paci, Federica
Pelizzi, Riccardo
Saha, Sudip
Saidane, Ayda
Sengupta, Anirban
Shi, Jie
Suresh, S. P.
Tupakula, Uday
Vhaduri, Sudip
Wang, Chia-Wei
Weinmann, Ralf-Philipp

Table of Contents

Invited Papers

Understanding and Protecting Privacy: Formal Semantics and
Principled Audit Mechanisms . 1

Anupam Datta, Jeremiah Blocki, Nicolas Christin, Henry DeYoung,
Deepak Garg, Limin Jia, Dilsun Kaynar, and Arunesh Sinha

Efficient Secure Computation with Garbled Circuits 28
Yan Huang, Chih-hao Shen, David Evans, Jonathan Katz, and
Abhi Shelat

Defending Users against Smartphone Apps: Techniques and Future
Directions . 49

William Enck

Secure Composition of Cryptographic Protocols . 71
Vipul Goyal

Regular Papers

Flow Based Interpretation of Access Control: Detection of Illegal
Information Flows . 72

Mathieu Jaume, Valérie Viet Triem Tong, and Ludovic Mé

Consistency Policies for Dynamic Information Systems with
Declassification Flows . 87

Julien A. Thomas, Frédéric Cuppens, and Nora Cuppens-Boulahia

Authorization Policy Specification and Enforcement for Group-Centric
Secure Information Sharing . 102

Ram Krishnan and Ravi Sandhu

Abductive Analysis of Administrative Policies in Rule-Based Access
Control . 116

Puneet Gupta, Scott D. Stoller, and Zhongyuan Xu

Towards Detection of Botnet Communication through Social Media by
Monitoring User Activity . 131

Pieter Burghouwt, Marcel Spruit, and Henk Sips

Finding Non-trivial Malware Naming Inconsistencies 144
Federico Maggi, Andrea Bellini, Guido Salvaneschi, and
Stefano Zanero

XIV Table of Contents

Taint-Enhanced Anomaly Detection . 160
Lorenzo Cavallaro and R. Sekar

Secured Cloud Storage Scheme Using ECC Based Key Management in
User Hierarchy . 175

Atanu Basu, Indranil Sengupta, and Jamuna Kanta Sing

Reversible Image Watermarking through Coordinate Logic Operation
Based Prediction . 190

Ruchira Naskar and Rajat Subhra Chakraborty

Some Combinatorial Results towards State Recovery Attack on RC4 . . . 204
Apurba Das, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar

Distributed Signcryption from Pairings . 215
Indivar Gupta and P.K. Saxena

Formal Privacy Analysis of Communication Protocols for Identity
Management . 235

Meilof Veeningen, Benne de Weger, and Nicola Zannone

Load Time Security Verification . 250
Olga Gadyatskaya, Eduardo Lostal, and Fabio Massacci

Preserving Location Privacy for Continuous Queries on Known
Route . 265

Anuj S. Saxena, Mayank Pundir, Vikram Goyal, and Debajyoti Bera

A Data Mining Framework for Securing 3G Core Network from GTP
Fuzzing Attacks . 280

Faraz Ahmed, M. Zubair Rafique, and Muhammad Abulaish

An Efficient Decentralized Rekeying Scheme to Secure Hierarchical
Geographic Multicast Routing in Wireless Sensor Networks 294

Prithu Banerjee, Mahasweta Mitra, Ferdous A. Barbhuiya,
Sandip Chakraborty, and Sukumar Nandi

SecWEM: A Security Solution for Web Based E-mail 309
Ravi Shankar Yadav, Praveen Likhar, and M. Keshava Rao

A Multilayer Overlay Network Architecture for Enhancing IP Services
Availability against DoS . 322

Dimitris Geneiatakis, Georgios Portokalidis, and
Angelos D. Keromytis

Mitigation of Malicious Modifications by Insiders in Databases 337
Harini Ragavan and Brajendra Panda

A Semantic Hierarchy for Erasure Policies . 352
Filippo Del Tedesco, Sebastian Hunt, and David Sands

Table of Contents XV

Short Papers

A Universal Semantic Bridge for Virtual Machine Introspection 370
Christian Schneider, Jonas Pfoh, and Claudia Eckert

A Signature-Based Approach of Correctness Assurance in Data
Outsourcing Scenarios . 374

Morteza Noferesti, Mohammad Ali Hadavi, and Rasool Jalili

Towards Access Control Model Engineering . 379
Winfried E. Kühnhauser and Anja Pölck

IFrandbox - Client Side Protection from Malicious Injected Iframes 383
Tanusha S. Nadkarni, Radhesh Mohandas, and Alwyn R. Pais

Author Index . 387

Understanding and Protecting Privacy:

Formal Semantics and Principled Audit
Mechanisms�

Anupam Datta1, Jeremiah Blocki1, Nicolas Christin1, Henry DeYoung1,
Deepak Garg2, Limin Jia1, Dilsun Kaynar1, and Arunesh Sinha1

1 Carnegie Mellon University
2 Max Planck Institute for Software Systems

Abstract. Privacy has become a significant concern in modern society
as personal information about individuals is increasingly collected, used,
and shared, often using digital technologies, by a wide range of orga-
nizations. Certain information handling practices of organizations that
monitor individuals’ activities on the Web, data aggregation companies
that compile massive databases of personal information, cell phone com-
panies that collect and use location data about individuals, online so-
cial networks and search engines—while enabling useful services—have
aroused much indignation and protest in the name of privacy. Similarly,
as healthcare organizations are embracing electronic health record sys-
tems and patient portals to enable patients, employees, and business
affiliates more efficient access to personal health information, there is
trepidation that the privacy of patients may not be adequately protected
if information handling practices are not carefully designed and enforced.

Given this state of affairs, it is very important to arrive at a general
understanding of (a) why certain information handling practices arouse
moral indignation, what practices or policies are appropriate in a given
setting, and (b) how to represent and enforce such policies using informa-
tion processing systems. This article summarizes progress on a research
program driven by goal (b). We describe a semantic model and logic of
privacy that formalizes privacy as a right to appropriate flows of personal
information—a position taken by contextual integrity, a philosphical the-
ory of privacy for answering questions of the form identified in (a). The
logic is designed with the goal of enabling specification and enforcement

� This work was partially supported by the U.S. Army Research Office contract
“Perpetually Available and Secure Information Systems” (DAAD19-02-1-0389) to
Carnegie Mellon CyLab, the NSF Science and Technology Center TRUST, the NSF
CyberTrust grant “Privacy, Compliance and Information Risk in Complex Orga-
nizational Processes,” the AFOSR MURI “Collaborative Policies and Assured In-
formation Sharing,” and HHS Grant no. HHS 90TR0003/01. Jeremiah Blocki and
Henry DeYoung were also partially supported by NSF Graduate Fellowships. This
work was mainly performed when Deepak Garg was at Carnegie Mellon University.
The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any other entity.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 1–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 A. Datta et al.

of practical privacy policies. It has been used to develop the first com-
plete formalization of two US privacy laws—the HIPAA Privacy Rule
that prescribes and proscribes flows of personal health information, and
the Gramm-Leach-Bliley Act that similarly governs flows of personal
financial information. Observing that preventive access control mecha-
nisms are not sufficient to enforce such privacy policies, we develop two
complementary audit mechanisms for policy enforcement. These mecha-
nisms enable auditing of practical privacy policies, including the entire
HIPAA Privacy Rule. The article concludes with a vision for further
research in this area.

1 Introduction

Privacy has become a significant concern in modern society as personal infor-
mation about individuals is increasingly collected, used, and shared, often using
digital technologies, by a wide range of organizations. Certain information han-
dling practices of organizations that monitor individuals’ activities on the Web,
data aggregation companies that compile massive databases of personal informa-
tion, cell phone companies that collect and use location data about individuals,
online social networks and search engines—while enabling useful services—have
aroused much indignation and protest in the name of privacy (see, for example,
a series of articles in the Wall Street Journal [51]). Similarly, as healthcare orga-
nizations are embracing electronic health record systems and patient portals to
enable patients, employees, and business affiliates more efficient access to per-
sonal health information, there is trepidation that the privacy of patients may
not be adequately protected if information handling practices are not carefully
designed and enforced [29, 43, 49].

Given this state of affairs, it is very important to arrive at a general under-
standing of (a) why certain information handling practices arouse moral indig-
nation, what practices or policies are appropriate in a given setting, and (b)
how to represent and enforce such policies using information processing sys-
tems. This article summarizes progress on a research program driven by goal
(b) [8, 9, 14, 22, 25]. The semantic model in this work is informed by contextual
integrity—a philosphical theory of privacy for answering questions of the form
identified in (a) [40]. Healthcare privacy has been a focus area of application for
much of this work and consequently the examples in the paper are drawn from
that domain. The article concludes with a vision for further research in this area.

Contextual Integrity. The central thesis of contextual integrity is that privacy is
a right to appropriate flow of personal information. The building blocks of this
theory are social contexts and context-relative informational norms. A context
captures the idea that people act and transact in society not simply as individ-
uals in an undifferentiated social world, but as individuals in certain capacities
(roles) in distinctive social contexts, such as healthcare, education, friendship
and employment. Norms prescribe the flow of personal information in a given
context, e.g., in a healthcare context a norm might prescribe flow of personal

Understanding and Protecting Privacy 3

health information from a patient to a doctor and proscribe flows from the doctor
to other parties who are not involved in providing treatment. Norms are a func-
tion of the following parameters: the respective roles of the sender, the subject,
and the recipient of the information, the type of information, and the principle
under which the information is sent to the recipient. Examples of transmission
principles include confidentiality (prohibiting agents receiving the information
from sharing it with others), reciprocity (requiring bi-directional information
flow, e.g., in a friendship context), consent (requiring permission from the in-
formation subject before transmission), and notice (informing the information
subject that a transmission has occured). When norms are contravened, people
experience a violation of privacy. This theory has been used to explain why a
number of technology-based systems and practices threaten privacy by violating
entrenched informational norms. In addition, it provides a prescriptive method
for determining appropriate norms for a context (see [40]).

Semantic Model and Logic of Privacy. The idea that privacy expectations can
be stated using context-relative informational norms is formalized in a seman-
tic model and logic of privacy proposed by the first author and colleagues [8]
and developed further in our follow-up work [22]. At a high-level, the model
consists of a set of interacting agents in roles who perform actions involving per-
sonal information in a given context. For example, Alice (a patient) may send
her personal health information to Bob (her doctor). Following the structure of
context-relative informational norms, each transmission action is characterized
by the roles of the sender, subject, receipient and the type of the information
sent. Interactions among agents give rise to traces where each trace is an alter-
nating sequence of states (capturing roles and knowledge of agents) and actions
performed by agents that update state (e.g., an agent’s knowledge may increase
upon receiving a message or his role might change).

Transmission principles prescribe which traces respect privacy and which
traces don’t. While contextual integrity talks about transmission principles in
the abstract, we require a precise logic for expressing them since our goal is to
use information processing systems to check for violation of such principles. We
were guided by two considerations in designing the logic: (a) expressivity—the
logic should be able to represent practical privacy policies; and (b) enforceabil-
ity—it should be possible to provide automated support for checking whether
traces satisfy policies expressed in the logic.

A logic of privacy that meets these goals is presented in our recent work [25].
We arrive at this enforceable logic by restricting the syntax of the expressive
first-order logic we used in our earlier work to develop the first complete for-
malization of two US privacy laws—the HIPAA Privacy Rule for healthcare
organizations and the Gramm-Leach-Bliley Act for financial institutions [22]1.
These comprehensive case studies shed light on common concepts that arise in
transmission principles in practice—data attributes, dynamic roles, notice and
consent (formalized as temporal properties), purposes of uses and disclosures,

1 This logic, in turn, generalizes the enforceable propositional temporal logic in [8].

4 A. Datta et al.

and principals’ beliefs—as well as how individual transmission principles are
composed in privacy policies2. We discuss these insights in Section 2 and their
formalization in the semantic model and logic in Section 3.

Audit Mechanisms for Enforcing Privacy Policies. We observe that access con-
trol mechanisms are not sufficient for enforcing all privacy policies because at
run-time there may not be sufficient information to decide whether certain policy
concepts (e.g., future obligations, purposes of uses and disclosures, and princi-
pals’ beliefs) are satisfied or not. We therefore take the position that audit mecha-
nisms are essential for privacy policy enforcement. The importance of audits has
been recognized in the computer security literature. For example, Lampson [34]
takes the position that audit logs that record relevant evidence during system
execution can be used to detect violations of policy, establish accountability and
punish the violators. More recently, Weitzner et al. [52] also recognize the im-
portance of audit and accountability, and the inadequacy of preventive access
control mechanisms as the sole basis for privacy protection in today’s open infor-
mation environment. However, while the principles of access control have been
extensively studied, there is comparatively little work on the principles of audit.
Our work is aimed at filling this gap. Specifically, we develop two complementary
audit mechanisms for policy enforcement.

Our first insight is that incomplete audit logs provide a suitable abstraction to
model situations (commonly encountered in practice) in which the log does not
contain sufficient information to determine whether a policy is satisfied or vio-
lated, e.g., because of the policy concepts alluded to earlier—future obligations,
purposes of uses and disclosures, and principals’ beliefs. We formalize incom-
plete logs as partial structures that map each atomic formula to true, false or
unknown. We design an algorithm, which we name reduce, to operate iteratively
over such incomplete logs that evolve over time. In each iteration, reduce prov-
ably checks as much of the policy as possible over the current log and outputs
a residual policy that can only be checked when the log is extended with addi-
tional information. We implement reduce and use it to check simulated audit logs
for compliance with the entire HIPAA Privacy Rule. Our experimental results
demonstrate that the algorithm scales to realistic audit logs. These results are
summarized in Section 4 (see [25] for details).

Since privacy policies constrain flows of personal information based on subjec-
tive conditions (such as beliefs) that may not be mechanically checkable, reduce
will output such conditions in the final residual policy leaving them to be checked
by other means (e.g., by human auditors). The second audit algorithm, which
we name Regret Minimizing Audits (RMA), learns from experience to provide
operational guidance to human auditors about the coverage and frequency of
auditing such subjective conditions. At a technical level, we formalize periodic
audits in adversarial environments as an online learning problem over repeated
games of imperfect information. The model takes pragmatic considerations into
2 The model and logic supports information use actions in addition to transmission

actions, so, strictly speaking, it can express policies that are more general than
transmission principles.

Understanding and Protecting Privacy 5

account, such as the periodic nature of audits, the audit budget and the loss that
an organization incurs from privacy violations. RMA is a new regret minimiza-
tion algorithm for this game model. These results are summarized in Section 5
(see [14] for details).

We conclude in Section 6 with a discussion of research directions in this area,
including support for policy composition and evolution, formalizing seemingly
subjective conditions (such as purposes and beliefs), and remaining challenges
in the design of audit mechanisms for detecting policy violations, accountability
mechanisms for appropriately assigning blame when violations are detected, and
incentive mechanisms to deter adversaries from committing violations.

2 Concepts in Privacy Policies

Before discussing the formal details of our semantic model, logic of privacy and
enforcement mechanisms, we provide an informal overview of the basic concepts
in, and the overall structure of, practical privacy policies. Both the concepts
and the overall structure are derived from a thorough analysis of all privacy
requirements in the U.S. laws HIPAA and GLBA, which was started in [8] and
completed in [22]. These concepts are the structure of the privacy laws; abstract
data attributes of a transmission; the ability of agents, which we call principals,
to dynamically alter the role in which they are active and roles to which they
belong; the purpose of a transmission; agents’ beliefs about their environment;
and temporal conditions for both past provisions and future obligations. This
overview simultaneously serves to justify the features of our logic of privacy,
PrivacyLFP, which we formally describe in Section 3.

2.1 Structure of Privacy Policies

Positive and Negative Norms of Transmission. In prior work, the first author and
several colleagues applied the framework of contextual integrity to observe that
privacy expectations inherent in laws like HIPAA and GLBA can, in general, be
stated using context-relative informational norms of two kinds: positive norms
(“may” conditions) and negative norms (“must” conditions) [8]. A transmission
satisfies privacy expectations if any one positive norm and all negative norms
applicable to the context of the transmission are satisfied. In subsequent work,
several of the present authors demonstrated the entire privacy laws in HIPAA
and GLBA can be formalized using this classification [22].

Practically, positive norms represent clauses of a law or policy which state that
a transmission may occur if a condition is satisfied. For example, §164.506(c)(2)
of HIPAA is a positive norm since it allows protected health information to be
disclosed if the disclosure’s purpose is treatment:

“A covered entity may disclose protected health information for treat-
ment activities of a health care provider.”

6 A. Datta et al.

In this way, positive norms capture the permitting clauses of a regulation. In
general, out of all positive norms of a policy that apply to a disclosure, only one
needs to be satisfied to deem the disclosure non-contradictory with the policy.

Negative norms represent policy clauses which state that a transmission may
occur only if a condition is satisfied. For example, the core of HIPAA §164.508(a)
(2) is a negative norm since it allows disclosure of psychotherapy notes only if
it is authorized by the patient (modulo a few exceptions):

“A covered entity must obtain an authorization for any use or disclosure
of psychotherapy notes, except [. . .].”

Negative norms capture the denying clauses of a regulation because transmissions
that do not satisfy the negative norms’ conditions are disallowed. All negative
norms of a policy that apply to a disclosure must be satisfied to prevent a
violation of the policy when the disclosure occurs.

Exceptions to Norms of Transmission. Both positive and negative norms may
contain exceptions. For instance, HIPAA §164.508(a)(2) presented above as a
negative norm has an exception elided by [. . .] earlier: “use [of the notes] by the
originator of the psychotherapy notes for treatment.” Taking this clause as a
canonical example of a negative norm with an exception, we see that exceptions
provide a choice: a disclosure satisfies the policy if either there is evidence of
the patient’s authorization (thereby satisfying the norm’s core), or there is evi-
dence that the disclosure is a use by the notes’ originator for treatment (thereby
satisfying the norm’s exception).

Similarly, positive norms can also have exceptions, though they have a dif-
ferent flavor. For example, §164.512(c)(1) of HIPAA allows a covered entity to
disclose protected health information in reporting cases of abuse or domestic
violence, but §164.512(c)(2) makes the exception that such disclosures are al-
lowed only if the covered entity informs the victim of the report. These kind of
exceptions simply refine the positive norm to a more specific set of conditions.

2.2 Common Concepts in Privacy Policies

Data Attributes. Practical privacy policies define disclosure norms over abstract
attributes of data such as “protected health information” or “psychotherapy
notes”. These abstract attributes of data often possess a hierarchical structure
which the norms must respect. For example, psychotherapy notes are a partic-
ular type of protected health information, so every norm that prohibits flows of
protected health information should also deny the same flows of psychotherapy
notes (unless stated otherwise).

Dynamic Roles. Just as policy norms refer to data attributes, but not to raw
data, so also they usually refer to agents by their roles, not by their names.
Thus, the legality of a particular disclosure usually depends on the role of the
sender and recipient of the disclosure (e.g., a psychiatrist may legally disclose
information to a law enforcement official, etc) and not their identities.

Understanding and Protecting Privacy 7

The roles held by an agent are not static; instead, they evolve over time. For
example, §6803(a) of GLBA suggests that principals may become and cease to
be customers of a financial institution, i.e., roles are dynamic:

“At the time of establishing a customer relationship with a consumer
and not less than annually during the continuation of such relationship,
a financial institution shall provide a clear and conspicuous disclosure to
such consumer [. . .], of such financial institution’s policies and practices
with respect to [disclosing nonpublic personal information].”

Moreover, this norm suggests that roles can be long-standing. The customer
relationship is one such typically long-standing role since provisions for annual
notices are required. But an agent is not active in the customer role at each mo-
ment of the several years during which he is in a customer relationship. Instead,
he is variously active in the roles of parent, professor, patient, and, occasionally,
customer during those years.

Past Provisions and Future Obligations. Policy norms often refer to events at
different points of time; allowing an agent to opt-in or opt-out of disclosures is
a common example. For example, GLBA §6802(b)(1) requires a financial insti-
tution to allow opt-out:

“A financial institution may not disclose nonpublic personal information
to a nonaffiliated third party unless— [. . .] the consumer is given the
opportunity, before the time that such information is initially disclosed,
to direct that such information not be disclosed to such third party.”

In other words, this norm makes the temporal requirement that, at some past
time, the consumer was given the opportunity to opt-out of the disclosure and
has not since exercised that opportunity. We use the term provision to refer to
such requirements about past events.

Temporal (time-based) relations in privacy policies are not limited to provi-
sions about the past. For example, HIPAA §164.510(a)(2) requires that covered
entities provide an opportunity to opt-out of disclosures of directory informa-
tion, with an exception for cases in which it is not practicable to provide that
opportunity (e.g., when a patient is in a coma). However, if this exception is
used, then §164.510(a)(3)(ii) demands that:

“The covered health care provider must inform the individual and pro-
vide an opportunity to [opt-out of] uses or disclosures for directory pur-
poses as required by paragraph (a)(2) of this section when it becomes
practicable to do so.”

This imposes a requirement for an event to occur in the future, though there is
no concrete time limit since one cannot predict the time at which it will become
practicable to provide an opportunity to opt-out. We use the term obligation to
refer to such requirements for future events.

8 A. Datta et al.

2.3 Subjective Concepts

The three concepts presented in Sections 2.2 are all objective, i.e, information
required to evaluate the concepts in the context of a disclosure may possibly be
available in mechanical form. For example, the attributes of data can be inferred
by analyzing the data, the role of an agent at any given time will usually be
available in a roles’ database and the relative precedence of two events can be
determined from the time stamps of their entries in their respective event logs.
However, privacy policies also often depend on concepts that are subjective, i.e,
have no representation in mechanical form. It is due to dependence on such
concepts that enforcement of practical privacy policies cannot be completely
automated and requires human intervention. In the following we discuss two
such concepts, viz., purposes of use and disclosure and individual beliefs.

Purposes of Uses and Disclosures. Norms for use and disclosure of individual in-
formation often mention the purpose of the use or disclosure, as in §164.506(c)(2)
of HIPAA:

“A covered entity may disclose protected health information for treat-
ment activities of a health care provider.”

In general, determing whether such purpose requirements are respected may
require human input3 Like data attributes, purposes also obey a hierarchical
structure, which must be reflected in PrivacyLFP. For example, the purpose
of administering a blood test should be a refinement, or subpurpose, of the
treatment purpose.

Agents’ Beliefs. Just as a transmission’s intended purpose introduces an element
of subjectivity, so do agents’ beliefs and professional judgment. For example,
HIPAA §164.512(f)(4) states:

“A covered entity may disclose protected health information about an
individual who has died to a law enforcement official for the purpose of
alerting law enforcement of the death of the individual if the covered
entity has a suspicion that such death may have resulted from criminal
conduct.”

The covered entity’s belief that the death may have resulted from criminal
conduct is absolutely crucial to the norm’s meaning. Without this constraint,
§164.512(f)(4) would permit a covered entity to disclose the protected health
information of any deceased person to law enforcement officials.

3 Logic of Privacy and Its Semantic Model

Having informally described the structure of and common concepts in privacy
policies, we present in this section a logic, PrivacyLFP, for representing privacy
3 See Section 6 for a pointer to ongoing work on providing semantics to purpose

requirements in privacy policies.

Understanding and Protecting Privacy 9

policies. We also present the logic’s semantic model. Whereas the syntax of the
logic is used to represent norms of privacy policies and their relation to each
other, the semantic model formalizes relevant contextual information against
which the truth or falsity of such norms is checked during enforcement. Such
contextual information includes, but is not limited to, use and disclosure event
logs, roles’ databases and data attribute information.

3.1 Overview

Technically, PrivacyLFP is first-order logic (predicate logic) with a slightly re-
duced syntax. The main syntactic categories in the logic are: 1) Terms, denoted
t, which are symbolic representations of agents, data, attributes, roles, purposes,
etc and over which variables x may range, 2) Predicates, denoted p, that rep-
resent relations between terms (e.g., Alice is a physician on 09/15/2011), and
3) Formulas, denoted ϕ, that are combinations of predicates using the usual
connectives of logic — ∧ (conjunction), ∨ (disjunction), ⊃ (implication), ∀x.ϕ
(for all instances of variables x, ϕ), ∃x.ϕ (there is some instance of variables x
such that ϕ), � (truth) and ⊥ (falsity).

We represent both positive and negative norms (Section 2.1) as formulas, de-
noted ϕ+ and ϕ−, respectively. The exceptions of a norm are represented as
subformulas of the formula representing the norm and are, therefore, part of the
representation of the norm itself. If the positive norms applicable to a given dis-
closure are ϕ+

1 , . . . , ϕ+
n whereas the negative norms applicable to the disclosure

are ϕ−
1 , . . . , ϕ−

m, then the disclosure satisfies the policy if and only if the following
formula is true: (ϕ+

1 ∨ . . . ∨ ϕ+
n) ∧ (ϕ−

1 ∧ . . . ∧ ϕ−
m). Following standard mathe-

matics conventions, this formula is often abbreviated to (
∨

i ϕ+
i) ∧ (

∧
j ϕ−

j). In
related work [22], several authors of this paper have formalized all norms from
the HIPAA and GLBA Privacy Rules in this form. Although we do not discuss
this formalization in detail here, an example representative of the formalization
is shown later.

To represent the privacy policy concepts described in Sections 2.2 and 2.3,
we stipulate a specific signature within PrivacyLFP that is inspired by prior
work on the Logic of Privacy and Utility (LPU) [8]. Attributes of data (Sec-
tion 2.2) are represented using symbolic terms (e.g., phi for protected health
information). The hierarchy between data attributes is represented by a predi-
cate attr in(t1, t2), meaning that attribute t1 is a subset of attribute t2, e.g.,
attr in(medications, medical-history). We assume that each disclosed message
is tagged (by its sender) with the attributes of information it carries and the pred-
icate tagged(m, q, t) means that the disclosed message m is tagged as carrying
attribute t about agent q (e.g., a message may carry Alice’s medical-history).

Similar to data attributes, role names (Section 2.2) are represented as symbolic
terms, e.g, physician, covered-entity, etc. The relation between an agent p and
its role r at time τ is represented by the formula inrole(p, r, τ). Including time
in the relation allows accurate representation of dynamism in roles. For example,
by including the time we allow for the possibility that (in our semantic model)

10 A. Datta et al.

inrole(Alice, physician, 09/15/2011) is true but inrole(Alice, physician,
09/16/2011) is not (Alice is a physician on 09/15/2011, but not on 09/16/2011).

Events such as use or disclosure of personal records are also represented by
predicates called event predicates. For example, send(p1, p2, m, τ) means that
agent p1 sends message m to agent p2 at time τ . A salient feature of PrivacyLFP
is that it requires that every event predicate include a time argument like τ
in send(p1, p2, m, τ). This time argument can be used to compare the order of
occurence of two events using a relation τ ≤ τ ′ between time points. For example,
the normative statement “if Alice sends a message to Bob, then Bob must later
send a message to Alice” can be represented as: ∀m, τ. (send(Alice, Bob, m, τ) ⊃
(∃m′, τ ′. ((τ ≤ τ ′) ∧ send(Bob, Alice, m′, τ ′)))). We use this representation of
time to encode both provisions and obligations in privacy policies (Section 2.2).
Although PrivacyLFP does not include any explicit temporal operators (e.g., ♦
and � [37]), it is more expressive than two common temporal logics — linear-
time temporal logic (LTL) and timed propositional temporal logic (TPTL), as
shown in related work [22].

Like data attributes, purposes of use and disclosure (Section 2.3) are repre-
sented by symbolic terms (e.g., “treatment”, “healthcare”, etc.). The predicate
purp(m, u) means that the purpose of disclosure of message m is u. Unlike all
other predicates listed above, this predicate is uninterpreted — in any enforce-
ment system only a human expert may decide whether or not the predicate holds
for given m and u. (Later, we explain what uninterpreted means in our semantic
model.)

Similar to disclosure purposes, agents’ beliefs (Section 2.3) are also represented
with uninterpreted predicates. To distinguish such predicates, their names be-
gin with the prefix believes-, e.g., believes-cause-of-death-is-crime(p, q)
may mean that agent p believes that agent q died due to a criminal act. Like the
predicate purp(m, u), predicates beginning with the prefix believes- are also
uninterpreted.

Example 1. We illustrate representation of privacy policies in PrivacyLFP with
the following example that is motivated by similar requirements in HIPAA, but
is simpler and serves as a good illustration.

An entity (e.g., hospital or physician’s office) may send an individual’s
protected health information (phi) to another entity only if the receiving
entity is the individual’s doctor and the purpose of the transmission is
treatment, or the individual has previously consented to the transmis-
sion.

Observe that this policy contains two positive norms separated by the word “or”
in the above quote. Using the descriptions of predicates presented earlier, this
policy can be represented in PrivacyLFP as follows:

ϕpol = ∀p1, p2, m, q, t, τ. (send(p1, p2, m, τ) ∧ tagged(m, q, t))
⊃ attr in(t, phi)
∨ (inrole(p2, doctorOf(q), τ) ∧ purp(m, treatment))

Understanding and Protecting Privacy 11

∨ ∃τ ′. (τ ′ < τ ∧ consents(q, sendaction
(p1, p2, (q, t)), τ ′))

The horizontal line over attr in indicates negation: attr in(t, phi) means that
attribute t is not a subset of attribute phi. In words, the above formula ϕpol

means that if entity p1 sends to entity p2 a message m at time τ and m is tagged
as carrying attribute t of individual q, then either the attribute t is not a form of
protected health information (so the policy does not apply) or the recipient p2

is a doctor of q at time τ (atom inrole(p2, doctorOf(q), τ)) and the purpose of
the disclosure is treatment, or q has consented to this transmission in the past
(last line of ϕpol).

3.2 Syntax of the Logic of Privacy

Although we have discussed the syntax of PrivacyLFP and also illustrated it in
the previous section, we summarize it below. The syntax deviates slightly from
first-order logic because it includes a distinct category of formulas called restric-
tions (denoted c) and requires that all quantifiers contain these restrictions. The
inclusion of restrictions is motivated by practical requirements: In the enforce-
ment algorithm of Section 4, a quantifier’s restriction allow us to finitely compute
all relevant instances of the quantifier, which may otherwise be an infinite set.
We also omit negation for technical convenience and assume that each predicate
p has a dual p that behaves exactly like the negation of p. The negation ϕ of a
formula ϕ can then be defined using De Morgan’s laws, as usual.

Terms t ::= . . .
Atoms P ::= p(t1, . . . , tn)
Formulas ϕ ::= P | � | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀x.(c ⊃ ϕ) | ∃x.(c ∧ ϕ)
Restrictions c ::= P | � | ⊥ | c1 ∧ c2 | c1 ∨ c2 | ∃x.c

3.3 Partial Structures and Semantics

Next, we describe the mathematical structures over which we interpret Priva-
cyLFP and its formal semantics. What mathematical structures are appropriate
for interpreting PrivacyLFP? Like structures of first-order logic, we may expect
the structures of PrivacyLFP to be abstractions of information about the truth
and falsity of the logic’s relations. Thus, a structure could be an abstract data
type encompassing all relevant event logs (to define predicates like send), roles’
databases (to define predicates like inrole), and other auxiliary information
about attribute hierarchies, etc.

However, unlike first-order logic where a structure maps each variable-free
atom (relation) to either true or false, in PrivacyLFP we must also allow for the
possibility that, in some cases, the information about the truth or falsity of a
relation may be unavailable. This is primarily for three reasons. First, the logic
includes subjective concepts like purp(m, u) (message m is disclosed for purpose
u), whose interpretation is unlikely to be available to any mechanized system

12 A. Datta et al.

of policy audit. We call such of lack of information subjective incompleteness.
Second, the norms of a privacy policy may contain obligations that are to be
satisfied in future; whether such obligations will hold or not cannot be deter-
mined during enforcement. We call this future incompleteness. Third, certain
logs or databases may be unavailable at the time of policy enforcement, perhaps
because they could not be integrated with the enforcement software. We call this
spatial incompleteness.

To take into account all such potential incompleteness of information and
to force ourselves to design enforcement mechanisms that take into account
incompleteness, we interpret PrivacyLFP over three-valued structures that map
each variable-free atom in the logic to one of three values: true (abbrev. tt),
false (ff) or unknown (uu). Formally, a structure for PrivacyLFP (also called a
partial structure) is a total map L from variable-free atoms of the logic to the
set {tt, ff, uu}.

– Subjective incompleteness may be modeled in a partial structure L by map-
ping every predicate that describes a subjective relation to uu. For example,
we may have L(purp(m, u)) = uu for every m and u. Predicates like purp
may also be called uninterpreted.

– Future incompleteness may be modeled in a partial structure L using the
time argument in every event predicate. For example, we may force L(send
(p1, p2, m, τ)) = uu whenever τ exceeds the time of audit.

– Spatial incompleteness may be modeled in a partial structure by mapping
each predicate that is unavailable to uu. For instance, if the roles database
is not available, then L(inrole(p, r, τ)) = uu for every p, r, and τ .

In Section 4, we describe an audit-based method for enforcement of privacy poli-
cies using three-valued structures for interpreting policies. The method uniformly
accounts for all these forms of incompleteness.

Semantics. We formalize the semantics of logical formulas as the relation L |= ϕ,
read “ϕ is true in the partial structure L”. Restrictions c are a subsyntax of
formulas ϕ, so we do not define the relation separately for them. Ξ[t/x] denotes
substitution of terms t for variables x in the entity Ξ.

- L |= P iff L(P) = tt
- L |= �
- L |= ϕ ∧ ψ iff L |= ϕ and L |= ψ
- L |= ϕ ∨ ψ iff L |= ϕ or L |= ψ
- L |= ∀x.(c ⊃ ϕ) iff for all t either L |= c[t/x] or L |= ϕ[t/x]
- L |= ∃x.(c ∧ ϕ) iff there exists t such that L |= c[t/x] and L |= ϕ[t/x]

For dual atoms, we define L(P) = L(P), where tt = ff, ff = tt, and uu = uu.
We say that a formula ϕ is false on the structure L if L |= ϕ. The following two
properties hold:

1. Consistency: A formula ϕ cannot be simultaneously true and false in the
structure L, i.e., either L
|= ϕ or L
|= ϕ

Understanding and Protecting Privacy 13

2. Incompleteness: A formula ϕ may be neither true nor false in a structure L,
i.e., L
|= ϕ and L
|= ϕ may both hold.

Consistency means that a policy ϕ cannot be simultaneously violated and sat-
isfied at the same time. Incompleteness means that there is a policy ϕ and a
structure L such that it cannot be determined whether ϕ has been violated in
L or not.

Structure Extension. In practice, event logs and roles’ databases evolve over
time by gathering more information. This leads to a partial order, L1 ≤ L2 on
structures (L2 extends L1), meaning that L2 has more information than L1.
Formally, L1 ≤ L2 if for all variable-free atoms P , L1(P) ∈ {tt, ff} implies
L2(P) = L1(P). Thus, as structures extend, the valuation of an atom may
change from uu to either tt or ff, but cannot change once it is either tt or ff.
The following property holds:

– Monotonicity: L1 ≤ L2 and L1 |= ϕ imply L2 |= ϕ.

Replacing ϕ with ϕ, we also obtain that L1 ≤ L2 and L1 |= ϕ imply L2 |= ϕ.
Hence, if L1 ≤ L2 then L2 preserves both the L1-truth and L1-falsity of every
formula ϕ.

4 Policy Audits over Incomplete Logs

In this section, we summarize an interactive algorithm for auditing system logs
for privacy policy violation. To keep the presentation accessible, we present only
the key ideas of our algorithm here and refer the reader to a technical paper [25]
for details.

Ideally, we want our algorithm to answer the following question: Has a policy
formula ϕ been violated in a (partial) structure L? However, because we allow
the structure to not have conclusive information about every atom, it is, in
general, impossible to answer this question. Consequently, we take an reduction-
based approach: Our algorithm implements a computable function reduce that
takes as input a policy ϕ and a partial structure L, and outputs a residual policy
ψ that contains exactly the parts of ϕ that could not be verified due to lack of
information in L. Such an iteration is written reduce(L, ϕ) = ψ. If and when more
information becomes available, extending L to L′ (L ≤ L′), another iteration
of the algorithm can be used with inputs ψ and L′ to obtain a new formula
ψ′. This process can be continued until the output is either � (no violation)
or ⊥ (violation). A human auditor may augment the iterations by providing
input about the truth or falsity of relevant uninterpreted atoms. By design, our
algorithm satisfies three important properties:

– Termination: Each iteration terminates.
– Correctness: If reduce(L, ϕ) = ψ, then for all extensions L′ of L, L′ |= ϕ iff
L′ |= ψ.

– Minimality: If reduce(L, ϕ) = ψ, then an atom occurs in ψ only if it occurs
in ϕ and its valuation on L is uu.

14 A. Datta et al.

Technical details. The technically difficult part of reduce is its treatment of quan-
tifiers over infinite domains. Consider, for instance, the behavior of an algorithm
satisfying the above three properties on input ∀x.ϕ. Because the output must
be minimal, in order to reduce ∀x.ϕ, a naive algorithm will instantiate x with
each possible term and check the truth or falsity of ϕ for that instance on L.
This immediately leads to non-termination if the set of terms is infinite, which
does happen for real policies (e.g., in Example 1, we quantify over messages m
and time points τ , both of which are infinite sets).

Given the need for infinite domains, something intrinsic in quantification must
limit the number of relevant instances of x that need to be checked to a finite
number. To this end, we rely on the restrictions c in quantifiers, ∀x.(c ⊃ ϕ) and
∃x.(c ∧ ϕ), and use the technique of mode analysis from logic programming [2]
to ensure that the restriction c has only a finite number of satisfying instances
in any structure and that these instances are computable.

Briefly, mode analysis requires the policy designer to specify which argument
positions of a predicate can be computed finitely from others. For instance, in
Section 3.1 we assumed that the attributes of a message are written on it in
machine-readable format and, hence, can be computed from the message. De-
noting required inputs by + and computable outputs by −, we may give the pred-
icate tagged(m, q, t) the mode purp(+,−,−), meaning that from the input m,
the outputs q, t can be computed. The mode purp(−, +, +) is incorrect because
given a fixed second and third arguments (attribute), there may be an infinite
number of first arguments (messages) annotated with that attribute, so the latter
set cannot be finitely computed. Similarly, if the predicate mult(x, y, z) means
that x = yz, where x, y, z are integers, then any of the modes mult(+, +,−),
mult(−, +, +), and mult(+,−, +) are okay, but mult(−,−, +) is not. Given the
mode information of all predicates in a policy, a static, linear-time check of
the policy, called a mode check, ensures that there are only a finite number of
instances of free variables that can satisfy a restriction c in the policy.

To actually compute the satisfying instances of a restriction, we define a func-
tion ŝat(L, c) that returns all substitutions σ for free variables of c such that
L |= cσ. This definition assumes a function sat(L, P) that returns all substitu-
tions σ for free variables of P such that L |= Pσ if all input positions in P are
ground, which itself is implemented by looking up event logs or other databases,
depending on the predicate in P .

Finally, the main audit function reduce(L, ϕ) is defined by induction on ϕ,
using ŝat(L, c) as a helper function when ϕ contains a top-level quantifier. The
problematic case of the quantifiers is now easily dealt with: To reduce ∀x.(c ⊃ ϕ),
we first invoke ŝat(L, c) to find all substitutions for x that satisfy c. Then,
we recursively reduce ϕ after applying each such substitution and the output
of reduce is the conjunction of these reducts. The reduction of ∃x.(c ∧ ϕ) is
identical except that the output is the disjunction of the recursively obtained
reducts.

Formal Properties. We formally prove that the reduce(L, ϕ) is total for policies
ϕ that pass our mode check, it is correct and minimal in the sense mentioned at

Understanding and Protecting Privacy 15

the beginning of this section and that it uses space polynomial in the size of ϕ
and runs in time polynomial in the size of L.

Use for Action-Guidance. Besides audit for policy violations, we expect that
reduce can be used as an action-guidance tool, to inform an agent whether or
not an action she is about to perform would violate the policy. To do this, reduce
can be run on a hypothetical structure that includes all the audit information in
the system and the action to be performed, and a formula that contains relevant
norms from the privacy policy. The formula output by reduce would then be one
of: (1) � (action will not violate the policy), (2) ⊥ (action will violate the policy),
or (3) another formula ψ which lists exactly those undischarged conditions that
must hold for the policy to not be violated by the potential action; the agent
may check those conditions manually before performing the action.

4.1 Related Work

Runtime Monitoring with Temporal Logic. A lot of prior work addresses the
problem of runtime monitoring of policies expressed in Linear Temporal Logic
(LTL) [5, 7, 12, 44, 46, 47] and its extensions [7, 45, 46]. Although similar in
the spirit of enforcing policies, the intended deployment of our work is different:
We assume that system logs are accumulated independently and given to our
algorithm, whereas an integral component of runtime monitoring is accumula-
tion of system logs on the fly. Our assumption about the availability of system
logs fits practical situations like health organizations, which collect transmission,
disclosure and other logs to comply with regulations such as HIPAA even if no
computerized policy enforcement mechanism is in place.

Comparing only the expressiveness of the logic, our work is more advanced
than all existing work on policy enforcement. First, LTL can be encoded in our
logic easily [22]. Second, we allow expressive quantification in our logic, whereas
prior work is either limited to propositional logic [5, 44, 47], or, when quantifiers
are considered, they are severely restricted [7, 45, 46]. A recent exception to such
syntactic restrictions is the work of Basin et al. [12], to which we compare in
detail below. Third, no prior work considers the possibility of incompleteness in
structures, which our reduce algorithm takes into account.

Recent work by Basin et al. [12] considers runtime monitoring over an expres-
sive fragment of Metric First-order Temporal Logic. Similar to our work, Basin
et al. allow quantification over infinite domains, and use a form of mode analysis
(called a safe-range analysis) to ensure finiteness during enforcement. However,
Basin et al.’s mode analysis is weaker than ours; in particular, it cannot relate
the same variable in the input and output positions of two different conjuncts of
a restriction and requires that each free variable appear in at least one predicate
with a finite model. As a consequence, many practical policies (including exam-
ples from the HIPAA Privacy Rule) cannot be enforced in their framework, but
can be enforced in ours (see [25] for additional details).

Formal Frameworks for Policy Audit. Cederquist et al. [18] present a proof-
based system for a-posteriori audit, where policy obligations are discharged by

16 A. Datta et al.

constructing formal proofs. The leaves of proofs are established from logs, but
the audit process only checks that an obligation has been satisfied somewhere in
the past. Further, there is no systematic mechanism to instantiate quantifiers in
proofs. However, using connectives of linear logic, the mechanism admits policies
that rely on use-once permissions.

Iterative Enforcement. The idea of iteratively rewriting the policy over evolv-
ing logs has been considered previously [44, 47], but only for propositional logic
where the absence of quantifiers simplifies the problem considerably. Bauer et
al. [5] use a different approach for iterative enforcement: they convert an LTL
formula with limited first-order quantification to a Büchi automaton and check
whether the automaton accepts the input log. Further, they also use a three-
valued semantic model similar to ours, but assume that logs record all informa-
tion about past events (past-completeness). Three-valued structures have also
been considered in work on generalized model checking [17, 27]. However, the
problems addressed in that line of work are different; the objective there is to
check whether there exist extensions of a given structure in which a formula is
satisfied (or falsified).

Compliance Checking. Barth et al. [8] present two formal definitions of compli-
ance of an action with a policy, called strong and weak compliance. An action
is strongly compliant with a policy given a trace if there exists an extension of
the trace that contains the action and satisfies the policy. We do not consider
strong compliance in this paper. An action is weakly compliant with a policy in
Propositional LTL (PLTL) given a trace if the trace augmented with the action
satisfies the present requirements of the policy. However, a weakly compliant
action might incur unsatisfiable future requirements. The technical definition
is stated in terms of a standard tableau construction for PLTL [37] that syn-
tactically separates present and future requirements. Our correctness property
for reduce generalizes weak compliance to a richer class of policies and struc-
tures: PLTL can be encoded in our policy logic, the residual formula generalizes
future requirements, and past-complete traces are a special case of our partial
structures.

In a related paper, Barth et al. [9] present an algorithm that examines audit
logs to detect policy violations and identify agents to blame for policy violations.
While our audit algorithm can be used to detect violations of a much richer class
of policies than the propositional logics considered by Barth et al., it does not
identify agents to be blamed for violations.

Lam et al. [33] represent policy requirements of a part of the HIPAA Privacy
Rule in an extension of Prolog with stratified negation, called pLogic, and use it to
implement a compliance checker for a medical messaging system. The compliance
checker makes decisions about legitimacy of messages entering the system based
on eight attributes attached to each message (such as its sender, intended recip-
ient, subject, type of information and purpose). The prototype tool has a usable
front-end and provides a useful interface for understanding what types of disclo-
sures and uses of personal health information are permitted and forbidden by the

Understanding and Protecting Privacy 17

HIPAAPrivacyRule. However, as recognizedby the authors, the approachhas cer-
tain limitations in demonstrating compliance with the HIPAA Privacy Rule. First,
it does not support temporal conditions. While pLogic uses specialized predicates
to capture that certain events happened in the past, it cannot represent future
obligations needed to formalize many clauses in HIPAA. In contrast, our policy
logic and the reduce algorithm handle temporal conditions, including real-time
conditions. Second, reasoning in pLogic proceeds assuming that all asserted be-
liefs, purposes and types of information associated with messages are correct. In
contrast, since reduce mines logs to determine truth values of atoms, it does not as-
sume facts unless there is evidence in logs to back them up. Typically, a purpose or
belief will be taken as true only if a human auditor (or some other oracle) supplies
evidence to that effect. Finally, our prototype implementation was evaluated with
a formalization of the entire HIPAA Privacy Rule, whereas Lam et al. formalize
only §§164.502, 164.506 and 164.510.

Policy Specification and Analysis. Several variants of LTL have been used to
specify the properties of programs, business processes and security and privacy
policies [8, 11, 22, 26, 36]. The logic we use as well as the formalization of
HIPAA used in our experiments are adapted from our prior work on the logic
PrivacyLFP [22]. PrivacyLFP, in turn, draws inspiration from earlier work on
the logic LPU [8]. However, PrivacyLFP is more expressive than LPU because
it allows first-order quantification over infinite domains.

Further, several access-control models have extensions for specifying usage
control and future obligations [13, 23, 28, 30, 39, 41, 42]. Some of these models
assume a pre-defined notion of obligations [30, 39]. For instance, Irwin et al. [30]
model obligations as tuples containing the subject of the obligation, the actions
to be performed, the objects that are targets of the actions and the time frames
of the obligations. Other models leave specifications for obligations abstract [13,
28, 42]. Such specific models and the ensuing policies can be encoded in our logic
using quantifiers.

There also has been much work on analyzing the properties of policies repre-
sented in formal models. For instance, Ni et al. study the interaction between
obligation and authorization [39], Irwin et al. have analyzed accountability prob-
lems with obligations [30], and Dougherty et al. have modeled the interaction
between obligations and programs [23]. These methods are orthogonal to our
objective of policy enforcement.

Finally, privacy languages such as EPAL [6] and privacyAPI [38] do not in-
clude obligations or temporal modalities as primitives, and are less expressive
than our framework.

5 Periodic Audits with Imperfect Information

Since privacy policies constrain flows of personal information based on subjec-
tive conditions (such as purposes and beliefs) that may not be mechanically
checkable, reduce will output such conditions in the final residual policy leaving

18 A. Datta et al.

them to be checked by other means (e.g., by human auditors). Recent stud-
ies have revealed that such subjective conditions are often violated in the real
world in the healthcare domain; violations occur as employees access medical
records of celebrities, family members, and neighbors motivated by general cu-
riosity, financial gain, child custody lawsuits and other considerations that are
not appropriate purposes for accessing patient records [29, 49]. In practice, or-
ganizations like hospitals conduct ad hoc audits in which the audit log, which
records accesses and disclosures of personal information, is examined to deter-
mine whether personal information was appropriately handled.

In this section, we summarize an audit model and algorithm that can pro-
vide guidance to human auditors in this activity [14]. This work presents the
first principled learning-theoretic foundation for audits of this form. Our first
contribution is a repeated game model that captures the interaction between the
defender (e.g., hospital auditors) and the adversary (e.g., hospital employees).
The model includes a budget that constrains the number of actions that the
defender can inspect thus reflecting the imperfect nature of audit-based enforce-
ment, and a loss function that captures the economic impact of detected and
missed violations on the organization. We assume that the adversary is worst-
case as is standard in other areas of computer security. We also formulate a
desirable property of the audit mechanism in this model based on the concept
of regret in learning theory [16]. Our second contribution is a novel audit mech-
anism that provably minimizes regret for the defender. The mechanism learns
from experience and provides operational guidance to the human auditor about
which accesses to inspect and how many of the accesses to inspect. The regret
bound is significantly better than prior results in the learning literature.

Mirroring the periodic nature of audits in practice, we use a repeated game
model [24] that proceeds in rounds. A round represents an audit cycle and,
depending on the application scenario, could be a day, a week or even a quarter.

Adversary Model. In each round, the adversary performs a set of actions (e.g.,
accesses patient records) of which a subset violates policy. Actions are classified
into types. For example, accessing celebrity records could be a different type
of action from accessing non-celebrity records. The adversary capabilities are
defined by parameters that impose upper bounds on the number of actions of
each type that she can perform in any round. We place no additional restrictions
on the adversary’s behavior. In particular, we do not assume that the adversary
violates policy following a fixed probability distribution; nor do we assume that
she is rational. Furthermore, we assume that the adversary knows the defender’s
strategy (audit mechanism) and can adapt her strategy accordingly.

Defender Model. In each round, the defender inspects a subset of actions of each
type performed by the adversary. The defender has to take two competing factors
into account. First, inspections incur cost. The defender has an audit budget
that imposes upper bounds on how many actions of each type she can inspect.
We assume that the cost of inspection increases linearly with the number of
inspections. So, if the defender inspects fewer actions, she incurs lower cost. Note

Understanding and Protecting Privacy 19

that, because the defender cannot know with certainty whether the actions not
inspected were malicious or benign, this is a game of imperfect information [3].
Second, the defender suffers a loss in reputation for detected violations. The
loss is higher for violations that are detected externally (e.g., by an Health and
Human Services audit, or because information leaked as a result of the violation
is publicized by the media) than those that are caught by the defender’s audit
mechanism, thus incentivizing the defender to inspect more actions.

In addition, the loss incurred from a detected violation depends on the type
of violation. For example, inappropriate access of celebrities’ patient records
might cause higher loss to a hospital than inappropriate access of other patients’
records. Also, to account for the evolution of public memory, we assume that
violations detected in recent rounds cause greater loss than those detected in
rounds farther in the past. The defender’s audit mechanism has to take all these
considerations into account in prescribing the number of actions of each type
that should be inspected in a given round, keeping in mind that the defender is
playing against the powerful strategic adversary described earlier.

Note that for adequate privacy protection, the economic and legal structure
has to ensure that it is in the best interests of the organization to invest sig-
nificant effort into auditing. Our abstraction of the reputation loss from policy
violations that incentivizes organizations to audit can, in practice, be achieved
through penalties imposed by government audits as well as through market
forces, such as brand name erosion and lawsuits.

Regret Property. We formulate a desirable property for the audit mechanism
by adopting the concept of regret from online learning theory. The idea is to
compare the loss incurred when the real defender plays according to the strat-
egy prescribed by the audit mechanism to the loss incurred by a hypothetical
defender with perfect knowledge of the number of violations of each type in each
round. The hypothetical defender is allowed to pick a fixed strategy to play in
each round that prescribes how many actions of each type to inspect. The re-
gret of the real defender in hindsight is the difference between the loss of the
hypothetical defender and the actual loss of the real defender averaged over all
rounds of game play. We require that the regret of the audit mechanism quickly
converge to a small value and, in particular, that it tends to zero as the number
of rounds tends to infinity.

Intuitively, this definition captures the idea that although the defender does
not know in advance how to allocate her audit budget to inspect different types
of accesses (e.g., celebrity record accesses vs. non-celebrity record accesses), the
recommendations from the audit mechanism should have the desirable property
that over time the budget allocation comes close to the optimal fixed allocation.
For example, if the best strategy is to allocate 40% of the budget to inspect
celebrity accesses and 60% to non-celebrity accesses, then the algorithm should
quickly converge towards these values.

Audit Mechanism. We develop a new audit mechanism that provably minimizes
regret for the defender. The algorithm, which we name Regret Minimizing Audits

20 A. Datta et al.

(RMA), is efficient and can be used in practice. In each round of the game,
the algorithm prescribes how many actions of each type the defender should
inspect. It does so by maintaining weights for each possible defender action and
picking an action with probability proportional to the weight of that action.
The weights are updated based on a loss estimation function, which is computed
from the observed loss in each round. Intuitively, the algorithm learns the optimal
distribution over actions by increasing the weights of actions that yielded better
payoff than the expected payoff of the current distribution and decreasing the
weight of actions that yielded worse payoff.

Our main technical result is that the exact bound on regret for RMA is approx-

imately 2
√

2 lnN
T where N is the number of possible defender actions and T is the

number of rounds (audit cycles). This bound improves the best known bounds of
O

(
N1/3 log N

3√
T

)
for regret minimization over games of imperfect information. The

main novelty is in the way we use a loss estimation function and characterize its
properties to achieve the significantly better bounds. Specifically, RMA follows
the structure of a regret minimization algorithm for perfect information games,
but uses the estimated loss instead of the true loss to update the weights in
each round. We define two properties of the loss estimation function—accuracy
(capturing the idea that the expected error in loss estimation in each round is
zero) and independence (capturing the idea that errors in loss estimation in each
round are independent of the errors in other rounds)—and prove that any loss
estimation function that satisfies these properties results in regret that is close
to the regret from using an actual loss function. Thus, our bounds are of the
same order as regret bounds for perfect information games. The better bounds
are important from a practical standpoint because they imply that the algorithm
converges to the optimal fixed strategy much faster.

5.1 Related Work

Zhao et al. [53] recognize that rigid access control can cause loss in productivity
in certain types of organizations. They propose an access control regime that
allows all access requests, but marks accesses not permitted by the policy for
posthoc audit coupled with punishments for violating policy. They assume that
the utility function for the organization and the employees are known and use a
single shot game to analyze the optimal behavior of the players. Our approach
of using a permissive access control policy coupled with audits is a similar idea.
However, we consider a worst-case adversary (employee) because we believe that
it is difficult to identify the exact incentives of the employee. We further recog-
nize that the repeated nature of interaction in audits is naturally modeled as
a repeated game rather than a one-shot game. Finally, we restrict the amount
of audit inspections because of budgetary constraints. Thus, our game model is
significantly more realistic than the model of Zhao et al. [53].

Cheng et al. [19, 20] also start from the observation that rigid access con-
trol is not desirable in many contexts. They propose a risk-based access control
approach. Specifically, they allocate a risk budget to each agent, estimate the

Understanding and Protecting Privacy 21

risk of allowing an access request, and permit an agent to access a resource if
she can pay for the estimated risk of access from her budget. Further, they use
metaheuristics such as genetic programming to dynamically change the security
policy, i.e. change the risk associated with accesses dynamically. We believe that
the above mechanism mitigates the problem of rigid access control in settings
such as IT security risk management, but is not directly applicable for privacy
protection in settings such as hospitals where denying access based on privacy
risks could have negative consequences on the quality of care. Our approach
to the problem is fundamentally different: we use a form of risk-based auditing
instead of risk-based access control. Also, genetic programming is a metaheuris-
tic, which is known to perform well empirically, but does not have theoretical
guarantees [50]. In contrast, we provide mechanisms with provable guarantees.
Indeed an interesting topic for future work is to investigate the use of learning-
theoretic techniques to dynamically adjust the risk associated with accesses in
a principled manner.

Regret Minimization. A regret minimization algorithm is a randomized algo-
rithm for playing in a repeated game. Our algorithm RMA is based on the
weighted majority algorithm [35] for regret minimization. The weighted ma-
jority maintains weights ws for each of the N fixed actions of the defender. wt

s is
the weight of the expert before round t has been played. The weights determine
a probability distribution over actions, pt

s denotes the probability of playing
s at time t. In any given round the algorithm attempts to learn the optimal
distribution over actions by increasing the weights of experts that performed
better than its current distribution and decreasing the weights of experts that
performed worse.
Sleeping Experts. In the setting of [35] all of the actions are available all of
the time. However, we are working in the sleeping experts model where actions
may not be available every round due to budget constraints. Informally, in the
sleeping experts setting the regret of RMA with respect to a fixed action s in
hindsight is the expected decrease in our total loss had we played s in each of
the Ts rounds when s was available.

There are variations of the weighted majority algorithm that achieve low
regret in the sleeping experts setting [15, 16]. These algorithms achieve average
regret bounds:

∀s,
Regret (Alg, s)

Ts
= O

(√
T log N

Ts

)
.

In fact RMA is very similar to these algorithms. However, we are interested in
finding exact (not asymptotic) bounds. We also have to deal with the imperfect
information in our game.

Imperfect Information. In order to update its weight after round t, the weighted
majority algorithm needs to know the loss of every available defender action s.
Formally, the algorithm needs to know Lt(s) for each s ∈ AWAKEt. However,
we only observe an outcome Ot, which allows us to compute

Lt(st) = R(Ot) − C · st,

22 A. Datta et al.

the loss for the particular action st played by the defender at time t. There
are several existing algorithms for regret minimization in games with imperfect
information [3, 4, 21, 54]. For example, [3] provides an average regret bound of

∀s,
Regret(Alg, s)

T
= O

(
N1/3 log N

3
√

T

)
.

It is acceptable to have log N in the numerator, but the N1/3 term will make the
algorithm impractical in our setting. The average regret still does tend to 0 as
T → ∞, but the rate of convergence is much slower compared to the case when
only log N is present in the numerator. Other algorithms [4, 21, 54] improve this
bound slightly, but we still have the N1/3 term in the numerator. Furthermore,
[3] assumes that each action s is available in every round. There are algorithms
that deal with sleeping experts in repeated games with imperfect information,
but the convergence bounds get even worse.

Regret minimization techniques have previously been applied in computer
security by Barth et al. [10]. However, that paper addresses a different problem.
They show that reactive security is not worse than proactive security in the
long run. They propose a regret minimizing algorithm (reactive security) for
allocation of budget in each round so that the attacker’s “return on attack”
does not differ much from the case when a fixed allocation (proactive security)
is chosen. Their algorithm is not suitable for our audit setting due to imperfect
information and sleeping experts. In their work, the defender learns the attack
path played by the adversary after each round, and by extension has perfect
knowledge of the loss function for that round. By contrast, RMA must work in the
imperfect information setting. Also, their model considers unknown attack paths
that get discovered over time. This is a special subcase of the sleeping experts
setting, where an expert is awake in every round after she wakes up. They extend
the multiplicative weight update algorithm [35] to handle the special case. In our
setting experts may be available in one round and unavailable in next. RMA was
designed to work in this more general setting.

6 Research Directions

We describe below directions for further research in this area, including support
for policy composition and evolution, formalizing seemingly subjective condi-
tions (such as purposes and beliefs), and remaining challenges in the design
of audit mechanisms for detecting policy violations, accountability mechanisms
for appropriately assigning blame when violations are detected, and incentive
mechanisms to deter adversaries from committing violations.

While our work so far has focused on studying a single policy in one context
(e.g., HIPAA for healthcare), it would be interesting to study situations where
multiple policies from possibly different contexts may be relevant to the disclo-
sure and use of personal information. For example, in the US, transmission of
personal health information is governed not only by the HIPAA Privacy Rule,

Understanding and Protecting Privacy 23

but also by state privacy laws. In Europe, in addition to the EU Directive, mem-
ber states have their own privacy laws. A natural set of research questions arises
in this setting: How should multiple policies from possibly different contexts be
composed? How should conflicts be resolved? Is it possible to develop specifica-
tion and enforcement techniques that are compositional? Is it possible to deal
with policies (e.g., laws) that evolve over time in an incremental manner rather
than requiring a significant rewrite?

As noted earlier, privacy policies often contain obligations based on beliefs
or professional judgment of agents (Section 2.3). Such obligations are subjective
and, in general, cannot be verified automatically by a computer system with-
out human input. One natural question is how to provide human input about
a relevant belief to a computerized audit mechanism. One possibility, already
developed in our implementation of the reduce algorithm of Section 4, is to
simply allow a user to mark a subjective concept as either true or false. An-
other possibility, which we plan to investigate in future, is to use logical rules
to define that a belief is justified if certain principals support certain state-
ments. We plan to use the connective A says ϕ (principal A supports state-
ment ϕ) from authorization logics to represent statements made by principals
and signed certificates to evidence such statements [1]. For example, the rule
(P says injured-by-crime(P)) ⊃ believes-injured-by-crime(Q, P) may
mean that if principal P says that she was injured by a crime then it is justified
for another individual Q to believe that this is the case, and a certificate signed
by Alice’s private key and containing the statement injured-by-crime(Alice)
could be evidence for the formula (Alice says injured-by-crime(Alice)). Cer-
tificates necessary to justify relevant beliefs may be collected by an audit system
and used to discharge obligations about beliefs automatically.

An approach to semantics and enforcement of privacy policies that place re-
quirements on the purposes for which a governed entity may use personal in-
formation is outlined in a recent article by the first author and colleagues [48].
The paper presents a semantics for purpose requirements using a formal model
based on planning. Specifically, the model is used to formalize when a sequence
of actions is only for or not for a purpose. This semantics serves as a basis for an
algorithm for automated auditing of purpose requirements in privacy policies.
The algorithm takes as input an audit log and a description of an environment
model that the auditee uses in the planning process.

In addition to audit mechanisms that detect violations of policy, an important
research direction is developing a rigorous foundation for accountability and asso-
ciated mechanisms that correctly blame agents responsible for violations. While
the importance of accountability has been recognized in the literature[34, 52],
there has not been much technical work on accountability (see [9, 31, 32] for
some exceptions).

Also, while our work on regret minimizing audits makes no assumptions about
the incentives of adversaries, a worthwhile research direction is to design mech-
anisms that use partial knowledge of the incentives of adversaries to deter them
from committing violations. We expect that a combination of techniques from

24 A. Datta et al.

game theory and learning theory could be leveraged to make progress on this
problem.

Finally, while our work has focused on the application domain of healthcare
privacy, an exploration of other domains in which these enforcement mechanisms
could be used would be interesting. Specifically, it would be worthwhile to inves-
tigate whether privacy protection policies adopted by financial institutions, web
services providers (e.g., Google, Microsoft, Amazon) and online social networks
(e.g., Facebook) can be enforced by using and adapting the kinds of mechanisms
being developed in this work.

References

[1] Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access
control in distributed systems. ACM Trans. Program. Lang. Syst. 15(4), 706–734
(1993)

[2] Apt, K.R., Marchiori, E.: Reasoning about Prolog programs: From modes through
types to assertions. Formal Aspects of Computing 6(6), 743–765 (1994)

[3] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32(1), 48–77 (2003)

[4] Awerbuch, B., Kleinberg, R.: Online linear optimization and adaptive routing.
Journal of Computer and System Sciences 74(1), 97–114 (2008)

[5] Baader, F., Bauer, A., Lippmann, M.: Runtime Verification Using a Temporal
Description Logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS,
vol. 5749, pp. 149–164. Springer, Heidelberg (2009)

[6] Backes, M., Pfitzmann, B., Schunter, M.: A Toolkit for Managing Enterprise Pri-
vacy Policies. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 162–180. Springer, Heidelberg (2003)

[7] Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

[8] Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual in-
tegrity: Framework and applications. In: Proceedings of the 27th IEEE Symposium
on Security and Privacy, Oakland, pp. 184–198 (2006)

[9] Barth, A., Datta, A., Mitchell, J.C., Sundaram, S.: Privacy and utility in busi-
ness processes. In: Proceedings of the 20th IEEE Computer Security Foundations
Symposium (CSF), pp. 279–294 (2007)

[10] Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett,
P.L.: A Learning-Based Approach to Reactive Security. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 192–206. Springer, Heidelberg (2010)

[11] Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-
order temporal logic. In: Proceeding of the 15th ACM Symposium on Access
Control Models and Technologies (SACMAT), pp. 23–34 (2010)

[12] Basin, D., Klaedtke, F., Müller, S.: Policy Monitoring in First-Order Temporal
Logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
1–18. Springer, Heidelberg (2010)

Understanding and Protecting Privacy 25

[13] Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provisions and obligations
in policy rule management. Journal of Network and Systems Management 11,
351–372 (2003)

[14] Blocki, J., Christin, N., Datta, A., Sinha, A.: Regret minimizing audits: A learning-
theoretic basis for privacy protection. In: Proceedings of the 24th IEEE Computer
Security Foundations Symposium (CSF), pp. 312–327 (2011)

[15] Blum, A., Mansour, Y.: From External to Internal Regret. In: Auer, P., Meir, R.
(eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 621–636. Springer, Heidelberg
(2005)

[16] Blum, A., Mansour, Y.: Learning, regret minimization, and equilibria. Algorithmic
Game Theory, 79–102 (2007)

[17] Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning About Partial
State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–
182. Springer, Heidelberg (2000)

[18] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini,
G.: Audit-based compliance control. International Journal of Information Secu-
rity 6(2), 133–151 (2007)

[19] Cheng, P.-C., Rohatgi, P.: IT Security as Risk Management: A Research Perspec-
tive. IBM Research Report RC24529 (April 2008)

[20] Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy Multi-Level Security: An Experiment on Quantified Risk-Adaptive Access
Control. In: Proceedings of the IEEE Symposium on Security and Privacy (2007)

[21] Dani, V., Hayes, T.: Robbing the bandit: Less regret in online geometric optimiza-
tion against an adaptive adversary. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete algorithm, p. 943. ACM (2006)

[22] De Young, H., Garg, D., Jia, L., Kaynar, D., Datta, A.: Experiences in the logical
specification of the HIPAA and GLBA privacy laws. In: Proceedings of the 9th
Annual ACM Workshop on Privacy in the Electronic Society (WPES) (2010), Full
version: Carnegie Mellon University Technical Report CMU-CyLab-10-007

[23] Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Obligations and their Interaction
with Programs. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734,
pp. 375–389. Springer, Heidelberg (2007)

[24] Fudenberg, D., Tirole, J.: Game theory. MIT Press (1991)
[25] Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: Theory, im-

plementation and applications. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS (2011)

[26] Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed
as logical models (REALM). In: Proceeding of the 18th Annual Conference on
Legal Knowledge and Information Systems (JURIX), pp. 37–48 (2005)

[27] Godefroid, P., Huth, M.: Model checking vs. generalized model checking: Seman-
tic minimizations for temporal logics. In: Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science (LICS), pp. 158–167 (2005)

[28] Hilty, M., Basin, D., Pretschner, A.: On Obligations. In: di Vimercati, S.d.C.,
Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 98–
117. Springer, Heidelberg (2005)

[29] Hulme, G.: Steady Bleed: State of HealthCare Data Breaches. Information Week
(September 2010),
http://www.informationweek.com/blog/healthcare/229200720

http://www.informationweek.com/blog/healthcare/229200720

26 A. Datta et al.

[30] Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis of obliga-
tions. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security (CCS), pp. 134–143 (2006)

[31] Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a Theory of Account-
ability and Audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 152–167. Springer, Heidelberg (2009)

[32] Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: ACM Conference on Computer and Communications Security,
pp. 526–535 (2010)

[33] Lam, P.E., Mitchell, J.C., Sundaram, S.: A Formalization of HIPAA for a Medical
Messaging System. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.)
TrustBus 2009. LNCS, vol. 5695, pp. 73–85. Springer, Heidelberg (2009)

[34] Lampson, B.W.: Computer security in the real world. IEEE Computer 37(6), 37–
46 (2004)

[35] Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Com-
put. 108(2), 212–261 (1994)

[36] Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46, 335–361 (2007)

[37] Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

[38] May, M.J., Gunter, C.A., Lee, I.: Privacy APIs: Access control techniques to ana-
lyze and verify legal privacy policies. In: Proceedings of the 19th IEEE Workshop
on Computer Security Foundations (CSFW), pp. 85–97 (2006)

[39] Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In: Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies (SACMAT), pp. 133–142 (2008)

[40] Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social
Life. Stanford University Press (2010)

[41] OASIS XACML Committee. Extensible access control markup language
(XACML) v2.0 (2004), http://www.oasis-open.org/specs/#xacmlv2.0

[42] Park, J., Sandhu, R.: Towards usage control models: beyond traditional access
control. In: Proceedings of the 7th ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 57–64 (2002)

[43] Robertson, J.: New data spill shows risk of online health records. Yahoo News
(August 2011), http://news.yahoo.com/
data-spill-shows-risk-online-health-records-120743449.html

[44] Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Au-
tomated Software Engineering 12, 151–197 (2005)

[45] Roger, M., Goubault-Larrecq, J.: Log auditing through model-checking. In: Pro-
ceedings of the 14th IEEE Workshop on Computer Security Foundations (CSF),
pp. 220–236 (2001)

[46] Sokolsky, O., Sammapun, U., Lee, I., Kim, J.: Run-time checking of dynamic
properties. Electronic Notes in Theoretical Computer Science 144, 91–108 (2006)

[47] Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science 113, 145–162 (2005)

[48] Tschantz, M. C., Datta, A., Wing, J.: On the semantics of purpose requirements in
privacy policies. Tech. Rep. CMU-CS-11-102, Carnegie Mellon University (2010)

http://www.oasis-open.org/specs/#xacmlv2.0
http://news.yahoo.com/data-spill-shows-risk-online-health-records-120743449.html
http://news.yahoo.com/data-spill-shows-risk-online-health-records-120743449.html

Understanding and Protecting Privacy 27

[49] US Health and Human Services. HIPAA enforcement,
http://www.hhs.gov/ocr/privacy/hipaa/enforcement/index.html

(accessed November 19, 2010)
[50] Vose, M.D., Wright, A.H., Rowe, J.E.: Implicit Parallelism. In: Cantú-Paz, E.,

Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall,
G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz,
A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003.
LNCS, vol. 2724, pp. 1505–1517. Springer, Heidelberg (2003)

[51] Wall Street Journal. What they know,
http://online.wsj.com/public/page/what-they-know-digital-privacy.html

(accessed on September 8, 2011)
[52] Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.A., Suss-

man, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)
[53] Zhao, X., Johnson, M.E.: Access governance: Flexibility with escalation and audit.

In: HICSS, pp. 1–13 (2010)
[54] Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in

games with incomplete information. Advances in Neural Information Processing
Systems 20, 1729–1736 (2008)

http://www.hhs.gov/ocr/privacy/hipaa/enforcement/index.html
http://online.wsj.com/public/page/what-they-know-digital-privacy.html

Efficient Secure Computation with Garbled Circuits

Yan Huang1, Chih-hao Shen1, David Evans1, Jonathan Katz2, and Abhi Shelat1

1 University of Virginia, Department of Computer Science
2 University of Maryland, Department of Computer Science

http://www.SecureComputation.org

Abstract. Secure two-party computation enables applications in which partici-
pants compute the output of a function that depends on their private inputs, with-
out revealing those inputs or relying on any trusted third party. In this
paper, we show the potential of building privacy-preserving applications using
garbled circuits, a generic technique that until recently was believed to be too
inefficient to scale to realistic problems. We present a Java-based framework
that uses pipelining and circuit-level optimizations to build efficient and scalable
privacy-preserving applications. Although the standard garbled circuit protocol
assumes a very week, honest-but-curious adversary, techniques are available for
converting such protocols to resist stronger adversaries, including fully malicious
adversaries. We summarize approaches to producing malicious-resistant secure
computations that reduce the costs of transforming a protocol to be secure against
stronger adversaries. In addition, we summarize results on ensuring fairness, the
property that either both parties receive the result or neither party does. Several
open problems remain, but as theory and pragmatism advance, secure computa-
tion is approaching the point where it offers practical solutions for a wide variety
of important problems.

1 Introduction

Data gains value when it can be used in computations with data from other sources.
For example, my genetic information becomes much more valuable when I can use it
in a computation to measure kinship with another individual’s genetic data, contribute
it to a scientific genome association study, or use it to analyze drug effectiveness by
comparing it to the genomes of participants in a pharmaceutical study. All of those
uses, however, seem to require exposing my private data to other parties (or the other
parties being willing to provide their private data to me). This leaves individuals with a
dilemma: either maintain privacy, but lose much of the potential value of their data; or
give up on privacy and expose ones data to malicious uses.

Secure computation provides an attractive alternative. It enables data owners to keep
their data private, while allowing it to be used in computations. Secure two-party com-
putation allows two parties to cooperatively compute the output of a function, f (a,b),
without revealing any information about their private inputs, a and b respectively (other
than what can be inferred from the function output). The idea of secure function eval-
uation was introduced by Andrew Yao in the 1980s [52, 53], but it has only recently
become realistic to imagine large-scale, important problems being solved by practi-
cal secure computations. Realizing such secure computations would enable many real

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 28–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient Secure Computation with Garbled Circuits 29

world applications. For example, government agencies could use it to implement bio-
metric security checks [29] (e.g., the no-fly list) and video criminal identification using
street cameras [28, 47], without compromising the privacy of innocent citizens. If se-
cure computation protocols can be inexpensive enough to execute on mobile devices,
it could also enable applications using smartphones such as proximity-based voting,
common interest and contacts matching, and real-time marketing [27].

In this paper, we focus on a generic approach to secure two-party computation known
as garbled circuits or Yao circuits [52]. A garbled circuit protocol allows two semi-
honest parties, a circuit generator and a circuit evaluator, to compute an arbitrary func-
tion f (a,b), where a and b are private inputs from each party, without leaking any
information about their respective secret inputs beyond what is revealed by the func-
tion output itself. We provide background on the garbled circuit protocol in Section 2.
Although garbled circuit protocols have a reputation for being inefficient and requiring
excessive amounts of memory, there are ways to implement garbled circuit protocols
that take advantage of pipelining and circuit-level optimizations to enable much faster
execution. Section 3 describes our framework for efficient garbled circuit protocols and
reports on results using it for several applications.

An important parameter of any secure computation protocol is the threat model. The
weakest commonly used threat model is the semi-honest threat model, where both par-
ties are assumed to follow the protocol as specified but attempt to learn additional in-
formation about the other party’s private inputs from the protocol transcript. This is the
easiest model in which to build scalable applications, and the model most frequently
used by implemented systems [9, 26, 32, 37, 47, 51]). Although this model may be
appropriate for some realistic situations in which both parties have limited ability to in-
terfere with the execution or a vested interest in the correctness of the results, it assumes
a very weak adversary so is insufficient for many important use scenarios.

The strongest model is called malicious adversary model, where an attacker can de-
viate arbitrarily from the protocol specification to pry on other parties privacy. Several
techniques have been proposed for converting a protocol that is secure under the semi-
honest model into a protocol that is secure against a malicious adversary, which we
discuss in Section 4, along with our work on making these conversions less expensive.

A second important facet of secure computation is fairness, which requires the par-
ticipating parties obtaining the results of the computation simultaneously. Although
fairness seems impossible to achieve since one party could just abort the protocol after
obtaining the result, surprisingly, it turns out that fairness is achievable for some func-
tions, and that for other functions a relaxed definition of partial fairness may be useful.
We discuss our results on ensuring fairness in Section 5.

2 Garbled Circuits Background

Garbled circuits were introduced by Yao [53] as a generic mechanism for secure com-
putation. A standard garbled circuit protocol involves two parties who wish to cooper-
atively compute the output of a function that depends on private data from both parties
without revealing that private data. One party is known as the generator, who produces
a garbled circuit for computing the function. The other party, the evaluator, evaluates

30 Y. Huang et al.

that circuit to produce the (encrypted) result, which can then be revealed to either or
both parties.

Any binary gate, f , which has two input wires W0,W1 and one output wire W2, can be
realized as a garbled gate. First, generate random nonces w0

i and w1
i to represent signal

0 and signal 1 on each wire Wi. Then, generate a truth table of four entries,

Encw
s0
0 ,w

s1
1

(wf (s0,s1)
2)

where s0,s1 denote the 1-bit plain signal on wire W0,W1, respectively. The table entries
are then randomly permuted so no information is revealed by the encrypted table. We
call this encrypted and permuted truth table a garbled table.

Next, the garbled table and the wire labels, ws0
0 , representing the generator’s secret

input, are sent to the evaluator. To obtain the appropriate wire label for her own in-
put (without revealing the input), ws1

1 , the evaluator and generator execute an oblivious
transfer protocol (see Section 2.1). Thus, the evaluator can decrypt one and only one
entry that corresponds exactly to their inputs. Following this construction strategy, an
arbitrary number of binary gates can be assembled to accomplish general purpose com-
putation using the output wire labels of one gate as the input labels of the next gate.

In summary, a garbled circuit protocol involves three main steps: (1) the circuit gen-
erator garbles the circuit’s truth tables; (2) the circuit generator directly transfers the
circuit and garbled truth tables, and obliviously transfers the appropriate input labels to
the evaluator; and (3) the circuit evaluator evaluates the circuit by successively decrypt-
ing the entry of each garbled table corresponding to the available input wires to learn
the output wire labels necessary to fully evaluate a single path through the circuit.

Garbled circuits can compute any function as a two-party secure computation, and
can be easily extended to support multi-party computation. The protocol provides secu-
rity in the semi-honest threat model, where each party is assumed to follow the protocol
as specified but attempts to learn additional information about the other party’s inputs
by observing the protocol execution. In Section 4, we consider approaches to making
garbled circuits protocols resilient to stronger adversaries.

Next, we provide background on the oblivious transfer protocols needed to exchange
inputs at the beginning of a garbled circuit protocol. Section 2.2 describes some impor-
tant improvements to the basic garbled circuit protocol that enable more efficient exe-
cution. Section 2.3 describes previous frameworks designed to make it easier to build
garbled circuit protocols.

2.1 Oblivious Transfer

An oblivious transfer protocol allows a sender to send one of a possible set of values to
a receiver. The receiver selects and learns only one of the values, and the sender cannot
learn which value the receiver selected. For example, a 1-out-of-2 oblivious transfer
protocol (denoted OT2

1) allows the sender, who has two bits b0 and b1, to transfer bσ to
the receiver, where σ ∈ {0,1} is kept secret to the receiver throughout the protocol. OT2

1
was first proposed by Even, Goldreich, and Lempel [12]. Naor and Pinkas developed an
efficient OT2

1 protocol based on Decisional Diffie-Hellman (DDH) hardness assump-
tion [44]. We use this technique in our implementation. Based on the random oracle

Efficient Secure Computation with Garbled Circuits 31

assumption, Ishai et al. devised a novel technique to reduce the cost of doing m OT2
1

transfers to k OT2
1, where k, (k � m), serves as a configurable security parameter [30].

2.2 Improvements

Several techniques have been developed to improve garbled circuit protocols. This sec-
tion describes a few of the most important enhancements.

The point-and-permute technique allows the circuit evaluator to identify the “right”
entry in a garbled truth table to decrypt [41], saving the evaluator from decrypting more
than one truth table entry. The basic idea is to assign an n-bit random string (say p =
p1 p2 . . . pn) for every garbled truth table with 2n entries. The random string determines
how the generator swaps the entries in the table (swapping every other 2 j consecutive
entries if p j = 1). For the i-th entry in the truth table, the generator sends an n-bit string
p′ = p′1 p′2 . . . p′n (where p′k = pk ⊕bk and b1b2 . . .bn is the binary representation of the
number i), which indexes the “right” entry for the evaluator to decrypt. Considering the
full truth table, revealing p′ does not leak anything about p, so the evaluator cannot
learn any extra information about p.

The free-XOR technique [35, 36] realizes all XOR gates by just XOR-ing the in-
put wire labels, without needing any encryption operations. Its security was origi-
nally proven in the random oracle model [36]. The idea is to select wire labels where
w1

i = w0
i ⊕R where R is a random nonce. This allows the XOR of two wire labels to

be computed by simply XOR-ing the wire labels, without requiring any encryption or
communication. Choi et al. proved that it is secure under a notion of circular correla-
tion robustness (which is weaker than the random oracle assumption), but is not secure
under a standard variant of the correlation robustness assumption [10].

The Garbled Row Reduction (GRR) technique reduces the size of a garbled table of
binary gates to three entries (saving 25% of network bandwidth) for all non-free gates.
This is achieved by simply assigning

w0
out = Encw0

in1
,w0

in2
(0)

where w0
out denotes the wire label representing 0 on the output wire while win1 and win2

denote the two input wires. This eliminates the necessity to transmit the encryption of
one particular entry in the table. This technique is composable with both the free-XOR
and point-and-permute techniques.

2.3 Frameworks

Without appropriate programming tools, programmers would have to spend a great deal
of tedious effort to build a privacy-preserving application using garbled circuits. Various
programming tools have been developed to automate parts of building secure compu-
tations. The most widely used garbled circuits framework is Fairplay [41], developed
by Malkhi et al. and extended by several subsequent papers. Fairplay is a compile-and-
interpret framework that automates the production of secure two-party computation ap-
plications. The main interface Fairplay exposes to programmers is a simple Algol-like

32 Y. Huang et al.

programming language called Secure Function Description Language (SFDL) that sup-
ports very limited primitive data types (boolean, sized int and enumerate), expres-
sions (addition, subtraction, comparison, and Boolean logical operations), and state-
ments (non-recursive functions, branches, and constant number iterative loops). SFDL
programs are compiled to a monolithic digital circuit which is interpreted by the server/-
client runtime environments for protocol execution.

Several subsequent frameworks have built upon Fairplay. FairplayMP [8] extended
the SFDL language to describe secure multi-party computations, using a circuit-based
technique for multi-party computation [5]. TASTY [26] extended Fairplay’s SFDL to
allow the programmer to specify where in the digital circuit to integrate some arithmetic
circuits (limited to addition and constant multiplication) that are realized by additive
homomorphic encryption schemes.

Although Fairplay and similar previous secure computation frameworks demon-
strated that it is feasible to automate building secure computing protocols, they also led
to the false impression that such protocols are unlikely to be useful in practice because
of their poor efficiency and scalability. Many researchers (e.g., [32, 47]) concluded that
the generic garbled circuit technique is not suitable for solving real world computational
problems, and instead developed custom solutions for particular problems [25, 32, 47].
In the next section, we argue that the efficiency and scalability problems attributed to
garbled circuits are not inherent in the protocol, but can be overcome by a more efficient
framework design.

3 Efficient Garbled Circuits Framework

There are two main reasons why secure computations implemented using Fairplay and
similar frameworks tend to be slow and unscalable. The first is that the design of Fair-
play requires that the entire circuit is constructed and stored in memory before evalu-
ation can begin. These circuits are huge since each gate requires a garbled table (three
encrypted values using the GRR technique) and gates may not be reused since that
would leak information. Users of Fairplay have found that the memory required to store
the garbled circuit prevents implementations from scaling to large inputs (as an exam-
ple, Jha et al. failed to compute the edit distance of two 200-character sequences due
to memory constraints thus concluded garbled circuit alone is not suitable for large cir-
cuits [32]). We address this problem by pipelining the generation and execution of the
circuit so there is no need to ever have the entire circuit in memory (Section 3.1).

The other main problem with the Fairplay approach is also its main advantage: com-
putations are represented as high-level, Algol-like programs. The problem with start-
ing from a high-level representation is that it prevents many important optimization
opportunities. Although it may one day be possible to automate these optimizations,
important optimizations are well beyond the capabilities of current tools. Our approach
is to adopt a circuit-level representation that enables both higher-level and lower-level
optimizations to greatly improve the efficiency of generated protocols (Section 3.2).

Section 3.3 provides details on our implementation, and Section 3.4 reports on results
for several applications.

Efficient Secure Computation with Garbled Circuits 33

3.1 Pipelined Circuit Execution

The primary limitation of previous garbled circuit implementations is the memory re-
quired to store the entire circuit in memory. For example, Pinkas et al.’s privacy-preser-
ving AES implementation involved 11,500 non-free gates [48], each of which requires
a garbled table of encrypted wire values. For problems like Levenshtein distance the
size of the circuit scales with the size of the input, so only relatively small inputs can be
handled.

There is no need, however, for either the circuit generator or circuit evaluator to ever
hold the entire circuit in memory. The circuit generating and evaluating processes of
different gates can actually be overlapped in time. In our framework, the processing
of the garbled truth tables is pipelined to avoid the need to store the entire circuit and
to save processing time. At the beginning of the evaluation, both the generator and
evaluator instantiate the circuit structure, which is known to both and fairly small since it
can reuse components just like a non-garbled circuit. Note that the process of generating
and evaluating the circuit does not (indeed, it cannot, because of privacy) depend on the
inputs, so there is no overhead required to keep the two parties synchronized.

Our framework automates the pipelined execution, so a user only needs to construct
the desired circuit. When the protocol is executed, the generator transmits garbled truth
tables over the network as they are produced, in an order defined by the circuit structure.
As the client receives the garbled truth tables, it associates them with the corresponding
gate. The client determines which gate to evaluate next based on the available output
values and tables. Gate evaluation is triggered automatically when all the necessary
inputs are ready. Once a gate has been evaluated it is immediately discarded, so the
number of garbled tables stored in memory is minimal. Evaluating larger circuits does
not substantially increase the memory load on the generator or evaluator, only the net-
work bandwidth needed to transmit the garbled tables.

3.2 Generating Efficient Circuits

Since pipelined execution eliminates the memory bottleneck, the cost of evaluating a
garbled circuit protocol scales linearly with the number of garbled gates. One way to
reduce the number of gates is to identify parts of the computation that only require
private inputs from one party. These components can be computed directly by that party
so do not require any garbled circuits. By designing circuits at the circuit-level rather
than using a high-level language like SFDL, users of our framework can take advantage
of these opportunities (for example, by computing the key schedule for AES locally and
transmitting it obliviously).

For the parts of the computation that involve private data from both parties so must
be done cooperatively, we exploit several opportunities enabled by our framework for
minimizing the number of non-free gates in our circuits.

Circuit Library. A programmer can create circuits using a library of basic circuits (e.g.,
comparator, adder, muxer, min) designed to make the best use of free-XOR techniques.
This serves as one solution to the more general goal of replacing expensive AND and
OR gates with XOR gates, which are free. Our goals are distinguished from conventional
hardware circuit design in that the latter aims to optimize circuits under a completely

34 Y. Huang et al.

different set of criteria, such as total number of gates, area, and power consumption.
Also, since each garbled gate can only be evaluated once, the reuse goals of hardware
circuit design do not apply to garbled circuits.

Minimizing Width. In garbled circuits, every bit of computation requires very expen-
sive operations. To improve performance, our circuits are constructed with the minimal
width required for the correctness of the programs. For example, if one wants to count
the number of 1’s in a 900-bit number, as is encountered in a face recognition appli-
cation, SFDL’s simplicity encourages programmers to write code that leads to a circuit
that uses 10-bit accumulators throughout the computation. However, narrower accumu-
lators are sufficient for early stages. The Hamming distance, Levenshtein distance, and
Smith-Waterman applications all take advantage of this technique. For example, this
technique reduces the cost for our Levenshtein distance protocol by about 20%.

Propagating Known Values. Our framework automatically propagates known wire
signals when the circuit is built. For example, given a circuit designed for Hamming
distance of 1024× 1024 vectors, we can immediately obtain a 900× 900 Hamming
distance circuit by fixing 248 of the 2048 input wires to 0. Because of the value prop-
agation, this does not incur any significant evaluation cost. As another example, all
the initial states (i.e., entries in the first row and the first column of the state matrix)
in both the Levenshtein and Smith-Waterman protocols are filled with known values
agreed upon by both parties. Hence, our circuit computes on known signals without any
needing any encryption.

Exploiting Wire Labels. The wire labels obtained during a garbled circuit evaluation
are normally treated as a worthless by-product of the evaluation, but can be used in
subsequent computations. In the garbled circuit evaluator’s perspective, the set of wire
labels computed are meaningless numbers, conveying no semantic information until the
last step. This property is bound to the rigorous definition of security for garbled circuit
technique. We exploit this fact to avoid garbled execution for many binary gates, in two
main ways:

– Backtracking. We used the wire labels in conjunction with permuted data struc-
tures to perform additional computation without leaking any information. For ex-
ample, the wire exiting each comparison sub-circuit in a tree-structured circuit for
determining the minimum value of a large set encodes the information about each
pairwise comparison. Thus, the wire labels obtained by the evaluator can be used to
very efficiently evaluate a backtracking tree created by the generator to obliviously
retrieve profile information associated with the minimum value found. In essence,
the labels are used as encryption keys that are combined to reveal profile informa-
tion. We use this technique in our fingerprint matching protocol [29] to obtain the
identity record associated with the closest matching fingerprint.

– Symbolic Execution. Recall that plain signals, occasionally or frequently, can ap-
pear in our hybrid circuit (especially when circuit executions of plain and garbled
signals are combined). In addition, since wire labels are unique, we can treat them
as ordinary distinct symbols. This insight allows us to do binary gate-level sym-
bolic execution which is free compared to garbled execution. When combined in
a large circuit, these gate-level simplfications can collapse many binary gates to

Efficient Secure Computation with Garbled Circuits 35

simple wire connections. For example, the initialization in Levenshtein and Smith-
Waterman algorithms specifies that a fraction of wire ports (corresponding to the
values of the first row and the first column) are bound to known signals, a fact that
can be exploited to eliminate many gates. Zahur et al. describes this technique in
more detail, as well as further opportunities for using higher-level symbolic execu-
tion techniques to speedup privacy-preserving applications when some data can be
revealed [54].

3.3 Implementation

Our framework is designed to enable programmers to define secure computations using
a high-level language while providing enough control over the circuit design to enable
efficient implementation. Users of our framework write a combination of high-level
(Java) code and code for constructing circuits. Users need not be cryptographic experts,
but are expected to be familiar with digital circuit design. Our framework and applica-
tions are available under an open source license from http://www.MightBeEvil.com.

Our framework core is about 1500 lines of Java code. The utility circuits comprise an
additional 700 lines for efficient implementations of common circuits (adders, muxers,
comparators, etc.). The small size of the framework enables it to be reasonably verified
to provide users with good confidence in the integrity of the protocol software imple-
mentation (although we have not yet attempted any formal verification of properties
of the framework implementation). Since both parties involved in a privacy-preserving
computation need to fully trust their software for protecting their secrets, this small
code base is essential in practice.

Figure 1 depicts a UML class diagram of the core classes of our framework. Concrete
circuits are constructed using their build() method. The hierarchy of circuits is organized
following the Composite design pattern [14] with respect to the build() method. Circuits
are constructed in a highly modularized way, using Wire objects to connect them all
together. The relation between Wire and Circuit follows a variation of the Observer pat-
tern (a kind of publish-subscribe) [14]. The main difference is that, when a wire w is
connected to a circuit on a port p (represented as a position index to the inputWires

array of the circuit), all the observers of the input port wire p are automatically be-
come observers of w. Moreover, the wire-to-wire propagation is done once at circuit
construction time (instead of circuit execution time), which yields about 15% speedup
in our experiments.

Subclasses of the SimpleCircuit abstract class provide the functions commonly re-
quired by any binary gates such as 2-to-1 AND, OR, and XOR. The AND and OR gates
are implemented using the standard garbled circuit technique, whereas the XOR gate
is implemented using the free-XOR optimization [36]. Our framework automatically
propagates known signals which saves the protocol run-time cost whenever any in-
ternal wires can be fixed to a known value. The binary circuits form the core of our
framework. To build a new application, users only need to create new subclasses of
CompositeCircuit.

To simplify building new composite circuits, the build() method of CompositeCircuit

abstract class is designed with the Factory Method pattern [14]. The code below shows
the general structure of the build() method:

http://www.MightBeEvil.com

36 Y. Huang et al.

Fig. 1. Core Classes in Framework

public void build() throws Exception {
createInputWires();
createSubCircuits();
connectWires();
defineOutputWires();
fixInternalWires();

}
To define a new circuit, a user creates a new subclass of CompositeCircuit that over-
rides the createSubCircuits(), connectWires(), and defineOutputWires() methods to define
a new circuit. In cases where internal wires have known values (e.g., the carry-in port
of an adder is fixed to 0), better performance is obtained if the user also overrides the
fixInternalWires() method.

3.4 Applications

We built several target applications using our garbled circuits framework to evaluate its
scalability and efficiency. Table 1 summarizes the results.

In privacy-preserving fingerprint matching [29], a client has a scanned candidate
fingerprint and the server has a database of fingerprint images with associated profile
information. The system does not reveal any information about the candidate finger-
print to the server, or about the database to the client, except the identity of the closest
match if there is a match within some threshold distance (or the non-existence of any
close match). We designed a bit-width minimizing circuit for finding the minimum
difference of the Euclidean distances (removing the random vector added in the ho-
momorphic encryption phase), and used a backtracking strategy to obliviously obtain
the associated profile information. Our fingerprint matching protocol combines an ad-
ditive homomorphic encryption phase used to compute Euclidean distances between

Efficient Secure Computation with Garbled Circuits 37

Table 1. Performance results for privacy-preserving applications

Application Best Previous Measurement Results Our Results Speedup
Fingerprint
Matching

Barni et al.
[2]

Closest Threshold Matcha 16s 1.5s 10.6a

Face
Recognition

SCiFI [47]
900-bit Hamming, Online 0.310s 0.019s 16.3

900-bit Hamming, Total 213s 0.05s 4176

Levenshtein
Distance

Jha et al.
[32]

100×100b 92.4s 4.1s 22.4

200×200c 534s 18.4s 29.0
Smith-

Waterman
Jha et al.

[32]
60×60 d 447s d

AES
Encryption

Henecka et al.
[26]

Online Time (per block) 0.4s 0.008s 50

Total Time (per block) 3.3s 0.2s 16.5

All results are for 80-bit wire labels and the security parameters for the extended OT protocol [30]
are (80,80). Our results are the average of 100 trials with the client and server each running on
a Intel Core Duo E8400 3GHz; the comparisons are with results reported in the cited papers,
using similar, but not identical, machines. a. Unlike our work, Barni et al. [2] cannot find the
best match but instead identifies all entries within some threshold. b. Protocol 1, a garbled-circuit
only implementation that is faster than Protocol 3, but does not scale to 200×200. c. Protocol 3,
a hybrid protocol (the flagship protocol of [32]). d. No meaningful comparison is possible here,
although our protocol is about twice as fast, since [32] implemented a simplified Smith-Waterman
protocol [28].

fingerprint vectors, and a garbled circuit phase for finding the closest match within ε .
For the other applications, we use only garbled circuit techniques.

The main operation in the privacy-preserving face recognition application is comput-
ing the Hamming distance between bit vectors representing face characteristics. Osad-
chy et al.’s results which use a combination of homomorphic encryption and 1-out-of-n
oblivious transfer, but are far slower than our generic garbled circuit approach. The
Levenshtein Distance (edit distance) and Smith-Waterman (genome alignment) appli-
cations use a dynamic programming algorithm. In the privacy-preserving setting, each
party has one of the input strings and they wish to compute the distance between the
two strings without revealing anything else about the input strings. In considering these
problems, Jha et al. concluded that garbled circuits could not because of the memory
blowup as the circuit size increases [32]. Our implementation is able to complete a
2000×10,000 Levenshtein distance problem on commodity PCs, evaluating more than
1.29 billion non-free gates in 223 minutes.

We also demonstrated generic garbled circuit based privacy-preserving applications
are even possible for mobile platforms, where memory and computing resources are
much more constrained [27].

4 Stronger Adversaries

The standard garbled circuits protocol, as implemented by the framework described
in the previous section, is secure against semi-honest adversaries who are required to

38 Y. Huang et al.

follow the protocol as specified but attempt to learn additional information about private
inputs from the protocol execution. Although the semi-honest model is very weak, it is
appropriate for some realistic scenarios such as when the result (including knowledge of
whether or not the protocol completed successfully) is only made visible to the circuit
evaluator and is not revealed to the circuit generator. In these scenarios, garbled circuit
protocols can provide strong privacy (but not correctness) guarantees even against an
arbitrary adversary so long as an oblivious transfer protocol that resists malicious ad-
versaries is used. When correctness guarantees are also needed, or when confidentiality
must be maintained even though the generator received the final output, the standard
garbled circuit protocol is not sufficient. Instead, a protocol that tolerates malicious
adversaries is required.

Section 4.1 discusses the possible attacks in the malicious model, and Section 4.2
surveys work on transforming semi-honest protocols to resist malicious adversaries.
We describe our approach to constructing garbled circuit protocols that provably tol-
erate malicious adversaries in Section 4.3, and we compare the asymptotic complexity
of our work and previous solutions in Section 4.4. Implementing protocols that can
resist stronger adversaries remains much more expensive than protocols in the semi-
honest model, but with improvements in both the underlying protocol implementations
and approaches for strengthening semi-honest protocols, secure computations that are
secure against strong adversaries are now feasible in practice for some problems.

4.1 Threats

The malicious model allows a protocol participant to deviate from the agreed protocol in
arbitrary ways. Such an adversary may compromise the privacy of the other participant’s
data, or tamper with the correctness of the result.

A malicious generator might construct a faulty circuit that discloses the evaluator’s
private input. For example, instead of producing a circuit that computes the agreed
upon function f (a,b), a malicious generator could secretly construct a garbled circuit
that computes f ′(a,b) �→ b, thus learning the second participant’s input directly.

A more subtle attack is selective failure [34, 42]. In this attack, a malicious genera-
tor uses inconsistent labels to construct the garbled gate and OT so that the evaluator’s
input can be inferred from whether or not the protocol completes. For example, a cheat-
ing generator may assign (w0,w1) to an input wire in the garbled circuit while using
(w0, ŵ1) instead in the corresponding OT where w1
= ŵ1. Consequently, if the evalua-
tor’s input is 0, she will get w0 from OT and complete the evaluation without noticing
any anomaly. In contrast, if her input is 1, she will get ŵ1 and be unable to complete
the evaluation properly. If the protocol expects the evaluator to share the result with the
generator at the end, the generator learns if the evaluation failed and information about
the evaluator’s input is leaked.

4.2 Previous Work

Many approaches have been proposed to transform a garbled circuit protocol that pro-
vides security in the semi-honest model into a protocol that provides security guarantees
in the malicious model. The two main approaches are cut-and-choose and commit-and-
prove.

Efficient Secure Computation with Garbled Circuits 39

Cut-and-Choose. One approach is to enforce honest behavior from malicious adver-
saries is for the generator to prepare multiple copies of the garbled circuit with indepen-
dent randomness, and the evaluator randomly chooses a fraction of the circuits, whose
randomness is then revealed. The evaluator aborts if any of the chosen circuits (called
check-circuits) are inconsistent with the revealed randomness. Otherwise, she evaluates
the remaining circuits (called evaluation-circuits) and takes the majority of the output
from evaluation-circuits as the final output.

The intuition is that in order to pass the check, a malicious generator will need to
keep the number of faulty circuits low, and the minority faulty circuits will be fixed
by the majority operation in the end. In other words, if a malicious generator wants to
manipulate the final output, she needs to construct faulty majority among evaluation-
circuits, and then the chance that none of the faulty circuits is checked will be negligible.

The cut-and-choose technique requires that the evaluator has a way to ensure that the
generator provides the same input for each evaluation circuit. Recall that the generator
also sends multiple copies of her input labels to the evaluator. A malicious generator
may provide altered inputs to different evaluation-circuits, and it has been shown that
for some functions, there are simple ways for the generator to extract information about
the evaluator’s input [38]. For example, suppose both parties agree to compute the inner-
product of their input, that is, f (a,b) �→ ∑n

i=1 aibi, where ai and bi is the generator’s and
evaluator’s i-th input bit, respectively. Instead of providing [a1, . . . ,an] to all evaluation-
circuits, the generator might send [d j

1, . . . ,d
j
n] to the j-th copy of the evaluation-circuits

where d j
j = 1, and d j

i = 0 if i
= j. The malicious generator then learns the majority bit
in the evaluator’s input, which is not what the evaluator agreed to reveal in advance. As
a result, we must ensure the generator’s input consistency.

Mohassel and Franklin [42] proposed the equality-checker scheme, which needs
O(ns2) commitments to be computed and exchanged to ensure the generator’s input
consistency, where n is the input size and s is a statistical security parameter that is the
number of copies of the garbled circuit. Lindell and Pinkas [38] develop an elegant
cut-and-choose based construction that enjoys the simulation-based security against
malicious players. This approach requires O(ns2) commitments to be computed and
exchanged between the participants. Although these commitments can be implemented
using lightweight primitives such as collision-resistant hash functions, communication
complexity is still an issue. Nielsen and Orlandi [45] proposed an approach with Lego-
like garbled gates. Although it is also based on the cut-and-choose method, via an align-
ment technique only a single copy of the generator’s input keys is needed for all the
evaluation-circuits. However, each gate needs several group elements as commitments
resulting both computational and communicational overhead. Lindell and Pinkas pro-
pose a Diffie-Hellman pseudorandom synthesizer technique [39]. Their approach relies
on finding efficient zero-knowledge proofs for specifically chosen complexity assump-
tions, which has complexity O(ns).

In summary, to enforce honest behavior from malicious adversaries based on the
cut-and-choose technique, we need to deter the faulty circuit, selective failure, and the
generator’s input inconsistency attacks.

40 Y. Huang et al.

Commit-and-Prove. Another well-known category to enforce honest behavior is called
commit-and-prove. This approach is first suggested by Goldreich, Micali, and Widger-
son [16], and only requires the weak general assumption of zero-knowledge proofs
of knowledge. However, it has never been implemented since it requires costly NP-
reductions.

Following the same idea, Jarecki and Shmatikov [31] presented an approach, in
which the generator is asked to prove the correctness of the garbled circuit in zero
knowledge before the evaluation starts. Although only one copy of the garbled circuit
is constructed, their protocol requires hundreds of heavy cryptographic operations per
gate, whereas approaches based on the cut-and-choose method require only such ex-
pensive operations for the input gates.

Recently, Nielsen et al. proposed a solution based on a variation of the commit-and-
prove approach [46]. They extended the GMW [16] protocol with a technique called
authenticated bits that have the property that only if the participants follow the agreed
protocol do the results remain authenticated. In other words, if a malicious participant
deviates from the agreed protocol, the other party will notice and then abort. Therefore,
if the final result remains authenticated, it constitutes a proof that both parties behaved
honestly. Although the GMW protocol requires many expensive OTs, Neilson et al.
manage to conquer this issue with OT extensions, and thus, their solution has good
amortized efficiency.

4.3 Our Approach

We tackle the selective failure attack by using a stronger notion of OT called committing
OT [34]. This notion requires that in addition to getting exactly one message of her
choice, the receiver of the OT (the evaluator of the garbled circuit protocol) also gets
the commitments to both of the sender’s messages. Later, the sender of the OT can post-
facto prove that she ran the OT correctly by revealing the randomness used in the OT
only for those OT instances corresponding to circuits that are opened for verification.

We solve the input consistency problem in an efficient manner by designing a way
to use weak witness indistinguishable proofs instead of zero-knowledge protocols (or
Σ -protocols). A witness-indistinguishable proof only makes the guarantee that the ver-
ifier cannot learn which witness the prover used during a proof. We design a special
witness-indistinguishable proof for an operation concerning claw-free functions that
have a weak malleability property to generate efficient instantiations of input con-
sistency proofs. Shelat and Shen provide details on the full protocol and its security
proof [50].

We note that both the committed-input scheme [42] and Diffie-Hellman pseudoran-
dom synthesizer technique [39] are special cases of our approach, and thus, have similar
complexity. However, the committed-input scheme is not known to enjoy simulation-
based security, and the pseudorandom synthesizer technique requires zero-knowledge
proofs that are unnecessary in this case. Our approach is faster than these works by a
constant factor.

Efficient Secure Computation with Garbled Circuits 41

4.4 Communication Complexity

To understand the costs of hardening a garbled circuit protocol against malicious adver-
saries, we compare the communication efficiency between protocols that use a mix
of light cryptographic primitives (such as commitments instantiated with collision-
resistant hash functions) and heavy ones (such as group operations that rely on alge-
braic assumptions like discrete logarithm). We consider asymptotic complexity under
reasonable assumptions about the growth of various primitives with respect to the secu-
rity parameter k:

1. light cryptographic primitives have size Θ(k);
2. heavy cryptographic operations, like elliptic curve operations, have size õ(k2); and
3. heavy cryptographic operations, like RSA or group operations over Z, have size

õ(k3).

We make the assumption since in certain elliptic curve groups, known methods for com-
puting discrete logarithms of size n run in time Ln(1, 1

2). Thus, to achieve security of 2k,
it suffices to use operands of size õ(k2), by which we mean a value that is asymptotically
smaller than k2 by factors of log(k).

Table 2 summarizes our asymptotic analysis. Let k be a security parameter and s be a
statistical security parameter, and let |C| be the number of gates in the base circuit. The
other protocols are:

– Jarecki and Shmatikov [31]: This is a commit-and-prove approach, so it does not
need to ensure input consistency. However, it requires hundreds of group operations
per gate in order to defend faulty circuit and selective failure attacks (with ZK
proofs). Since this protocol assumes the decisional composite residuosity problem
in an RSA group, each group element is of size õ(k3).

– Kiraz [33]: This approach is based on the cut-and-choose technique. So, it uses s
copies of the garbled circuit, each circuit has |C| gates, and each gate needs O(k)
for garbled truth table. Also, they use an equality-checker framework that requires
O(ns2) commitments to enforce the generator’s input consistency. As with our ap-
proach, they thwart the selective failure attack by using committing OTs.

– Lindell and Pinkas [38]: This is also a cut-and-choose-based approach. Each of the
generator’s input bits requires O(s2) light commitment for the consistency check.
To defend against the selective failure attack, it requires max(4n,8s) OT’s.

Table 2. Analysis of two-party secure computation against malicious adversaries

Communication
Base Circuit Generator’s Input Evaluator’s Input

JS07 [31] |C| · õ(k3) – n (committed) OT’s
Ki08 [33] Θ(|C| · sk) Θ(ns2k) n (committing) OT’s
LP07 [38] Θ(|C| · sk) Θ(ns2k) max(4n,8s) OT’s
LP10 [39] Θ(|C| · sk) Θ(ns) · õ(k2) n OT’s
Our work [50] Θ(|C| · sk) Θ(ns) · õ(k2) n (committing) OT’s

42 Y. Huang et al.

– Lindell and Pinkas [39]: This approach is similar to ours in finding a good balance
between approaches using many but lightweight primitives and approaches using a
few expensive group operations. This uses a technique called cut-and-choose OT to
handle the generator’s input inconsistency and selective failure attacks. However,
they rely on more specific cryptographic assumptions, and the unnecessary zero-
knowledge proofs incur constant factor overhead.

5 Fairness

Fairness is the property that either all parties receive the output, or no one does.1 None
of the protocols we have described so far provide any fairness properties. Fairness is
desirable in many circumstances:

– Coin-tossing protocols can be used to generate an unbiased coin. This can be
viewed as secure computation of a probabilistic functionality taking no inputs. If
fairness is not guaranteed, then one party might learn the value of the coin first and
then decide whether to abort the protocol based on the coin’s value.

– In a protocol for exchanging digital goods (such as using digital currency to pur-
chase a song) it would be unacceptable for the buyer to obtain the digital good
without also making the payment (or for the seller to receive the payment without
providing the digital good). Similarly, in exchange of digital signatures it is consid-
ered undesirable for one party to obtain the second party’s signature on a contract
without the second party simultaneously getting a copy of the first party’s signature
on the same contract.

More generally, we can imagine any scenario where learning the output — while pre-
venting the other party from learning the output — provides a competitive advantage.
Without a guarantee of fairness, parties in such a situation may be unwilling to even
participate in the protocol.

In fact, fairness can be ensured in the multi-party setting in the case when a majority
of the parties are guaranteed to remain honest [3, 16, 49]. (This assumes a broadcast
channel, or a mechanism such as a PKI that allows broadcast to be implemented.) In
case no honest majority can be assumed, it may seem obvious that fairness cannot be
ensured by the following argument (specialized to the setting of two-party computa-
tion): as the parties alternate sending messages of the protocol, surely one party must
learn their output first. If that party aborts immediately upon learning its output, then
the other party clearly does not learn its output.

Cleve [11] formalized this intuition, and showed that fair coin tossing is impossible in
both the two-party and multi-party settings (when an honest majority is not assumed).
This implies an analogous impossibility result for fair computation of the 1-bit XOR
function (since fair computation of XOR would immediately imply fair coin tossing).

Thus, secure computation without an honest majority (for malicious adversaries)
is typically defined relative to an ideal world in which fairness is not ensured at all.

1 We assume for simplicity in our discussion that all parties are supposed to receive the same
output, but everything we say generalizes to the case where different parties are supposed to
receive different outputs.

Efficient Secure Computation with Garbled Circuits 43

Specifically, the ideal world is taken to be one in which the parties send their inputs to
a trusted entity who computes the result and sends it back to the adversary only; the
adversary then sends either abort or continue to the trusted party. If she sends abort,
the honest parties receive nothing from the trusted party, while in the second case the
trusted party sends the honest parties the correct result.

Faced with Cleve’s impossibility result, researchers have explored several ways to
obtain some form of fairness:

1. Cleve’s impossibility result rules out fairness for one specific function, but does not
rule out fairness for every function. Might there be any non-trivial functions for
which fairness is possible? For over twenty years after Cleve’s result the answer
was assumed to be “no,” especially given how convincing the informal argument
against fairness seemed to be. It therefore came as somewhat of a surprise when
it was recently shown that there do exist non-trivial functions for which fairness is
possible. Section 5.1 surveys this work.

2. The standard definition of secure computation without an honest majority gives up
on fairness entirely. Instead, it seems preferable to define some notion of partial
fairness and design protocols achieving at least that. Section 5.2 discusses several
different notions of partial fairness.

3. Cleve’s impossibility result holds in the usual cryptographic model where the ad-
versary may behave in an arbitrarily malicious way. In some settings, however, it
may be reasonable to assume a rational adversary whose cheating is motivated by
some explicit utility function that the adversary is trying to maximize. Section 5.3
describes work on protocols that are designed to provide fairness against a rational,
but not malicious, adversary.

5.1 Complete Fairness for Specific Functions

Cleve showed one function for which fair secure two-party computation is impossible
without an honest majority, but did not show that fairness is impossible for all func-
tions. Indeed, functions that depend on only one of the parties’ inputs can be computed
with complete fairness. This class includes some interesting functionalities — zero-
knowledge among them — but still seems to miss the main difficulty of fairness in the
first place. Thus, the question becomes whether there are any functions that can be com-
puted with complete fairness that depend on more than one party’s inputs. The answer,
surprisingly, turns out to be yes. This has been shown in both the two-party [19] and
multi-party [21] settings.

Instead of presenting the technical details of the protocols here (see [19, 21]), we
explain informally how the two types of protocols shown by Gordon et al. [19] in the
two-party setting manage to circumvent the convincing intuition that “one party must
learn its output first, and can abort immediately after doing so to prevent the other
party from learning its output”. In the first type of protocol presented in [19], the round
in which a party learns its output depends on that party’s input. (This is in contrast
to standard protocols for secure computation where the output is always learned, by
both parties, in some fixed round.) In particular, simplifying slightly, if we number
the parties’ possible inputs x1, . . . ,x� then a party holding input xi learns the output in

44 Y. Huang et al.

round i. Thus, depending on the parties’ respective inputs, either party might learn the
output first. Moreover, on an intuitive level, an abort by a party (say, P1) in round i can
be viewed as a “signal” to the other party P2 that P1’s input was in fact xi; thus, even after
an abort by P1, party P2 can still compute the function using xi as P1’s input. That this
works is not immediate: for one thing, a malicious P1 can try to “fool” P2 by aborting in
round i+1, say. Nevertheless, it can be shown that this protocol does achieve complete
fairness for certain carefully constructed functions.

In the second type of protocol, parties also do not learn their outputs in some fixed
round. Instead, the round in which the output is revealed is chosen according to a ge-
ometric distribution; moreover, the parties do not learn definitively in which round the
output is revealed until the end of the protocol. (Slightly more formally, by the end of
the protocol they are guaranteed that, with all but negligible probability, they hold the
correct output.) Probabilities are balanced in such a way that even if one party aborts
early, and thus “knows more information” about the correct output than the other party
does, it doesn’t know how to use this extra knowledge to violate fairness. (The formal
proof of security shows that an aborting adversary can “learn the same information” in
an ideal world where early abort is not possible, possibly by changing its input.)

What is especially interesting about both protocols described above, is that the proofs
of fairness in each case boil down to information-theoretic arguments that do not rely on
cryptography. It is thus natural to conjecture that development of the right information-
theoretic tools will enable better analysis of fairness, and might help to resolve the main
open question that remains: to characterize those functions for which complete fairness
is possible.

5.2 Partial Fairness

Even given the work described in the previous section, we know that for certain func-
tions complete fairness is simply not possible. The standard approach is to give up on
fairness altogether. An better alternative is to instead define some notion of partial fair-
ness and attempt to design protocols that achieve that weaker notion.

There are at least two general approaches to partial fairness that date back to the
early 1980s (see [18, 22] for more detailed discussion). In one approach, a protocol
is constructed such that at every round both parties can recover their output using a
“similar” amount of work [12, 13, 15]. An unsatisfying feature of this approach is that
the decision of whether an honest party should invest the necessary work to recover the
output is not specified as part of the protocol but is instead decided “externally”. Such
protocols raise the risk of denial-of-service attacks by an adversary who aborts the
protocol early (if that would cause the honest party to then invest a significant amount
of work to recover the answer). Protocols of this sort also seem to require very strong
cryptographic assumptions.

A second approach [4, 17] can be viewed as designing a protocol in which both
parties gradually increase their “confidence” in the output (for example, by learning an
independent noisy version of the output in each round). It seems difficult to extend such
protocols to multi-bit outputs, or the case where parties are supposed to learn different
outputs. More problematic is that such protocols allow the adversary to significantly
bias the output of the honest party, thus violating correctness.

Efficient Secure Computation with Garbled Circuits 45

More recently, Gordon and Katz suggested another definitional approach that has
the advantage of remaining within the simulation-based framework of standard secu-
rity definitions [22]. The idea is to define partial fairness using the same ideal-world
model used to define complete fairness. However, rather than require that the real world
and ideal world be completely (computationally) indistinguishable, partial fairness is in-
stead defined by allowing the real and ideal worlds to be distinguishable by at most 1/p,
for an arbitrary polynomial p. Such a protocol is called 1/p-secure. The way to think
about this is that a 1/p-secure protocol is secure up to a (possible) 1/p “defect”. In
particular, fairness is guaranteed to hold except with probability (at most) 1/p.

Moran et al. showed how to construct a protocol for 1/p-secure coin tossing [43].
Gordon and Katz [22] showed how to construct 1/p-secure protocols in the two-party
setting for any function with polynomial-size domain or range. They also proved a
general impossibility result for functions without one of these requirements. Both of
these works have since been extended to the multi-party setting [6, 7].

5.3 Fairness with Rational Parties

Another approach for dealing with fairness is to explicitly model the adversary as ra-
tional, rather than arbitrary malicious as in most work in cryptography. In the context
of fairness, it is most natural to consider an adversary with the following utilities (spe-
cialized to the two-party case):

– The adversary prefers to learn the (correct) output of the function above all else.
– Assuming it learns the output of the function, the adversary prefers that the other

party does not learn the output.

Protocols that remain fair in the presence of adversaries with the above utilities were
first considered in the context of rational secret sharing [20, 24, 40]. More recently, the
model has been extended to fair secure two-party computation of general functionali-
ties. Asharov et al. [1] propose several equivalent definitions of the problem and show
a negative result, giving a function that cannot be computed fairly even if a rational
adversary is assumed. Subsequently, Groce and Katz [23] showed broad positive results
for this setting along with a partial characterization of when rational fair computation
is possible.

6 Conclusion

General secure computation techniques offer the promise of strong privacy guarantees
without the the need for a trusted third party. Until recently, however, such techniques
were largely viewed as a theoretical curiosity because of the high cost of implementing
them for real applications. Recent advances in both the theory and implementation of
generic garbled circuit protocols, however, make large-scale privacy-preserving appli-
cations a realistic possibility. Many challenges remain, especially to provide efficient
solutions against stronger adversaries and to provide fairness guarantees when needed,
but the promise secure computation offers to perform computation with private data
without compromising that data appears to be in reach.

46 Y. Huang et al.

Acknowledgments. The work described in this paper was partly supported by grants
from the National Science Foundation, DARPA, and a MURI award from the Air Force
Office of Scientific Research. The contents of this paper do not necessarily reflect the
position or the policy of the US Government, and no official endorsement should be
inferred. The authors thank Peter Chapman, Jiamin Chen, Yikan Chen, Michael Hicks,
Sang Koo, Benjamin Kreuter, Aaron Mackey, Steven Myers, Mona Sergi, and Samee
Zahur for their contributions to this project.

References

1. Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computa-
tion. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer,
Heidelberg (2011)

2. Barni, M., Bianchi, T., Catalano, D., Raimondo, M.D., Labati, R.D., Faillia, P., Fiore, D.,
Lazzeretti, R., Piuri, V., Scotti, F., Piva, A.: Privacy-preserving Fingercode Authentication.
In: ACM Multimedia and Security Workshop (2010)

3. Beaver, D.: Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority. Journal of Cryptology (1991)

4. Beaver, D., Goldwasser, S.: Multiparty Computation with Faulty Majority. In: 30th Sympo-
sium on Foundations of Computer Science (1989)

5. Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure Protocols. In: ACM
Symposium on Theory of Computing (1990)

6. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure Multiparty Computation Without Hon-
est Majority and the Best of Both Worlds. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 277–296. Springer, Heidelberg (2011)

7. Beimel, A., Omri, E., Orlov, I.: Protocols for Multiparty Coin Toss with Dishonest Majority.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557. Springer, Heidelberg
(2010)

8. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: A System for Secure Multi-party Com-
putation. In: ACM Conference on Computer and Communications Security (2008)

9. Brickell, J., Shmatikov, V.: Privacy-Preserving Graph Algorithms in the Semi-Honest Model.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg
(2005)

10. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.S.: On the Security of the “Free-XOR” Tech-
nique (2011), http://eprint.iacr.org/2011/510

11. Cleve, R.: Limits on the Security of Coin Flips when Half the Processors Are Faulty. In: 18th
Symposium on Theory of Computing (1986)

12. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Com-
munications of the ACM (1985)

13. Galil, Z., Haber, S., Yung, M.: Cryptographic Computation: Secure Fault Tolerant Protocols
and the Public-Key Model. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
135–155. Springer, Heidelberg (1988)

14. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley (March 1995)

15. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource Fairness and Com-
posability of Cryptographic Protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

16. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game, or a Completeness
Theorem for Protocols with Honest Majority. In: 19th Symposium on Theory of Computing
(1987)

http://eprint.iacr.org/2011/510

Efficient Secure Computation with Garbled Circuits 47

17. Goldwasser, S., Levin, L.A.: Fair Computation of General Functions in Presence of Immoral
Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93.
Springer, Heidelberg (1991)

18. Gordon, S.D.: Fairness in Secure Computation. Ph.D. thesis, University of Maryland (2010)
19. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-Party Com-

putation. In: 40th Symposium on Theory of Computing (2008)
20. Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.)

SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)
21. Gordon, S.D., Katz, J.: Complete Fairness in Multi-Party Computation Without an Honest

Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35. Springer, Heidel-
berg (2009)

22. Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer, Heidelberg (2010)

23. Groce, A., Katz, J.: Fair Computation with Rational Players (2011),
http://eprint.iacr.org/2011/396

24. Halpern, J., Teague, V.: Rational Secret Sharing and Multiparty Computation. In: 36th Sym-
posium on Theory of Computing (2004)

25. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with
Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

26. Henecka, W., Kogl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: Tool for Au-
tomating Secure Two-partY computations. In: ACM Conference on Computer and Commu-
nications Security (2010)

27. Huang, Y., Chapman, P., Evans, D.: Privacy-Preserving Applications on Smartphones. In:
USENIX Workshop on Hot Topics in Security (2011)

28. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster Secure Two-Party Computation Using Gar-
bled Circuits. In: USENIX Security Symposium (2011)

29. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient Privacy-Preserving Biometric Identifica-
tion. In: Network and Distributed System Security Symposium (2011)

30. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)

31. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg
(2007)

32. Jha, S., Kruger, L., Shmatikov, V.: Towards Practical Privacy for Genomic Computation. In:
IEEE Symposium on Security and Privacy (2008)

33. Kiraz, M.: Secure and Fair Two-Party Computation. Ph.D. thesis, Technische Universiteit
Eindhoven (2008)

34. Kiraz, M., Schoenmakers, B.: A Protocol Issue for The Malicious Case of Yao’s Garbled
Circuit Construction. In: 27th Symposium on Information Theory in the Benelux (2006)

35. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved Garbled Circuit Building Blocks
and Applications to Auctions and Computing Minima. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)

36. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Applica-
tions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Hei-
delberg (2008)

37. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. Journal of Cryptology 15(3) (2002)
38. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Pres-

ence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
52–78. Springer, Heidelberg (2007)

http://eprint.iacr.org/2011/396

48 Y. Huang et al.

39. Lindell, Y., Pinkas, B.: Secure Two-Party Computation Via Cut-and-Choose Oblivious
Transfer. Crypto ePrint Archive (2010), http://eprint.iacr.org/2010/284

40. Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in Multi-Party
Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer,
Heidelberg (2006)

41. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — A Secure Two-Party Computation
System. In: USENIX Security Symposium (2004)

42. Mohassel, P., Franklin, M.: Efficiency Tradeoffs for Malicious Two-Party Computation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–
473. Springer, Heidelberg (2006)

43. Moran, T., Naor, M., Segev, G.: An Optimally Fair Coin Toss. In: Reingold, O. (ed.) TCC
2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

44. Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: ACM-SIAM Symposium on
Discrete Algorithms (2001)

45. Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)

46. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A New Approach to Practical Active-
Secure Two-Party Computation. Crypto ePrint Archive (2011),
http://eprint.iacr.org/2011/091

47. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI: A System for Secure Face Iden-
tification. In: IEEE Symposium on Security and Privacy (2010)

48. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is
Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer,
Heidelberg (2009)

49. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Ma-
jority. In: 21st Symposium on Theory of Computing (1989)

50. Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adversaries. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidel-
berg (2011)

51. Yang, Z., Zhong, S., Wright, R.: Privacy-preserving Classification of Customer Data without
Loss of Accuracy. In: SIAM International Conference on Data Mining (2005)

52. Yao, A.C.: Protocols for Secure Computations. In: Symposium on Foundations of Computer
Science (1982)

53. Yao, A.C.: How to Generate and Exchange Secrets. In: Symposium on Foundations of Com-
puter Science (1986)

54. Zahur, S., Huang, Y., Evans, D.: Efficient Secure Computation over Partially-Secret Inputs
(2011), http://www.mightbeevil.com

http://eprint.iacr.org/2010/284
http://eprint.iacr.org/2011/091
http://www.mightbeevil.com

Defending Users against Smartphone Apps:

Techniques and Future Directions

William Enck

North Carolina State University
enck@cs.ncsu.edu

Abstract. Smartphone security research has become very popular in
response to the rapid, worldwide adoption of new platforms such as An-
droid and iOS. Smartphones are characterized by their ability to run
third-party applications, and Android and iOS take this concept to the
extreme, offering hundreds of thousands of “apps” through application
markets. In response, smartphone security research has focused on pro-
tecting users from apps. In this paper, we discuss the current state of
smartphone research, including efforts in designing new OS protection
mechanisms, as well as performing security analysis of real apps. We of-
fer insight into what works, what has clear limitations, and promising
directions for future research.

Keywords: Smartphone security.

1 Introduction

Smartphones are a widely popular and growing space of computing technology.
In Q2 2011, over 107 million smartphones were sold worldwide, accounting for
25% of mobile devices [34]. Smartphones provide an ultra-portable interface
to the Internet and the computational abilities to make it meaningful. Using
environment sensors such as GPS, cameras, and accelerometers, they enhance
everyday tasks with the wealth of information available from the Internet.

Fundamental to smartphones are applications, colloquially known as “apps.”
There were not many apps available for early smartphones, and hence adoption
was slow. In 2008, a perfect storm emerged: 3G connectivity finally became wide-
spread, handset technology provided “large” touch-screens and useful sensors
such as GPS and accelerometers, and the first application market, Apple’s App
Store, was created. While all of these factors were crucial, the application market
played potentially the most important role. There is a strong correlation, if not
causation, between the number of applications in Apple’s App Store and Google’s
Android Market and the rising dominance of iOS and Android.

Warnings of smartphone malware were early and succinct. In 2004, long be-
fore smartphones gained widespread popularity, Dagon et al. [19] and Guo et
al. [37] discussed the dangers of enhancing cellular phones with network and
computational power. These dangers derive from the very concept of a “smart”
phone. Users have come to trust their cellular phones, carrying them day and

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 49–70, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 W. Enck

night, and using them for personal and intimate conversations. Increasing code
functionality and diversifying its origin results in misplaced trust. It enables
eavesdropping and privacy violations. As we place more information and re-
liance on smartphones, they become targets for information and identify theft,
as well as denial of service attacks (e.g., battery exhaustion). Furthermore, their
connection to telecommunications networks opens potential for emergency call
center DDoS, voice spam, and other attacks on the network.

The initial smartphone security threats still exist, but smartphone malware
surveys [56,30] have reported trends that help focus attention. Smartphone mal-
ware is comprised primarily of Trojans, often designed to exfiltrate user infor-
mation or use premium rate cellular services (e.g., SMS). That is, smartphone
malware targets the user. Hence, this paper discusses available and proposed de-
fenses for the user against apps they choose to install. We focus on both malware
and grayware (i.e., dangerous functionality without provable malicious intent).

Current smartphone platforms have two promising characteristics not yet
common on PCs. First, protection policies isolated or sandbox applications by
default. Second, applications are frequently distributed via application markets,
providing centralized software management. To date, security certification has
only played a small role [43]; however, so called “kill switches” have proved
to be a valuable means of cleaning up affected devices. Regardless of current
implementations, opportunities exist to enhance the security of future markets.

In this paper, we survey research proposals for enhancing smartphone secu-
rity. We classify existing research into two categories: protection systems, and
application analysis. We overview proposals to enhance the existing smartphone
protection systems, discussing their benefits and limitations. We then consider
techniques for application analysis and their potential use in market-based se-
curity certification. In both areas, our goal is to highlight promising techniques
and help direct future research.

Much of this survey focuses on the Android platform, which has been the
platform of choice for researchers. This likely results because: 1) Android is open
source and widely popular, allowing researchers to build prototypes to validate
their ideas for real applications; and 2) Android is the only platform that allows
(and encourages) flexible communication between applications, which introduces
interesting security problems for study.

We begin our survey by discussing protections already in place by current
smartphone platforms. Next, we introduce and contrast proposals to enhance
these models. We then discuss approaches for analyzing applications to identify
dangerous behavior. We conclude by highlighting promising research directions.

2 Background

Shown in Figure 1, smartphones retrieve apps from application markets and run
them within a middleware environment. Existing smartphone platforms rely on
application markets and platform protection mechanisms for security. We now
overview protections currently implemented in popular platforms.

Defending Users against Smartphone Apps 51

Application
Market

Phone

App

Hardware
Baseband

Radio

Platform (Linux, Darwin)

Middleware (Android, iOS)

App AppApp

Fig. 1. Smartphone architecture

2.1 Application Markets

Finding and installing applications proved to be a major hurdle for users of
early smartphone platforms such as Symbian OS, RIM BlackBerry OS, and
Microsoft Windows Mobile, which required manual app installation. Using a PC
Web browser, the user navigates to a search engine or app aggregation website
to find and download an app, and then must connect a USB cable between the
PC and the phone to install the application.

Apple’s release of the App Store in 2008 triggered a surge in smartphone
popularity. Markets benefit developers by simplifying app discovery, sales, and
distribution. More importantly, markets benefit users by simplifying app discov-
ery, purchase, and installation. In fact, the simplicity and ease of use of this
one-click installation model has led to over 10 billion downloads in only a few
years [3], and was quickly adopted by all other major smartphone platforms.

Application markets can provide several types of security utility. First, they
can implement a walled-garden, where the market maintainers have exclusive
control over what applications users can install. Second, they can provide a
choke point for application security certification. Finally, they can provide remote
software management. We compare and contrast Apple’s App Store and Google’s
Android Market to demonstrate these features.

Apple currently implements the walled-garden model for iOS devices. In con-
trast, Android allows users to install applications from any source, including
additional application markets (e.g., the Amazon AppStore). This is often cited
as both a feature and security drawback. However, to install a non-Android Mar-
ket application, the user must change default settings. Most users leave default
settings, and therefore are restricted to the applications available in the An-
droid Market. Furthermore, the Android Market restricts what applications are
available based on the cellular provider and handset model. Initially, AT&T dis-
abled the ability for its Android devices to install applications from non-Android
Market sources, and effectively implementing a walled-garden.

Markets can also provide a choke point for security certification. A walled-
garden ensures this, but it is not necessary. If Android users use default settings,
they can also benefit. The level of security tests currently implemented is unclear.
Apple performs software tests, but they are not forthcoming to the extent of
which are for security. Google performs no testing of applications acceptance
into the Android Market; however, they have quickly removed malware when

52 W. Enck

identified by researchers [14]. Given recent discoveries of Android malware [30],
they likely perform some “unofficial” security analysis after acceptance.

Finally, markets can remotely manage software on handsets. Software man-
agement is a historically difficult challenge in desktop environments. Application
markets provide a balance of remote administration that allows users to feel like
they are in control, but can intervene when necessary. Google recently demon-
strated the value of this model when it not only remotely uninstalled malware
from handsets, but also pushed a security patch application that repaired changes
to the OS made by the malware [2]. By placing this ability in the market, it is
unclear whether users actually need antivirus software.

2.2 Platform Protection

In traditional desktop systems, OS protection policy is based on the user: appli-
cations run as the user and can access all the user’s files. In contrast, smartphone
OS protection policy is based on applications. By default, each smartphone ap-
plication is isolated, e.g., sandbox policies in iOS, and uids in Android.

Permissions. An isolated and unprivileged application has very limited func-
tionality. Therefore, smartphone platforms allow access to individual sensitive
resources (e.g., address book, GPS) using permissions. A permission is a form of
capability. However, unlike capabilities, they do not always support delegation.
Each platform uses permissions in slightly different ways. Au et al. [4] compare
the differences between the most prominent platforms.

There are two general types of permissions: time-of-use and install-time. A
time-of-use permission is approved by the user when the application executes a
sensitive operation, e.g., iOS’s prompt to allow an application access to location.
An install-time permission is approved by the user when the application is in-
stalled. For Android, this is the user’s only opportunity to deny access; the user
must accept all permission requests or not install the application.

Install-time permissions serve multiple purposes. They provide [31]: a) user
consent, b) defense-in-depth, and c) review triaging. Install-time permissions
provide defense-in-depth by defining a maximum privilege level, requiring an at-
tack on an application to additionally exploit a platform vulnerability to perform
tasks outside of the application’s scope. Studies have also found that applications
do not simply request every permission [6,31], making them valuable attributes
for security review triaging. For example, if an application does not have the
permission to access location, it cannot possibly leak location information [24].
Felt et al. [31] further discuss the effectiveness of install-time permissions.

Android permissions have two additional important characteristics. First,
permission levels restrict install-time approval; there are four levels: normal,
dangerous, signature, and signature-or-system. Only dangerous permissions are
presented to the user. Normal permissions are always granted and provide defense-
in-depth and review triage. Signature permissions allow application developers
to control permissions that provide access to exported interfaces. They are only

Defending Users against Smartphone Apps 53

granted to applications signed with the same developer key. Finally, signature-
or-system permissions are also granted to applications signed with the firmware
key (or installed in Android’s “/system” partition). Signature permissions are
primarily used to prevent third-party apps from using core system functionality.

The second characteristic is Android’s limited ability for permission delega-
tion. Permissions protecting exported database interfaces can be delegated to
other applications with row-level granularity (if allowed by the database, which
is not default). This allows, for example, an Email application to give an image
viewer application access to a specific attachment, but not all attachments.

Application Interaction. Currently, Android is the only platform that allows
flexible application communication. While Android is based on Linux, it has few
similarities to a traditional UNIX-based OS. The Android middleware bases ex-
ecution on components, not processes. By standardizing programing interfaces
between components, application developers can seamlessly transfer execution
between applications, and automatically find the best component and applica-
tion for a task. Several articles [28,13,17] overview component interactions and
security concerns, therefore, we restrict ourselves to the highlights.

Applications consist of collections of components. There are four component
types: activity, broadcast receiver, content provider, and service. Android forces
developers to structure applications based on the component types. Activity
components define the application’s user interface; each “screen” shown to the
user is a different activity component. Broadcast receiver components are mail-
boxes to system and third-party application events, often acting as long-term
callback methods. Content provider components are databases and are the pri-
mary way to share persistent data between applications. Finally, service com-
ponents are daemons that define custom RPC interfaces. Each component type
has standardized interfaces for interaction; one can, start an activity, broadcast
a message to listening receivers, and bind to a service. This interaction is based
on a primitive called an intent message. An important feature of intent messages
is the ability to address them to implicit destinations, called action strings. Simi-
lar to MIME types, the Android middleware uses action strings to automatically
determine which component or components should receive the intent message.

Android’s application model requires developers to participate in the phone’s
security. They must specify (or at least influence) the security policy that pro-
tects component interfaces. This security policy is based on permissions. The
Android platform defines permissions to protect itself, but developers may de-
fine new permissions. As discussed above, Android permissions are requested by
and granted to applications at install time. At runtime, components can interact
only if the caller application has the permission specified on the callee compo-
nent. Enck et al. [28] describe additional Android security framework subtleties.

Because Android relies on developers to specify security policy, applications
may introduce vulnerabilities for core system resources. Davi et al. [20] were the
first to discuss privilege escalation attacks on permissions (not to be confused
with attacks resulting in root privilege). They describe an attack on the Android
Scripting Environment (ASE) application. The ASE application is granted the

54 W. Enck

SEND SMS permission at install, and a malicious application is able to use the
Tcl scripting interface to send SMS messages to premium-rate numbers. This
scenario has also been discussed as a confused deputy attack, where a privileged
application cannot (or does not) check if a caller is authorized to indirectly invoke
a security sensitive operation [32,22].

3 Protection Mechanisms

Each smartphone platform defines a protection system to defend users against
dangerous functionality in applications. In the previous section, we discussed
permission-based protection policy. In this section, we discuss research proposals
for enhancing existing smartphone protection systems, as well as their limita-
tions, which often restrict practical deployment.

3.1 Rule Driven Policy Approach

The often-cited limitation of smartphone protection systems is insufficient policy
expressibility. To address this, researchers have proposed new policy languages
supporting their requirements and demonstrated how to integrate the new policy
language into their target operating system. However, to make full use of these
policy languages, system developers, application providers, and users need to
define an appropriate policy rule-set.

Ion et al. [39] were among the first to define an extended security policy frame-
work for mobile phones. They propose xJ2ME as an extension for J2ME based
mobile devices that provides fine-grained runtime enforcement. At the time, un-
limited data service plans were rare, and their policies focused on limiting the
consumption of network services (e.g., data, SMS, etc). While network service
use is still a security concern, unlimited (or practically unlimited, multi-GB)
data service plans reduce the need for such policies. Furthermore, determining
appropriate quotas for individual applications is not always straightforward, and
frequently must be defined by the end user.

Similar to this work, Desmet et al. [21] propose Security-by-Contract (SxC)
for the .NET platform to enhance Windows CE based phones. Conceptually,
SxC allows the user or application distributor to define a policy specifying how
an application should operate when it is run. The contract provides a distinct
advantage over simply signing “certified” applications, as the contract can be
customized for the target environment. These contracts are similar to the install-
time permission model later used by Android, but provide greater expressibility.
The contract policies specify allowed security related events, including access
and usage quotas for the file system, network, and screen. Similar to xJ2ME,
their motivating policies are difficult to define per-application.

The Kirin install-time certification system, proposed by Enck et al. [27], was
the first security policy extension for Android. Enck et al. observed that while
Android’s install-time permissions inform the user what an application can ac-
cess, they do not abstract the risk associated with specific combinations of

Defending Users against Smartphone Apps 55

permissions. Kirin uses both permissions and action strings listed in the ap-
plication’s package manifest to infer an upper bound on its functionality. Kirin
modifies Android’s application installer and can be used to prevent application
installation, or to display statements of risk (rather than permissions) at install-
time. Kirin is only as good as it’s rules, therefore, Enck et al. proposed and
followed a methodology based on security requirements engineering to define
rules to prevent different types of dangerous functionality. Unfortunately, Kirin
rules are limited by Android’s permission granularity, and therefore cannot ex-
press certain policies, e.g., differentiate network destinations. Furthermore, some
policies simply cannot be expressed at install-time, e.g., when an application
conditionally accesses a sensitive resource such as location.

Shortly after Kirin, Ongtang et al. [52] proposed Saint. Whereas Kirin focuses
on preventing malware, Saint focuses on providing more expressive security policy
constraints for developers. Saint policies allow application developers to declara-
tively specify incoming and outgoing interactions from the point of view of their
applications. It defines both install-time and runtime policies. Install-time policy
rules place dependency constraints on permissions requested by applications, e.g.,
based on other permissions, application names, signatures, and versions. More
valuable are runtime policies, for which Saint places reference monitor hooks
within Android’s middleware. The runtime policies specify both caller and callee
constraints based on permissions, signatures, configuration, and context (e.g., lo-
cation, time, etc). Providing both caller and callee policies allows an application
to protect who can use its interfaces, as well as declaratively (as opposed to pro-
grammatically) restrict on who it can interface with. Like other rule-based policy
frameworks, Saint’s usefulness is limited by desirable policies. Ongtang et al. moti-
vate Saint with a hypothetical shopping application that utilizes Android’s ability
to modularize functionality into separate applications. In follow on work [53], the
authors demonstrate Saint’s value by defining policies for several real applications
from the OpenIntents project.

Ongtang et al. [51] also proposed Porscha to enforce digital rights management
(DRM) policies for content. Porscha is specifically designed for Email, SMS,
and MMS, and allows content owners to specify access control policies that
restrict which applications can access the content, and under what conditions,
e.g., location and maximum number of views. To do this, Porscha creates a
shim in Android’s SMS and network communication processing to: 1) intercept
messages, 2) remove encryption that binds content to a specific device, and 3)
place the messages in restricted storage that enforce content policies. Porscha
provides valuable utility to enterprises and governments: the content sender can
ensure only trusted applications and read and process messages. However, there
is limited motivation to use Porscha for general user communication.

Several additional works have proposed fine-grained policies for Android.
Conti et al. [18] proposes CRePE, an access control system for Android that
enforces fine-grained policies based on context, e.g., location, time, tempera-
ture, noise, light, and the presence of other devices. Nauman et al. [47] propose
the Android Permission Extension (Apex), which allows users to select which

56 W. Enck

permissions an application is actually granted. Apex also supports dynamic poli-
cies, such as SMS sending quotas, and times of day that GPS can be read.

Finally, Bugiel et al. [10] propose XManDroid to mitigate permission privi-
lege escalation attacks in Android. XManDroid seeks to prevent both confused
deputy attacks and collusion between to applications (which cannot be detected
by Kirin). XManDroid tracks communication between components in different
applications as an undirected graph with application uids as vertices. System
services using the same uid are separated using virtual vertices. Policies restrict
component interaction based on communication paths and vertex properties. For
example, “an application that can obtain location information must not com-
municate [directly or indirectly with] an application that has network access.”
The major hurdle for XManDroid is defining useful policies that do not result
in excessive false alarms. Not all communication contains sensitive information,
and when it does, it may be desired by the user. Therefore, XManDroid needs
to define and maintain policy exceptions.

Observations. The obvious limitation of rule driven policy frameworks is the
definition and maintenance of the rules. When proposing new frameworks, re-
searchers must a) motivate the need for enhanced policy expressibility, and b)
discuss how new policies can be identified, defined, and maintained. If researchers
cannot identify a set of rules that require the full extent of the policy express-
ibility, they should reconsider the requirements. This aids model clarity and rule
specification. For example, the final Kirin policy language [27] is significantly
simpler than the original proposal [26].

Motivating policy expressibility is difficult when it is designed to address
application-specific needs. In such cases, researchers should survey real appli-
cations to motivate several scenarios in which the enhanced policy is needed.
Ideally, existing applications will motivate the policy expressibility. However,
Android applications have been slow to adopt the platform’s “applications with-
out boundaries” mentality, and mostly operate in isolation. Therefore, proposals
such as Saint must use mostly hypothetical scenarios. Anecdotally, this trend is
changing, thereby allowing better motivating examples.

Policy definition and maintenance is a difficult. New proposals often gloss
over the fact that their system will require users to define appropriate policy.
Simultaneously useful and usable policy systems are very difficult to create.
This is likely the reason Android’s existing protection system strikes a balance
between security and usability. In general, more specific rules often result in
fewer exceptions, but require more upfront work, whereas more general rules
require less upfront work, but result in more exceptions.

3.2 High-Level Policy Approach

Traditional OS protection systems such Bell-LaPadula [7] and Biba [9] define se-
curity with respect to information flow control. These approaches label processes
and resources and define a mathematical specification for label interaction, e.g.,

Defending Users against Smartphone Apps 57

“no write down,” “no read up.” Such approaches allow proofs of high-level se-
curity guarantees and policy correctness. In contrast, it is difficult to show that
a rule driven policy is complete or correct.

Mulliner et al. [45] propose a process labeling model for Windows CE smart-
phones. Their goal is to prevent cross-service attacks, e.g., to prevent an exploit
of a WiFi application from making phone calls. To do this, they assign labels to
sensitive resources, e.g., Internet and telephony. When a process accesses a sen-
sitive resource, the resource label is added to the process label (i.e., high-water
mark). The system policy defines sets of incompatible labels based on high-level
goals of preventing service interaction. An additional rule-set is required to define
exceptions to the label propagation model.

A common high-level security goal for smartphones is isolation between busi-
ness and personal applications. Isolation is achieved by defining two security
domains (e.g., personal and business) and not allowing information flows be-
tween domains. OS virtualization provides a natural method of achieving this
goal, e.g., run one OS instance for personal apps, and one for business apps.
VMware provides a mobile solution [59]; however, it runs the business security
domain as a hosted VM inside of the personal OS security domain. This slightly
skewed threat model is a result of usability requirements: employees take their
phone to the corporate IT for business VM installation. In contrast, Motorola
is investigating bare metal hypervisors for mobile phones [36], which provide
stronger security guarantees. Similarly, Lange et al. [41] propose the open source
L4Android project, which uses an L4-based hypervisor.

Isolation between security domains can also be implemented within the OS.
Bugiel et al. [11] propose TrustDroid, which provides lightweight domain iso-
lation in Android. TrustDroid is extensible to many security domains, but is
motivated with three: system, trusted (third-party), and untrusted (third-party).
To allow system operation, TrustDroid allows interaction between the system
domain and both trusted and untrusted domains. The policy prevents interac-
tion between trusted and untrusted. To ensure an untrusted app cannot route
through a system app to attack a trusted app, TrustDroid modifies system con-
tent provider and service components to enforce the isolation policy. By shifting
the isolation mechanism within the OS, TrustDroid reduces the processing and
memory overhead of running two separate operating systems. It also allows the
user to consolidate common resources such as the address book. In the virtual-
ized OS environment, the user must maintain two copies of such resources.

High-level policies have also been proposed to prevent confused deputy attacks
in Android. Felt et al. [32] propose IPC Inspection to determine if an applica-
tion should indirectly access a sensitive operation. IPC Inspection gets its name
from Java Stack Inspection, which inspects the call stack for unprivileged code.
However, its runtime logic has similarities to low-water mark Biba [9] in that it
reduces the effective permission set on an application based on the permissions
of the applications that invokes its interfaces. That is, if app A accesses app
B, B’s effective permissions will be reduced to the intersection of A and B’s
permissions. Similar to low-water mark Biba, over time, B’s permissions will be

58 W. Enck

reduced to ∅, therefore, IPC Inspection uses poly-instantiation of applications
to reset permissions. Unfortunately, IPC Inspection fundamentally changes the
semantics of an Android permission, assigning it transitive implications. This
change is incompatible with applications that modularize functionality. For ex-
ample, the Barcode Scanner application has the CAMERA permission to take a
picture and return the encoded text string. Normally, the application that calls
Barcode Scanner does not need the CAMERA permission, nor does it need to read
directly from the camera. However, IPC inspection requires the caller application
to have the CAMERA permission, thereby moving away from least privilege.

IPC Inspection assumes application developers do not properly check caller
privilege. However, the challenge is determining the context in which the call
originated. To address this, Dietz et al. [22] propose Quire, which records the
provenance of a chain of IPC invocations. This approach provides an access
control primitive for application developers rather than an enforcement model.

Observations. Android’s permission-based protection system is rule driven,
therefore, one must understand the semantics of individual permissions to un-
derstand the global policy. Android permissions are non-comparable and hence
cannot be arranged in a lattice, nor are they intended to be transitive. Be-
cause of this, high-level policy approaches based entirely on Android permissions
will inherently result in many policy exceptions. Permissions can make excellent
security hints, if their semantics and limitations are kept in mind. Sensitive
information is increasingly application-specific and introduced by third-party
applications (e.g., financial). Therefore, application developers must contribute
to the global protection policy.

3.3 Platform Hardening

Most smartphone functionality occurs within a middleware layer. This simplifies
the underlying platform and allows application of traditional platform hardening
technologies. As a result, mandatory access policies can be simpler. For exam-
ple, Muthukumaran et al. [46] design a custom SELinux policy for OpenMoko
to separate trusted and untrusted software. Shabtai et al. [57] describe their
experiences porting SELinux to Android, and create a custom SELinux policy.
However, they use targeted mode, whereas a strict mode would provide stronger
holistic guarantees. Finally, Zhang et al. [60] apply SELinux to a generic Linux
phone to provide isolated security domains consistent with the TCG’s Trusted
Mobile Phone specification.

Integrity measurement and remote attestation have also been applied to smart-
phones. The Muthukumaran et al. [46] SELinux-based installer was designed to
support the policy reduced integrity measurement architecture (PRIMA). Simi-
larly, Zhang et al. [61] discuss an efficient integrity measurement and attestation
for the LiMo platform. Finally, Nauman et al. [48] provide integrity measurement
of Android applications for enterprises and to prevent malware.

Defending Users against Smartphone Apps 59

Observations. Device security relies on its trusted computing base (TCB),
therefore platform hardening is an important component for smartphone secu-
rity. However, enterprises and users should keep in mind that while SELinux
and remote attestation help security, it is a building block. The most significant
challenges lie in defining application-level security policies.

3.4 Multiple Users

Smartphone platform designs assume there is one physical user. This simplifies
protection systems and allows them to focus on applications. However, users
occasionally lend their phone in social situations. Karlson et al. [40] studied how
users of different smartphone platforms lend their phone to other physical users.
Their findings motivate a reduced-capability guest profile. Liu et al. [42] report
similar findings and propose xShare, a modification of Windows Mobile that
creates “normal” and “shared” modes. Finally, Ni et al. [49] propose DiffUser
for Android. DiffUser expands a phone from a single user model to one that has
three classes: administrative users, normal users, and guest users.

Observations. The studies confirm our intuition: users sometimes share their
smartphones with friends for whom “full access” is undesirable. We will likely see
many proposals claiming to have “the solution.” Fundamentally, this problem
requires user participation, unless the phone can reliably predict which applica-
tions the owner would like the current physical user to access (e.g., Web browser
and games, but not Email, except when the user needs to share an Email). As
existing proposals have shown, modifying a platform to provide a “guest mode”
is not terribly complex. Therefore, future research must demonstrate usability.

3.5 Faking Sensitive Information

Studies [24,23,25] have identified many smartphone applications leaking phone
identifiers and location to servers. In response, Beresford et al. [8] propose pro-
viding fake or “mock” information to applications. Their system, MockDroid,
returns fake fixed values for location and phone identifiers. MockDroid also fakes
Internet connections (by timing out connections), intent broadcasts (by silently
dropping them), and SMS/MMS, calendar, and contacts content providers (by
return “empty” results). To enable fake data, users must configure “mocked per-
missions” for each application. TISSA, proposed by Zhou et al. [62], has a simi-
lar design with slightly greater flexibility, allowing users to choose from empty,
anonymized, or fake results for location, phone identity, contacts, and call logs.
Finally, Hornyack et al. [38] propose AppFence. In addition to substituting fake
data for phone identifiers and location, AppFence uses TaintDroid [24] (discussed
in Section 4) to block network transmissions containing information specified by
the user to be used on-device only. AppFence also uses “salted” phone identi-
fiers, which are guaranteed to be unique to a specific application and phone, but
different between applications on the phone. This technique allows application
developers to track application usage without compromising user privacy.

60 W. Enck

Observations. Transparently incorporating fake information is an elegant way
to get around the Android’s limitation of not allowing users to deny specific
permissions to applications. While permission selection is trivial to implement,
it will likely break many existing applications, and therefore is unlikely to be
included in the official Android distribution. A second argument against permis-
sion selection is usability. Proposals to insert fake information have the same, if
not worse, usability limitations. Nonetheless, there is user demand for more con-
trol over privacy sensitive information. Finally, there are hidden consequences to
faking sensitive information. Many suspect privacy sensitive values are the basis
of an advertisement and analytics economy. Restricting privacy values may in
turn increase the monetary cost of applications.

4 Application Analysis

As discussed in Section 2, application markets are the primary means of deliver-
ing applications to end users. Hence, they can be used as a security choke-point
for identifying malicious and dangerous applications. One difficulty of using mar-
kets in this manner is a lack of a common definition for “unwanted” applications.
Markets quickly remove malicious applications. However, malicious intent is not
always clear. Should a market remove applications meant to monitor (i.e., spy
on) children? Should an open market, e.g., the Android Market, remove applica-
tions that exploit system vulnerabilities to provide the user desired functionality?
Beyond this, there is a class of dangerous functionality that many reputable ap-
plications include, specifically disclosing privacy sensitive information such as
geographic location and phone identifiers without informed consent by the user.

There are limits to the security protections that can be provided by mar-
kets [43]. However, recent advancements in application analysis are moving
towards more automated certification. In this section, we discuss several ap-
proaches for identifying malware and grayware (i.e., dangerous apps without
provable malicious intent).

4.1 Permission Analysis

Permissions articulate protection policy, but they also describe what an appli-
cation can do once installed. As described in Section 3, Enck et al. [27] were
the first to use Android permissions to identify dangerous functionality. Kirin
breaks dangerous functionality down into the permissions required to perform it.
If an application does not have a requisite permission, the attack cannot occur
(without exploiting a vulnerability). Enck et al. used Kirin to study 311 top free
applications across different Android Market categories. Their rules flagged 10
applications, 5 of which were questionable after reviewing their purpose.

Following this work, Barrera et al. [6] performed permission analysis of the
top 50 free applications of every category of the Android Market (1,100 apps
in total). They report an exponential decay in the number of applications re-
questing individual permissions, i.e., many applications request only a small set

Defending Users against Smartphone Apps 61

of permissions. Barrera et al. also use Self Organizing Maps (SOM) to analyze
permission usage. SOM maps the highly dimensional permission space onto a 2-
dimensional U-matrix, allowing visual inspection of application permission use.
They use heat-maps to show permission frequency in the cells, generating a U-
matrix for each permission. By comparing U-matrices for different permissions,
one can identify permissions that are frequently requested together. Barrera et
al. also labeled cells with categories using a winner-take-all strategy. That is, if
most applications mapped to a cell are from the “Multimedia” category, then
that cell is marked as “Multimedia.” However, their findings do not indicate any
correlation between categories and permission requests.

Finally, Felt et al. [31] studied the effectiveness of Android’s install-time per-
missions. They considered 100 paid and 856 free applications from the Android
Market. Similar to Barrera et al., they found that most applications request
a small number of permissions. They also analyzed the frequency of permis-
sion requests, comparing free and paid apps. The INTERNET permission is by
far the most frequently requested. They also found that developers make obvi-
ous errors, e.g., requesting non-existent permissions. In follow on work, Felt et
al. [29] create a mapping between Android APIs and permissions and propose
the Stowaway tool to detect over-privilege in applications. Note that to do this,
Stowaway performs static analysis of applications (discussed below). Felt et al.
report the 10 most common unnecessary permissions, the top 2 of which are
ACCESS NETWORK STATE and READ PHONE STATE.

Observations. Permissions are valuable for performance efficient security anal-
ysis, but they do not tell the whole story. The Android platform developers made
security and usability trade-offs when defining permissions, and many researchers
have noted granularity issues. For example, the READ PHONE STATE permission is
used to protect the APIs for both determining if the phone is ringing and for re-
trieving phone identifiers. This leads to ambiguity during permission analysis. A
second culprit of ambiguity is the INTERNET permission: most applications do not
need access to all network domains. However, unlike READ PHONE STATE, making
INTERNET more granular is nontrivial in Android, as enforcement is performed
in the kernel based on a gid assigned to applications. At this enforcement point,
the DNS name is no longer available. That said, to date, Android application
developers are not significantly over-requesting permissions, which leaves some
potential for identifying dangerous applications by their permissions. However,
studies indicate considering permissions alone is limited, and they are likely best
used to steer dynamic and static analysis.

4.2 Dynamic Analysis

Researchers began with permission analysis because application source code was
not available. The next step in studying applications is dynamic analysis, i.e.,
watching applications run. Dynamic analysis can help resolve ambiguity in per-
mission granularity. It also resolves configuration dependencies. For example, the

62 W. Enck

Kirin study identified applications that only send geographic location informa-
tion to a network server if the user changes a default configuration.

Enck et al. [24] propose TaintDroid to identify when applications send privacy
sensitive information to network servers. To do this, TaintDroid uses dynamic
taint analysis, also known as taint tracking. This technique marks information
at source APIs when its type is unambiguous. Smartphones have many such
sources, e.g., location, camera, microphone, and phone identifiers. Next, the taint
tracking system automatically propagates the markings on some granularity, e.g.,
individual instructions: a = b+ c. Enck et al. modified Android’s Dalvik VM to
perform instruction-level taint tracking. They also integrate the taint tracking
into the broader system using coarser granularities, e.g., files and IPC messages.
Finally, at a taint sink, the taint tracking system inspects markings on API
parameters and performs a policy action. TaintDroid uses the network APIs as
taint sinks and logs the event if a taint marking exists in a data buffer. Enck et
al. used TaintDroid to study 30 popular applications from the Android Market
and found 15 sharing location with advertisers and 7 sharing phone identifiers
with remote servers, all without the users knowledge.

TaintDroid has several limitations, discussed in the paper. First, TaintDroid
can only identify that privacy sensitive information has left the phone, and not if
the event is a privacy violation. Determining a privacy violations requires knowl-
edge of (a) if the user was aware or intended it to occur (there are many desirable
location-aware applications), and (b) what the remote server does with the value.
Most researchers and users are only capable of identifying (a), therefore leak-
ing information without the user’s knowledge has generally been considered a
privacy violation. Second, TaintDroid only tracks explicit flows. Therefore, a
malicious developer can use implicit flows within an application to “scrub” taint
markings from variables. However, such actions are likely identifiable using static
analysis and draw attention to developers for attempting to hide their tracks.

The TaintDroid analysis framework was made open source and subsequently
used by several researchers. MockDroid [8] and TISSA [62] (discussed in Sec-
tion 3.5) use TaintDroid to evaluate their effectiveness. AppFence [38] (also dis-
cussed in Section 3.5) adds enforcement policies to TaintDroid. The authors also
study additional applications and characterize privacy exposure. Finally, Gilbert
et al. [35] extend TaintDroid to track specific types of implicit flows and discuss
approaches for automating application analysis. They find that random inputs
commonly get “stuck” in parts of applications’ UI. Therefore, they use concolic
execution, switching between symbolic and concrete execution as necessary.

Observations. Dynamic analysis identifies what actually happens when an
application is run. Static analysis (discussed next) cannot capture all runtime
configuration and input. For example, the AdMob SDK documentation [1] indi-
cates it will only send location information if a configuration value is set in the
application’s manifest file. Furthermore, applications can download and execute
code, which is not available for static analysis. However, dynamic analysis is
limited by scalability. As discussed by Gilbert et al. [35], generating test inputs
is hard. Finally, any automated analysis is limited in its ability to understand

Defending Users against Smartphone Apps 63

user intentions. Ideally, automated privacy analysis should only raise alarms for
privacy violations. Researchers seeking to scale tools such as TaintDroid must
attempt to characterize identified leaks.

4.3 Static Analysis

Static program analysis can be done with or without source code. Egele et al. [23]
propose PiOS to perform static taint analysis directly on iOS application bina-
ries. PiOS reconstructs control flow graphs from compiled Objective-C, which
is nontrivial because object method invocation is funneled through a single dis-
patch routine. Interestingly, Egele et al. found that iOS’s handling of user in-
teractions disrupts the control flow in the CFG. Therefore, to identify potential
privacy violations, PiOS uses control flow analysis on the CFG, followed by data
flow analysis to confirm information reached the sink. Egele et al. use PiOS
to study 825 free applications form Apple’s App Store, and 582 applications
from Cydia’s BigBoss repository. They find that more than half leak the pri-
vacy sensitive device ID without the user’s knowledge. They also report a strong
penetration of ad and analytics libraries.

Android researchers have also performed static analysis of low-level repre-
sentations. Chin et al. [17] propose ComDroid, which operates on use disassem-
bled DEX bytecode. ComDroid identifies vulnerabilities in Intent communication
between applications, including: broadcast theft, activity hijacking, service hi-
jacking, malicious broadcast injection, malicious activity launch, and malicious
service launch. Chin et al. used ComDroid to analyze 50 popular paid and 50
popular free applications, manually inspecting the results of 20. In these 20 appli-
cations, they found 34 exploitable vulnerabilities. Other tools developed by this
group, including IPC Inspection [32] and Stowaway [29] (discussed above), build
upon ComDroid. However, working directly on DEX bytecode is difficult. As
noted in the ComDroid paper [17], its control flow analysis follows all branches,
which can result in false negatives.

In contrast, Enck et al. [25] propose ded to reverse Android applications to
their original Java form, for which sophisticated static program analysis tools
already exist. Reversing DEX bytecode to Java bytecode is nontrivial: the JVM
is stack-based while the DVM is register-based; DEX inserts scalar constants
throughout the bytecode, and most importantly, DEX loses the type seman-
tics of scalars in several important situations. Using ded, Enck et al. decompile
1,100 popular applications and perform a breadth of security program analy-
sis. They target both dangerous functionality and vulnerabilities using custom
rules specified for the Fortify SCA framework and follow the program analysis
with substantial manual inspection of results. In doing so, they report many
observations that provide insight into how Android applications are developed.
Overall, their findings were similar to previous privacy studies, and echo con-
cerns with Intent APIs. Similar to the iOS study [23], Enck et al. also found a
strong penetration of ad and analytics libraries.

64 W. Enck

Finally, researchers modeled Android component interaction using source code
analysis. Chaudhuri [15] proposes a formal model for tracking flows between
applications using permissions as security types. In follow-on work, Fuchs et
al. [33] propose SCanDroid for automated application certification using the
WALA Java bytecode analysis framework. However, using permissions as the
basis of security type analysis in Android is limited, since most permissions are
non-comparable and cannot be partially ordered. SCanDroid was proposed be-
fore ded was available, and therefore was only evaluated against open source
applications. Moving forward, combining SCanDroid’s formal model and anal-
ysis tools with the motivations of ComDroid [17] and IPC Inspection [32] and
applying it to code recovered by ded has potential for more accurate results.

Observations. Static code analysis of Android applications is not as simple
as one might initially think. While Fortify SCA was useful, Enck et al. [25]
found that custom tools are required to overcome analysis hurdles created by the
Android middleware. For example, component IPC must be tracked through the
middleware, the middleware API has many callbacks that indirectly use IPC,
and APIs frequently require depend on variable state (e.g., the address book
content provider authority string). Additionally, researchers should continue to
look beyond privacy analysis. While static analysis can scale the identification of
potential privacy leaks, their existence is well known. The challenge for privacy
leak analysis is automatically determining if the leak was desired.

4.4 Cloud-Based Monitoring

Early smartphone security analysis monitored application behavior from the
cloud. Cheng et al. [16] propose SmartSiren, which sends logs of device activity,
e.g., SMS and Bluetooth, to a server for aggregate analysis to detect virus and
worm outbreaks. Oberheide et al. [50] use virtualized in-cloud security services
provided by CloudAV for SMS spam filtering, phishing detection, and central-
ized blacklists for Bluetooth and IP addresses. Schmidt et al. [55] send device
features such as free RAM, user activity, process count, CPU usage, and number
of sent SMS messages to a central server for intrusion detection analysis. A sim-
ilar approach is taken by Shabtai et al. [58] in their “Andromaly” proposal for
Android. Portokalidis et al. [54] propose “Paranoid Android,” which creates a
clone of an Android phone in the cloud. A proxy sits in the network so that the
network traffic does not need to be uploaded to the server from the phone, and
they use “loose synchronization” to only send data when the user is using the
device (to safe energy). Finally, Burguera et al. [12], propose Crowdroid, which
crowd-sources intrusion detection based on syscalls used by applications.

Observations. Before all of this work, Miettinen et al. [44] discussed the limita-
tions of network based intrusion detection for malicious behavior in smartphones.
Their arguments include: (1) administrational boundaries, (2) technical bound-
aries (e.g., network connection), and (3) conception limitations (e.g., attacks to

Defending Users against Smartphone Apps 65

local storage not in view of network). While sending logs and virtualization
address (3), the former to remain valid. Specifically, Miettinen et al. discuss the
need to ensure that systems do not expose private data to the cloud services. It
is unclear what level of privacy and administrative control users are willing to
lose in order to gain security. As mentioned in Section 2, application market kill
switches and software management strike a careful balance.

5 Additional Research Directions

In Sections 3 and 4, we discussed existing research proposals, their limitations,
and concluded each discussion area with potential enhancements and future
directions. In this section, discuss several additional areas with promise. None
of these areas are new for computer security, and each has inherent limitations.

Application Discovery. There are hundreds of thousands of applications avail-
able for iOS and Android, many of which are practically useless and duplicates
of one another. When searching for a new application, the user has to balance
a) price, b) functionality, c) aesthetics, and d) security (and security is unfortu-
nately often the last consideration). Recommendations are often made via word
of mouth, but social search will likely soon emerge. Review services such as
Consumer Reports have addressed the first three criteria for decades. As dis-
cussed in Section 4, there is no one-size-fits-all criteria for security and privacy.
Users have different requirements, particularly when privacy is concerned. One
potential model is to use Kirin [27] rules to influence security ratings. To be
successful, security reviews need to be integrated into application discovery user
interfaces, e.g., application markets. Along these lines, Barrera et al. [5] propose
Stratus to consolidate multiple application markets, which can address malware
opportunities that arise when bargain shoppers compare prices between markets.

Modularity and Transitivity. Android allows developers to be compartmen-
talize functionality into multiple applications. This has several advantages: 1)
it supports least privilege, 2) it creates boundaries that allow OS mediation,
and 3) it simplifies application analysis by defining distinct purposes for ap-
plications. Advertisement and analytics functionality is an immediate and real
example of where compartmentalization can benefit security. Often, applications
only require Internet access to support ads or analytics. Splitting off this func-
tionality reduces the privilege needed by applications and allows certification
tools to focus on ad and analytics functionality. However, as noted by several
researchers [20,32,22], separating functionality into applications can result in
privilege escalation attacks, because Android’s permissions are not transitive.
Unfortunately, as discussed in Section 3.2, making permissions transitive is not
a practical solution. Therefore, a new security primitive may be required.

Security via UI Workflow. Security policies are difficult for users to under-
stand, and there have been many complaints that Android relies on the user to
approve install-time permission requests. Security enforcement does not always

66 W. Enck

need to be an explicit permission or policy statement. Consider the two meth-
ods of making phone calls in Android. If an application uses the “CALL” action
string, it requires the CALL PHONE permission, and the call is connected immedi-
ately; however, if the application uses the “DIAL” action string, no permission is
required, and the user is presented the phone’s default dialer with the number
entered. Realistically, all applications should use the “DIAL” action string (un-
less it replaces the dialer), because the user is naturally involved in the security
decision via the workflow. There is no security question, e.g., “allow location,”
and the user is never aware that a security decision was made. Future research
should investigate opportunities to integrate security into the UI workflow.

Developer Tools. Studies [25,17,32] have shown that developers need more
oversight when using security sensitive APIs. In particular, these studies have
reported vulnerabilities at application interfaces, i.e., Intents. Developer tools
should be enhanced with checks that look for Intent forging attacks, unpro-
tected Intent broadcasts, and confused deputy attacks. For confused deputies,
the developer may not have sufficient context to prevent an attack, therefore
new primitives such as IPC provenance [22] are required. Additionally, research
is needed to ensure that the new security enhanced developer tools are usable,
and not simply discarded by developers.

6 Conclusion

Smartphone security research is growing in popularity. To help direct future
research, we have described existing protections and surveyed research proposals
to enhance security, discussing their advantages and limitations. The proposals
have discussed enhanced on-phone protection, as well as application analysis
that will aid future certification services. Finally, we discussed several additional
areas for future smartphone security research.

Acknowledgement. We would like to thank David Barrera, Kevin Butler,
Patrick McDaniel, Patrick Traynor, and Paul Van Oorschot, for their comments
during the writing of this paper.

References

1. AdMob: AdMob Android SDK: Installation Instructions,
http://www.admob.com/docs/AdMob_Android_SDK_Instructions.pdf

(accessed November 2010)
2. Android Market: March 2011 Security Issue (March 2011),

https://market.android.com/support/bin/answer.py?answer=1207928

3. Apple Inc.: Apple’s App Store Downloads Top 10 Billion (January 2011),
http://www.apple.com/pr/library/2011/01/22appstore.html

4. Au, K., Zhou, B., Huang, Z., Gill, P., Lie, D.: Short Paper: A Look at SmartPhone
Permission Models. In: Proceedings of the ACM Workshop on Security and Privacy
in Mobile Devices, SPSM (2011)

http://www.admob.com/docs/AdMob_Android_SDK_Instructions.pdf
https://market.android.com/support/bin/answer.py?answer=1207928
http://www.apple.com/pr/library/2011/01/22appstore.html

Defending Users against Smartphone Apps 67

5. Barrera, D., Enck, W., van Oorschot, P.C.: Seeding a Security-Enhancing Infras-
tructure for Multi-market Application Ecosystems. Tech. Rep. TR-11-06, Carleton
University, School of Computer Science, Ottawa, ON, Canada (April 2011)

6. Barrera, D., Kayacik, H.G., van Oorshot, P.C., Somayaji, A.: A Methodology for
Empirical Analysis of Permission-Based Security Models and its Application to An-
droid. In: Proceedings of the ACM Conference on Computer and Communications
Security (October 2010)

7. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations.
Tech. Rep. MTR-2547, Vol. 1, MITRE Corp., Bedford, MA (1973)

8. Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: MockDroid: Trading Privacy for
Application Functionality on Smartphones. In: Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications, HotMobile (2011)

9. Biba, K.J.: Integrity considerations for secure computer systems. Tech. Rep. MTR-
3153, MITRE (April 1977)

10. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: XManDroid: A New
Android Evolution to Mitigate Privilege Escalation Attacks. Tech. Rep. TR-2011-
04, Technische Universitat Darmstadt, Center for Advanced Security Research
Darmstadt, Darmstadt, Germany (April 2011)

11. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and Lightweight Domain Isolation on Android. In: Proceedings of the ACM
Workshop on Security and Privacy in Mobile Devices, SPSM (2011)

12. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-Based Mal-
ware Detection System for Android. In: Proceedings of the ACM Workshop on
Security and Privacy in Mobile Devices, SPSM (2011)

13. Burns, J.: Developing Secure Mobile Applications for Android. iSEC Partners (Oc-
tober 2008),
http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf

14. Cannings, R.: Exercising Our Remote Application Removal Feature (June 2010),
http://android-developers.blogspot.com/2010/06/

exercising-our-remote-application.html

15. Chaudhuri, A.: Language-Based Security on Android. In: Proceedings of the
ACM SIGPLAN Workshop on Programming Languages and Analysis for Secu-
rity (PLAS) (June 2009)

16. Cheng, J., Wong, S.H., Yang, H., Lu, S.: SmartSiren: Virus Detection and Alert for
Smartphones. In: Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys) (June 2007)

17. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing Inter-Application Com-
munication in Android. In: Proceedings of the 9th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys (2011)

18. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-Related Policy Enforce-
ment for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

19. Dagon, D., Martin, T., Starner, T.: Mobile Phones as Computing Devices: The
Viruses are Coming! IEEE Pervasive Computing 3(4), 11–15 (2004)

20. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege Escalation At-
tacks on Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

21. Desmet, L., Joosen, W., Massacci, F., Philippaerts, P., Piessens, F., Siahaan, I.,
Vanoverberghe, D.: Security-by-contract on the. NET platform. Information Secu-
rity Technical Report 13(1), 25–32 (2008)

http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html

68 W. Enck

22. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight
Provenance for Smart Phone Operating Systems. In: Proceedings of the 20th
USENIX Security Symposium (August 2011)

23. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in
iOS Applications. In: Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS) (February 2011)

24. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. In: Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (October 2010)

25. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Applica-
tion Security. In: Proceedings of the 20th USENIX Security Symposium (August
2011)

26. Enck, W., Ongtang, M., McDaniel, P.: Mitigating Android Software Misuse Be-
fore It Happens. Tech. Rep. NAS-TR-0094-2008, Network and Security Research
Center, Department of Computer Science and Engineering, Pennsylvania State
University, University Park, PA, USA (September 2008)

27. Enck, W., Ongtang, M., McDaniel, P.: On Lightweight Mobile Phone Applica-
tion Certification. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS) (November 2009)

28. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE
Security & Privacy Magazine 7(1), 50–57 (2009)

29. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions Demys-
tified. In: Proceedings of the ACM Conference on Computer and Communications
Security, CCS (2011)

30. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A Survey of Mobile
Malware in the Wild. In: Proceedings of the ACM Workshop on Security and
Privacy in Mobile Devices, SPSM (2011)

31. Felt, A.P., Greenwood, K., Wagner, D.: The Effectiveness of Application Permis-
sions. In: Proceedings of the USENIX Conference on Web Application Develop-
ment, WebApps (2011)

32. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission Re-
Delegation: Attacks and Defenses. In: Proceedings of the 20th USENIX Security
Symposium (August 2011)

33. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: ScanDroid: Automated Security Certifi-
cation of Android Applications,
http://www.cs.umd.edu/~avik/projects/scandroidascaa/paper.pdf

(accessed January 11, 2011)
34. Gartner: Gartner Says Sales of Mobile Devices in Second Quarter of 2011 Grew

16.5 Percent Year-on-Year; Smartphone Sales Grew 74 Percent (August 2011),
http://www.gartner.com/it/page.jsp?id=1764714

35. Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.: Vision: Automated Security Validation
of Mobile Apps at App Markets. In: Proceedings of the International Workshop on
Mobile Cloud Computing and Services, MCS (2011)

36. Gudeth, K., Pirretti, M., Hoeper, K., Buskey, R.: Short Paper: Delivering Secure
Applications on Commercial Mobile Devices: The Case for Bare Metal Hypervisors.
In: Proceedings of the ACM Workshop on Security and Privacy in Mobile Devices,
SPSM (2011)

37. Guo, C., Wang, H.J., Zhu, W.: Smart-Phone Attacks and Defenses. In: Proceedings
of the 3rd Workshop on Hot Topics in Networks, HotNets (2004)

http://www.cs.umd.edu/~avik/projects/scandroidascaa/paper.pdf
http://www.gartner.com/it/page.jsp?id=1764714

Defending Users against Smartphone Apps 69

38. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These Aren’t the
Droids You’re Looking For: Retrofitting Android to Protect Data from Imperious
Applications. In: Proceedings of the ACM Conference on Computer and Commu-
nications Security, CCS (2011)

39. Ion, I., Dragovic, B., Crispo, B.: Extending the Java Virtual Machine to Enforce
Fine-Grained Security Policies in Mobile Devices. In: Proceedings of the Annual
Computer Security Applications Conference (ACSAC) (December 2007)

40. Karlson, A.K., Brush, A.B., Schechter, S.: Can I Borrow Your Phone? Understand-
ing Concerns When Sharing Mobile Phones. In: Proceedings of the Conference on
Human Factors in Computing Systems (CHI) (April 2009)

41. Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4Android: A
Generic Operating System Framework for Secure Smartphones. In: Proceedings of
the ACM Workshop on Security and Privacy in Mobile Devices, SPSM (2011)

42. Liu, Y., Rahmati, A., Huang, Y., Jang, H., Zhong, L., Zhang, Y., Zhang, S.: xShare:
Supporting Impromptu Sharing of Mobile Phones. In: Proceedings of the Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys) (June
2009)

43. McDaniel, P., Enck, W.: Not So Great Expectations: Why Application Markets
Haven’t Failed Security. IEEE Security & Privacy Magazine 8(5), 76–78 (2010)

44. Miettinen, M., Halonen, P., Hatonen, K.: Host-Based Intrusion Detection for Ad-
vanced Mobile Devices. In: Proceedings of the 20th International Conference on
Advanced Information Networking and Applications (AINA) (April 2006)

45. Mulliner, C., Vigna, G., Dagon, D., Lee, W.: Using Labeling to Prevent Cross-
Service Attacks Against Smart Phones. In: Büschkes, R., Laskov, P. (eds.) DIMVA
2006. LNCS, vol. 4064, pp. 91–108. Springer, Heidelberg (2006)

46. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
Integrity on Mobile Phone Systems. In: Proceedings of the ACM Symposium on
Access Control Models and Technologies (SACMAT), pp. 155–164 (June 2008)

47. Nauman, M., Khan, S., Zhang, X.: Apex: Extending Android Permission Model and
Enforcement with User-defined Runtime Constraints. In: Proceedings of ASIACCS
(2010)

48. Nauman, M., Khan, S., Zhang, X., Seifert, J.-P.: Beyond Kernel-Level Integrity
Measurement: Enabling Remote Attestation for the Android Platform. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15.
Springer, Heidelberg (2010)

49. Ni, X., Yang, Z., Bai, X., Champion, A.C., Xuan, D.: DiffUser: Differentiated User
Access Control on Smartphones. In: Proceedings of the 5th IEEE Workshop on
Wireless and Sensor Networks Security (WSNS) (October 2009)

50. Oberheide, J., Veeraraghavan, K., Cooke, E., Flinn, J., Jahanian, F.: Virtualized
In-Cloud Security Services for Mobile Devices. In: Proceedings of the 1st Workshop
on Virtualization in Mobile Computing (June 2008)

51. Ongtang, M., Butler, K., McDaniel, P.: Porscha: Policy Oriented Secure Content
Handling in Android. In: Proceedings of the 26th Annual Computer Security Ap-
plications Conference (ACSAC) (December 2010)

52. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: Proceedings of the 25th Annual Com-
puter Security Applications Conference (ACSAC), pp. 340–349 (December 2009)

53. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. Journal of Security and Communication
Networks (2011), (Published online August 2011)

70 W. Enck

54. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid Android: Ver-
satile Protection For Smartphones. In: Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC) (December 2010)

55. Schmidt, A.D., Peters, F., Lamour, F., Albayrak, S.: Monitoring Smartphones
for Anomaly Detection. In: Proceedings of the 1st International Conference on
MOBILe Wireless MiddleWARE, Operating Systems, and Applications,
MOBILWARE (2008)

56. Schmidt, A.D., Schmidt, H.G., Batyuk, L., Clausen, J.H., Camtepe, S.A., Albayrak,
S.: Smartphone Malware Evolution Revisited: Android Next Target? In: Proceed-
ings of the 4th International Conference on Malicious and Unwanted Software
(MALWARE) (October 2009)

57. Shabtai, A., Fledel, Y., Elovici, Y.: Securing Android-Powered Mobile Devices
Using SELinux. IEEE Security and Privacy Magazine (May/June 2010)

58. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: A Be-
havioral Malware Detection Framework for Android Devices. Journal of Intelligent
Information Systems (2011), (published online January 2011)

59. VMware, Inc.: VMware Mobile Virtualization Platform,
http://www.vmware.com/products/mobile/ (accessed January 2011)

60. Zhang, X., Aciiçmez, O., Seifert, J.P.: A Trusted Mobile Phone Reference Architec-
ture via Secure Kernel. In: Proceedings of the ACM workshop on Scalable Trusted
Computing, pp. 7–14 (November 2007)

61. Zhang, X., Acıiçmez, O., Seifert, J.-P.: Building efficient integrity measurement
and Attestation for Mobile Phone Platforms. In: Schmidt, A.U., Lian, S. (eds.)
MobiSec 2009. LNICST, vol. 17, pp. 71–82. Springer, Heidelberg (2009)

62. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming Information-Stealing Smart-
phone Applications (on Android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–
107. Springer, Heidelberg (2011)

http://www.vmware.com/products/mobile/

Secure Composition of Cryptographic Protocols

Vipul Goyal

Microsoft Research, India
vipul@microsoft.com

1 Talk Overview

General positive results for secure computation were obtained more than two
decades ago. These results were for the setting where each protocol execution is
done in isolation. With the proliferation of the network setting (and especially the
internet), an ambitious effort to generalize these results and obtain concurrently
secure protocols was started. However it was soon shown that designing secure
protocols in the concurrent setting is unfortunately impossible in general. In this
talk, we will first describe the so called chosen protocol attack. This is an explicit
attack which establishes general impossibility of designing secure protocols in the
concurrent setting. The negative results hold for the so called plain model where
there is no trusted party, no honest majority, etc.

On the other hand, several positive results for protocols composition have been
established in various related settings (which are either weaker or incomparable).
A few examples are the setting of resettable computation (where the parties may
not be able to keep state during the protocol execution and may be run several
times with the same random tape), bounded concurrent secure computation
(where there is an apriori bound on the total number of concurrent sessions),
standalone protocol execution with man-in-the-middle (i.e., the setting of non-
malleable protocols), the single input setting (where the honest party uses the
same input in all polynomially unbounded concurrent protocol executions), etc.

We will survey known results as well various open problems in each of the
above settings. We also given an overview of an emerging technique which has
been used to construct secure protocols in several of these settings. We will focus
on the plain model throughout the talk.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, p. 71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Flow Based Interpretation of Access Control:

Detection of Illegal Information Flows

Mathieu Jaume1, Valérie Viet Triem Tong2, and Ludovic Mé2

1 University Pierre & Marie Curie, LIP6, Paris, France
2 SUPELEC, SSIR Group (EA 4039), Rennes, France

Abstract. In this paper, we introduce a formal property characterizing
access control policies for which the interpretations of access control as
mechanism over objects and as mechanism over information contained
into objects are similar. This leads us to define both a flow based inter-
pretation of access control policies and the information flows generated
during the executions of a system implementing an access control mech-
anism. When these two interpretations are not equivalent, we propose to
add a mechanism dedicated to illegal information flow detection to the
mechanism of access control over objects. Such a mechanism is parame-
terized by the access control policy and is proved sound and complete.
Finally, we briefly describe two real implementations, at two levels of
granularity, of our illegal flow detection mechanism: one for the Linux
operating system and one for the Java Virtual Machine. We show that
the whole approach is effective in detecting real life computer attacks.

Keywords: Access control models, Information flows.

1 Introduction

The classical approach to protect information in a system consists in defining
a security policy and enforcing it with diverse security mechanisms. Among
these mechanisms, access control, which allows to grant or revoke the rights
for active entities (the subjects) to access some passive entities (the objects),
is of particular importance. Unfortunately, classical access control mechanisms
implemented nowadays in mainly used computer systems cannot always control
how the information is used once it has been accessed. As an example, let us
consider an access control policy where granted accesses are specified by the
matrix:

o1 o2 o3 o4

Alice read, write read
Bob read read, write
Charlie read, write write

(1)

In this example, an authorized user can pass information to other users that are
not authorized to read or write it. Indeed, Alice can read o3 and write information
contained in o3 into o1 on which Bob can make a read access, even if Bob cannot
read o3. Similarly, Bob can write some information into o2 and then Charlie

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 72–86, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Flow Based Interpretation of Access Control 73

can read o2 and write this information into o4, even if Bob cannot write into
o4. To overcome this difficulty, flow control has been proposed. On the contrary
to access control that does not provide a sufficient protection of information
as it is not aware of the can flow relationship between objects in the system,
flow control ensures that data contained in a container cannot flow into other
containers readable by users that cannot read the original container. The more
noticeable model of that kind is of course the Bell & La Padula model [1] where
high level information cannot flow into low level containers. However, flow control
has not been widely used until now for everyday computers running Windows
or Unix-like OS. We believe nevertheless that flow control is crucial for a system
to be secured: many real world attacks imply a series of flows, generated by
several subjects, each flow being legal by itself (and hence not stopped by access
control), but the composition of the flows resulting in information disclosure
or integrity violation. After a presentation of some related works, we present a
framework that enables us to formally define information flows induced by an
access control policy over objects (section 2). Then we characterize flow policies
induced by access control policies over information (section 3) and a mechanism
for detecting illegal information flows in an operating system (section 4). Lastly
we present an implementation of the monitor of information flows (section 5).

Related Works. Denning & al were the first to propose a static approach to
check the legality of information flows in programs [3,4]. The legality of infor-
mation flows is expressed through a policy which is specified using a lattice of
security labels. The static analysis of programs consists in checking the legality
of information flows, with regard to the security labels that are associated with
data containers of the programs. We follow a similar approach with reading and
writing tags, but we aim at a dynamic detection, without a previous static analy-
sis. Many previous works are related to the information flows that might appear
during the lifetime of a system where access to information is under the control
of an access control policy. In [15], Sandhu presents a synthesis of Lattice-Based
Access Control Models (LBAC), allowing to ensure that information only flows in
authorized security classes. Nowadays, the system SELinux descends from these
works and enforces a Mandatory Access Control (MAC) policy based on the Bell
& LaPadula model. Unfortunately, SElinux is notoriously hard-to-configure. We
thus propose a system that can be configured directly from an access control
policy. Furthermore, in a real system, the use of a strict LBAC model appears
quite rigid since applications often need declassification mechanisms [13,12,11].
As systems grow larger and more complex, such rigid models are not often used,
users simply preferring an access control model like HRU or RBAC[16] without
any control of information flows. Hence, we believe it is important to provide
another mechanism to ensure that information flows are consistent with the pol-
icy. With the same objective, Osborn proposes in [14] to check if a given access
control policy expressed within the RBAC model has an equivalent information
flow policy in the LBAC model and if this last model is consistent with the secu-
rity policy. More precisely, [14] describes an algorithm to map a role-graph of a
RBAC model to an information flow graph defining the can flow relationship of

74 M. Jaume, V. Viet Triem Tong, and L. Mé

the given role graph, thus characterizing the information flows that can occur.
We follow such an approach to study the can flow relationship generated by an
arbitrary access control model and we provide a formal framework allowing to
express the desired properties at an abstract level. A similar approach can be
found in [19], where Zimmermann & al have proposed to complement classical
non-transitive access control by a dynamic detection mechanism able to identify
illegal composed information flows. In this development a reading tag is associ-
ated with each information (the initial contents of each object) and a writing
tag to each object. The initial values of these tags comes directly from the ac-
cess control matrix which specify the security policy enforced on the system.
When an information flow occurs between a read object o1 and a written object
o2, the reading tag of o2 is updated according to the one of o1. Thanks to this
propagation mechanism, the detector is able to identify accesses that transitively
create illegal information flows. Nevertheless, this detection model can only be
used with an access control expressed by an matrix of rights, and there is no
proof of its soundness and its completeness. Following the same idea, in [10], Ko
and Redmond introduce a policy-based intrusion detection system dealing with
information flows and allowing to detect data integrity violations by monitoring
the users’ actions’ effects on the contents of data containers (mainly files). The
detection process is achieved by controlling noninterference between users and
data. They show that although the noninterference model itself is not always an
enforceable security policy [17], it can nevertheless be used as a foundation for
intrusion detection by taking into account the semantics of individual actions (in
their case, file-related Linux system calls). Our approach is similar but allows
to express confinment, integrity and confidentiality properties (it is not limited
to data integrity) and we are thus able to detect a wider range of attacks, while
Ko and Redmond’s IDS is limited by construction to race condition-based at-
tacks. Moreover, from a theoretical point of view, they only give a proof of the
soundness of their approach, while completeness is not studied.

2 Access Control Models and Induced Information Flows

Our objective is to propose a dynamic monitor of information flows for currently
used computers whose aim is to raise an alert when observing an illegal infor-
mation flow. Hence, this monitor must be able to deduce some information flows
from the observation of accesses. An information flow from an object o1 to an
object o2 can be either elementary when a user performs at the same time a read
access on o1 and a write access on o2 or composed when a user performs a read
or write access on an object and closes a read/write chain between o1 and o2

that allows information to flow from o1 to o2. An elementary flow is always legal
since it is directly permitted by the access control policy. We consider here that
a composed information flow is legal if can be obtained as a (legal) elementary
flow. Practically, our monitor tracks elementary information flows and checks
dynamically if resulting composed flows are legal or not.

Flow Based Interpretation of Access Control 75

Access Control Policies. We introduce here an abstract specification of ac-
cess control policies over objects together with operational mechanisms allowing
to enforce them. By following the approach introduced in [9], a security policy
is a characterization of secure elements of a set according to some security infor-
mation. Hence, specifying a policy P first consists of defining a set A of “things”
that the policy aims to control, called the security targets, in order to ensure
the desired security properties (these “things” can be the actions simultaneously
done in the system or some information about the entities of the system). When
dealing with access control policies, targets are sets of accesses simultaneously
done in the system and we represent accesses as tuples (s, o, a) expressing that
a subject s ∈ S has an access over an object o ∈ O according to an access
mode a ∈ A = {read, write}. Hence, A is the powerset of the cartesien product
S × O × A. Then, a set C of security configurations is introduced: configura-
tions correspond to the information needed to characterize secure elements of
A according to the policy. For access control policies, a configuration can be
a set of granted accesses (for the HRU policy), a lattice of security levels (for
a MultiLevel security policy), a hierarchy of roles (for the RBAC policy), etc.
Last, a policy is defined by a relation � allowing to characterize secure targets
according to configurations.

Definition 1. A security policy P is a tuple P = (A, C, �) where A is a set of
security targets, C is a set of security configurations and �⊆ C ×A is a relation
specifying secure targets according to configurations. An access control policy is
a security policy such that A is the powerset of the cartesien product S ×O×A.

Example 1. We consider here the HRU policy PH = (A, CH , �PH), introduced
in [7], which is a discretionary access control policy where CH = A (a configura-
tion m ∈ CH specifies a set of granted accesses). Secure targets are thus defined
as sets of accesses which are granted: m �PH A iff A ⊆ m. In all this paper, we
illustrate some of our definitions by considering the HRU policy applied with
the configuration m defined by the access control matrix (1). We do not con-
sider here the administrative part of this model allowing to change authorized
accesses.

Information Flows. We formalize here information flows occurring during the
lifetime of a system on which an access control policy applies.

Transition systems. We represent a system on which a policy P = (A, C, �)
applies by a transition system whose states belongs to a set Σ. A state σ contains
both the description of the security configuration of the policy used, written
Υ (σ), and the set of current accesses done in the system, written Λ(σ). Given a
configuration c ∈ C, we write

Σ|c = {σ ∈ Σ | Υ (σ) = c ∧ c � Λ(σ)}
the set of secure states according to c. We consider the language of requests R =
{〈+, s, o, a〉, 〈−, s, o, a〉}, providing to the users a way to access objects: 〈+, s, o, a〉
(resp. 〈−, s, o, a〉) means that the subject s asks to get (resp. to release) an access

76 M. Jaume, V. Viet Triem Tong, and L. Mé

over the object o according to the access mode a. Then, transitions are defined
by a transition function τ : R×Σ → D×Σ (where D = {yes, no} are the answers
given according to the policy). We assume here that this transition function is
correct according to the policy and does not change security configurations, and
that when the answer given is no the state is not modified:

∀σ1, σ2 ∈ Σ ∀R ∈ R ∀d ∈ D
(Υ (σ1) � Λ(σ1) ∧ τ(R, σ1) = (d, σ2)) ⇒ Υ (σ2) � Λ(σ2)

∀σ1, σ2 ∈ Σ ∀R ∈ R τ(R, σ1) = (no, σ2) ⇒ σ1 = σ2

We write σ′ = σ ⊕ (s, o, a) (resp. σ′ = σ � (s, o, a)) the state obtained from
σ by adding (resp. removing) the access (s, o, a) to its current accesses with-
out changing security configuration: Λ(σ′) = Λ(σ) ∪ {(s, o, a)} (resp. Λ(σ′) =
Λ(σ)\{(s, o, a)}) and Υ (σ) = Υ (σ′). We assume that the transition function is
correct according to this “semantics”:

∀σ1, σ2 ∈ Σ τ(〈+, s, o, a〉, σ1) = (yes, σ2) ⇒ σ2 = σ1 ⊕ (s, o, a)
∀σ1, σ2 ∈ Σ τ(〈−, s, o, a〉, σ1) = (yes, σ2) ⇒ σ2 = σ1 � (s, o, a)

Given a set ΣI ⊆ Σ of initial secure states, we define executions of τ as follows:

Exec(τ, ΣI) =
⋃

n∈IN

{
(σ1, · · · , σn) | σ1 ∈ ΣI

∧ ∀i (1 ≤ i ≤ n− 1) ∃R ∈ R τ(R, σi) = (yes, σi+1)

}

Flows generated by sequences of states. During the lifetime of a system, tran-
sitions generate information flows. We introduce flow relations between entities
of the system allowing to define flows generated by sequences of states (corre-
sponding to executions of transition functions). We define subsets of

oo
↪→= O×O,

os
↪→= O × S and

so
↪→= S × O characterizing flows occurring in several contexts.

An elementary flow of the information contained into an object o1 to an object
o2 can occur iff there exists a subject s reading o1 and writing into o2.

Definition 2. Elementary flows generated by a set of accesses A are defined by:

�→A=
{
o1

oo
↪→ o2 | ∃s ∈ S {(s, o1, read), (s, o2, write)} ⊆ A

}
We can now define the relation

oo
↪→σ⊆ oo

↪→ allowing to express that when the system
is in a state σ, the information contained in the object o1 flows into the object
o2 (which is written o1

oo
↪→σ o2). Such a flow can occur iff there exists a chain

of read and write accesses starting from a read access over o1 and ending at a
write access over o2. The flows between objects generated by the set of current
accesses of σ are thus defined as the reflexive and transitive closure of �→Λ(σ).

Definition 3. The set of information flows generated by a state σ is denoted by
oo
↪→σ and is defined by

oo
↪→σ= �→∗

Λ(σ).

Flow Based Interpretation of Access Control 77

Hence, o1
oo
↪→σ o2 iff o1 = o2 or ∃s1, · · · , sk, sk+1 ∈ S, ∃o′1, · · · , o′k ∈ O such that:{

(s1, o1, read), (s1, o
′
1, write), (s2, o

′
1, read), (s2, o

′
2, write), · · · ,

(si, o
′
i−1, read), (si, o

′
i, write), · · · , (sk+1, o

′
k, read), (sk+1, o2, write)

}
⊆ Λ(σ)

We extend this definition for a set E ⊆ Σ of states:
oo
↪→E=

⋃
σ∈E

oo
↪→σ.

Example 2. By considering the HRU policy and the configuration m defined
by (1), the set of flows generated by secure states is:

oo
↪→Σ|m=

{
o1

oo
↪→ o1, o2

oo
↪→ o2, o3

oo
↪→ o3, o4

oo
↪→ o4, o3

oo
↪→ o1, o1

oo
↪→ o2,

o2
oo
↪→ o4, o1

oo
↪→ o4, o3

oo
↪→ o2, o3

oo
↪→ o4

}
Notice that we assume here the “worst” case: we suppose that if there is a poten-
tial for information flow then the flow actually occurs. However, it is possible to
refine this definition by observing flows at the OS level. From definition 3, we can
now define the relations characterizing flows generated by sequences of states.

Definition 4. Let E ⊆ Σ, and F ⊆ E� be a set of sequences of states in E. A
sequence (σ1, · · · , σn) ∈ F generates several flows defined as follows.

1. Flows between objects are defined by composition as follows:

oo
↪→(σ1,··· ,σn)=

{
oo
↪→σ1 if n = 1
oo
↪→σk+1 ◦

oo
↪→(σ1,··· ,σk) if n = k + 1

2. Flows from objects to subjects characterize which subject can read (in a direct
or indirect way) which information initially contained into an object:

os
↪→(σ1,··· ,σn)=

n⋃
i=1

{
o1

os
↪→ s | o1

oo
↪→(σ1,··· ,σi) o2 ∧ (s, o2, read) ∈ Λ(σi)

}
3. Flows from subjects to objects characterize which subject can write (in a

direct or indirect way) into which object:

so
↪→(σ1,··· ,σn)=

n⋃
i=1

{
s

so
↪→ o2 | (s, o1, write) ∈ Λ(σi) ∧ o1

oo
↪→(σi,σi+1,··· ,σn) o2

}
We extend these definitions as follows:

X
↪→Y =

⋃
y∈Y

X
↪→y where X ∈ {oo, os, so}

and Y ∈ {E, F}.
Expressing flows in a uniform way. It is possible to express all flows between
subjects and objects as flows between objects. To achieve this goal, each subject
s ∈ S is associated with an object os ∈ OS , where OS is the set of objects
associated with subjects. Of course, objects occurring in the definition of the
access control policy are only those belonging to O. Furthermore, by following
such an approach, for all state σ and all subject s, we have:

{(s, os, read), (s, os, write)} ⊆ Λ(σ) and ((s, o, a) ∈ Λ(σ) ∧ o ∈ OS) ⇒ o = os

78 M. Jaume, V. Viet Triem Tong, and L. Mé

Of course, for a sequence (σ1, . . . , σn) of states, we have:

os
↪→(σ1,...,σn)= {o1

oo
↪→(σ1,...,σn) o2 | o1 ∈ O ∧ o2 ∈ OS}

so
↪→(σ1,...,σn)= {o1

oo
↪→(σ1,...,σn) o2 | o1 ∈ OS ∧ o2 ∈ O}

3 Flow Policies

We consider now access control over information contained into the objects of the
system. This leads to view access control policies as information flows policies. A
confidentiality policy defines which information can be accessed per users. This
can be expressed in terms of flows from objects to subjects: a confidentiality
policy can be expressed by a subset os� of

os
↪→. An integrity policy defines who is

allowed to modify a container of information and can be expressed by a subset
so� of

so
↪→. A confinment policy defines which information contained into an object

can flow into another object and can be expressed by a subset oo� of
oo
↪→.

Access Control over Information. An access control policy can be used
to ensure confinment and/or confidentiality and/or integrity in an information
system. Such policies, expressed in terms of information flows, can be defined
from the access control policy as follows.

Definition 5. Flow policies over Σ associated with a configuration c ∈ C of an
access control policy P = (A, C, �) are defined as follows:

Confidentiality Policy: os�P[c]= {o os
↪→ s | ∃σ ∈ Σ|c (s, o, read) ∈ Λ(σ)}

Integrity Policy: so�P[c]= {s so
↪→ o | ∃σ ∈ Σ|c (s, o, write) ∈ Λ(σ)}

Confinment Policy: oo�P[c]=
{

o1
oo
↪→ o2 | o1 = o2 ∨ ∃σ ∈ Σ|c ∃s ∈ S

(s, o1, read) ∈ Λ(σ), (s, o2, write) ∈ Λ(σ)

}
The whole flow policy induced by the access control is composed by the confi-
dentiality, integrity and confinment policies. Using the expression of flows in a
uniform way as defined in page 77, it is represented by:

�P[c]=

⎧⎪⎪⎨⎪⎪⎩
o1

oo
↪→ o2 | o1 = o2

∨(∃s ∈ S ∃σ ∈ Σ|c o2 = os ∈ Os ∧ (s, o1, read) ∈ Λ(σ))
∨(∃s ∈ S ∃σ ∈ Σ|c o1 = os ∈ Os ∧ (s, o2, write) ∈ Λ(σ))
∨(∃s ∈ S ∃σ ∈ Σ|c (s, o1, read), (s, o2, write) ∈ Λ(σ))

⎫⎪⎪⎬⎪⎪⎭
Example 3. If we consider the configuration m defined in (1) for HRU, we have:

os�PH [m]=
{
o1

os
↪→ Alice, o3

os
↪→ Alice, o1

os
↪→ Bob, o2

os
↪→ Bob, o2

os
↪→ Charlie

}
so�PH [m]=

{
Alice

so
↪→ o1, Bob

so
↪→ o2, Charlie

so
↪→ o2, Charlie

so
↪→ o4

}
oo�PH [m]=

{
o1

oo
↪→ o1, o3

oo
↪→ o1, o1

oo
↪→ o2, o2

oo
↪→ o2, o2

oo
↪→ o4, o3

oo
↪→ o3, o4

oo
↪→ o4

}

Flow Based Interpretation of Access Control 79

Access Control over Objects Versus over Information. We can now define
in a formal way the properties expressing that a set of flows (occurring for a set
of states E or occurring during sequences of states in a set F) is consistent
according to the flow policies obtained from the access control policy.

Definition 6. Let P = (A, C, �) be an access control policy, c ∈ C, and X be a
set of states or a set of sequences of states. X is said to be consistent according to:

– the confidentiality policy os�P[c] iff
os
↪→X⊆ os�P[c],

– the integrity policy so�P[c] iff
so
↪→X⊆ so�P[c],

– the confinment policy oo�P[c] iff
oo
↪→X⊆ oo�P[c],

– the information flow policy �P[c] iff X is consistent according to os�P[c],
so�P[c]

and oo�P[c].

These properties are useful to analyze flows generated by secure states of access
control policies (X = Σ|m) or flows generated by executions (X = Exec(τ, ΣI)).

Example 4. For HRU, there exists configurations m for which the sets of flows
occurring during sequences in Exec(τH , ΣI

H) are neither consistent according to
os�PH [m] nor to so�PH [m] nor to so�PH [m]. Indeed, if we consider the configuration
m defined in (1), we have:

o3
os
↪→Exec(τH ,ΣI

H) Bob, Bob
so
↪→Exec(τH ,ΣI

H) o4, o3
oo
↪→Exec(τH ,ΣI

H) o2

but we don’t have:

o3
os�PH [m] Bob, Bob so�PH [m] o4, o3

oo�PH [m] o2

Of course, when m satisfies some “good” properties (transitivity), the consis-
tency properties hold. More precisely, we have proved that:

1.
os
↪→Exec(τH ,ΣI

H) is consistent according to os�PH [m] iff:

∀s ∈ S ∀o1, o2 ∈ O (o1
oo�P[m] o2 ∧ (s, o2, read) ∈ m) ⇒ (s, o1, read) ∈ m

2.
so
↪→Exec(τH ,ΣI

H) is consistent according to so�PH [m] iff:

∀s ∈ S ∀o1, o2 ∈ O (o1
oo�P[m] o2 ∧ (s, o1, write) ∈ m) ⇒ (s, o2, write) ∈ m

3.
oo
↪→Exec(τH ,ΣI

H) is consistent according to oo�PH [m] iff oo�PH [m]= (oo�PH [m])∗ (i.e.
oo�PH [m] and its reflexive and transitive closure define the same relation)

This framework has been successfully used to analyse flow properties of several
classical access control policies: the Bell & LaPadula policy [1] which has been
(not surprisingly) proved consistent, the Chinese Wall model [2] which has been
proved consistent according to the confidentiality and integrity flow policies, and
the role-based access control model (RBAC) [5,16] which is not consistent.

80 M. Jaume, V. Viet Triem Tong, and L. Mé

4 Detecting Illegal Information Flows

As we said, access control mechanisms are specified in terms of granted accesses
but don’t always make explicit the information flows that they are supposed to
permit. In fact, the notion of granted flows depends on the interpretation of the
access control model. As shown in the above section, the flow based interpreta-
tion of an access control policy may forbid flows that can occur when applying
a classical access control mechanism. We introduce here a flow detection mech-
anism allowing to deal with such problems. We define what a flow detection
mechanism consists in and what properties we can express over such mecha-
nism. Then, in this setting, we provide theoretical foundations for the intrusion
detection systems introduced in [6,8,18,19], by formalizing it as a detection flow
mechanism together with proofs of its soundness and completeness. Last, we
show how such mechanism can be used in practice for the HRU model.

Specification of Flow Detection Mechanisms. We show here how to specify
mechanisms allowing to detect illegal information flows according to a flow policy
� during the lifetime of an information system. Hence, we introduce the formal
specification of flow detection mechanisms allowing to monitor an information
system in order to detect flows occurring in a set �F of forbidden flows during
the lifetime of the system. Such mechanisms are based on the definition of a
predicate � over states characterizing states occurring in a sequence of states
generating at least a flow in �F. A state σ verifying �(σ) is called an alert
state. The set of observable sequences of states can be the set of executions of
an operational mechanism of an access control policy.

Definition 7. A flow detection mechanism parameterized by a set E of observ-
able states, a set F ⊆ E� of observable sequences of states and a set �F of flows
is denoted by F[E, F, �F] and is defined by (Σ, �) where Σ is the set of states
of the system and � is a predicate characterizing alert states.

We also introduce the properties over flow detection mechanisms allowing to
express that alert states are exactly states occurring in a sequence of states
generating at least a flow in �F. In the following definition, �F can specify a
set of flows between objects (X = oo), from subjects to objects (X = so), or
from objects to subjects (X = os).

Definition 8. Let F[E, F, �F] = (Σ, �) be a flow detection mechanism.

– F[E, F, �F] is sound iff each state σ verifying �(σ) is coming from a sequence
in F generating at least one flow occurring in �F:

∀(σ1, . . . , σn) ∈ F �(σn) ⇒ (
X
↪→(σ1,...,σn) ∩ �F �= ∅)

– F[E, F, �F] is complete iff each sequence in F generating a flow occurring
in �F ends with an alert state.

∀(σ1, . . . , σn) ∈ F (
X
↪→(σ1,...,σn) ∩ �F �= ∅) ⇒ �(σn)

Flow Based Interpretation of Access Control 81

Of course, the parameter �F of a flow detection mechanism F[E, F, �F] used to
check that a flow policy � is satisfied must be such that:

– granted flows according to � are not detected by the detection mechanism:

�F ∩ �= ∅ (2)

– flows that may occur and that are not authorized by � are detected:

(
X
↪→F \ �) ⊆�F (3)

Thanks to these properties, for a sound and complete flow detection mechanism
F[E, F, �F], alert states are exactly states coming from a sequence generating
at least one flow that do not respect the flow policy �.

Definition of a Flow Detection Mechanism. We use the uniform repre-
sentation of flows introduced page 77 and define a flow detection mechanism
allowing to detect flows occurring during sequences of states that do no satisfy
a reflexive information flow policy �. We use the relation � ⊆ P(O)×O such
that {o1, · · · , on}�o expresses that information initially contained in o1, . . . , on

are allowed to flow separately or together into o. The relation � is defined as
follow:

� =
⋃

o∈O({oi|oi � o}, o)
Observable sequences of states. The flow detection mechanism we define here is
generic: it is parameterised by a set E of observable states and by a set F ⊆ E� of
observable sequences of states such that for all sequences (σ1, · · · , σn) ∈ F , the
initial state σ1 has an empty set of current accesses (Λ(σ1) = ∅), and such that
the state σi+1 is obtained from σi either by adding or by removing an access:

∀(σ1, · · · , σn) ∈ F ∀i σi+1 = σi ⊕ (s, o, a) ∨ σi+1 = σi � (s, o, a)

Definition of the set of forbidden information flows �F. Since we want to detect
flows that do not satisfy the policy �, we define the set of forbidden information
flows �F as the set of all possible information flows except those in the policy:

�F=
oo
↪→F \ �

Definition of alert states. The flow detection mechanism we define here is a
tagging system for which we prove that it permits a sound and complete detection
of illegal information flows defined in �F. For a state σ, and for each object
o ∈ O, we define a reading tag T R

σ (o) and a writing tag T W
σ (o). The reading

tag denotes the policy related to the information really contained in the object.
The writing tag denotes the policy related to the object viewed as a container
of information. These tags are defined as follows:

– For all sequence (σ1, · · · , σn) ∈ F and for all o ∈ O, the tags are initially
defined for σ1 as follows. The tag T R

σ1
(o) attached to o denotes the part of

the flow policy � related to the information initially contained in o:

T R
σ1

(o) = {(O, o′) ∈ �| o ∈ O}

82 M. Jaume, V. Viet Triem Tong, and L. Mé

The tag T W
σ1

(o) attached to o denotes the part of the information flow policy
� related to o where o is viewed as a container of information:

T W
σ1

(o) = {(O, o′) ∈ �| o = o′}
– At each transition from σi to σi+1, the writing tags don’t change (T W

σi
(o) =

T W
σi+1

(o)) and the reading tags of objects evolve in the following way:

T R
σi+1

(o) =
⋂

{oj∈O|oj
oo
↪→σi+1o}

T R
σi

(oj)

Notice that if o has not been modified by a flow then {oj ∈ O|oj
oo
↪→σi+1 o}

is simply {o} (see definition 3) and the tag T R
σi+1

(o) is exactly T R
σi

(o).

The following lemma (proved by induction over n) states that T R
σ (o) exactly

denotes the part of the policy � shared by all information contained in o.

Lemma 1. ∀(σ1, σ2, . . . , σn) ∈ F ∀o ∈ O
T R

σn
(o) = {(O, o′) ∈ �| ∀oi ∈ O oi

oo
↪→(σ1,...,σn) o ⇒ oi ∈ O}

We are now in position to define the predicate � as follows:

�(σ) ⇔ ∃o ∈ O T R
σ (o) ∩ T W

σ (o) = ∅
which allows to characterize alert states and leads to define a sound and complete
flow detection mechanism (definition 8) as shown by the following lemma.

Lemma 2. F[E, F, �F] = (Σ, �) is both sound and complete.

Proof. The proof is done by contraposition, we prove that in a sequence of states
(σ1, · · · , σn) ∈ F no illegal information flows has occurred if and only if for any
object o the intersection between read and write tags is non-empty in σn (e.g.
σn is not an alert state):

∀(σ1, · · · , σn) ∈ F
oo
↪→(σ1,··· ,σn) ∩ �F= ∅ ⇔ ∀o ∈ O T R

σn
(o) ∩ T W

σn
(o) �= ∅

Let (σ1, · · · , σn) ∈ F . According to (2) and (3) and the definition of �F, no
illegal flow has occured during (σ1, · · · , σn) iff only allowed flows has occured:

oo
↪→(σ1,··· ,σn) ∩ �F= ∅

⇔ oo
↪→(σ1,··· ,σn)⊆�

⇔ ∀o ∈ O ∀o′ ∈ O o′
oo
↪→(σ1,··· ,σn) o ⇒ o′ � o

⇔ ∀o ∈ O ∀o′ ∈ Oo′
oo
↪→(σ1,··· ,σn) o ⇒ ∃(O, o) ∈ �, o′ ∈ O (by def. of �)

⇔ ∀o ∈ O
{
(O, o) ∈ �|∀o′ ∈ O o′

oo
↪→(σ1,··· ,σn) o ⇒ o′ ∈ O

}
�= ∅

Hence, by lemma 1 and by definition of T W
σn

(o), we have:

∀o ∈ O T R
σn

(o) ∩ T W
σn

(o) =
{
(O, o) ∈ �|∀oj ∈ O oj

oo
↪→(σ1,··· ,σn) o ⇒ oj ∈ O

}
which allows to conclude, by definition. �

Flow Based Interpretation of Access Control 83

Application. We describe now how to use our flow detection mechanism to
detect illegal flows (w.r.t. �PH [m]) generated by executions of Exec(τH , ΣI

H).
Parameters are instanciated as follows: E is the set Σ|m of secure states and
F is the set Exec(τH , ΣI

H) where ΣI
H ⊆ {σ ∈ Σ | Λ(σ) = ∅} and � is the

relation �PH [m]. According to lemma 2, alert states are exactly states coming
from sequences of states generating flows that do not satisfy �PH [m].

Example 5. Let us consider again the HRU policy applied with the configuration
m defined in (1). This policy induces an information flow policy �H defined as
follows (the objects oA, oB, oC stand for the objects associated with the subjects
Alice, Bob and Charlie):

�H =
{

({o1, o3, oA}, o1), ({o1, o2, oB , }, o2), ({o2, oC}, o2), ({o3}, o3),
({o2, o4, oc}, o4), ({o1, o3, oA}, oA), ({o1, o2, oB}, oB), ({o2, oC}, oC)}

}
Let (σ1, σ2, σ3, σ4) be a sequence of states such that σ1 has an empty set of
current accesses, σ2 is obtained by adding a read access on o3 to Alice, σ3 by
adding a write access on o1 to Alice and σ4 by adding a read access on o1 to
Bob. None of the states σ1, σ2 and σ3 are alert states, while σ4 is an alert
state since T R

σ4
(oB)∩T W

σ4
(oB) = {({o1, o3, o3}, o1), ({o3}, o3), {o1, o3, oA}, oA)}∩

{({o1, o2, oB}, oB)} = ∅.

5 Implementation

Detecting Illegal Information Flows at the OS Level. A first implemen-
tation of the tagging system, called Blare1, has been realised at the OS level.
Blare deduces information flows between typical OS containers (files, sockets or
IPC) by observing system calls. Blare is implemented in the Linux kernel, with
extra userland tools and associated API library. Figure 1 presents the general
architecture of Blare. In order to detect accesses to the OS containers, hooks
have been inserted in the kernel to avoid system call overloading. These hooks
are principally located in the Virtual File System (VFS) layer of the Linux ker-
nel. Linux provides access to containers through the file concept and the VFS
is an abstraction of various container types in terms of files. In addition, some
containers require operations outside of the scope of the VFS, such as socket con-
nections or virtual consoles. Kernel code implementing these functions is thus
also modified. The detection of illegal information flows engine features can be
classified into four categories:

1. the core detection engine implements the detection algorithm and the tag
propagation mechanism;

2. the configuration management component allows user space processes to
manage the detection engine or to check some information such as the total
number of alerts (this is done using the Linux sysfs interface and is useful
for debugging or alert diagnosis, but can be locked for security reasons);

1 Freely available at http://www.rennes.supelec.fr/blare/

http://www.rennes.supelec.fr/blare/

84 M. Jaume, V. Viet Triem Tong, and L. Mé

API

Tag management tools
Alerts

management

Library

Tools

Policy management tool

API Python
wrapper

USER SPACE

Hooks in
 (read_write.c, mmap.c...)

Core Detection
engine

Inform. flow policy
management

Information flow observation

Illegal flow detector

Configuration
management

KERNEL SPACE

Alerts management

Fig. 1. Architecture of the illegal flow detector at the OS level (Blare)

3. the information flow management component allows users to specify a secu-
rity policy �;

4. the alert management component increments the alert counter, notifies a
userland tool whenever an alert is raised and can optionally and directly log
alerts and diagnosis information into a file.

Tags are implemented by a specific structure containing two fixed size bitmap
arrays, describing the reading and writing tags. Thanks to this data structure,
checking the legality of flows has a small slowdown. In [8], the flow policy � is
computed from a free interpretation of access control rights, but we have also
proposed to set � manually [18] or to compute it from a MAC policy [6].

Detecting Illegal Information Flows within the JVM. Blare suffers from
one major drawback: the semantics of the operations are not taken into account
by the detection system. Hence, processes are viewed as black boxes: the read-
ing tags that are modified by a syscall depend on all the reading tags of the
objects that act as input for this syscall. This approximation is correct, but
its coarse-grained nature sometimes leads Blare to trigger false positives. This
reason has led to a second implementation, JBlare [8], refining the view of the
OS implementation. Information flows are here observed at the language level
(Java). The containers of information are variables and object attributes. Flows
between these containers are those observed trough method calls or affectation
of variables. Java types are either primitive types or reference types and we
only consider objects whose types are primitive data types (int, char, . . .). We
consider reference data types (such as classes or arrays) as an aggregation of
primitive data types. The main goal of JBlare is to refine the computation of
reading tags used by Blare. JBlare thus associates a reading tag to any variable
whose type is a primitive type. JBlare reading tags are implemented as Java
objects. The wrapper class blareTag encodes these tags as bitmap structures
compatible with the Blare OS implementation. Whenever an OS object is read,
corresponding tags are created on the corresponding java object. Tags are up-
dated when a field is accessed or a method is called. Reading or modifying a

Flow Based Interpretation of Access Control 85

field involves a flow from the read field to the current method local variables or
vice-versa. Method calls are handled according to the method signatures.

A Two-Level Cooperative Detector. Cooperation between JBlare and Blare
is achieved by a class on the Java side which detects when a Java program
performs some accesses to OS objects such as files or sockets. On the one hand,
JBlare language level tags are initialized from Blare OS-level tags. For example
when a file is read, the reading tag maintained by Blare is propagated to JBlare
through the read security tag of the first instrumented method in the stack
frame. On the other hand, JBlare security tags are propagated to Blare tags.
For example, a write access to a file implies the propagation from JBlare to Blare
of the reading tag related to the method accessing the file.

6 Conclusion

In this paper, we have proposed a formal framework allowing to study different
access control and information flow policies. From an access control policy, we
have defined three flows policies: a confinment policy which is the set of autho-
rized information flows between objects, a confidentiality policy which is the set
of authorized flows from objects to subjects, and an integrity policy which is the
set of authorized flows from subjects to objects. Then, we have introduced the
consistency property expressing that flows occuring during the life of a system
implementing an access control policy are authorized by these flows policies. For
example, this property holds for the Bell & LaPadula policy but is not satisfied
by the HRU policy. Thus we have elaborated a general mechanism dedicated to
illegal information flow detection (security tags propagation and evaluation of a
predicate over the tags associated with a state). This mechanism can be used
to detect attacks generating illegal information flows in a system (for example
a HRU-like system such as Linux), leading actually to an intrusion detection
system (IDS) that aims at both completeness and soundness, provided that in-
formation flows that violate the policy are detectable and discernible by the IDS.
We have presented two implementations of our detection model in two concrete
IDSes at two levels of granularity. The first IDS, Blare, is a patch of the Linux
kernel and works at the OS level. The second IDS, JBlare, is a Java class that
performs bytecode instrumentation on the classes of Java applications; this al-
lows the modified application, once loaded in the JVM, to track the information
flow resulting from its own execution. We now plan to extend our formalism to
deal with two main features. First, we’d like to add the execute access mode
in order to take into account executions of algorithms that can generate flows
between its inputs and ouputs. We also aim to consider systems for which the
configurations can be modified (under the control of an administrative policy).

References

1. Bell, D., LaPadula, L.: Secure Computer Systems: a Mathematical Model. Techni-
cal Report MTR-2547 (Vol. II), MITRE Corp., Bedford, MA (May 1973)

2. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: Proc. IEEE Sym-
posium on Security and Privacy, pp. 206–214 (1989)

86 M. Jaume, V. Viet Triem Tong, and L. Mé

3. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

4. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Communications of the ACM 20(7), 504–513 (1977)

5. Ferraiolo, D.F., Kuhn, D.R.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference (1992)

6. Geller, S., Hauser, C., Tronel, F., Viet Triem Tong, V.: Information flow control
for intrusion detection derived from mac policy. In: IEEE International Conference
on Communications, ICC 2011 (2011)

7. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Communi-
cations of the ACM 19, 461–471 (1976)

8. Hiet, G., Viet Triem Tong, V., Mé, L., Morin, B.: Policy-based intrusion detection
in web applications by monitoring java information flows. In: 3nd International
Conference on Risks and Security of Internet and Systems, CRiSIS 2008 (2008)

9. Jaume, M.: Security Rules versus Security Properties. In: Jha, S., Mathuria, A.
(eds.) ICISS 2010. LNCS, vol. 6503, pp. 231–245. Springer, Heidelberg (2010)

10. Ko, C., Redmond, T.: Noninterference and intrusion detection. In: IEEE Sympo-
sium on Security and Privacy, pp. 177–187 (2002)

11. Myers, A.C.: Jflow: Practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM on Principles of Programming Languages (1999)

12. Myers, A.C., Liskov, B.: Complete safe information flow with decentralized labels.
In: IEEE Symposium on Security and Privacy (1998)

13. Myers, A.C., Liskov, B.: A decentralized model for information flow control.
SIGOPS Oper. Syst. Rev. 31(5), 129–142 (1997)

14. Osborn, S.L.: Information flow analysis of an RBAC system. In: 7th ACM Sympo-
sium on Access Control Models and Technologies SACMAT, pp. 163–168 (2002)

15. Sandhu, R.S.: Lattice-Based Access Control Models. IEEE Computer 26(11), 9–19
(1993)

16. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

17. Schneider, F.B.: Enforceable security policies. Information and System Secu-
rity 3(1), 30–50 (2000)

18. Viet Triem Tong, V., Clark, A., Mé, L.: Specifying and enforcing a fined-grained
information flow policy: Model and experiments. Journal of Wireless Mobile Net-
works, Ubiquitous Computing and Dependable Applications, JOWUA (2010)

19. Zimmermann, J., Mé, L., Bidan, C.: An Improved Reference Flow Control Model
for Policy-Based Intrusion Detection. In: Snekkenes, E., Gollmann, D. (eds.) ES-
ORICS 2003. LNCS, vol. 2808, pp. 291–308. Springer, Heidelberg (2003)

Consistency Policies for Dynamic Information
Systems with Declassification Flows

Julien A. Thomas, Frédéric Cuppens, and Nora Cuppens-Boulahia

Télécom Bretagne, LUSSI Department
Université Européenne de Bretagne

Rennes, France

Abstract. Many research work focused on modeling relational database
management systems (DBMS) that support multilevel security (MLS)
policies. One issue in this context is the inference problem which occurs
when it is possible to derive higher classified data from lower classified
ones. This corresponds to situations where data is inconsistently classi-
fied. Research work that address the inconsistent classification problem
generally assume that classification assigned to data is statically defined
and does not change over time (the tranquility principle). However, in
more recent studies, advanced properties such as secure data declassi-
fication were also considered. The main issues addressed in these work
are how to extend existing information flow control models, like non in-
terference, to control information flows created by data declassification.
But, these work do not consider that dependencies between data may
create inconsistent classification problems when data is declassified.

In this paper, we present an approach to consider consistency issues in
dynamic information systems with declassifications. Our approach relies
on the modeling of explanation graphs associated to both the information
system and the declassification flows.

1 Introduction

Consistency is a major property to address when defining a security policy. This
property has already been widely studied for access control policies [1,2,3,4,5,6].
Regarding Multilevel Security (MLS) policies, enforcing consistency is also a
critical requirement since it may happen that data classified at a low classifi-
cation level can be used to derive other data classified at a higher one. This
is the so-called inference problem in multilevel databases which may be viewed
as a special case of inconsistent policy specification. This inference problem has
been investigated by many research work before, see for instance [4,5]. In these
works, the security policy is said consistent if a user cleared at level L can only
infer data classified at most L. The inference system relies on well-known [7]
inference principles like deductive and abductive inference channels. However,
these previous proposals assume that data is assigned static classifications.

Since [8], several papers investigated declassification requirements [9] using
Language-Based security. These work focus on controlling new information flow

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 87–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

88 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

created by data declassification. In [10], the authors proposed an abstract model
to specify declassification operations which consider the who?, what? and when?
dimensions suggested in [9]. The authors studied the different declassification op-
erations and distinguished two general types of declassification operations. Trust
based Downgrading is defined as “a user u is allowed to declassify a piece of in-
formation o if u is trusted for the downgrading order on o”. Second, Automatic
Downgrading considers all the operations that do not rely on a downgrading
order. This encompasses the time based declassifications and the event based
declassifications [11,12]. This work was extended by [13,14] to model declas-
sification rules in dynamic information systems, using Event-Condition-Action
(ECA) rules [15]. However, when considering data declassification actions, con-
trolling new information flow created by data declassification is not the only
issue we have to address. Another issue previous work do not consider is that
dependencies between data may create inconsistent classification problems when
some data are declassified. As a consequence, existing proposals related to the
inference problem in MLS databases are not robust anymore.

In this paper, we investigate this on-the-fly evaluation of the security policy
consistency. In section 2, we first present a scenario to illustrate different con-
sistency problems raised by information declassification. In section 3, we define
a multilevel information system with declassification capabilities. In section 4,
we present our information flow control model and formalize our consistency
property with the notion of dependency graphs. In section 5, we formalize the
consistency properties associated with the evaluation of such dependency graphs.
We conclude this section with the formalization of consistency policies In section
6, we present related works. Finally, we conclude in section 7.

2 Motivating Scenario

As briefly explained, inconsistent states may be generated by declassification
actions. To illustrate this point, consider the scenario presented in figure 1.

We first consider that a secret diplomatic flight denoted Num which secretly
carries VIP passengers. In the following we shall use logical predicates to rep-
resent information. So let us assume that predicate flight(Num) represents the
fact that Num is a flight and predicate passenger(Num,Name) says that Name
is a passenger of flight Num. Unfortunately, this flight crashed and this infor-
mation is revealed to the public. Due to this declassification of crash(Num), it
is possible to abduciate the existence of secret flight flight(Num) at the pub-
lic level. So, to maintain classification consistency, we need also to reveal fact
flight(Num). Thus, either flight(Num) was declassified before crash(Num) or
the declassification of crash(Num) implies the declassification of flight(Num).

Let us then extend this example. We now assume that crash(Num) is actually
not declassified and secret predicate lost(Name) is inserted in the database for
every passenger of flight Num. Let us assume that there may be two possible
causes for inserting such a predicate in the database: (1) either Name was a pas-
senger of a flight and this flight crashed: passenger(Num,Name)∧ crash(Num)

Consistency Policies for Dynamic Information Systems 89

or (2) Name has been kidnapped: kiddnapped(Name). Depending on the as-
sociated security policy, the declassification of lost(Name) may not trigger the
declassification of crash(Num), if kiddnapped(Name) is secret, i.e. unknown at
the public level. However, if kiddnapped(Name) is a public predicate and its
truth value is false, then one can assume that there is flight which crashed and
Name was a passenger of this flight. And if passenger(Num,Name) is known at
the public level, then crash(Num) will have to be declassified at the public level.

Finally, let us illustrate a more tricky insecure state which may occur. Let us
assume, that it is actually decided to disclose the list of passengers involved in
the crash of flight Num. Then, rescue operations start and some passengers are
rescued but the fact rescued(Name) is kept secret. After some time, it is decided
to end the rescue operations by inserting endRescue(Num) in the database. Let
us now assume that when endRescue(Num) is inserted, then all the predicates
lost(Name) are declassified to public. If for some passenger John, lost(John)
is not declassified at that time, one may infer that this fact has been removed
because John was rescued during the rescue operations (if we assume that rescued
is the only reason for not being lost). So rescued(John) should be declassified
as a consequence of not declassifying lost(John).

Fig. 1. Declassification Actions and Inconsistency Issues

3 Declassification Flows and Consistency Issues

3.1 Information System Model with Dynamic Behavior

As suggested in section 2, we adopt a logical-based representation of the informa-
tion system. The information system model consists of active entities (USERS),
system states (STATES) and system operations (ACTIONS). Information is
modeled using a set of predicates. The system state state then corresponds to
a set of fully instantiated predicates pi called facts. We consider a valuation
function Π : (PREDICATES × STATES)→BOOL. We say that a fact pi holds
in state s if Π(pi, s) = True. The basic operations (ACTIONS) we consider are
the select, delete and insert operations. The update operation is modeled as a
sequence of a delete operation followed by an insert operation.

We consider an information system that supports a multilevel security policy.
We thus define the LEVELS set and the inf level, equal level and inf equal level

90 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

(�) security lattices defined on (LEVELS ×LEVELS)→BOOL. We also define
level assignment functions for the database entities. clearance level, defined on
USERS → LEV ELS, refers to the clearance level of the active entities while
classification level and integrity level relations, defined on PREDICATES →
LEVELS , refer to the classification and the integrity levels of the predicates.
These functions respectively assign security levels to the active entities and the
objects. Finally, we require the security policy to be secure under the known
policy constraint, which means that no part of the security policy is secret.

3.2 ECA Rules Security Model

To model dynamic information flows and thus declassification flows, we consider
the ECA-rule paradigm defined in [15] and the associated Lactive language [16]
proposed by Baral, Lobo and Trajcevski. As we proposed in [13,14], we more
precisely rely on an extended version of the Lactive language, in order to propose
a model able to, on one hand, efficiently model dynamic information systems
and, on the other hand, consider declassification policies. This proposal consider
both confidentiality (Lc) and integrity (Li) levels.

When considering active rules, the first dimension to consider is the action
definition. Action rules are defined as follows, where op1, ..., opk is the post
condition which corresponds to sequential execution of select, delete or insert
operations and q1(X1), ... qn(Xn) is the conjunctive pre-condition to execute α.

Definition 1 (Multilevel Action). An action is defined with the do operator
on ACTIONS×LEVELS×LEVELS and is modeled by the following template:
do(α,Lc, Li) causes op1 ... opk if q1(X1) ... qn(Xn)

Second, actions may trigger events. Trigger events are defined as follows, where
r1(X1), ... rn(Xn) is the conjunctive pre-condition for E to occur.

Definition 2 (Multilevel Event). An event is defined by a name and a header
on (PREDICATES×)∗LEV ELS × LEV ELS. It is modeled by the following
template: event name(E,L1, Li1) after do(α,L2, Li2) if r1(X1) ... rm(Xm)

The occurrence of an event may then in turn initiate the execution of a sequence
of new actions. Such rules are defined as follows, where t1(X1), ... tn(Xn) is the
conjunctive pre-condition to execute actions αi=1...j , after E.

Definition 3 (Multilevel Active Rule). An active rule is modeled by the
following template: rule name : event name(E,L0, Li0) initiates
do(α1, L1, Li1) ... do(αj , Lj, Lij) if t1(X1) ... tp(Xp)

To consider traditional access control policies which enforce confidentiality, we
finally assume the information system complies with the three following laws,
associated to the first security level of the definitions: the Access Law and Mod-
ification Law respectively control access to and modification of the predicates,
the User Privilege Law enforces that users send queries at the right security level.

Consistency Policies for Dynamic Information Systems 91

Definition 4 (Access Law). If p is a predicate and Lc a security level, the
Access Law is satisfied w.r.t. (p, Lc) if the classification level of p is lower than
or equal to Lc.

Definition 5 (Modification Law). If p is a predicate and Lc a security level,
the Modification Law is satisfied w.r.t (p, Lc) if Lc is lower than or equal to the
classification level of p.

Definition 6 (User Privilege Law). If s is a user and Lc is a security level,
the User Privilege Law is satisfied w.r.t (s, Lc) if Lc is the clearance level of s.

3.3 Flow Control Policy and Declassification Policy

Based on these three laws, we must define security properties that respectively
control action execution, event occurrence and active rule activation in a multi-
level information system. As we showed in [13], the enforcement of these proper-
ties is sufficient for confidentiality in dynamic systems without declassification.

Definition 7 (Action Security Property). The execution of an action by
user s at a confidentiality level L satisfies the Action Security Property if (1) for
each action condition qi(Xi), the Access Law is satisfied w.r.t qi(Xi) and L, and
(2) the User Privilege Law is satisfied w.r.t (s, L), (3) the Modification Law w.r.t
(p, L) if one opi operation is an insert of predicate p, (4) the Access Law w.r.t
(p, L) if one opi operation is a select of predicate p and (5) both the Modification
and Access Law w.r.t (p, L) if one opi operation is a delete of predicate p.

Definition 8 (Event Security Property). The occurrence of an event at
a confidentiality level L satisfies the Event Security Property if (1) for each
condition ri(Xi) of the event, the Access Law is satisfied w.r.t ri(Xi) and L and
(2) the security level L of the triggering action is lower than or equal to L.

Definition 9 (Active Rule Security Property). An active rule triggered at
level L satisfies the Active Rule Security Property if (1) the security level of the
triggering event L is lower than or equal to the execution level of each triggered
action and (2) for each condition ti(Xi) of the active rule, the Access Law is
satisfied w.r.t ti(Xi) and the greatest lower bound glb(L1, ..., Lj) where L1, ..., Lj
respectively represent the security level of the different triggered actions.

However, as we shown in [14], flow control policies are no longer sufficient to
enforce confidentiality in information systems with declassification flows. Declas-
sification actions must satisfy additional security requirements and in particular
integrity requirements. More precisely and in order to assure the trustworthiness
of the information system data, as we already mentioned in [10], the security pol-
icy must only allow trusted actions. We thus state the following integrity policy
which links the trustworthiness of an object to its integrity level.
Definition 10 (Integrity Policy). Considering a modification (insert, up-
date) request performed with an integrity level li. An object obj may be modified
if the integrity Ls of the object satisfies Ls � li

92 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

3.4 Scenario Specification

Let us specify the scenario presented in section 2 using ECA rules. We first
specify the flight crash action as follows:
do(f l i g h t c r a s h (Num) , L , Li) causes i n s e r t (c rash (Num)) i f f l i g h t (Num) ;
do(f l i g h t c r a s h (Num) , L , Li) causes i n s e r t (l o s t (Na)) i f p asse n ge r (Num, Na) ;

First part of this action definition says that the effect of flight crash action
will insert predicate crash(Num) if there is a fact flight(Num) in the database
and second part says that facts lost(Name) are inserted in the database for
every passenger of flight Num. We also define the kidnapping action as follows:
do(kidnapping (Name) , L , Li) causes i n s e r t (l o s t (Name)) i f kidnapped (Name) ;

The declassification action of some predicate to level L is defined as an update
from the initial classification level L′ of this predicate to level L:
do(d e c l a s s i f y (P, L) , L1 , Li) causes

d e l e t e (c l a s s i f i c a t i o n l e v e l (P, L ’)) , i n s e r t (c l a s s i f i c a t i o n l e v e l (P, L))
i f c l a s s i f i c a t i o n l e v e l (P, L ’) ∧ i n f l e v e l (L , L ’) ;

Automatic downgrading is modeled through an active rule which automati-
cally triggers a downgrading operation when some events occur. For this purpose,
we first define declassify ev(P,L).

d e c l a s s i f y r u l e : d e c l a s s i f y e v e n t (P, L , L1 , Li1)
i n i t i a t e s do(d e c l a s s i f y (P, L) , L2 , Li2) ;

Specifying automatic downgrading then consists in specifying when the event
declassify event(P,L) occurs. For example, in our scenario, we consider that
every lost passenger is automatically downgraded by the end of the rescue oper-
ations. This requirement is specified by the following declassify event definition:

d e c l a s s i f y e v e n t (l o s t (Name) , Publ ic , L1 , Li1) after
do(i n s e r t (endRescue (F l i g h t)) , L2 , Li2) i f p a s s e n g e r (F l i g h t , Name)∧ l o s t (Name)

4 Dynamic Information Systems and Consistency

In the previous section, we defined how to model the information systems we
consider. However, according to the consistency needs presented in section 2, we
must extend existing flow control policy to consider consistency issues associated
with declassification actions. In this section, we study how to model consistency.

4.1 Graph Model for the ECA Rules

Modeling Overview. To model the consistency property for dynamic infor-
mation systems, we rely on graphs to model information flows. In this section,
we thus consider the modeling of ECA rules with multilevel Conditioned Graph.

Consistency Policies for Dynamic Information Systems 93

Such graphs rely on states which represent the evolution of the information
system predicates between the execution of two rules. The possible transitions
are determined by the ECA rules and the information states. However, as an
impossible transition may be considered as valid by a user who does not know
the failing condition value, we rely on the notion of Valid Conditioned Transition.

Model. In the ECA paradigm, the information system state evolves due to
the execution of actions. The execution of actions may cause the occurrence of
events which in turn may trigger the execution of active rules. An active rule
then specifies that some sequence of actions must be executed when some event
occurs and some associated conditions are satisfied. Based on the execution of
actions and active rules, we can thus build a graph of dependencies between pre
conditions and post conditions of these executed actions.

First, we assume that the relation between two actions is not reflexive and
that no parallel transition is possible. According to the work by Harary and
al. [17], the graph of the information system is a directed graph G = (V,E, f, s):
1. V is the subset of predicates which evolve after the triggering of an action,
2. E refers to the allowed transitions between the objects,
3. f (first) links a transition with the source,
4. s (second) links a transition with the destination.

Instead of considering simple transitions, we however rely on a weighted directed
graph where the weight w s the associated set of conditions PS for the transition
to occur. Based on Lactive, we say P1

PS→ P2 if there exists:
– an action, noted do(α1), which results in the modification of P1,
– an event, noted ε, associated with action do(α1),
– a rule, noted rule, associated with event ε which triggers action do(α2),
– the action do(α2) results in the modification of P2,
– the set PS refers to the conditions associated with ε, rule and do(α2).

Regarding our previous notation, t1 = P1
PS→ P2 means that P1, P2 ∈ V , PS ⊆ V ,

t1 ∈ E, f(t1) = P1, s(t1) = P2 and w(t1) = PS . The figure 2 illustrates the
modeling of the ECA rules specified in section 2.

Fig. 2. Example of graph based modeling of a dynamic information system

Second, in multilevel information systems without declassification, data a user
may inferred are predetermined as the classification levels are static and no
sensitive data is never disclosed. To evaluate the possibility for a transition to
be performed, we thus rely on the restricted subset of PS by L, noted PS�L and
defined as P ∈ PS�L ⇔ Π(classification level(P,LP), sk) ∧ LP � L, for any
state sk. We then define the concept of valid conditions as follows:

94 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

Definition 11 (Valid Conditioned Transition). Considering the state sk,
a conditioned transition is valid according to L, noted sk : P PS�L→ P2, if the
conditions belonging to the subset PS�L are valid.

4.2 Explanation Graphs

Modeling Overview. In the previous section, we formalized the information
system rules which a graph G which represent the evolution of the information
system predicates and the associated condition for such evolutions. To be able to
formalize our consistency property, we need to go further to model explanations
that is the set of evolutions which may explain an information state. We thus
extend our graph model based analysis which explanation graphs.

Model. To model such explanation graphs, we rely on the graph model. We
more precisely define an explanation graphs as a graph G where

1. each node is defined as (i, αi, s) with i a step number, s the state at step i
and αi the action responsible for the transition to state s. To simplify the
notation, we note α(P) the fact that α engenders P

2. E is derived from the transition relation sk : P PS�L→ P2 as follows: if a
transition is defined in E then such a transition is a valid condition transition.

We then distinguish two reasons for an explanation to be inconsistent. First, a
state of the graph may be inconsistent as it is possible to infer p ∧ ¬p. Second,
users may partially know the actions performed on the systems. Thus, the sub-
set of the action visible to a user u must be the same as the one visible to u
in the considered explanation G. When an explanation is inconsistent, it must
be removed from the set of possible explanations. In figures 3 and 4, we illus-
trate such an evaluation of explanation graphs, for the mentioned consistency
issues. In figure 3, we consider ¬kidnapped(user) as secret. In figure 4, knowing
¬kidnapped(user), the set of possible explanation is reduced.

Fig. 3. Explanation graphs (1)

Fig. 4. Explanation graphs (2)

Consistency Policies for Dynamic Information Systems 95

4.3 Consistency Property

In section 2, we showed that sensitive information may be inferred due to infor-
mation flow based dependencies and declassification actions. Such an issue occurs
because the information system security policy does not efficiently manage some
information dependencies attackers rely on. More precisely, we illustrated the
inconsistency with examples which illustrate the possibility for a user u cleared
the security level Lu to infer without doubt information classified L with L 	� Lu.

Based on the Non-Deducibility property [18], we thus say that the system is
consistent if for any user u, the state of any information classified L with L � LU
may be explained by information flows which only rely on information classified
L2 with L2 � LU . The evaluation of the consistency property thus consists in
building a graph Gall that is the intersection of all explanation graphs:

1. each nodek of Gall is defined by (k, αk, s) with k a step number and s the
state defined by v ∈ s iff ∀(graph G).(∃(α, sG|(k, α, sG) ∈ G =⇒ v ∈ sG)),

2. the relation E simply links a node (k, αk, s) to the node (k + 1, αk+1, s
′),

3. if it exists at least a graph Gi such that node nodek is not defined, then
nodek is not defined in Gall,

4. if it exists two graphs G′ and G′′ such that α′k 	= α′′k, then the value of αk
in Gall is undefined.

According to this graph, we evaluate the inferable information as follows: the
value of p is inferable in step k if ∃((αk, s)|nodek ∈ Gall∧nodek = (k, αk, s)∧p ∈
s). In figure 5, we illustrate such an evaluation of the inferable information for
the mentioned consistency issues. In the first graph, which is associated to the
figure 3, undecidability holds. However, knowing ¬kidnapped(user) (the second
graph), it is possible to infer additional information.

Fig. 5. Union of explanation graphs

4.4 Initial Database Consistency Policy

According to our policies, blind writings are allowed, providing the object in-
tegrity is not violated. Consider for instance the following scheme.

i n s e r t L 2 after do (U, I , obj , L1 , Li1)
i n s e r t L 2 i n i t i a t e s do (U, I , objL2 , L1 , Li2) i f CL1,LiC

Such active rules are allowed according to the policy if L1 � L2 and Li2 �
lub(Li1, LiC) with lub the lowest upper bound. It is straightforward the policy
allows users cleared L1 know objL2 Such information flow is permitted as

96 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

1. the integrity of objL2 is at most L1 (Li1 � L1). Thus any decision taken
based on the value of objL2 is trusted at most up to the level L1.

2. this does not means a disclosure of objL2 as it may still be modified

When considering declassification flows, this initial consistency policy may be
taken into account to prevent some dependencies to be declassified:

Property 1. the declassification of an object O to Ld does not imply the declas-
sification of a child dependency D if integrity level(D) � Ld.

5 Dynamic Explanation Graph Evaluations and
Consistency Policy

To avoid consistency issues, we proposed in the previous sections graph based
models. In this section, we present the derivation rules associated to the con-
struction of the explanation graphs. Due to a lack of space, the proof of the
completeness of our proposal is however not given. In the explanation graph
based model, we define a state of the graph as (i, αi, s) with i a step number, s
the state of the information system and αi the action responsible for the transi-
tion to s. The step number may however be unknown. We say that a node nodei
whose step is unknown is labeled (, αi, s). We consider this issue in section 5.5.

5.1 Invariants on the State Based Knowledge: Initializing a
Node Ni

Before presenting our derivation rules, we first state invariants on the revealed
sub-state. According to our definition, this sub-state is the information inferable
due to either the information level or the information dependencies. In this
section, we consider the relation between the system information state (such as
the security level) and the revealed state, where Ni = (i, αi, si).

When considering a state sk, we state that if the classification level of a node
is inferior or equal to the considered security level LD of the graph, then it
must be revealed in the state s of the node N = (k, αk, s) of any explanation.
Thus, when creating a new node, we initialize its state based on the classification
level of the predicates. Inferences are then possible due to others dependencies
dependent of the information system behavior. For instance, when inserting a
predicate P , the insertion will occur (and generate events) only if the associated
object is non-present in the database. To manage such inference, we state the
following invariant for information systems which rely on these assumptions.
When considering Ni = (i, αi, si), and αi being αi(P), ¬P is added to the state
sj associated to Nj = (j, αj , sj) where j = i+ 1. Finally, considering an action
on P , the state of the other predicate is preserved in the parent and child states.

5.2 Explicit Derivation Rules: After a Node Ni Is Created

In the previous subsection, we presented standard inference rules. In this sub-
section, we present explicit derivation rules.

Consistency Policies for Dynamic Information Systems 97

Explicit Derivation Rule 1: Deductive Inference. When a node Ni =
(i, αi, si) is created, the associated action αi is also revealed. According to the
information system, such an action may trigger others, in return. To consider
these dependencies and whenever a node is created, the associated child nodes
must be added to the graph and the state of each condition is revealed in the
parent state. We formalize this inference as follows. For each valid transition
αi
PS�LD→ αx(P) of the graph model, the current graph is forked. In a first graph,

the transition is applied as follows: if a node Nj = (j, αj , sj) exists such that
αj = αx and Nj is a child of Ni (Ni → Nj), Nj is considered. Otherwise, Nj
is created with an unknown index and such that Ni → Nj . Besides, we say
that P and any Pc ∈ PS are known in si. As the transition may not occur if
PS�LD � PS , nothing is updated in the second graph. Otherwise, the second
graph is removed. The other transitions are performed on the remaining graphs.

Explicit Derivation Rule 2: Deductive Inference 2. In subsection 2, we
stated that implicit information flows due to failing conditions must also be
considered. To model this issue, we need to consider the non-updated graph
defined by the Explicit Derivation Rule 1:

1. according to our statements in section 5.1, P may already be set in si. So,
we create a graph were P ∈ si

2. a condition Pc in PS − PS�LD is false. For each possible Pc, we create a
graph where ¬Pc ∈ si

Explicit Derivation Rule 3: Abductive Inference. Third, when the associ-
ated action αi is revealed, an abductive inference is possible. Such inference con-
sists in considering any possible explanation for αi. According to our consistency
policy, we thus generate a graph for each possible explanation. We formalize this
abductive inference based derivation as follows. If a node Nj = (j, αj , sj) exists
such that Nj → Ni, we consider the node Nj as the parent action. Otherwise, for
each relation si−1 : αj

PS�LD→ αi, we create a new graph G with a non-indexed
node Nj such that Nj → Ni. Besides, we say that any Pc ∈ PS and ¬P are
known in si−1. The external insertion is modeled by the not updated first graph.

Explicit Derivation Rule 4: Abductive Inference 2. Finally, implicit in-
formation flows due to failing conditions must also be considered. To model
this issue, we need to add another explanation: an external insertion due to
failing conditions. When considering each relation αj

PS→ αi, for each condition
Pfc ∈ PS − PS�LD, we create a graph where Pfc is a failing condition.

5.3 Explicit Derivation Rules: After a Predicate P Is Defined in si

In the previous subsection, we presented consistency rules associated to the in-
sertion of a new node in the graph. Such rules considered the dynamic dimension
of the information systems and relied on both abductive and deductive inference
rules. However, when considering the dynamic dimension of the information, we

98 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

must also considered inference based on the update of a predicate. Indeed, such
a predicate as been inserted (or deleted) by a previous action. Thus, when a
predicate is updated, the possible explanations for its state must be considered
too. We thus state the following rules. Consider Nodei = (i, αi, si). If αi(P), the
predicate is already considered by the previously stated rules. Otherwise,

1. if(P ∈ si−1), the predicate state is explained in a previous state.
2. if(¬P ∈ si−1), the system state is inconsistent and the graph is thus removed
3. otherwise, if αi is defined, we add P to si−1.
4. otherwise, if αi is not set, the graph is forked and for the first graph, we add

P to si−1. For the second, we set αi(P)

5.4 Implicit Derivation Rules: After a Predicate P Is defined in si

In section 5.1, we stated that the creation of a node implies the preservation of
the state of the predicates not considered by the associated action. We thus also
needs to consider this preservation when a predicate is revealed after the node
is created. To enforce this preservation, we say that if αi 	= αi(P) then P is set
in si−1 and if αi+1 	= αi+1(P) then P is set in si+1.

5.5 Index Evaluation

In the previous subsections, we defined algorithms to build the explanation
graphs. Some of the index may yet not be determined when the graph is created.

First, consider any rule which results in the insertion of a predicate P in
the state sl. We consider here two possibilities. If ∃Nl = (l, αl, sl) then P is
effectively added to sl of Nl. Otherwise, we create a node Nl = (l, , sl). Second,
consider the deductive inference (rule 1 and 2 of section 5.2). According to the
active rule ordering process, users may infer node indexes. Considering the first
applied transition, the user knows j = i+ 1. Besides, when no deductive rule is
applicable to Ni (a leaf of the graph), it is possible to infer the relation between
Nj andNi as j = i+1 if starting fromNpi where Npi → Ni, for each parent node,
either the current transition is the last possible transition or the next transition
is Npi → Nj . Third, based on the instantiation of the index of Ni = (i, αi, si)
and if a second node Nl already exists where Nl = (i, αl, sl), then if αl = or
αl = αi, the states are merged. Otherwise, the explanation is inconsistent.

5.6 Consistency Policy for Dynamic Information Systems

In the previous sections, we showed that declassification actions may engender
inconsistent states. We thus defined an algorithm for the evaluation of such
states. Based on this evaluation, we may define policy that either allow declas-
sification action and implies the management of the associated inconsistency or
deny (pro-active) declassification actions when the inconsistency is undesired.

To define our policies, we consider the following sets. inconsistent states
refers to any inferable information as (O, sk, L) ∈ inconsistent states if O is

Consistency Policies for Dynamic Information Systems 99

inferable at step k for a user with the clearance level L and such inference is in
conflict with the security policy. declassification(sn) refers to the objects declas-
sified in sn. We then define declassification as the subset of inconsistent states
restricted to sn. Finally, several consistency policies are possible.

Definition 12 (Strict Non Interference). The action α performed in the
state sn−1 is authorized if the state sn satisfies inconsistent states(sn) = ∅

Definition 13 (Intransitive Declassification). The action α performed in
the state sn−1 is authorized if the state sn satisfies declassification(sn) = ∅

Definition 14 (Authoritative Declassifications). The action α performed
in the state sn−1 is authorized, no matter the declassifications it engenders

When the consistency policy authorizes the action α, the system must declassify
each object P to L if (P,L) ∈ declassification(sn). According to these policies,
it is obvious that declassification requests may be rejected due to inconsistent
states. However, such inconsistency may rely on sensitive data. To avoid the
violation of the confidentiality policy [14], we thus state that:

1. Event based declassifications rely on the authoritative declassification policy.
2. Order based declassifications may rely on any consistency policy if the user

who order the declassification of o is at least cleared the initial classification
level of o. Otherwise the authoritative declassification policy is used.

6 Related Work

Several work [1,2,3,4,6] already considered consistency issues in security policies.
In [4], the authors present consistency issues in role based access control policy.
They model the concept of norms and considered consistency issues when a spe-
cific user may simultaneously be assigned to several roles, even when the subset
of norms associated with each role is conflict-free. To manage such conflicts, the
authors define derivation algorithms based on role priorities, which thus solve
the consistency issues. In our work, we do not assume that our derivation rules
are conflict-free (even under instantiation). Thus, to define a complete inference
policy, we must define additional constraints to enforce their composability [2].
Two different instantiations of the derivation rules may infer different implicit
classification levels. However, we rely on the concept of priority [4] and assume
that instantiated derivation rules are given a priority order such that the lower
derived implicit classification level is prioritized [5]. In [5], the authors present
an inference controller for multilevel databases. Based on inference rules speci-
fied in first order logic, the authors formalized the classification level of derived
facts. We extended this concept of implicit classification levels using derivation
rules for active rule based dependencies. Conflicts are detected when associated
invariants are violated. We also refined the conflict resolution algorithms with
the concept of Strict Non Interference and Intransitive Declassification, provided
they do not violate the declassification policy hypotheses [14].

100 J.A. Thomas, F. Cuppens, and N. Cuppens-Boulahia

In [6], the authors present conflict resolution algorithms to prevent sensi-
tive data to be inferred. Based on the concept of minimum support and confi-
dence, they define the concept of unsafe association rules and propose algorithm
to evaluate reclassification needs. Thus, contrary to our proposal, the authors
(only) proposed a reclassification policy. Besides, the authors focused on sim-
ple databases. They did not consider functional dependencies. In [7], the au-
thor presents several types of inference channels including deductive, abductive
and probabilistic channels. In our formalization, our model relies on the Non-
Deducibility policy. So, we can manage the deductive and abductive inference
channels but probabilistic inference channels are out of the scope this paper.
Regarding consistency issues in declassification policies, the work by Sabelfeld
and Sands [9] summarizes existing work and issues related to the concept of
semantic consistency. According to the authors, a program satisfies this consis-
tency property if the security is preserved under semantic transformation. Thus,
declassification policy only consider consistency issues of semantic dependen-
cies [19,20]. According to our study, such consistency policies are not sufficient.

According to these analyses, we argue that existing work on consistency poli-
cies are not able to manage consistency issues in dynamic information systems
with declassification. The consistency policy must consider semantic dependen-
cies but also execution related dependencies.

7 Conclusion

In this article, we studied the consistency issues for information systems with
dynamic behaviors and declassification capabilities. We formally defined a graph
based dependency model to handle these issues and define a robust consistency
policy. Associated to this model, when then presented inference rules associated
to each dependency created by action executions and concluded with the defi-
nition our consistency policy. Finally, we compared our work with related ones
and show that the issues addressed in this paper were not solved before.

Due to a lack of space, we however did not present the algorithm which en-
forces these invariants and showed the completeness of our proposal. This algo-
rithm may be presented as a future work. Besides, the consistency issues only
considered inferred information based on ECA rules related dependencies, In
future work, we may refine our approach to also consider the information depen-
dencies produced by arithmetic operations.

References

1. Moffett, J.D., Sloman, M.S.: Policy conflict analysis in distributed system manage-
ment (1993)

2. Dinolt, G., Benzinger, L., Yatabe, M.: Combining components and policies, pp.
22–33 (June 1994)

3. Cuppens, F., Saurel, C.: Specifying a security policy: A case study. In: Proc. of the
Computer Security Foundations Workshop, pp. 123–134. Kenmare Press (1996)

Consistency Policies for Dynamic Information Systems 101

4. Cholvy, L., Cuppens, F., Belin, A.E.: Analyzing consistency of security policies.
In: 1997 IEEE Symposium on Security and Privacy, pp. 103–112. IEEE (1997)

5. Cuppens-Boulahia, N., Cuppens, F.: Inference controller for multilevel databases.
In: International Symposium on Programming and Systems, Algiers (May 2001)

6. Li, C., Shirani-Mehr, H., Yang, X.: Protecting Individual Information Against In-
ference Attacks in Data Publishing. In: Kotagiri, R., Radha Krishna, P., Mohania,
M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 422–433.
Springer, Heidelberg (2007)

7. Raman, S.: Detecting Inference Attacks Using Association Rules (December 2001)
8. Goguen, J., Meseguer, J.: Security policies and security models. In: 1982 IEEE

Symp. Security and Privacy, pp. 11–20. IEEE (1982)
9. Sabelfel, A., Sands, D.: Dimensions and principles of declassification. In: CSFW

2005: Proceedings of the 18th IEEE workshop on Computer Security Foundations,
pp. 255–269 (2005) ISBN ISSN:1063-6900 , 0-7695-2340-4

10. Thomas, J., Cuppens-Boulahia, N., Cuppens, F.: Modeling and Controlling Down-
grading Operations in Information Systems. In: 5th International Conference on
Signal-Image Technology & Internet-based Systems, SITIS 2009 (December 2009)

11. President of the United States: Executive order 12958, classified national security
information. Technical report (March 2003)

12. Secrétariat Général de la Défense Nationale: Instruction générale interministérielle
sur la protection du secret de la défense nationale (August 2003)

13. Thomas, J., Cuppens-Boulahia, N., Cuppens, F.: Expression and Enforcement of
Confidentiality Policy in Active Databases. In: 5th International ACM Conference
on Management of Emergent Digital EcoSystems, MEDES 2010, Bangkok, Thai-
land, LUSSI - Institut Télécom-Télécom Bretagne, October 26-29 (2010)

14. Thomas, J., Cuppens-Boulahia, N., Cuppens, F.: Declassification Policy Manage-
ment in Dynamic Information Systems. In: The Sixth International Conference on
Availability, Reliability and Security, ARES 2011, Vienna, Austria, LUSSI - Institut
Télécom-Télécom Bretagne, August 22-26 (2011)

15. Dayal, U., Buchmann, A.P., McCarthy, D.R.: Rules are Objects Too: A Knowledge
Model for an Active, Object-Oriented Databasesystem. In: Dittrich, K.R. (ed.)
OODBS 1988. LNCS, vol. 334, pp. 129–143. Springer, Heidelberg (1988)

16. Baral, C., Lobo, J., Trajcevski, G.: Formal Characterizations of Active Databases:
Part II. In: Bry, F. (ed.) DOOD 1997. LNCS, vol. 1341, pp. 247–264. Springer,
Heidelberg (1997)

17. Harary, F., Norman, R., Cartwright, D.: Structural Models: An Introduction to
the Theory of Directed Graphs. Wiley, New York (1966)

18. Sutherland, D.: A model of information. In: Proceedings of the 9th National Com-
puter Security Conference (1986)

19. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: POPL 2004: Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 186–197. ACM, New York (2004)

20. Cohen, E.: Information transmission in computational systems. SIGOPS Oper.
Syst. Rev. 11(5), 133–139 (1977)

Authorization Policy Specification and Enforcement
for Group-Centric Secure Information Sharing

Ram Krishnan1,2 and Ravi Sandhu1

1 Institute for Cyber Security
2 Department of Electrical and Computer Engineering

University of Texas at San Antonio
San Antonio, TX

{ram.krishnan,ravi.sandhu}@utsa.edu

Abstract. In this paper, we propose a methodology for incremental security pol-
icy specification at varying levels of abstraction while maintaining strict equiv-
alence with respect to authorization state. We specifically consider the recently
proposed group-centric secure information sharing (g-SIS) domain. The current
specification for g-SIS authorization policy is stateless in the sense that it solely
focuses on specifying the precise conditions under which authorization can hold
in the system while only considering the history of actions that have occurred.
The stateless application policy has been specified using linear temporal logic.
In this paper, we develop an enforceable specification that is stateful in the sense
that it is defined using specific data structures that are maintained in each state
so as to make authorization decisions. We show that the stateful specification is
authorization equivalent to that of stateless. That is, in any state, authorization
will hold in stateful if and only if it also holds in the stateless specification.

Keywords: Authorization, Enforcement, Equivalence, Security Policy.

1 Introduction

A fundamental problem in access control is the consistency of specification and en-
forcement of authorization policies. A large body of literature focuses on either the
specification of authorization policies or its enforcement independent of each other.
Our focus in this paper is to bridge these two areas. Our application domain is the re-
cently proposed model for group-centric secure information sharing or g-SIS [4,6]. In
g-SIS, users and objects are brought together in a group to promote sharing and col-
laboration. Users may join and leave and objects may be added and removed from the
group. The join, leave, add and remove operations may have different authorization se-
mantics as will be discussed later. A formal set of core properties that are required of all
g-SIS specifications have been defined given the basic group operations of join, leave,
add and remove. Further, a specification, called the π-system, has been formulated and
proven to satisfy the core g-SIS properties.

The π-system specification is defined in a stateless manner using first-order linear
temporal logic (FOTL). (FOTL differs from the familiar propositional linear temporal
logic [7] by incorporating predicates with parameters, constants, variables, and quan-
tifiers.) Specifically, the π-system is not directly enforceable in the way it is specified

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 102–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Authorization Policy Specification and Enforcement 103

because it does not define the data structures that need to be maintained in order to
make authorization decisions. Instead, the FOTL characterization of the π-system sim-
ply specifies the sequence of actions that need to have occurred in the past in order for
authorization to hold at any given state. Thus, for example, a stateless specification may
specify that a user may access an object in a group in a particular state if and only if
the user had joined the group in the past, the object has been added to the group in the
past and both the user and object are current members in the group (that is, the user has
not left and the object has not been removed). Note that such a characterization using
FOTL does not specify how to enforce that policy. A stateful specification, on the other
hand, specifies the data structures that need to be maintained in the system so that they
can be inspected in each state and authorization decisions be made.

In this paper, we develop a stateful specification for the π-system and prove that this
specification is authorization equivalent to the stateless π-system specification. That
is, a user will be authorized to access an object in a group in the stateful π-system
specification if and only if it is also the case in the stateless π-system specification.

The separation of stateless from the stateful specification has a number of impor-
tant virtues. A security policy researcher developing the stateless specification is not
distracted by the data structures that need to be designed and maintained. Instead, she
can focus purely on the precise characterization of the conditions under which autho-
rization should hold in her system. Formal specification using FOTL also allows one to
conduct rigorous formal analysis using automated techniques such as model checking
as demonstrated in [4]. Once the stateless specification is developed, one can then focus
on the data structure design and mechanisms needed to enforce the stateless policy. As
will be shown, while the stateless specification may be complex for a non-expert in the
field, the stateful specification is understandable and can be implemented by relatively
competent programmers. The techniques we use include algorithmic specification of
stateful π-system and induction for our proofs. We believe that this can be applied in
various other application domains in which new policy specifications are developed.

This line of work is inspired in part by the relationship between the non-interference
[2] and the Bell-LaPadula model [1]. The Bell-LaPadula model provides a lattice struc-
ture of security labels and the famous simple-security and star-properties to enforce
one-directional information flow in the lattice. This is a stateful specification in that it
describes data structures and rules that are enforceable. The non-interference specifica-
tion is stateless and makes reference only to input-output behavior of a secure system.
Our goals in this paper are to formalize authorization policy rather than information
flow policy. Nonetheless the stateless and stateful distinction has strong similarities and
the non-interference work has been inspirational. To the best of our knowledge, this is
the first effort towards bridging authorization policy specification and enforcement.

The rest of the paper proceeds as follows. In section 2, we give a brief background on
g-SIS and an overview of the stateless π-system specification. In section 3, we present
a stateful specification for the π-system. In section 4, we show the equivalence of the
stateful and stateless π-system specifications. We discuss future work and conclude in
section 5.

104 R. Krishnan and R. Sandhu

2 Background

In this section, we provide a brief overview of g-SIS. A detailed discussion can be found
in [4] and [6].

2.1 Overview of g-SIS

In g-SIS, users may join, leave and re-join the group. Similarly, objects may be added,
removed and re-added to the group. Authorization may hold in any state depending
on the relative membership status of the user and object in question. The group oper-
ations join, leave, add and remove can be of different types with various authorization
semantics. We use the following shorthand to denote such different semantics of group
operations:

Join(u, g) = (join1(u, g) ∨ join2(u, g) ∨ ... ∨ joinm(u, g))
Leave(u, g) = (leave1(u, g) ∨ leave2(u, g) ∨ ... ∨ leaven(u, g))

Add(o, g) = (add1(o, g) ∨ add2(o, g) ∨ ... ∨ addp(o, g))
Remove(o, g) = (remove1(o, g) ∨ remove2(o, g) ∨ ... ∨ removeq(o, g))

Thus, for instance, join1(u, g) could represent a specific type of join operation that
is different in authorization semantics from that of join2(u, g). However, Join(u, g)
captures the notion that a join operation of some type has occurred for u in g.

Table 1. Intuitive summary of temporal operators used in this paper

Future/Past Operator Read as Explanation
© Next (© p) means that the formula p holds in the next state.

Future � Henceforth (� p) means that the formula p will continuously hold in all
future states starting from the current state.

W Unless It says that p holds either until the next occurrence of q or if
q never occurs, it holds throughout.

Past � Once (� p) means that formula p held at least once in the past.
S Since (p S q) means that q happened in the past and p held con-

tinuously from the position following the last occurrence of
q to the present.

Definition 1 (State in Stateless Specification). A state in the stateless specification is
an interpretation that maps each predicate in the language to a relation over appropri-
ate carriers.

The predicates in the g-SIS language include action predicates such as Join, Leave,
Add and Remove and an authorization predicate Authz. These predicates are speci-
fied over appropriate sorts (types). The semantic values over which a variable ranges
depend on the variable’s sort and are drawn from a set that is called the carrier of that
sort. We use standard upper-case roman characters such as U (user sort) to denote sorts
and calligraphic letters such as U (user carrier) to denote the corresponding carriers. A
detailed discussion of the g-SIS language can be found in [4].

Authorization Policy Specification and Enforcement 105

Definition 2 (Stateless Trace). A trace in the stateless specification is an infinite se-
quence of states.

The formulas that we specify below talk about stateless traces.

Well-Formed Traces. We now introduce four formulas that define what we call well-
formed g-SIS traces. (An intuitive overview of temporal operators used in this paper
is provided in table 1.) The formulas we consider treat the authorization a user has to
access an object independently of actions involving other users and objects. Thus, from
here on it is often convenient to omit the parameters in all of the predicates. We also
omit the quantifiers as they can be easily inferred from the context (join and leave are
user operations, add and remove are object operations).

A. An object cannot be Added and Removed and a user cannot Join and Leave at the
same time.1

τ0 = �(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave))

B. For any given user or object, two types of operations cannot occur at the same time.

τ1 = ∀i, j �((i �= j) → ¬(joini ∧ joinj)) ∧ ∀i, j �((i �= j) → ¬(leavei ∧ leavej)) ∧
∀i, j �((i �= j) → ¬(addi ∧ addj)) ∧ ∀i, j�((i �= j)→ ¬(removei∧removej))

Thus, for example, a user cannot join with 2 different semantics in the same state.
Multiple occurrences of the same event in a given state (i.e. when i equals j above) are
treated as a single occurrence of that event in FOTL.

C. If a user u joins a group, u cannot join again unless u first leaves the group. Similar
rules apply for other operations.

τ2 =�(Join →→ (¬Join W Leave)) ∧ �(Leave →→ (¬Leave W Join)) ∧
�(Add →→ (¬Add W Remove)) ∧ �(Remove →→ (¬Remove W Add))

D. A Leave event cannot occur before Join. Similarly for objects.

τ3 = �(Leave → 	Join) ∧ �(Remove → 	Add)

Thus, in any given trace, an object needs to be added before a remove operation may
occur in any state.

2.2 The Stateless π-system G-SIS Specification

The π-system specification supports two types of semantics for join, leave, add and
remove operations namely: strict and liberal.

A strict join (SJ) allows the joining user to access only those objects added on or
after the state in which the user joins. A liberal join (LJ), in addition, allows the joining
user to access objects added to the group prior to the join state.

1 Note that here and below we introduce names of the form τj for each of the formulas for later
reference. The equality introduces shorthands for the respective formulas.

106 R. Krishnan and R. Sandhu

(a) Formula λ1 (b) Formula λ2

Fig. 1. Stateless specification illustration

On strict leave (SL), the user loses access to all objects in the group. On liberal leave
(LL), the user retains access to all objects that were authorized in the leaving state.

Similarly, for objects, on strict add (SA), the added object may be accessed only by
users who have joined at or prior to the state in which the object is added to the group.
Liberal add (LA) does not have such a constraint.

On strict remove (SR), the object cannot be accessed by any user. On liberal remove
(LR), the object may be accessed by users who were authorized to access the object in
the remove state.

The π-system specification supports the strict and liberal semantics for group op-
erations. Given that different users may join and leave with different semantics and
different objects may be added and removed with different semantics, the π-system
specifies the precise conditions under which authorization for a user to access an object
in a group may hold in the system.

Definition 3 (Stateless π-system). The stateless π-system specification, πstateless, ac-
cepts traces satisfied by the following formula:

∀u.∀o.∀g.�(Authz(u, o, g, read) ↔ λ1 ∨ λ2) ∧
∧

0≤j≤3

τj

where,

λ1 =((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL) S (SJ ∨ LJ))))
λ2 =((¬SL ∧ ¬SR) S (LJ ∧ ((¬SR ∧ ¬LR) S LA)))

and the τj ’s are the well-formedness constraints.

Given a specific user and an object, note that formula λ1 handles the scenario where
an add operation occurs after a join operation (figure 1(a)) and formula λ2 handles the
scenario where an add operation occurs before a join operation (figure 1(b)). (Here,
due to the semantics of the strict add and strict join, we do not need to check for their
occurrence in formula λ2 illustrated in figure 1(b)). In [6], we have shown that the spec-
ification above is consistent with the semantics of strict and liberal operations discussed
earlier. In addition, we have specified a set of core security properties that are required
of any g-SIS specification and shown that the stateless π-system specification discussed
above satisfies those core properties.

A g-SIS stateless specification with read and write operations (that supports multiple
versions of the object) has been specified in [4]. Although we consider a stateless spec-
ification for read authorization in this paper, our discussion is not specific to the type of
permission.

Authorization Policy Specification and Enforcement 107

Table 2. Stateful Specification (Request Handling)

main(){
// Phase 1 and 2 time periods below are allocated such that phase 1 occurs before
// phase 2 and tasks in perTick step below conclude before the tick interval elapses.
perTick: During each tick interval i {

Phase 1:{ // Steps 1.1, 1.2 and 1.3 may execute concurrently.
1.1. For each user, accept the first request received and
store that information in variable userReq(u,g).
// the request received could be one of:
// SJReq(u,g), LJReq(u,g), SLReq(u,g) and LLReq(u,g).
1.2. For each object, accept the first request received and
store that information in variable objectReq(o,g).
// the request received could be one of:
// SAReq(o,g), LAReq(o,g), SRReq(o,g) and LRReq(o,g).*/
1.3. Accept all the authorization requests:

if (isAuthz(u,o,g)) authzReq=authzReq ∪ isAuthz(u,o,g)
// isAuthz(u,o,g) represents authorization request for user u to access object o.

}
Phase 2:{ // Steps 2.1 and 2.2 must be sequential. However, the processing of

// captured requests in step 2.1 may be done concurrently.
2.1. For each captured request, invoke the corresponding function in
table 3 with the appropriate parameters.
// for example, if userReq(u,g) is SJReq(u,g), invoke userEvent(u,g,join,i,strict).
2.2. Process each authorization request:

for each (isAuthz(u,o,g) ∈ authzReq)
authzResult(u,o,g)=authzSF(u,o,g);

}
Reset all variables appropriately.

}
}

3 Stateful π-system

In this section, we develop a stateful π-system specification that is authorization equiv-
alent to the stateless specification—that is a user will be authorized to access an object
in the stateful system if and only if it is also the case in the stateless system. Evidently,
the stateless specification is highly abstract and specified using FOTL. The stateful
specification that we develop is an incremental step in the direction of a concrete imple-
mentation of a system that is reasonably authorization equivalent to the stateless speci-
fication. We say “reasonably” because it is our fundamental hypothesis that all practical
distributed systems will inevitably face real-world issues such as network delay and
caching, which will lead to authorization inconsistencies with the idealized stateless
specification. Thus such systems can at most be approximate to the stateless specifica-
tion. One such approximation is the notion of stale-safety [3] that bounds acceptable
delay between the time at which an action (such as reading an object) was known to be
authorized and the time at which that action is actually performed. Our future refine-
ments of the stateful π-system will consider various notions of such approximations.

108 R. Krishnan and R. Sandhu

Table 3. Stateful Specification (enforcing well-formedness constraints)

int userEvent(User u, Group g, uEvent e, interval t, uSemantics s){
1. Check that the current uEvent e is not the same as the
uEvent value in the previous tuple in table(u,g). If so, return 0.
// This ensures, for example, that a join event is not followed
// immediately by another join.
2. Also check, in case the table is empty, then e is not an SL or LL. If so, return 0.
// This ensures that the first user event entry in table(u,g) is not leave.
3. Enter <t,e,s> into table(u,g) and return 1.

}
int objectEvent(Object o, Group g, oEvent e, interval t, oSemantics s){

1. Check that the current oEvent e is not the same as the
oEvent value in the previous tuple in table(o,g). If so, return 0.
// This ensures, for example, that an add event is not followed
// immediately by another add.
2. Also check, in case the table is empty, then e is not an SR or LR. If so, return 0.
// This ensures that the first object event entry in table (o,g) is not remove.
3. Enter <t,e,s> into table(o,g) and return 1.

}

As the first transition from an abstract specification towards an implementable spec-
ification, the stateful specification that we design is centralized in the sense that autho-
rization decisions are made based on data structures maintained in a specific repository
for each user and object. There could be different repositories for different users and
objects that may be distributed on the whole. Specifically, we are not concerned about
replication of data structures of a user or an object and maintenance of its consistency.
We also not concerned about distributing parts of the data structure of a user or an ob-
ject. Authorization decisions for a specific user to access a specific object are made
based on their specific data structures maintained at specific repositories.

Note that the stateless specification simply does not admit traces of actions that do
not obey the well-formedness constraints. More importantly, it does not (intentionally)
specify how one should handle ill-formed traces. At the stateful specification level of
abstraction, one must begin to address such issues. Many strategies may be employed—
we will consider one for our stateful specification (discussed later).

3.1 Stateful π-system Design

In the stateful π-system, the data structures that we maintain and consult with for mak-
ing authorization decisions are simple relations for users and objects in the group—
which we refer to informally as tables. For instance, the data structure for a user u in
a group g, table(u,g), contains a history of that user’s joins and leaves in the group.
(The group parameter g is specified for being precise. The reader may safely ignore
this in the rest of this paper as we focus only on one group at any time.) The format of
each tuple in table(u,g) is: <time-stamp, event, semantics>. Here event is either join or
leave, semantics is either strict or liberal and time-stamp specifies the time at which this

Authorization Policy Specification and Enforcement 109

Table 4. Stateful Specification (Authorization Decision)

int authzSF(User u, Object o, Group g){

step 1: Fetch tables table(u,g) and table(o,g). If either table is empty, return 0.
Merge sort table(u,g) and table(o,g) in ascending order of timestamp.

In case of same timestamp, follow precedence rules apply:
(i) Add and Join same timestamp: Add follows Join
(ii) Join and Remove same timestamp: Join follows Remove
(iii) Add and Leave same timestamp: Add follows Leave
(iv) Remove and Leave same timestamp: any order

Let n be the total number of entries in the merged table.

step 2: for i=1 to n{
case event[i]=join{

step 2a: (i) Step down the table looking for an add event. If a leave event is encountered
prior to add event, continue step 2 for loop. If no add event found, return 0.
(ii) From the point the add event was found in the table, step down all the way
to index n ensuring no SL or SR is encountered.
If SL found, continue step 2. If SR found, continue step 2a from current index.
(iii) return 1;

}
case event[i]=add && eventType[i]=liberal{

step 2b: (i) Step down the table looking for an LJ event. If a remove event is encountered
prior to LJ event, continue step 2 for loop. If no LJ event found, return 0.
(ii) From the point the LJ event was found in the table, step down all the way
to index n ensuring no SL or SR is encountered.
If SR found, continue step 2. If SL found, continue step 2b from current index.
(iii) return 1;

}
}

step 3: return 0;
}

event occurred as per a global clock. Thus a snapshot of table(u,g) at any point in time
gives a chronological history of the user joining and leaving (possibly many times) and
whether they were of strict or liberal type. Similarly, a tuple in an object data structure,
table(o,g), has the same format as the user table except event is either add or remove.
Note that the number of tuples in any table is not bounded.2

The stateful specification for the π-system is presented in tables 2, 3 and 4. The
authzSF function in table 4 returns 1 if a user u is authorized to access an object o,
0 otherwise. It does so by inspecting the data structures: table(u,g) and table(o,g). As
mentioned earlier, the stateful π-system must also specify how the requests to join,

2 Keeping them unbounded has many virtues. For instance, as we will see, this facilitates user
data structures not being touched when an object data structure needs to be updated (and vice-
versa). Of course, there are other data structure designs where they may be bounded but with
different pros and cons.

110 R. Krishnan and R. Sandhu

Fig. 2. Stateful π-system Overview

leave, add and remove and requests to ascertain if users are authorized to read objects
are processed. Tables 2 and 3 specify one of many possible ways to do this. We discuss
each of these 3 components of the stateful π-system in further detail below.

3.2 Stateful π-system Specification

An overview of how the functions in the tables 2, 3 and 4 interact is given in figure 2.
Consider the main function in table 2. It receives and processes action requests (requests
to join, leave, add and remove) and authorization requests during the time interval be-
tween any two clock ticks. The function works in two phases during each time interval.
During phase 1, it receives the action and authorization requests. It filters the action
requests so that only the first user request and the first object request are captured. (Dif-
ferent strategies for capturing action requests may be employed—e.g. it need not be the
first request received that is captured.) This ensures, for instance, that only a join or a
leave request of a specific type (strict or liberal) is captured for any given user but not
both. However, all authorization requests are captured during phase 1. When phase 1
completes, further new requests are not admitted. During phase 2, first all action re-
quests received in phase 1 are processed using the user and object event processing
functions in table 3 and then all the captured authorization requests are evaluated using
authzSF function in table 4. At the end of phase 2, the data structures are up-to-date and
authorization decisions are complete for all the requests received in phase 1.

Consider the function userEvent in table 3 which processes the user requests received
by the function in table 2. The check performed in step 1 ensures that user requests to re-
peatedly join without an intermittent leave (and vice-versa) are ignored. Similarly, step
2 ensures that the first entry in the table does not begin with a leave operation. If all is
well, a new tuple is entered into the table and the function returns 1. The function returns
0 in all other cases. The objectEvent function similarly processes object requests. Note
that tables 2 and 3 together achieve well-formedness constraints of stateless π-system
specification.

The function authzSF in table 4 returns 1 if a user u is authorized to access an object o
in group g, 0 otherwise. This algorithm can be optimized but we keep it straight-forward
for simpler presentation. It begins by taking the corresponding user and object tables as
input. Note that if either table is empty (i.e., either the user or the object has never been
a member of the group), the user is not authorized to read the object. By appending
the tuples to the respective tables as the events occur, table(u,g) and table(o,g) are pre-
sorted with respect to the time-stamp. The function merge sorts these two tables based

Authorization Policy Specification and Enforcement 111

on the time-stamp entries to obtain a table of events of u and o in the chronological
order of occurrence. In the event a user and object entry in the respective tables have
the same time-stamp, we specify precedence rules to resolve the tie for sorting the tuples
consistent with temporal operator semantics in the stateless π-system. If Add and Join
occur at the same time, Add follows Join. If Join and Remove occur at the same time,
Join follows Remove. If Add and Leave occur at the same time, Add follows Leave.
Finally, if Remove and Leave occur at the same time, they can be merge sorted in any
order. Let the total number of entries in the merged table be n.

The algorithm proceeds by iterating through each tuple in this new merge sorted
table. We assume that event[i] fetches the specific event (such as join or add) from the
ith entry in the merged table and eventType[i] fetches the respective semantics (such
as strict or liberal) of that event from the same tuple. Each of the two cases in the for
loop looks for an overlapping period of authorizing membership between the user and
object, much like formulas λ1 and λ2. The first case looks for a join event followed by
an add event (see figure 1(a)) and the second case looks for an add event followed by a
join event (see figure 1(b)). As per λ2, the second case looks for a liberal add followed
by a liberal join. The remaining part of the case statements conduct checks to ensure
that there is no subsequent de-authorizing event such as strict leave or remove following
this point of authorization. If there is none, the algorithm returns 1 indicating that the
user is authorized. Otherwise it returns 0 after step 3.

3.3 Implementation Considerations

Evidently, the stateful specification that has been presented in tables 2, 3 and 4 can
be comprehended and implemented by a competent programmer as compared to the
temporal logic based stateless specification. Since the stateless specification has been
analysed and certain security properties have been proven [4,6] and has been shown to
be authorization equivalent to the stateful specification (section 4), the stateful specifi-
cation also is guaranteed to have those security properties.

As mentioned earlier, the authzSF function in table 4 is not designed for efficiency
but for ease of presentation. The worst case time complexity of this function is roughly
O(n2) where n is the sum of the number of events in the user and object tables. This is
because for each of the n iterations of the outer for loop in step 2, the loops in one of
the inner case statements could run through a maximum of n iterations.

This stateful specification has a few limitations. For instance, both the user and ob-
ject tables are unbounded. Nevertheless, this is not a major issue in many practical
applications in which membership status of users and objects do not change frequently.
Also, due to nature of phases 1 and 2 in table 2, all action requests need to be received
before they can be processed. Thus during phase 2 of interval, no requests will be ac-
cepted. The ordering of tasks in two phases ensures that the requests received during
the time interval will affect the authorization values that hold at the upcoming state.
These constraints may be unacceptable for certain application scenarios. Addressing
such limitations of the stateful specification is not the primary focus of this paper. Note
that the current stateful specification design allows user and object data structures to be
maintained in a distributed manner so that if a user membership status changes, it does
not require updating data structures of other users and objects in the system. One can

112 R. Krishnan and R. Sandhu

design alternate stateful specifications for the same stateless specification with different
trade-offs. For instance, one can maintain a single data structure that involves both users
and objects. But changes in any object’s group membership status will entail updating
entries for all users in the system. This would have limitations in distributing it.

4 Equivalence of Stateful and Stateless π-system Specifications

In this section, we show that the stateful specification is authorization equivalent to the
stateless specification. That is, in all possible traces, a user will be authorized to access
an object at any given state in the stateful π-system if and only if it is also the case in
the stateless π-system.

Given that we are dealing with traces in the stateless specification, we propose a
similar notion of traces in the stateful specification.

Definition 4 (State in Stateful Specification). A state in the stateful specification is a
specific interpretation of every user and object data structure maintained in the system
at the end of every clock tick.

Definition 5 (Stateful Trace). A trace in the stateful specification is an infinite se-
quence of states.

Definition 6 (Stateful π-system). The stateful π-system specification, πstateful, is given
in table 2 which consists of functions from tables 3 and 4.

Our goal now is to show that given a stateless and a corresponding stateful trace, au-
thorization is equivalent in every state. To establish this “correspondence”, we specify
mappings that would take a stateless trace and create a stateful trace and vice-versa.

Notation. We use σ to denote a stateless trace and σ̂ to denote a stateful trace. σi

refers to state i in a trace σ with infinite states. We use σi,j to denote a state i in σ
where we only consider the first j states. Actions are represented using relations. Thus
〈u,g〉 ∈ [[SJstateless]]σi denotes that a user u is strictly joined to group g in state i
in a stateless trace σ. Similarly, 〈i, Join, Liberal〉 ∈ [[table(u,g)]]σ̂i denotes user u has
liberally joined group g in state i in a stateful trace σ̂.

Note that the time interval that a clock tick corresponds to is abstract. Any event
request (such as a request to join) that is processed during a transition from clock tick
(state) i to i+1 will receive a time-stamp of i+1. This convention makes stateful specifi-
cation consistent with the FOTL semantics in the stateless specification.

Definition 7 (Action Trace). Given a stateless or stateful trace in the π-system, an
action trace is a sequence of states excluding the authorization relation.

Definition 8 (Action Equivalence). A stateful trace σ̂ and a stateless trace σ are action
equivalent if the join, leave, add and remove actions match for every user and object in
every group in the corresponding states in σ̂ and σ.

Definition 9 (α-mapping). Given a stateless trace σ in πstateless, α-mapping creates an
action equivalent stateful trace σ̂ in πstateful.

Authorization Policy Specification and Enforcement 113

Fig. 3. α and β mapping. Part (i) shows a sample stateless trace and part (ii) shows a correspond-
ing stateful trace. Note that the stateful trace generates the required action and authorization
requests during the time interval leading up to the state.

Rules used for α-mapping are straight-forward and given here by example. For exam-
ple (see figure 3), for each 〈u,g〉 ∈ [[SJstateless]]σi, create an entry 〈i, Join, Strict〉 in
[[table(u,g)]]σ̂i. This is achieved by sending a SJReq(u,g) (see table 2) during phase
1 in the time interval between the state transition from σ̂i−1 to σ̂i. Similarly, for each
〈u,g〉 ∈ [[LJstateless]]σi, create an entry 〈i, Join, Liberal〉 in [[table(u,g)]]σ̂i. Similar
rules apply to other predicates.

Definition 10 (β-mapping). Given a stateful trace σ̂ in πstateful, β-mapping creates an
action equivalent stateless trace σ in πstateless.

Rules used for β-mapping are straight-forward and given here by example. For example
(see figure 3), for each tuple in [[table(u,g)]]σ̂i −[[table(u,g)]]σ̂i−1, create that entry in
corresponding relation in the stateless trace. That is if 〈i, Join, Strict〉 ∈ [[table(u,g)]]σ̂i

−[[table(u,g)]]σ̂i−1, then create an entry 〈u,g〉 in [[SJstateless]]σi. Similarly, for each
〈i, Join, Liberal〉 ∈ [[table(u,g)]]σ̂i, create an entry 〈u,g〉 in [[LJstateless]]σi. Similar
rules apply to other operations in the stateful specification.

Lemma 1. For every action trace σ that is generated by πstateless, a stateful action trace
σ̂ constructed using α-mapping is accepted by πstateful.

By the term “accepted by” above, we mean that by inputting an α-mapped trace to the
stateful π-system, the data structure it maintains must reflect the exact action trace of
the stateless π-system (see figure 3 for example).

Lemma 2. For every action trace σ̂ generated by πstateful, a stateless action trace con-
structed using β-mapping is accepted by πstateless.

By the term “accepted by” above, we mean that the β-mapped stateless action trace
will be well-formed as per the stateless π-system specification. The proofs of lemmas 1

114 R. Krishnan and R. Sandhu

and 2 follow directly from their definitions. Due to space limitations, the proofs are
provided in [5]. Next, we have the following 2 lemmas.

Lemma 3 (Soundness). For every trace σ̂ accepted by πstateful, there exists a β-mapped
trace σ that is accepted by πstateless such that:

∀i ∈ N. ∀t ∈ 〈U ,O,G〉. t ∈ [[Authzπstateful]]σ̂i → t ∈ [[Authzπstateless]]σi

Lemma 4 (Completeness). For every trace σ accepted by πstateless, there exists an α-
mapped trace σ̂ that is accepted by πstateful such that:

∀i ∈ N. ∀t ∈ 〈U ,O,G〉. t ∈ [[Authzπstateless]]σi → t ∈ [[Authzπstateful]]σ̂i

Due to space limitations, the proofs for lemmas 3 and 4 are provided in [5]. The proofs
are inductive.

Theorem 1. The stateful and stateless π-system specifications are authorization equiv-
alent. That is:

∀i ∈ N. ∀t ∈ 〈U ,O,G〉. t ∈ [[Authzπstateful]]σ̂i ↔ t ∈ [[Authzπstateless]]σi

Proof. The theorem follows from lemmas 3 and 4.

The above theorem states that in every state in a stateful trace, the authorization relation
is equivalent to that of the corresponding state in a statefless trace. We have shown that
a highly abstract temporal logic based stateless specification can be grounded in a con-
crete stateful specification while maintaining equivalency with respect to authorization.

5 Conclusion and Future Work

We presented a methodology for consistent specification and enforcement of authoriza-
tion policies. The stateless specification is highly conducive to automated formal anal-
ysis using techniques such as model checking. However, it cannot be enforced using
the way it is specified. The stateful specification focuses on how to enforce the stateless
policy using distributed data structures and associated algorithms. This specification
can be implemented by programmers. We have established a formal bridge between
a highly abstract stateless specification and a relatively concrete stateful specification.
The next level of refinement is to generate distributed specification which account for
approximation (for example, due to network delay and caching) with respect to state-
less specification and a concrete implementation. Such incremental refinement of policy
specification while maintaining consistency at each transition is critical in secure sys-
tems design.

Our current stateful specification, although highly distributed, maintains unbounded
history of user and object actions. Our follow on work focuses on generating alternate
stateful specifications. One approach is to generate a stateful specification with bounded
data structures that maintain information about authorization status of each user for each
object. While this bounds the data structures, it requires modifying every object’s data

Authorization Policy Specification and Enforcement 115

structures if the user’s membership status changes in the group. Another approach is to
generate a hybrid specification that combine the pros and cons of the two approaches
above and proving equivalence with respect to stateless specification. We believe our
methodology can be extended to other application domains with suitable adaptation of
proof techniques as needed.

Acknowledgments. The authors are partially supported by grants from AFOSR MURI
and State of Texas Emerging Technology Fund.

References

1. Bell, D., La Padula, L.: Secure computer systems: Unified exposition and multics interpreta-
tion. Technical Report ESD-TR-75-306 (1975)

2. Goguen, J., Meseguer, J.: Security policies and security models. In: IEEE Symposium on
Security and Privacy (1982)

3. Krishnan, R., Niu, J., Sandhu, R., Winsborough, W.: Stale-safe security properties for group-
based secure information sharing. In: Proceedings of the 6th ACM Workshop on Formal Meth-
ods in Security Engineering, pp. 53–62. ACM, New York (2008)

4. Krishnan, R., Niu, J., Sandhu, R., Winsborough, W.: Group-centric secure information shar-
ing models for isolated groups. To appear in ACM Transactions on Information and Systems
Security (2011). Camera ready copy available at,
http://engineering.utsa.edu/ krishnan/
journals/2010-tissecSACMAT.pdf

5. Krishnan, R., Sandhu, R.: Authorization Policy Specification and Enforcement for Group-
Centric Secure Information Sharing (Full Version). Tech. Rep. CS-TR-2011-016, University
of Texas at San Antonio (September 2011),
http://engineering.utsa.edu/ krishnan/
conferences/2011iciss-full.pdf

6. Krishnan, R., Sandhu, R., Niu, J., Winsborough, W.H.: Foundations for group-centric secure
information sharing models. In: Proc. of ACM Symposium on Access Control Models and
Technologies (2009)

7. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, pp. 46–67 (1977)

http://engineering.utsa.edu/~krishnan/journals/2010-tissecSACMAT.pdf
http://engineering.utsa.edu/~krishnan/journals/2010-tissecSACMAT.pdf
http://engineering.utsa.edu/~krishnan/conferences/2011iciss-full.pdf
http://engineering.utsa.edu/~krishnan/conferences/2011iciss-full.pdf

Abductive Analysis of Administrative Policies

in Rule-Based Access Control

Puneet Gupta, Scott D. Stoller, and Zhongyuan Xu

Department of Computer Science, Stony Brook University, USA

In large organizations, the access control policy is managed by multiple users
(administrators). An administrative policy specifies how each user may change
the policy. The consequences of an administrative policy are often non-obvious,
because sequences of changes by different users may interact in unexpected
ways. Administrative policy analysis helps by answering questions such as user-
permission reachability, which asks whether specified users can together change
the policy in a way that achieves a specified goal, namely, granting a specified
permission to a specified user.

This paper presents a rule-based access control policy language, a rule-based
administrative policy model that controls addition and removal of rules and
facts, and a symbolic analysis algorithm for answering reachability queries. The
algorithm can analyze policy rules that refer to sets of facts (e.g., information
about users) that are not known at analysis time. The algorithm does this by
computing conditions on the initial set of facts under which the specified goal is
reachable by actions of the specified users.

1 Introduction

The increasingly complex security policies required by applications in large or-
ganizations cannot be expressed in a precise and robust way using access-control
lists or role-based access control (RBAC). This has led to the development
of attribute-based access control frameworks with rule-based policy languages.
These frameworks allow policies to be expressed at a higher level of abstraction,
making the policies more concise and easier to administer.

In large organizations, access control policies are managed by multiple users
(administrators). An administrative framework (also called administrative model)
is used to express policies that specify how each user may change the access con-
trol policy. Several administrative frameworks have been proposed for role-based
access control, starting with the classic ARBAC97 model [6]. Fully understand-
ing the implications of an administrative policy can be difficult, due to unantic-
ipated interactions between interleaved sequences of changes by different users.
This motivated research on analysis of administrative policies. For example, anal-
ysis algorithms for ARBAC97 and variants thereof can answer questions such as
user-permission reachability, which asks whether changes by specified users can
lead to a policy in which a specified user has a specified permission [5,4,7].

There is little work on administrative frameworks for rule-based access control
[1,3], and it considers only addition and removal of facts, not rules.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 116–130, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abductive Analysis of Administrative Policies in RBAC 117

This paper defines a rule-based access control policy language, with a rule-
based administrative framework that controls addition and removal of both facts
and rules. We call this policy framework ACAR (Access Control and Administra-
tion using Rules). It allows administrative policies to be expressed concisely and
at a desirable level of abstraction. Nevertheless, fully understanding the implica-
tions of a rule-based administrative policy in ACAR is even more difficult than
fully understanding the implications of an ARBAC policy, because in addition
to considering interactions between interleaved sequences of changes by differ-
ent administrators, one must consider possible chains of inferences using rules
in each intermediate policy. This paper presents a symbolic analysis algorithm
for answering atom-reachability queries for ACAR policies, i.e., for determining
whether changes by specified administrators can lead to a policy in which some
instance of a specified atom, called the goal, is derivable. To the best of our
knowledge, this is the first analysis algorithm for a rule-based policy framework
that considers changes to the rules as well as changes to the facts.

It is often desirable to be able to analyze rule-based policies with incomplete
knowledge of the facts in the initial policy. For example, a database containing
those facts might not exist yet (if the policy is part of a system that has not been
deployed), or it might be unavailable to the policy engineer due to confidentiality
restrictions. Even if some database of initial facts exists and is available to the
policy engineer, more general analysis results that hold under limited assump-
tions about the initial facts are often preferable to results that hold for only
one given set of initial facts, e.g., because the policy might be deployed in many
systems with different initial facts.

There are two ways to handle this. In the deductive approach, the user spec-
ifies assumptions—in the form of constraints—about the initial policy, and the
analysis algorithm determines whether the goal is reachable under those con-
straints. However, formulating appropriate constraints might be difficult, and
might require multiple iterations of analysis and feedback. We adopt an abduc-
tive approach, in which the analysis algorithm determines conditions on the set of
facts in the initial policy under which the given goal is reachable. This approach
is inspired by Becker and Nanz’s abductive policy analysis for a rule-based policy
language [2], and our algorithm builds on their tabling-based policy evaluation
algorithm. The main difference between their work and ours is that they analyze
a fixed access control policy: they do not consider any administrative framework
or any changes to the rules or facts in the access control policy. Also, they do not
consider constructors or negation, while our policy language allows constructors
and allows negation applied to extensional predicates.

Our analysis algorithm may diverge on some policies. This is expected, be-
cause Becker and Nanz’s abductive algorithm (which solves a simpler problem)
may diverge, and because reachability for ACAR is undecidable. Undecidability
of this problem is a corollary of our proof in [7] that user-permission reacha-
bility is undecidable for ARBAC97 extended with parameters, since ARBAC97
policies can be encoded in ACAR in a straightforward way. Identifying classes
of policies for which the algorithm is guaranteed to terminate is a direction for

118 P. Gupta, S.D. Stoller, and Z. Xu

future work; for now, we note that the algorithm terminates for the case stud-
ies we have considered so far, including a non-trivial fragment of a policy for a
healthcare network. Also, the current version of the algorithm is incomplete (it
“gives up” in some cases), but the algorithm can be extended to eliminate this
incompleteness, following the approach sketched in Section 5.3; for now, we note
that the current version of the algorithm already succeeds (does not “give up”)
for some non-trivial policies, including our healthcare network case study.

2 Policy Framework

Policy Language. The policy language is a rule-based language with construc-
tors (functors) and negation (denoted “!”). Predicates are classified as inten-
sional or extensional. Intensional predicates are defined by rules. Extensional
predicates are defined by facts. Constructors are used to construct terms repre-
senting operations, rules (being added or removed by administrative operations),
parameterized roles, etc. The grammar ensures that negation is applied only to
extensional predicates; this is why we distinguish intensional and extensional
predicates. The grammar appears below. p ranges over predicates, c ranges over
constructors (functors), and v ranges over variables. The grammar is parameter-
ized by the sets of predicates, variables, and constructors; these sets may be finite
or countable. Predicates and constructors start with a lowercase letter; variables
start with an uppercase letter. Constants are represented as constructors with
arity zero; the empty parentheses are elided. Subscripts in and ex are mnemonic
for intensional and extensional, respectively. A term or atom is ground if it does
not contain any variables. A substitution θ is ground, denoted ground(θ), if it
maps variables to ground terms. A policy is a set of rules and facts.

term ::= v | c(term∗)
atomex ::= pex (term∗)
atomin ::= pin(term∗)

literal ::= atomex | !atomex | atom in

rule ::= atom in :- literal∗

fact ::= ground instance of atomex

The distinguished predicate permit(user, operation) specifies permissions,
including permissions for administrative operations, as discussed below.

Administrative Framework. The administrative framework defines an API
for modifying policies. Specifically, the operations in the API are addRule(rule),
removeRule(rule), addFact(atomex), and removeFact(atomex). Let AdminOp =
{addRule, removeRule, addFact, removeFact}. In addition, the framework de-
fines how permission to perform those operations are controlled. These permis-
sions are expressed using the permit predicate but given a special interpretation,
as described below.

A permission rule is a rule whose conclusion has the form permit(...). For
an operation op, an op permission rule is a rule whose conclusion has the form
permit(..., op(...)) . An administrative permission rule is an op permission
rule with op ∈ AdminOp. In a well-formed policy, the argument to addFact and
removeFact must be an extensional atom (it does not need to be ground).

Abductive Analysis of Administrative Policies in RBAC 119

A rule is safe if it satisfies the following conditions. (1) Every variable that
appears in the conclusion outside the arguments of addRule and removeRule
also appears in a positive premise. (2) Every variable that appears in a negative
premise also appears in a positive premise. (3) In every occurrence of permit,
the second argument is a constructor term, not a variable. (4) addRule and
removeRule do not appear outside the second argument of permit in the con-
clusion. A policy is safe if all rules in the policy are safe.

Policy Semantics. The semantics [[P]] of a policy P is the least fixed-point
of FP , defined by FP (I) = {aθ | (a :- a1, . . . , am, !b1, . . . , !bn) ∈ P ∧ (∀i ∈
[1..m] : aiθ ∈ I) ∧ (∀i ∈ [1..n] : biθ �∈ I)}. To simplify notation, this definition
assumes that the positive premises appear before the negative premises; this
does not affect the semantics. Intuitively, [[P]] contains all atoms deducible from
P . Atoms in the semantics are ground except that arguments of addRule and
removeRule may contain variables. Limiting negation to extensional predicates
ensures that FP is monotonic. By the Knaster-Tarski theorem, the least fixed
point of FP can be calculated by repeatedly applying FP starting from the empty
set. Safety of the policy implies that, during this calculation, whenever bi �∈ I is
evaluated, bi is ground; this simplifies the semantics of negation. We sometimes
write P � a (read “P derives a”) to mean a ∈ [[P]].

Fixed Administrative Policy. Our goal in this paper is to analyze a changing
access control policy subject to a fixed administrative policy. Therefore, we con-
sider policies that satisfy the fixed administrative policy requirement, which says
that administrative permission rules cannot be added or removed, except that
addFact administrative permission rules can be added. We allow this exception
because it is useful in practice and can be accommodated easily.

We formalize this requirement as follows. A higher-order administrative per-
mission rule is an administrative permission rule whose conclusion has the form
permit(. . . , op(permit(. . . , op′(. . .))) with op ∈ AdminOp and op′ ∈ AdminOp;
in other words, it is a rule that permits addition and removal of administrative
permission rules. A rule satisfies the fixed administrative policy requirement if
either it is not a higher-order administrative permission rule or it is an ad-
ministrative permission rule having the above form with op = addRule and
op′ = addFact. A policy satisfies this requirement if all of the rules in it do.

Even in a policy with no higher-order administrative permission rules, the
available administrative permissions may vary, because addition and removal of
other rules and facts may change the truth values of the premises of administra-
tive permission rules.

Administrative Policy Semantics. The above semantics is for a fixed policy.
We specify the semantics of administrative operations and administrative per-
missions by defining a transition relation T between policies, such that 〈P, U :
Op, P ′)〉 ∈ T iff policy P permits user U to perform administrative operation
Op thereby changing the policy from P to P ′.

Rule R is at least as strict as rule R′ if (1) R and R′ have the same conclusion,
and (2) the set of premises of R is a superset of the set of premises of R′.

120 P. Gupta, S.D. Stoller, and Z. Xu

〈P, U : addRule(R), P ∪ {R}〉 ∈ T if there exists a rule R′ such that (1) R
is at least as strict as R′, (2) P � permit(U, addRule(R′)), (3) R �∈ P , (4) R
satisfies the fixed administrative policy requirement, and (5) R satisfies the safe
policy requirement. Note that R′ may be a partially or completely instantiated
version of the argument of addRule in the addRule permission rule used to
satisfy condition (2); this follows from the definition of �. Thus, an administrator
adding a rule may specialize the “rule pattern” in the argument of addRule by
instantiating some of the variables in it and by adding premises to it. We call
the argument of addRule or removeRule a “rule pattern”, even though it is
generated by the same grammar as rules, to emphasize that it can be specialized
in these ways, giving the administrator significant flexibility to customize the
rules, without giving the administrator additional authority.
〈P, U : removeRule(R), P \ {R}〉 ∈ T if there exists a rule R′ such that R is

as least as strict as R′, P � permit(U, removeRule(R′)), and R ∈ P .
〈(P, U : addFact(a), P ∪ {a}〉 ∈ T if P � permit(U, addFact(a)) and a �∈ P .
〈(P, U : removeFact(a), P \ {a}〉 ∈ T if P � permit(U, removeFact(a)) and

a ∈ P .

Case Study: Healthcare Network. As a case study, we wrote a policy with
about 50 rules for a healthcare network (HCN). The HCN policy defines a HCN
policy officer (hcn po) role that can add rules that give the facility policy offi-
cer (facility po) role for each constituent healthcare facility appropriate per-
missions to manage the facility’s policy. We consider policies for two kinds of
facilities: hospitals and substance abuse facilities.

For example, the rule below allows the facility po to add rules that allow
the hr manager to appoint a member of a workgroup as head of that workgroup:

permit(User, addRule(permit(HRM,

addFact(memberOf(Head, wgHead(WG, Fac))))

:- hasActivated(HRM, hr manager(Fac)),

!memberOf(HRM, workgroup(WG, Fac, WGtype))

memberOf(Head, workgroup(WG, Fac, WGtype))))

:- hasActivated(User, facility po(Fac))

where memberOf(U, R) holds if user U is a member of role R, hasActivated(U, R)
holds if U has activated R, WG is the workgroup name, Fac is the facility name,
and WGtype is team or ward. The negative premise prevents a hr manager from
appointing a head for a workgroup to which he or she belongs.

At Stony Brook Hospital (sb hosp), a member of facility po(sb hosp)
might use this permission to add the following rule, which allows hr manager(
sb hosp) to appoint a team member as the team head, with the additional
premise that the user is a clinician at sb hosp with any specialty Spcty.

permit(HRM, addFact(memberOf(Head, wgHead(WG, sb_hosp))))

:- hasActivated(HRM, hr manager(sb_hosp)),

!memberOf(HRM, workgroup(WG, sb hosp, team))

memberOf(Head, workgroup(WG, sb_hosp, team)),

memberOf(Head, clinician(sb_hosp, Spcty))

Abductive Analysis of Administrative Policies in RBAC 121

At Stony Brook Substance Abuse Facility (sb saf), facility po(sb saf) might
add a similar rule except with a stricter additional premise, requiring the team
head to have specialty psychiatry.

3 Abductive Reachability

This section defines abductive atom-reachability queries and their solutions.
Let a and b denote atoms, L denote a literal, and L denote a sequence of

literals. An atom a is subsumed by an atom b, denoted a � b, iff there exists
a substitution θ such that a = bθ. For an atom a and a set A of atoms, let
[[a]] = {a′ | a′ � a} and [[A]] =

⋃
a∈A [[a]].

A specification of abducible atoms is a set A of extensional atoms. An atom a
is abducible with respect to A if a ∈ [[A]].

A goal is an atom.
Given an initial policy P0 and a set U0 of users (the active administrators),

the state graph for P0 and U0, denoted SG(P0, U0), contains policies reachable
from P0 by actions of users in U0. Specifically, SG(P0, U0) is the least graph
(N, E) such that (1) P0 ∈ N and (2) 〈P, U : Op, P ′〉 ∈ E and P ′ ∈ N if
P ∈ N ∧ U ∈ U0 ∧ 〈P, U : Op, P ′〉 ∈ T .

An abductive atom-reachability query is a tuple 〈P0, U0, A, G0〉, where P0 is a
policy (the initial policy), U0 is a set of users (the users trying to reach the goal),
A is a specification of abducible atoms, and G0 is a goal. Informally, P0 contains
rules and facts that are definitely present in the initial state, and [[A]] contains
facts that might be present in the initial state. Other facts are definitely not
present in the initial state and, since we make the closed world assumption, are
considered to be false.

A ground solution to an abductive atom-reachability query 〈P0, U0, A, G0〉 is
a tuple 〈Δ, G〉 such that Δ is a ground subset of [[A]], G is a ground instance
of G0, and SG(P0 ∪Δ, U0) contains a policy P such that P � G. Informally, a
ground solution 〈Δ, G〉 indicates that a policy P in which G holds is reachable
from P0 ∪Δ through administrative actions of users in U0.

A minimal-residue ground solution to a query is a ground solution 〈Δ, G〉 such
that, for all Δ′ ⊂ Δ, 〈Δ′, G〉 is not a ground solution to the query.

A tuple disequality has the form 〈t1 . . . , tn〉 �= 〈t′1, . . . , t′n〉, where the ti and t′i
are terms.

A complete solution to an abductive atom-reachability query 〈P0, U0, A, G0〉 is
a set S of tuples of the form 〈Δ, G, D〉, where Δ is a set of atoms (not necessarily
ground), G is an atom (not necessarily ground), and D is a set (interpreted as
a conjunction) of tuple disequalities over the variables in Δ and G, such that
(1) Soundness: S represents ground solutions to the query, i.e.,

⋃
s∈S [[s]] ⊆ Sgnd ,

where [[〈Δ, G, D〉]] = {〈Δθ, Gθ〉 | ground(θ) ∧Dθ = true} and Sgnd is the set of
ground solutions to the query, and (2) Completeness: S represents all minimal-
residue ground solutions to the query, i.e.,

⋃
s∈S [[s]] ⊇ Smin-gnd , where Smin-gnd

is the set of minimal-residue ground solutions to the query.

122 P. Gupta, S.D. Stoller, and Z. Xu

Transition Rules:

(root) ({〈G〉} �N,Ans,Wait) → (N ∪N ′,Ans,Wait)
if N ′ = generateP (G)

(ans) ({n} �N,Ans,Wait) → (N ∪N ′,Ans[G �→ Ans(G) ∪ {n}],Wait)
if n is an answer node with index G

	 ∃n′ ∈ Ans(G) : n � n′

N ′ =
⋃

n′′∈Wait(G)
resolve(n′′, n)

(goal1) ({n} �N,Ans,Wait) → (N ∪N ′,Ans,Wait [Q′ �→ Wait(Q′) ∪ {n}])
if n is a goal node with current subgoal Q

∃Q′ ∈ dom(Ans) : Q � Q′

N ′ =
⋃

n′∈Ans(Q′) resolve(n, n
′)

(goal2) ({n} �N,Ans,Wait) → (N ∪ {〈Q〉},Ans[Q �→ ∅],Wait [Q �→ {n}])
if n is a goal node with current subgoal Q

∀Q′ ∈ dom(Ans) : Q 	� Q′

Auxiliary Definitions:

〈G; [];S;�c;R;Δ〉 � 〈G; [];S′;�c′;R′;Δ′〉 iff |Δ| ≥ |Δ′| ∧ (∃θ . S = S′θ ∧Δ ⊇ Δ′θ)

for an answer node n = 〈 ; [];Q′; ; ;Δ′〉, and Q′′ and Δ′′ fresh renamings of Q′ and Δ′,

resolve(〈G; [Q, �Q];S;�c;R;Δ〉, n) =

⎧⎪⎨⎪⎩
{n′} if unifiable(Q,Q′′)

where θ = mostGeneralUnifier(Q,Q′′)
n′ = 〈G; �Qθ;Sθ; [�c;n];R;Δθ ∪Δ′′θ〉

∅ otherwise

generateP,A(G) =
⋃

(Q←�Q)∈P
resolve(〈G; [Q, �Q];Q; [];Q ← �Q; ∅〉, 〈G; [];G; []; ; ∅〉)

∪ (if G ∈ [[A]] then {〈G; [];G; []; abduction; {G}〉} else ∅)

Fig. 1. Becker and Nanz’s algorithm for tabled policy evaluation with proof construc-
tion and abduction

4 Becker and Nanz’s Algorithm for Tabled Policy
Evaluation with Proof Construction and Abduction

This section briefly presents Becker and Nanz’s algorithm for tabled policy eval-
uation extended with proof construction and abduction [2]. This section is based
closely on the presentation in their paper.

Becker and Nanz’s algorithm appears in Figure 1. It defines a transition sys-
tem, in which each state is a tuple of the form (N,Ans,Wait), where N is a set
of nodes, Ans is an answer table, and Wait is a wait table, as defined below, and
where the transitions between states are defined by the transition rules in the
upper half of the figure. Disjoint union � is used for pattern matching on sets:
N matches N1 �N2 iff N = N1 ∪N2 and N1 ∩N2 = ∅.

A node is either a root node 〈G〉, where G is an atom, or a tuple of the
form 〈G; Q; S;c; R; Δ〉, where G is an atom called the index (the goal whose
derivation this node is part of), Q is a list of subgoals that remain to be solved
in the derivation of the goal, S is the partial answer (the instance of G that
can be derived using the derivation that this node is part of), c is the list of
child nodes of this node, R is the rule used to derive this node from its children

Abductive Analysis of Administrative Policies in RBAC 123

in the derivation of S, and Δ is the residue (the set of atoms abduced in this
derivation). Note that, in the definition of generate, we use “abduction” as
the name of the rule used to derive an abduced fact. If the list Q of subgoals
is empty, the node is called an answer node with answer S. Otherwise, it is
called a goal node, and the first atom in Q is its current subgoal. Each answer
node is the root of a proof tree; goal nodes (representing queries) are not in
proof trees. Selectors for components of nodes are: for n = 〈G; Q; S;c; R; Δ〉,
index(n) = G, subgoals(n) = Q, pAns(n) = S, children(n) = c, rule(n) = R,
and residue(n) = Δ.

An answer table is a partial function from atoms to sets of answer nodes. The
set Ans(G) contains all answer nodes for the goal G found so far.

A wait table is a partial function from atoms to sets of goal nodes. The set
Wait(G) contains all those nodes whose current subgoal is waiting for answers
from 〈G〉. Whenever a new answer for 〈G〉 is produced, the computation of these
waiting nodes is resumed.

The auxiliary definitions in the lower half of Figure 1 define the subsumption
relation � on nodes and the resolve and generate functions. Intuitively, if
n � n′ (read “n is subsumed by n′”), then the answer node n provides no more
information than n′, so n can be discarded. resolve(n, n′) takes a goal node n
and an answer node n′ and combines the current subgoal of n with the answer
provided by n′ to produce a new node with fewer subgoals. generateP,A(G)
generates a set of nodes for a query 〈G〉 by resolving G against the rules of
policy P , and by abducing G if G is abducible with respect to A. Constructors
are not considered in [2], but the algorithm can handle them if the functions for
matching and unification are extended appropriately. .

The initial state for goal G is ({〈G〉}, {G �→ ∅}, {G �→ ∅}). A state S is a final
state iff there is no state S′ and such that S → S′. Given a goal G, start with
the initial state for G and apply transition rules repeatedly until a final state is
reached. In that final state, Ans(G) represents all derivable instances of G.

5 Analysis Algorithm

The algorithm has three phases. Phase 1 transforms the policy to eliminate
addRule and removeRule. Phase 2 is a modified version of Becker and Nanz’s
tabling algorithm described above; it produces candidate solutions. Recall that
their algorithm attempts to derive a goal from a fixed policy. We modify the
tabling algorithm, and transform its input, to enable it to compute sets of policy
updates (i.e., administrative operations) needed to derive the goal. However,
modifying the tabling algorithm to incorporate a notion of time (i.e., a notion
of the order in which updates to the policy are performed, and of the resulting
sequence of intermediate policies) would require extensive changes, so we do
not do that. Instead, we introduce a third phase that checks all conditions that
depend on the order in which administrative operations are performed. These
conditions relate to negation, because in the absence of negation, removals are
unnecessary, and additions can be done in any order consistent with the logical
dependencies that the tabling algorithm already takes into account.

124 P. Gupta, S.D. Stoller, and Z. Xu

5.1 Phase 1: Elimination of addRule and removeRule

The policy P ′ obtained by elimination of addRule and removeRule from a policy
P is not completely equivalent to P—in particular, the state graphs SG(P, U0)
and SG(P ′, U0) differ, and some kinds of properties, such as availability of per-
missions, are not preserved. However, P ′ is equivalent to P in the weaker sense
that using P ′ in place of P in an abductive atom-reachability query does not
change the answer to the query. Informally, this is because the answer to such
a query depends only on the “upper bounds” of the derivable facts in reachable
policies, not on the exact sets of derivable facts in each reachable policy, and
this transformation preserves those upper bounds.

Elimination of removeRule. The policy elimRmRule(P) is obtained from P
by simply deleting all removeRule permission rules (recall that safety allows
removeRule to appear only in the conclusion of such rules). This eliminates
transitions that remove rules defining intensional predicates, and hence elimi-
nates transitions that make intensional predicates smaller. Since negation can-
not be applied to intensional predicates, making intensional predicates smaller
never makes more facts (including instances of the goal) derivable. Therefore,
every instance of the goal that is derivable in some policy reachable from P
is derivable in some policy reachable from elimRmRule(P). Conversely, since
SG(elimRmRule(P0), U0) is a subgraph of SG(P0, U0), every instance of the goal
that is derivable in some policy reachable from elimRmRule(P) is derivable in
some policy reachable from P . Therefore, the elimRmRule transformation does
not affect the answer to abductive atom-reachability queries.

Elimination of addRule. We eliminate addRule by replacing addRule permis-
sion rules (recall that safety allows addRule to appear only in the conclusion of
such rules) with new rules that use addFact to “simulate” the effect of addRule.
Specifically, the policy elimAddRule(P) is obtained from P as follows. Let R

be an addRule permission rule permit(U, addRule(L :- L1)) :- L2 in P . Rule
R is replaced with two rules. One rule is the rule pattern in the argument of
addRule, extended with an additional premise using a fresh extensional pred-
icate auxR that is unique to the rule: L :- L1, auxR(X), where the vector of
variables X is X = vars(L :- L1) ∩ (vars({U}) ∪ vars(L2)). The other is an
addFact permission rule that allows the user to add facts to this new predicate:
permit(U, addFact(auxR(X))) :- L2. The auxiliary predicate auxR keeps track
of which instances of the rule pattern have been added. Recall from Section 2
that users are permitted to instantiate variables in the rule pattern when adding
a rule. Note that users must instantiate variables that appear in the rest of the
addRule permission rule, i.e., in vars({U})∪ vars(L2), because if those variables
are not grounded, the permit fact necessary to add the rule will not be derivable
using rule R. Therefore, each fact in auxR records the values of those variables.
In other words, an addRule transition t in SG(P0, U0) in which the user adds
an instance of the rule pattern with X instantiated with c is “simulated” in
SG(elimAddRule(P0), U0) by an addFact transition t that adds auxR(c).

Abductive Analysis of Administrative Policies in RBAC 125

Note that SG(P0, U0) also contains transitions t′ that are similar to t except
that the user performs additional specialization of the rule pattern by instan-
tiating additional variables in the rule pattern or adding premises to it. Those
transitions are eliminated by this transformation, in other words, there are no
corresponding transitions in SG(elimAddRule(P0), U0). This is sound, because
those transitions lead to policies in which the intensional predicate p that ap-
pears in literal L (i.e., L is p(. . .)) is smaller, and as argued above, since negation
cannot be applied to intensional predicates, eliminating transitions that lead to
smaller intensional predicates does not affect the answer to abductive atom-
reachability queries.

Applying this transformation to a policy satisfying the fixed administrative
policy requirement produces a policy containing no higher-order administrative
permission rules.

From the above arguments, we conclude: For every policy P0, set U0 of users,
and atom a not in excludedAtoms, SG(P0, U0) contains a policy P with a ∈ [[P]]
iff SG(elimAddRule(elimRmRule(P0)), U0) contains a policy P ′ with a ∈ [[P ′]],
where excludedAtoms is the set of atoms of the form permit(. . . , addRule(. . .)),
permit(. . . , removeRule(. . .)), auxR(. . .), or permit(. . . , addFact(auxR(. . .))).
From this, it is easy to show that answers to abductive atom-reachability queries
are preserved by this transformation. Subsequent phases of the algorithm analyze
the policy elimAddRule(elimRmRule(P0)).

5.2 Phase 2: Tabled Policy Evaluation

Phase 2 is a modified version of Becker and Nanz’s algorithm. It considers three
ways to satisfy a positive subgoal: through an inference rule, through addition
of a fact (using an addFact permission rule), and through abduction (i.e., by
assumption that the subgoal holds in the initial policy and still holds when the
rule containing it as a premise is evaluated).

To allow the algorithm to explore addition of facts as a way to satisfy posi-
tive subgoals, without directly modifying the algorithm, we transform addFact
permission rules into ordinary inference rules. Specifically, each addFact permis-
sion rule permit(U, addFact(a)) :- L is replaced with the rule a :- L, u0(U).
The transformation also introduces a new extensional predicate u0 and, for each
u ∈ U0, the fact u0(u) is added to the policy. This transformation changes the
meaning of the policy: the transformed rule means that a necessarily holds when
L holds, while the original addFact permission rule means that a might (or
might not) be added by an administrator when L holds. This difference is signif-
icant if a appears negatively in a premise of some rule. This change in meaning
is acceptable in phase 2, because phase 2 does not attempt to detect conflicts
between negative subgoals and added facts. This change in the meanings of rules
used in phase 2 does not affect the detection of such conflicts in phase 3.

The algorithm considers two ways to satisfy a negative subgoal: through re-
moval of a fact (using a removeFact permission rule) and through abduction
(i.e., by assumption that the negative subgoal holds in the initial policy and still
holds when the rule containing it as a premise is evaluated).

126 P. Gupta, S.D. Stoller, and Z. Xu

To allow the algorithm to explore removal of facts as a way to satisfy negative
subgoals, removeFact permission rules are transformed into ordinary inference
rules with negative conclusions. Specifically, each removeFact permission rule
permit(U, removeFact(a)) :- L is replaced with the rule !a :- L, u0(U).

Let elimAddRmFact(P) denote the policy obtained from P by transforming
addFact and removeFact rules as described above. An administrative node (or
“admin node”, for short) is a node n such that rule(n) is a transformed addFact
or removeFact permission rule. isAdmin(n) holds iff n is an administrative node.

The algorithm can abduce a negative extensional literal !a when this is con-
sistent with the initial policy, in other words, when a is not in P0. To enable
this, in the definition of generate, we replace “G ∈ [[A]]” with “G ∈ [[A]]∨ (∃a ∈
Atomex . a �∈ P0 ∧ G is !a)”, where Atomex is the set of extensional atoms. If a is
not ground, disequalities in dinit in phase 3 will ensure that the solution includes
only instances of a that are not in P0.

The tabling algorithm treats the negation symbol “!” as part of the predicate
name; in other words, it treats p and !p as unrelated predicates. Phase 3 interprets
“!” as negation and checks appropriate consistency conditions.

The tabling algorithm explores all derivations for a goal except that the sub-
sumption check in transition rule (ans) in Figure 1 prevents use of the derivation
represented by answer node n from being added to the answer table and thereby
used as a sub-derivation of a larger derivation if the partial answer in n is sub-
sumed by the partial answer in an answer node n′ that is already in the answer
table. However, the larger derivation that uses n′ as a derivation of a subgoal
might turn out to be infeasible (i.e., have unsatisfiable ordering constraints) in
phase 3, while the larger derivation that uses n as a derivation of that subgoal
might turn out to be feasible. We adopt the simplest approach to overcome this
problem: we replace the subsumption relation � in transition rule (ans) with the
α-equality relation =α, causing the tabling algorithm to explore all derivations
of goals. α-equality means equality modulo renaming of variables that do not
appear in the top-level goal G0.

An undesired side-effect of this change is that the algorithm may get stuck in a
cycle in which it repeatedly uses some derivation of a goal as a sub-derivation of a
larger derivation of the same goal. Exploring the latter derivation is unnecessary,
because it will be subjected in phase 3 to the same or more constraints as the for-
mer derivation. Therefore, we modify the definition of resolve as follows, so that
the algorithm does not generate a node n′ corresponding to the latter derivation:
we replace unifiable(Q, Q′′) with unifiable(Q, Q′′) ∧ noCyclicDeriv(n′), where

noCyclicDeriv(n′) = � ∃d ∈ proof(n′). isAns(d)
∧ 〈index(d), pAns(d), residue(d)〉 =α 〈index(n′), pAns(n′), residue(n′)〉

where the proof of a node n, denoted proof(n), is the set of nodes in the proof
graph rooted at node n, i.e., proof(n) = {n} ∪ ⋃

n′∈children(n) proof(n′), and
where isAns(n) holds iff n is an answer node. noCyclicDeriv(n′) does not check
whether rule(n′) = rule(d) or subgoals(n′) = subgoals(d), because exploration
of n′ is unnecessary, by the above argument, regardless of the values of rule(n′)
and subgoals(n′).

Abductive Analysis of Administrative Policies in RBAC 127

We extend the algorithm to store the partial answer substitution, denoted
θpa(n), in each node n. This is the substitution that, when applied to index(n),
produces pAns(n). In the generate function, the θpa component in both nodes
passed to resolve is the empty substitution. In the resolve function, θpa(n′) is
θ ◦ θfr ◦ θpa(n1), where θfr is the substitution that performs the fresh renaming
of Q′ and Δ′, and n1 denotes the first argument to resolve.

In summary, given an abductive atom-reachability query of the form in Section
3, phase 2 applies the tabling algorithm, modified as described above, to the
policy elimAddRmFact(elimAddRule(elimRmRule(P0))) with the given goal G0

and specification A of abducible atoms.

5.3 Phase 3: Ordering Constraints

Phase 3 considers constraints on the execution order of administrative opera-
tions. The ordering must ensure that, for each administrative node or goal node
n, (a) each administrative operation n′ used to derive n occurs before n (this is a
“dependence constraint”) and its effect is not undone by a conflicting operation
that occurs between n′ and n (this is an “interference-freedom constraint”), and
(b) each assumption about the initial policy on which n relies is not undone by
an operation that occurs before n (this is an “interference-freedom constraint”).

The overall ordering constraint is represented as a Boolean combination of
labeled ordering edges. A labeled ordering edge is a tuple 〈n, n′, D〉, where the
label D is a conjunction of tuple disequalities or false, with the interpretation:
n must precede n′, unless D holds. if D holds, then n and n′ operate on distinct
atoms, so they commute, so the relative order of n and n′ is unimportant.

Pseudocode for phase 3 appears in Figures 2 and 3. The algorithm generates
the overall ordering constraint, puts the Boolean expression in DNF, and checks,
for each clause c, whether the generated ordering constraints can be satisfied, i.e.,
whether they are acyclic. If so, the disequalities labeling the ordering constraints
do not need to be included in the solution. However, if the generated ordering
constraints are cyclic, then the algorithm removes a minimal set of ordering
constraints to make the remaining ordering constraints acyclic, and includes the
disequalities that label the removed ordering constraints in the solution. After
constraints have been checked, negative literals are removed from the residue;
this is acceptable, because the problem definition asks for a representation of
only minimal-residue ground solutions, not all ground solutions The algorithm
can easily be extended to return a plan (a sequence of administrative operations
that leads to the goal) for each solution.

Repeated Administrative Operations. Tabling re-uses nodes, including, in
our setting, administrative nodes. This makes the analysis more efficient and avoids
unnecessary repetition of administrative operations in plans. However, in some
cases, administrative operations need to be repeated; for example, it might be
necessary to add a fact, remove it, and then add it again, in order to reach the
goal. The current version of our algorithm cannot generate plans with repeated
administrative operations, but it does identify when repeated operations might
be necessary, using the function mightNeedRepeatedOp, and returns a message

128 P. Gupta, S.D. Stoller, and Z. Xu

solutions = ∅
for each node ng ∈ Ans(G)

// consistency constraint: disequalities that ensure consistency of initial state,
// i.e., positive literals are distinct from negative literals.
dinit =

∧{args(a) �= args(b) | a ∈ facts(P0) ∪ residue(ng) ∧ !b ∈ residue(ng) ∧ unifiable(a, b)}
if ¬satisfiable(dinit)

continue
endif
O = orderingConstraints(ng)
if (∃ clause c in O. the ordering constraints in c are acyclic)

// the ordering constraints for ng are satisfiable without imposing disequalities.
// intersect residue with Atomex (the extensional atoms) to remove negative literals.
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩ Atomex , dinit〉}

else
// the ordering constraints for ng are not satisfiable in general, but might
// be satisfiable if disequalities are imposed to ensure that some
// administrative operations operate on distinct atoms and therefore commute.
for each clause c in O

if mightNeedRepeatedOp(c, ng)
// the current version of the algorithm does not support repeated operations
return “repeated operations might be needed”

endif
Dord = ∅
// c is a conjunction (treated as a set) of labeled ordering constraints.
// remove some ordering constraints F from c to make the remaining ordering
// constraints acyclic, and insert in Dord the conjunction d of dinit and the
// disequalities labeling the removed ordering constraints.
Cyc = set of all cycles in ordering constraints for clause c
FAS = {F | F contains one edge selected from each cycle in Cyc}
// smFAS is the set of ⊆-minimal feedback arc sets (FASs) for clause c
smFAS = {F ∈ FAS | � ∃F ′ ∈ FAS . F ′ ⊂ F}
for each F in smFAS

d = dinit ∧
∧{d′ | 〈n1, n2, d

′〉 ∈ F}
if satisfiable(d) ∧ ¬(∃d′ ∈ Dord. d′ ⊆ d)

Dord = Dord ∪ {d}
endif

endfor
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩ Atomex , d〉 | d ∈ Dord}

endfor
endif

endfor
return solutions

Fig. 2. Pseudo-code for Phase 3

indicating this. Specifically, mightNeedRepeatedOp(c, ng) returns true if some
node n in c is a child of multiple nodes in proof(ng); in such cases, it might be
necessary to replace n with multiple nodes, one for each parent, in order to satisfy
the ordering constraints. To achieve this, the algorithm can be modified so that,
if mightNeedRepeatedOp returns true, the algorithm re-runs phases 2 and 3 but
this time constructs new answer nodes, instead of re-using tabled answers, for the
nodes identified by mightNeedRepeatedOp as possibly needing to be repeated.

Abductive Analysis of Administrative Policies in RBAC 129

function orderingConstraints(ng)
θ = θpa(ng)
// dependence constraint: an admin node ns that supports n must occur before n.
Odep =

∧{〈ns, n, false〉 | n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ ns ∈ adminSupport(n)}
// all of the constraints below are interference-freedom constraints.
// a removeFact node nr that removes a supporting initial fact of a node n must occur
// after n.
Orm-init =

∧{〈n, nr, args(a)θ �= args(pAns(nr))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ proof(ng) ∧ isRmFact(nr)
∧ n �= nr ∧ a ∈ supportingInitFact(n) ∧ unifiable(!a, pAns(nr))}

// an addFact node na that adds a fact whose negation is a supporting initial fact
// of a node n must occur after n.
Oadd-init =

∧{〈n, na, args(a)θ �= args(pAns(na))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ proof(ng) ∧ isAddFact(na)
∧ n �= na ∧ !a ∈ supportingInitFact(n) ∧ unifiable(a, pAns(na))}

// an addFact node na that adds a supporting removed fact of a node n must occur
// either before the removal of that fact or after n.
Oadd-rmvd =∧{〈na, nr, args(pAns(na))θ �=args(pAns(nr))θ〉 ∨ 〈n, na, args(pAns(na))θ �=args(pAns(nr))θ〉 |

n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ adminSupport(n) ∧ isRmFact(nr)
∧ na ∈ proof(ng) ∧ isAddFact(na) ∧ n �= na ∧ unifiable(!pAns(na), pAns(nr))}

// a removeFact node nr that removes a supporting added fact of a node n must occur
// either before the addition of that fact or after n
Orm-added =∧{〈nr, na, args(pAns(na))θ �=args(pAns(nr))θ〉 ∨ 〈n, nr, args(pAns(na))θ �=args(pAns(nr))θ〉 |

n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ adminSupport(n) ∧ isAddFact(na)
∧ nr ∈ proof(ng) ∧ isRmFact(nr) ∧ n �= nr ∧ unifiable(!pAns(na), pAns(nr))}

// conjoin all ordering constraints and convert the formula to disjunctive normal form.
O = DNF(Odep ∧ Orm-init ∧ Oadd-init ∧ Oadd-rmvd ∧ Orm-added)
// for each clause c of O, merge labeled ordering constraints for the same pair of nodes.
for each clause c in O

while there exist n1, n2, D, D′ such that c contains 〈n1, n2, D〉 and 〈n1, n2, D
′〉

replace 〈n1, n2, D〉 and 〈n1, n2, D
′〉 with 〈n1, n2, D ∧ D′〉 in c

endwhile
endfor
return O

args(a) = a tuple containing the arguments of atom a

support(n) = {n′ ∈ proof(n) | isAns(n′) ∧ n′ �= n
¬∃na.isAdmin(na) ∧ descendant(n, na) ∧ descendant(na, n′)}

adminSupport(n) = {n′ ∈ support(n) | isAdmin(n′)}
supportingInitFact(n) = {pAns(n′) | n′ ∈ support(n)

∧ (rule(n′) ∈ facts(P0) ∨ rule(n′) = abduction)}

Fig. 3. Ordering constraints for an answer node ng

5.4 Implementation and Experience

We implemented the analysis algorithm in 5000 lines of OCaml and applied it to
part of the policy PHCN for our healthcare network case study with 30 admin-
istrative permission rules. We included facts about a few prototypical users in
PHCN: fpo1, a member of facility po(sb hosp); clin1, a clinician at sb hosp;

130 P. Gupta, S.D. Stoller, and Z. Xu

and user1, a user with no roles. A sample abductive atom-reachability query
that we evaluated has P0 = PHCN, U0 = {fpo1, user1}, A = {memberOf(User,
workgroup(WG, sb hosp, team))}, and G0 = memberOf(GoalUser, wgHead(
cardioTeam, sb hosp)). The analysis takes about 1.5 seconds, generates 2352
nodes, and returns five solutions. For example, one solution has partial answer
memberOf(GoalUser, wgHead(cardioTeam, sb hosp)), residue {memberOf(
GoalUser, workgroup(cardioTeam, sb hosp, team))}, and tuple disequality
〈GoalUser〉 �= 〈fpo1〉. The disequality reflects that fpo1 can appoint himself
to the hr manager(sb hosp) role, can then appoint himself and other users as
members of cardioTeam, and can then appoint other users as team head, but
cannot then appoint himself as team head, due to the negative premise in the
sample rules at the end of Section 2.

References

1. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In: Proc.
22nd IEEE Computer Security Foundations Symposium (CSF), pp. 203–217 (2009)

2. Becker, M.Y., Nanz, S.: The Role of Abduction in Declarative Authorization Poli-
cies. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 84–99.
Springer, Heidelberg (2008)

3. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Transactions on Information and System Security 13(3) (2010)

4. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards formal veri-
fication of role-based access control policies. IEEE Transactions on Dependable and
Secure Computing 5(4), 242–255 (2008)

5. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM Trans-
actions on Information and System Security 9(4), 391–420 (2006)

6. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based ad-
ministration of roles. ACM Transactions on Information and Systems Security 2(1),
105–135 (1999)

7. Stoller, S.D., Yang, P., Gofman, M., Ramakrishnan, C.R.: Symbolic reachability
analysis for parameterized administrative role based access control. Computers &
Security 30(2-3), 148–164 (2011)

Towards Detection of Botnet Communication

through Social Media
by Monitoring User Activity

Pieter Burghouwt, Marcel Spruit, and Henk Sips

Delft University of Technology, The Netherlands
{P.Burghouwt,H.J.Sips}@tudelft.nl, M.E.M.Spruit@hhs.nl

Abstract. A new generation of botnets abuses popular social media
like Twitter, Facebook, and Youtube as Command and Control channel.
This challenges the detection of Command and Control traffic, because
traditional IDS approaches, based on statistical flow anomalies, proto-
col anomalies, payload signatures, and server blacklists, do not work in
this case. In this paper we introduce a new detection mechanism that
measures the causal relationship between network traffic and human ac-
tivity, like mouse clicks or keyboard strokes. Communication with social
media that is not assignably caused by human activity, is classified as
anomalous. We explore both theoretically and experimentally this de-
tection mechanism by a case study, with Twitter.com as a Command
and Control channel, and demonstrate successful real time detection of
botnet Command and Control traffic.

1 Introduction

Social media, like Twitter, Facebook, and Youtube create a new communication
opportunity for malicious botnets. A Command and Control (C&C) channel
is crucial for a botnet. Bots need regular instructions from the botmaster, for
example to initiate or synchronize an attack, upload harvested data, or update
the malware [17]. A large number of countermeasures has been developed and
deployed against C&C in general. Botnets react to these measures by using new
communication mechanisms that are harder to detect and repress [18]. With the
arrival of social media based C&C, there are now 4 major C&C-mechanisms:

1. IRC is a simple and proven C&C technique. It is attractive for the botmaster,
because of its simple management, with a real time or “tight” control over the
botnet through a permanently established connection. However especially for
this type of C&C, many countermeasures have been developed. An example
is the work of Cook et al. [2].

2. A more sophisticated C&C-mechanism uses peer-to-peer communication,
based on protocols like Kademlia [3]. The intrinsic decentralized structure
is difficult to counter and the use of peer-to-peer protocols is widespread,
due to popular file sharing and communication protocols, like Bittorrent
and Skype. However the absence of centralized control makes management

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 131–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

132 P. Burghouwt, M. Spruit, and H. Sips

complex, and due to firewalls and NATs, many peers cannot receive incom-
ing connections, resulting in network of which the availability and stability
highly depends on a limited number of nodes [12].

3. Another C&C-mechanism uses HTTP to exchange information. The popu-
larity of HTTP makes anomaly detection difficult. In addition, many bot-
nets decentralize the HTTP-service by fast fluxing A-records, IP-addresses
of DNS-servers, or even domain names [14]. This makes it difficult to bring
the service down by IP or domain blacklisting [15].

4. A rather new C&C-mechanism uses social media for C&C. A botmaster
posts instructions as messages on a popular social medium, like Twitter
or Facebook. Bots fetch the instructions by regularly polling certain pages.
Examples of such botnets are: Trojan.Whitewell, that uses Facebook [11],
TwitterNET, that uses Twitter [13], and Trojan 2.0, that uses Google groups
[6].

If a botnet imitates the communication patterns of normal users that visit a pop-
ular social medium, detection will become very difficult with conventional net-
work IDS-techniques, because there are no anomalous addresses, domain names,
protocols, or ports involved and a large fraction of the daily legitimate traffic
of normal computers consists of visits to social media. A further increase of the
C&C invisibility is possible by steganographic techniques, to hide the commands
in apparently normal messages, account flux, by making the bots visit different
accounts or even different media, and SSL/TLS encryption, to impede content
inspection in the network. Many social media offer already HTTPS access as an
alternative to the still popular unencrypted HTTP access.

Difficult detection is not the only reason that social media based C&Cs have
the potential to become the most important botnet control mechanism on the
Internet. Other beneficial properties from the perspective of the botmaster are:
simple implementation, simple management of applications that read from and
write to social media, scalability, and high availability of the social media ser-
vices.

In this paper we address the detection of social media based C&C-traffic, by
introducing a detection mechanism that measures causality between user activity
and network traffic. The presence or absence of certain key strokes and mouse
clicks is used to determine if network traffic is user- or botnet- originated.

Section 2 gives an overview of related existing work in the areas of botnet
C&C-detection and the observation of user activity in the detection process.

Section 3 introduces a detection mechanism that uses mouse clicks and key
strokes as a proof of user commitment to visit a social medium. If egress traffic
starts within a small time window directly after a user event, it is classified
as user intended. Traffic outside this time window consists of both legitimate
traffic that is indirectly induced by user events, and botnet C&C traffic that is
not induced by any user event.

The detection mechanism is elaborated with Twitter.com as representative
example of a social medium.

Towards Detection of Botnet Communication through Social Media 133

Section 4 discusses detection improvements, related with legal automatic traf-
fic and potential evasion techniques.

2 Related Work

Since causality detection is partly based on measurement of network traffic, we
start with some examples of existing detection mechanisms that detect C&C-
traffic by passively monitoring the network. Examples are: recognition of known
command strings [5], clustering similar traffic for correlation with observed at-
tacks [7], observation of new repeating destination patterns or atoms [4], and
observation of fast changes in DNS-records [9]. However, with botnet traffic
that imitates user originated visits to popular social websites, these detection
approaches have limited results, due to the close resemblance to legal traffic.

Honeypots [16] can detect botnet traffic without false positives. However, after
detection a signature of the malicious traffic must be derived and distributed for
misuse detection. An example is the blacklisting of a suspicious user account.
This makes the total system not real time with the risk of too much delay
between the detected and actual properties of the traffic.

Another aspect, which is related with the detection mechanism, to be pre-
sented in this paper, is the measurement of user commitment. A CAPTCHA,
as introduced by Ahn et al. [1], is a popular test to remotely distinguish be-
tween computer programs and users. CAPTCHA’s are often used in Web 2.0
applications, to prevent automated account creation. Obviously an intensive use
of CAPTCHA’s does not promote the accessibility of a website. As most users
do not create a new account every five minutes, the nuisance is limited in that
case. However, the use of CAPTCHA’s for every social medium visit, results
in an unacceptable burden. Of course cryptographic signatures can be used to
relate later traffic with an initial CAPTCHA verification, but it can result in
a complex trust mechanism. Vo et al. [20] propose a system that authenticates
physical computers with social media accounts after an initial CAPTCHA test.
However once authenticated, the system does not really prevent botnets to use
the account or visit public pages of users.

Gummadi et al. propose NAB, Not-a-Bot [8]. The system uses TPM-backed
attestations of user activity, that are sent with web- and email requests to an
external verifier, where the decision is made if the traffic is legitimate or not.
Gummadi et al. focus primarily on the implementation of the attestation mech-
anism and give no details of the time-related detection mechanism. Verification
of the detector performance is done indirectly by combining offline keyboard-
and mouse logs with network traces. It shows that NAB can reduce the rate
of intense bot-generated traffic, like DoS and spam. NAB, can be seen as com-
plementary to our work, by delivering a possible practical implementation of a
trusted agent that attests user events to the actual detector.

Kartaltepe et al. [10] present a systematic overview of the evolution in so-
cial media botnets and approaches in countermeasures. Our detection approach
can be classified in their work as the detection of a client-sided self-concealing

134 P. Burghouwt, M. Spruit, and H. Sips

process. The absence of human-computer interaction computer defines a process
as potential self concealing. Kartaltpepe et al. do not elaborate on detection
mechanisms that use this self concealing property.

3 Detection Principle

Network traffic does not occur spontaneously. Something triggers a traffic flow. In
the case of a visit to a social medium, the trigger is usually a keyboard or mouse
event, caused by a human user. However if a bot visits a social medium to fetch
new instructions, or upload harvested information, the traffic is not triggered
by user events, but by internal state changes of the malware. This allows for
detection of botnet traffic to social media by the absence of user events that
could potentially have triggered the traffic.

Figure 1 shows a schematic overview of our proposed detection system. Net-
work traffic (3) is captured from an inserted network bridge. If a traffic flow is
initiated to a social medium, without preceding keyboard events (1) or mouse
events (2), the flow is classified as potential bot-originated by the causality de-
tector.

There are several ways to implement the taps to intercept the keyboard and
mouse events. For example by hooks in the operating system of the client com-
puter that catches the events. Another possibility is the insertion of a hardware
device that monitors the signals on the bus from the user devices to the client
computer. In case of a virtual client computer, the tap can even be implemented
in the hypervisor. The possibility of implementing taps, causality detection, and
bridge completely outside the client computer results in a detector that is less
visible and more resistant against direct attacks.

Fig. 1. Schematic overview of a detector which correlates activity of keyboard (1) and
mouse (2), with captured network traffic (3)

The causality detection works with a small time window that starts directly
after a user event and discriminates between flows that are caused or not caused
by the user event. It does not depend on known signatures; hence communication
of zero day-bots can also be detected. Moreover, in contrast to most anomaly

Towards Detection of Botnet Communication through Social Media 135

detection mechanisms, the classification is real time, resulting in the potential
block of a malicious flow at the moment of the first egress packet.

In the remainder of this section we elaborate on the detection algorithm, es-
timate the performance, and show by experiment that it really detects botnet
traffic. For the ease of the explanation, we focus on Twitter.com as a represen-
tative example of a popular social medium, hence all results can be extended to
other social media. We assume that all legal traffic to Twitter.com is directly
caused by user events and all bot-originated traffic is not synchronized with user
activity. In Section 4 we discuss important exceptions to these assumptions, like
legitimate automatic traffic and detector evasion by synchronization with user
activity.

3.1 Detection of Botnet Traffic to Twitter.com

The detection algorithm proposed in this section is linked to browser access to
Twitter.com with Internet Explorer and Firefox. In Section 4 we discuss alter-
native client scenarios to communicate with Twitter. In the browser scenario we
identify three specific user events that can exclusively trigger Twitter traffic:

– Left mouse click, typically on Twitter link;
– Enter key, typically during login or completion of message or “Tweet”;
– F5-key to reload a page

Normal Twitter traffic always starts with the request of an object from Twit-
ter.com. Examples of requested Twitter.com-objects are: a timeline with tweets,
a search instruction, or a login. Directly after the loading of the first html-
formatted object, additional objects, like scripts, media, advertisements, and
tracking objects are loaded from other domains, like Twimg.com and Google.com.
Bots that use Twitter as a C&C-channel must start with a request of a
Twitter.com-object, because other sequences are unusual and raise suspicion.
The Twitter.com-object can directly contain C&C instructions or results, or
link to other objects with C&C-related content. Our detection algorithm tests
for the presence of relevant user events within a certain time frame, just before
an egress flow to Twitter.com is initiated. Figure 2 shows the relevant timing.

Fig. 2. Time diagram of a user event that directly results in a visit to Twitter.com.
Parameters are defined in Table 1.

136 P. Burghouwt, M. Spruit, and H. Sips

A Twitter.com flow is classified as non-bot if the flow is user induced, as
illustrated by the implication:

tget − tu < Tug → user induced (1)

A complicating factor is DNS. If the client cache does not contain a valid DNS
record of Twitter.com, a DNS lookup will take place between the user event
and the actual visit to Twitter.com. Figure 3 shows the relevant timing for the
second more complex scenario. The Twitter.com flow with is now classified as
non-bot if the flow is user induced, as illustrated by the implication:

(tdnsq − tu < Tud) ∧ (tdnsa − tdnsq < Tdd) ∧ (tget − tdnsa < Tdg) → user induced
(2)

Fig. 3. Time diagram of a user events that results in a DNS-lookup, followed by a visit
to Twitter.com. Parameters are defined in Table 1.

Table 1. Description of the parameters, used in the algorithm

Parameter Description

tu user event(release in left mouse click, press of F5 or Enter key)
tget HTTP GET-request to Twitter.com
tdnsq DNS query to resolve Twitter.com
tdnsa DNS answer to resolve Twitter.com
Tug maximum permitted time between tu and tget
Tud maximum permitted time between tu and tdnsq

Tdd maximum permitted time between tdnsqand tdnsa

Tdg maximum permitted time between tdnsa and tget

Detection performance depends largely on a proper value of the defined win-
dows Tug, Tud, and Tdg. Large windows increase the probability that egress
botnet traffic is coincidentally initiated inside a window, with a false negative
as a result. Conversely small windows increase the probability that user-induced
traffic starts just after a window, with a false positive as a result. The size of Tdd

depends on the maximum expected response time of the DNS-server. The value
of Tdd is not critical in the detection process, because it is not a response time
of the potentially infected client computer. Moreover causality between DNS re-
quest and DNS response can also be determined by the UDP client port or DNS
payload instead of timing.

Towards Detection of Botnet Communication through Social Media 137

3.2 Empirical Estimation of Optimal Time Windows

The optimal value of Tug, Tud, and Tdg is the worst case response time of
the involved client computer. This value is determined by many factors, like
the amount of processing involved in the response, hardware capabilities, real
time properties of the operating system, and the actual load of the system.
We estimated the values by measuring Twitter-related response times on a HP
DC7900, a main stream Personal Computer, in a test set up, as in Figure 1,
but with a logging facility instead of a causality detector. The keyboard/mouse
taps were implemented by a separate microcontroller board, inserted in the PS2-
cables of both the mouse and the keyboard. Captured events were signaled to
the logging device over a high speed serial connection. All other functions were
implemented in a fast computer with a Linux operating system.

We repeatedly visited the same timeline of a Twitter account with a Firefox
browser under Windows XP. Response times were measured for 3 different user
events, both under idle and high load conditions. The latter condition was es-
tablished by simultaneous downloads of 5Mb/s+ traffic from 10+ sources. The
three user events were: F5 reload, mouse click (M1), and mouse click with empty
DNS-cache (M2). Every measurement was repeated 100 times. The average and
extreme response times for each scenario are presented in Table 2.

Table 2. Summary of measured response times of Twitter.com visits with a HP
DC7900 Windows XP PC. F5 is the response to a F5-reload, M1 is the response to a
Mouse click with preloaded DNS-cache and M2 with empty DNS-cache.

Idle High concurrent load
Case Interval tmin(ms) tav(ms) tmax(ms) tmin(ms) tav(ms) tmax(ms)

F5 tget-tu,key 0.1 3 163 0.2 15 115
M1 tget-tu,mouse 16 17.6 32.1 16 27 45
M2 tdnsq-tu,mouse 4.7 5.8 7.1 5.3 14 21

tget-tdnsa 0.3 0.6 2.7 0.3 3.2 7.3

Only 2 of the 600 measured response times were above 100ms, with a maxi-
mum response time of 163ms.

3.3 Theoretical Performance of the Detector

To determine the Detection Rate (DR) and False Positive Rate (FPR), we start
by an analysis of visits to Twitter.com with a valid DNS cache. This simple
scenario uses only one time window Tw= Tug. At the end of the next subsection
we will extend the analysis for the more complex scenario with DNS-traffic.

Only a Twitter.com flow that starts within the causal window Tw is classified
as user-caused and hence normal. All other Twitter.com flows are classified as
anomalous. Figure 3 illustrates a generic example of three causal windows of
which two are partly overlapping. Overlap can take place if the window size is
in the order of magnitude of the minimum time between user events.

138 P. Burghouwt, M. Spruit, and H. Sips

Fig. 4. Example of 3 user events (t1, t2, and t3) with their causal windows with length
Tw. Traffic that is initiated outside these windows is classified as anomalous.

Detection Rate. Assume multiple events during some observation interval T and
define ti as the moment the ith user event is observed. The boundaries t0 and
tn are not user events, but the respective start and stop time of the observation
interval. Let h(t) be a function that has the value of 0 if t is inside a causal
window, and the value of 1 if t is outside any of the causal windows:

h(t) =

{
0 if ∃ i, 0 ≤ t− ti ≤ Tw

1 if � i, 0 ≤ t− ti ≤ Tw

(3)

The Detection Rate (DR) is the probability that a bot-originated flow starts
outside any of the causal windows and hence is classified as anomalous.

DR = P (h(t) = 1|t = random start of C&C flow)

=
1
T

T�

0

h(t)dt =
1
T

n∑
i=1

Hi (4)

with

Hi =

{
0 if ti − ti−1 ≤ Tw

ti − ti−1 − Tw if ti − ti−1 > Tw

(5)

We define Tav as the average time between 2 successive user events during the
observation interval. If Tav >> Tw the effect of overlapping windows is negligible
and Eq. 4 reduces to:

DR ≈ 1− Tw

Tav
(6)

Eq. 6 shows that the DR is optimal with a small causal window Tw and a large
average time between user events.

To estimate DR in a worst case scenario, we used the reported results of odo-
metric measurements of the Workpace RSI-software among 50000 users during a
4 week period [19]. The work shows a daily peak of 3400 mouse clicks and 11600
key strokes during 2.8 hours. If we assume that 5% or less of the pressed keys is
a carriage return or F5, the average time between user events can be calculated:
Tav = (2.8 ∗ 3600)/ (3400 + 11600 ∗ 0.05) ≈ 2.5s. Based on 163ms as the maxi-
mum measured response time in Table 2, we choose Tw= 200ms, resulting in a
detection rate: DR = 1− (0.2/2.5) = 0.91.

Towards Detection of Botnet Communication through Social Media 139

In practice the the average DR is expected to be higher, because:

1. the average time between user events over a day is significantly higher than
2.5 seconds, because most computers are only intensely used during a small
part of the day[19];

2. the effective frequency of left mouse clicks is lower, because the presented
frequency also includes right mouse clicks and double clicks[19].

In the more more complex scenario with a DNS-lookup there are two critical
windows: Tud and Tdg. By replacing both windows by one window Tw = Tud+Tdg,
the DR is calculated by the same math. Based on 21+7.3ms as the maximum
measured response time in Table 2, we choose Tw = 21+7.3 = 30ms, resulting
in a DR of 0.99.

False Positive Rate. False Positives are caused by a response time that is larger
than the defined causal window Tw. Eq. 7 expresses the resulting False Positive
Rate (FPR). It depends on the distribution of the response time.

FPR = P (tget − tu > Tw |user triggered flow)

= 1−
Tw�

0

p(t)dt (7)

The function p(t) is the probability distribution of the response time . The obser-
vations in Section 3.2 did not lead to a well-defined model for this distribution,
because many factors influence the response time of the computer. However it
is considered safe to assume that FPR < 0.01 for the choice Tw = 200ms in the
case of the observed computer, because in our tests none of the 600 measured
response times exceeded 163ms.

3.4 Experimental Evaluation of the Detection Algorithm

We tested the algorithm in a real situation. The detector of Section 3.1 was
implemented with time windows Tug = Tud = Tdg = 200ms, as explained in
Section 3.3, and Tdd = 10s. In addition to logging, the traffic to Twitter.com,
outside the specified time window was stopped by the real time insertion of
firewall rules. During 8 hours a client computer was used for text processing,
email reading/writing, drawing, browsing, and of course using Twitter. At the
same time the computer was infected by a bot. The used bot was a recent variant
of the Twitternet bot as discovered by Nazario [13]. This variant is also known by
Kasperski lab as Backdoor.Win32.Twitbot.c. It polls exactly every 20 seconds a
Twitter account and uses SSLv1. Of course in this case we could directly detect
this flow by the rarely used SSLv1-protocol and the high query-rate. However, to
test the performance of the our detection mechanism, we only used the algorithm
of Section 3.2. Table 3 presents the results of the experiment. The results show
a very succesful detection of botnet traffic and support the theoretically derived
performance of the detection algorithm.

140 P. Burghouwt, M. Spruit, and H. Sips

Table 3. Experimental results of the detection algorithm during an 8 hours observation
of an infected computer, with Tug = Tud = Tdg = 200ms and Tdd =10s

Parameter Value

total left mouse click rel. events 1620
total Enter key press events 414
total F5 key press events 28
total flows 7170 (1467 bot + 5703 user)
Detection Rate 0.987 (1448 of 1467 illegal flows)
False Positive Rate excluding reloads 1 (0 of 43 legitimate Twitter flows)
False Positive Rate including reloads 0.6 (17 of 43 legitimate Twitter flows)

The 17 false positives were all caused by automatic reloads of already open
Twitter pages. In practice this was not a problem, because the user could still
update the pages by a manual reload. The issue of automatic reloads is further
discussed in the next section.

4 Special Cases of Twitter Traffic

In the previous sections we have assumed that legal traffic to Twitter.com could
only be triggered by human activity and that botnet traffic was never triggered
by human activity. Unfortunately, in reality the situation is more complex. We
elaborate in this section on two important exceptions:

– automatic legal traffic by applications that poll Twitter periodically;
– user synchronized botnet traffic to evade detection.

4.1 Automatic Legal Traffic

Automatic notifications, which were blocked in the experiment, are an example
of legal automatic traffic to Twitter.com. In the case of Twitter we identified
three important groups of legal automatic traffic:

– If a timeline or a search page of Twitter.com is loaded, the browser polls
approximately every 30 seconds Twitter.com for new messages. New mes-
sages result default in a notification, but the page with the new content is
not loaded.

– A timeline or hash tag can be polled as RSS-feed. An agent loads a cer-
tain Twitter page in RSS-format periodically. Update frequencies are low
(typically once a day for IE and once an hour for Firefox).

– A timeline or hash tag can also be polled by special agents like Tweet-
deck. These applications periodically load timelines or search results of Twit-
ter.com in .json, .xml, or .rss format.

In the absence of direct user activity, our detector will classify these traffic types
as botnet-originated. We explore here some solutions to deal with this false

Towards Detection of Botnet Communication through Social Media 141

positive problem and restrict ourselves to solutions that can be implemented on
the network in the neighborhood of the client.

The first and most rigorous solution is to let the detector prevent this kind
of traffic, as we did in the experiment. In certain restricted situations, like a
corporate network, this can be an acceptable compromise between security and
functionality, because employers can still use Twitter, but only manually.

A second solution is content inspection of automatic Twitter traffic. Unex-
pected formats or short subscription periods are examples of observations that
can classify automatic traffic as malicious. The detector of Section 3.1 is still
an essential first step for classifying potential malicious traffic. In the case of
SSL-traffic, proxy constructions, or key exchange between the client and the
inspecting device, are necessary.

A third solution is the use of white lists that allows for automatic traffic to
certain locations of Twitter.com. This can only work if the majority of this list is
automatically maintained. For example the detector can allow Twitter locations
that have successfully been visited by earlier user events. Also CAPTCHA’s can
be used, as a condition to manually add locations in the whitelist. For a more
thorough elaboration further research is necessary.

4.2 Evasion by User Synchronized Botnet Traffic

The presented detector can only detect botnet traffic if the traffic is not synchro-
nized with user activity. However it is possible to design a bot that waits with
its C&C traffic until a suitable user event takes place. In that case the detector
will wrongly classify the traffic as human originated with a false negative as a
result.

To cope with this evasion technique we suggest some enhancements of the
original presented detector. Instead of only looking at separate user events, the
enhanced detector uses multiple user and network events, to determine anoma-
lous triggers of Twitter traffic.

For example if a user triggers Twitter traffic by the F5-key, it is the reload
of a recently loaded page. If a bot triggers communication on this event, it will
result in new traffic, which is a detectable anomaly.

Another example is user-triggered Twitter traffic by the Enter-key. This hap-
pens in most legitimate cases immediately after typing the URL, during a login,
a search, or after typing a new tweet. Also immediately after the Enter-event,
the user will normally wait a few seconds with further events, until complete
response. If a bot chooses a random Enter-event to start communication, there
is a high probability that the mentioned conditions are not met, resulting in
detectable anomalous traffic. Of course a sophisticated bot can wait until all
conditions are met, but in that situation there is a high probability of two si-
multaneous flows to Twitter.com, the bot flow and a user flow, which is again a
detectable anomaly.

The left mouse click is an attractive event for a bot to synchronize, because
it is the most important trigger of legitimate Twitter traffic. Again observation
of earlier and later events can lead to detection of an anomalous situation. For

142 P. Burghouwt, M. Spruit, and H. Sips

example in case of a double click, the bot starts its communication before it can
observe the possible second mouse click, because if it waits to long, the traffic
will be outside of the causal window. The result is a detectable anomaly. Also
the presence of other user activity immediately after the mouse click can indi-
cate anomalous traffic. Further research is necessary to work these suggestions
out into clear algorithms and determine the resulting performance and other
consequences, like the potential loss of real time detection.

5 Conclusions and Future Work

We have presented a detection algorithm that successfully detects botnet C&C-
traffic to Twitter.com, by observing only causal relationships between observed
network traffic and observed user events that potentially can trigger traffic to
Twitter.com. The three observed user events that can trigger a visit to Twit-
ter.com are: the Enter key press, the Left Mouse Button release, and the F5
key press. Theory, combined with empirical data, predicts an excellent detection
rate and false positive rate. The proposed detection algorithm and its predicted
performance are supported by experimental data with real user traffic and bot-
net traffic. The real time detection permits complete blocking of a C&C-traffic
flow. There are feasible solutions that can cope with false positives of automatic
legal Twitter traffic and false negatives of bots that synchronize communication
on certain user events in order to imitate user intended traffic. Further research
is needed to work the proposed solutions out in more detail and to extend the
proposed detection mechanism to a more generic technique that can successfully
detect botnet C&C-traffic to various social media.

References

1. Ahn, L.V., Blum, M., Hopper, N., Langford, J.: Captcha: Using Hard Ai Problems
for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311.
Springer, Heidelberg (2003)

2. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: Understanding,
detecting, and disrupting botnets. In: Proc. of the USENIX Workshop on Steps
to Reducing Unwanted Traffic on the Internet SRUTI 2005. USENIX Association,
Cambridge (2005)

3. Davis, C.R., Fernandez, J.M., Neville, S., McHugh, J.: Sybil attacks as a mitigation
strategy against the storm botnet. In: Proc. of the 3rd International Conference
on Malicious and Unwanted Software MALWARE 2008. IEEE, Alexandria (2008)

4. Giroire, F., Chandrashekar, J., Taft, N., Schooler, E., Papagiannaki, D.: Exploit-
ing Temporal Persistence to Detect Covert Botnet Channels. In: Kirda, E., Jha,
S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 326–345. Springer, Hei-
delberg (2009)

5. Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Proc. of the first USENIX Workshop on Hot Topics in Understanding
Botnets HOTBOTS 2007. USENIX Association (2007)

Towards Detection of Botnet Communication through Social Media 143

6. Gorman, G.O.: Google groups trojan (2009)
http://www.symantec.com/connect/blogs/google-groups-trojan

(visited January 2011)
7. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of net-

work traffic for protocol- and structure-independent botnet detection. In: Proc. of
the 17th USENIX Security Symposium SECURITY 2008. USENIX Association,
Berkeley (2008)

8. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-bot: Improving
service availability in the face of botnet attacks. In: Proc. of the 6th USENIX Sym-
posium on Networked Systems Design and Implementation NSDI 2009. USENIX
Association, Berkeley (2009)

9. Holz, T., Gorecki, C., Rieck, K., Freiling, C.: Measuring and detecting fast-flux
service networks. In: Proc. of Symposium on Network and Distributed System
Security NDSS 2008. The Internet Society (2008)

10. Kartaltepe, E.J., Morales, J.A., Xu, S., Sandhu, R.: Social Network-Based Bot-
net Command-and-Control: Emerging Threats and Countermeasures. In: Zhou, J.,
Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 511–528. Springer, Heidelberg
(2010)

11. Lelli, A.: Trojan.whitewell: What’s your (bot) facebook status today? (2009),
http://www.symantec.com/connect/blogs/

trojanwhitewell-what-s-your-bot-facebook-status-today

(visited December 2010)
12. Mol, J.J.D., Pouwelse, J.A., Epema, D.H.J., Sips, H.J.: Free-riding, fairness, and

firewalls in p2p file-sharing. In: Proc. of the Eighth International Conference on
Peer-to-Peer Computing P2P 2008. IEEE (2008)

13. Nazario, J.: Twitter-based botnet command channel (August 2009),
http://asert.arbornetworks.com/2009/08/

twitter-based-botnet-command-channel/ (visited October 2010)
14. Nazario, J., Holz, T.: As the net churns: Fast-flux botnet observations. In: Proc. of

the 3rd International Conference on Malicious and Unwanted Software MALWARE
2008. IEEE, Alexandria (2008)

15. Porras, P., Saidi, H., Yegneswaran, V.: A foray into conficker’s logic and rendezvous
points. In: Proc. of the Second USENIX Workshop on Large-Scale Exploits and
Emergent Threats: Botnets, Spyware, and More LEET 2008. USENIX Association,
Boston (2009)

16. Provos, N.: A virtual honeypot framework. In: Proc. of the 13th Conference on
the USENIX Security Symposium SSYM 2004. USENIX Association, San Diego
(2004)

17. Schiller, C., Binkley, J.: Botnets: The Killer Web Applications, 1st edn. Syngress
Publishing, Rockland MA (2007)

18. Stinson, E., Mitchell, J.: Towards systematic evaluation of the evadability of
bot/botnet detection methods. In: Proc. of the 2nd Conference on USENIX
Workshop on Offensive Technologies WOOT 2008. USENIX Association, Berkeley
(2008)

19. Taylor, K.: An Analysis of Computer Use across 95 Organisations in Europe, North
America and Australasia. Tech. rep., Wellnomics (2007)

20. Vo, N.H., Pieprzyk, J.: Protecting web 2.0 services from botnet exploitations. In:
Proc. of the 2nd Workshop on Cybercrime and Trustworthy Computing CTC 2010.
IEEE, Washington, DC (2010)

http://www.symantec.com/connect/blogs/google-groups-trojan
http://www.symantec.com/connect/blogs/trojanwhitewell-what-s-your-bot-facebook-status-today
http://www.symantec.com/connect/blogs/trojanwhitewell-what-s-your-bot-facebook-status-today
http://asert.arbornetworks.com/2009/08/twitter-based-botnet-command-channel/
http://asert.arbornetworks.com/2009/08/twitter-based-botnet-command-channel/

Finding Non-trivial Malware Naming Inconsistencies

Federico Maggi, Andrea Bellini, Guido Salvaneschi, and Stefano Zanero

Dipartimento di Elettronica e Informazione, Politecnico di Milano

Abstract. Malware analysts, and in particular antivirus vendors, never agreed on
a single naming convention for malware specimens. This leads to confusion and
difficulty—more for researchers than for practitioners—for example, when com-
paring coverage of different antivirus engines, when integrating and systematiz-
ing known threats, or comparing the classifications given by different detectors.
Clearly, solving naming inconsistencies is a very difficult task, as it requires that
vendors agree on a unified naming convention. More importantly, solving incon-
sistencies is impossible without knowing exactly where they are. Therefore, in
this paper we take a step back and concentrate on the problem of finding incon-
sistencies. To this end, we first represent each vendor’s naming convention with a
graph-based model. Second, we give a precise definition of inconsistency with re-
spect to these models. Third, we define two quantitative measures to calculate the
overall degree of inconsistency between vendors. In addition, we propose a fast al-
gorithm that finds non-trivial (i.e., beyond syntactic differences) inconsistencies.
Our experiments on four major antivirus vendors and 98,798 real-world malware
samples confirm anecdotal observations that different vendors name viruses dif-
ferently. More importantly, we were able to find inconsistencies that cannot be
inferred at all by looking solely at the syntax.

1 Introduction

The current threat landscape is characterized by money-driven campaigns [1] mainly
spread through drive-by download [2], more than by self-replicating code. Classic poly-
morphic viral engines gave way to multiple layers of packing, obfuscation, recompi-
lation, and advanced self-update mechanisms. As a consequence, a rising number of
unique malware specimens, often mutated versions of known malware, spurred a trans-
formation in the mechanisms of action of antiviruses, which rely more and more on
generic signatures and heuristics [3].

Because of historical reasons and vendor-specific policies, malware naming has never
followed any conventions [3] (e.g., vendors and researchers used to name viruses based
on characteristic they found interesting). Unfortunately, naming inconsistencies are a
real problem when trying to correlate useful data across different antiviruses. Even sim-
ple problems such as comparing top-ten threat lists are in turn very difficult1.
Consequently, researchers have concentrated on solving inconsistencies and proposed

1 http://infosecurity-us.com/view/6314/
malware-threat-reports-fail-to-add-up

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 144–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://infosecurity-us.com/view/6314/malware-threat-reports-fail-to-add-up
http://infosecurity-us.com/view/6314/malware-threat-reports-fail-to-add-up

Finding Non-trivial Malware Naming Inconsistencies 145

both pragmatic approaches (e.g., VGrep, Wild List2)and new naming conventions (e.g.,
CARO3).

However, finding and understanding naming inconsistencies is a necessary (and miss-
ing) step before solving them. To address this, we extend the notion of “consistency”
presented in [4], and propose a systematic approach for quantifying and finding in-
consistencies. By observing these inconsistencies, and armed with the knowledge of a
vendor’s detection methodology, an expert can investigate the inconsistencies.

We experimentally identify a number of strong inconsistencies, confirming that the
problem is deep and structural. Also, we show that inconsistencies are not uniformly
spread across different antiviruses (i.e., some vendors are more consistent, while others
are wildly different). Last, we find large groups of inconsistently-labeled samples which
cannot be made consistent in any sensible way.

In summary, we make the following contributions:

– We define a systematic technique to create simple yet effective graph-based models
of vendors’ naming conventions (§3.2) by means of which we formally define the
concept of consistency, weak inconsistency and strong inconsistency (§3.3).

– We propose two quantitative measures that evaluate the overall degree of inconsis-
tency between two vendors’ naming conventions (§3.3) and, more importantly, we
define a simple algorithm that finds the inconsistent portions of graph model.

– We describe the results obtained by applying the proposed techniques on a real-
world dataset comprising 98,798 unique malware samples, scanned with four real
antivirus products, visualize and analyze consistencies, strong and weak inconsis-
tencies (§4), and briefly explain how these can be solved (§3.3).

2 Malware Naming Inconsistencies

Although variants of viruses and worms were relatively common, they tended to form
just a small tree of descendants. Therefore, even with different conventions (e.g., calling
a child “virus.A” as opposed to “virus.1”), such trees were easy to match across different
vendors (e.g., with VGrep4). Even polymorphic viruses did not pose a serious challenge
in this scheme. An effort to standardize names was CARO, which proposed the fol-
lowing naming convention:<type>://<platform>/<familyname>.<group
name>.<length>.<sub variant><devolution><modifiers>. However,
this effort was unsuccessful. Even if it had been, a standard syntax would solve just
a subset of the problem, without reconciling different family or group names between
vendors.

The CME initiative5 tried to deal with the problem by associating a set of different
specimens to a single threat, but the approach proved to be unfeasible. At the same

2 http://www.sunbelt-software.com/ihs/alex/
vb 2007 wildlist paper.pdf

3 http://www.people.frisk-software.com/ bontchev/papers/
naming.html

4 http://www.virusbtn.com/resources/vgrep/index.xml
5 http://cme.mitre.org/cme/

http://www.sunbelt-software.com/ihs/alex/vb_2007_wildlist_paper.pdf
http://www.sunbelt-software.com/ihs/alex/vb_2007_wildlist_paper.pdf
http://www.people.frisk-software.com/~bontchev/papers/naming.html
http://www.people.frisk-software.com/~bontchev/papers/naming.html
http://www.virusbtn.com/resources/vgrep/index.xml
http://cme.mitre.org/cme/

146 F. Maggi et al.

time, most malware authors began to use malware kits, and to borrow or steal code
from each other. As a result, many samples may descend from a mixture of ancestors,
creating complex phylogenies that are not trees anymore, but rather lattices. This, in
turn, motivated the evolution of antivirus engines, which now rely on generic signatures
including behavior-based techniques inspired by anomaly detection approaches. Conse-
quently, correlating the outcomes of different antiviruses is even more complex [5]. For
instance, in [4] signature-based antiviruses are compared with behavioral classifiers by
means of consistency (i.e., similar samples must have similar labels), completeness and
conciseness of the resulting detection. This work has highlighted the presence of a non-
negligible number of inconsistencies (i.e., different labels assigned to similar samples).

However, as of today, no complete and reliable method exists to find inconsistencies.
Therefore, before consolidating malware names, we first need to quantify and spot them
precisely.

3 Finding Naming Inconsistencies

We hereby describe a two-phase, practical approach to build a high-level picture of in-
consistencies in malware naming conventions across a given set of antivirus products or
vendors (henceforth named “vendors” for simplicity). Our goal is to spot inconsisten-
cies that go beyond well-known syntactic differences. Given a list of unique samples,
our method produces a qualitative comparison, finds subsets of samples labeled incon-
sistently, and produces two quantitative indicators of the degree of inconsistency.

Phase 1 (modeling). For each vendor, we model malware names according to struc-
tural similarity between their labels (§3.2).

Phase 2 (analysis). We compare the aforesaid models quantitatively by means of a set
of structural and numerical indicators (§3.3).

For instance, when patterns such as “-backdoor”, “.backdoor.”, “-backdoor-
dialer”, or “backdoor.dialer” are found, we assume that, according to the ven-
dor under examination, the samples are all characterized by being “backdoors”, and
thus Phase 1 organize them in the same group. In other words, we model each vendor
by means of the groupings induced by its naming convention. In Phase 2, two vendors
are considered consistent if they both group samples together in the same manner, re-
gardless of the actual labeling. For instance, a group comprising sample m1 (labeled
as “foo-backdoor”) and sample m2 (labeled as “bar-backdoor”) is consistent
with a group comprising the same exact samples labeled as “blah-trojan” and
“foobar-trojan”, respectively.

3.1 Types of Inconsistency

We define two different types of inconsistencies:

Weak Inconsistency: One vendor divides the set of samples into more groups, whereas
the other vendor groups them all together, thus creating a “one-to-many” mapping

as opposed to one or more “one-to-one” mappings . This inconsistency is weak
as it descents from the different granularities adopted by vendors).

Finding Non-trivial Malware Naming Inconsistencies 147

Strong Inconsistency: Vendors spread samples in multiple groups, such that there is
no mapping between the groups .

In §3.3 we further formalize these definitions by means of models constructed in Phase 1,
and define a fast algorithm to identify them.

3.2 Phase 1: Naming Convention Modeling

We use a simple, top-down hierarchical approach (§3.2) to transform the initial set of
malware samples into nested sub-sets, such that each (sub-)set contains only samples
labeled with similar string patterns. Patterns are extracted offline for each vendor (§3.2).

Pattern Extraction. Our technique is centered around four pattern classes, marked
with angular brackets (i.e., <class>):

<type> distinctive activity of the malicious code (e.g., “backdoor”, “worm”,
or “dialer”, “packed”, “tool”).

<family> name of a specific malware family (e.g., “Conficker”, “Mudrop”,
“Fokin”, “Allaple”).

<platform> operating system (e.g., “W32”, “WNT”) or language interpreter (e.g.,
“JS”, “PHP”).

<version> malicious code version (e.g., “B” and “D” in labels “PHP:IRCBot-B”
and “PHP:IRCBot-D”), or information to disambiguate “releases” or
signatures (e.g., “gen”, “gen44”, “damaged”).

This small, generic set of pattern classes allows to analyze several vendors. New classes
can be added and extend our approach to virtually any vendor. Our analysis on real
samples revealed that each class can contain either one simple pattern or a hierarchy:

Simple Pattern: occurrence of a string of a given class, e.g., <type> = Trojan. Usu-
ally, <platform> and <family> occur as simple patterns (e.g., <platform>
= Win32|PHP).

Hierarchy: occurrence of more simple patterns of the same class, e.g., <type1>
= “Trojan” and <type2> = “Dropper” are both of class <type>. For ex-
ample, when vendors specify both a threat type and sub-type, this leads to hier-
archies of simple patterns, denoted as concatenated simple patterns in order of
precedence, e.g., <type> = <type1>/<type2>/<type3>, <version> =
<version1>/<version2>. We use the slash separator just to describe our re-
sults, though it by no means reflects any syntax.

Simple patterns can be constructed either manually, from a handful of labels, or by
leveraging automatic inference tools to derive the most probable syntax of a given set of
strings for subsequent manual revision. However, as manual revision would be required
anyway to ensure accurate results, we opt for a heuristic approach (detailed in §3.2),
that allows us to extract the patterns in a semi-automatic fashion. Hierarchies of patters
of the same class are ordered with respect to their relative frequency of appearance.
For instance, given one vendor and simple patterns <typeX> and <typeY>, X < Y
if <typeX> occurs more than <typeY> on a given set of malware sample. If they
have the same frequency, the hierarchy is replaced by a simple pattern <type>, which
contains the common substring between <typeX> and <typeY>.

148 F. Maggi et al.

M

Trojan

{m4,5,6,7}

Dropper

{m6,7}
Mudrop

{m6,7}
Win32

{m6,7}

fkt = {m7}

jts = {m6}

Downloader

{m4,5}
Fokin

{m4,5}
Win32

{m4,5}
da = {m4,5}

Backdoor

{m1,2,3} {m1,2,3}
Shellbot

{m1,2,3}

Perl

{m3}
cd = {m3}

PHP

{m1,2}

t = {m2}

v = {m1}
/ <type1> / <type2>/<family>/<platform>/<version>
/ <type> /

C0 C1 C2 C3 C4 C5

Fig. 1. Example output of Phase 1 on a set M with seven samples.
For instance, C1 = {{m1, m2, m3}, {m4, m5, m6, m7, }} and C2−4 =
{{m3}, {m6, m7}, {m4, m5}, {m1, m2, m3}, {m1, m2}}. Note that, <type> comprises
/<type1>/<type2>/.

Tree-Based Models. Given a set M of labeled samples, we run the following procedure
for each vendor on a given set of patterns. We consider one class of patterns at time.

We first split the initial set of labels according to <type>. For ex-
ample, given <type> = “Backdoor|Trojan”, the samples labeled
as Backdoor.Perl.Shellbot.cd, Backdoor.PHP.Shellbot.v
and Backdoor.PHP.Shellbot.t fall in the same sub-set, whereas
Trojan-Downloader.Win32.Fokin.da, Trojan-Dropper.Win32.
Mudrop.fkt and Trojan-Dropper.Win32.Mudrop.jts fall in a different
one. If the vendor under consideration adopts hierarchical patterns, this step is repeated
for each sub-pattern. Continuing the above example, the trojan samples are separated
in two different sub-sets.

When a (sub-)set can be split no further according to the same pattern class, we
consider the <family>. In our example, the only possible split is by means of
“Fokin” and “Mudrop”, as “Shellbot” induces no splits. Then the first set is
split in two sub-sets, one containing only Backdoor.Perl.Shellbot.cd and
one with Backdoor.PHP.Shellbot.t Backdoor.PHP.Shellbot.v. Fur-
ther splits are performed according to the different <version> patterns (if any). More
precisely, “.v” and “.t” forms two sub-sets as well as “.fkt”, and “.jts” do.

We stop when the latest pattern class has been considered. In our example, the proce-
dure ends after one split induced by the <version>. At each split, we store the links
between the sets thus constructing a tree, rooted in the initial set, as exemplified in Fig. 1.

Definition 1 (Naming Tree). Given a set M of malware names, we define naming tree
the output of Phase 1, which is Cd(M) ⊂ ℘(M), where d is either: (1) a number that
indicates the depth in the tree, e.g., C1, (2) an interval between depths in the tree, e.g.,
C1−2, or (3) a mnemonic expression (M is omitted when implicit from the context).

In Fig. 1, C1 = {{m1, m2, m3}, {m4, m5, m6, m7, }} and C2−4 =
{{m3}, {m6, m7}, {m4, m5}, {m1, m2, m3}, {m1, m2}}. The whole tree is C = C0 =
C0(M) = {M}, or Cv, where v is the vendor under examination. We indicate portions

Finding Non-trivial Malware Naming Inconsistencies 149

of the naming tree with mnemonic expressions; for instance, “/*/<family>/*”
denotes the portion of naming tree corresponding to the <family>, that are
C3 = C(/∗/<family>/∗) = {{m1, m2, m3}, {m4, m5}, {m6, m7}}. Actual sub-
strings can be used as well: C/Backdoor/∗ = {{m1, m2, m3}}. A hierarchy of
patterns always refer to the lowest depth. For instance, C2 = C(/∗/<type2>/∗) =
{{m1, m2, m3}, {m4, m5}, {m6, m7}}.

Implementation Details

Pattern Extraction. The extraction procedure is run for each vendor and takes (1) a
set of malware labels L and (2) an a small set of separators, [/:.-_!] (this can be
customized easily by analyzing the frequency of symbols in the labels corpus). The algo-
rithm iteratively breaks labels into substrings. At each iteration an operator reviews a set
of candidate substrings and assign them to an appropriate pattern class. Pattern classes
are initially empty, e.g., <type> = ‘’. At the i-th iteration a random, small (e.g., 10)
subset of labels Li ⊆ L is selected and labels are broken into substrings according to
separators. Then, the operator assigns each unique substring to the appropriate class.
For example, if Win32, Allaple, Trojan, and PHP are found, the appropriate class
is updated, i.e., <platform>i = Win32|PHP, <type>i = Trojan, <family>i =
Allaple. All substrings extracted from each label in Li must be assigned to exactly
one class. Labels with at least one substring not assigned to any class are postponed
for subsequent analysis (and removed from Li). Alternatively, the operator can add
new separators as needed to handle the current subset of labels. When labels in Li are
covered, L is reduced by removing all the labels that can be parsed with the existing
patterns. Then, the next random sample Li+1 ⊆ L\Li is drawn (Li+1 may include
postponed labels). The runs until L = ∅.

The larger each random sample size is, the faster and more accurate this procedure
becomes, also depending on the operator’s experience. However, this procedure needs
to be ran only once per vendor and, more importantly, the time and effort required de-
crease from vendor to vendor, as patterns can be reused (e.g., family and platforms recur
across vendors with minimal variations). In real-world examples, a minority of labels
may deviate from the patterns (e.g. when labels are handwritten by malware analysts).
Singletons. Consider patterns <version> = v|t and a set {m1, m2}, where m1

= Backdoor.PHP.Shellbot.v, m2 = Backdoor.PHP.Shellbot.t. A split
would produce two sub-sets {m1}, {m2}.

To one end, one outlier is not representative of the pattern, e.g., “t” or “v”. To the
other hand, since our goal is to analyze consistency, we expect that, if two vendors are
consistent, they would produce similar sets, also including “outliers”. For this reason,
to take into account both the observations, sets of size below a certain threshold, To, are
labeled with a special pattern, <misc> that encode such “uncertainty”.

For example, /Backdoor/Shellbot/PHP/ identifies the set {m1, m2},
whereas the label /Backdoor/Shellbot/<misc>/ identifies {m3}. Note that,
more miscellaneous sets may exist at the same depth.
Named Depth. For different vendors, a named depth (e.g., “<family>”), may corre-
spond to different numerical depths. Therefore, while constructing the naming trees we
construct the mapping between numerical and named depths.

150 F. Maggi et al.

3.3 Phase 2: Comparing Vendors

We compare two vendors A, B by means of their naming trees CA, CB (Def. 1). We
first calculate two indicators (§3.3) that quantify the degree of inconsistency between
naming conventions between vendors; and then we spot inconsistencies (§3.3).

Naming trees are hierarchies of sets. However, we compare sets derived by “cutting”
naming trees at a given depth d, omitted for simpler notation: CA = CA

d and CB = CB
d .

Quantitative Comparison. We define the naming convention distance, which expresses
the overall difference between the naming conventions of A and B, and the scatter mea-
sure, which expresses the average number of sets of one vendor that are necessary to
cover each set of the other vendor (and vice versa).

Definition 2 (Naming convention distance). The naming convention distance between
vendors A and B is defined as the average distance between their sets.

D(CA, CB) :=
1
2

⎛⎜⎜⎝
∑

c∈CA

δ(c, CB)

|CA| +

∑
c∈CB

δ(c, CA)

|CB|

⎞⎟⎟⎠ (1)

δ(c, C′) = minc′∈C′ d(c, c′) being the minimum diff. between c ∈ C and any set of C′.

The denominator is such that D(·, ·) ∈ [0, 1], and d(c, c′) = 1−J(c, c′) ∈ [0, 1], where
J(c, c′) is the Jaccard index. A similar distance was used to measure the similarity
between sets of overlapping trees of sets [6].

Definition 3 (Scatter Measure). The scatter measure between vendors A and B is
defined as the average number of sets in each vendor’s model that are necessary to
cover one set drawn from the other vendor’s model (and vice-versa). More formally:

S(CA, CB) :=
1
2

⎛⎜⎜⎝
∑

c∈CA

|Γ (c, CB)|

|CA| +

∑
c∈CB

|Γ (c, CA)|

|CB|

⎞⎟⎟⎠ (2)

where Γ (c, C′) is the scatter set.

Definition 4 (Scatter set). The scatter set of c by C′ is Γ (c, C′) := {c′ ∈ C′ | c ∩ c′ �=
∅}.

In other words, Γ contains sets of C′ (e.g., model of vendor B) that have at least one
element (e.g., malware sample) in common with a given c ∈ C (e.g., model of vendor
A). As CA and CB are partitioned, |Γ (c, C′)| is the number of sets of C′ that build c.

Structural Comparison. We recognize the inconsistencies defined in §3.1. To this
end, trees at a given depth are first represented as undirected graphs with cross-vendor
edges, and then searched for inconsistent sub-graphs. This comparison applies only
when CA and CB are partitioned into flat sets. Therefore, only for this analysis, we
assume that sets are drawn from trees at leaf depth (i.e., <version n>), representative
of the whole label.

Finding Non-trivial Malware Naming Inconsistencies 151

CA

CB

m1 m1 m2 m1 m2 m1 m2 m3

m1 m1 m2 m1 m2 m1 m2 m3

(a) Consistency (b) Weak inconsistency (vice-versa) (c) Strong inconsistency

GAB
CC ⊆ GAB GAB

WI ⊆ GAB GAB
SI ⊆ GAB

c

c′2c′1 c′

c1 c2

c′1 c′2

c2c1

Fig. 2. Instances of consistencies GAB
CC , weak inconsistencies GAB

WI and strong inconsistencies
GAB

SI , i.e., connected components of the linked naming tree GAB of vendors A vs. B. Each vertical
line represents a malware sample.

Definition 5 (Linked Naming Trees). Given CA and CB the linked naming tree is an
undirected graph GAB := 〈VAB , EAB〉, where V = CA ∪ CB and EAB = {(c, c′) | c ∈
CA, c′ ∈ CB ∧ c ∩ c′ �= ∅}.

In other words, GAB encodes the links between sets of labeled samples. Given a set c
of samples labeled by A, and a set c′ of samples labeled by B, we set an edge from c to
c′ only if c′ has at least one sample in common with c. In §3.3 we extend this concept
with edges weighted proportionally to the number of samples shared between c and c′.
Therefore, we reduce the problem of recognizing inconsistencies to finding connected
components of GAB , for which efficient algorithms (e.g., [7]) exist. The connected
components are then analyzed automatically to distinguish among:
Consistency (CC). (Fig. 2a) The connected component has two sets with the same

samples (samples of A may have different labels than samples of B).
Weak Inconsistency (WI). (Fig. 2b) The connected component contains only one set

c ∈ VA = CA, and all sets c′ ∈ VB = CB are its subsets c′ ⊂ c. In this case, vendor
B adopts more fine-grained naming convention than vendor A. Despite CA and CB

are not identical, vendors disagree only on the amount of information in each label.
Strong Inconsistency (SI). The connected component contains more than one set for

each vendor (e.g., for sets c′1, c1, c
′
2, c2 in Fig. 2c). As sets are partitions of the

entire set of malware samples, there must be at least four sets c1, c2 ∈ VA = CA,
c′1, c

′
2 ∈ VB = CB such that the following condition holds: c1

⋂
c′1 �= ∅ ∧

c2

⋂
c′2 �= ∅ ∧ c′2 ∩ c1 �= ∅. In other words, the sets share some samples

without being all subsets of each other. The inconsistency, which includes all sets
of the connected component, is caused by inherently different naming conventions.
Once found, these inconsistencies can be solved by fusing, say, c1 with c2.

Implementation Details

Scatter Set Coverage. Our implementation incorporates a measure of coverage, σ, in
scatter sets Γ (c, C′) (Def. 4), defined as σ(Γ) := |c ∩

⋃
c′|/|c|%, where the union

is calculated for any c′ ∈ Γ (c, C′). The coverage quantifies the percentage of samples
in c (e.g., a set of vendor A) shared with the union of scatter sets derived from C′

(e.g., a set tree of vendor B). Scatter sets can be selected by their σ, and thus, given a
threshold Tσ ∈ [0, 100], the minimum scatter set of c with respect to C′ can be selected
as Γ̂Tσ : �Γ (c, C′) for σ(Γ) ≥ Tσ ∧ |Γ | < |Γ̂ |: The smallest scatter set that covers c of
at least Tσ .

152 F. Maggi et al.

Weighted Linked Naming Trees. The edges of the linked naming trees (Def. 5) are
weighted with the following weighting function:

W (c, c′) := max
{ |c ∩ c′|

|c| %,
|c ∩ c′|
|c′| %

}
, ∀(c, c′) ∈ EAB (3)

Each edge encodes the degree of “overlapping” between two sets c and c′ originated
from A and B, respectively. Note that, our normalization ensures that weights quantify
the actual fraction of c shared with c′, regardless of the size of c′, which can be dispro-
portionally larger than c (and vice-versa). Our analysis can be thus parametrized by a
threshold TW ∈ [0, 100], used to convert weighted graphs into graphs by pruning edges
e = (c, c′) below TW , i.e., W (c, c′) < TW .

4 Experimental Measurements

Microsoft V1 <type>:<plat>/<family>[.gen[!<ver1>]|<ver2>] 4,654 labels
Antiy V2 <type>.<plat>/<family>[.<ver1>.<ver2>] 23,603

Kaspersky V3 <type>/<plat>.<family>[.gen] 2,122
Avast V4 <plat>/<family>[-gen|-<ver>] 4,350

These naming conventions cover the vast majority of the samples. These vendors are
good candidates because the “richness” of their naming convention allows a granular
analysis, which spans from <type> to <version>. Adding more vendors is compu-
tationally feasible, although the number of unique couples drawn from the set of vendors
would grow quickly. Therefore, from a presentation perspective, this may yield cluttered
and confusing diagrams. Given that our goal in this paper is to evaluate our method and
show that it finds structural inconsistencies, as opposed to simply quantifying them, us-
ing four vendors, totaling six comparisons, seems sufficient and actually clearer.

Vendor V4 includes no <type>. We manually analyzed this case and discovered
that the <family>, which is instead present in the syntax, is seldom used also to hold
information about the threat type (e.g., “Malware”, “Dropper”, “Trojan” in Fig. 4). As
this happens quite seldom, it is reasonable to consider it as part of the semantic of the
naming convention. For this reason, only for vendor V4, we safely consider threat type
and family name at the same level of importance. Note that, other vendors handle this
exception by assigning <family> = “generic”.

Dataset. Our dataset M, generated on Sep 13, 2010, comprises 98,798 distinct malware
samples identified by their hashes. We derived the labels LV1 , LV2 , LV3 , LV4 via Virus-
Total, an online service which allows to scan samples with multiple vendors simultane-
ously. We selected a set of 98,798 samples recognized by the majority of the four main
vendors. Frequent labels in the datasets include, for instance, “TrojanSpy:Win32/-
Mafod!rts”, “Net-Worm.Win32.Allaple.b”, “Trojan/Win32.Agent.
gen”, “Trojan:Win32/Meredrop”, “Virus.Win32.Induc.a”. A minority of
labels deviates from these conventions. For example, in V4 only eight labels (0.00809%
of the dataset) contain “gen44” instead of “gen”. Similarly, five labels (0.00506% of
the dataset) of V2 contain a third version string. Other cases like the “@mm” suffix in
V1 labels (101 labels, about 0.10223% of the dataset) fall outside the above convention.

Finding Non-trivial Malware Naming Inconsistencies 153

(a) V1 (b) V3

(c) V2 (d) V4

Fig. 3. Visual comparison of naming trees of each vendor

From a purely syntactic point of view, these cases are similar to the presence of key-
words that often mark special samples (e.g., “packed”). We handled this handful of
outliers manually.

Phase 1 was run on the dataset to create a model, i.e., naming tree, for each vendor,
CV1 , CV2 , CV3 , CV4 . Next, quantitative and structural analysis of Phase 2 have been run.
The outcome of this experimentation is presented and discussed in the remainder of this
section, after a brief visual overview of the naming trees.

4.1 Naming Tree Visual Comparison

Different naming conventions induce naming trees that are structurally dissimilar, as ev-
ident even at a high level (Fig. 3): V4 splits samples very early in many sub-sets based on
their <family>, whereas other vendors use finer conventions and form sparser trees.

For ease of visualization, in Fig. 4 we extracted a slice of 50 samples from one set
(i.e., classified as packed-Klone by V3, used as a comparison baseline). Vendor V1

spreads the same samples onto 8 sets, including worm, trojan, and pws subsets.
Also, a separate subset holds samples not even considered malicious by V1. This ex-
ample, drawn from a real dataset, also shows that the labels’ granularity varies across
vendors. For instance, V1, which adopts a granularity of 1 to 3, splits worms (depth 1)
in Pushbots and Miscellaneous (depth 2)6. Instances of the same behavior occur

6 In this example, singletons are visualized as such, but actually contain more than one sample;
this is because we sliced a set of 50 samples from a full naming tree.

154 F. Maggi et al.

m16

m23

m45

m25

m41

m33

m21

m18

m1
m5

m22

m15

m35

m27

m26
m40

m6

m44

m38

m43

m11

m36

m19

m39

m28

m32 m2

m30

m10

m34

m14

m47

m17

m49

m9

m3

m7

m12

m13

m4m50

m31
m42

m24

m29

m48

m8

m46

m37

m20

(a) V3 (baseline)
packed-Klone

m39

m42

m2

m13

m40

m36

m15

m7m29

m6

m22

m28

m8

m19

m17

trojan/trojan-Provis

m32

m23

trojan/trojan-Malagent

m41

m4

m11

m18

trojan/trojan-Bladi

worm-
Renocide

m14

m34

m47

m35

m38

m50

m20

m21

m27

m26

m43

m30

m45

m31

m9

m12

m49

m37

m10

m46

m16

m44

m1

worm-Pushbot
not detected

m3

pws-Frethog

m5

worm-miscellaneous

m24

m48

m25

m33

(b) V1

m44

packed-Klone

m18

m42

m45

m35

m25
m2

m50

m20

m8

m21

trojan/trojan-
miscellaneous

m24

m46

m32

m4

m33

m7

m19

m38

m17

m34

m41

trojan/trojan-Autoit

m49

m26

m31

not a virus
/tools/pswtool-

Asterisk

m30

m14

m40

m36

m12

m6

m10

m11

m9

m47

m16

m23

trojan/dropper-Small

m1

not detected

m15
m43

m13

m3

m5

trojan/gamethief-
OnLineGames

m39

m29

m27

m22

m28

m48

trojan/trojan-VB

m37

(c) V2

m27

m19

m5

m32m33

Malware

m50

m40

m6

m20

m47

m43

m8

m24

Hupigon

PSWtool

m14

SpyBot

m31

m17

m2

Rootkit

m4

m48

m29

m45

m34

m12

m26

m16

m37

m25

m46

m36

not detected

m9

m38

m49

m30

m23

Crypt

m35

Agent

m44

m41

m10

m11
m21

m1

m39

Trojan

m3

m22

m7

m42

Balero

m18

m15

m13

m28

(d) V4

Fig. 4. A flat set extracted from V3’s naming tree cut at <family> depth. Other vendors group
the same set of samples differently. Only one baseline set is shown, although the same behavior
can be observed also with other baselines, i.e., V1, V2, V4.

in V2, with depths of 1 to 4, and V4, with depth is 1. We now analyze these “visual”
discrepancies thoroughly.

4.2 Singletons and “Not Detected” Samples

Certain values of TW may yield isolated singletons (i.e., singletons from one vendor
with no corresponding sets in the counterpart). Depending on the structure of the linked
naming trees, by varying TW , these nodes may either link to another single node (i.e.,
consistency), or to several nodes (i.e., inconsistency). Optimistically, we could count

Finding Non-trivial Malware Naming Inconsistencies 155

them as consistencies because, for a certain, low value of TW , at least one linked set
exists. On the other hand, we could consider such nodes as potential inconsistencies.
Due to this inherent ambiguity, we ignore singleton nodes to avoid biased results.

During pattern extraction, we treat samples that are not detected as malicious by one
vendor as labels containing only a <type n> string. These are not exactly naming
inconsistencies, as they depend on detection accuracy more than on naming structures.
Indeed, they can originate from false positives or false negatives. These nodes link to
several other sets, and thus spur a minority of very large inconsistencies—possibly up
to the whole graph. This may bias the quantitative comparison. Hence, we removed
such sets from the following analysis. More precisely, the scatter measure discussed
in §4.3 ignores the scatter sets originating from these sets. Similarly, the linked naming
trees (Def. 5) used for structural comparison, discussed in §4.3, was pruned by removing
“not detected” sets (i.e., nodes). Also, for consistency with the choice of excluding
singleton nodes, we also removed nodes only connected to such nodes.

4.3 Quantitative Comparison

Naming Convention Distance. Fig. 5a summarizes the distance for each unique couple
of vendors A vs. B, quantifying the overall inconsistency between the vendors’ naming
conventions. The overall consistency is higher (i.e., distance is lower) at <version -
n> depth than at <family> depth, and is also higher at <family> than at <type>
depth. Interestingly, this contradicts the intuitive conjecture that lower levels in the nam-
ing tree would exhibit progressively lower consistency. Also, vendors V2 and V3 are re-
markably more consistent than the other couples, especially at <family> depth. These
two vendors exhibit small structural inconsistencies as also noted in §4.3.

Scatter Measure. The scatter measure how elements of one set of vendor A are dis-
tributed (i.e., scattered) onto (multiple) sets of vendor B (and viceversa). We calculate
the scatter measure at different values of coverage, σ(Γ), of the scatter set (i.e., the set
of sets in CB that corresponds to the set c ∈ CA under examination, and vice versa).
We do this from A to B and vice versa, and vary a threshold Tσ. Therefore, we calcu-
late S(CA, CB) for Tσ ∈ {1%, 5%, 10%, . . . , 95%, 100%}. Low values of Tσ lead to
lower, optimistic, values of S(·, ·), reflecting the existence of small scatter sets, which
are selected even if they cover only a slight portion of the set under examination. Con-
trarily, higher values of Tσ unveil the real scatter sets, that are those with substantial
overlapping.

Fig. 5(b–d) summarizes the results of this experiment for each couple of vendors at
different “cuts” of the naming trees: d ∈ {<type n>,<family>,<version n>}.
As expected from previous analysis (yet contradicting intuitive presuppositions), the
scatter measure decreases at lower depths, except for V2 vs. V3, which reveal their over-
all consistency, especially at <family> level—as we concluded from Fig. 5a.

Another interesting comparison is V1 vs. V3, which, according to Fig. 5a, show re-
markable distance and thus can be considered different from one another. First, Fig. 5(b–
d) confirms this conclusion. In addition, these vendors tend to have divergent scatter
measures (for increasing values of Tσ), especially at <type n> depth (Fig. 5b), thus
revealing that they disagree more on threat types than on versions. Interestingly, this

156 F. Maggi et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

Overall <type> <typen> <family> <versionn>

(a) Naming distance

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 20 30 40 50 60 70 80 90 100

Sc
at

te
r

m
ea

su
re

Tσ

V1 vs. V2
V1 vs. V3
V2 vs. V3

(b) Scatter measure d = <type n>

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 20 30 40 50 60 70 80 90 100

Tσ

V1 vs. V2
V1 vs. V3
V1 vs. V4
V2 vs. V3
V2 vs. V4
V3 vs. V4

(c) Scatter measure d = <family>

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 20 30 40 50 60 70 80 90 100

Tσ

V1 vs. V2
V1 vs. V3
V1 vs. V4
V2 vs. V3
V2 vs. V4
V3 vs. V4

(d) Scatter measure d = <version n>

Fig. 5. Naming convention distance (a) at different depths of the naming trees, and scatter mea-
sure (b–d) between each two vendors at different values of Tσ. Relatively high distance between
vendors is observed. Notably, the depth (e.g., <type>, <family>) negligibly influences the
distances, except for V2 vs V3, which exhibit slightly more similarity in terms of <version>.
At Tσ = 1.0%, the scatter measure is optimistic as almost no coverage is required to find match-
ing sets between vendors; at Tσ = 100% the comparison is realistic because, in order to match
sets between vendors, complete coverage is required. On average, almost every vendor have sets
that scatter onto 2–5 sets of another vendor. Vendors V2 vs. V3 exhibit a steady scatter measure
within 1–4, confirming their high degree of consistency according to the naming distance (a).

cannot be inferred by observing their grammars, which look similar at a first glance.
Manual examination reveals that V1 and V3 agree on the use of the keyword ‘‘.gen’’
to indicate the use of “generic” malware signatures. A negligible minority of samples
are labeled with an additional progressive number (e.g., ‘‘.gen44’’) by V3, which
cannot be safely considered as proper version of the malware.

Structural Comparison. The connected components of the linked naming trees, GAB ,
constructed by connecting corresponding sets between CA and CB (as described in §3.3)
are good spots for finding consistencies, weak inconsistencies or strong inconsistencies.
As shown in Fig. 2, consistencies contain exactly two nodes (i.e., sets), whereas weak
and strong inconsistencies comprise several nodes. Weak inconsistencies are 1-to-N re-
lationships, where N indicates the granularity of one vendor with respect to the other,
and by no means indicate a “badness” of an inconsistency. For example, a 1-to-3 weak
inconsistency, simply means that one vendor uses 3 different labels, whereas the other
vendor groups same malware samples in one set. Contrarily, strong inconsistencies are
M -to-N relationships, and M or N are good indicators of the significance of the incon-
sistency: The more nodes are present in a connected component, the more complex the

Finding Non-trivial Malware Naming Inconsistencies 157

(a) Average size of strong inconsistencies.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 s
iz

e
of

 s
tr

on
g

in
co

ns
is

te
nc

ie
s

TW%

V1 vs. V2
V1 vs. V3
V1 vs. V4
V2 vs. V3
V2 vs. V4
V3 vs. V4

(b) TW = 0%

 0

 100

 200

 300

 400

 500

 600

V1 vs. V2 V1 vs. V3 V1 vs. V4 V2 vs. V3 V2 vs. V4 V3 vs. V4

N
um

be
r

of
 c

on
ne

ct
ed

 c
om

po
ne

nt
s

Strong Incons.
Weak Incons.

Consis.

290.9 676.3 318.8
70.6

577 491.8

(c) TW = 10%

 0

 100

 200

 300

 400

 500

 600

V1 vs. V2 V1 vs. V3 V1 vs. V4 V2 vs. V3 V2 vs. V4 V3 vs. V4

217.6 291.3 267.3

36.7

380 300.3

(d) TW = 20%

 0

 100

 200

 300

 400

 500

 600

V1 vs. V2 V1 vs. V3 V1 vs. V4 V2 vs. V3 V2 vs. V4 V3 vs. V4

N
um

be
r

of
 c

on
ne

ct
ed

 c
om

po
ne

nt
s

86.8 66.1 124.3

26

222.6 91.7

(e) TW = 40%

 0

 100

 200

 300

 400

 500

 600

V1 vs. V2 V1 vs. V3 V1 vs. V4 V2 vs. V3 V2 vs. V4 V3 vs. V4

28.8

26 43.3

18.1

53.6
45.7

Fig. 6. Number of structural consistencies compared to strong and weak inconsistencies for dif-
ferent values of the edge weight threshold, TW (see §3.3). For strong inconsistencies, the average
number of inconsistent sets (i.e., those forming the graph’s connected component) is reported.
Note that, several small inconsistencies are preferable (because easier to analyze and resolve) as
opposed to one, large inconsistency.

web of relationships between labels is. In general, many small, strong inconsistencies
are better than one big, strong inconsistency: Small inconsistencies can be easily visu-
alized, analyzed, and reduced to weak inconsistencies (e.g., by removing one or two
nodes, or by fusing sets). We kept track of the size of the components that yield strong
inconsistencies at different values of TW ∈ {0%, 10%, 20%, 40%}, that is, we removed
edges with weight below TW from the weighted graphs. At TW = 0 the comparison is
irrealistic, as outliers may create spurious links, not reflecting the overall characteristic
of naming conventions, thus leading to the wrong conclusion that many strong incon-
sistencies exist. Also, high values (e.g., TW > 50%) may produce biased (optimistic)
conclusions, as relevant relations between naming conventions are excluded.

Fig. 6a shows the average size of strong inconsistencies: V2 vs. V3 are once again
the most consistent vendors, with the lowest average size of strong inconsistencies (i.e.,
from 18.1 to 70.6). In Fig. 6(b–e), V2 vs. V3 show the highest number of consistencies

158 F. Maggi et al.

root/backdoor/Rst-ai

root/backdoor/Rst-bl

root/backdoor/Rst-f

root/backdoor/Rst-ak

root/backdoor/Rst-misc

root/backdoor-Rst

100.0

75
.0100.0 10

0.0

66.6
667

V2

V3

(a) Weak inconsistency

V2

V3
root/risks/riskware-NetCat

root/remoteadmin/NetCat-gen

root/remoteadmin/NetCat-misc

root/backdoor-Ncx root/not a virus/remoteadmin/NetCat-a

100.0 33.333
10

0.0

10
0.

0

(b) Strong inconsistency

Fig. 7. A real instance of a weak inconsistency (a) and strong inconsistency (b) between V2 and
V3, which are the best-matching found. This randomly-selected weak inconsistency shows a case
of name specialization, where V2 uses finer labels than V3.

(for TW < 40%) and inconsistencies, thus their graph is well-fragmented in many small
consistencies and many small inconsistencies.

Although inconsistencies are generally more infrequent than consistencies, the num-
ber of strong inconsistencies is significant. This is exacerbated by the average size of
strong inconsistencies, which is quite high. For instance, even at TW = 40% some ven-
dors have strong inconsistencies comprising up to 53.6 nodes on average. Comparing
this observation with Fig. 5(b–d) (scatter measures), we note that the average number of
sets that are scattered (across vendors) onto multiple sets is rather low. However, despite
scatter is quite limited (e.g., less than 5 sets for some vendors), it often yields strong
inconsistencies, because it occurs both from A to B and vice versa.

Examples of Found Inconsistencies. Fig. 7 shows two representative, real cases of
strong and weak inconsistencies between A = V2 and B = V3, for TW = 0%. As
mentioned in §3.3, weak inconsistencies indicate different granularities used by the
vendors’ labels that, in the lucky case of Fig. 7a, are easy to recognize. However,
strong inconsistencies are less trivial to spot by comparing labels, as shown in Fig. 7b:
This strong inconsistency is difficult to find by analyzing the labels, also because it in-
volves multiple families (e.g., NetCat belongs to two different types: riskware and
remoteadmin for the same vendor).

5 Conclusions

Our method is useful for finding inconsistencies as well as for comparing classifications
(e.g., a ground truth vs. a classification produced by a novel approach being tested) by
means of the number of inconsistencies contained. A non-intuitive result is that, when
a vendor’s set is inconsistently mapped onto several sets of another vendor, trying to
map back those sets to the first vendor spreads the inconsistencies even further. In other
words, there is no guarantee that a closed subset of malware on both sides that can be
mapped consistently exists. This also entails, in our point of view, that any usage of such
classifications as a ground truth for clustering techniques or other automated analysis
approaches should be carefully evaluated.

Future work may address the fact that pattern extraction sometimes requires man-
ual intervention to assign string patterns to appropriate. However, without vendor sup-
port, we had to manually analyze only a few tenths of labels. This limitation could be

Finding Non-trivial Malware Naming Inconsistencies 159

mitigated with community-driven efforts. Also, as malware naming conventions may
change over time, we should incorporate a notion of “evolution” of a naming conven-
tion.

References

1. Carr, J.: Inside Cyber Warfare: Mapping the Cyber Underworld. O’Reilly Media, Inc. (2009)
2. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and

malicious javascript code. In: WWW, pp. 281–290. ACM, New York (2010)
3. Kelchner, T.: The (in)consistent naming of malcode. Comp. Fraud & Security (2), 5–7 (2010)
4. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated clas-

sification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.)
RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

5. Harley, D.: The game of the name malware naming, shape shifters and sympathetic magic. In:
CEET 3rd Intl. Conf. on Cybercrime Forensics Education & Training, San Diego, CA (2009)

6. Goldberg, M.K., Hayvanovych, M., Magdon-Ismail, M.: Measuring similarity between sets of
overlapping clusters. In: SocialCom, Minneapolis, MN (August 2010)

7. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM J. on Comp. 1(2) (1972)

Taint-Enhanced Anomaly Detection�

Lorenzo Cavallaro1 and R. Sekar2

1 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
2 Department of Computer Science, Stony Brook University, USA

Abstract. Anomaly detection has been popular for a long time due to its abil-
ity to detect novel attacks. However, its practical deployment has been limited
due to false positives. Taint-based techniques, on the other hand, can avoid false
positives for many common exploits (e.g., code or script injection), but their ap-
plicability to a broader range of attacks (non-control data attacks, path traversals,
race condition attacks, and other unknown attacks) is limited by the need for accu-
rate policies on the use of tainted data. In this paper, we develop a new approach
that combines the strengths of these approaches. Our combination is very effec-
tive, detecting attack types that have been problematic for taint-based techniques,
while significantly cutting down the false positives experienced by anomaly de-
tection. The intuitive justification for this result is that a successful attack involves
unusual program behaviors that are exercised by an attacker. Anomaly detection
identifies unusual behaviors, while fine-grained taint can filter out behaviors that
do not seem controlled by attacker-provided data.

1 Introduction

System-call based anomaly detection has been popular among researchers due to its
effectiveness in detecting novel application-layer attacks [1,4,7,8,10,13,26,29,30,32].
These techniques typically learn a model of an application’s behavior during a training
phase, which is then compared with behaviors observed during a detection phase. Devi-
ations are flagged as potential intrusions. A key benefit of these techniques is that they
require no policy specification. They are thus ideal for detecting unknown attacks.

The key assumption behind anomaly detection techniques is that attacks manifest
unusual program behaviors. While experience to date supports this assumption, the con-
verse does not hold: not all unusual behaviors are attacks. As a result, anomaly detection
suffers from a high rate of false positives that impacts its practical deployment.

Recently, taint-tracking approaches [28,19,22,20,33] have become popular for de-
fending against common software exploits. Their strength stems from their ability to
accurately reason about the use of untrusted data (i.e., data that may be coming from
an attacker) in security-critical operations. By using policies to distinguish between
safe and unsafe uses of “tainted” data, these techniques can detect many common soft-
ware vulnerability exploits, including those based on memory corruption [28,19,33],
and SQL, command or script injection [20,22,27,33,25].

The main advantage of taint-tracking approaches is that accurate, application-inde-
pendent policies can be developed for the above attacks. These policies express the

� This work was supported in part by an NSF grant CNS-0831298, an ONR grant
N000140710928, and an AFOSR grant FA9550-09-1-0539.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 160–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Taint-Enhanced Anomaly Detection 161

general principle that tainted data should be limited to non-control purposes; and
control-data, such as code pointers, scripts, or commands, should be untainted. Since
attackers prize their ability to take control over a victim application, taint policy en-
forcement has proved to be very effective against the most popular attacks prevalent
today. At the same time, due to the difficulty of developing accurate policies, many less
popular (but still very dangerous) data attacks are not addressed by taint-based tech-
niques, e.g., memory corruption attacks on non-control data [3], path traversals, race
conditions. Anomaly detection remains the best option for such attacks.

We present a new technique, called taint-enhanced anomaly detection (TEAD), that
combines the strengths of system-call-based anomaly detection with fine-grained taint-
tracking. This combination is effective, detecting attack types that have been problem-
atic for taint-based techniques, while significantly cutting down the false positives ex-
perienced by anomaly detection. The intuitive justification for this result is that a suc-
cessful attack involves unusual program behaviors that are exercised by an attacker.
Anomaly detection identifies unusual behaviors, while fine-grained taint can reduce
false positives by filtering out behaviors that are not dictated by attacker-provided data.

As with any other taint-based technique, TEAD begins with a specification of the
set of taint-sources and taint-sinks. Currently, our taint-sinks include all system calls
and a few other functions such as printf, and functions used for communicating with
external entities such as database servers or command interpreters. Like many previ-
ous techniques [26,4,8,7], our models rely on the contexts in which sink functions are
invoked. This model is augmented with information about taintedness of arguments.
In the simplest case, this information will indicate whether each argument of a sink
function is tainted. More generally, the model captures information such as the compo-
nents of aggregate data (e.g., fields of a C-structure, or components of a path name) that
can be tainted, or the lexical structure of tainted data (e.g., whether tainted data should
be alphanumeric or can contain various special characters). Attacks are flagged when
there is a significant change from tainting patterns observed during training. Some of
the advantages that TEAD can offer are:

1. Since tainted events correspond to a subset of events observed at runtime, TEAD’s
scope for false positives (FPs) is correspondingly reduced. In particular, TEAD can
work with limited training data on untainted events since it triggers alarms only on
tainted events. Note that a reduction in false positives can have an indirect effect on
reducing false negatives (FNs), since a lower FP can allow the detection threshold
to be lowered.

2. TEAD can be combined with more inclusive notions of taint, including those that
account for control-flows. Previous taint-based vulnerability defenses have largely
ignored control-dependencies, while also limiting taint propagation via pointers.
This was done in order to reduce false positives. With TEAD, the training phase can
help reduce these false positives by discarding those control dependences that were
also observed during training.

3. TEAD is deployed in conjunction with taint policies to guard against most com-
mon exploits such as control-flow hijacks. This combination can mitigate prob-
lems faced by learning-based techniques due to attacks in training data—the most
common attack types can be filtered out by removing event traces that violate

162 L. Cavallaro and R. Sekar

taint policies. Likewise, it can also improve resistance to sophisticated mimicry
attacks [31,12], since these attacks rely on control-flow hijacks. Indeed, since
taint-tracking involves reasoning about input/output data, TEAD does not suffer
from a versatile mimicry attack [21] that can defeat previous system-call anomaly
detection techniques that all ignored arguments to operations such as read and
write [1,4,7,8,10,13,26,29,30,32].

2 Approach Description

2.1 Fine-Grained Taint-Tracking

TEAD relies on fine-grained taint information. In principle, it could be based on many of
the existing techniques for this purpose, but clearly, performance is an important factor.
For this reason, our implementation relies on DIVA [33], which is implemented using a
source-to-source transformation of C programs. On server programs—often the focus of
intrusion detection—DIVA has reported an overhead of about 5%. Binary taint-trackers
exist as well [24], although they tend to be less mature and/or more expensive.

Like all taint-tracking techniques, DIVA relies on a specification of taint sources such
as network read operations. In particular, on return from a system call that is a taint
source, DIVA uses taint source specifications to mark the data returned by the system
call as tainted. DIVA is a byte-granularity taint-tracker, and hence will mark each byte of
data read from an untrusted source as tainted. This taint information is maintained in a
global bit-array called tagmap. In particular, the taint associated with a byte of memory
located at an address A is given by tagmap[A]. DIVA’s source-to-source transforma-
tion ensures that data reads, arithmetic operations, and data writes are all augmented
so as to propagate taint. DIVA can transform arbitrary C-programs, including various
libraries, when their source-code is available. If source is unavailable, it can make use
of summarization functions that capture taint propagation. In particular, after a call to
a function f whose source code is unavailable, DIVA’s transformation will introduce a
call to f ’s summarization function in order to correctly propagate taint. (DIVA’s taint-
source marking specifications are a special case of summarization functions.)

Although DIVA’s focus is on capturing direct data flows, it does incorporate features
to track some control flows. These features enable it to correctly handle certain fre-
quently encountered constructs such as the use of translation tables. This factor reduced
the need for using full control dependency tracking in our implementation of TEAD.
Even though DIVA operates on C-programs, it is applicable to many interpreted lan-
guages such as PHP and shell scripts. This applicability has been achieved by transform-
ing the interpreters themselves to perform taint-tracking. As discussed before, TEAD

enforces policies that block control-flow hijack, SQL injection and command injection
attacks during its operation. This is done using the policies incorporated into DIVA as
described in [33].

2.2 Taint-Enhanced Behavior Models

As with any other taint-based technique, TEAD begins with a specification of the set
of taint-sources and taint-sinks. Currently, our taint-sinks include all system calls and a

Taint-Enhanced Anomaly Detection 163

few other functions such as main, and printf, and functions used for communicating
with external entities such as database servers or command interpreters. Unlike policy
enforcement techniques such as DIVA that require policies to be associated with each
sink, TEAD simply requires the identification of sinks. As a result, TEAD can handle
numerous sinks without any significant specification efforts.

Since taint is a property of data, we focus primarily on learning properties of system
call arguments. Let Σ be the set of all the sinks, and s(a1, a2, · · · , an) ∈ Σ be a generic
sink, where a1, a2, · · · , an denote the sink’s arguments. Rather than learning properties
common to all invocations of s, our approach learns properties that are specific to each
context in which s is invoked. In our prototype, the context is simply the calling loca-
tion, except that calls made within shared libraries are traced back to program locations
from which these library functions were invoked [26] (more refined notions of contexts,
such as those of [4,8,7] could be used as well). The use of calling contexts increases the
accuracy of models. For instance, a context-sensitive model can distinguish between
open system calls made from two different parts of a program. If one of these is used
to open a configuration file and the other one is used to open a data file, then it would
be possible for the model to capture the intuitive property that a configuration file name
cannot be controlled by the attacker, but a data file name may be.

As with other anomaly-based approaches, TEAD builds models during a learning
phase. Deviations from this model are identified and reported as anomalies during a de-
tection phase. Below, we detail the types of information embedded into TEAD models.

2.3 Coarse-Grained Taint Properties

For each argument ai of each sink s, TEAD learns if any of its bytes are tainted. More
generally, TEAD could learn whether ai has control dependence, data dependence, or
no dependence on tainted inputs, but control dependence is not tracked in our current
prototype. For pointer arguments, taintedness of pointers could be learned, as well as the
taintedness of the objects pointed by the pointer. At detection time, an alarm is raised
if an argument that was not tainted during training is now found to be tainted. This
approach can detect many buffer overflow attacks that modify system call arguments,
as opposed to modifying control flows. For instance, an attack may overwrite a filename
that is supposed to represent a file containing public data with /etc/shadow. This may
allow the attacker to obtain the contents of /etc/shadow that he may subsequently use
for an offline dictionary attack.

2.4 Fine-Grained Taint Properties

For aggregate data, the above approach may lose too much information by combining
taint across the entire data structure. To improve precision, TEAD refines taint properties
to capture more details regarding different parts of the data that may be tainted. The
simplest case to handle in this regard are C-structures. For them, TEAD associates a
taint with each field of a struct. This is particularly useful for some system calls,
e.g., sendmsg, writev, etc. A more complex case concerns non-struct data, such as
strings. String data, such as file names, database queries, scripts and commands are
frequently targeted in data attacks. TEAD includes several algorithms for learning fine-

164 L. Cavallaro and R. Sekar

grained taint properties that is motivated by such use of string data. We organize these
algorithms based on whether a sink argument ai is fully or partially tainted.

Properties of Fully Tainted Arguments

Maximum length (MaxTaintLen). This property is an approximation of the maximum
permissible length lmax of a tainted argument. This helps to detect attacks that overflow
buffers with the intent to overwrite security sensitive data.

Structural inference (StructInf). Often, an attacker may not try to overflow any buffers.
Instead, he may try to modify the normal structure of an argument to bypass some
security checks. To this end, the structure of ai is inferred so that each byte is clus-
tered in proper class. Currently, our model classifies (or maps) uppercase letters (A-
Z) to the class represented by A, lowercase letters (a-z) to a, numbers (0-9) to 0, and
so on. Each other byte belongs to a class on its own. For instance, if the model sees
an open("/etc/passwd", ...) system call invocation, the finite state automaton
(FSA) which is generated for the string /etc/passwd will recognize the language
/a*/a*. We further simplify the obtained FSA by removing byte repetition, as we are
not concerned about learning lengths with this model. The final FSA will thus recog-
nize the simplified language /a/a. If during detection the structure of the considered
argument is different from the one learned, an alarm will be raised.

It can be noted that for particular sinks, trying to infer their (tainted) argument struc-
ture can lead to FPs if the structure for that sink is highly variable, e.g., arbitrary binary
data read from the network. For this reason, our prototype limits fine-grained learning
to those sinks and arguments where it is explicitly specified. An alternative possibility
is to limit it to string data (i.e., char *).

Properties of Partially Tainted Arguments

In this case, a tainted argument consists of a combination of tainted and untainted bytes.
The tainted portion is subjected to the learning of the aforementioned properties, while
the following learning rules are considered for the untainted part.

Untainted common prefix (UCP). It is often the case for string-valued data that the
interpretation of the trailing components is determined by the leading components. Ex-
amples include filenames which are interpreted within the directory specified by the
leading components of the string; and command arguments that are interpreted by a
leading command name. TEAD learns the longest common untainted prefix for every
sink argument that is partially tainted. This algorithm can be easily generalized to learn
a small number of common prefixes, rather than a single prefix.

Allowable set of tainted characters (ATC). Many applications expect tainted data will
be limited to a subset of the alphabet. For instance, tainted components of filenames may
be expected to be free of “/” and “.” characters in some contexts. In other contexts, they
may be expected to be free of special characters such as “;” or whitespace characters.
To capture such constraints, we can learn the set of characters that cannot appear in
tainted context. To improve convergence, we utilize character classes as before, e.g.,
upper-case and lower-case characters and numbers. But most punctuation and white-
space characters form a class of their own.

Taint-Enhanced Anomaly Detection 165

3 Implementation

As mentioned before, our TEAD prototype relies on the DIVA implementation, which
takes a program P as input and produces PT , a semantically-equivalent taint-enhanced
version of it. In particular, for every taint sink (or source) f , DIVA allows us to associate
a wrapper fw that will be called before (or after) it. Our prototype uses these wrappers to
learn properties of sink arguments, as well as for marking source arguments as tainted
(e.g., those coming from the network). We enable DIVA policies that protect against
control-flow hijack and command injection attacks during detection phase, and to filter
out attack-containing traces during training.

PT is monitored during the training phase and a log file is created. The log file
includes sink names and their context information (e.g., calling site), sink arguments
and, for each argument, byte-granularity taint information. For instance, a typical log
entry looks like the following:

read@0x8048f5c 3 arg0={ A:U } arg1={ A:U V[0-98]:T C:99:0:ls -la } arg2={ A:U }

The meaning is as follows. The sink name (read) is followed by its calling site
(0x8048f5c). Next, the number of arguments follows (3) and details about these argu-
ments are recorded. For instance, the entry for the second argument (arg1) tells us that
the address (A) where the sink buffer of size 99 (V[0-98]) is stored is untainted (A:U),
while the buffer content is tainted (V[0-98]:T). The content of the tainted buffer,
which starts at offset 0, is ls -la1. This information will be used by the next step.

The log file is analyzed off-line to build a profile M of the behavior of PT by using
the aforementioned information. In particular, (i) identical events, that is events whose
names and call sites are identical, are merged into a single event instance, and (ii) un-
tainted events are inserted into the model just for evaluation reason.

For instance, considering the previous example, the tainted sink read invoked at
the calling site 0x8048f5c has its first and third argument untainted, while the second
argument a1 is tainted. Moreover, lmax, the maximum length for a2 is 99 while, its
structure is given by a -a. The profile created during this step is serialized and re-
loaded during the next step. PT is then monitored during the detection phase. Deviations
from the model learned in the previous step are reported.

4 Evaluation

4.1 Effectiveness in Detecting Attacks

TEAD main focus is on non-control data attacks. This section considers attacks taken
from [3] and other sources. Where necessary, we slightly modify the example to show
that our approach is effective even when some of the specifics of an attack are changed.

1 To avoid noise into the log file we actually base64 encode buffer contents which are decoded
by the off-line log analyzer to create the application profile.

166 L. Cavallaro and R. Sekar

Format String Attack against User Identity Data. A version of WU-FTPD is vul-
nerable to a format string vulnerability in the SITE EXEC command. The non-control
data exploit of this vulnerability, described by Chen et al. [3], is based on the following
code snippet that is used to restore the effective userid of the ftp server to that of the
user logged in. (This restoration follows operations where the server briefly needed to
utilize root privilege to perform setsockopt operation.)

1 FILE ∗ g e t d a t a s o c k (. . .) {
2 . . .
3 s e t e u i d (0) ;
4 s e t s o c k o p t (. . .) ;
5 . . .
6 s e t e u i d (pw−>pw uid) ;
7 . . .

The attack aims to overwrite the pw uid field to zero, so that the restoration code
will leave the process with root-privileges. This would enable the current user, a non-
privileged user, to assume root privileges on the system hosting the server.

Our approach detects this attacks in two different ways. It either considers whether
the seteuid’s argument is tainted, or it detects structural divergence in the tainted
arguments of the printf-like function used to exploit the format string vulnerability.
The latter method relies on the presence of a particular memory error vulnerability, and
can be detected using taint policies as well. For this reason, we focus on the former
method. In particular, our approach learns that the seteuid argument pw->pw uid at
line 6 was always untainted during training. During an attack, pw->pw uid is marked
as tainted, since it was overwritten by copying some attacker provided data. This causes
the argument of seteuid to become tainted, thus raising an alarm.

It is worth pointing out that, in this context, taint-based learning seems to provide
better results than what could be achieved with a conventional anomaly detection tech-
nique, even if the latter relies on very comprehensive training data. For instance, a
conventional anomaly detector observing a limited number of authenticated users may
be vulnerable to an attack where attackers are able to impersonate one of such users.

Heap Corruption Attacks Against Configuration Data. We report on two heap-
based memory error vulnerabilities and attacks as described by Chen et al. [3].

Null HTTPD. This attack aims to overwrite the CGI-BIN configuration string. Note
that the name of every CGI program invoked by a client will be prefixed with this
string. Thus, by changing it from its default value of /usr/local/httpd/cgi-bin
to the string /bin, a malicious client would be able to execute programs such as the
shell interpreter on the server.

In this scenario, it can be observed that the available options for the attacker are
mainly two: (a) to either completely overwrite the original CGI-BIN configuration
string, or (b) partially overwrite the configuration string. In this latter case, the goal
would typically be to perform a path traversal to ascend above the original CGI-BIN di-
rectory and then to descend into a directory such as /bin or /usr/bin. For simplicity,
let us consider that the sink of interest here is the open system call.

Taint-Enhanced Anomaly Detection 167

(a) During training, our approach would learn that the first argument of open sys-
tem call invoked at a context C is a combination of untainted data (i.e., the original
CGI-BIN configuration string) and tainted data (i.e., the command derived from un-
trusted input); and has an untainted prefix that includes all of the original CGI-BIN
string. Thus, the UCP model will detect this attack since the common untainted
prefix observed during training is no longer present.

(b) In this case, the untainted prefix property may still hold. However, the set of al-
lowable tainted characters (i.e., the ATC model) are different due to the presence
of tainted characters such as “.” and “/”. In addition, structural inference would
have learned previously that the tainted component of open argument consisted of
alphanumeric characters, whereas now it has a different structure that consists of a
long, alternating sequence of alphanumeric and special characters.

Netkit Telnetd. The attack described in [3] exploits a heap-based buffer overflow vul-
nerability. It aims to corrupt the program name which is invoked upon login request by
referencing the loginprg variable as shown by the following code snippet.

1 void s t a r t l o g i n (char ∗ hos t , . . .) {
2 addarg (& argv , l o g i n p r g) ;
3 addarg (& argv , ”−h”) ;
4 addarg (& argv , h o s t) ;
5 addarg (& argv , ”−p”) ;
6 execve (l o g i n p r g , a rgv) ;
7 }

As a result of a successful attack, the application invokes the program interpreter
/bin/sh -h -p -p (underlined characters are tainted). This raises an alarm in the
UCP model: during detection, the untainted prefix contained the entire command name,
which should be longer than the current untainted prefix /bin.

SquirrelMail Command Injection. Shell command injections can be somewhat tricky
for policy-based techniques. In particular, a typical policy would be one that prevents
tainted whitespace or shell metacharacters except inside quoted strings. Unfortunately,
such a policy is susceptible to false positives as well as false negatives. False positives
arise with applications that permit untrusted users to specify multiple command argu-
ments. (SquirrelMail itself is one such application.) These applications may, in fact, be
incorporating checks to ensure that the arguments are safe. On the other hand, false neg-
atives may arise because a string literal may be passed down to a command that further
parses the string into components that are handed down to another command inter-
preter, e.g., consider bash -c ’ls -l xyz; rm *’. For these reasons, we believe
command injections are better handled by a technique such as TEAD that can utilize
learning to fine-tune the characters that can legitimately appear within arguments.

Specifically, SquirrelMail version 1.4.0 suffered from a shell command injection vul-
nerability in version 1.1 of its GPG plugin. The vulnerability involves the use of a shell
command to invoke gpg to encrypt email contents. gpg program needs to access the
public key of the recipient, so the recipient name should be provided as a command-
line argument. SquirrelMail retrieves the name of the recipient from the “to” field on the
email composition form. An attacker can provide a malicious value for this email field,

168 L. Cavallaro and R. Sekar

such as “nobody; rm -rf *” that causes SquirrelMail to delete files. This attack can
easily be detected by the ATC model: in the absence of attacks, tainted characters in the
execve argument will never include shell delimiters such as semicolons.

Stack Buffer Overflow Attack against User Input Data. The exploitation of this
stack-based buffer overflow vulnerability was somewhat tricky but the authors of [3]
were able to bypass the directory traversal sanity check enforced by the application. In
summary, after the directory traversal check and before the input usage, a data pointer
is changed so that it points to a second string which is not subjected to the application-
specific sanity check anymore, thus it can contain the attack pattern (similar to a TOCT-
TOU). Other than this TOCTTOU aspect, this attack is very similar to case (b) of the
Null HTTPD attack, and hence is detected in the same way.

Straight Overflow on Tainted Data. The following example is from Mutz et al. [18].
The memory error attack is simple. The user filename array obtained at line 7 (gets
function) is guarded by a security check (privileged file function at line 9) which
checks whether user filename specifies a name of a privileged file or not. In the
affirmative case, the program prints an error message and quits. Otherwise (i.e., a non
privileged file), more data is read into the array user data using the function gets at
line 14, and the file name specified by user filename is opened at line 15. Instead
of corrupting write user data return address, an attacker can overwrite past the end
of user data and overflow into user filename. As the overflow happens after the
security check performed at line 9, an attacker can specify a privileged file name for
user filename that will be replaced subsequently by the overflow attack.

1 void w r i t e u s e r d a t a (void) {
2
3 FILE ∗ fp ;
4 char u s e r f i l e n a m e [2 5 6] ;
5 char u s e r d a t a [2 5 6] ;
6
7 g e t s (u s e r f i l e n a m e) ;
8
9 i f (p r i v i l e g e d f i l e (u s e r f i l e n a m e)) {

10 f p r i n t f (s t d e r r , ” I l l e g a l f i l e n a m e . E x i t i n g .\ n ”) ;
11 e x i t (1) ;
12 }
13 e l s e {
14 g e t s (u s e r d a t a) ; / / o v e r f l o w i n t o u s e r f i l e n a m e
15 fp = fopen (u s e r f i l e n a m e , ”w”) ;
16 i f (fp) { f p r i n t f (fp , ”%s ” , u s e r d a t a) ; f c l o s e (fp) ; }
17 }
18 }

Our approach detects this data attack by learning the maximum length lmax of the
tainted arguments of the gets invoked at line 7, and 14, during the learning phase.

Taint-Enhanced Anomaly Detection 169

Format Bug to Bypass Authentication. The following example has been described
by Kong et al. in [11]. Normally, the variable auth is set to 1 or 0 depending on the
fact that the right authentication credential is given as input or not (line 5). An attacker,
however, can exploit the format string vulnerability at line 11 and overwrite auth with
a non-null value so that the subsequent check of the credential at line 12 will grant an
access to the system.

1 void d o a u t h (char ∗passwd) {
2 char buf [4 0] ;
3 i n t a u t h ;
4
5 i f (! s t r cmp (” e n c r y p t e d p a s s w d ” , passwd))
6 a u t h = 1 ;
7 e l s e
8 a u t h = 0 ;
9

10 s c a n f (”%39s ” , buf) ;
11 p r i n t f (buf) ; / / f o r m a t s t r i n g
12 i f (a u t h) a c c e s s g r a n t e d () ;
13 }

This attack can be stopped by modeling tainted format string directives. By model-
ing the tainted format string of the printf function invoked at line 11 our approach
learns whether tainted format directives have been used during the training step, along
with their structure (structural inference on tainted arguments). If no tainted formatting
directives are learned during the learning phase, then no tainted formatting directives
can be subsequently encountered during detection phase without raising an alarm.

4.2 False Positives

Table 1 shows the false positives rate we obtained by conducting experiments on the
proftpd ftp server and apache web server. Table 2 attributes these false positives to
each of the models used.

Table 1. Overall False Positives

Program # Traces (Learning) # Traces (Detection) Overall FP rate

proftpd 68, 851 983, 740 1.7 × 10−4

apache 58, 868 688, 100 2.5 × 10−3

As shown by Table 2, the majority of false positives were caused by violation of
structural inference models. We expected a relatively high number of false positives
as the model proposed in § 2 is a simple non-probabilistic model. The main focus of
this paper is to show the benefits of using taint information to improve the false pos-
itive rates of anomaly detection, so we have not emphasized the use of sophisticated
learning techniques. The use of more sophisticated learning techniques (e.g., [17,1]) is
orthogonal to our technique, and can further reduce false positives.

170 L. Cavallaro and R. Sekar

Table 2. False Positives Breakdown

Program Tainted Events UCP StructInf MaxTaintLen Overall FP Rate

proftpd 3.0 × 10−5 0 1.4 × 10−4 0 1.7 × 10−4

apache 0 0 2.4 × 10−3 0 2.5 × 10−3

To assess the effectiveness of taint information in reducing the false positives of
learning-based anomaly detection, we carried out the following test. We computed the
false positive rate of the anomaly detection techniques underlying TEAD, when taint
information is ignored. In particular, an alarm is counted each time a system call s is
invoked in a context different from those observed during training. This led to false
positive rates of 2.4× 10−4 and 4.3× 10−4 for proftpd and apache respectively. We
then compute the false positive rate that would be observed when taintedness of the ar-
gument was taken into account. In particular, an alarm was raised only if the anomalous
system call was also associated with anomalous taint, i.e., a previously untainted argu-
ment was now tainted. This reduced the false positives on these programs to 3.0×10−5

and zero respectively. Thus, the use of taint information reduces the false positive rate
by about an order of magnitude or more.

As a second way to assess the impact of taint-tracking on false positives, we com-
pared the fraction of system calls that were tainted during the learning and detection
phase. As Table 3 depicts, half of the traces of apache have been considered during
detection, while only a small fraction of them have been considered for proftpd. By
omitting the rest, TEAD can avoid FPs that may arise due to them.

Table 3. Fraction of tainted system calls

Program # Traces (Learning) # Tainted (%) # Traces (Detection) # Tainted (%)

proftpd 68, 851 2, 986 (4.3%) 983, 740 7, 120 (0.72%)

apache 58, 868 46, 059 (82.1%) 688, 100 354, 371 (51.5%)

4.3 Performance Overheads

The dominant source of overhead in TEAD is that of taint-tracking. Overhead due to
DIVA has been reported in [33] to be about 5% for I/O-intensive applications such as
apache, and about 50% for CPU-intensive applications. Most real-world applications
experience overheads in between these two figures.

Our preliminary results indicate that the additional overhead introduced by TEAD is
relatively low. So far, we have measured only the overheads due to proftpd, but we
hope to measure apache overhead in the near-future. In particular, for proftpd, we
experienced slowdowns of 3.10% due to taint-tracking only, 5.90% due to taint-tracking
and model profiling during the learning phase, and 9.30% due to taint-tracking and
model matching during the detection phase. proftpd overheads were measured when
the program was subjected to a variety of operations, including changing of directories,
file uploads and downloads, and recursive directory listing.

Taint-Enhanced Anomaly Detection 171

Note that taint-learning overhead includes only the overhead of logging, and omits
the cost of offline learning that uses these logs. In contrast, detection is performed on-
line, and hence its overheads are higher.

We point out that unlike DIVA, whose overhead increases for CPU-intensive compu-
tation, TEAD’s anomaly detectors experience higher overheads for I/O-intensive com-
putations, e.g., computations characterized by a high rate of system calls.

5 Related Work

Anomaly Detection Based on System Calls. Forrest et al. [6,9] first introduced
anomaly detection techniques based on system calls made by applications. This sys-
tem is built following the intuition that the “normal” behavior of a program P can be
characterized by the sequences of system calls it invokes during its executions in an
attack-free environment. In the original model, the characteristic patterns of such se-
quences, known as N -grams, are placed in a database and they represent the language
L characterizing the normal behavior of P . To detect intrusions, sequences of system
calls of a fixed length are collected during a detection phase, and compared against
the contents of the database. This technique was subsequently generalized in [32] to
support variable-length system-call sequences.

The N -gram model is simple and efficient but it is associated with a relatively high
false alarm rate, mainly because some correlations among system calls are not captured
in the model. Furthermore, it is susceptible to two types of attacks, namely mimicry [31]
and impossible path execution (IPE). Newer algorithms have since been developed to
address these drawbacks, primarily by associating additional context with each system
call. Reference [26] uses the location of system call invocation as the calling context,
while References [4] and [7] can potentially use the entire list of return addresses on the
call stack at the point of system-call invocation. Techniques have also been developed
that rely on static analysis for building models [30,8], as opposed to learning.

These newer models make mimicry and IPE attacks harder, but they still remain pos-
sible. In particular, the use of calling contexts make mimicry attacks difficult: although
an attacker may be able to make one system call using an exploit, the attack code will
not be able to resume control after the execution of this system call. This is because
the IDS will otherwise observe a return address on the stack that resides in attacker-
provided code, and hence would not be in the IDS model. Kruegel et al. then devised a
clever approach [12] that relied on corrupting data items such as saved register contents
or local variables in order to reacquire control after making a system call. Moreover,
Chen et al [3] demonstrated powerful attacks that don’t modify control flows at all —
instead, they only change non-control data, yet achieve the same end goals achieved by
(the more popular) control-flow hijack attacks.

The above developments focused more research efforts on techniques that incorpo-
rate system call argument data into IDS models [13,29,1,17,18,15]. Unfortunately, since
most of these techniques do not reason about bulk data arguments such as the data read
from (or written to) files or the network, they remain vulnerable to a class of mimicry
attacks [21]. This attack works on any I/O-data-oblivious IDS, i.e., IDS that may pos-
sess perfect knowledge about system calls, their sequencing, and their argument values,

172 L. Cavallaro and R. Sekar

with the singular exception of data buffer arguments to read and write operations. Since
TEAD examines read buffers and write buffers to check for anomalous taint, it is not
I/O-data-oblivious, and hence this attack is not applicable to TEAD.

Dependency and Taint-Based Techniques. The core idea behind TEAD was described
in an abstract in [2]. This paper represents the full development of those core ideas.

Dataflow anomaly detection [1] provides an interesting contrast with TEAD. In par-
ticular, dataflow anomaly detection uses learning to infer information flows. For this
reason, it focuses on so-called binary relations that capture relationships between the
arguments of different system calls. In contrast, TEAD relies on actual information
flows present in a program. Since it has access to information flow already, it uses
only unary relations in the terminology of dataflow anomaly detection, and does not
consider relationships between arguments of different system calls. Key benefits of
dataflow anomaly detection over TEAD are: (a) it does not require access to source
code, and (b) it has much lower overheads. On the other hand, taint-tracking is much
more reliable as compared to dataflow inference, which should lead to a lower false
positive rate for TEAD.

Whereas dataflow anomaly detection focuses on security-sensitive data such as file
names and file descriptors, dataflow inference [25] is concerned with inferring more
general dataflows, e.g., between the data read and written by an application. This ne-
cessitates the use of more powerful matching algorithms as compared to the simpler (ex-
act or prefix-matching) algorithms used in dataflow anomaly detection. While dataflow
inference can provide low overheads and avoids the need for heavy-weight instrumenta-
tion, it is limited to applications that do not perform complex transformations on inputs.

SwitchBlade [5] has some similarity with TEAD in combining taint-tracking with
system call anomaly detection. However, the similarity is only superficial since our
goals as well as the techniques are quite different. In particular, TEAD uses taint infor-
mation to improve attack detection and false positives of a typical system call anomaly
detector. SwitchBlade’s main goal is not one of improving anomaly detection, but in-
stead, to reduce the overhead of taint-based policy enforcement techniques [28,19,33].
In particular, they aim to stop control-flow hijacks that are prevented by [28,19,33],
but do so without the overheads of runtime taint-tracking. They achieve this by using
system call anomaly detection as a low-overhead filter to screen out potential exploits
from normal behaviors. These potential exploits are then verified by replaying them
on a taint-tracked version of the victim process. If a taint policy violation is observed
during replay, an attack is reported. Otherwise, the new behavior is added to the IDS
model. To reduce the likelihood of missing exploits, SwitchBlade develops new tech-
niques that personalize system-call IDS models to each deployment site, and injects
random system calls into the model.

Sarrouy et al [23] also observe that attacks result from tainted data that feeds into
system calls. However, their technical approach is quite different from ours. In particu-
lar, their approach does not rely on system call models, but instead, captures invariants
involving a program’s internal state that may hold at various points during execution.

Ming et al [16] are concerned with the problem of improving the accuracy of so-
called gray-box anomaly detectors that focus on data [13,29,1,14]. In particular, these
techniques may end up learning properties that were observed during training but do

Taint-Enhanced Anomaly Detection 173

not necessarily hold in general. Ming et al show that taint-tracking can resolve such
questions, and establish whether training observations truly support the rules learned by
an anomaly detector. In contrast, our work shows that by leveraging taint information,
we can extend the class of attacks that can be reliably detected by an anomaly detector.

In summary, although numerous works have studied learning-based anomaly detec-
tion and information-flow tracking, none of them have considered our approach of aug-
menting anomaly detection models with taint data in order to reliably detect non-control
data attacks that have been challenging for all previous intrusion detection techniques.

6 Conclusion

In this paper, we presented a new approach which combines fine-grained taint-tracking
and learning-based anomaly detection techniques. By exploiting the information pro-
vided by the taint-tracking component, our approach was able to detect a variety of
non-control data attacks that have proved to be challenging for previous intrusion de-
tection or policy enforcement techniques. False positives, one of the main drawbacks
of learning-based approaches, are caused due to the fact that training can never be ex-
haustive. Our approach limits this drawback as it considers only tainted traces, which
usually are a small percentage of the whole traces executed by an application. Our eval-
uation results show that the false positive rate of a learning-based approach is reduced
by about a factor of ten due to the use of taint-tracking.

References

1. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: IEEE Security and
Privacy (2006)

2. Cavallaro, L., Sekar, R.: Anomalous taint detection (extended abstract). In: Lippmann, R.,
Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 417–418. Springer,
Heidelberg (2008)

3. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-Control-Data Attacks Are Realistic
Threats. In: USENIX Security Symposium (2005)

4. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection using Call Stack
Information. In: IEEE Symposium on Security and Privacy (2003)

5. Fetzer, C., Susskraut, M.: Switchblade: enforcing dynamic personalized system call models.
In: EuroSys (2008)

6. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix Pro-
cesses. In: IEEE Symposium on Security and Privacy (1996)

7. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for anomaly de-
tection. In: ACM CCS (October 2004)

8. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In: NDSS
(2004)

9. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection Using Sequences of System
Calls. Journal of Computer Security (1998)

10. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
Journal of Computer Security (JCS) 6(3), 151–180 (1998)

11. Kong, J., Zou, C.C., Zhou, H.: Improving Software Security via Runtime Instruction-level
Taint Checking. In: Workshop on Architectural and System Support for Improving Software
Dependability (2006)

174 L. Cavallaro and R. Sekar

12. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating Mimicry Attacks
Using Static Binary Analysis. In: USENIX Security Symposium (2005)

13. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call
arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp.
326–343. Springer, Heidelberg (2003)

14. Li, P., Park, H., Gao, D., Fu, J.: Bridging the gap between data-flow and control-flow analysis
for anomaly detection. In: Annual Computer Security Applications Conference (2008)

15. Liu, A., Jiang, X., Jin, J., Mao, F., Chen, J.: Enhancing System-Called-Based Intrusion De-
tection with Protocol Context. In: IARIA SECURWARE (August 2011)

16. Ming, J., Zhang, H., Gao, D.: Towards Ground Truthing Observations in Gray-Box Anomaly
Detection. In: International Conference on Network and System Security (2011)

17. Mutz, D., Valeur, F., Kruegel, C., Vigna, G.: Anomalous System Call Detection. ACM Trans-
actions on Information and System Security 9(1), 61–93 (2006)

18. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.A.: Exploiting Execution Context for the
Detection of Anomalous System Calls. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 1–20. Springer, Heidelberg (2007)

19. Newsome, J., Song, D.X.: Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In: NDSS (2005)

20. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically Harden-
ing Web Applications Using Precise Tainting (2005)

21. Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack against powerful system-
call monitors. In: AsiaCCS (2008)

22. Pietraszek, T., Berghe, C.V.: Defending Against Injection Attacks Through Context-Sensitive
String Evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 124–
145. Springer, Heidelberg (2006)

23. Sarrouy, O., Totel, E., Jouga, B.: Building an Application Data Behavior Model for Intrusion
Detection. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security XXIII. LNCS,
vol. 5645, pp. 299–306. Springer, Heidelberg (2009)

24. Saxena, P., Sekar, R., Puranik, V.: Efficient fine-grained binary instrumentation with applica-
tions to taint-tracking. In: CGO (April 2008)

25. Sekar, R.: An efficient black-box technique for defeating web application attacks. In: NDSS
(2009)

26. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based Method for De-
tecting Anomalous Program Behaviors. In: IEEE Symposium on Security and Privacy (2001)

27. Su, Z., Wassermann, G.: The essence of command injection attacks in web applications. In:
POPL (2006)

28. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure Program Execution via Dynamic Infor-
mation Flow Tracking. In: ASPLOS (2004)

29. Tandon, G., Chan, P.: Learning rules from system call arguments and sequences for anomaly
detection. In: on Data Mining for Computer Security (2003)

30. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Symposium on Se-
curity and Privacy (2001)

31. Wagner, D., Soto, P.: Mimicry Attacks on Host Based Intrusion Detection Systems. In: ACM
CCS (2002)

32. Wespi, A., Dacier, M., Debar, H.: Intrusion detection using variable-length audit trail pat-
terns. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 110–129.
Springer, Heidelberg (2000)

33. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced Policy Enforcement: a Practical Approach to
Defeat a Wide Range of Attacks. In: USENIX Security Symposium (2006)

Secured Cloud Storage Scheme Using ECC Based
Key Management in User Hierarchy

Atanu Basu1, Indranil Sengupta1, and Jamuna Kanta Sing2

1 Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur 721302, India

{atanu,isg}@cse.iitkgp.ernet.in
2 Department of Computer Science and Engineering

Jadavpur University, Kolkata 700032, India
jksing@ieee.org

Abstract. In our proposed scheme, the data owner outsources huge
volume of data to a cloud storage provider and the end users request
data to the data owner. The data owner encrypts the data before sending
it to the cloud service provider and does over-encryption proposed by
Vimercati et al. [4] to the outsourced encrypted data before sending it
to the users. We incorporate an existing Elliptic Curve Cryptography
(ECC) based key management scheme in user hierarchy proposed by
Nikooghadam et al. [11] in our scheme which classifies users in security
classes and efficiently helps to derive the secret keys of the lower order
security classes. The cloud storage component of our scheme will not have
to perform any extra work except storing data and this reduces the cost
of the data owner as per pay-per-use pricing policy of the cloud service
provider. Our scheme incurs low overhead for key generation as well as
for its storage and the end users can use wireless mobile devices. The
scheme is useful in owner-write-users-read applications and it is secured
from the adversaries.

Keywords: Cloud storage, data owner, trusted dealer, ECC, adversary.

1 Introduction

In recent times, the Information Technology (IT) companies and research com-
munities are putting their effort on cloud computing [1,2,3] for evolving suitable,
trustworthy and usable platform for the users. The cloud service or cloud com-
puting refers to providing scalable IT resources over the Internet instead of
hosting and operating the resources locally but with the feeling that they are
using the resources locally. The cloud computing is suitable for large amount of
data storing and extensive data processing purposes where the data centers are
spread over geographically distributed locations. The growing cost of in-house
storage as well as management of large pool of data and software purchase as
well as license renewal cost have opened the door for cloud service providers.
This also helps better management of IT resources against any disaster and

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 175–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 A. Basu, I. Sengupta, and J.K. Sing

for rapidly growing IT companies cloud computing has also emerged as viable
good solution for provisioning IT resources on demand. But, at the same time,
outsourcing of data to third parties raise the questions like availability, confiden-
tiality, integrity of the sensitive data or information of any company. Nowadays,
Amazon S3, Microsoft’s Azure are providing cloud storage service to customers
with scalability and dynamic features.

The cloud service providers provide the following main services -

– Infrastructure as a Service (IaaS). Here, the IT resources like operat-
ing system, middleware packages like Microsoft .Net and data storage facil-
ity on demand with administrative capability are provided. The users avail
the cloud facility through virtualization, e.g. using software package like
VMWARE.

– Platform as a Service (PaaS). Here, facilities like development of appli-
cations with middleware packages, Web development tools etc are provided.
The PaaS also provides the facilities like running of applications, hosting of
Web services, data storage.

– Application as a Service (AaaS). Here, some applications like e-mail us-
age with limited administrative capability and storage facility are provided.

– Data as a Service (DaaS). Here, the large volume of data or database
of a company is outsourced to the cloud service providers. The clients will
access the data securely on demand.

The deployment models for cloud service are mainly three types –

– Private cloud. Here, the resources are kept behind the firewall of any com-
pany.

– Public cloud. Here, the resources are located in geographically distributed
areas and the resources are accessed through Internet.

– Hybrid cloud. Here, though the data centers are located in different loca-
tions, the resources may be accessed through Internet with secure channel.

– Community cloud. Here, several organizations or companies having similar
requirements seek to share IT resources to realize some of the benefits of
cloud computing.

We focus our work in DaaS [4,5,6,7] for public cloud in owner-write-users-read
application areas. Generally, in these applications large volume of data is created
and updated by the owner and the readers with different access rights can effi-
ciently as well as securely read the data. As an example, in a digital library, the
subscribed readers can access the files of a digital library who are having different
access rights whereas the owner of the digital library can create or update the
contents of the digital library hosted on a secure cloud storage. In another owner-
write-users-read example, the valuable data or information created or updated
by various research groups of an organization which are located in different coun-
tries of the world can be outsourced to a cloud storage in encrypted form. The
scientists of different countries with different security clearance can access data

Secured Cloud Storage Scheme Using ECC Based Key Management 177

of different groups securely. The access rights of the scientists can be changed
dynamically or can be revoked as usual.

The motivation of our work is to propose a cost effective secured cloud stor-
age system suitable for owner-write-users-read applications where the end users
should be able to use resource constrained wireless mobile devices securely.

In our proposed scheme, the owner outsources huge volume of data to a cloud
storage by encrypting them. When a user requests data to the owner, the owner
fetches the encrypted data from the cloud storage. Subsequently, the owner over-
encrypts [4] the encrypted data by the shared key of that user which has been
already pre-distributed to that user. It is required to enforce an user access pol-
icy combined with cryptography in this scenario so that the users who are in
different hierarchical levels can access the data securely. The whole user set in
our proposed scheme has been classified into security classes with hierarchical
access rights. An elliptic curve cryptography (ECC) [8,9,10] based dynamic key
management scheme [11] with access rights in hierarchy is used in our proposed
scheme. This key management scheme helps to reduce computational, commu-
nication and storage overheads of our proposed scheme compared to other ECC
based key management schemes. The end users with higher security clearance
can access the same data securely assigned for members of the lower security
classes by deriving their keys directly and the revoked users cannot access the
updated data. Our scheme is protected from adversaries or attackers and the
end users can use resource constrained wireless mobile devices. The proposed
scheme is also cost effective as the data owner minimizes the access, processing
and storage overheads to the cloud. The schematic diagram our scheme is shown
in Figure 1.

Cloud Storage

Data Owner
users

Encrypted data

Data request

Encrypted data transfer

Encrypted data request

transfer 23

4

Trusted
Dealer

Key distribution

1

Fig. 1. Block diagram of our proposed scheme

178 A. Basu, I. Sengupta, and J.K. Sing

2 Related Work

Similar to our work, Wang et al. [7] efficiently proposed a secured cloud storage
scheme where the data owner stores huge volume of data in a cloud storage in
encrypted form but here each data block of the whole data is encrypted with
different key [12]. Any user requests to the data owner for the data and the data
owner sends the access certificate to the end user as well as to the cloud service
provider. The end user submits the access certificate to the cloud service provider
for accessing the requested data. The cloud service provider does over-encryption
[4] using one time key pad and for denial of over-encryption the data owner does
lazy revocation [13]. The cloud service provider transfers the requested data to
the user on matching both the received access certificates of the data owner and
the end user. The user derives large number of keys from a key which exists as
the root of the key hierarchy to decrypt blocks of encrypted data. But the scheme
[7] depends on the factors like whether the cloud service provider performs the
added responsibilities like over-encryption, validation of the access certificate of
the end users and also putting the extra burden on the service provider will not
be cost effective for the owner as per pay-per-use pricing policy of the cloud
service provider. This scheme is suitable for resource constrained wireless mobile
devices.

In Vimercati et al. [5] scheme, authorizations and encryption of the data are
merged and outsourced to the cloud storage. This helps to allow enforcement of
access control with the outsourced data and the data owner while formulating the
access policy need not be involved with its enforcement. Two layers of encryption
are used, one is BEL (Base Encryption Layer) which is used by data owner and
another is SEL (Surface Layer Encryption) termed as over-encryption which is
used by the cloud storage server. The end users receive two decryption keys -
one for SEL decryption and another is for BEL decryption for decryption of the
requested data. The over-encryption must be conducted to the data when there
are changes of access rights of the users as well as updation of the data. The
scheme is not collusion free and also not mentioned whether it is suitable for
resource constrained wireless mobile devices.

3 Review of Key Management Schemes with Access
Control in Hierarchy

The key management schemes [14,15,16,17,18,19,20,11,12] with access control
in hierarchy propose derivation of key of any lower security class from a higher
level security class but the key derivation of higher level security class from lower
level security class is not possible. As an example, we consider the whole user
set SC is classified into disjoint sets, e.g. SC = {SC1, SC2,. . . , SCn} where n
is the total number of security classes and the user sets can be arranged into
hierarchical tree according to the security clearance as shown in Figure 2. We
also consider the security keys corresponding to the security classes are SK =
{SK1, SK2,. . . ,SKn}. Again, we assume security classes are partially ordered

Secured Cloud Storage Scheme Using ECC Based Key Management 179

by a binary relation ‘≤’ in such a way that if SCj ≤ SCi where i, j ∈ n then the
users in SCi can access the information of the users who are in SCj but reverse
is not possible. In this hierarchical access structure, the users of SC1 can access
information of {SC2, SC3, SC4, SC5, SC6, SC7,SC8} and users of SC2 can
access information of {SC5, SC6}. If SC1 wants to access data of those security
classes either she will have to possess the cryptographic keys {SK2, SK3, SK4,
SK5 , SK6, SK7, SK8} with her own secret key SK1 or will have to derive the
other keys from SK1. The derivation of secret keys of successor security classes
of any security class will have to be done through iterations or directly with the
help of public information or tokens.

1SC

2SC 3SC 4SC

5SC 6SC 7SC 8SC

iSC User security class or set

Fig. 2. Hierarchical tree for user classes

Akl and Taylor [14,15] proposed their scheme with much simplicity but it
requires large storage overhead for storing public information for generation
and derivation of keys of the lower level security classes. But their scheme is
not dynamic in nature, e.g. new security classes cannot be added. The schemes
[16,17,18] use iterative methods to derive the keys of lower security classes in the
hierarchy. The schemes [17,18] use discrete logarithm method for generation of
keys of the security classes and efforts are made to minimize the storing of public
information with the incorporation of dynamic features, e.g. changing the keys
of any security class, adding or deleting the security classes. The schemes [19,20]
proposed their ECC based schemes with dynamic features efficiently. But, these
schemes use polynomial methods to derive the keys which impose computational
and storage overheads.

Nikooghadam et al. [11] proposed their ECC based scheme which derives the
keys of security classes directly who are in lower hierarchical order with the
help of public information without using any polynomial computation method.
This scheme is cryptographically secure and efficient than other ECC based

180 A. Basu, I. Sengupta, and J.K. Sing

schemes [19,20] and we incorporate this dynamic key management scheme with
our proposed secured cloud storage scheme. This ECC based secret key distribu-
tion scheme in user hierarchy is based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP). The problem is defined in Definition 1 below.
Definition 1 : Let A, B be two points on the elliptic curve of base point G
with order n (O = n.G, where O is the point at infinity) and n is the prime
number. Then the point B = k.A , where k in an integer and k < n. Find the
value k where the points A and B are known.

It is computationally infeasible or hard to find the value k till now where A
and B are known. The problem is termed as ECDLP [8,9].
The description of the scheme [11] is given concisely -

3.1 Setup Phase

The following steps are followed -

Step - 1 : The TD chooses a secure elliptic curve (C) over prime field, GF(p),
where p is a prime number and the base point G of order q where q ≥ 163
bits.

Step - 2 : After that, the TD chooses its private key, dTD where dTD ∈ [1, q−1]
and corresponding public key PTD where PTD = dTD.G. The TD also selects
unique private key di where di ∈ [1, q− 1] and the corresponding public key
Pi where Pi = di.G for the SCi where 1≤ i≤n. The private keys of the SCi

are distributed securely to the members of the SCi through a secure channel,
e.g. postage system.

Step - 3 : The TD computes Zi = ki.G where ki is a random integer chosen
from [1, q−1] for each security class SCi and the TD also computes key SKi

= H (Zi) where H is the one way hash function which converts x -coordinate
of the point Zi on the elliptic curve to secret key SKi.

Step - 4 : For the security classes which satisfies SCj ≤ SCi where 1≤ j≤n,
the TD computes the point Yi,j= kj .Pi and transfers the points Yi,js to the
corresponding classes through secure channel.

Step - 5 : The TD publishes p, q, G, Pi, PTD, the hash function H and keeps
her private key dTD as well as the keys SKis, kis for all the security classes
in secured place but removes private keys dis of the security classes.

3.2 Key Generation Phase

The following steps are followed -

Step - 1 : Each security class computes inversion of her private key di, i.e. d−1
i

and stores it securely.
Step - 2 : Each security class SCi computes Zi = d−1

i .Yi,i for self and Zj =
d−1

i .Yi,j for the security classes SCj (SCj ≤ SCi, 1≤ j≤n) as Zj = kj .Yi,j .
It is proved that,
Yi,j = kj .Pi = kj .(di. G)
d−1

i .Yi,j = d−1
i .(kj .(di. G)) = kj .G = Zj

∴ Zj = d−1
i .Yi,j

Secured Cloud Storage Scheme Using ECC Based Key Management 181

Step - 3 : The security class SCi computes the secret key SKi = H (Zi) where
H is the one way hash function which converts x -coordinate of the point Zi

on the elliptic curve to security key SKi.
As an example, the security class SC3 (Figure - 2) can access the information
of the classes {SC2, SC5, SC6, SC7, SC8} who are in lower hierarchical order
and she will have to generate the keys of those classes, i.e, {SK2, SK5, SK6,
SK7, SK8}. First the related Yi,js will have to transfer to the SC3 by the
TD.
SC3 : Y3,2 = k2.P3, Y3,5 = k5.P3, Y3,6 = k6.P3, Y3,7 = k7.P3, Y3,8 = k8.P3,
Y3,3 = k3.P3.
Now, the security keys of the lower order security classes can be derived by
SC3 as
SK2 = H(Z2) = H(d−1

3 .Y3,2), SK5 = H(Z5) = H(d−1
3 .Y3,5),

SK6 = H(Z6) = H(d−1
3 .Y3,6), SK7 = H(Z7) = H(d−1

3 .Y3,7),
SK8 = H(Z8) = H(d−1

3 .Y3,8) and SK3 = H(Z3) = H(d−1
3 .Y3,3) for self.

3.3 Changing Secret Key of a Security Class

Any security class SCj may need to change its secret key SKj. For this purpose,
the TD selects k∗

j from [1, q−1] and computes SK∗
j = H (k∗

j .G). For each security
classes which satisfies SCj ≤ SCi, the TD computes the points Y ∗

i,j =k∗
j .Pi and

sends the values as described in Section 3.1.
The other dynamic properties like addition of new security classes, removing

existing security classes, creating new relationship between security classes and
revoking existing relationships can be done efficiently through this scheme.

4 Proposed Cloud Storage Scheme

In this owner-write-users-read model, we discuss how the end users securely
access the required data and the revoked users cannot access the updated in-
formation. As the cloud storage service provider may follow pay-per-use pricing
policy model, we will also discuss how the access to cloud storage is minimized.

4.1 System and Network Model

The system model of our scheme consists of three components (Figure - 1) -

Data Owner (DO) : The DO encrypts the data and sends those to the cloud
storage provider. It is also responsible for classification of data and user
security classes. The DO serves data as requested by the valid users. We
consider that the trusted dealer (TD) and the DO are in the same unit.
The TD generates and distributes secret keys to the users and the DO. We
assume that this system is not compromised by any adversary and is trusted
by all the users as well as the DO.

182 A. Basu, I. Sengupta, and J.K. Sing

Cloud Service provider (CS) : Weassume that theCS can store huge amount
of data as required by the data owner. We also assume that the CS may not be
trusted but it will not modify or tamper any data and faithfully transfers any
data as requested by the DO. We also assume that the CS will not try to open
any file by colluding with any member of a security class.

End Users : The valid end users Uv request data from the DO.

The DO and the CS are connected through the dedicated secure channel, e.g.
secure leased line. The readers may be connected through the wired or wireless
medium through the public channel to the DO. The readers in our scheme may
use resource constrained wireless mobile devices.

We consider various types of active and passive adversaries or attackers who
try to acquire or modify data of the DO, the CS and the Uv or may capture data
from the wireless transmission media.

4.2 Detail Description of the Cloud Storage Model

4.2.1 Setup Phase
The following steps are followed by the TD and the DO -

Step - 1 : All the users U = {U1, U2,. . .,UN} registers to the TD where N
is the total number of users. The users are classified into different disjoint
security classes according to their hierarchy as shown in Figure - 2, i.e. SC
= {SC1, SC2,. . . ,SCn}.

Step - 2 : The DO classifies the whole data into different disjoint data sets, i.e.
DS = {DS1, DS2,. . . ,DSn}.

Step - 3 : The TD generates secret key SKi for each security class SCi where
1≤ i≤n, i.e. SK = {SK1, SK2,. . .,SKn} and the parameters Yi,js for each
security class SCi (SCj ≤ SCi, 1≤ j≤n) as described in Section 3.1 and
3.2.

Step - 4 : The TD randomly selects shared secret key SKpw
v for the users 1≤

v≤N where SKpw
v ∈ [1, q − 1], i.e. SKpw = {SKpw

1 , SKpw
2 ,. . .,SKpw

N }.
Step - 5 : The parameters Yi,js are either publicly declared by the TD or trans-

ferred to each SCi through secure channel for the generation of secret keys
of the SCj (SCj ≤ SCi , 1≤ j≤n) as described in Section 3.1.

Step - 6 : The TD transfers the whole secret key set SK and the shared secret
key set SKpw to the data owner. The TD also transfers shared secret keys
SKpw

v s to the users through secure channel.
Step - 7 : The DO creates two access control matrices. The first access control

matrix (Table - 1) describes relationship between users (Uv) and security
classes (SCi). The second access control matrix (Table - 2) describes re-
lationship between the security classes (SCi) and the data sets (DSi). As
shown in the matrices, the parameter ‘1’ defines existence of relationship
while the parameter ‘0’ defines non-existence of relationship between the
entities.

Secured Cloud Storage Scheme Using ECC Based Key Management 183

Step - 8 : The DO encrypts the data of each DSi with the corresponding key
SKi of the security class SCi and sends the encrypted data to the CS.

Table 1. Uv vs. SCi Table 2. SCi vs. DSi

SC1 SC2 SCi SCn

U1 1 1 0 0

U2 0 0 1 1

Uv 1 1 1 0

UN 1 0 0 1

DS1 DS2 DSi DSn

SC1 1 1 0 0

SC2 0 0 1 1

SCi 1 1 0 0

SCn 0 0 1 1

The key store of DO, Uv, SCi and CS are shown in Figure - 3.

4.2.2 Data Access Mechanism of the Users
The following steps are followed when a user tries to access data of the data
owner -

Step - 1 : When a Uv tries to access data of DSi, Uv sends request to the DO
for the data as
Ui → DO : ESKpw

v
[Uv, RD, RI]

where the information [Uv, RD, RI] is encrypted with the shared key SKpw
v .

The parameter request index (RI) is incremented each time for next re-
quested data (RD) of Uv to avert replay attack.

Step - 2 : The DO decrypts the request sent by the Uv by the shared key SKpw
v

and checks the validity of the user as well as the request. The DO checks
in which SCi the Uv belongs from the access control matrix (Table - 1) and
whether the corresponding SCi has access to the DSi from another access
control matrix (Table - 2) where the requested data exists.

Step - 3 : After the DO satisfies with the request of Uv, the DO fetches the
requested encrypted data (ESKi [RD]) from the CS and the DO over-encrypts
the requested data with the shared key SKpw

v of that user as
DO → Uv : ESKpw

v
[ESKi [RD]].

Step - 4 : The user Uv after receiving the data, decrypts it with the shared key
SKpw

v and susequently decrypts the data with the secret key SKi. Now, Uv

gets the requested data (RD).
Any revoked user may retain the SKi of the security class and she can

sniff or eavesdrop the updated data destined for the Uv. The over-encryption
helps to protect the updated data from the revoked users and is also useful
when any end user switches from one security class to another security class,
e.g. any member from security class SC5 switches to security class SC8 as
shown in Figure 2.

The Uvs may also check the integrity of the received data using the
schemes described in [21,22,23].

5 Performance Analysis

The computational and storage overheads of the proposed scheme are due to
secret keys generation, number of encryption as well as decryption of the data

184 A. Basu, I. Sengupta, and J.K. Sing

Cloud Storage

Data Owner

Trusted
Dealer

Users

Security Classes

,1 -
id,id }{SK i

Key Store

}SK{ pw
v

Key Store

NIL

iSC

Key distribution

Data request

Data transfer

Key Store

Data request

Data transfer

},{SK i

N}{1,2,...,v,}n{1,2,....,i ==

}n{1,2,....,i =

N}{1,2,...,v =

vU

}pw
vSK{

Key Store

Fig. 3. Key stores of the DO, CS and SCi

Table 3. Notations

TINV Time to execute modular inversion

TEC−MUL Time to execute ECC modular multiplication

THASH Time to execute hash function

vi The number of successor security classes of a security class

requested by the end users to be performed by the data owner, the cloud storage
and the end users. We consider notations for performance analysis in Table - 3.

5.1 Computational Overhead

As discussed in Section - 3, the computational overhead in the DO is due to
generation of public keys Pis, the secret keys SKis for n number of security
classes and the parameters Yi,js which will be transferred to the security classes
for generation of secret keys by the security classes. Then, the computational
overhead in the DO -

TDO = n.TEC−MUL + n.TEC−MUL + n.THASH +
∑n

i=1(vi + 1).TEC−MUL.

The first term n.TEC−MUL of the above expression is due to generation of the
Pis of the n security classes.

The second term n.TEC−MUL is due to generation of n number of Zi of the
security classes (Section 3.1, Step - 3).

The third term n.THASH is due to converting the ECC points Zi to security
keys (SKi) of the security classes.

Secured Cloud Storage Scheme Using ECC Based Key Management 185

The fourth term
∑n

i=1(vi + 1).TEC−MUL signifies computational overhead
due to generation of parameters Yi,js (Section 3.1, Step - 4) as each security
class requires (vi + 1).TEC−MUL operations.

∴ TDO = 2.n.TEC−MUL + n.THASH +
∑n

i=1(vi + 1).TEC−MUL.
= (

∑n
i=1vi + 3.n).TEC−MUL + n.THASH .

Similarly, the total computational overhead of the n security classes is

TSC = n.TINV +
∑n

i=1(vi + 1).TEC−MUL +
∑n

i=1(vi + 1).THASH .

The first term of the above expression n.TINV signifies the computational over-
head due to inversion (TINV) of n number of private keys dis, i.e. d−1

i of n
security classes (Section 3.2, Step - 2).

The second term of the above expression
∑n

i=1(vi + 1).TEC−MUL indicates
evaluation of the ECC points Zis by the security classes (Section 3.2, Step - 3).
The third term

∑n
i=1(vi + 1).THASH indicates computation of the security keys

SKis by the security classes with the one way hash function H.

∴ TSC = n.TINV +
∑n

i=1(vi + 1).(TEC−MUL + THASH).

The computational overhead in a system of a user, TU as a member of a security
class (SCi) -

TU = TINV + (vi + 1).(TEC−MUL + THASH).

5.2 Storage Overhead

The DO will have to store public keys of the n security classes, secret keys
(SKi) of the n security classes, shared secret keys (SKpw

i) of the N users. So,
the storage overhead of the DO

SDO = [2.163.n + 163.n + N.163] bits
The first term is for storing n number of Pis of the SCi (x & y coordinate of
the ECC curve), the second term is for storing n number of SKi and the third
term is for storing SKpw

i of the N users.
Any user as a member of a security class will have to store

SU = [(vi + 1).2.163 + 2.163 + 163] bits = [326.vi + 815] bits.
The first term is for storing (vi + 1) number of Yi,js (x & y coordinate), the
second term is for storing the private key di and d−1

i , the third term is for storing
the shared private key SKpw

i used for over-encryption.

5.3 Security Analysis

The security of our scheme depends on ECDLP (Definition - 1) and we assume
that the key stores of DO and Uv remain secured throughout the operation of
the scheme.

The CS of our scheme cannot be compromised by any active or passive ad-
versary as the large volume of data which are exported to the CS by the DO

186 A. Basu, I. Sengupta, and J.K. Sing

remains encrypted throughout the operation of our scheme. As the CS contains
only encrypted data, she herself cannot decrypt or modify any data as in our
proposed scheme, the CS cannot have any secret key to decrypt any data.

The DO always fetches data in encrypted form from the CS which is requested
by the Uv. The requested data is never decrypted by the DO except updation of
the data and over-encryption is done over the requested encrypted data to send
it to the Uv. So, any active or passive adversary cannot compromise the DO.

The Uv always receive any data in encrypted form. Any revoked user from
the same security class cannot eavesdrop any updated data destined for the Uv

as the data for each Uv is over-encrypted by each Uv’s unique shared secret key
by the DO.

6 Comparison with Other Scheme

We compare our scheme with Wang et al. [7]. The computational overhead of
Wang et al. [7] scheme comes from two aspects - key derivation using hash func-
tions and over-encryption using one time key pad. This scheme [7] has not con-
sidered overhead due to decryption time and we have excluded the overhead due
to execution time required for encryption and decryption of both the schemes.
Every data block needs different key in Wang et al. [7] scheme. In this scheme,
size of data block is considered as 4 KB. The height of the key hierarchy is con-
sidered as 42 and generation of one encryption key requires one hash operation.
Suppose, an end user Uv wants to access 1 GB = 250,000 blocks of data from the
server and 1 GB data consists of 250 chunks considering average number of one
chunk consists of 1000 blocks where each chunk needs one key (chunk key) in its
hierarchy. The generation of other block keys from those keys (250 chunk keys)
require to conduct 8000 hash operations and for updated data blocks need 10750
hash operations to access 1 GB data. So, the data owner requires to perform to-
tal 18,750 hash operations to generate the required keys. For an end user, total
250 x 2000 = 50,0000 hash operations are required to access 1 GB data with
updated data blocks. For over-encryption, the cloud storage server and the end
user will have to perform 4.8 x 109 machine cycles considering all the systems
(the data owner, the cloud storage server and the end users) use 1-GHz CPU
system. It has been assumed that one hash computation requires 20 machine
cycles to process one byte then 4.8 x109 machine cycles is equivalent to 24 x 107

hash operations. Then, if one end user wants to access 1 GB data, the data owner
will have to compute total 18,750 hash operations, the cloud storage server will
have to compute 24 x 107 hash operations and the end user will have to compute
[50,0000 + 24 x 107] hash operations. This amounts to approx. 11 seconds for
an end user to access 1 GB data.

For our proposed scheme, the computational complexity depends on over how
many data sets (DSi) the requested data has been distributed. If 1 GB requested
data lies on one data set, then the DO will have to generate one secret key (Zi

= H (Zi)), one Yi,j and one Yi,i, i.e. total 3 numbers of TEC−MUL and one hash
operation will have to be performed. Similarly, if data is spread over more than

Secured Cloud Storage Scheme Using ECC Based Key Management 187

one DSi, the total number of operations to be performed is [vi.(three TEC−MUL

operations and one hash operation)]. For accessing 1 GB data, the Uv will have to
perform one TINV , one TEC−MUL and one hash operation, if the data is spread
over same DSi. Again, for accessing the same amount of data, the Uv will have
to perform [vi.(one TINV , one TEC−MUL and one hash operation)], if the data
is spread over vi number of DSi. For over-encryption, no extra overheads are
added to the DO, the CS and the Uv as keys are not required to generate for
that purpose.

So, it is evident that our scheme requires less computational and storage
overhead than Wang et al. [7] scheme in case any user wants to access 1 GB
data. Wang et al.’s scheme also requires large number of computations if large
number of end users access the server at the same time while for our proposed
scheme computational overhead arises if the data is spread over number of data
sets. The Table - 4 shows comparison of computations which is required for
accessing 1 GB data from the cloud storage of Wang et al. [7] scheme with our
proposed scheme.

Table 4. Comparison of Computational overhead for accessing 1 GB data

Wang at el. [7] Our Proposed Scheme
Data Owner 18,750 hash vi.(3.TEC−MUL + one hash)

Cloud Storage 24 x 107 hash Nil

End User [50,0000 + 24 x 107] hash vi.(1.TINV + 1.TEC−MUL + one hash)

Hasegawa et al. [24] implemented an Elliptic Curve Cryptosystem on a 16-
bit microcomputer M16C (10MHz) designed by Mitsubishi Electric Corporation
suitable for using in embeddeed systems and the processing times for scalar
multiplication of a randomly given point, a modulo inversion of a given 160-bit
data and SHA-1 are shown in the Table - 5.

Table 5. Processing time for various ECC modules [24]

Module Processing Time
Elliptic Scalar Multiplication (Random Point) 480 msec
Inversion Modulo 160-bit Integer 130 msec
SHA-1 (time for processing one block) 2 msec

Now, we utilize the processing times of the Table - 5 and assume that the
requested 1 GB data is spread over in maximum 5 number of DSi. Then, any
end user of our proposed scheme will take 3060 msec for accessing the data
and the time taken for any end user in Wang et al. [7] scheme will be [48.1 x
107] msec for accessing the same data. So, our scheme is suitable for end users
to use resource constrained wireless mobile devices as the scheme requires less
computational and storage overhead to access data.

188 A. Basu, I. Sengupta, and J.K. Sing

7 Conclusion

In our proposed scheme, it has been shown that the data requested by the
users is only served by the data owner which the data owner already sent it in
encrypted form to the cloud storage. All the required secret keys are generated
and distributed by the trusted dealer. The cloud storage only stores huge volume
of data and serves data to the data owner when requires. The encryption and
over-encryption of the data are done by the data owner only but it may increase
slight bottleneck in the data owner. It has been shown that the incorporation of
the ECC based key management scheme in user hierarchy enhances the efficiency
of the proposed cloud storage scheme. Our scheme is also efficient in terms of
pay-per-use pricing policy as the cloud storage incurs no burden and the end
users of our scheme may use wireless mobile devices. The adversaries cannot
acquire any information from the data owner, the cloud storage and the end
users.

References

1. CSA (Cloud Security Alliance): Security Guidance for Critical Areas of Focus
in Cloud Computing V2.1, http://www.cloudsecurityalliance.org/guidance
(December 2009)

2. Mell, P., Grance, T.: The NIST Definition of Cloud Computing Version 15. Infor-
mation Technology Laboratory, NIST (National Institute of Standards and Tech-
nology) (October 2009), http://csrc.nist.gov/groups/SNS/cloud-computing

3. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshop.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

4. Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Over-
encryption: management of access control evolution on outsourced data. In: In-
ternational Conference on Very Large Databases, September 23-28, pp. 123–134
(2007)

5. Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: A data
outsourcing architecture combining cryptography and access control. In: ACM
Workshop on Computer Security Architecture, November 02, pp. 63–69 (2007)

6. Damiani, E., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: An Experimental Evaluation of Multi-Key Strategies for Data Outsourcing.
In: New Approaches for Security, Privacy and Trust in Complex Environments.
IFIP International Federation for Information Processing, vol. 232, pp. 385–396.
Springer, Heidelberg (2007)

7. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and efficient access to outsourced
data. In: ACM workshop on Cloud Computing Security, pp. 55–66 (2009)

8. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

9. SEC 1: Elliptic Curve Cryptography, Standards for Efficient Cryptography 1
(SEC1), Working Draft, Version 1.9, (August 22, 2008)

10. Vanstone, S.A.: Elliptic curve cryptosystem - The Answer to Strong, Fast Pub-
lickey Cryptography for Securing Constrained Environments. Information Security
Technical Report 12(2), 78–87 (1997)

http://www.cloudsecurityalliance.org/guidance
http://csrc.nist.gov/groups/SNS/cloud-computing

Secured Cloud Storage Scheme Using ECC Based Key Management 189

11. Nikooghadam, M., Zakerolhosseini, A., Moghaddam, M.E.: Efficient utilization of
elliptic curve cryptosystem for hierarchical access control. The Journal of Systems
and Software 83(10), 1917–1929 (2010)

12. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and ecient key man-
agement for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 1–43 (2009)

13. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable se-
cure file sharing on untrusted storage. In: USENIX Conference on File and Storage
Technologies, pp. 29–42 (2003)

14. Akl, S.G., Taylor, P.D.: Cryptographic solution to a multilevel security problem.
In: Proceeding Advances in Cryptology, pp. 237–249 (1982)

15. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Transaction on Computer Systems 1(3), 239–248 (1983)

16. Chang, C.C., Hwang, R.J., Wu, T.C.: Cryptographic key assignment scheme for
access control in a hierarchy. Information Systems 17(3), 243–247 (1992)

17. Shen, V.R.L., Chen, T.: A novel key management scheme based on discrete loga-
rithms and polynomial interpolations. Computers & Security 21(2), 164–171 (2002)

18. Chang, C.C., Lin, I.C., Tsai, H.M., Wang, H.H.: A key assignment scheme for
controlling access in partially ordered user hierarchies. In: 18th IEEE International
Conference on Advanced Information Networking and Applications (AINA 2004),
Fukuoka, Japan, vol. 2, pp. 376–379 (March 2004)

19. Jeng, F.G., Wang, C.M.: An efficient key-management scheme for hierarchical ac-
cess control based on elliptic curve cryptosystem. The Journal of Systems and
Software, 1161–1167 (2006)

20. Chung, Y.F., Lee, H.H., Lai, F., Chen, T.S.: Access control in user hierarchy based
on elliptic curve cryptosystem. Information Sciences 178, 230–243 (2008)

21. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
International Conference on Very large Data Bases (VLDB 2007), pp. 782–793.
ACM (2007)

22. Goodrich, M.T., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Athos: Effi-
cient Authentication of Outsourced File Systems. In: Wu, T.-C., Lei, C.-L., Rijmen,
V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 80–96. Springer, Heidelberg
(2008)

23. Bowers, K.D., Juels, A., Oprea, A.: HAIL: A High-availability and Integrity Layer
for Cloud Storage. In: 16th ACM Conference on Computer and Communications
Security, pp. 187–198. ACM (2009)

24. Hasegawa, T., Nakajima, J., Matsui, M.: A Practical Implementation of Elliptic
Curve Cryptosystems over GF(p) on a 16-Bit Microcomputer. In: Imai, H., Zheng,
Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 182–194. Springer, Heidelberg (1998)

Reversible Image Watermarking through

Coordinate Logic Operation Based Prediction

Ruchira Naskar and Rajat Subhra Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Kharagpur–721302, India
{ruchira,rschakraborty}@cse.iitkgp.ernet.in

Abstract. Reversible digital watermarking techniques enable the re-
covery of the original “cover image” from an watermarked image in a
distortion–free way. Reversible watermarking techniques find application
in military and medical imagery, where integrity of the cover image is of
utmost importance. In this paper we propose a reversible digital image
watermarking algorithm which predicts a pixel grayscale value exploiting
its correlation with its neighboring pixels, using coordinate logic opera-
tions, and embeds watermark bits into the prediction errors. We have
compared the performance of our scheme with other reversible water-
marking schemes. Results indicate that the cover image distortion pro-
duced by the proposed algorithm is lower than other state–of–the–art
reversible watermarking algorithms.

Keywords: Coordinate logic operations, Correlation, Digital
watermarking, Pixel prediction, Reversible data hiding.

1 Introduction

Digital watermarking is the act of hiding information in multimedia data (im-
ages, audio or video), for the purposes of content protection or authentication
[1]. In digital image watermarking, the secret information (usually in the form of
a bitstream), the watermark, is embedded into an image (cover image), in such a
way, that distortion of the cover image due to watermarking is almost negligible
perceptually. Fragile watermarking algorithms are used for authentication of the
cover image. A fragile watermark is destroyed, even in case of minimal modi-
fication of the cover image. In fragile watermarking algorithms, the watermark
is generally a secure keyed hash of the entire cover image. Thus if an intruder
modifies even a single bit of the cover image, the extracted watermark does not
match the hash of the modified cover image, and the authentication fails at the
receiver side. Reversible watermarking algorithms belong to the class of fragile
watermarking algorithms. Additionally, in reversible watermarking, the image
restored after the watermark extraction, is identical to the original cover image,
pixel by pixel, bit by bit. Reversible watermarking finds widespread use in do-
mains dealing with highly sensitive data such as military and medical imagery,

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 190–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reversible Image Watermarking through Coordinate Logic Operation 191

where distortion–free recovery of the original image after watermark extraction
is of utmost importance.

In general reversible watermarking of digital images is carried out by exploit-
ing the high spatial correlation among neighboring pixels. A feature of the cover
image is selected, which is modified to embed the watermark bits. For example,
the grayscale values of pixels, the difference of adjacent pixels’ grayscale val-
ues, the quantization or interpolation errors (after the pixels are quantized or
interpolated respectively), are some of the features selected by various authors.

In this paper we have introduced a reversible watermarking algorithm for
grayscale images. Our algorithm exploits spatial correlation among neighboring
pixels of an image to predict the grayscale values of the pixels. We have used
coordinate logic operations on a set of pixels in close proximity to predict the
value of their common neighboring pixel. Difference of pixel values with their
predicted values are then modified for embedding the watermark. We have ap-
plied our technique on a suite of standard benchmark images, and found that
our technique achieves high embedding capacity at low distortion, compared to
other state–of–the–art reversible watermarking techniques.

The rest of the paper is organized as follows. In Section 2, we provide an
overview of coordinate logic operations and their application. In Section 3, we
describe our proposed watermarking algorithm in detail. Section 4 provides the
experimental results and comparison of our algorithm with other state-of-art
reversible image watermarking algorithms. We point to future research directions
and conclude in Section 5.

2 Coordinate Logic Operations

Coordinate logic operations. (CLOs) [2] are logic operations such as AND, OR,
XOR etc. applied to corresponding binary bits at the same position in two bi-
nary bit sequences. Let a and b be two unsigned n–bit integers such that their
binary representations are a1, a2, · · · , an and b1, b2, · · · , bn respectively. ai, bi ∈
{0, 1} ∀i ∈ [1..n]. A CLO (•) on a and b is a “bitwise operation” represented as:

c = a • b (1)

where c is another unsigned n–bit integer whose binary representation is
c1, c2, · · · , cn. ci ∈ {0, 1} ∀i ∈ [1..n]. Here • is a CLO such as coordinate logic
AND(CAND), coordinate logicOR(COR), coordinate logicXOR(CXOR).Then,

ci = ai ◦ bi, ∀i ∈ [1..n]

where ◦ is a normal logic operation such as AND, OR, XOR respectively.
An example will make the idea clear. Let a = 110010112 and b = 010011012

be two unsigned 8–bit integers. Then a CAND b = 010010012 = 73. Similarly,
a COR b = 110011112 = 207.

Application of a CLO to more than 2 unsigned n–bit integers, A1, A2, · · · , Am

(m > 2) is represented as:

C = •(A1, A2, · · · , Am) = (A1 • (A2 • · · · (Am−1 •Am))) (2)

192 R. Naskar and R.S. Chakraborty

where each of A1 · · ·Am and C is an unsigned n–bit integer. For example, let
A1 = 110010112, A2 = 010011012 and A3 = 100010012 be three unsigned 8–bit
integers. Here m = 3. CAND operation applied to A1, A2, A3 results in

CAND (A1, A2, A3)
= A1 CAND (A2 CAND A3)
= 000010012.
= 9

Similarly, COR (A1, A2, A3) = 110011112 = 207.
The following theorem [2] states those properties of CAND and COR opera-

tions, which are useful for pixel prediction.

Theorem 1. Let C=CAND (A1, A2, · · · , Am) and D=COR (A1, A2, · · · , Am).
Then,

0 ≤ C ≤ min(A1, A2, · · · , Am),
max(A1, A2, · · · , Am) ≤ D ≤ (2n − 1), (3)

where each of A1, A2, · · · , Am,C and D are unsigned n–bit integers.

The above property can be used to predict the value of a pixel P from the value
of four of its neighbors N1, N2, N3, N4, by application of a function f defined as
follows:

P = f(N1, N2, N3, N4)
= CAND(COR(N1, N2, N3), COR(N1, N2, N4),

COR(N1, N3, N4), COR(N2, N3, N4)) (4)

Note here that each of N1 · · ·N4, in an n–bit image, is an unsigned n–bit integer,
representing one pixel of the image. Due to the property stated in Theorem 1,
the predicted value P is also an unsigned n–bit integer, thus a valid pixel of the
image, and gives a considerably good estimate of the original pixel.

3 Proposed Algorithm

The proposed algorithm utilizes usually high spatial correlation among neigh-
boring pixel values in grayscale images. It predicts the grayscale value of a pixel
from those of its neighboring pixels and the watermark bits are embedded into
the prediction errors. Depending on the order of prediction, the pixels are divided
into four classes as follows:

1. The pixels of the cover image whose values remain unchanged during the
watermarking process are termed base pixels.

2. From the base pixels, the first set of predicted pixel values are derived.
3. Further, the second and third sets of predicted pixel values are derived from

the base pixels and first set of predicted pixel values.

Reversible Image Watermarking through Coordinate Logic Operation 193

Fig. 1. Watermark embedding algorithm

Fig. 2. Locations of (a) base pixels (’0’s), (b) predicted first set of pixels (’1’s), (c)
predicted second set of pixels (’2’s), (d) predicted third set of pixels (’3’s)

3.1 Watermark Embedding Algorithm

Fig. 1 shows the flowchart of our watermark embedding algorithm. Our wa-
termark embedding algorithm consists of four broad steps: (a) selection of base
pixels; (b) predicting other pixels from the base pixels; (c) computing the predic-
tion errors, and (d) embedding watermark bits into the errors. We next describe
the above steps in detail.

Selection of Base Pixels. One out of every four pixels in the original cover
image is chosen as a base pixel in our algorithm, such that they are uniformly

194 R. Naskar and R.S. Chakraborty

distributed throughout the image. The positions of the base pixels we selected
in an image, are marked with ’0’s in Fig. 2.

Predicting Three Sets of Pixels. The first set of pixels (marked with ’1’s in
Fig. 2) are predicted from the base pixels whereas the second and third sets of
pixels (marked with ’2’s and ’3’s respectively in Fig. 2) are predicted from the
base pixels as well as the predicted first set of pixels. All predictions are done
utilizing CLOs according to the definition of the function f (Definition 1).

Predicted value of each first–set pixel depends on the four base pixels sur-
rounding it on its four corners. Therefore those four base pixels constitute the
set of four neighbors {N1 · · ·N4} for a first–set pixel. The prediction formula for
a first–set pixel p(i, j) is given by:

ξ(p(i, j)) = f(p(i− 1, j − 1), p(i− 1, j + 1), p(i + 1, j − 1), p(i + 1, j + 1)) (5)

where i and j are the row and column numbers of the pixel to be predicted,
respectively.

Next the second set of pixels are predicted. Each second–set pixel is sur-
rounded on its top and bottom by two base pixels, and on its left and right by
two first–set pixels. In this case, {N1 · · ·N4} = {p(i−1, j), ξ(p(i, j−1)), ξ(p(i, j+
1)), p(i + 1, j) } and the prediction formula is:

ξ(p(i, j)) = f(p(i− 1, j), ξ(p(i, j − 1)), ξ(p(i, j + 1)), p(i + 1, j)) (6)

For each third–set pixel prediction, we use the two base pixels located on its
left and right, and the two first–set pixels on its top and bottom. Here also,
{N1 · · ·N4} = {ξ(p(i−1, j)), p(i, j−1), p(i, j+1), ξ(p(i+1, j)) }. The prediction
formula is given by:

ξ(p(i, j)) = f(ξ(p(i− 1, j)), p(i, j − 1), p(i, j + 1), ξ(p(i + 1, j))) (7)

Fig. 2(a)–(d) shows the order of prediction of the three pixel sets.

Computing Prediction Errors. Prediction error is given by the difference
between an original pixel value p and its predicted value ξ(p). For each predicted
pixel we compute prediction error using the following integer transformation:

e = ξ(p)− p (8)

Due to high correlation of adjacent pixels, in practice, usually the errors are
small integers, close to zero.

Embedding Watermark Bits. Prediction errors which are close to zero are
used to embed the watermark bits, leading to achievement of high embedding ca-
pacity, since the number of errors close to zero is usually large. To define closeness
to zero, we adopt an error threshold k (≥ 0). Only those pixels with prediction
errors |e| ≤ k are used for embedding watermark bits. A watermark bit is embed-
ded into an error, by multiplying the error by 2 and adding the watermark bit to

Reversible Image Watermarking through Coordinate Logic Operation 195

Fig. 3. Modification of absolute values of prediction errors during embedding

the result. For pixels with |e| > k, a constant shift of magnitude (k+1) is applied
to the absolute prediction error values to avoid overlap with pixels in which wa-
termark bits have been embedded. Procedure 1 (EMBED WATERMARK)
is followed to embed watermark bits into the prediction errors. Fig. 3 shows how
prediction errors are modified by the procedure EMBED WATERMARK ,
for embedding watermark bits.

Combining Modified Errors with Predicted Pixels. Each predicted pixel,
combined with its corresponding modified (watermark bit embedded) prediction
error, produces a watermarked pixel. We combine a predicted pixel with a mod-
ified error using the following integer transformation:

pwm = ξ(p)− φ(e), (9)

where pwm is the watermarked pixel and φ(e) is the corresponding modified
(watermark bit embedded) prediction error. Note that, transformation (9) is the
reverse of transformation (8).

Procedure 1. EMBED WATERMARK
/* Embed watermark bits into the prediction errors */

Input: Original pixel prediction error (e), error threshold (k), watermark bit to be
embedded (b)

Output: Modified prediction errors φ(e)
1: if e < 0 then
2: sgn(e) ← −1
3: else
4: sgn(e) ← +1
5: end if
6: if (|e| > k) then
7: /* Apply constant shift to the absolute error value */
8: φ(|e|) ← |e| + (k + 1)
9: else

10: /* b ∈ {0, 1} is the next watermark bit to be embedded */
11: φ(|e|) ← 2 ∗ |e| + b
12: end if
13: φ(e) ← sgn(e) ∗ φ(|e|)
14: return φ(e)

196 R. Naskar and R.S. Chakraborty

Fig. 4. Testing for under/overflow during extraction

Transformation (9) may produce some watermarked pixels falling outside the
unsigned 8–bit integer range [0, 255] causing an underflow (pwm < 0) or an
overflow (pwm > 255). Handling of these situations has been presented in Section
3.3. Before that we present our watermark extraction algorithm.

3.2 Watermark Extraction Algorithm

For extraction, we select base pixels in the watermarked image, and predict the
first, second and third sets of pixels subsequently, following the same proce-
dure described in Section 3.1. Locations of the base pixels and the three sets
of predicted pixels are the same as shown in Fig.2. Next, the following forward
transformation (10) is applied to each watermarked non–base pixel pwm and its
prediction ξ(pwm), to compute the prediction error φ(e):

φ(e) = ξ(pwm)− pwm (10)

Watermark bits are extracted from the prediction errors (φ(e)), and the original
errors (e) are restored, following Procedure 2 (EXTRACT WATERMARK).
By the term “original errors” we refer to the prediction pixel errors, we achieved
originally, before watermark embedding.

We apply the following transformation (11) (reverse of transformation (10))
to each {ξ(pwm), e} pair to restore the original cover image:

p = ξ(pwm)− e (11)

Note that the values of ξ(p) and ξ(pwm) are equal since the base pixels are not
modified during the process of embedding the watermark.

3.3 Handling of Under/Overflow

If the application of transformation (9) to a particular {ξ(p), φ(e)} pair produces
pwm /∈ [0, 255], an underflow (pwm < 0) or overflow (pwm > 255) is said to have

Reversible Image Watermarking through Coordinate Logic Operation 197

Procedure 2. EXTRACT WATERMARK
/* Extract watermark bits and restore original prediction errors */

Input: Watermark bit embedded prediction error (φ(e)), error threshold (k)
Output: Original prediction errors e
1: if φ(e) < 0 then
2: sgn(φ(e)) ← −1
3: else
4: sgn(φ(e)) ← +1
5: end if
6: if (|φ(e)| > (2 ∗ k + 1) then
7: |e| ← |φ(e)| − (k + 1)
8: else
9: /* b ∈ {0, 1} is the next watermark bit extracted*/

10: b = mod(|φ(e)|, 2)
11: |e| ← |φ(e)| − b

2

12: end if
13: e ← sgn(φ(e)) ∗ |e|
14: return e

occurred. We simply do not embed into a prediction error (φ(e)), which may
cause such an under/overflow, and move on to the next.

While extraction, we test each prediction error to find out whether it can cause
such under/overflow. To perform the test we follow the steps shown in Fig. 4.
A prediction error found capable of causing under/overflow during extraction,
indicates one of the two possibilities:

1. It was found to be capable of causing under/overflow during embedding, and
hence was not used for embedding.

2. Previously it was capable of undergoing embedding without causing an un-
der/overflow, so was used for embedding, but after embedding it has lost its
embedding capability.

For error–free extraction, we need to correctly infer which of the above two pos-
sible cases has actually occurred. This differentiation is accomplished by the use
of a binary bit string, termed as the location map. For each occurrence of the first
case, we assign a ’0’ to the location map and for each occurrence of the second
case we assign a ’1’ to the location map. If none of the above cases occurs, the
location map is an empty bit string. During extraction, if any prediction error
is found to be capable of causing under/overflow, we check the next location
map bit. If we encounter a ’0’ in the location map, we do not use the corre-
sponding prediction error for extraction and keep it unchanged. If we encounter
a ’1’ in the location map, we apply Procedure EXTRACT WATERMARK
on the corresponding prediction error to extract watermark bits and restore the
original prediction error. For our test images, the size of location map required
is considerably small. We can further reduce the size of location map by loss-
less compression, using runlength encoding [3] or any other lossless compression
algorithm.

198 R. Naskar and R.S. Chakraborty

Fig. 5. Plot of Peak Signal–to–Noise Ratio (PSNR) vs. watermark bits embedded per
pixel

Table 1. Maximum Embedding Capacity and corresponding PSNR for 512 × 512
Images, with k ∈ [0.10]

Images
Maximum Embedding Capacity

PSNR (dB)
(bpp) (bits)

Lena 0.7 183499 38.01

Mandrill 0.46 120587 30.65

Barbara 0.58 152043 34.39

Goldhill 0.62 162529 37.81

For insertion of the location map bits we use the LSB positions of the base
pixels beginning from the last base pixel. This insertion is done by replacing
the LSBs of nloc map number of base pixel, where nloc map is the number of
location map bits. The end of nloc map bits is marked with a special end–of–
message symbol. Before replacement, the base pixel LSBs are concatenated at
the beginning of the watermark and embedded into the predicted pixels errors.

4 Results and Discussion

The proposed algorithm was implemented in MATLAB and tested on 512× 512
pixels standard test images: Lena, Mandrill, Barbara and Goldhill. We tested our
algorithm to investigate its performance with respect to the following properties:

– Maximum embedding capacity achievable
– Distortion of watermarked image as compared to original cover image.

Maximum embedding capacity of an image was evaluated by the number of pure
watermark bits (not including the overhead bits) that can be embedded into the

Reversible Image Watermarking through Coordinate Logic Operation 199

(a) Original Lena (b) Watermarked Lena

(c) Original Mandrill (d) Watermarked Mandrill

Fig. 6. Proposed reversible watermarking: (Left) Original Images; (Right) Water-
marked Images

entire cover image as well as average number of bits that can be embedded per
pixel, measured in units of bpp (bits–per–pixel). Distortion of the watermarked
image was estimated in terms of Peak–signal–to–noise–ratio (PSNR). To calcu-
late the PSNR, first the mean square error (MSE) was calculated as:

MSE =
m∑

i=1

n∑
j=1

(Xorg(i, j)−Xwm(i, j))2

m · n (12)

where Xorg(i, j) is the (i, j)–th pixel of the original image, and Xwm(i, j) is the
(i, j)–th pixel of the watermarked image, and m and n are the dimensions of the
image (here each is 512). Then, PSNR was calculated as:

PSNR = 10 log10

(
MAX2

I

MSE

)
dB = 10 log10

(
2552

MSE

)
dB (13)

where MAXI is the maximum possible pixel value of the image, which is 255 in
this case because of the 8–bit grayscale nature of the image.

200 R. Naskar and R.S. Chakraborty

(a) Original Barbara (b) Watermarked Barbara

(c) Original Goldhill (d) Watermarked Goldhill

Fig. 7. Proposed reversible watermarking: (Left) Original Images; (Right) Water-
marked Images

We have varied the value of the error threshold parameter k from 0 to 10,
in our experiments. Within this range of k, the maximum embedding capacity
and corresponding cover image distortion (in form of PSNR), achieved by the
proposed algorithm, for each test image has been presented in Table 1. Note
that, the embedding capacity can be further increased, by increasing the value
of the error threshold. Fig. 5 shows the variation of PSNR (in dB) with embed-
ding capacity (in bpp), for the four test images. The original test images and
watermarked images are shown in Figs. 6 and 7. The images in Figs. 6, 7 are
watermarked upto their maximum embedding capacities achieved by varying the
value of the error threshold parameter k from 0 to 10.

We compared our algorithm in terms of watermark embedding capacity (bpp)
and distortion characteristics (PSNR), with other state–of–the–art reversible
watermarking algorithms, such as those proposed by Tian [5], Celik et. al. [7], Ni
et. al. [10] and Yang et. al. [12]. In these techniques, higher embedding capacity
is achieved by applying multi–layer embedding, whereas in our algorithm, higher
embedding capacity is achieved by increasing the value of error threshold k.

Reversible Image Watermarking through Coordinate Logic Operation 201

(a) Comparison Results for Lena

(b) Comparison Results for Mandrill

Fig. 8. Capacity vs Distortion Comparison Results for images Lena and Mandrill

202 R. Naskar and R.S. Chakraborty

(a) Comparison Results for Barbara

(b) Comparison Results for Goldhill

Fig. 9. Capacity vs Distortion Comparison Results for images Barbara and Goldhill

Figs. 8 and 9 show the comparison results, where the proposed algorithm is
found to achieve lowest distortion compared to the other algorithms, for equal
number of watermark bits embedded.

5 Conclusions

Reversible watermarking is a digital watermarking technique which allows
distortion–free recovery of the original content after watermark extraction. In
this paper, we have developed a novel reversible watermarking scheme for
grayscale images, based on coordinate logic operation based pixel prediction.
The main observation that is utilized to embed the watermark is that the ab-
solute values of the prediction errors are small due to high correlation among

Reversible Image Watermarking through Coordinate Logic Operation 203

neighboring image pixels. Watermark embedding capacity achieved by the pro-
posed scheme is high at relatively low distortion of the watermarked cover image,
compared to other state–of–the–art reversible watermarking algorithms.

References

1. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking
and Steganography. Morgan Kaufmann Publishers (2008)

2. Mitra, S., Sicuranza, J.: Nonlinear Image Processing. Academic Press, San Diego
(2001)

3. Bhaskaran, V., Konstantinides, K.: Image and Video Compression Standards: Al-
gorithms and Applications, 2nd edn. Kluwer, Norwell (1995)

4. Feng, J.B., Lin, I.C., Tsai, C.S., Chu, Y.P.: Reversible watermarking: current status
and key issues. International Journal of Network Security 2(3), 161–171 (2006)

5. Tian, J.: Reversible data embedding using a difference expansion. IEEE Transac-
tions on Circuits Systems and Video Technology 13(8), 890–896 (2003)

6. Tian, J.: Reversible watermarking by difference expansion. In: Proceedings of
Workshop on Multimedia and Security, pp. 19–22 (December 2002)

7. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Reversible data hiding. In:
Proceedings of International Conference on Image Processing, pp. III-157–III-160
(September 2002)

8. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Localized lossless authentication
watermark (LAW), International Society for Optical Engineering, California, USA,
vol. 5020, pp. 689–698 (January 2003)

9. Fridrich, J., Goljan, M., Du, R.: Lossless data embedding – new paradigm in digital
watermarking. EURASIP Journal of Signal Processing 2002(2), 185–196 (2002)

10. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Transactions
on Circuits and Systems for Video Technology 16(3), 354–362 (2006)

11. Ni, Z., Shi, Y.Q., Ansari, N., Wei, S.: Reversible data hiding. In: Proceedings of
International Symposium on Circuits and Systems, vol. 2, pp. II-912–II-915 (May
2003)

12. Yang, B., Schmucker, M., Funk, W., Busch, C., Sun, S.: Integer DCT-based re-
versible Watermarking Technique for images using companding technique. In: Pro-
ceedings of SPIE, vol. 5306, pp. 405–415 (2004)

13. Plonka, G., Tasche, M.: Integer DCT-II by lifting steps. International Series in
Numerical Mathematics 145, 235–252 (2003)

Some Combinatorial Results towards State

Recovery Attack on RC4�

Apurba Das1, Subhamoy Maitra1, Goutam Paul2, and Santanu Sarkar1

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India

{contactadasbesu,sarkar.santanu.bir}@gmail.com, subho@isical.ac.in
2 Department of Computer Science and Engineering, Jadavpur University,

Kolkata 700 032, India
goutam.paul@ieee.org

Abstract. A stream cipher has an unobservable internal state that is
updated in every step and a keystream output (bit or word) is generated
at every state transition. State recovery attack on stream cipher attempts
to recover the hidden internal state by observing the keystream. RC4 is
a very widely used commercial stream cipher that has a huge internal
state. No known state recovery attack on RC4 is feasible in practice and
the best so far has a complexity of 2241 (Maximov et al., CRYPTO 2008).
In this paper, we take a different approach to the problem. RC4 has a
secret index j of size one byte. We perform a combinatorial analysis of
the complexity of RC4 state recovery under the assumption that the val-
ues of j are known for several rounds. This assumption of knowledge of
j is reasonable under some attack models, such as fault analysis, cache
analysis, side channel attacks etc. Our objective is not to devise an un-
conditional full state recovery attack on RC4, but to investigate how
much information of j leaks how much information of the internal state.
In the process, we reveal a nice combinatorial structure of RC4 evolution
and establish certain interesting results related to the complexity of state
recovery.

Keywords: Cryptanalysis, RC4, State Recovery Attack, Stream
Cipher.

1 Introduction

RC4 is one of the most popular stream ciphers with the following structure. It
requires an array S of size N (typically, 256), which contains a permutation of
the integers {0, . . . , N − 1}, two indices i, j and the secret key array K. Given
a secret key k of l bytes (typically 5 to 32), the array K of size N is such that
K[y] = k[y mod l] for any y, 0 ≤ y ≤ N − 1.

� This paper is based on the M. Tech. (CS) dissertation work of the first author under
the supervision of second author at Indian Statistical Institute, Kolkata.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 204–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Some Combinatorial Results towards State Recovery Attack on RC4 205

The permutation S is initialized as the identity permutation. Then RC4
proceeds in two phases: the Key Scheduling Algorithm (KSA) and the Pseudo-
Random Generation Algorithm (PRGA). The KSA uses the secret key to scram-
ble the permutation and the PRGA uses the scrambled permutation to generate
the keystream bytes that are bitwise XOR-ed with the plaintext bytes in the
sender end (during encryption) and with the ciphertext bytes at the receiver
end (during decryption).

Below we describe the KSA and the PRGA briefly. All additions performed
are addition modulo N , unless otherwise specified.

KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;

Scrambling:
For i = 0, . . . , N − 1

j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

PRGA
Initialization:

i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

RC4 can be completely broken if one can reconstruct the permutation SG

by observing the keystream output bytes. Such attacks are called state recovery
attacks.

The RC4 state consists of two 8-bit indices i and j and a permutation of 256
possible 8-bit elements. Thus, the size of the state space is 28! × (28)2 ≈ 21700,
making the exhaustive search completely infeasible.

In [1], it has been estimated that this kind of attack would require around 2779

complexity. Later in [6], an improved idea has been presented that estimates a
complexity of 2731. A much improved result [3] in this area shows that the
permutation can be recovered in around 2241 complexity, rendering RC4 insecure
when the key length is more than 30 bytes. Fortunately, this result does not affect
RC4 for the typical secret key size of 5 to 16 bytes.

In this paper, we revisit the problem of state recovery from a combinatorial
view point. We model the problem under different assumptions and investigate
how the time complexity of performing full state recovery differs from one model
to another.

Let St be the permutation, zt be the keystream output byte and it, jt be the
indices after t many rounds of RC4 PRGA, t ≥ 1. We also denote the initial
values of these variables before the PRGA starts by S0, i0, j0 (note that z0 does
not exist).

2 Previous Works on State Recovery

The works [1,4] independently discovered for the first time that a branch and
bound strategy reduces the complexity for recovering the internal state much
below that of exhaustive search.

206 A. Das et al.

The basic idea of [1] is as follows. At any point of time, there are four un-
knowns, namely, jG

r , SG
r [iGr], SG

r [jG
r], S−1

r [zr]. One can simulate the PRGA and
guess these unknown values in order to continue when necessary. The recur-
sion steps backward if a contradiction is reached, due to the previously wrong
guesses. If some M (out of N) many permutation entries are a-priori known,
the complexity is reduced further. For N = 256, the complete attack requires a
complexity of around 2779. The time complexity of the attack for various values
of N and M are provided in Tables D.1 and D.2 in [2, Appendix D.4].

In [4], the cycle structures in RC4 are analyzed in detail and a “tracking”
attack is developed that recovers the RC4 state, if a significant fraction of the
full cycle of keystream bits is generated. For example, the state of a 5 bit RC4-
like cipher can be obtained from a portion of the keystream using 242 steps,
while the nominal key-space of the system is 2160.

The work [5] showed that Knudsen’s attack [1] requires 2220 search complex-
ity if 112 entries of the permutation are known and presents an improvement
whereby state recovery with the same complexity requires prior knowledge of
only 73 permutation entries in certain cases.

In [6], an improvement over [1] is presented using a tree representation of
RC4. At time-step r, the nodes are distributed at r + 1 levels. Nodes at level
h, 0 < h ≤ r, refer to the set of all possible positions in SG

r−h where zr can be
found. The nodes are connected by the branches which represent the conditions
to pass from one node to another. In order to find the internal state, such a tree
of general conditions is searched by hill-climbing strategy. This approach reduces
the time complexity of the full RC4 state recovery from 2779 to 2731.

The best known result for state recovery appears in [3] that shows that the
permutation can be recovered in around 2241 complexity. This establishes that
RC4 is not secure when the key length is more than 30 bytes (240 bits). The
basic idea of cryptanalysis in [3] is as follows. Corresponding to a window of
w + 1 keystream output bytes, one may assume that all the jG’s are known,
i.e., jG

r , jG
r+1, . . . , j

G
r+w are known. Thus w many SG

r [iGr] will be available from
jG
r+1 − jG

r . Then w many equations of the form SG−1

r [zr] = SG
r [iGr] + SG

r [jG
r]

will be found where each equation contains only two unknowns (instead of four
unknowns jG, SG[iG], SG[jG], SG−1

[z] as in [1]). Some precomputation is per-
formed to identify a certain position in the keystream where the internal state
is compliant to a specific pattern. A d-order pattern is a tuple A = {i, j, U, V },
where U and V are two vectors from Zd

N with pairwise distinct elements. At
time step r, the internal state is compliant with A if iGr = i, jG

r = j, and d cells
of SG

r with indices from U have corresponding values from V . A pattern A is
called w-generative if for any internal state compliant with A, the next w clock-
ings allow to derive w equations of the form SG−1

r [zr] = SG
r [iGr] + SG

r [jG
r], i.e.,

if consecutive w values of jG are known. The strategy is to look for d-order w-
generative patterns with small d and large w. Whenever the observed keystream
indicates such patterns of the internal state, iterative recovery of the unknowns
is done and the window w is dynamically expanded. A general time complexity
estimate is performed in [3], and simulation results for scaled-down version of

Some Combinatorial Results towards State Recovery Attack on RC4 207

RC4 (i.e. smaller N) are reported. The authors claim that the success rate of
the full attack is at least 98%.

A very recent work [7] revisits the method [3] and presents an iterative prob-
abilistic reconstruction and discusses how one can practically approach the com-
plexity of [3].

3 State Recovery with Known j: Theoretical Analysis

Our initial study on state recovery assumes that the index j is known for each
round in the RC4 PRGA. If the index j is known at each round of the PRGA,
then the value at updated location i of the S array before the current round is
known. Therefore, after the swap operation in the current round of PRGA, the
value at updated location j in the S array can be determined with probability
1. But that does not ensure that the value at updated location i would be
determined after the swap operation, because of the fact that the value at the
updated location j may not be known before the swap operation.

Therefore, the only problem here is to deterministically compute the value of
the updated location j before the swap operation. For this, we use an auxiliary
integer array guess of size N initially marked EMPTY . We use this array to
simulate the hidden permutation S.

Our goal is to gradually fill the EMPTY locations of the array guess by the
correct values of the permutation S. In the process, we perform swaps in the
array guess in tandem with the swaps in S so that if the array guess becomes
completely filled at some round r, then we can obtain Sr[u] directly from the
values guess[u] for all u in [0, N − 1].

3.1 Without Using the Keystream Bytes

First, we attempt to recover the internal state without using any information
about the keystream bytes zt. Suppose, we observe the evolution of the cipher
from round t onwards. At round t + 1, the value of St[it+1] is known. Therefore,
at the end of the (t + 1)-th round, the value of St+1[jt+1] will be known deter-
ministically. Then that value will be placed in the array guess at location jt+1.
Before this update of array guess, if the value at location jt+1 in guess was not
EMPTY , then that value is to be placed at location it+1 of the array guess,
otherwise the value at location it+1 of the array guess should be updated to
EMPTY .

If we repeat the above procedure for several rounds, the number of known
entries in the array guess increases and eventually, at some round t + m, we
derive N − 1 entries of S. Since S is a permutation over {0, 1, . . . , N − 1},
knowledge of the values in any N − 1 locations reveal the remaining value.

The above discussion is summarized in the form of Algorithm 1.
The complexity of the above algorithm can be expressed in terms of the num-

ber m of rounds that needs to be iterated to fill the array guess. The following
theorem gives the expected value of m.

208 A. Das et al.

Input: {(it+r, jt+r) : r = 0, 1, . . . , M − 1}.
Output: Permutation array St+m for some m ∈ [0, M − 1].

numKnown ← 0;1

for u from 0 to N − 1 do2

guess[u] ← EMPTY ;3

end
m ← 0 ;4

repeat5

guess[it+m+1] ← guess[jt+m+1];6

guess[jt+m+1] ← jt+m+1 − jt+m;7

m ← m + 1;8

numKnown ←Number of non-empty entries in the array guess;9

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then10

Fill the remaining single EMPTY location of the array guess;11

for u from 0 to N − 1 do12

St+m[u] ← guess[u];13

end

end

Algorithm 1. The algorithm for state recovery when j is known

Theorem 1. The expected number of rounds of Algorithm 1 to recover S com-

pletely is N ·
N∑

k=2

1
k
.

Proof. When k entries are filled, the probability that one more entry would
be filled in the next step is equal to the probability that the difference in the
consecutive j-values (that is a uniformly random number between 0 to N − 1)
computed in Step 7 is distinct from the already present k values. This probability
is clearly pk = N−k

N .
Let Xk denote the number of steps required to fill a new entry in guess, when

k entries of guess are filled. So the total number of steps required to fill N − 1

entries is given by X =
N−2∑
k=0

Xk. Each Xk follows a geometric distribution with

probability pk. Hence, E(Xk) = 1
pk

= N
N−k . By linearity of expectation,

E(X) =
N−2∑
k=1

E(Xk) =
N−2∑
k=0

N

N − k
= N ·

N∑
k=2

1
k

.

�
Substituting N = 256 in the expression for E(X), we get the theoretical ex-
pectation of the number m of rounds required as 1312. If M < 1312, then it
is expected that we would have a partially recovered state. We experiment by
fixing different values of M . For each M , we run RC4 with 100 randomly chosen

Some Combinatorial Results towards State Recovery Attack on RC4 209

secret keys and calculate the average number of permutations bytes recovered.
The results are presented in Table 1.

Table 1. No. of rounds vs. average no. of bytes recovered for Algorithm 1

Rounds M 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

#Bytes Recovered 84 140 179 203 220 232 240 245 248 251 253 254 255

3.2 Using the Keystream Bytes

In the above strategy, information of the keystream bytes zt has not been used.
Knowledge of keystream is a standard assumption in known plaintext attack
model of cryptanalysis. If we use the keystream information, it is likely that
complete state recovery would be possible in smaller number of rounds.

Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . , M − 1)}.
Output: Permutation array St+m for some m ∈ [0, M − 1].
numKnown ← 0;1

for u from 0 to N − 1 do2

guess[u] ← EMPTY ;3

end
m ← 0;4

repeat5

guess[it+m+1] ← guess[jt+m+1];6

guess[jt+m+1] ← jt+m+1 − jt+m;7

if (guess[it+m+1] �= EMPTY) AND8

guess[guess[it+m+1] + guess[jt+m+1]] = EMPTY then
guess[guess[it+m+1] + guess[jt+m+1]] ← zt+m+1;9

end
if guess[it+m+1] = EMPTY AND zt+m+1 = guess[v] for some v then10

guess[it+m+1] ← v − guess[jt+m+1];11

end
m ← m + 1;12

numKnown ← Number of non-empty entries in the array guess;13

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then14

Fill the remaining single EMPTY location of the array guess;15

for u from 0 to N − 1 do16

St+m[u] ← guess[u];17

end

end

Algorithm 2. The algorithm for state recovery when j, z are known

We can use the keystream bytes to recover the state more efficiently in two
ways. Assume that at round t, we know it, jt and at round t + 1, we know

210 A. Das et al.

it+1, jt+1, zt+1. First, we update the contents of the locations it+1 and jt+1 of
guess. Since zt+1 = St+1[St+1[it+1] + St+1[jt+1]], we check whether zt+1 is al-
ready present at some location v in the array guess after the update of the
locations it+1 and jt+1. If so, then St+1[it+1] is found from v − St+1[jt+1] and
is placed in guess[it+1]. If however, zt+1 is not present but St+1[it+1] is known,
then we can fill zt+1 in location guess[it+1] + guess[jt+1] of guess. The detailed
procedure is explained in Algorithm 2.

The following result gives an estimate of the number of rounds that need to
be iterated for full state recovery.

Theorem 2. For Algorithm 2, let Xk denote the number of additional rounds
required to fill the entire guess array, when k locations are already filled. Then

E(Xk) = 1 + (1− pk)
(
qkE(Xk+1) + (1− qk)E(Xk)

)
+pk

(
qk+1E(Xk+2) + (1− qk+1)E(Xk+1)

)
,

where pk = N−k
N and qk = 2pk(1− pk).

Proof. We call that a success has occurred in a step of Algorithm 2, if a new
entry of guess is filled in that step. Note that the Conditions 8 and 10 cannot
hold together.

We consider two different cases. When k entries are filled, Step 7 may give a
success with probability pk = N−k

N or a failure with probability 1− pk.

Case I: Failure in Step 7. After a failure in Step 7, which happens with prob-
ability (1−pk), we would have k entries filled. So, the probability that there
would be a new success between Steps 8 and 12 is when either Step 9 gives
a success (with probability pk) and Step 11 gives a failure (with probability
1 − pk) or vice versa. Hence, after a failure in Step 7, the probability that
there would be one more success between Steps 8 and 12 is given by

qk = pk(1− pk) + (1 − pk)pk = 2pk(1− pk),

and if there is a success, we would have k +1 entries filled. However, if there
is a failure between Steps 8 and 12, which happens with probability 1− qk,
then after Step 12, we would have k entries filled. Thus, the contribution of
this part to E(Xk) is given by

(1 − pk)
(
qkE(Xk+1) + (1− qk)E(Xk)

)
.

Case II: Success in Step 7. After a success in Step 7, we have k + 1 entries
filled. So, the probability that there would be one more success between
Steps 8 and 12 is when either Step 9 gives a success (with probability pk+1)
and Step 11 gives a failure (with probability 1− pk+1) or vice versa. Hence,
after a success in Step 7, the probability that there would be one more success
between Steps 8 and 12 is given by

qk+1 = pk+1(1− pk+1) + (1 − pk+1)pk+1 = 2pk+1(1− pk+1),

Some Combinatorial Results towards State Recovery Attack on RC4 211

and if there is a success, we would have K + 2 entries filled. However, if
there is a failure between Steps 8 and 12, which happens with probability
1 − qk+1, then after Step 12, we would have k + 1 entries filled. Hence, the
contribution of this part to E(Xk) is given by

pk

(
qk+1E(Xk+2) + (1− qk+1)E(Xk+1)

)
.

In addition to the above two contributions, we need to add 1 to E(Xk), as we
have analyzed the situations after one more additional round. So,

E(Xk) = 1 + (1− pk)
(
qkE(Xk+1) + (1− qk)E(Xk)

)
+pk

(
qk+1E(Xk+2) + (1− qk+1)E(Xk+1)

)
.

�
Corollary 1. The expected number of rounds required to completely recover the
RC4 state using Algorithm 2 is given by E(X0), where E(XN−1) = E(XN) = 0.

Experimental results show that the number m of rounds required to fill the array
A using the improved algorithm is around 550, which is close to the theoretical
value 531 obtained computing E[X0] as stated in Corollary 1. Table 2 shows the
experimental results generated in the same method as in Section 3.1.

Table 2. No. of rounds vs. average no. of bytes recovered for Algorithm 2

Rounds M 100 150 200 250 300 350 400 450 500 550

#Bytes Recovered 112 163 203 229 245 252 255 255.6 255.9 255.99

4 Heuristics for Further Improvement

The number of rounds (which is equal to the number of known j values) required
in Algorithm 2 can be reduced further by applying some heuristics that we
describe in this section.

In Algorithms 1 and 2, information of the new entries filled at any round r
could not be used in any earlier round t < r. We introduce a concept of backward
pass on the auxiliary array guess. Suppose the algorithm begin execution from
round t. After each subsequent round r, we revert everything back to the initial
round t and in the process use the new entries to check if the array guess can be
populated further. After we reach round t, we again perform a forward pass up
to the current round r to further populate the array guess as much as possible.
The improved strategy is presented in Algorithm 3.

Algorithm 3 uses two subroutines. The subroutine backtrack(r, t) presented in
Algorithm 4 performs a backward pass, tracing all state information back from
the current round r to a previous round t < r. On the other hand, the subroutine
processForward(r, t), presented in Algorithm 5 evolves the state information in
the forward direction from a past round r to the current round t > r. Unlike the
previous two algorithms, an additional two dimensional array acc is used, whose
r-th row contains the triplet (ir, jr, zr).

212 A. Das et al.

Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . , M − 1)}.
Output: Permutation array St+m for some m ∈ [0, M − 1].
numKnown ← 0;1

m ← 0;2

for u from 0 to N − 1 do3

guess[u] ← EMPTY ;4

end
acc[0][0] ← it;5

acc[0][1] ← jt;6

for u from 1 to M − 1 do7

acc[u][0] ← it+u;8

acc[u][1] ← jt+u;9

acc[u][2] ← zt+u;10

end
repeat11

it+m+1 ← acc[t + m + 1][0];12

jt+m+1 ← acc[t + m + 1][1];13

zt+m+1 ← acc[t + m + 1][2];14

if guess[it+m+1] = EMPTY then15

guess[it+m+1] ← jt+m+1 − jt+m;16

end
backtrack(t + m, t);17

processForward(t, t + m + 1);18

m ← m + 1;19

numKnown ← Number of non-empty entries in the array guess;20

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then21

Fill the remaining single EMPTY location of the array guess;22

for u from 0 to N − 1 do23

St+m[u] ← guess[u];24

end

end

Algorithm 3. The algorithm for state recovery with backward and forward
passes

Subroutine backtrack(r, t)
repeat1

ir ← acc[r][0];2

jr ← acc[r][1];3

swap(guess[ir], guess[jr]);4

r ← r − 1;5

until r = t ;

Algorithm 4. Subroutine backtrack

Some Combinatorial Results towards State Recovery Attack on RC4 213

Subroutine processForward(r, t)
repeat1

ir = acc[r][0];2

jr = acc[r][1];3

zr = acc[r][2];4

swap(guess[ir], guess[jr]);5

if guess[ir] �= EMPTY then6

temp ← guess[ir] + guess[jr];7

if guess[temp] = EMPTY then8

guess[temp] ← zr;9

end

end
if guess[ir] = EMPTY AND zr = guess[v] then10

guess[ir] ← v − guess[jr];11

end
r ← r + 1;12

until r = t ;

Algorithm 5. Subroutine processForward

4.1 Experimental Results

Theoretical analysis of Algorithm 3 is a challenging task. Since the theoretical
analysis is yet open, we present some experimental evidences to support the im-
provements achieved. Experimental result showing the average number of bytes
recovered (over 100 random simulations of RC4) against the number of rounds
used is shown in Table 3.

Table 3. No. of rounds vs. average no. of bytes recovered for Algorithm 3

Rounds M 100 150 200 250

#Bytes Recovered 146 218 240 255

In Figure 1, we plot the number of S[i]’s recovered vs. no. of j’s known (on
the left) and the ratio of the numbers of S[i]’s recovered and j’s known (on
the right). It is interesting to note that though the number of bytes recovered
increases with number of known j’s, the relationship between the two is not
linear. When a few j’s or a lot of j’s are known, less number of bytes are recovered,
compared to when moderate number (around 128) of j’s are known. The reason
behind this is as follows. When a few j’s are known, the probability that more than
one entry would be filled is very low (due to Theorem 2). Also, when many j’s are
known, most of the entries of guess are already filled, so the probability that a new
entry computed is different from the already known ones is very low. Therefore,
maximum information gain is achieved in between these two extreme cases. From
our experiments, we find the maximum gain corresponding to the case when 116
many selected j values are known. A potential future work would be to guess
such 116 j values and then devise a strategy to reconstruct the full state.

214 A. Das et al.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

No. of j values known.

N
o.

 o
f b

yt
es

 r
ec

ov
er

ed
.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

No. of j values known.

R
at

io
 o

f n
um

be
rs

 o
f S

[i]
 k

no
w

n
an

d
j k

no
w

n.

Fig. 1. Relationship between no. of permutation bytes recovered and no. of j’s known
for Algorithm 3

5 Conclusion

We show how the knowledge of the secret index j leaks information about the
internal state of RC4 PRGA. Though our analysis does not immediately lead
to a state recovery attack on RC4, it certainly gives insight into the interplay
between the state variables and their dependencies. Full state recovery attack
on RC4 in practically achievable complexity is still an open problem. Currently
the best known state recovery attack requires 2241 complexity [3]. We believe
our work may be extended further to investigate the possibility of RC4 state
recovery in complexity less than 2241.

References

1. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

2. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel (2001)

3. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

4. Mister, S., Tavares, S.E.: Cryptanalysis of RC4-like Ciphers. In: Tavares, S., Meijer,
H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 131–143. Springer, Heidelberg (1999)

5. Shiraishi, Y., Ohigashi, T., Morii, M.: An Improved Internal-state Reconstruction
Method of a Stream Cipher RC4. In: Hamza, M.H. (ed.) Proceedings of Communica-
tion, Network, and Information Security, Track 440-088, New York, USA, December
10-12, pp. 440–488 (2003)

6. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Information Sciences 177, 1715–1727 (2007)

7. Golic, J., Morgari, G.: Iterative Probabilistic Reconstruction of RC4 Internal States.
IACR Eprint Server, eprint.iacr.org, number 2008/348 August 8 (2008)

Distributed Signcryption from Pairings

Indivar Gupta and P.K. Saxena

SAG, DRDO, Metcalfe House Complex, Delhi-110054, India
{indivargupta,pksaxena}@sag.drdo.in

Abstract. The distributed signcryption scheme was proposed by Mu
and Varadharajan in their paper presented at INDOCRYPT 2000. Since
then some more schemes have been proposed for distributed signcryption
and extended for group signcryption.

In 2007, Li et al [15] proposed signcryption scheme with key privacy. In
this paper, we extend this scheme and propose a scheme for distributed
signcryption based on pairings. Further, we extend distributed signcryp-
tion protocol to group signcryption. Finally, the security analysis of the
protocols has been carried out based on difficulty of Diffie-Hellman prob-
lem in Gap Diffie-Hellman groups.

1 Introduction

Encryption is a means to provide ‘confidentiality’ to data but that is not suf-
ficient to achieve another important security goal namely “authenticity’. Many
schemes (protocols) are being proposed so that both of these goals are met when
put to use. Traditionally, a two step approach ‘sign-then-encrypt’, is followed
where a message is first digitally signed and then encrypted. In 1997, Zheng [23]
introduced the concept of ‘signcryption’ where he proposed to accomplish the
two tasks namely ‘digitally signing’ and ‘encryption’ in a single logical step thus
reducing computational cost as well as communication overheads. Since then,
several new efficient schemes for signcryption have been proposed.

Though signcryption can be used for communication between two individ-
uals or parties, it is more meaningful for communication among many parties
/groups/ organizations, where people can be authorized to send and receive
message in a hierarchical or some other manner depending upon categorization
of information. Towards this objective, Mu and Varadharajan [19] proposed a
scheme in 2000 called “distributed signcryption’ (scheme referred as MVS-DSC
here onwards), where a signcrypted message sent by any party (within or out-
side the group) can be designcrypted by any member of the receiving group.
They have further extended this concept enabling a member of a designated
group to signcrypt the message on behalf of the group and send it to the re-
ceiving group, where the message can be de-signcrypted by any member of that
group. This modified group-to-group scheme of Mu and Varadharajan is called
‘group signcryption’ (referred as MVS-GSC here onwards). Both these schemes:
MVS-DSC & MVS-GSC have certain weaknesses. These scheme become quite
cumbersome with increase in the size of the designated group as the computa-
tional complexity and communication overheads increase considerably. In [13],

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 215–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 I. Gupta and P.K. Saxena

Kwak and Moon proposed distributed signcryption scheme (henceforth referred
as KMS-DSC) and its extension to a group signcryption (referred as KMS-GSC
henceforth). They also discuss ‘join protocol’ which allows new members to join
the group during initialization. In this protocol, members could choose their own
secret key instead of the group manager. But these schemes also had the same
weaknesses as those in MVS-DSC & MVS-GSC. In [10], Gupta et al proposed a
scheme for distributed signcryption overcoming some such weaknesses (scheme
referred as GPSS here onwards). But in all of the schemes mentioned above,
authors did not include formal security notions and security proofs. Kwak and
Moon [13], however, gave some heuristic arguments for security analysis of their
schemes (KMS-DSC & KMS-GSC). Bao, Cao and Quin [2] showed that KMS-
DSC actually does not provide sender ID confidentiality since verification step
requires sender ID and thus proving that there is no significant advantage of
KMS-DSC over MVS-DSC. They also claimed that KMS-GSC does not provide
unforgeability and traceability property. Kwak et al proposed a secure exten-
sion of KMS-GSC in [14], and gave some informal proofs for unforgeability and
coalition-resistance along with heuristic arguments for other notions. None of
these schemes have been proved secure through formal security notions.

In this paper, we propose a new scheme for distributed signcryption from
pairings and extend our method to group signcryption. We also give formal
security model for confidentiality and unforgeability. Here, computational cost
and communication overheads are independent of the number of members in
the group. Our schemes are extensions of signcryption scheme proposed by Li et
al [15] and security of these protocols is based on the difficulty of Diffie-Hellman
problem in Gap Diffie-Hellman Groups as done in [15] with proofs given in the
random oracle model. Since the signcryption scheme proposed by Li et al is
efficient and provably secure, we have selected their scheme for extension to
distributed signcryption though the concept can be applied on other pairing
based signcryption schemes also.

This paper has been organized as follows. In Section 2, we present the mathe-
matical background required for subsequent discussion. In Section 3, we give the
signcryption scheme as proposed by Li et al [15] for completeness. In Section 4,
we propose our generic method for distributed signcryption scheme along with
security notions and then extend it for group signcryption. Our both schemes
are presented in Section 5. Security analysis of both schemes has been discussed
in Section 6 with comparative results and conclusion in Section 7.

2 Mathematical Background

2.1 Overview of Pairings

Let K denote security parameter. Let G1 and G2 be two cyclic groups of the
same prime order q with q ≥ 2K, where G1 is written in additive notation with
identityO and G2 is written in multiplicative notation with identity 1. A function
e : G1×G1 → G2 is called a bilinear map if it satisfies the followings properties:

Distributed Signcryption from Pairings 217

(a) Bilinearty: e(aP, bQ) = e(P, Q)ab ∀ P, Q ∈ G1 and a, b ∈ Z.
(b) Non-Degeneracy: For any point P (�= O) ∈ G1, ∃Q ∈ G1 such that

e(P, Q) �= 1.

For practical applications, we need bilinear maps satisfying the following addi-
tional property:

(c) Computability: there exists an efficient algorithm to compute e(P, Q)
∀ P, Q ∈ G1.

The groups G1, & G2 are called bilinear groups (represented as a pair (G1, G2))
if there exists a bilinear map e : G1 × G1 → G2 satisfying (a), (b) and (c)
properties.

Bilinear maps are also referred to as ‘pairing’. For cryptographic applications,
group G1 & G2 in ‘pairings’ are to be chosen carefully. Weil and Tate pairing
introduced in [3,5,7,8,11,18] are bilinear maps defined over elliptic curve sub-
groups. In these cases, the group G1 is a cyclic elliptic curve subgroup while
G2 is a cyclic subgroup of a multiplicative group of a finite field. Supersingular
elliptic curves [5] are popular for the construction of pairing friendly groups but
are not so popular anymore.

Modified Weil and Tate pairing provide admissible maps for designing cryp-
tographic systems. More details on pairings, optimization of pairing computa-
tion on supersingular elliptic curves and other computational issues can be seen
in [3,5,6,8,9,18,20].

2.2 Intractable Problems

Let G1 and G2 be two groups where G1 is an additive group with prime order q
and G2 a multiplicative group of the same order. Let P be an arbitrary generator
of G1 and e : G1×G1 → G2 be a bilinear map. Then the intractable problems
can be formalized in the elliptic curve additive notation as follows:

Computational Diffie-Hellman Problem (CDHP): Given P , aP and
bP in G1 for some a, b ∈ Zq, finding abP ∈ G1 is known as CDHP in G1.
Decisional Diffie-Hellman Problem (DDHP) [6] : Given elements P ,
aP , bP and cP in G1 for some a, b, c ∈ Zq, deciding whether ab = c mod q
or not is called DDHP problem. If ab = c then the quadruples of the form
(P, aP, bP, cP) in G1 is called the DDH quadruple. Let us denote by ODDH

G1
a

decision Diffie-Hellman oracle that solves DDHP i.e. which answers whether
a given quadruple is a Diffie-Hellman quadruple or not.
Gap Diffie-Hellman Problem (GDHP) [20]: Given P , aP , bP in G1

for some a, b ∈ Zq, computing cP = abP with the help of ODDH
G1

is called
GDHP.

The groups in which a DDHP is easy while the CDHP is believed to be hard
are called the Gap Diffie-Hellman Groups. More details on Gap Diffie-Hellman
Groups can be found in [12,20].

218 I. Gupta and P.K. Saxena

3 Signcryption Scheme with Key Privacy Proposed by
Li et al

Libert and Quisquater [16,17] proposed a method for signcryption with key pri-
vacy from Gap Diffie-Hellman Groups (henceforth scheme referred as LQS).
Yang et al [22] analyzed LQS and showed that this scheme can not achieve se-
curity claimed. They also proposed an improved signcryption scheme with key
privacy (let us call it YWD-ISC) and gave security proof. In 2006, Tan [21]
pointed out that the YBD-ISC also did not achieve claimed security but he did
not suggest any solution to fix the problem. In 2007, Li et al [15] proposed an
efficient signcryption scheme (referred as LYWDC-ESC) with key privacy mod-
ifying the YWD-ISC and removing its weaknesses. The security of this scheme
relies upon intractability of the computational Diffie-Hellman problem in Gap
Diffie-Hellman groups. The scheme consists of five PPT algorithms: Setup, Key-
Gen, Signcryption, DeSigncryption and Verify as described below.

Setup: This algorithm generates system’s common public parameters which are shared
by both the sender as well as the receiver. Given the security parameters K and L, this
algorithm outputs cyclic groups G1 and G2 (of prime order q ≥ 2K where each element
of G1 can be represented in L bits), a generator P of G1 and a bilinear map e : G1 ×
G1 → G2. Algorithm also generates hash functions H1 : {0, 1}μ × G3

1 → G1 and H2 :
G3

1 → {0, 1}μ+2L, where μ denotes the size of the plaintext (i.e. the message space is
M = {0, 1}μ). The common parameters are then params = {q, G1, G2, P, e, H1, H2, μ}.
KeyGen: This algorithm takes a random xu ∈ Z∗

q selected by the user ‘u′ as his pri-
vate key and outputs the corresponding public key Yu = xuP ∈ G1. (We will denote
the sender and the receiver by u = S and u = R and their key-pairs by (xS, YS) and
(xR, YR)) respectively.

Signcryption: Given a plaintext m ∈ {0, 1}μ intended to R, the sender S uses the
following procedure:

1. Pick a random r ∈ Z∗
q and compute U = rP ∈ G1.

2. Compute V = xSH1(m, U, YR, rYR) ∈ G1.

3. Compute Z = (m||YS||V) ⊕ H2(U, YR, rYR) ∈ {0, 1}(μ+2L)(⊕ denotes the bitwise
exclusive OR). The ciphertext is given by σ =< U, Z >∈ G1 × {0, 1}μ+2L.

Designcryption: The receiver R follows the the following procedure to recover the
plaintext m from the ciphertext σ =< U, Z >.

1. Compute D = xRU
2. Compute (m||YS||V) = Z ⊕ H2(U, YR, D) ∈ {0, 1}μ+2L and reject σ if YS is not a

point on the curve on which G1 is defined, otherwise go to next step.

3. Compute H = H1(m,U, YR, rYR) ∈ G1 and then check if e(H,YS) = e(V, P). If
the condition holds, output (m, (U, YR, V, D), YS); otherwise reject the ciphertext.

Verify: For the message signature pair (m, (U, YR, V, D)) and a signing key YS, the
algorithm checks if e(YS, H1(m,U, YR, D)) = e(V,P). If the condition holds, it outputs
true; otherwise it outputs false.

It is important to note that Verify step need not be executed in the decryption

process. This step can be used to verify the signature publicly.

Distributed Signcryption from Pairings 219

4 Distributed Signcryption and Group Signcryption

As we know, in case of public key cryptography, public keys are used for encryp-
tion whereas corresponding private keys are used for decryption. Similar is the
case with signcryption. When it comes to distributed / group signcryption, the
whole designated group is assigned a common ‘public key’ called ‘group public
key’ (gpk), whereas the corresponding ‘secret keys’ are different for individual
members of the designated group and the ‘group manager’ (GM). The secret
parameters assigned to the group are referred as ‘group secret parameters’ (gsp)
and are kept secret by the GM . If the group consists of a single member i.e. the
group manager (GM himself), the group is referred as the ‘single-user-group’
(i.e. gsp = sk, gpk = pk).

In the case of single-user-group, there is only one secret key (skp= sk) with
GM which corresponds to the public key gpk = pk. In case the group consists of
a GM and n members, the GM selects 2× (n + 1) integers from Z∗

q (q a prime)
either randomly or through some function to compute gpk, gsp and secret keys of
individual members. The GM keeps its gsp secret and issues members’ secret keys
to group members. The gpk is common to all group members of the designated
group.

In case of distributed signcryption, the sender is a single person whereas the
receiver is a designated group. Group signcryption deals with the communication
between two or more groups.

4.1 Definition and Security Models for Distributed Signcryption
from Pairings

We first give a generic scheme for distributed signcryption from pairings and
then propose formal security notions for confidentiality and unforgeability of
distributed signcryption.

Definition 1. A distributed signcryption scheme from pairings (DSCe
pairg) con-

sists of the following six probabilistic polynomial time (PPT) algorithms.

Setup: Based on the input of unary string 1Kp , where Kp is a security parame-
ter, it generates the common system parameters referred as ‘params’.
InzGroup: It takes params and the number of members, whose group is to be
initialized, (including group manager) as inputs and outputs the parameters re-
quired to initialize the designated group.
KeyGen: This algorithm consists of two modules: sender’s key generation algo-
rithm KGAS and receiver’s key generation algorithm KGAR.

1. KGAS: This algorithm takes params as an input and generates key for
sender and returns secret / public key pair (skU , pkU). In this process KGAR

remains idle.
2. KGAR: Given the input(params, n), KGAR generates group public / se-

cret key parameters (gpkG , gspG) and member’s secret key (mskG) for each
member of the receiving designated group G. This algorithm calls InzGroup
as subroutine during the execution. In this process KGAS remains idle.

220 I. Gupta and P.K. Saxena

DisSignCrypt: It is an algorithm which takes (m, skU , gpkG) as an input and
outputs a ciphertext c, where m is drawn from message space M, skU is the user
secret key and gpkG is the group public key of the receiving group. The ciphertext
c consists of the signcrypted message c, signature s on the message m, and other
data for verification.
DisDeSignCrypt: It is an algorithm which takes (c, mskG) as an input and
outputs either a tuple (m, s, pkU) or the special symbol ⊥ which indicates the
ciphertext is invalid.
Verify: This algorithm takes (m, s, pkU) as an input and outputs ‘true′ or ‘false′

depending upon the validity of the signature ‘s’.

Definition 2. (Completeness) DSCe
pairg is said to have completeness prop-

erty if for any message m ∈ M , (skU , pkU) ← KGAS(params),(
(gspG, gpkg), mskl

G| ∀ l
)← KGAR(params, n), we have:

c ← DisSignCrypt(m, skU , gpkGR)
(m, s, pkU) ← DisDeSignCrypt(c, mskl

G)
and true ← Verify(m, s, pkU) for each value of l where mskl

G is the secrete key
of lth member of the group G.

Definition 3. (Confidentiality) We say that a DSCe
pairg ensures message

confidentiality against chosen-ciphertext attacks i.e. DSC-IND-CCA if no proba-
bilistic polynomial time adversary has a non-negligible advantage in the following
game:

1. The challenger CH generates two pairs (skU , pkU) and (mskG, gpkG). The
CH keeps skU and mskG secret, while gpkG and pkU are sent to the adversary
A.

2. In the first stage, A performs a series of queries of the following kinds:
DisSignCrypt queries: A submits message (m, gpkGR) to CH for the result
of DisSignCrypt (m, skU , gpkR) (gpkGR may be different from gpkG) where
m ∈M.
DisDeSignCrypt queries: A submits a ciphertext c to CH for the result of Dis-
DeSignCrypt (c, mskG). The result contains a tuple of the form (m, s, pkS)
in case the de-signcryption is successful and the ‘s’ is valid under the recov-
ered pkS. Otherwise, a symbol ⊥ is returned as a result of DisDeSignCrypt
for rejection.
These queries can be asked adaptively. After a number of queries, A outputs
two plaintexts m0, m1 ∈M of equal length (with the condition that m0 and
m1 have not been output of DisDeSignCrypt queries call from mskG) and a
chosen private key of the form skS. CH flips a coins b ∈R {0, 1} to compute
a distributed signcrypted message c� = DisSignCrypt (mb, skS , gpkG) of mb

with the sender’s private key skS under the attacked group public key gpkG.
The ciphertext c� is sent to A as a challenge.

3. A performs a number of new queries as shown in the first stage with a
restriction that A may not ask the DisDeSignCrypt query of the challenged
ciphertext c�. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be AdvDSC−IND−CCA(A) = 2Pr[b′ = b]− 1.

Distributed Signcryption from Pairings 221

Definition 4. (Unforgeability) DSCe
pairg is said to be existentially unforge-

able against chosen-message attack i.e. DSC-EUF-CMA if no probabilistic poly-
nomial time forger F has a non-negligible advantage in the following game:

1. The challenger CH generates two pairs (skU , pkU) and (mskG, gpkG). The
CH keeps skU and mskG secret, while gpkG and pkU are sent to the forger
F .

2. F makes a series of DisSignCrypt(m, skU , gpkGR) and DisDeSignCrypt (c,
mskG) adaptive queries exactly in the same way as in step 2 of DSC-IND-
CCA game in Definition 3.

3. F produces a ciphertext c� and a valid key pair (mskG�
R
, gpkG�

R
) and wins the

game if (i) DisDeSignCrypt (c�, mskG�
R
) returns a tuple (m�, s, pkU) where

s is a valid signature on the message under the recovered sender’s public key
pkU ; and (ii) the ciphertext c� is not the output of any of the DisSignCrypt
queries made during the game.

4.2 Definition and Security Models for Group Signcryption from
Pairings

Definition 5. A group signcryption scheme from pairings (GSCe
pairg) consists

of the following six probabilistic polynomial time (PPT) algorithms.

Setup: Same as in the Definition 1.
InzGroup: Same as in the Definition 1.
KeyGen: It takes (params, n) as an input and outputs (gpkG, gspG) and mem-
ber secret key (mskG) for each member of the designated group using InzGroup
as subroutine.
DisSignCrypt: It is an algorithm which takes (m, mskGS , gpkGS , gpkGR) as
an input and outputs a ciphertext c where gpkGS and gpkGR are group public
keys of the sending / receiving group and mskGS is the secret key of any member
of the sending group GS (who is communicating).
DisDeSignCrypt: It is an algorithm which takes (c, mskGR) as input and out-
puts either a tuple (m, s, Apndm(gpk1

GS
)), or the special symbol ⊥ for rejection.

Here, mskGR is the secret key of any member of the receiving group GR and
Apndm(gpk1

GS
) is the information appended with the message which has been

derived from one part of the group public key of the sending group.
Verify: This algorithm takes (m, s, Apndm(gpk1

GS
)) as an input and outputs

‘true’ or ‘false’ depending on the validity of the signature ‘s’.

Definition 6. (Completeness) GSCe
pairg is said to have completeness prop-

erty if for any message m ∈ M,(
(gspGS , gpkGS), mskGl′

S
| ∀ l′

) Sen.← KeyGen(params, n),(
(gspGR , gpkGR), mskGl

R
| ∀ l

) Rec.← KeyGen(params, n), we have:
c ← DisSignCrypt (m, gpkGS , gpkGR , mskl′

GS
)

(m, s, Apndm(gpk1
GS

)) ← DisDeSignCrypt(c, mskGR)
& true ← Verify(m, s, Apndm(gpk1

GS
))

222 I. Gupta and P.K. Saxena

for each value of l and l′ where mskl′
GS

is the secret key of lth member of the
group GS and mskl

GR
is the secrete key of lth member of the group GR.

Definition 7. (Confidentiality) We say that GSCe
pairg ensures message con-

fidentiality against chosen-ciphertext attacks i.e. GSC-IND-CCA if no proba-
bilistic polynomial time adversary has a non-negligible advantage in the following
game:

1. A challenger CH generates two pairs (mskGS , gpkGS) and (mskGR , gpkGR).
The CH keeps mskGS and mskGR secret, while the pair (gpkGS , gpkGR) is
given to the adversary A.

2. In the first stage, A performs a series of adaptive queries of the following
kinds:
DisSignCrypt queries: A submits a message m ∈M and an arbitrary group
public key gpkGR′ of the receiving group GR′ (which may be different from
gpkGR) to CH for the result of DisSignCrypt(m, gpkGS , mskGS , gpkGR′).
DisDeSignCrypt queries: A submits a ciphertext c to CH for the result of
DisDeSignCrypt (c, mskGR), which contains either a tuple or the symbol ⊥.
After a number of queries, A outputs two plaintexts m0, m1 ∈ M as in
the Definition 3 and a chosen key-pair of the form (gpkG�

S
, mskG�

S
). The

challenger CH flips a coin b ∈R {0, 1}. It computes and sends:
c� = DisSignCrypt(mb, gpkG�

S
, mskG�

S
, gpkGR) to A.

3. A performs a number of new queries as described in the first stage with a
restriction that A may not ask the DisDeSignCrypt query of the challenged
ciphertext c�. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be AdvGSC−IND−CCA(A) = 2Pr[b′ = b]− 1.

Definition 8. (Unforgeability) We say that GSCe
pairg is existentially un-

forgeable against chosen-message attack (i.e. GSC-EUF-CMA) if no probabilistic
polynomial time forger F has a non-negligible advantage in the following game:

1. The challenger CH generates two pairs (mskGS , gpkGS) and (mskGR , gpkGR).
The CH keeps mskGS and mskGR secret while pair (gpkGS , gpkGR) is given to
the forger F .

2. The forger F makes series of DisSignCrypt (m, gpkGS , mskGS , gpkG′
R
) and

DisDeSignCrypt (c, mskGR) adaptive queries exactly in the same way as
done in the step 2 of GSC-IND-CCA game (Definition 7).

3. F produces a ciphertext c� and a valid key pair (mskG�
R
, gpkG�

R
) and wins

the game if (i) DisDeSignCrypt (c�, mskG�
R
) returns a tuple (m�, s, Apndm

(gpk1
GS

)) such that true ← Verify((m�, s, Apndm(gpk1
GS

)); and (ii) cipher-
text c� is not the output of any DisSignCrypt Oracle during the game.

5 DSCe
pairg and GSCe

pairgSchemes

5.1 Distributed Signcryption Scheme Based on Pairings: DSCe
pairg

The scheme ensures message confidentiality and signature unforgeability and is
described below.

Distributed Signcryption from Pairings 223

Setup: Same as described in Section 3.
InzGroup: For construction of the group, we follow the approach as proposed by
Gupta, Pillai and Saxena [10]. We assume that there are n + 1 members in the group
including GM who is responsible for constructing the gpk and updating the keys of
the group members. Let G1 be a cyclic group of prime order q and P be an arbitrary
generator of G1. In order to initialized the group, GM carries out the following steps:
step 1. GM selects a set of pairs of non zero integers (xi, yi)

i=n
i=0 ∈R Zq and com-

putes Lagrange’s interpolation polynomial f(x) =
∑n

i=0 βix
i mod q passing through

these points (xi, yi)
n
i=0. Clearly, the polynomial f(x) satisfies the condition: f(xi) =

yi mod q, 0 ≤ i ≤ n. We can rewrite the polynomial in the form:

f(x) = β0 +
n∑

j=1

βj

n∑
k=1

xk −
n∑

j=1

n∑
k=1,j �=k

βjx
k mod q

or
f(x) = β0 + βδ1(x) − δ2(x) mod q.

where β =
∑n

j=1 βj , δ1(x) =
∑n

j=1 xj and δ2(x) =
∑n

j=1

∑n
k=1,j �=k βjx

k.
Step 2. The GM constructs new polynomials of the form Fi(x) = f(x)− yi mod q for
i = 0, 1, . . . , n (the polynomial Fi(x) vanishes at xi for each value of 0 ≤ i ≤ n) and
defines the functions F ∗

i (x,P) = Fi(x) · P on the elements of G1. Clearly, F ∗
i (xi, P) =

O mod q for 0 ≤ i ≤ n.
Step 3. The GM keeps βi secret for all i and computes β0 · P and β · P . Then he/she
selects a random number γ ∈R Z∗

q and computes parameters ρl (l = 0, 1 . . . , n) such
that ρl = γδ2(xl) mod q where γ is the multiplicative inverse of γ. Finally, the GM
selects random k ∈R Zq, computes γ · P, kP and keeps it secret.
Step 4. The GM defines gpk by the quadruple (β0P, βP, γP, kP) and the secret key of
the lth member of the group by the tuple (xl, yl, ρl) (for all 0 ≤ l ≤ n).
KeyGen: We let the user U be a sender while the receivers need GM to generate
their keys. The user U picks a random xU ∈ Z∗

q and sets his public key to YU =
xUP ∈ G2. His private key is xU . The GM generates gpk = (β0P, βP, γP, kP) and
individual members’ secret keys (xl, yl, ρl) for all l = 0, 1, · · · , n. GM then distributes
members’ secret keys securely to the members of the group. Let us denote the sender
and the receiver by U = S and U = R respectively. We also denote key pair of
the sender by (xS, YS) and key pair of the receiver by ((xl, yl, ρl), gpk), where gpk =
(β0P, βP, γP, kP).
DisSignCrypt: To signcrypt a message m ∈ {0, 1}μ intended to be sent to a member
of the receiving group (say R) , the sender S carries out the following steps:

1. Pick k1 ∈ Z∗
q randomly and compute U = k1P ∈ G1, U0 = k1kP + k1β0P ∈ G1,

U1 = k1βP ∈ G1, U2 = k1γP ∈ G1.
2. Compute U3 = xSH1(m, U, kP, k1kP) ∈ G1.
3. Compute Z = (m||YS||U3) ⊕ H2(U, kP, k1kP) ∈ {0, 1}μ+2L and construct the ci-

phertext c =< U, U0, U1, U2, Z >∈ G4
1 × {0, 1}μ+2L.

4. Send c to R.

DisDeSignCrypt: On receiving the ciphertext c =< U, U0, U1, U2, Z >∈ G4
1 ×

{0, 1}μ+2L, the receiver R carries out the following steps:

1. Compute k1kP = U0 + wlU1 − ρlU2 − ylU ∈ G1 using member’s secret key where
wl =

∑i=n
i=1 xi

l.

224 I. Gupta and P.K. Saxena

2. Compute (m||YS||U3) = Z ⊕ H2(U, kP, k1kP) and return ⊥ if YS /∈ G1.
3. Compute H = H1(m, U, kP, k1kP) ∈ G1 and then check if e(H,YS) = e(U3, P).

If the condition holds, output (m, (U, kP, k1kP, U3), YS), otherwise; reject the ci-
phertext.

Verify: For a message signature pair (m, (U, kP, k1kP, U3)) and the sender’s public
key YS, the algorithm checks if: e(YS, H1(m,U, kP, k1kP)) = e(U3, P). If the condition
holds, it outputs ‘true’; otherwise it outputs ‘false’.
Note that the scheme works by virtue of the fact that:

k1kP = U0 + wlU1 − ρlU2 − ylU

= k1kP + k1β0P + (
i=n∑
i=1

xi
l)k1βP − ρlk1γP − ylk1P

= k1kP + k1

(
β0 + (

i=n∑
i=1

xi
l)β − ρlγ − yl

)
P

= k1kP + k1Fi(xl).P = k1kP + k1O

Remark: From the Proposition 1 of [10], it can be easily proved that the con-
structed designated group in the above scheme cannot be modified illegally (i.e.
the quadruple (β0P, βP, γP, kP)).

5.2 Group Signcryption Scheme Based on Pairings: GSCe
pairg

In this section we present group signcryption from pairings (GSCe
pairg) which is

an extension of the distributed signcryption scheme DSCe
pairg. Apart from the

message confidentiality and signature unforgeability, proposed GSCe
pairg also

preserves anonymity of the member who DisSigncrypts the message. This im-
plies that except the group manager, no one is able to find out the identity of
the sender. Let GS and GR be two designated groups who want to communicate
with each other. The scheme works as follows.

Setup: Same as described in Section 3 except that the function H1 in this scheme is
defined as: H1 : {0, 1}μ × G5

1 → G1 .
InzGroup Same as described in Section 5.1
KeyGen: The group manager of the group GS generates gpk = (β′

0P, β′P, γ′P, k′P)
and individual member’s secret keys (x′

l′ , y
′
l′ , ρ

′
l′), (for all l′ = 0, 1, · · · , n′). The group

manager of the group GR generates gpk = (β0P, βP, γP, kP) and individual mem-

ber’s secret keys (xl, yl, ρl), (for all l = 0, 1, · · · , n). Let Sl′ be a the l′th member of
the group GS who signcrypts the message on behalf of the group and let Rl be the

lth member of the group GR who De-signcrypts the message on behalf of the group.
Thus the sender-key pair is

(
(x′

l, y
′
l, ρ

′
l), (β

′
0P, β′P, γ′P, k′P)

)
and receiver key pair is(

(xl, yl, ρl), (β0P, βP, γP, kP)
)
.

DisSignCrypt: To signcrypt the message m intended to be sent to R, a member of
the receiving group GR, the sender S , a member of GS carries out following steps:

1. Pick random k1, k2, k3, xS ∈ Z∗
q and compute k3P , U = k1P ∈ G1, U1 = k1βP ,

U2 = k1γP (we assume that elements of Z∗
q can be represented in λ bits).

Distributed Signcryption from Pairings 225

2. Compute ω′
l′ =

∑j=n
j=1 x′

l′
j
. Then compute U = xSk′P , U0 = k2β

′
0P + k2P , U1 =

k2ω
′
l′β

′P and U2 = k2ρ
′
l′γ

′P .
3. Compute U3 = k2k3y

′
l′P and U0 = k1kP + k1β0P + k2k3P − U3.

4. Compute U3 = xSH1(m, k3P, U0, U, kP, k1kP) ∈ G1.
5. Compute Z = (m||U ||U3) ⊕ H2(U, kP, k1kP) ∈ {0, 1}μ+2L The ciphertext is given

by c =< U, U0, U1, U2, U0, U1, U2, Z, k3 >∈ G7
1 × {0, 1}μ+λ+2L. S sends ciphertext

to R.

DisDeSignCrypt: On receiving a ciphertext c =< U, U0, U1, U2, U0, U1, U2, Z, k3 >∈
G7

1 × {0, 1}μ+λ+2L, the receiver R carries out following steps:

1. Compute ωl =
∑i=n

i=1 xi
l and then compute k1kP = (U0 + wlU1 − ρlU2 − ylU) −

k3(U0 + U1 − U2) using members secret key.
2. Compute Z = (m||U ||U3) ⊕ H2(U, kP, k1kP) and return ⊥ if U /∈ G1.
3. Compute k3P & H = H1(m, k3P, U0, U, kP, k1kP) ∈ G1 and then check if

e(H,U) = e(U3, k
′P). If this condition does not hold, reject the ciphertext.

Verify: For given pair (m, (k3P, U0, U, kP, k1kP, U3)) and given U , the algorithm checks
whether e(U, H1(m, k3P, U0, U, kP, k1kP)) = e(U3, k

′P)?. If the condition holds, it out-
puts true, otherwise, it outputs false.
Note that the scheme works by virtue of the fact that:

k1kP = (U0 + wlU1 − ρlU2 − ylU) − k3(U0 + U1 − U2)

= k1kP + k1β0P + k2k3P − k2k3y
′
l′P + (

i=n∑
i=1

xi
l)k1βP

− ρlk1γP − ylk1P − k3(k2β
′
0P + k2P + k2ω

′
l′β

′P − k2ρ
′
l′γ

′P)

= k1kP + k2k3P + k1

(
β0 + (

i=n∑
i=1

xi
l)β − ρlγ − yl

)
P

− k2k3

(
β′

0 +

j=n∑
j=1

x′
l′

j − ρ′
l′γ

′ − y′
l′
)
P − k2k3P

= k1kP + k1O + k2k3O

6 Performance and Security Analysis

In this section, we analyze the complexity and also computational overheads of
proposed distributed signcryption and its extension to a group signcryption. We
then discuss its security aspects.

6.1 Complexity Analysis and Expansion Factor

The computational cost (CC) of proposed schemes can be calculated in terms
of scalar multiplications (SM) in group G1, and computation of pairings (PC)
e : G1 × G1 → G1. Computational overheads can be determined in term of
the expansion factor (η the ratio of number of bits required to represent the
ciphertext and the plaintext). In Table 1, we summarize computational cost and
communication overheads of distributed signcryption and the group signcryp-
tion.

226 I. Gupta and P.K. Saxena

Table 1. Computational Cost and Expansion Factor of Proposed Methods

Proposed
Methods

Approximate Computa-
tional Cost (DisSignCrypt
& DisDeSignCrypt)

Verification Cost Approximate
Expansion
Factor η

DSCe
pairg CDSC + CDDSC = (6SM +

3SM + 2PC)
2 PC 1 + 6L

μ

GSCe
pairg CGSC + CGDSC= (13SM +

5SM + 2PC)
2PC 1 + 9L+�log q�

μ

[CDSC: CC for distributed signcryption, CDDSC: CC for distributed de-signcryption,
CGSC : CC for group signcryption, CGDSC : CC for group de-signcryption]
Note 1: As compared to the computational cost of scalar multiplications in G1 and
computation of pairings, the cost of other associated operations like field multiplication,
integer multiplication, addition of two elements of G1 are significantly small. We can
neglect these.

6.2 Security Analysis

As both the schemes DSCe
pairg & GSCe

pairg are extensions of LYWDC-ESC
scheme, their security also rely on hardness of GDHP (in GDH groups (G1, G2))
and therefore security proofs can be given using the same approach as given
in [15,16,22]. However, we use security notions proposed in section 4 and give
security proof on the random oracle model [4] following approach as given by
Yang et al and Li et al [15,22].

Security Analysis of DSCe
pairg

Theorem 6.2.1. Let Kp be a security parameter. If there exists a PPT adversary
A that has at least ε(Kp) advantage against the DSC-IND-CCA security of the
proposed DSCe

pairg scheme when asking qhi queries to random oracle Hi for (i =
1, 2), qDSC queries to DisSignCrypt oracle and qDDSC to DisDeSignCrypt ora-
cle then there exists a PPT algorithm B which can solve the Gap Diffie-Hellman
Problem with probability at least (1 − qDDSC/2Kp − qh1qDDSC/22Kp)ε(Kp)). If
the running time of A is t then the running time of B is t′ < t+(4qDDSC +2qh1 +
2qh2)te, where te is the time required for one pairing computation.

Proof. See Appendix A.

Theorem 6.2.2. Let Kp be a security parameter. If there exists a PPT adver-
sary F that has at least ε(Kp) non negligible advantage against the DSC-EUF-
CMA security of the proposed DSCe

pairg scheme when making qhi queries to ran-
dom oracle Hi for (i = 1, 2), qDSC queries to DisSignCrypt oracle and qDDSC

to DisDeSignCrypt oracle then there exists a PPT algorithm B which can solve
the Gap Diffie-Hellman Problem with the probability at least (1− qDDSC/2Kp −
qh1qDDSC/22Kp)ε(Kp). If the running time of A is t then the running time of B is
t′ < t + (2qh1 + 2qh2 + 4qDDSC)te where te is the time required for one pairing
computation.

Proof. See Appendix B.

Distributed Signcryption from Pairings 227

Security Analysis GSCe
pairg

Theorem 6.2.3. Let Kp be a security parameter. If there exists a PPT adver-
sary A that has at least ε(Kp) advantage against the GSC-IND-CCA security
of the proposed DSCe

pairg scheme when asking qhi queries to random oracle
Hi for (i = 1, 2), qDSC queries to DisSignCrypt oracle and qDDSC to DisDe-
SignCrypt oracle then there exists a PPT algorithm B which can solve the Gap
Diffie-Hellman Problem with probability at least p1(qh1 , qh2 , qDDSC , Kp)ε(Kp). If
the running time of A is t then the running time of B = t′ < t + (4qDDSC +
2qh1 + 2qh2)te, where te is the time required for one pairing computation. Here
p1(qh1 , qh2 , qDDSC , Kp) is the least probability that the simulation does not fail
i.e. p1(qh1 , qh2 , qDDSC , Kp) ≤ Pr[simulation does not fail].

Proof. Proof of theorem can be done using the same approach as given in the-
orem 6.2.1. [It is to be noted that the probability that the simulation does
not fail is a function of qh1 , qh2 , qDDSC and Kp. Therefore we denoted it by
p1(qh1 , qh2 , qDDSC , Kp).]

Theorem 6.2.4. Let Kp be a security parameter. If there exists a PPT adver-
sary F that has at least ε(Kp) non negligible advantage against the GSC-EUF-
CMA security of the proposed GSCe

pairg scheme when making qhi queries to ran-
dom oracle Hi for (i = 1, 2), qDSC queries to DisSignCrypt oracle and qDDSC to
DisDeSignCrypt oracle, then there exists a PPT algorithm B which can solve the
Gap Diffie-Hellman Problem with probability at least p2(qh1 , qh2 , qDDSC , Kp)ε(Kp).
If the running time of A is t then the running time of B = t′ < t+(2qh1 +2qh2 +
4qDDSC)te, where te is time required for one pairing computation. Here proba-
bility p2(qh1 , qh2 , qDDSC , Kp) ≤ Pr[simulation does not fail].

Proof. Proof of the theorem can be done using the same approach as given in
theorem 6.2.2.

Anonymity: It is clear that the ciphertext c =< U, U0, U1, U2, U0, U1, U2, Z, k3 >
does not contain any information about the group’s identity or the sender’s
identity. Information of both the identities is encrypted through public key en-
cryption of symmetric encryption as described in the DisSigncrypt algorithm.
(Particularly, the sender’s identity is hidden in U1, U2 and U3).

The sender’s identity is also not required for DisDeSignCrypt and to Verify
the message. However, the verification algorithm requires one part of the sender’s
group public key. But it does not leave any information about the sender. It leaks
information of the sending group and only group manager can check the identity
of the sender. Thus GSCe

pairg ensures anonymity property.

6.3 Comparative Study

It may be noted that no separate encryption/decryption algorithm is required
in DSCe

pairg and GSCe
pairg schemes (it is done through xor operation with key

derived from hash function). However, schemes proposed in [10,13,19] have a sep-
arate encryption/decryption algorithm. Comparative study of proposed scheme

228 I. Gupta and P.K. Saxena

and existing distributed signcryption / group signcryption schemes is given in
the Table 2.

Table 2. Comparative Study of Distributed Signcryption

Schemes CC and
CO

Scheme
Based On

Security Analysis

MVS (DSC and GSC) O(| G |) Z�
p Not Given

KMS (DSC and GSC) O(| G |) Z�
p Heuristic arguments

GPS Constant HEC Heuristic arguments

Proposed DSCe
pairg &

GSCe
pairg

Constant Pairing DSC-IND-CCA, DSC-EUF-CMA

[Constant: Independent of the number of members in the designated groups, O(| G |):
As function of | G | where G = set of users, CC: Computational Complexity, CO:

Communication Overhead]

7 Conclusion

We proposed a method for distributed signcryption from pairings which is an ex-
tension of the signcryption scheme with key privacy proposed by Li, Yang, Wong,
Deng and Chow. We further extended the distributed signcryption into group
signcryption. Proofs of security have been given for the proposed distributed
signcryption and group signcryption schemes along with performance analysis.
Comparative study of proposed schemes with other existing schemes was also
performed. Further work on other security notions (like key privacy etc.) for our
distributed signcryption and group signcryption is being carried out.

Acknowledgments. The authors would like to extend their gratitude to Prof.
Rana Barua, ISI Kolkata for useful interactions during the visit of the author
to ISI Kolkata. Authors are also grateful to Prof C. E. Veni Madhavan, Prof
A. Tripathi, Dr. S S Bedi, Dr. Meena Kumari and N R Pillai for the technical
discussions and suggestions.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Bao, H., Cao, Z., Qian, H.: On the Security of a Group Signcryption Scheme from
Distributed Signcryption Scheme. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y.
(eds.) CANS 2005. LNCS, vol. 3810, pp. 26–34. Springer, Heidelberg (2005)

Distributed Signcryption from Pairings 229

3. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-
Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

4. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the First ACM Conference on Computer and
Communications Security, pp. 62–73 (1993)

5. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic curves in cryptography.
Cambridge University Press, Cambridge (2005)

6. Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Frey, G., Müller, M., Rück, H.G.: The Tate Pairing and Discrete Logarithm Applied
to Elliptic Curve Cryptosystems. IEEE Trans. of Information Theory 45(5), 1717–
1719 (1999)

9. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

10. Gupta, I., Pillai, N.R., Saxena, P.K.: Distributed Signcryption Scheme on Hyper-
elliptic Curve. In: Proceedings of the Fourth IASTED International Conference on
Communication, Network and Information security: CNIS 2007, pp. 33–39. Acta
Press, Calgary (2007)

11. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

12. Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in
Cryptographic Groups. Journal of cryptology 16(4), 239–247 (2003)

13. Kwak, D.J., Moon, S.J.: Efficient Distributed Signcryption Scheme as Group Sign-
cryption. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp.
403–417. Springer, Heidelberg (2003)

14. Kwak, D., Moon, S., Wang, G., Deng, R.H.: A Secure Extension of the Kwak-Moon
Group Signcryption Scheme. Computer & Security 25, 435–444 (2006)

15. Li, C.K., Yang, G., Wong, D.S., Deng, X., Chow, S.S.M.: An Efficient Signcryption
Scheme with Key Privacy. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI
2007. LNCS, vol. 4582, pp. 78–93. Springer, Heidelberg (2007)

16. Libert, B., Quisquater, J.-J.: Efficient Signcryption with Key Privacy from Gap
Diffie-Hellman Groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

17. Libert, B.: New Secure Applications of Bilinear Maps in Cryptography. PhD Thesis,
Microelectronics Laboratory Laboratory, Université Catholique de Louvain (Jan-
uary 2006)

18. Miller, V.S.: The Weil Pairing and Its Efficient Calculation. Journal of Cryptol-
ogy 17, 235–261 (2004)

19. Mu, Y., Varadharajan, V.: Distributed Signcryption. In: Roy, B., Okamoto, E.
(eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 155–164. Springer, Heidelberg
(2000)

230 I. Gupta and P.K. Saxena

20. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the
Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

21. Tan, C.-H.: Analysis of Improved Signcryption Scheme with Key Privacy. Informa-
tion Processing Letter 99(4), 135–138 (2006)

22. Yang, G., Wong, D.S., Deng, X.: Analysis and Improvement of a Signcryption
Scheme with Key Privacy. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC
2005. LNCS, vol. 3650, pp. 218–232. Springer, Heidelberg (2005)

23. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

A Proof of Theorem 6.2.1

To prove the theorem, we have to construct an algorithm that solves GDHP,
assuming that adversary has non negligible advantage against the DSC−IND−
CCA. The algorithm B starts with the common parameter generation subroutine
and then uses A as a subroutine to solve GDHP.

We assume that B is given (aP, bP), a random instant of GDHP. Our aim is to
compute abP with the help of DDHP in (G1, G2). Let gpkG =(β�

0P, β�P, γ�P, bP)
be a challenged public key of any group G. The algorithm B runs the subrou-
tine A with the challenged gpkG = (β�

0P, β�P, γ�P, bP). A adaptively performs
the hash queries, the DisSignCrypt queries and the DisDeSignCrypt queries. B
maintains the two lists L1 and L2 for handling the queries to keep track of the
answers given to random oracles H1 and H2 respectively. All the queries are
performed as follows.

H1-queries: When a hash query H1 is made on the input (m, P1, P2, P3), where
m ∈ {0, 1}μ and P1, P2, P3 ∈ G1, B first checks if e(P1, P2) = e(P, P3) i.e.
(P, P1, P2, P3) is valid DDH quadruple.

If it is, then B checks if the list L1 contains the query tuple (m, P1, P2, P3).
If it contains, the existing result in L1 is returned. If the tuple (m, P1, P2, P3) is
not in L1 but (m, P1, P2,#) is in L1, then # is replaced by P3 and the value cor-
responding to the query tuple (m, P1, P2,#) is used as the value to be returned,
where # is a special symbol. Otherwise B selects random r′ ∈ Zq, and returns
r′P . Finally, B updates the list L1 to answer the future queries.

If (P, P1, P2, P3) is not a DDH quadruple, then B checks if the list L1 contains
the query tuple. If yes, then B returns existing value, otherwise B selects random
r ∈ Zq and returns rP . The list L1 is updated to answer the future queries.

H2-queries: Hash queries to H2 can be handled in a similar manner as H1 queries.

DisSignCrypt-queries: A selects the plaintext m, and the group public key
gpkGR

= (β0P, βP, γP, kP) of the receiver and submits it for DisSignCrypt
queries. On receiving (m, gpkGR), B does the following:

- B first checks if gpkGR ∈ G1×G1×G1×G1 and gpkG �= gpkGR . If not, then B
returns the symbol ⊥ for rejection. Otherwise, B selects random k1, k2 ∈ Zq

Distributed Signcryption from Pairings 231

and applies the same procedure as described in the section 5.1 to compute
U, U0, U1, U2.

- B simulates hash functions H1 and H2 to obtain r1P ← H1(m, U, kP, k1kP)
and H2(U, kP, k1kP).

- B computes U3 = r1Yu and Z = (m‖Yu‖r1Yu)⊕H2(U, kP, k1kP) as described
in the section 5.1 and returns the ciphertext c =< U, U0, U1, U2, Z >.

DisDeSignCrypt queries: A submits c for DisDeSignCrypt query. On receiving
the ciphertext c =< U, U0, U1, U2, Z >, B computes λ using msk and caries out
the following steps.

Step 1. B checks if the list L2 contains a tuple of the form (U, bP, λ) such that
(P, U, bP, λ) is a valid DDH quadruple.

- If yes, then the existing value will be used as the value for H2(P, U, bP, λ).
- If not, then B inserts a new entry into the list L2 by saving (U, bP,#) as

query tuple and the value randomly drawn from the range of H2 is returned
as the oracle value.

It may be noted that the special symbol # is used as a marker for denoting that
the real value should be the solution of the CDH problem instance (U, bP). This
step ensures that the values of H2(U, bP, λ) is fixed before c is de-signcrypted.

Step 2. B computes (m‖YS‖U3) = Z ⊕H2(U, bP, λ) and B checks if the list L1

contains a tuple of the form (m, U, bP, λ) such that (P, U, bP, λ) is a valid DDH
quadruple or λ = #.

- If L1 contains (m, U, bP, λ), then B uses existing result as a value of
H1(m, U, bP, λ) and uses λ to update the the corresponding entry in L2.
If the tuple (m, U, bP,#) is in L1 then the existing value will be used. B
updates list L1 replacing # by λ if B obtains value of λ from L2.

- If L1 does not contain (m, U, bP, λ), then B inserts new entry into the list L2

by saving (m, U, bP, λ) as query tuple. B selects random r2 ∈ Zq and returns
r2P as oracle value of H1(m, U, bP, λ).

Step 3. Then B checks if the (Verify) condition e(P, U3) = e(H1(m, U, bP, λ), YS)
holds.

- If yes and (P, U, bP, λ) is valid DDH quadruple i.e.(
e(P, λ) = e(U, bP)

)
, then B returns the message signature pair

(m, (U, bP, λ, U3) and the sender identity YS . If (Verify) condition holds but
H1 is simulated on the tuple (m, U, bP,#) in ‘Step 2’ i.e. λ = #, then B halts
with failure.

- Otherwise, B returns symbol ⊥ for rejection of the ciphertext.

At the end of the first stage, A provides B two equal length (μ-bit) plaintexts
m0 and m1, which have never been queried to DisSignCrypt, together with an
arbitrary senders private key x�

S ∈ Z�
q (say) and requires a challenge ciphertext

built under the challenged group public key gpkG = (Pβ�
0
, Pβ� , Pγ� , Pb). Suppose

that the public key associated with x�
S is Y �

S = x�
SP .

232 I. Gupta and P.K. Saxena

B randomly picks b̃ ∈R {0, 1}, binary strings r� ∈ Zq & Z� ∈ {0, 1}μ+2L and
sets U� = aP . Then B carries out the following steps.

– B selects three random multiples of aP and assign values to U�
0 , U�

1 and U�
2 .

– B assigns the value r�P to H1(mb̃, aP, bP,#) and updates list L1 by saving
(mb̃, aP,
bP,#) as query tuples.

– B sets U�
3 = r�Y �

S and computes H2(aP, bP,#) = Z� ⊕ (mb̃‖Y �
S ‖r�Y �

S).
– B returns the ciphertext c� =< U�, U�

0 , U�
1 , U�

2 , Z� >

Once A receives the challenged ciphertext, A performs a second series of queries.
These queries are handled as in the first stage. But A is not allowed to Dis-
DeSignCrypt query of the challenged ciphertext. If A queries H1 or H2 with
(m, aP, bP, λ) / (aP, bP, λ) such that (P, aP, bP, λ) is a DDH quadruple, then B
outputs λ and halts. If A halts without making this query, B outputs a random
point in G1 and halts.

As we have assumed that the adversary A has non-negligible advantage ε
over DSC − IND−CCA, we have to find probability of success of B in solving
GDHP.

Let Evt denote an event that A asked the H1 query on the tuple
(., aP, bP, abP) for any message ‘.’ or H2 query on the tuple (aP, bP, abP) during
the simulation of H1 and H2. Let ¬Evt be the event that neither (., aP, bP, abP)
is queried on H1 nor (aP, bP, abP) is queried on H2. We assume that simulation
of the attacks environment is perfect i.e an attack where A interacts with or-
acles. We claim that for ¬Evt, A does not have any advantage in winning the
game over random guessing.

Let U b̃
3 = x�

SH1(mb̃, aP, bP, abP). Then c� = (U�, U�
0 , U�

1 , U�
2 , Z�) is the sign-

cryption of mb̃ if we have (mb̃‖Y �
S ‖U b

3) = Z�⊕H2(aP, bP, abP). Clearly, in ¬Evt,
B does not leak any information to A since H1 and H2 are not queried with
(aP, bP, abP) and (mb̃, aP, bP, abP). Note that, A does not have any advantage
in determining whether the oracle returns of H1 on query tuple (mb̃, aP, bP, abP)
and H2 on query tuple (aP, bP, abP). Hence Pr[Awins the game|¬Evt] = Pr[b =
b′|¬Evt] = 1

2 . From the assumption that attacker wins the game if b = b′ and at-
tacker advantage over the game is defined as AdvDSC−IND−CCAA = 2×Pr[b =
b′]− 1 ⇒ Pr[b = b′] = (ε(Kp)+1)

2 , we have

Pr[b = b′] = Pr[b = b′|¬Evt]Pr[¬Evt] + Pr[b = b′|Evt]Pr[Evt]

≤ 1
2
(1− Pr[Evt]) + Pr[Evt]

This implies that (ε(Kp)+1)
2 ≤ 1

2 (1 + Pr[Evt]) and hence Pr[Evt] ≥ ε.
We now consider the case when the simulation fails. We need to han-

dle only two possibilities (i) B fails or rejects the ciphertext and (ii) simu-
lation is not perfect. B may fail at step 3 of DisDeSignCrypt oracle simu-
lated above when (U, bP,#) is in L2 and (m, U, bP,#) in L1, while e(P, U3) =
e(H1(m, U, bP, λ), YS) where m‖YS‖U3 = Z ⊕H2(U, bP,#). This implies that A

Distributed Signcryption from Pairings 233

has never queried H1 on (m, U, bP, λ) nor H2 on (U, bP, λ) such that e(P, λ) =
e(U, bP), while Z3 = W3 ⊕ U3 where Z = (Z1, Z2, Z3) ∈ {0, 1}μ × G2

1 and
(W1, W2, W3) = H2(U, bP,#) ∈ {0, 1}μ×G2

1. Since DisDeSignCrypt oracle does
not leak any information of H1(m, U, bP,#) and W3 to A at step 3, the probabil-
ity that the first event will occur (i.e. Z3 = W3⊕U3) is smaller than qDDSC/2Kp .
In the second event, there is a chance in which DisDeSignCrypt oracle rejects
the valid ciphertext. Since hash function H1 is used to decide the acceptance of
the message. The probability to reject the valid ciphertext is not greater than
qh1qDDSC/22Kp . The probability when the simulation fails is not greater than
qDDSC/2Kp + qh1qDDSC/22Kp . Therefore, the probability when the simulation
does not fail is at least (1− qDDSC/2Kp − qh1qDDSC/22K).
Hence Pr[E∧simulation does not fail] ≥ (1−qDDSC/2Kp−qh1qDDSC/22K)ε(Kp).

The bound on B’s computational time can be derived from pairing compu-
tations. Since every DisDeSignCrypt oracle requires four pairing computations
while H1 and H2 oracles requires 2 pairing computations each. Thus the max-
imum number of possibilities for which B computes pairing is (2qh1 + 2qh2 +
4qDDSC). Hence B can solve DDHP in time t′ ≤ t + (2qh1 + 2qh2 + 4qDDSC)te.

B Proof of Theorem 6.2.2

We first assume that there exists a forger F who wins the game of DSC-EUF-
CMA as defined in Definition 4. It would be shown that algorithm B can be
constructed that solves GDHP.

We follow the same procedure as in theorem 6.2.1. We assume that (aP, bP) is
any random instant of CGDHP. Let pkU = bP be the challenged public key of any
group user U . Assume that F adaptively performs hash queries, DisSignCrypt
& DisDeSignCrypt queries and B maintains the two lists L1 and L2 for handling
the queries to keep track of the answers given to random oracles H1 and H2

respectively. All the queries are performed as follows.

H1-queries: When a hash query H1 is made on the input (m, P1, P2, P3), B first
checks if e(P1, P2) = e(P, P3) i.e (P, P1, P2, P3) is DDH quadruple. If it is, then
B checks if the list L1 contains the query tuple (m, P1, P2, P3). If it contains,
the existing result in L1 is returned. If the tuple (m, P1, P2, P3) is not in L1 but
(m, P1, P2,#) is in L1 then # (an special symbol) is replaced by P3 and the value
is returned as the value to be returned for the tuple (m, P1, P2, P3). Otherwise, B
selects random r ∈ Zq and returns r(aP). Then B updates the list L1 to answer
the future queries. If (P, P1, P2, P3) is not a DDH quadruple, then B checks if the
list L1 contains the query tuple. If yes, then B returns existing value, otherwise
B selects random r ∈ Zq and returns r(aP). The list L1 is updated to answer
the future queries.

H2-queries: H2 queries are performed in a similar manner as in Theorem 6.2.1.

DisSignCrypt-queries: A submits a message m and the group public key:(
m, gpkGR = (β0P, βP, γP, kP)

)
of the receiver. B does the following.

234 I. Gupta and P.K. Saxena

- B randomly selects r′ ∈ Z�
q , and sets U = r′P . Then B follows the same pro-

cedure as in Theorem 6.2.1 to compute U0, U1, U2, simulates hash functions
H1 and H2 and obtains r1P ← H1(m, U, kP, k1kP) and H2(U, kP, k1kP).

- B computes U3 = r1Yu = bH1(m, U, kP, k1kP) & Z = (m‖Yu‖r1Yu)⊕
H2(U, kP, k1kP) and returns the ciphertext c =< U, U0, U1, U2, Z >.

DisDeSignCrypt queries: A submits c for DisDeSignCrypt query. On receiving
the ciphertext c = < U, U0, U1, U2, Z >, B computes λ using msk and carries
out the following steps.

Step 1. B follows ‘steps’ of DisDeSignCrypt oracle as in theorem 6.2.1.
Step 2. B computes (m‖YS‖U3) = Z ⊕ H2(U, bP, λ) and checks if the list L1

contains a tuple of the form (m, U, bP, λ) such that (P, U, bP, λ) is a valid DDH
quadruple or λ = #.

– If L1 contains (m, U, bP, λ) or (m, U, bP,#), then B follows the same proce-
dure as in Step 2 of DisDeSignCrypt oracle in theorem 6.2.1.

– If L1 does not contain (m, U, bP, λ) , then B inserts a new entry into the
list L2 by saving (m, U, bP, λ) as query tuple. B selects random r1 ∈ Zq and
returns r1(aP) as oracle value of H1(m, U, bP, λ).

Step 3. This step is the same as Step 1 of DisDeSignCrypt oracle in theo-
rem 6.2.1.

At the end of the game, the forger F provides a ciphertext c� and a key pair
(mskG�

R
, ∗gpkG�

R
) where gpkG�

R
= (β�

0 , β�P, γ�P, k�P). B performs DisDeSign-
Crypt operation as we have discussed above on the input of (c�, mskG�

R
, pkU),

where pkU = bP is the challenged public key. If the ciphertext is valid, then
DisDeSignCrypt(c�, mskG�

R
, pkU) returns valid message signature pair (m�, s�)

and the sender public key bP . This means that e(Yu, H1(m�, U�, k�P, λ�)) =
e(bP, r�aP) = e(P, U�

3). Thus U�
3 must be equal to r�abP , where r� is randomly

picked up from Zq. The value abP can be computed using (r�)−1V �. This yields
the solution of Diffie-Hellman problem.

It is clear from the DisDeSignCrypt query above that the list L1 must contain
an entry for H1(m�, U�, k�P, λ�) and the corresponding oracle value in the entry
must be in the form r�(aP) for some r� ∈ Zq, which can be retrieved from L1.
It may be noted that if the oracle value of H1(m�, U�, k�P, λ�) is generated in
a signcryption query i.e. of the form r′1P for some r′1P ← Zq, then the values of
Z and other parameters would also have been determined in that signcryption
query. This implies that the target ciphertext is an output of signcryption query,
which contradicts the restriction of the game defined in Definition 4.

We have to find the probability of success of B in solving GDHP assuming
that the forger F has non-negligible advantage ε(Kp) over EUF −DSC−CCA.
As in theorem 6.2.1, it can be shown that Pr[Fwin the game] ≥ (Kp). Now, we
consider the case when the simulation fails. Since F fails in Step 3 of DisDe-
SignCrypt oracle, the probability when the simulation fails is ≤ qDDSC/2Kp +
qh1qDDSC/22K. Hence Pr[F win the game ∧ simulation does not fail] ≥ (1 −
qDDSC/2Kp − qh1qDDSC/22K)ε(Kp) and B can solve GDHP in time t′ ≤ t +
(2qh1 + 2qh2 + 4qDDSC)te.

Formal Privacy Analysis of Communication Protocols
for Identity Management�

Meilof Veeningen, Benne de Weger, and Nicola Zannone

Eindhoven University of Technology, The Netherlands
{m.veeningen,b.m.m.d.weger,n.zannone}@tue.nl

Abstract. Over the years, formal methods have been developed for the analy-
sis of security and privacy aspects of communication in IT systems. However,
existing methods are insufficient to deal with privacy, especially in identity man-
agement (IdM), as they fail to take into account whether personal information can
be linked to its data subject. In this paper, we propose a general formal method
to analyze privacy of communication protocols for IdM. To express privacy, we
represent knowledge of personal information in a three-layer model. We show
how to deduce knowledge from observed messages and how to verify a range of
privacy properties. We validate the approach by applying it to an IdM case study.

1 Introduction

With the growth of social networking, e-business, e-Government, and ubiquitous com-
puting, more and more personal information is being handled over the Internet. This has
increased the need to design IT systems that preserve user privacy. Not only users may
demand that the IT systems they interact with preserve their privacy, but also privacy
regulations (such as the EU Data Protection Directive) impose stringent requirements
on the collection, processing, and disclosure of personal information.

Identity management (IdM) [1,2,3] is an emerging technology for handling personal
data in distributed systems. In such a system, a service provider (SP) retrieves user
credentials from (possibly multiple) identity providers (IdPs) for the authentication of
users, leading to an exchange of information which may also involve the user or third
parties. This information exchange impacts the user’s privacy: the design of the pro-
tocols used by parties to communicate determines how much personal information is
learned by the various parties, and to what extent they can link these different pieces of
information. This makes it important to compare these protocols in a precise way.

Over the years, formal methods have arisen as an important tool to analyze security
of communication in IT systems [4,5,6,7]. The idea is to express communication proto-
cols in a suitable formal model, and then verify whether such a model satisfies proper-
ties such as authentication properties [5] and secrecy properties [8]. Secrecy properties,
in particular, can be used to express one aspect of privacy; namely, whether a certain
piece of information is known by some party in a protocol. However, they can not be
used to express another fundamental aspect of privacy; namely, to what extent a piece of
personal information is linkable to the corresponding data subject (who, in general, may

� This work is partially funded by the Dutch Sentinel Mobile IDM project (#10522).

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 235–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

236 M. Veeningen, B. de Weger, and N. Zannone

not even participate directly in the protocol). Recently, formal methods have been ex-
tended to address privacy issues. However, in some cases the properties defined and ver-
ified are specific to their respective settings such as e-voting [9]. In other cases [10,11],
the focus is on linking messages rather than interpreting them as personal information
about a data subject as needed for the analysis of IdM systems.

In our previous work [12], we captured privacy in a general formal model for knowl-
edge of personal information. This model expresses to which entity different pieces of
information belong, and what knowledge actors have about these items and their rela-
tions. Based on this representation, we formally defined and compared identity-related
properties, e.g., anonymity, pseudonymity and identifiability. However, the model can-
not capture how this knowledge follows from communication as it does not allow inter-
pretation of personal information in terms of how it was learned or what it contains.

In this paper, we combine existing formal methods and our previous work [12] by
presenting a framework for analyzing which identity-related properties are satisfied by
a system, given the information observed from communication protocols. This provides
the machinery to compare the privacy of communication protocols in various IdM ar-
chitectures in a precise way. The contributions of this paper are as follows:

– We define a three-layer model of (personal) information, which captures that (i)
personal information in different contexts may satisfy different privacy properties;
and (ii) different pieces of information may have the same contents.

– We take a representative set of cryptographic primitives and show how existing de-
ductive methods for these primitives can (with some modifications) operate within
our three-layer model.

– We show how to represent an actor’s knowledge of personal information in terms
of which personal information he can detect, and which personal information he
can associate to a data subject.

– We verify, by checking these associations, which identity-related properties, as de-
fined in our previous work [12], hold in a particular situation.

We demonstrate our approach by applying it to the attribute aggregation infrastructure
proposed in the TAS3 project. This infrastructure aims to satisfy a number of privacy
properties: we check whether these privacy properties indeed hold, report on some prob-
lems we found, and provide some recommendations to improve the system.

The structure of the paper is as follows. We first introduce the three-layer model
of personal information (§2). We use it to analyze what personal information an actor
can deduce (§3) and associate (§4) from observed messages, and show how identity-
related properties are defined and verified in terms of the model (§5). We apply our
approach to the TAS3 attribute aggregation infrastructure (§6), and present conclusions
and directions for future work (§7).

2 A Three-Layer Model of Personal Information

In this section, we introduce a model for the representation and analysis of personal
information that may be known by various actors within a system. The model can be
seen as a refinement of the model proposed in our previous work [12], and is used to
define actor knowledge (§4) and privacy properties (§5).

Formal Privacy Analysis of Communication Protocols for Identity Management 237

2.1 Personal Information

A piece of personal information in the digital world is a specific string that has a specific
meaning as personal information about a specific person. We distinguish between two
types of digital personal information: identifiers and data items. Identifiers are unique
within the system; for data items this is not necessarily the case. The sets of identifiers
and data items are denoted I and D, respectively. The set E of entities models the real-
world persons whom the considered information is about.

The link between the information and its subject is captured by the related relation,
denoted ↔. This is an equivalence relation on entities, identifiers and data items, such
that o1 ↔ o2 means that o1 and o2 are information about the same person. In particular,
any identifier or data item is related to exactly one entity. Elements of the set O :=
E ∪ I ∪ D are called items of interest.

These concepts, however, are insufficient to fully characterize the system dynamics.
When interacting with a system, an actor may learn the same personal information
several times without realizing that it is the same information. For example, consider
two profiles of the same user that both contain “age=18”, and suppose an actor does
not know that the profiles are related. Then, from a privacy point of view (e.g., to check
linkability between information in profiles) it is important to differentiate in the actor’s
knowledge between the age in the one profile and the age in the other profile.

In addition, an actor may be able to deduce information from the fact that different
pieces of information have the same string contents. For example, if an actor encounters
the same hash string in different contexts, and he knows the contents used in the first
context, then he knows that these contents were also used in the second context.

2.2 Three-Layer Model

Because of the need to distinguish different instances of the same piece of information,
but also to reason about message contents, we introduce a three-layer representation of
personal information. The representation consists of the object layer, information layer,
and contents layer. In the information layer, as described above, the information itself
is represented, e.g., “the age of actor c”. In the object layer, information is described
along with the context in which it has been observed, e.g., “the age of the data subject
in instance 1 of protocol π”. In the contents layer, information is described in terms of
the strings actually transmitted in a protocol, e.g., “age=18”.

In the object layer, we model the context in which an actor knows pieces of infor-
mation. A context is a tuple (η, k), where η is a domain and k is a profile within that
domain. The sets of domains and profiles depend on the application; we deliberately do
not define these sets here but instead content ourselves with some examples. One exam-
ple domain could be φ = Facebook, in which the context (φ, 132) represents the profile
of a particular Facebook user. Another example domain is “instance 2 of protocol π”.
In that domain, every party involved in the protocol is characterized by a profile.

In such a context, pieces of information are represented by variables. This represen-
tation makes it possible to reason about such personal information without regarding
the instantiation. Data item variables represent data items (set D), whereas identifier
variables represent identifiers (set I); consider, e.g., a variable age ∈ D denoting the

238 M. Veeningen, B. de Weger, and N. Zannone

age in a profile. A context data item is a data item variable d in a context (η, k), and
we denote it d|ηk ∈ Dc; the set Ic of context identifiers is defined similarly. Entities are
not represented by variables; instead, an entity e ∈ E in a context (η, k) is denoted
e|ηk; the set of context entities is Ec. The reason is that, because entities are not digital
information, there cannot be multiple “instances” of an entity. Every context contains
exactly one entity who is the data subject, i.e., all information in the context belongs to
that entity. Oc := Ec ∪ Ic ∪ Dc is the set of context items of interest.

Items in the contents layer can be seen as strings of arbitrary length in some alphabet,
i.e., the set Σ∗. The exact form of the contents layer is not relevant for our purposes.
Rather, it is relevant to determine whether two pieces of information have the same
contents: this is expressed using the τ function, as described below.

2.3 Maps between Layers and Equivalence

The link between the object layer and the information layer is given by the substitution
σ : Oc → O. We write σ as a list of context item-information pairs and application of σ
in postfix notation, e.g., σ = {d|ηk → agec, d

′|ηk → haircolorc} and then d|ηkσ = agec.
σ satisfies the following four properties: 1. σ(Dc) ⊂ D; 2. σ(Ic) ⊂ I; 3. e|ηkσ = e for
any entity e, context (η, k); 4. x|ηkσ ↔ y|ηkσ for any context items x|ηk , y|ηkσ. Intuitively,
σ maps: 1. context data items to data items; 2. context identifiers to identifiers; 3. context
entities to entities; 4. context items from the same context to related items of interest.

The link between information and its contents is given by function τ . The domain
of the function is I ∪ D (entities have no contents). Function τ is injective on I: this
formally expresses the uniqueness of identifiers within the system.

We introduce notation for two context items x|ηk, y|χl representing the same infor-
mation or contents. If x|ηkσ = y|χl σ, then we write x|ηk ≡ y|χl and we call x|ηk and y|χl
equivalent. If τ(x|ηkσ) = τ(y|χl σ), then we write x|ηk

.= y|χl and we call them con-
tent equivalent. Clearly, equivalence implies content equivalence. Two identifiers are
equivalent iff they are content equivalence because of the injectivity of τ on identifiers.

Example 1. Consider the three context messages age|η1 , age|χ1 , and age|ς1 in Fig. 1
where age ∈ D. Let σ = {age|η1 → agec, age|χ1 → agec, age|ς1 → aged} with
τ(agec) = τ(aged) = “age=18”. Then, age|η1 and age|χ1 are equivalent; moreover, all
three context messages given are content equivalent. �

3 Knowledge Analysis

In this section, we analyze how personal information can be derived from the messages
that a user has observed. Deductive systems are often adopted for this purpose. We
present a standard deductive system, and show how it can be adapted to the three-layer
model. We also show that this adaptation does not impact its expressiveness.

3.1 Messages Analysis on the Information Layer

We present a formalism of messages and a deductive system similar to the ones usually
adopted in protocol analysis [13]. Standard message analysis can be seen, in terms of
our three-layer model, as operating on the information layer.

Formal Privacy Analysis of Communication Protocols for Identity Management 239

object
layer age|η1

σ

���
��

��
�

age|χ1
σ

����
��

��
age|ς1

σ

��

Oc = Ec∪Ic ∪ Dc∪Vc = Pc

Oc = Ec∪Ic ∪ Dc∪Vc = Pc

σ��

� � ��
Vc

Lc

σ��
information

layer
agec

τ

����
��

��
aged

τ����
��

��
�

O = E∪I ∪ D∪G = P
O = E∪I ∪ D∪G = P

τ

��

� � ��
Gc

Li

τ

��contents
layer “age=18” (actual string) �

� �� Lcnt

Fig. 1. Example of the three-layer model: three different context items with the information and
contents they represent (left); the three-layer model of information (right)

Messages. The basic components of messages in communication protocols are infor-
mation items. Apart from the sets D of data items and I of identifiers, we also consider
a set G of non-personal information, such as shared keys and nonces. The set of infor-
mation items is denoted P := D∪I ∪G. Private and public keys are particular cases of
identifiers. Private keys form a set K− ⊂ I, public keys form a set K+ ⊂ I, and, given
a private key k−, the corresponding public key is k+ and vice versa.

Messages can be constructed from information items using cryptographic primitives.
The set of information messages, denoted Li, is given by the following grammar:

M, N ::= p | Ek+(M) | E′
N (M) | Sk−(M) | H(M) | {M, N} (1)

where p ∈ P , k+ ∈ K+, k− ∈ K−. This models, respectively: asymmetric encryption
Ek+(M) of message M with public key k+, symmetric encryption E′

N (M) of message
M with key N , signature Sk−(M) over message M with private key k−, hash H(M)
of message M , and (associative) concatenation {M, N} of messages M and N .

We assume that these cryptographic primitives satisfy a number of properties. First,
all primitives are deterministic; that is, given the same inputs, they always give the same
output. Randomness in non-deterministic encryption or signing should be modeled ex-
plicitly as part of the plaintext. By signing we mean “clear-signing” [14]; that is, the
message M can be recovered from Sk−(M) without knowledge of the corresponding
public key k+. (This can be achieved by appending the message to the “raw” signature.)

Finally, we assume structural equivalence. Extend τ from P to Li by applying it to
all information items in a message, e.g.: τ(E′

d(d′)) = E′
τ(d)(τ(d′)). The image τ(Li)

is the language Lcnt generated by grammar (1) with contents instead of information
items. Different elements of Lcnt could a priori be the same as strings, e.g. a collision
in the hash function could cause H(τ(x)) and H(τ(y)) to be the same string even if
τ(x) �= τ(y); or E′

τ(x)(τ(y)) could happen to be the same string asH(τ(z)). Structural

equivalence is the assumption that this does not happen, i.e., the grammarLcnt uniquely
represents message contents. As a map from Li to Lcnt, τ satisfies two properties: 1. τ
is injective on I; 2. τ preserves the grammar structure of information messages.

Deductive System. A deductive system on Li models which information messages
m ∈ Li an actor can deduce from the set Ci

a ⊂ Li of messages he knows (denoted
Ci

a � m). Such a deductive system consists of a set of axioms and inference rules that
mimic the idealized operation of the cryptographic primitives [13].

240 M. Veeningen, B. de Weger, and N. Zannone

Axiom
(�0)

(m ∈ Ci
a) (�0)

Ci
a � m

Construction
(�C*)

Ci
a � m Ci

a � n
(�CC)

Ci
a � {m,n}

Ci
a � m

(�CH)
Ci

a � H(m)

Ci
a � m Ci

a � n
(�CE)

Ci
a � E′

n(m)

Ci
a � m Ci

a � k+

(�CA)
Ci

a � Ek+(m)

Ci
a � m Ci

a � k−
(�CS)

Ci
a � Sk−(m)

Elimination
(�E)

Ci
a � {m,n}

(�EC)
Ci

a � m

Ci
a � {m,n}

(�EC’)
Ci

a � n

Ci
a � E′

n(m) Ci
a � n

(�EE)
Ci

a � m

Ci
a � Ek+(m) Ci

a � k−
(�EA)

Ci
a � m

Ci
a � Sk− (m)

(�ES)
Ci

a � m

Fig. 2. Deductive system on information (Ci
a ⊂ Li, m, n ∈ Li, k+ ∈ K+, k− ∈ K−)

Fig. 2 shows a standard deductive system for information messages. The (�0) axiom
expresses the deduction of any message in the set of known messages. The (�C*) infer-
ence rules express the construction of concatenations, hashes, symmetric encryptions,
asymmetric encryptions and signatures of deduced messages. The (�E*) inference rules
express decomposition of concatenations, decryption of symmetric and asymmetric en-
cryptions whose key is known, and recovery of the plaintext from a signed message.

In the case of decryption, note that the deductive system does not express how the
actor knows the decryption key, only that he knows it. Thus, an actor can try out any
key to decrypt a message; if it happens to be the correct one, he obtains the plaintext.
This means that the system over-estimates the knowledge of the actor in case he cannot
actually tell by decrypting whether he used the right key or not, e.g. if the plaintext is
something that is unknown, random, and unformatted such as a nonce.

Other properties of idealized cryptographic primitives are expressed by the absence
of additional inference rules: e.g., one-wayness of hashes is accounted for by the ab-
sence of a rule to deduce m from H(m). In addition, note that there is no signature
verification rule. This is because deductive systems focus on making deductions from
known messages rather than checking message validity.

The deduction of a message using these rules is usually denoted in tree form. For
example, we represent a deduction of agec from Ci

a = {E′
key(agec), key} as follows:

(�0)
Ci

a � E′
key(agec)

(�0)
Ci

a � key
(�EE)

Ci
a � agec

3.2 Message Analysis on the Object Layer

The deductive system above models the actor’s knowledge on the information layer.
However, for privacy analysis we need to distinguish between information from various
contexts and reason about message contents. To achieve this, we adjust the deductive
system to work on the object layer.

Formal Privacy Analysis of Communication Protocols for Identity Management 241

Messages. We define the set P of context items at the object layer analogously to the
set P of information items. That is, P := Dc ∪ Ic ∪ Vc, with Dc and Ic the sets of
context data items and identifiers. Similarly, Vc is the set of context global items, which
can represent any information message, in particular items in G. Context global items
belong to a domain, but not to a profile; an example context global item is shakey|η· .

The set Lc of context messages is generated by grammar (1), except that here p is any
context item, and k+ ∈ K+c ⊂ Ic and k− ∈ K−c ⊂ Ic are context identifiers represent-
ing public and private keys, respectively. Notationally, contexts, domains, and profiles
can be applied to messages, indicating application to all context items in the message,
e.g., Eshakey|· (age|1)|η := Eshakey|η· (age|η1) and {id, age}|η1 := {id|η1, age|η1}.

The substitution σ extends from context items of interest to context messages in a
natural way, e.g.: {m1, m2}σ := {m1σ, m2σ}. As a map from Lc to Li, σ satisfies
properties 1–4 discussed in Section 2 as well as two additional properties: 5. σ(K+c) ⊂
K+, σ(K−c) ⊂ K−, and key+|ηkσ = k+ iff key−|ηkσ = k− where k− and k+ are a
private/public key pair; 6. σ preserves the grammar structure of context messages.

Sets Lc, Li, and Lcnt and functions σ, τ form a three-layer model of messages
that extends the personal information model (Fig. 1, right). Like context items, context
messages m and n are equivalent iff mσ=nσ, and content equivalent iff τ(mσ)=τ(nσ).

Deductive System. To perform deduction on Lc, we translate the inference rules on
Li to Lc, but this is insufficient for two main reasons. First, although the object layer
distinguishes between keys used in different contexts, an actor can re-use a key from
one context in another. Second, an actor may infer additional information from the fact
that different context messages have the same contents. We address the first problem
with “key testing” rules, and the second with a “content analysis” rule.

The deductive system on the object layer (Fig. 3) models which context messages m
an actor a can deduce from his known messages Ca ⊂ Lc (Ca � m). The rules (�0) to
(�EA) are direct translations from the rules (�0) to (�EA) on the information layer. We
now describe the additional object layer rules.

Key testing accounts for an actor knowing the key for decryption or signature veri-
fication of a message m, but not in the message’s context. Note that in this case, e.g.,
decryption rule (�EE) can not be used directly. The key testing rules allow an actor, as
in the deductive system on information, to try out on m any key he knows. If he uses a
key with the correct contents, then he learns that it is the decryption (�TA), (�TE) or
signature verification (�TS) key. (Then, he can decrypt using (�EE) or (�EA).) Note
that in an implementation, to decide whether (�T*) can be applied, we only need to
check the existence of a derivable content equivalent key, regardless of its context layer
representation. For this, standard deduction techniques at the content layer suffice.

Example 2. Let Ca = {E′
k(goods)|π· , l|ρ· } be the set of messages known by an actor a,

with k|π· .= l|ρ· . Then Ca � goods|π· can be deduced as follows:

(�0)
Ca � E′

k(goods)|π·

(�0)
Ca � E′

k(goods)|π·
(�0)

Ca � l|ρ·
(�TE)

Ca � k|π·
(�DE)

Ca � goods|π·

242 M. Veeningen, B. de Weger, and N. Zannone

Axiom
(�0) (m ∈ Ca) (�0)

Ca � m

Construction
(�C*)

Ca � m Ca � n
(�CC)

Ca � {m,n}
Ca � m

(�CH)
Ca � H(m)

Ca � m Ca � n
(�CE)

Ca � E′
n(m)

Ca � m Ca � k+

(�CA)
Ca � Ek+(m)

Ca � m Ca � k−
(�CS)

Ca � Sk−(m)

Elimination
(�E*)

Ca � {m,n}
(�EC)

Ca � m

Ca � {m,n}
(�EC’)

Ca � n

Ca � E′
n(m) Ca � n

(�EE)
Ca � m

Ca � Sk−(m)
(�ES)

Ca � m

Ca � Ek+(m) Ca � k−
(�EA)

Ca � m

Key
testing (�T*)

Ca � Ek+(m) Ca � k′−

(k− .
= k′−) (�TA)

Ca � k−

Ca � Sk−(m) Ca � k′+

(k+ .
= k′+) (�TS)

Ca � k+

Ca � E′
n(m) Ca � n′

(n
.
= n′) (�TE)

Ca � n

Content
analysis (�C)

Ca � m1 Ca � m2 Ca � n1 ((m1
.
= m2) ⇒ (m3

.
= m4);

n1 =m3∼m4 n2)
(�C)

Ca � n2

Fig. 3. Deductive system on context messages (Ca a set of context messages, m, mi, n, ni context
messages; k+/k− and k′+/k′− public/private key pairs, ⇒ as in Def. 2, n1 =m3∼m4 n2 means n1

and n2 are equal up to replacing m3 by m4 and vice versa)

The deduction models an actor testing whether l|ρ· is the decryption key for E′
k(goods)|π·

(�TE). By learning it, the actor can decrypt the message (�DE). �
Content analysis lets an actor derive an unknown message from one context by con-
cluding that it has the same contents as a known message from another. The statement
of the rule relies on the syntactic structure of messages, which we first elaborate on.

The syntactic structure of messages describes the way they are constructed using
cryptographic primitives. Primitives build up a message m given two (or, in the case
of the hash, one) messages n and n′: we define one to be the “left part” n = m@l and
the other to be the “right part” n′ = m@r. Recursively, every submessage of m has a
well-defined “position” in m:

Definition 1. Let m be a context message and z ∈ {l, r}∗. Then, m@z, the submessage
of m at z, is defined as follows: H(m)@l = m; {m, n}@l = m; {m, n}@r = n;
E′

n(m)@l = n; E′
n(m)@r = m; Ek+(m)@r = k+; Ek+(m)@r = m; Sk−(m)@r =

k−; Sk−(m)@r = m; m@z1...zn = ((m@z1)@...)@zn.

Note that for arbitrary context message m and z ∈ {l, r}∗, m@z may not be defined.
For instance, H(x)@l is defined (and equal to x), but H(x)@r is not.

If two context messages m1 and m2 are content equivalent, then the properties of
σ and τ imply content equivalence of their submessages. In particular, if m1@z and
m2@z are both defined, then they are content equivalent. Also, if m1@z = k+ and
m2@z = k′+, then not only k+ .= k′+ follows, but also k− .= k′−, and vice versa. The
following notation expresses this intuition:

Formal Privacy Analysis of Communication Protocols for Identity Management 243

Definition 2. Let m1, m2, m3, m4 be context messages. We write (m1
.= m2) ⇒ (m3

.=
m4), if m1

.= m2 and for some z ∈ {l, r}∗:

– m3 = m1@z, m4 = m2@z; or
– m1@z, m2@z represent public keys of which m3, m4 are the private keys; or
– m1@z, m2@z represent private keys of which m3, m4 are the public keys.

The “content analysis” inference rule (�C) then states that if an actor can derive m1 and
m2 such that (m1

.= m2) ⇒ (m3
.= m4), and he can derive a message with m3 in it, he

can also derive the message with m3 replaced by m4, and vice versa.

Example 3. Let Ca = {H(id, age)|η1 , id|η2 , age|η3} be the set of messages known by ac-
tor a with id ∈ I, age ∈ D such that id|η1 .= id|η2 and age|η1 .= age|η3 . Ca � H(id, age)|η1
holds, and by (�CC), (�CH) we have Ca � H(id|η2 , age|η3). From this, a knows that
id|η1 .= id|η2 (as well as age|η1 .= age|η3). By (�C) he can then deduce id|η1 :

(�0)
Ca � H(id,age)|η1

...
(�CH)

Ca � H(id|η2 ,age|η3)
(�0)

Ca � id|η2
(�C)

Ca � id|η1
In the same way also Ca � age|η1 follows. �
There are two notable consequences of content analysis. First, if an actor knows a pub-
lic/private key pair in one context (ζ, k) and just the public key in another context (η, l)
then he can deduce the private key in (η, l). Second, an actor can link different profiles
of the same entity if he sees that the profiles share an identifier (see §4).

The feasibility of implementing the content analysis rule follows from two observa-
tions. First, we can safely assume that content analysis rules are the final steps (from
leaf to root) in a deduction tree, and that messages m1, m2 in (�C) have been deduced
without content analysis. Second, in (�C), n1

.= n2 holds. Thus, to decide whther a
given message n2 can be derived, one can first derive without using (�C) all messages
n1 content equivalent to n2, and then verify whether any n1 can be transformed step-
by-step to n2 using (�C).

3.3 Deduction on Object vs Information Layer

Given context messages Ca, one can perform object layer deduction and then apply σ to
the result; or one can first apply σ to Ca and then perform information layer deduction.
One proves easily that the first approach gives at least as much information as the sec-
ond, i.e., object layer deduction is at least as expressive as information layer deduction:

Proposition 1. Let Ca ⊂ Lc. Define Caσ := {xσ | Ca � x}; Ci
a := {x | σ(Ca) � x}.

Then, Ci
a ⊂ Caσ. Conversely, Ci

a ⊃ Caσ holds for all Ca iff τ is injective on Li.

Note that object layer deduction is strictly more expressive than information layer de-
duction when τ is not injective, i.e., when different pieces of information have the same
contents. This condition reflects a significant difference between IdM and other set-
tings: in IdM, it is likely to come across different pieces of information with the same
contents, whereas in other settings the kind of information that is usually considered –
nonces, keys, random values, etc. – can for the purposes of analysis be safely assumed
to have unique contents.

244 M. Veeningen, B. de Weger, and N. Zannone

4 Knowledge of Personal Information

In this section we define the view of an actor a, capturing his knowledge about personal
information. There are two aspects to this knowledge. First, what information the actor
knows, formalized by the set Oc

a ⊂ Oc of detectable context items. Second, which
context items he knows to represent information about the same entity, formalized by
the ↔a equivalence relation on Oc defining context items associable to each other.

An actor’s view follows from his sets Ca ⊂ Lc, Ec
a ⊂ Ec of known context messages

and entities. Associations between context items follow from properties of both σ and
τ . First, context items in one context are related, and so is the same entity in different
contexts (properties 3, 4 of σ). Second, context identifiers with equal contents are equal
(property 1 of τ). Thus, define↔a as the minimal equivalence relation onOc such that:

– For all e|ηk, e|ζl ∈ Ec: e|ηk ↔a e|ζl ; for all x|ηk, y|ηk ∈ Oc: x|ηk ↔a y|ηk
– If Ca � m1, Ca � m2, and (m1

.= m2) ⇒ (i1
.= i2) for i1, i2 ∈ Ic, then i1 ↔a i2.

Detectability of items follows from our deductive system: Oc
a = Ec

a ∪ Ica ∪ Dc
a, where

Dc
a = {d ∈ Dc | Ca � d} and Ica = {i ∈ Ic | Ca � i}. One may expect that e|ηk ∈ Ec

a and
e|ηk ↔a i|χl imply e|χl ∈ Ec

a, but, as can be seen later, we do need such a rule to define
the view as e|ηk and e|ηk will be known by the actor to be equivalent anyway.

Note that actors may associate items which they can not detect. In fact, because of
transitivity of ↔a, an actor knowing a relation between items he can not detect may
help him to establish a relation between items he can detect:

Example 4. Consider a set Ca = {{Eshakey|·(id|1), d|1}|η, {Eshakey|·(id|1), d′|1}|χ}
of messages known by actor a, where Eshakey|· (id|1)|η

.= Eshakey|·(id|1)|χ. Then,
id|η1 ↔a id|χ1 by condition 2 for ↔a (even though the actor can detect neither context
identifier). By condition 1 for ↔a and transitivity, d|η1 ↔a d′|χ1 follows. �
We simplify the representation of an actor’s knowledge by considering his known equiv-
alences ≡a, defined as follows: x ≡a y if x, y ∈ Oc

a, x ≡ y and x ↔a y.

Definition 3. Let a be an actor with set of known context messages Ca. Then, a’s view is
the structure M c

a = (Ec
a/ ≡a, Ica/ ≡a, Dc

a/ ≡a,↔a / ≡a) with ↔a / ≡a the canonical
equivalence relation on Oc

a/ ≡a.

5 Defining and Verifying Identity-Related Properties

In this section, we recap the identity-related properties defined in our previous work
[12], adapted to the three-layer model (see Table 1). Identity-related properties with
respect to an actor can be seen either as properties of a data item (i.e., on the information
layer), or of a context data item representing that data item (i.e., on the object layer).
For instance, anonymity of a context data item d with respect to an actor a means that d
is not associable by a to a context entity. However, there might be another, equivalent,
context data item that can be associated by a to a context entity.

We define identity-related properties for a data item d by considering the privacy
properties holding for all context data items that represent it; for example, d is anony-
mous if all its representations are. Note that for complete identifiability of a data item d,

Formal Privacy Analysis of Communication Protocols for Identity Management 245

Table 1. Identity-related properties with respect to actor a, defined for a context data item d
(middle column) and for a data item d (right column), where [d] := {d ∈ Dc | dσ = d}

Property Condition on d ∈ Dc Condition on d ∈ D
detectability (D) d ∈ Dc

a ∃d ∈ [d] : d is D
undetectability (UD) d /∈ Dc

a ∀d ∈ [d] : d is UD
identifiability (I) ∃e ∈ Ec

a s.t. d ↔c
a e ∃d ∈ [d] : d is I

pseudo-identifiability (PI) ∃i ∈ Ica s.t. d ↔c
a i ∃d ∈ [d] : d is PI

complete identifiability (CI) ∃e ∈ Ec
a, i ∈ Ica s.t. d ↔c

a e ∧ d ↔c
a i ∃d ∈ [d] : d is CI

anonymity (A) d /∈ Dc
a, or ∀e ∈ Ec

a : d �↔ c
ae ∀d ∈ [d] : d is A

pseudonymity (PA) ∀e ∈ Ec
a d �↔ c

ae and ∀d ∈ [d] : d is A ∧
∃i ∈ Ica s.t. d ↔c

a i ∃d ∈ [d] : d is PI
complete anonymity (CA) d /∈ Dc

a, or ∀e ∈ Ec
a d �↔ c

ae ∀d ∈ [d] : d is A
and ∀i ∈ Ica d �↔ c

ai ∧d is not PI
linkability (L) (to d′/d′) d ↔a d′ ∃d′ ∈ [d′] : d ↔a d′

linkability (UL) (to d′/d′) d �a d′ �d′ ∈ [d′] : d ↔a d′

we require that the same representation of d is both identifiable and pseudo-identifiable;
the other properties are obvious. The method developed in the previous sections then
allows one to verify identity-related properties in the following three steps:

– Step 1: Using the deductive system, determine the detectable context items.
– Step 2: Determine associable context items, and thus the actor view.
– Step 3: From the actor view, check which properties are satisfied.

6 Case Study: TAS3 Attribute Aggregation

In this section, we demonstrate our approach by analyzing the TAS3 attribute aggre-
gation infrastructure [16]. We demonstrate how our approach can be used to verify
whether the privacy properties for which it was designed do indeed hold. To be able
to check for linkability between different executions, we analyze two executions of the
protocol involving the same actors. The results also hold for more than two executions.
The analysis leads to some recommendations for improvements to the system.

6.1 TAS3 Attribute Aggregation

The TAS3 project (http://tas3.eu) is a research project aiming to create an archi-
tecture for on-line services based on personal information. Here we focus on the TAS3

attribute aggregation infrastructure, in which a service provider (SP) collects from dif-
ferent identity providers (IdPs) personal information about a user requesting a service.
A main feature of the infrastructure is the linking service (LS), which links the different
identifiers of the user at different IdPs, alleviating the need for global user identifiers.

The attribute aggregation infrastructure is described at high level in [2,15,16], and
the concrete message formats are described in [17]. These message formats are based
on open standards: notably, SAML 2.0 [18] and Liberty ID-WSF 2.0 [19].

The infrastructure aims to guarantee a number of privacy properties [2,16]. First, the
SP wants “strong cryptographic evidence that each of the [attributes] does belong to

http://tas3.eu

246 M. Veeningen, B. de Weger, and N. Zannone

the user who has initiated the session” (P1). Second, “none of the user’s [IdPs should]
know about any of the user’s other ones” (P2). Third, “the [LS should] not know who
the user is, or what identity attributes [he has]” (P3). Finally, “the [SP should not be
able to] relate visits of the user together” (P4).

In our case study, we consider one user with attributes at two different identity
providers (IdP1 and IdP2), who wishes to access a service from one SP twice. Thus,
the same attribute aggregation process takes place twice. The process begins after IdP1
has authenticated the user. IdP1 informs the SP that the user has been authenticated, pro-
vides the SP with the value of the user’s attribute at IdP1, and refers the SP to the LS.
The SP contacts the LS, who refers him to IdP2. Finally, the SP requests and receives
the value of the user’s attribute at IdP2.

6.2 Formalization

Our formalization of attribute aggregation is depicted in Fig. 4. Fig. 4(a) shows the
messages exchanged in an instance of the attribute aggregation protocol. Fig. 4(b) shows
the information layer. The user has profiles at IdP1 and IdP2 consisting of one attribute
and one identifier. Also, the LS shares an identifier of the user with each of the two
IdPs. Each communicating party (SP, LS, IdP1, IdP2) has a private/public key pair and
a public identifier. Finally, the protocol instances use four nonces in total.

Fig. 4(c) displays the actors’ knowledge in the object layer before attribute aggrega-
tion. The LS, IdP1 and IdP2 know the aforementioned information about the user in a
context corresponding to some entry in their respective databases: say |λ21, |ι7, and |π3 .
They also know the public keys and identifiers of the other actors, and their own secret
key, in contexts corresponding to their roles in the system: |πSP, |πLS, |πIdP1, and |πIdP2. The
map σ linking these context items to information is straightforward. Fig. 4(d) shows the
messages known by each actor after two instances of attribute aggregation. We assume
that each actor learns only the messages that he sent or received.

Finally, Fig. 4(e) formalizes the identity-related properties we previously introduced
informally. Note that P2 and P3 are at the information layer, whereas P1 and P4, being
about linking copies from different contexts, are at the object layer.

For the construction of our model, the high-level protocol descriptions from [2,16]
were detailed enough. However, some lower-level aspects can be considered for ex-
tended analysis. First, the communication channels used in the protocol are all en-
crypted, which one could explicitly model. Second, in an implementation, the role
of IdP2 would be performed by two logically different parties: a “discovery service”
and an “attribute authority”, so the communication would be more complex than we
sketched. Third, the actual messages may contain information such as timestamps that
ensure message portions from one context can not be re-used in another context.

Our formalization of the properties of the architecture differs slightly from their natu-
ral language descriptions in two ways. First, P1 mentions “strong cryptographic proof”,
suggesting that it is interesting to model the assurance an actor has about correctness
of information he learns. In our previous work [12], we introduced notions of “prov-
ability” and “deniability” that could be used, but the present analysis method does not
cover them. Second, P2 can have a stricter interpretation; that is, IdP1 should not even
know whether or not the user has a profile at IdP2, and vice versa. However, in [15],

Formal Privacy Analysis of Communication Protocols for Identity Management 247

IDP 1 → SP m1 = Sk−|IDP1
(isess|U, didp1|U, {i|LS, Ek+|LS

(iidp1,ls|U, n|·)})
SP → LS m2 = {Ek+|LS

(iidp1,ls|U, n|·)}), m1}
LS → SP m3 = {i|IDP2 , Ek+|IDP2

(iidp2,ls|U, n′|·)}
SP → IDP 2 m4 = {Ek+|IDP2

(iidp2,ls|U, n′|·), m1}
IDP 2 → SP m5 = Sk−|IDP2

(isess|U, didp2|U)

(a) Protocol description

k�sp
u

is,2il,2

betw.
(ids

LS,

i1
i2

il,1

d1 d2
nonces n1, n2, n3, n4

isp

k�sp

sp

(private/public key)

ils

k�ls

ls
k�ls

(private/public key)
k�idp1

idp1
k�idp1

(private/public key)

iidp2

k�idp2

idp2
k�idp2

(private/public key)

(public (public iidp1
(public (public

identifier)identifier) identifier) identifier)

(identifiers at LS, IDPs)

IDPs)

is,1

(session
ids)

(attributes)

(b) Information layer

C0
sp = Cpub ∪ {k−|πSP}, C0

ls = Cpub ∪ {k−|πLS, ip|λ21, is,1|λ21, is,2|λ21},

C0
idp1 = Cpub ∪ {k−|πIDP1 , ip|ι7, is|ι7, d|ι7},C0

idp2 = Cpub ∪ {k−|πIDP2 , ip|ι′2 , is|ι′2 , d|ι′2 },
with Cpub = {k+|πSP, i|πSP, k

+|πLS, i|πLS, k
+|πIDP1 , i|πIDP1 , k+|πIDP2 , i|πIDP2}.

(c) Object layer: initial knowledge

Csp = C0
sp ∪ {{m1, m2, m3, m4, m5}|π,1, {m1, m2, m3, m4, m5}|π,2},

Cls = C0
ls ∪ {{m2, m3}|π,1, {m2, m3}|π,2}, Cidp1 = C0

idp1 ∪ {m1|π,1, m1|π,2},
Cidp2 = C0

idp2 ∪ {{m4, m5}|π,1, {m4, m5}|π,2}
(d) Object layer: knowledge after two instances (π, 1), (π, 2) of attribute aggregation

– P1: copies of d1, d2 in same context detectable and linkable w.r.t. SP
– P2: i2, d2 undetectable w.r.t. IdP1; i1, d1 undetectable w.r.t. IdP2
– P3: i1, i2, d1, d2 undetectable, all items of interest related to user anonymous w.r.t. LS
– P4: copies of d1, d2 from different contexts unlinkable w.r.t. SP

(e) Goals for actor knowledge

Fig. 4. Formal model of TAS3 attribute aggregation

it is specified that this interpretation does not hold for IdP2 w.r.t. IdP1. To capture this
interpretation, in general, one would need to define an actor’s knowledge about the
knowledge of another actor, which is not possible in our model. Accordingly, our inter-
pretation is really less strict: if the architecture does not satisfy our version of P2, then it
also does not satisfy the strict version; however, the opposite implication does not hold.

6.3 Formal Analysis and Discussion

We follow the three steps outlined in Section 5 to check whether the properties in
Fig. 4(e) hold in the formal model in Figs. 4(a)–4(d). Our results have been obtained
using a Prolog implementation of the deductive system. First we check the properties
about the SP’s knowledge: P1 and P4. Step 1 gives Csp � didp1|π,1

U and Csp � didp2|π,1
U ,

and step 2 gives didp1|π,1
U ↔sp didp2|π,1

U . Because didp1|π,1
U σ = d1 and didp2|π,1

U σ =
d2, the copies of d1, d2 in (π, 1) are detectable and linkable w.r.t. the SP. The same

248 M. Veeningen, B. de Weger, and N. Zannone

applies to the copies in (π, 2). Thus, P1 holds. For P4, we need to check that items from
different contexts are unlinkable w.r.t. SP, i.e., didp1|π,1

U ↔sp didp1|π,2
U can not be de-

rived in step 2. Indeed the link cannot be made, so TAS3 attribute aggregation satisfies
P4. Note that this conclusion crucially depends on the nonces being different between
protocol instances. Note also that these properties depend on linking and distinguishing
information instances and so they cannot be verified using standard deductive systems.

On the other hand, P2 and P3 do not hold: both LS and IdP2 can detect the objects
didp1|π,∗

U (with ∗ ∈ {1, 2}) representing the information d1. This is due to message
m1, representing the authentication assertion signed by IdP1, being included in the
messages from the SP to the LS and IdP2. However, undetectability of i1, i2, and d2

and anonymity of these items w.r.t. the LS do hold. As in [15], we see that the stricter
interpretation of P2 that we discussed earlier does not hold: indeed, IdP2 receives an au-
thentication assertion about the user which it knows it has been signed by IdP1. Finally,
note that all parties involved in the protocol learn the session identifiers is,1 and is,2

in the process. In particular, if IdP1 and IdP2 collude, then from their known messages
they can link their user profiles — again a conclusion of studying relations between
personal information that standard deductive systems cannot express.

Our analysis leads to two recommendations on how privacy in TAS3 attribute aggre-
gation may be improved. First, the SP should not forward the attribute d1 from IdP1
to the LS and IdP2. However, implementing this is difficult. Indeed, according to the
TAS3 attribute aggregation requirements, the LS and IdP2 should receive a signed au-
thentication assertion from IdP1 to be sure that the user did actually authenticate. In
the standards used in TAS3, the attribute value is part of that authentication assertion.
Therefore, a mechanism is desired that allows IdP1 to prove that the user has authen-
ticated without disclosing attribute values. Second, the problem of collision between
IdP1 and IdP2 should be avoided by not having a shared identifier between IdP1 and
IdP2, but this requires IdP2 to trust the LS that the user has indeed been authenticated.

7 Conclusion and Future Work

In this paper, we considered privacy in IdM by presenting a novel method for privacy
analysis of communication protocols. We presented a three-layer model of personal in-
formation and showed that it allows for an accurate representation of an actor’s knowl-
edge. We showed how to reason about this model using deductive methods, and how
to check which privacy properties hold after communication. We demonstrated the fea-
sibility of our approach by a) showing that existing deductive systems can be adapted
to our approach; b) proving that such an adaptation does not reduce the expressiveness
of the deductive system; and c) performing an case study which made it possible to
identify a number of privacy issues in the design of an existing IdM architecture.

This work provides several interesting directions for future work. First, we aim to
integrate our three-layer model and deductive system into a state transition system ap-
proach. This makes it possible to fully automate the protocol verification, and provides
opportunities for the development of tooling. The ability to model false information and
probabilistic knowledge of links provides an interesting connection to record linkage
theory [20]. Namely, it raises the question whether an entity can be identified (almost)

Formal Privacy Analysis of Communication Protocols for Identity Management 249

uniquely from a profile with data items that by themselves are not identifying. Another
extension to the model is to consider provability of links between pieces of informa-
tion. The signed authentication assertion from TAS3 attribute aggregate is an example
application for this; electronic payment systems are another. Finally, we are analyzing
a number of IdM systems and modeling additional cryptographic primitives they use.

References

1. Sommer, D. (ed.): PRIME Architecture V3. Version 1.0,
http://www.prime-project.eu/

2. Kellomäki, S. (ed.): D2.1 - TAS3 Architecture. Version 17, http://tas3.eu/
3. Scavo, T., Cantor, S. (eds.): Shibboleth Architecture: Technical Overview. Working Draft 02,

http://shibboleth.internet2.edu/shibboleth-documents.html
4. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus. In: Proc.

of CCS 1997, pp. 36–47. ACM (1997)
5. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans. Comput.

Syst. 8, 18–36 (1990)
6. Meadows, C.: Formal methods for cryptographic protocol analysis: emerging issues and

trends. IEEE Journal on Selected Areas in Comm. 21(1), 44–54 (2003)
7. Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols. Journal of

Computer Security 6(1-2), 85–128 (1998)
8. Bella, G., Paulson, L.: Kerberos Version IV: Inductive Analysis of the Secrecy Goals. In:

Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS,
vol. 1485, pp. 361–375. Springer, Heidelberg (1998)

9. Delaune, S., Ryan, M., Smyth, B.: Automatic verification of privacy properties in the applied
pi calculus. In: Trust Management II. IFIP AICT, vol. 263, pp. 263–278. Springer, Heidelberg
(2008)

10. Aziz, B., Hamilton, G.: A Privacy Analysis for the π-calculus: The Denotational Approach.
In: Proc. of SAVE 2002, Copenhagen, Denmark (July 2002)

11. Brusò, M., Chatzikokolakis, K., den Hartog, J.: Formal Verification of Privacy for RFID
Systems. In: Proc. of CSFW 2010, pp. 75–88. IEEE (2010)

12. Veeningen, M., de Weger, B., Zannone, N.: Modeling Identity-Related Properties and Their
Privacy Strength. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561,
pp. 126–140. Springer, Heidelberg (2011)

13. Clarke, E., Jha, S., Marrero, W.: Using state space exploration and a natural deduction style
message derivation engine to verify security protocols. In: Proc. of ICPCM 1998, pp. 86–106.
Chapman & Hall, Ltd., Boca Raton (1998)

14. Ramsdell, B., Turner, S.: Secure/Multipurpose Internet Mail Extensions (S/MIME) Version
3.2: Message Specification. RFC 5751 (2010)

15. Chadwick, D., Inman, G.: Attribute Aggregation in Federated Identity Management. IEEE
Computer 42(5), 33–40 (2009)

16. Chadwick, D. (ed.): Design of Identity Management, Authentication and Authorization In-
frastructure. Version 2.1.1, http://tas3.eu/

17. TAS3 Protocols, API, and Concrete Architecture. Version 10, http://tas3.eu/
18. Cantor, S., Kemp, K., Philpott, R., Maler, E. (eds.): Assertions and Protocols for the OASIS

Security Assertion Markup Language (SAML) V2.0. OASIS Standard, (March 15, 2005),
http://saml.xml.org/saml-specifications

19. Hodges, J., Kemp, K., Aarts, R., Whitehead, G., Madsen, P. (eds.): Liberty ID-WSF SOAP
Binding Specification. Version 2.0, http://projectliberty.org/

20. Fellegi, I., Sunter, A.: A Theory for Record Linkage. Journal of the American Statistical
Association 64(328), 1183–1210 (1969)

http://www.prime-project.eu/
http://tas3.eu/
http://shibboleth.internet2.edu/shibboleth-documents.html
http://tas3.eu/
http://tas3.eu/
http://saml.xml.org/saml-specifications
http://projectliberty.org/

Load Time Security Verification�

Olga Gadyatskaya, Eduardo Lostal, and Fabio Massacci

DISI, University of Trento, Italy
{surname}@disi.unitn.it

Abstract. Modern multi-application smart cards can be an integrated
environment where applications from different providers are loaded on
the fly and collaborate in order to facilitate lives of the cardholders. This
initiative requires an embedded verification mechanism to ensure that all
applications on the card respect the application interactions policy.

The Security-by-Contract approach for loading time verification con-
sists of two phases. During the first phase the loaded code is verified to
be compliant with the supplied contract. Then, during the second phase
the contract is matched with the smart card security policy. The paper
focuses on the first phase and describes an algorithm for static analy-
sis of the loaded bytecode on Java Card. The paper also reports about
implementation of this algorithm that can be embedded on a real smart
card.

1 Introduction

Multi-application smart cards are an appealing business scenario for both smart
card vendors and smart card holders. Applications interacting on such cards can
share sensitive data and collaborate, while the access to the data is protected
by the tamper-resistant integrated circuit environment. In order to enable such
cards a security mechanism is needed which can ensure that policies of each
application provider are satisfied on the card. Though a lot of proposals for
access control and information flow policies enforcement for smart cards exist
[2], [9], [10], [12], they fall short when the cards can evolve. The scenario of
a dynamic and unexpected post-issuance evolution of a smart card in the field,
when applications from potentially unknown providers can be loaded or removed,
is novel and not yet treated comprehensively.

For a dynamic scenario, traditionally, run-time monitoring is the preferred
solution. But smart cards do not have enough computational capabilities for
implementing complex run-time checks. Thus the proposal to adapt the Security-
by-Contract approach (initially developed for mobile devices [4]) for smart cards
appeared. In the Security-by-Contract (S×C) approach each application supplies
on the card its contract, which is a formal description of the application behavior.
The contract is verified to be compliant with the application code, and then the
system can ensure that the contract matches the security policy of the card.

� Work partially supported by the EU under grant EU-FP7-FET-IP-Secure Change.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 250–264, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Load Time Security Verification 251

The S×C framework deployed on the card consists of two main components
integrated with the card manager. These two components are the ClaimChecker
and the PolicyChecker. The ClaimChecker performs extraction of the contract and
verifies that it is compliant with the application code. Then the PolicyChecker
ensures that the security policy of the card is compliant with the contract. This
component is also responsible for updating the security policy after each evo-
lution of the card and maintaining it across updates. A proof-of-concept imple-
mentation of the PolicyChecker component is described in [3]. The PolicyChecker
prototype was developed in a form of an application installable and runnable
on a smart card, thus this prototype demonstrated feasibility of the embedded
PolicyChecker implementation.

The loading time verification mechanism for secure application interactions
requires a careful investigation of multi-application smart card platforms. We
have chosen to focus on the Java Card technology as one of the current leaders
for open multi-application smart cards implementation. We present in Section 2
a brief overview of this technology and then we outline the S×C solution for Java
Card (Section 2.2) emphasizing the changes to the platform. The Java Card
internals are discussed more deeply in Section 3. In this section we focus on
the loading process and the run-time environment. We then concentrate on the
application contracts in Section 4, discussing the contract can be created and
the mechanism to deliver it securely on the card.

In this paper we propose an algorithm for the ClaimChecker component of
the S×C framework for the Java Card technology (Section 5). The ClaimChecker
parses the bytecode loaded on the card, extracts the contract and compares it
with the actual code of the application. The ClaimChecker component is an intri-
cate part of the S×C framework, because its implementation requires access to the
loaded application code. We report about implementation of the ClaimChecker
algorithm in C. For on-card prototypes it is important that they have small
memory footprints. We therefore present the memory usage statistics (for EEP-
ROM and RAM) that demonstrates feasibility of the approach (Section 6). The
related work is discussed in Section 7 and we conclude with Section 8.

The main contributions of our current work are:

– The specification of the application contracts;
– The algorithm for the ClaimChecker component of the S×C framework;
– The implementation of the algorithm in C demonstrating that the algorithm

can be embedded onto an actual smart card chip.

2 The S×C Architecture for the Java Card Platform
Evolution

Java Card is a popular middleware for multi-application smart cards that allows
post-issuance installation and deletion of applications. Application providers de-
velop applets (Java Card applications) in a subset of the Java language. This
subset is object-oriented, but misses some traditional Java data types and fea-
tures. Full description of the Java Card language is provided in [11].

252 O. Gadyatskaya, E. Lostal, and F. Massacci

Fig. 1. The Java Card Architecture and the Loading Process

Currently smart cards in the field run on the Java Card version 2.2.2, thus
our proposal supports this version. Also a new specification for Java Card 3.0 is
published, but its developments are currently frozen due to, among all, security
concerns. However, the S×C approach we advocate in the future can be ported
also for the third generation of Java Cards.

2.1 The Java Card Platform Architecture and the Loading Process

Figure 1 presents the architecture of a chip with the Java Card platform installed
and the application loading process. The architecture comprises several layers
which include device hardware, an embedded operating system (native OS),
the Java Card run-time environment (JCRE) and the applications installed on
top of it [11]. Important parts of the JCRE are the Java Card virtual machine
(JCVM) (its Interpreter part) and the Installer, which is an entity responsible
for post-issuance loading and installation of applications.

Applets are supplied on the card in packages. The source code of a package
is converted by the application providers into class files and then (using a Con-
verter which is actually an off-card part of the JCVM) into a CAP file. The
CAP file is transmitted onto a smart card, where it is processed, linked and
transformed into a platform-specific executable format (defined by the platform
developer). Application providers do not need to consider different on-card ex-
ecutable formats, as they are just required to supply a correct (compliant with
the Java Card specifications) CAP file. Then, upon finalization of the linking
process, an applet instance is installed.

One of the main technical obstacles for the verifier running on Java Card
is unavailability of the application code (in a known format of a CAP file) for
reverification purposes after linking. Thus the application policy cannot be stored
within the application code itself, as the verifier will not have access to it later.

Load Time Security Verification 253

Applications on Java Card are separated by a firewall and the interactions
between applets from different packages are mediated by the JCRE. If two ap-
plets belong to different packages, their contexts are different, and the Java Card
firewall confines applet’s actions to its designated context. Thus, normally, an
applet can reach only objects belonging to its own context. The only applet’s
objects accessible through the firewall are methods of specific shareable inter-
faces, also called services. A shareable interface is an interface that extends
javacard.framework.Shareable.

If an application A implements some services, it is called a server. An ap-
plication B that tries to call any of these services is called a client. A typical
scenario of service usage starts with a client’s request to the JCRE for a ref-
erence to A’s object (that is implementing the necessary shareable interface).
The firewall passes this request to application A, which decides if the reference
can be granted or not. If the decision is positive, the reference is passed through
the firewall and is stored by the client for further usage. The client can now
invoke any method declared in the shareable interface which is implemented by
the referenced object. During invocation of a service a context switch will occur,
thus allowing invocation of a method of the application A from a method of
the application B. A call to any other method, not belonging to the shareable
interface, will be stopped by the Java Card firewall [11].

As all applet interactions inside one package are not controlled by the firewall
and due to the fact that a package is loaded in one pass (thus it is not possible
to load a malicious applet in one package with an honest one), we consider that
one package contains only one applet and there is an one-to-one correspondence
between packages and applications.

2.2 Security-by-Contract for Java Cards

The Security-by-Contract framework for smart cards provides an extension of
the Java Card architecture with two main components: the ClaimChecker and
the PolicyChecker. The loading time verification process is performed by these
components. Another addition to the platform is the Policy applet. The applet
appears due to the fact that only applications can allocate space in EEPROM
(mutable persistent memory), that is the only type of memory suitable to store
the security policy across updates. We have solved the issues of the application
code unavailability after linking by storing the security policy (that incorporates
each installed application policy) in a separate accessible Policy applet.

Figure 2 depicts the proposed architecture, the additions to the JCRE are in
long dashed rectangles. More details about the architecture and its implemen-
tation are given in Section 6.

This paper focuses on the ClaimChecker component, that is responsible for
contract-code matching. Thus only the application loading scenario is relevant
for the ClaimChecker, as during the application removal the code has already
been verified to be compliant with the contract. The workflow of the loading
scenario follows (only the actions relevant to the S×C process are listed):

254 O. Gadyatskaya, E. Lostal, and F. Massacci

Fig. 2. The Security-by-Contract Extended Architecture

1. New package B is loaded (CAP file is transmitted to the card, the Installer
receives it and saves into the modifiable memory);

2. The Installer retrieves the current security policy from the Policy applet and
invokes the ClaimChecker;

3. The ClaimChecker gets the contract from the CAP file and runs the verifica-
tion algorithm;

4. If the ClaimChecker succeeds, it invokes the PolicyChecker and sends it the
pointer to the contract;

5. The PolicyChecker gets the security policy and runs the contract-policy com-
pliance algorithm;

6. If the PolicyChecker succeeds, it communicates the update to the security
policy;

7. If the ClaimChecker and the PolicyChecker succeeded, B is linked and stored
in the persistent memory, and the card security policy is updated to include
its contract. Otherwise, B is rejected and removed from the memory.

The S×C framework verifies that the following two properties will be satisfied on
the card after any accepted change:

– Service Invocation Security: If an application A calls during its execution a
service s of an application B, then B has authorized A to access s in B’s
security policy;

– Available Functionality: If an application A declared that it needs a service
s of an application B in order to be functional, then the service s is indeed
provided by B.

Load Time Security Verification 255

The formal proof of these properties established on the Java Card platform
by the S×C framework relied on the fact of existence of a sound ClaimChecker
algorithm [6]. In fact, the ClaimChecker component is the corner stone of the S×C
framework, and it’s specification and implementation were the key tasks while
building the framework.

2.3 Threats to Validity of the SxC Approach

The S×C approach and the guarantees it provides are ensured with the certain
assumptions made. Obviously, soundness of the framework algorithms relies on
the correct implementation of the JCRE and the JCVM, and we assume they are
in full compliance with the specifications [11]. For the invoked services we rely
on the trustworthiness of the Compiler, that has to be compliant with the Java
type safety requirements. We also assume that the bytecode was not tampered
with after compilation and conversion.

For the provided services, we rely on the trustworthiness of the servers. Indeed,
in the S×C paradigm provision of a service requires a commitment to implement
the necessary shared object and to provide a correct object reference in response to
a request from any client. The server has to rely on the loading time verification by
the S×C framework and it should not use the access control mechanisms embedded
into the code. We also have to assume the correctness of the server implementation.

The S×C framework enforces access control for direct services usage. We would
like to mention that the current access control enforcement on Java Card is
embedded into the application code. Traditionally, the server will receive an
AID of the client requesting its service from the JCRE and check that this client
is authorized before granting it the reference to the object (that can implement
multiple services). Once the object reference is received, the client can access all
the services within this object and it can also leak the object reference to other
parties. The S×C framework checks the authorizations for each service access,
thus the object reference leaks are no longer a security threat.

3 The Java Card Internals

We now present the Java Card platform details that were used to build the
S×C framework and to guarantee the security it enforces. In order to realize the
application interaction scenario the client has necessarily to import the shareable
interface of the server and to obtain the Export file of the server, that lists
shared interfaces and services and contains their tokens. The server’s Export file
is necessary for conversion of the client’s package into a CAP file. In a CAP file
all methods are referred to by their tokens, thus during conversion from class
files into a CAP file the client needs to know correct tokens for services it invokes
from other applications. As shareable interfaces and Export files do not contain
any implementation, it is safe to distribute them.

Tokens are used by the JCRE for linking on the card similarly as Unicode
strings are used for linking in standard Java class files. A service s can be iden-
tified as a tuple 〈A, I, t〉, where A is a unique application identifier (AID) of the

256 O. Gadyatskaya, E. Lostal, and F. Massacci

package that provides the service s, I is a token for a shareable interface where
the service is defined and t is a token for the method in the interface I. Further
we will sometimes omit an AID and will refer to a service as a tuple 〈I, t〉.

We discuss now the CAP files and service invocation details used further in
the ClaimChecker algorithm. The JCRE imposes some restrictions on method
invocations in the application code [11]. Only the opcode invokeinterface
in the code allows to perform the desired context switch. Thus, in order to collect
all potential service invocations we need to analyze the bytecode and infer from
the invokeinterface instructions possible services to be called.

Opcode “invokeinterface nargs I t” has 3 (explicit) operands, as de-
fined in the JCVM specification [11, Sec. 7.5.54]. Operand nargs defines a num-
ber of invoked method arguments (plus 1), operand I provides an index in the
Constant Pool component where the structure at this index should correspond
to a reference to an interface class and operand t is an interface method token for
the method to be invoked. Meanwhile, the stack before execution of the opcode
invokeinterface nargs I t should contain on its top an object reference
R, followed on the operand stack by nargs−1 words of arguments.

Intuitively, while analyzing the code, we could try to track the object refer-
ences on the stack, thus inferring all possible objects of the server that could be
referenced by the applet during invokeinterface opcode execution. But un-
fortunately, it is only the server’s code that defines which objects it will provide
and to whom. It is even possible the server is not yet on the card when the client
is loaded (and it could never arrive). Thus our analysis can be only as precise as
the tokens provided in the client’s code.

4 Application Contract

Let A.s be a service s declared in a package A. The contract consists of two parts:
a claim and a policy. AppClaim specifies provided (Provides set) and invoked
(Calls set) services. We say that the service A.s is provided if applet A is loaded
and service s exists in its code. Service B.m is invoked by A if A may try to
invoke B.m during its execution. The AppClaim will be verified for compliance
with the bytecode (the CAP file) by the ClaimChecker.

The application policy AppPolicy contains authorizations for services access
(sec.rules set) and functionally necessary services (func.rules set). We say a service
is necessary if a client will not be functional without this service on board.
The AppPolicy lists applet’s requirements for the smart card platform and other
applications loaded on it.

Thus the application contract has the following structure: Contract =
〈AppClaim, AppPolicy〉, where AppClaim = 〈Provides, Calls〉 and AppPolicy =
〈sec.rules, func.rules〉.

A functionally necessary service for applet A is the one which absence on the
platform will crash A or make it useless. For example, a transport application
normally requires some payment functionality to be available. If a customer will
not be able to purchase the tickets, she would prefer not to install the ticketing

Load Time Security Verification 257

application from the very beginning. It is required that for every application A
func.rulesA ⊆ CallsA.

An authorization for a service access includes the package AID of the au-
thorized client (the format of an authorization will be discussed further). The
access rules have to be specified separately for each service and each client that
the server wants to grant access.

4.1 The Contract Delivered on the Card

Contracts can be delivered on the card within Custom components of the CAP
files. CAP files carrying Custom components can be recognized by any Java Card
Installer, as the Java Card specification requires.

Custom components require to have a tag and an AID. We have defined
the tag to be 0xC3 and the AID 0x010203040506C3 (but these can be easily
modified). These details of the Custom component and its length are listed in
the Descriptor component of the CAP file.

Table 1. Structure of the Custom component Containing Contract

contract {
u2 provides count
provides info provides[provides count]
u2 calls count)
calls infocalls[calls count]
u2 secrules count
secrules info secrules[secrules count] }

The scheme of the contract is illustrated in Table 1. The order of the contract
attributes is expected to be: Provides, Calls, sec.rules. Thus we just add the num-
ber of corresponding elements before each attribute. Elements of each attribute
have specifically defined structures (we use structures and naming that are sim-
ilar to the ones defined for CAP files [11], there u2 corresponds to 2 bytes). The
contract is just a byte array, but specifying structures corresponding to each
entry allows us to perform the contract extraction efficiently. More information
on the structures is available in the companion technical report [7].

Functionally necessary services are a subset of called services, thus we just
tag necessary services among the called ones. The value of specific funcrules tag
is set to 0x01 if the service should be listed in func.rules. Otherwise the tag value
should be 0x00.

4.2 Contract Population

Now we discuss how to populate the contract and embed it into the CAP file.
Following are the rules for contract population.

– Provided Services. A service is required to be listed in the Provides set if it is
a method of an interface extending Shareable. A service is listed in Provides

258 O. Gadyatskaya, E. Lostal, and F. Massacci

array as a pair 〈I, t〉, where I is the Export file token for shareable interface
and t is the Export file token for the method (1 byte each).

– Called and Functionally Necessary Services. An application provider should
list a service (belonging to another package) in the Calls set, if an invocation
of this service is present in the code of the applet. A service from a package
with AID XXX is listed in the contract as 〈XXX, I, t, funcrules tag〉, where
funcrules tag tags if this service is also functionally necessary or not. For
optimization purposes, the Calls set is then restructured to separate services
provided by different servers. The AIDs are space-consuming objects (can
take up to 16 bytes) and avoiding their repetitions where possible can bring
significant space savings.

– Authorization Rules. An authorization rule is listed in the sec.rules set as a
pair containing the service details (defined as a provided service) and the
authorized client package AID. Thus the structure is the same as for a called
service, with a difference that no tag for functionality is needed: 〈AID, I, t〉.
Then the same optimization strategy as for called services is applied.

The CAP file is in fact a JAR archive with a known structure. In order to embed
the contract created by these rules and in compliance with the structure from
Table 1, our CAP modifier takes the CAP file generated with the standard Java
Card tools and appends the Contract Custom component within it, modifying
the Descriptor component accordingly (as the specification requires).

5 The Claim Checker Algorithm

The ClaimChecker component is responsible for verification of the contract and
the bytecode compliance. Thus it has to establish that the services from ProvidesA
exist in package A and the services from CallsA are indeed the only services that A
can try to invoke in its bytecode. The details of the service invocation instructions
were already discussed in Section 3. The goal of the ClaimChecker algorithm is
to collect for each invokeinterface opcode the method index t and the
Constant Pool index I. Then we can compare the collected set with the set
Calls of the contract. We emphasize that operands of the invokeinterface
opcode are known at the time of conversion into a CAP file and thus are available
directly in the bytecode. All methods of the application are provided in the
Method Component of the application’s CAP file, an entry for each method
contains an array of its bytecodes. Exported shareable interfaces are listed in
the Export component of the CAP file and flagged in the Class component. The
strategy for the ClaimChecker is to ensure that each service listed in the Provides
set is meaningful and no other provided services exist.

5.1 The Algorithm

The ClaimChecker Algorithm 5.1 processes the CAP file components in order of
appearance with a standard Installer, the comments on the steps of the algorithm

Load Time Security Verification 259

Require: A CAP file.
Ensure: True/False, Contract.
1: //Header Component: get the current package AID
2: byte CurrentPID[16] gets current package AID;
3: // Import Component: get package AIDs of imported packages
4: add 〈imported package ID, internal imported package token (index in the current

array)〉 to ImportedPackages;
5: // Constant Pool Component: get imported interfaces
6: for all elements of the Constant Pool array of the type class ref do
7: if the high bit equals to 1 then
8: add 〈imported package token, external class or interface token, internal class

or interface token (index in the current array)〉 to ImportedInterfaces;
9: // Method Component: parse bytecode of the methods to identify called services
10: for each method of the methods[] array do
11: if invokeinterface X Y Z opcode is in the method then
12: add 〈internal token of the interface, external token of the method〉 to

InvokedServices;
13: // Export Component: get tokens of shareable interfaces
14: for i = 0 to class count do
15: add 〈offset into the Class component, external interface token〉 to

ExportedInterfaces;
16: // Descriptor Component: get external tokens of provided services
17: for i = 0 to classes count do
18: if classes[i] has a flag ACC INTERFACE = 0x40 AND exists 〈int offset, I〉 ∈

ExportedInterfaces such that int offset = classes[i].this class ref then
19: // This interface is shareable and its external token was collected
20: for all methods of this interface do
21: add 〈external interface token, method token〉 to ListedServices;
22: // Custom Component: get Contract
23: for j = 0 to provides count do
24: add 〈external interface token, external method token〉 to ContractProvides;
25: for j = 0 to calls count do
26: add 〈external interface token, external method token, AID〉 to ContractCalls;
27: if funcrules tag = 0x01 then
28: add 〈external interface token, external method token, AID〉 to

ContractFuncrules;
29: for j = 0 to secrules count do
30: add 〈external interface token, external method token, AID〉 to

ContractSecrules;
31: // The Final Check: return true iff the collected sets match with the Contract
32: Check of called services: construct the same structure as in the contract and check

for mutual inclusion
33: for each 〈I, t, AID〉 ∈ ContractCalls do
34: add 〈I, t, P 〉 to CALLS such that 〈P,AID〉 ∈ ImportedPackages;
35: for each 〈P, I, cpt〉 ∈ ImportedInterfaces and 〈cpt, t〉 ∈ InvokedServices do
36: add 〈P, I, t〉 to CALLS1;
37: if CALLS1 	= CALLS then
38: return False;
39: else
40: // Check for provided services: all services in ContractProvides set have valid

interface and method tokens
41: if ContractProvides 	= ListedServices then
42: return False
43: else
44: return {True, CurrentPID, Contract}

260 O. Gadyatskaya, E. Lostal, and F. Massacci

are inlined. The presented algorithm is a script for an actual implementation
of the ClaimChecker. The received CAP file is a byte array, but it is structured
accordingly to the CAP file specification [11]. Thus the algorithm refers directly
to items (fields) of the structures defined in the CAP file specification, such
as CONSTANT Classref info structure or Interface info structure. The algorithm
also uses variable-length arrays and arrays of tuples, that do not exist on a smart
card. The actual implementation explores just constant-length byte arrays. The
function offset(b) is used in the algorithm, that serves as a pointer and returns
a structure S which is provided at the given offset b.

Soundness of the algorithm for the service invocation security (in assumption
of a correct JCRE implementation) follows from the fact that only invokeinterface
opcode allows the JCRE to switch the context, thus any application can only
use this opcode to invoke services. Thus the ClaimChecker will accept only the
applications that have declared the invoked services set Calls honestly. We discuss
the soundness proof in more details in the companion technical report [7].

6 Implementation of the Claim Checker

We have implemented full S×C prototype in C, as it is a standard language for
smart card platform components implementation. In this section we will give
an overview of the prototype architecture and implementation details, and then
we will focus on the ClaimChecker component implementation and present the
memory usage statistics.

The main C components of the S×C prototype are:

SxCInstaller. This component is an interface with the Installer. SxCInstaller
calls the ClaimChecker that in a positive case (contract and bytecode are
compliant) will return the address of the contract in the Contract Custom
Component of the CAP file being loaded. The SxCInstaller also comprises
(for memory saving reasons) the PolicyChecker component. Any negative re-
sult either in the ClaimChecker or PolicyChecker algorithms or errors during
parsing of the CAP file are propagated as false to the SxCInstaller, that
returns a boolean to the Installer.

ClaimChecker. This component is called by SxCInstaller. It carries out the
check for the compliance between the contract and the CAP file. The check
is carried out after parsing the CAP file. By means of the functions of the
CAPlibrary library for CAP file parsing on-card (discussed further), this com-
ponent gets the initial address of the components it needs from which it can
eventually parse the rest of the components. If the result is positive, the
ClaimChecker will return the address of the contract of the application in the
Contract Custom component. Any error during parsing or a negative result
from the ClaimChecker leads to return of null.

We now discuss the implementation of the proposed algorithm 5.1 in C. In order
to reduce the amount of RAM memory the prototype uses, instead of copying

Load Time Security Verification 261

parts of the CAP file (for example, the delivered contract) we operated with
the pointers to the corresponding parts of the CAP file. We have used a set of
functions to access the parts of CAP file components, calling it the CAPlibrary
library, assuming that for each component we can retrieve its location in the
card memory and its size. These functions belong to a standard functionality
of the Installer. As we did not have access to an actual smart card platform
implementation, we have implemented these functions in C for testing purposes,
but we do not include this implementation in the following memory statistics of
the prototype.

6.1 The Policy Checker and the Policy Applet Implementation

Due to the lack of space we do not report the details of the PolicyChecker imple-
mentation. However, we present the security policy data structures just to give
a flavor of this part of the system.

The security policy stored on the card consists of contracts of the currently
loaded applications. A contract in the form supplied on the card is a space-
consuming structure. Each AID can occupy up to 16 bytes. Therefore, a set of
sec.rules with authorizations given for, for instance, 8 applets can occupy up
to 144 bytes. We would like to save the space necessary for storing the secu-
rity policy while making the operations with the contracts (performed by the
PolicyChecker for contract-policy compliance check) faster. To do so we have
resolved to store the security policy on the card in a bit vectors format. The
current data structure for security policy assumes there can be up to 4 loaded
applets, each containing up to 8 provided services. Thus the security policy is a
known data structure with a fixed format, the bits are taking 0 or 1 depending
if the applet is loaded or the service is called/provided. This structure is called
Policy in Figure 2 (see the Policy applet structures). The amount of the loaded
applets can potentially be modified dynamically (if the 5th applet arrives).

The chosen security policy data structure requires the table on the card that
maintains correspondence between the number the applet gets in the on-card
security policy structure and the actual AID of the package, and between the
provided service token and the number of this service in the policy data structure.
We store this correspondence in the Mapping object. The other two objects that
are part of the on-card security policy are MayCall list and WishList list. The
MayCall list contains the potential future authorizations, necessary for a case
when a loaded application carries a security rule for some application not yet on
the card. These authorizations have to be stored on the card in the form they
were supplied (with the client’s AID), thus they are space-consuming objects.
The WishList object is a set of services that are called by applications but are
not yet on the card, because the server is not yet loaded, or because the current
version of the server does not provide this service. The WishList set maintains
the AIDs of the service providers and the services as tuples 〈I, t〉. Again, the
WishList entries are space-consuming, as they contain AIDs of desired packages.

The Policy applet has to communicate the security policy of the card to the
PolicyChecker component that will run the contract-policy compliance check.

262 O. Gadyatskaya, E. Lostal, and F. Massacci

This communication is currently implemented through the APDU buffer, that
is a common object for communication for all entities on the card. We have as-
sumed the size of the APDU buffer to be 255 bytes, as it is one of the standard
implementations. Thus the full security policy (the Policy, Mapping, WishList
and MayCall objects) has to fit within 255 bytes. That is why we have developed
such a small security policy object, which is enough to fit only 4 loaded applets,
and we have set restrictions on the number of authorizations in the MayCall
object and desired services in the WishList object. We are currently investigat-
ing if there are better means for communication (in both directions) of the C
components and the applets on the card that will allow us to implement a bigger
and dynamically scalable policy model.

6.2 Details of the Claim Checker Implementation Memory
Statistics

We now present an overview of the memory consumption by the ClaimChecker
prototype. The most important characteristics for an on-card component are
RAM and EEPROM consumption. EEPROM space is required to store the
prototype and the necessary data between the card sessions. RAM memory,
on the other hand, is used to store the temporary data while the verification is
performed. We can consider as an example of a modern smart card chip P5CT072
device from Philips Semiconductors [13]. The chip has 72 KB of EEPROM, 160
KB of ROM and 4608 bytes of RAM. Therefore, we can assume that the verifier
embedded on the card should occupy at most 20-30 KB of EEPROM.

As we cannot install the prototype on a card and measure its footprint in
the linked state, we explored two metrics for the EEPROM usage: the size of
the object files in C and the number of lines of code (LOCs). The ClaimChecker
prototype requires 6522 bytes (6.36 KB) to store the object files. The .c file of
the ClaimChecker contains 155 LOCs, and the .h file contains 7 LOCs.

RAM usage is also very important, as over-consumption of RAM by the pro-
totype can lead to the denial of service. The higher is the RAM consumption, the
less is the level of interoperability of the prototype, because some cards cannot
provide a significant amount of RAM for the verifier which has to run in the
same time with the Installer. We have used a temporary array of 255 bytes to
store the necessary computation data. 255 bytes is a small temporary memory
buffer which ensures the highest level of interoperability for the prototype.

7 Related Work

A plethora of works exist for verification of application interactions security on
Java Card. Ghindici et al [8] proposed an approach for the information flow
verification on small embedded systems. Each application gets a certificate with
the information flow signature of each method, and on device these signatures
are checked using the proof-carrying-code techniques. The expressive information
flow security properties captured the interactions of applications on the platform.

Load Time Security Verification 263

This approach is extremely powerful, but has not yet been demonstrated to be
implementable on Java Card.

A lot of papers were dedicated to the static scenarios, when all the applications
are known a priori and can be verified using off-card facilities [10], [9], [2], [12].
Dynamic scenarios were considered in [1] and [5]. Avvenuti et al [1] developed
the tool JBIFV that was similar to a bytecode verifier and could verify absence
of illicit information flows between Java applications. The drawback of this tool
in a dynamic scenario is that the applications have to be analyzed locally prior
being loaded on the card. Thus the card is not empowered with the ability to
make decisions itself.

In the work of Fontaine et al [5] the authors consider the same dynamic
scenario as we did and propose an on-card loading time verification approach
for transitive control flow policies that can control application collusuons. Their
algorithm performs verification while parsing the received CAP file. With respect
to [5] our work enforces less stronger policies. However, the S×C approach offers
greater flexibility than the transitive control flow policies proposed by Fontaine
et al. Indeed, as we have mentioned before, the application code after linking is
not available for reverification. Thus the approach by Fontaine et al, that makes
the policy compliance verification simultaneously while parsing the bytecode,
requires to store a significant amount of additional data related to the invoked
methods, what can be a prohibitive requirement for an on-card prototype.

8 Conclusions and Future Work

In the paper we have presented the ClaimChecker component of the S×C frame-
work for the Java Card-based smart cards. This component’s duty is to ensure
compliance of the applet’s contract with its code. The contracts are delivered
within the Custom component of the CAP file, and they list provided and called
services of the applets and the application providers’ policies. We have proposed
the structure of the contracts expected by the ClaimChecker in the notation
similar to the CAP file contents specification [11].

Once the CAP file is received the ClaimChecker invoked by the Installer com-
ponent on the card, extracts it and analyzes whether the contract is compliant
with the bytecode. Our focus is on the invoked services and we have presented
the sound algorithm that can capture the comprehensive list of the called ser-
vices and match it with the claimed list. The implementation of the algorithm
is straight-forward provided that one has access to a smart card platform imple-
mentation and knows the necessary APIs to access the CAP file contents.

For the future work we plan to validate the S×C framework implementation
within the Secure Change project with the help of Gemalto (an industrial partner
in the project). We have implemented the algorithm in C and the memory statis-
tics we have provided ensures that a proof-of-concept embedded implementation
is possible. Another interesting direction of the future work is richer contracts.
We believe that the perfect trade-off between verification time, richness of the
contracts and flexibility of the approach for evolution is yet to be found.

264 O. Gadyatskaya, E. Lostal, and F. Massacci

References

1. Avvenuti, M., Bernardeschi, C., De Francesco, N.: Java bytecode verification for
secure information flow. SIGPLAN Not. 38, 20–27 (2003)

2. Bieber, P., Cazin, J., Wiels, V., Zanon, G., Girard, P., Lanet, J.-L.: Checking secure
interactions of smart card applets: Extended version. J. of Comp. Sec. 10(4), 369–
398 (2002)

3. Dragoni, N., Lostal, E., Gadyatskaya, O., Massacci, F., Paci, F.: A load time Policy
Checker for open multi-application smart cards. In: Proceedings of the 2011 IEEE
International Symposium on Policies for Distributed Systems and Networks (2011)

4. Dragoni, N., Massacci, F., Naliuka, K., Siahaan, I.: Security-by-contract: Toward a
semantics for digital signatures on mobile code. In: López, J., Samarati, P., Ferrer,
J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 297–312. Springer, Heidelberg
(2007)

5. Fontaine, A., Hym, S., Simplot-Ryl, I.: On-device control flow verification for java
programs. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS,
vol. 6542, pp. 43–57. Springer, Heidelberg (2011)

6. Fontaine, A., Hym, S., Simplot-Ryl, I., Gadyatskaya, O., Massacci, F., Paci, F.,
Jurgens, J., Ochoa, M.: D6.3 Compositional technique to verify adaptive security
at loading time on device. SecureChange EU project public deliverable (2010),
http://www.securechange.eu

7. Gadyatskaya, O., Lostal, E., Massacci, F.: Load time security verification. The
Claim Checker. Technical Report DISI-11-471. On the web, at
http://eprints.biblio.unitn.it

8. Ghindici, D., Simplot-Ryl, I.: On Practical Information Flow Policies for Java-
Enabled Multiapplication Smart Cards. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 32–47. Springer, Heidelberg (2008)

9. Girard, P.: Which security policy for multiplication smart cards? In: USENIX
Workshop on Smartcard Technology. USENIX Association (1999)

10. Huisman, M., Gurov, D., Sprenger, C., Chugunov, G.: Checking Absence of Illicit
Applet Interactions: A Case Study. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 84–98. Springer, Heidelberg (2004)

11. Sun Microsystems. Virtual Machine and Runtime Environment. Java CardTM plat-
form. Specification 2.2.2, Sun Microsystems (2006)

12. Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verifica-
tion of a formal security model for multiapplicative smart cards. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 17–36. Springer, Heidelberg (2000)

13. Philips Semiconductors. P5CT072 Secure Dual Interface PKI Smart Card Con-
troller. On the web, at
http://www.usmartcards.com/images/pdfs/pdf-199.pdf

http://www.securechange.eu
http://eprints.biblio.unitn.it
http://www.usmartcards.com/images/pdfs/pdf-199.pdf

Preserving Location Privacy
for Continuous Queries on Known Route

Anuj S. Saxena, Mayank Pundir, Vikram Goyal, and Debajyoti Bera

Indraprastha Institute of Information Technology Delhi
New Delhi, India

{anujs,mayank09025,vikram,dbera}@iiitd.ac.in

Abstract. Protecting privacy in location based services has recently received
considerable attention. Various approaches have been proposed, ranging from
mix-zones to cloaking. Cloaking based approaches are ill-suited for continuous
queries, where correlation between regular location updates may disclose loca-
tion information. We consider the cloaking strategy with a modification to suit
continuous queries: skip location updates at some key positions. The objective is
to trade service availability at some locations in exchange of privacy at all times.
Considering the case where the entire path of the user is known in advance, we
show how to strategically decide these locations in a manner which is efficient,
and does not skip too many locations (compared to the optimum). Experimental
results show the validity and effectiveness of the proposed algorithm.

1 Introduction

Due to advances in mobile devices and wireless sensor technology, development of
applications for mobile devices has gained intensity in the last decade [15]. These ap-
plications range from traditional services like voice communication, internet access, en-
tertainment etc. to a new paradigm of services called as location based services(LBS):
services which depend on the identity and current spatio-temporal information of the
requesting user1. Services like navigation assistance, traffic/weather reports, locating
persons with common interest, friend finder, location based advertisements [7] are get-
ting popular among users and even gaining attention of commercial ventures.

Though location based services has proved very valuable for consumers, their re-
quirement to disclose identity and location information, as part of the service design,
opens a whole system of indirect surveillance, and can understandably cause widespread
privacy violations [2,18]. To prevent privacy leaks, various solutions have already been
proposed, such as location perturbation, location obfuscation using popular k-anonymity
[17] and/or l-diversity [12] models, mix-zone [5,16] etc. All these solutions are usually
based on client-server or p2p system architectures and they try to protect different sensi-
tive information like user identity, query and/or location. In this study, we aim to prevent
disclosure of location information of a user of LBS in a client-server environment.

Majority of the existing solutions were designed for snapshot queries – user request-
ing a service once in a while, but they may not work well if a user is querying (and hence

1 In this paper, location will be used to denote the combined spacio-temporal information, viz.,
at which place and at what time.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 265–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

266 A.S. Saxena et al.

sending location information) continuously. An adversary can correlate the sequence of
location updates (obfuscated or perturbed) sent by a user using sophisticated statistical
techniques to determine actual locations visited by the user. These types of indirect vi-
olations, which we refer to as privacy leaks, has motivated the research community to
design solutions for privacy preservation specific to continuous queries [8,19].

This paper studies the privacy preserving problem in a specific scenario where a
privacy module has advance knowledge of the complete path to be taken by the users.
We provide an affirmative answer to the privacy question in this setting: can the privacy
module use this path information to effectively provide a location based service without
compromising privacy in any way. The privacy module, for our case, is a logical entity;
it can run on the user device itself. It is often the case that a user knows his path of
travel well in advance; even otherwise, planning in advance for the sake of privacy is
not too demanding. Even if the privacy module is run by a third-party, and if path is not
available from a user, the module may be able to infer it from past traces.

There is always a tradeoff between privacy and service in any LBS, and it is not
apriori clear how to effectively use the complete path information to reduce privacy leak.
Our objective here is to guarantee complete privacy but with lower level of service, if
necessary. In this paper, we designed an efficient algorithm that, using complete path
information, determines locations in the path which should not be reported. Clearly,
service cannot be availed at these locations – we call these as hidden locations/moves
and denote these locations as ∗ in the user path – and the fewer they are, the better.

Consistent with best practices of security research, we assume that our adversary
has knowledge of the strategy used by the privacy module, including the policy for
obfuscation and hiding. We allow the adversary to guess any location on the path, but
on the other hand, require him to be 100% accurate.

Our main contribution is a novel algorithm to decide which locations are safe to
report without violating privacy, which we describe in Section 5 after describing the
necessary theoretical framework in Section 4. Experimental study of our algorithm with
respect to efficiency and optimality are described in Section 6. Some related work and
necessary background are discussed in Sections 2 & 3, respectively.

2 Related Work

Privacy for location-based services has attracted intensive research since the first work
of spatio-temporal cloaking proposed by Gruteser and Grunwald [11]. In this work, a
trusted middleware generalizes the spatial and temporal dimension of a user query by
using a notion of k-anonymity: the region reported by the user query should contain
atleast k users so that the requesting user is indistinguishable from other k-1 users.
Gedik and Liu [10] then proposed an algorithm called Clique-Cloak which implements
a personalized k-anonymity model, and determines a minimal cloak area that satisfies
the k-anonymity requirement. Thereafter Mokbel [9] proposed the Casper framework
which uses a grid based algorithm to determine the cloaking region and which optimizes
the cloaking area.

Specifically for location privacy, a lot of work has been done which anonymizes the
actual locations of a user using different notions of privacy [6,1,14]. However, all these

Preserving Location Privacy for Continuous Queries on Known Route 267

solutions address the issue of privacy for snapshot queries and are not well-suited for
location privacy in continuous queries.

An interesting solution was proposed by Beresford and Stajano [4] where they give
an identity-anonymization based solution that uses the concept called mixzone. Psuedo-
identities are assigned to users in a mixzone in a way such that no adversary can corre-
late a user who enters the mixzone to a user who leaves the mixzone with high proba-
bility. This work then has been extended for road network by Palanisamy and Liu [16]
where they point out many factors necessary to achieve the same objective and propose
different mixzone shapes and their effectiveness. All these works allow users to share
their actual location information only when they are not in mixzone.

There has also been some work on privacy in location-based services in the continu-
ous query setting [8,19]. The authors of [8] differentiate between query privacy (asso-
ciation between identity and query) and location privacy (association between location
and query); however, their solution effectively tackles the problem of query privacy.
In [19], the authors consider past visited locations (footprints) of the user as well as
trajectories of other users to anonymize the trajectory of the current user.

3 Background

In this section we describe the architectural framework used in this paper which is based
on the standard client-server model for location-based services [6]. In this model, pri-
vacy is preserved by using a privacy-preserving proxy service through which all queries
from users to service provider(s) are relayed.

Service Provider/Adversary (R): We denote the honest-but-curious location-based ser-
vice provider byR. We look uponR as the adversary because it may try to maliciously
infer (private) location information of users based on the information submitted to it. It
also knows the obfuscation and hiding strategies employed by the proxy. We make no
assumption on the computation and storage capacity of R, but that it does not have ac-
cess to background/contextual knowledge, including locality information about users’
past and future movements. This assumption is essential for this theoretical work be-
cause there can be no bound on the entire background knowledge possessed by any
person or service [13].

Users: For the continuous query case, a user avails service by sending a query request
periodically to the service which is received, modified and retransmitted by the proxy.
The request consists of the following parameters: a user id, current timestamp, location
information and query text (including other information needed to answer the query).
We will henceforth ignore query text and other information since we are only interested
in location privacy. We will also assume that every user uses an opaque user id which
reveals no information other than correlating multiple requests; it does not bring any
advantage in using different user ids since it has been shown that multiple requests in
short timespans using different user ids but by the same user can be correlated to deduce
that they belong to the same user [4]. This further allows us to drop the user id from
subsequent discussions since we will be always concerned with a single user.

268 A.S. Saxena et al.

Location Obfuscation Strategy: Now we describe the most crucial component for lo-
cation privacy in our setup. The location obfuscation strategy we use is the square-
encoding case described in [3]. It divides the entire region into square (rectangular)
regions which we call as blocks — these form our basic units of location i.e. any loca-
tion is represented by the containing block (we will interchangeably use location and
block to mean the same thing). The user is allowed to move from a block to any of the
eight neighboring blocks. For analytical reasons, we require the user to move at roughly
constant speed and report his location once in each block.

Square arrays of blocks are grouped in a regular fashion to create cells. Note that, the
layout of the blocks and cells is fixed and is known to everyone, includingR. Location
obfuscation is achieved by reporting the containing cell as the blurred region (instead
of the actual block); for example, reporting C00 as the region when the actual location
is the top-left block in Fig. 1. This is different from the k-anonymity based approaches
where the location and size depend on location of the users, number of neighbours, etc.

We denote the obfuscation function by G, i.e., the cell G(b) is reported for the lo-
cation b. Sequence of blocks taken by a user is called a path and is denoted by p, and
the corresponding sequence of regions obtained from privacy mechanism G is defined
as the cell-path. We denote a cell path by π. The i-th block of a path p is denoted by pi

and the length of a path, denoted by |p|, is the number of blocks in the path (similarly
for cell-path). We recognise the length of the current path as also the current time and
the i-th block as the block during time i (the first block is at time 1). A particular loca-
tion obfuscation strategy will depend on the size of the cells, and the layout of blocks
and cells. For a particular G, the number of blocks along any side of the cell has been
defined in [3] as stretch which we denote by σ.

D L

Long
LongLong

D

D

C00
0

1

14

10

13

C01

C20 C21 C22

C02 C04 C05

C24 C25C23

C03

28 29

p1

*1

*2 p2

p2p1

*

*1 *2

*

*

User A User B

User C

User D

User F

User G

User E

User H

Fig. 1. Location obfuscation with stretch 5

Privacy Preserving Proxy: The main goal of the proxy is to ensure that location pri-
vacy of its users is not violated at any point of time. Even though we discuss the proxy
separately, but it need not be a separate entity and could run on the user device itself.

Preserving Location Privacy for Continuous Queries on Known Route 269

With a location obfuscation strategy devised as given above, more than one path may
be obfuscated to one cell path, in which case, R may not be able to deduce which of
these is the actual path just given the cell path. Furthermore, if there are two or more
paths, say p and p′, which have the same obfuscated path and such that for some i in
their range, pi �= p′i, then R cannot even accurately deduce which was the i-th block of
the path. We require strong guarantees from the adversary, i.e., we say the i-th location
is disclosed or under attack if there is only one possible block for the i-th location given
the cell-path information – for other cases, the adversary cannot do any better than
random guessing2. We use the definition of privacy as given in [3] which is based on
these observations; we present relevant definitions below, suitably adapted, but please
refer to [3] for complete details.

Definition 1 (Privacy Preserving Path). We call a path p privacy preserving, if at all
time i ∈ [1, |p|] on the path, the ith move will not cause any disclosure (of the then
current or of any past locations).

We state one important lemma which can be proved easily using the results of [3] (proof
omitted).

Lemma 1. For a move at time t > σ+1, its effect, with respect to disclosure, is limited
to atmost last σ locations (including current).

Problem Definition: As mentioned earlier, we consider the scenario where the proxy
has advance knowledge of the complete path to be travelled by its users. Therefore, we
require every user to report the complete path information to the proxy before starting
their journey. The proxy pre-computes the locations which are critical for location pri-
vacy of the user, and accordingly advises the users to not avail service at these locations
which will be called as hidden locations (see Section 5.5 where the hidden locations
can be computed incrementally if a user wishes to extend his/her path). For the hidden
locations, no blurred region is reported, and we denote it by saying G(pi) = ∗ if pi

should be a hidden location.
The objective of this work is to find a privacy preserving path for a known user

path by not reporting some locations to the service provider. Therefore, it is essential
to compute which locations on a given user path should be marked hidden such that his
privacy is preserved as he travels along that path. Of course, it is desirable to have as
few hidden location as possible because a user would like to get service at maximum
locations. Observe that a brute-force solution to find the smallest set of hidden locations
will take exponential time (in the length of the path) since it has to check among all
possible set of hidden locations to see which ones are privacy preserving. We propose
a Rule Based (RB) approach (discussed in Section 5) to solve this problem which is a
more efficient scheme to determine which locations should be hidden for a given path
p such that G(p) is privacy preserving.

4 Theoretical Framework

In this section we develop a theory of attacks by characterising and classifying them
based on their properties.

2 We use the term attack to mean the same thing as disclosure in [3].

270 A.S. Saxena et al.

Properties: Following are the required properties of an attack a.

– a.attackType: It represents the type of a, namely D,L or Long.
– a.attackLocation: It represents the location where a took place. If multiple locations

are disclosed, then the last location is used.
– a.attackTime: It represents the time instant at which a happened.
– a.attackDistance: It represents the distance between a.attackLocation and

a.attackTime.
– a.attackSpan: It represents the shortest sequence of the moves which caused a. If

the attackspan is k, then truncating the path to the last k locations will still have the
attack in the exact same form.

– a.hideSpan: It represents the span of the hidden locations used to avoid a – this
depends on the particular hide policy employed.

Attacks are classified based on their ease of detection — detecting some leaks require
more resources than others.
D-Attack: D-attack happens due to the current move and the last move where both the
moves are in diagonally opposite cells and which discloses both the locations. As an
example, for User-A in Figure 1, right after the third move, the locations at the second
and the third moves become evident (block (9,4) at t2 and (10,5) at t3).
L-Attack: L-attack happens due to the current move and the last two moves where
each of the three is in a different cell (usually, in L shape) and which discloses the last
location. As an example, in Figure 1, the last three moves of User-B result into an L
attack and the attacker will know that the User-B was at block (10,9) at time t3.
Long-Attack: Any other type of leak is classified as a Long-attack. It normally requires
larger number of moves. As an example, in Figure 1, the movement of user-C results
into a long attack – after the t7-th move, it is possible to determine the location at time
t3 (block (5,6)),t4 (block (4,7)) and t5 (block (5,8)).

D-attack and L-attack are easier to detect as they happen due to the last few steps.
For this reason we name them as short attacks and use S to denote them. If the attack
happened with move t, then the attack span for D-attack and L-attack are [t− 1, t] and
[t−2, t], respectively, which can be easily verified manually. However, detecting Long-
attacks requires more effort and, in fact, its attack span, when attack happens in the tth

move, is [t − σ − 1, t]. This is because of three facts from [3]: (1) attackLocation is
always at boundary (2) attacks happen when crossing boundary (3) the path to which
an attack belongs, must be shortest between the boundary blocks of that path in the
cell containing the attack. As a result, any Long attack involves crossing two parallel
boundaries, and the attack span includes the part of the path cutting across these two
boundaries, which gives the above mentioned attack span as an upper bound.

Next, we consider the path provided by the user and consider the sequence of attacks
it may have. We denote the user path by uPath and an attack sequence of uPath
denotes one or more attacks in it in order of time. We denote attack sequences byA,A′

etc. A complete attack sequence of uPath, denoted by C , represents all the attacks in it.
As an example, consider User-D in firgure 2. In his uPath of length 10, second location
gets revealed at t3 (L-attack), third location gets revealed at t4 (L-attack), seventh, and
eight locations gets revealed at t9 (Long and L attack respectively) and ninth and tenth
location gets revealed at t10 (D-attack). Therefore his complete attack sequence, C is

Preserving Location Privacy for Continuous Queries on Known Route 271

D

D

L

Long Long

Long Long

L

L

L

Long

Long L
L

L
D

D

C00
0

1

14

10

13

C01

C20 C21 C22

C02 C04 C05

C24 C25C23

C03

28 29

User A User B

User C

User D

User E

Fig. 2. Attacks in User’s path in Disjoint Square Encoding of stretch 5

L ·L ·Long ·L ·D. For a uPath there is a unique C but there can be more than one user
paths having same C . As an example, User-E in Figure 2 has a different uPath than
User-D but the same C . An attack sequenceA′ is said to be an attack subsequence ofA,
denoted by A′ � A, if all the attacks in A′ are in A and have same order of occurrence
in both. Two attacks in an attack sequenceA are said to be consecutive, if there does not
exist any attack subsequence ofA in between them. There can be any number of moves
in between any two consecutive attacks which might play a role in defining the rules to
hide them. If necessary, we write the number of moves in between any two consecutive
attacks with the first attack. For example, consider two consecutive attacks as a1 and
a2 having k moves in between then we write it as (a1 + k) · a2. For User-E in Figure 2
attack subsequence corresponding to first four moves can be written as (L + 1) · L.

Definition 2 (Hiding policy). A hiding policy is a well defined procedure to hide some
locations in uPath in order to avoid an attack sequence in it.

4.1 Hiding Policy of Rule Based Approach

In the next section, we present our novel hiding policy which is based on the follow-
ing observation. Short attacks are easy to hide – just by observation, individual D and
L attacks can easily be circumvented by hiding one or two specific locations for each
case. Even individual long attacks can be easily avoided on a case-by-case basis. There-
fore, if the attacks were only short, and few and far between, then we can consider each
short attack in tandem, and handle them individually. On the other hand, if one move
is involved in multiple attacks, then it may be possible to reduce the number of hid-
den locations by cleverly choosing a smaller set of (common) locations; but more than
that, there are scenarios in which the adversary, using his knowledge of the hiding pol-
icy, may be able to infer some common locations if multiple related attacks are handled

272 A.S. Saxena et al.

individually. Our strategy for these is to merge/transform a few consequtive attacks, in
a way, so that their hiding properties remain unchanged, and at the end we are left with
only a few sparse attacks – which we can comfortably handle. We present the necessary
definitions for this approach in the rest of this section.

Definition 3 (Separated attacks). For a given hiding policy two consecutive attacks,
say a and a′, in an attack sequence are called separated, denoted by a‖a′, if hiding one
attack does not hide the other attack.

Our hiding policy treats separated attacks by individually hiding them. If L and L′ are
hidden locations of uPath necessary to hide attacks a and a′ respectively, then the
hidden locations for hiding a‖a′ is L ∪ L′.

Definition 4 (Separation normal form). For a given hiding policy, an attack sequence
is said to be in separation normal form, denoted by ASNF , if all the attacks in the
sequence are separated.

Definition 5 (Hide Equivalent). Two attack subsequences A and A′ for uPath s.t.
A′ � A are said to be hide equivalent, denoted as A ∼h A′, if under the hiding policy
hiding A′ also hides A.

The important property to observe is that hide equivalence is transitive.

5 Rule Based (RB) Approach

One obvious way to obtain a set of hidden locations is to check for all possible locations
in uPath in a brute-force manner. As we show later in Section 6, this method takes too
long time even for paths of modest lengths. Therefore, we came up with a set of rules,
and devised an efficient procedure which allows the proxy to process the attacks in
uPath and return a privacy-preserving path. The steps of the procedure are given next,
and described in detail in the rest of this section.

1. Generate the complete attack sequence C from uPath.
2. By repeatedly removing non-separated attacks, transform C to CSNF which only

has separated attacks, s.t. C ∼h CSNF . This is achieved by these steps.
(a) Scan C (left to right), identifying merged attack sequences and applying merged

rule on them, to obtan C1 such that C ∼h C1.
(b) Scan C1 (left to right), identifying contained attack sequences and applying

merged rule on them, to obtain C2 such that C1 ∼h C2.
(c) Scan C2 left to right, identifying overlapped attack sequences and applying

merged rule on them, to obtain C3 such that C2 ∼h C3.
(d) We will show that C3 is in SNF, so set CSNF = C3.

3. Apply hide rules for individual attacks to CSNF to obtain a privacy preserving path.

The first step of obtaining C from uPath can be implemented by a simple extension of
[3, Algorithm 1]. We focus on the other steps in the next few subsections.

Preserving Location Privacy for Continuous Queries on Known Route 273

5.1 Hide Rules for Individual Attacks

We first discuss the hide rules for individual attacks, namely D-hide for D-Attack, L-
hide for L-Attack and Long-hide for Long-Attack, based upon which the other rules will
be devised. To discuss rules for short attack, consider the user path p · bt−2 · bt−1 · bt ·p′.
D-hide (at end): If the path ends at bt, and if there is a D attack at time t, then D-hide

is p · bt−2 · ∗ · ∗, i.e., hide t− 1th and tth move (therefore, hideSpan = [t− 1, t]).
D-hide (intermediate): If the path does not end at bt−1 (bt exists), and if there is a D

attack at time t − 1, then D-hide is p · bt−2 · ∗ · ∗ · .p′, i.e., hide(t − 1)th and tth

move (therefore, hideSpan = [t− 1, t]).
L-hide: If there is an L attack at time t, then L-hide is p · bt−2 · ∗ · ∗ · p′ , i.e., hide

(t− 1)th and tth move (therefore hideSpan = [t− 1, t]).

The trick used in these hide rules is to create ambiguity between D and L attack so that
no adversary can confidently find out which of them actually took place – this increases
the number of possible blocks for the relevant moves. Take, for example, User-D in
Figure 1 which has a D attack. After hiding locations denoted by ∗, an alternative path
is shown by the dotted line (which corresponds to an L-attack). Similarly, if the user
path is the dotted line (having an L attack), then L-hide leads to an alternative path
given by the solid line (which corresponds to a D-attack). It is easy to see that, L and D
attacks can not be saved by hiding only a single location (for example, if the policy is
to hide only the attack location, then in the case of User-E in Figure 1 an adversary will
be able to detect D-attack).

Long-hide: Consider a user path p · bt−σ−1 · bt−σ . . . bt−1 · bt · p′ with a Long attack
at time t (by the property of Long attacks described earlier, the attack span of any long
attack includes atmost σ + 2 last locations). Then, Long-hide rule is to hide alternate
locations starting from bt−σ−1 till bt (therefore, set hideSpan = [t− σ − 1, t− 1] if σ
is even, and hideSpan = [t− σ − 1, t] if σ is odd).

The strategy of alternate hiding can be motivated by the example paths of User-F
and User-G in Figure 1; hiding locations (marked by ∗) increased the possibility of
disclosed moves as evident from alternative paths (shown by dotted line). Hiding any
one or both of these locations is not sufficient, since the adversary, being aware of this
rule, can still detect some locations. Long attack, therefore, requires alternate hiding.

5.2 Hide Rules for Non-separated Attacks

A sequence of attacks are related if hiding one attack will result into hiding of all
other attacks in the sequence. For example in Figure 2, the sequence containing first
two attacks are related in the attack sequence C = L · L · Long · L ·D of User-D, as
hiding first L-attack will result into hiding of the second L attack. Based on the nature of
relationship, related attacks in an attack sequence could be of three types — a) merged
b) contained, and c) overlapped. We will now discuss these attack sequences and form
the rules required to hide them. Table 1 lists all these rules in one place.

Definition 6 (Merged attacks). A sequence of attacks ai · ai+1 · . . . ai+j is said to be
merged attacks if they all occur due to one particular move.

274 A.S. Saxena et al.

To denote merged attacks in an attack sequence C , we write � in between the merged
attacks, .i.e, if C = a1 ·. . . ai−1 ·ai�. . .�at ·at+1 ·A′ then ai�. . .�at is a merged attack
sequence in C . For example, in User-D’s path in Figure 2, the third and the fourth attack
(Long and L respectively) occur due to the move at t9, and hence are merged attacks.
There are no other merged attacks in C and so, we write C = L · L · Long � L ·D.

Lemma 2. For merged attacks ai � . . . aj−1 � aj , the following holds.

1. If at all the merged sequence contains a short attack, then it must be aj .
2. ai.attackDistance < σ.

Lemma 3. If ai � . . . � aj−1 � aj and bk � . . . � bl−1 � bl are two consecutive merged
attack sequences in C at time t1 and t2 respectively, where t2 > t1, then

1. aj .attackT ime < bk.attackLocation
2. aj .attackLocation < bk.attackLocation

Lemma 3 tells us that any two consecutive merged attack sequences are physically apart
in C and therefore we can handle them separately. Also from second part of Lemma 2
and Long-hide rule we conclude that in case of a merged-attack ai � . . . � aj−1 � aj the
whole sequence of attack can be hidden by considering the single attack ai. This rule is
denoted as the merged rule in Table1.

Definition 7 (Contained attacks). For any two attacks a and a′ we say a is contained
in a′, denoted by a ⊆ a′ if a.attackSpan ⊆ a′.attackSpan.

For example, User-E in Figure 2 has C = L ·L ·Long ·L ·D. The attack span of second
attack (L-attack) is contained within the attack span of third attack (Long-attack) and
hence, L ⊆ Long.

Lemma 4. Following results explain some properties which hold for containment rela-
tionship.

1. One attack may contain the other attack only if they are consecutive.
2. For any two long attacks we have Long1 ⊆ Long2 iff Long2 ⊆ Long1

3. For an attack sequence Long · a we have Long ⊇ a iff Long � a
4. For a1 � a2 � . . . � an−1 � an, we have

(a) a1 ⊇ a2 ⊇ . . . ⊇ an−1 ⊇ an

(b) a1 � . . . � an−1 � an ∼h a1

Proof. Proof of above lemma is direct from the definition of the containment relation
and attack spans of various attacks.

Part(3) of Lemma 4 shows that if we have contained relationship between two attacks
whereas first attack is a long attack then they will always have a merged relationship.
Further Part(4) of the Lemma 4 says that attacks having merged relationship will always
have contained relationship. However the converse is not true. For example, consider
user User-A in Figure 2. His attack sequence C is D · Long. In this case, we have

Preserving Location Privacy for Continuous Queries on Known Route 275

contained relationship between the attacks. But there is no merged relationship between
the two. These kind of attack sequences which are not covered through the merged rules,
can be handled by the contained rule: S · Long ∼h Long if S ⊆ Long.

The other possible relation between consecutive attacks is due to either (1) hide span
of one attack overlapping the attack span/location of the other attack or (2) attack spans
of two attacks overlapping each other. We call such attacks as overlapped attacks.

Definition 8 (Overlapped attacks). For any two consecutive attacks a1 and a2,

1. If a2 is a short attack and a1.hideSpan ∩ a2.attackSpan �= φ then we say a1

overlaps a2.
2. If a1 is a short attack, a2 is a long attack and a1.attackLocation ∈ a2.hideSpan

then we say a2 overlaps a1.
3. If a1, a2 are both long attacks and a1.attackSpan ∩ a2.attackSpan �= φ then we

say a1 overlaps a2.

Two attacks are overlapped if at least one attack overlaps the other attack. If a1 overlaps
a2, we denote it by a1 ↪→ a2.

An example of the case when a1 is short and a2 is long is User-C in Figure 2. For the
first two attacks (D and Long respectively), attack location of the D-attack is contained
within the attack span of the Long-attack. Therefore, Long-attack overlaps the D-attack.

Lemma 5. The following properties hold for the overlapped attacks.

1. Two contained attacks are always overlapped.
2. Two consecutive attacks are separated iff they are not overlapped.

If a Long attack overlaps another Long attack, then we call this as 2Long. In general,
Long1 ↪→ Long2 ↪→ Long3 . . . ↪→ Longn is nLong. i.e we consider a series of
overlapped long attacks as a single long attack (named nLong) s.t.:

nLong.attackSpan = [t − Σ − 1, t] nLong.hideSpan =

{
[t − Σ − 1, t − 1] Σ even
[t − Σ − 1, t] Σ odd

where Σ = Longn.attackT ime− [Long1.attackT ime− σ − 1]− 1.
From second part of Lemma 5, we know that for any two consecutive attacks a1 and

a2 s.t a1 �↪→ a2 and a1 �←↩ a2 we have a1‖a2. This helps in (1) separating the attacks
which are not overlapped, and (2) determining the hide equivalent subsequence for the
attack sequence having overlapped relationship. The rules are given as overlapped rules
in Table 1. Unlike the other two rules, these rules have to be necessarily applied from
left-to-right, since the overlap relation is not symmetric (for example, D ↪→ L but
D �←↩ L for the attack sequence (D + 1) · L).

5.3 Time Complexity

RB-approach will take O(σn) time, which is practically linear since σ is constant for a
fixed layout. This can be obtained through the following analysis of the RB procedure.

276 A.S. Saxena et al.

Table 1. Hide Equivalence Rules

Merged Rules Contained Rules

ai ai+1 . . . aj−1 aj · ∼h ai· S · Long· ∼h Long· if S ⊆ Long

Overlapped Rules
Case O1: For a1 · a2· such that a1 ↪→ a2 Case O3: For a1 · a2 · a3· such that a1 ↪→ a2 ↪→ a3

D · S· ∼h D· D1 · D2 · S· ∼h D1‖
(D + 1) · S· ∼h D‖ S · L · D· ∼h S‖D·

L · D· ∼h L‖ S · L1 · L2· ∼h S‖
L1 · L2· ∼h L1· Case O4: For a1 · a2 · Long· such that

(L + 1) · S· ∼h L‖S· a1 ↪→ a2 ←↩ Long & a2 �⊆ Long
S1 · (S2 + 1)· ∼h S1‖ D · S · Long· ∼h D‖Long·
Long · Long· ∼h 2Long· L1 · L2 · Long· ∼h L1‖Long·
(Long1 + 1) · Long2· ∼h Long1‖Long2· Case O5: For nLong · a1 · a2· such that
Long1 · (Long2 + 1)· ∼h 2Long‖ nLong ↪→ a1 ↪→ a2 & nLong �⊇ a1 & Σ is odd

nLong · S· ∼h

{
nLong‖S· if Σ even
nLong· if Σ odd

nLong · D · S· ∼h nLong‖S·
Case O2: For a1 · a2· such that a1 ←↩ a2 nLong · L1 · L2· ∼h nLong‖

S · Long· ∼h Long· nLong · L · D· ∼h nLong‖D·

1. Time complexity to get C from uPath is O(σn). After every move, the possibil-
ities of previous σ − 1 moves need to be updated (Lemma1, Update Lemma[3]).
Whenever the possibility for a move becomes 1, we report it as an attack and in-
clude it in the attack list. This gives us C .

2. Reducing C into C3 takes O(k) time, where k is len(C). This is because step 2(a),
2(b) and 2(c) take O(k) time as these steps apply merged, contained and overlap
rules on an attack sequence, which require only linear scan from left to right.

3. Hiding step takes O(k) time as it applies the hide rules over the attack sequence
obtained after step 2.

5.4 Correctness

Lemma 6. C3, defined as above, is in SNF.

Proof. The application of merged,contained and overlapped rules in the order as de-
scribed in the procedure above results in an attack subsequence having no overlapped
attacks. Therefore, from second part of Lemma 5 all attacks in C3 are separated.

First, it is clear that given the entire path p, the generated cell-path G(p) (with hidden
locations) is such that no adversary can deduce the current or any past location with
absolute certainty. Furthermore, the RB approach applies it hiding rule in a left-to-right
manner, which ensures that given any prefix p′ of p, the corresponding prefix of G(p) is
also privacy preserving. If the attacks are separated then this is obvious. When attacks
are related to each other and hiding one attack saves an attack sequence then hidden
locations for that attack will always hide one or more moves required for the attacks in
the attack sequence. Therefore there will be no disclosure in any prefix of the path, i.e.,
at any time t ≤ |p|, there are at least two or more possible blocks for the i-th location, for

Preserving Location Privacy for Continuous Queries on Known Route 277

i ≤ t. Thus, the user is assured that no disclosure of current or past location will happen
anytime along p if the hide rules are followed and the resultant obfuscated regions are
reported all along the path.

5.5 Change of Plans: Real-Time Modifications to User Path

The stipulation of submitting the planned path at the beginning and following it there-
after begs one important question: how far can the user deviate from the initial plan?

The explanation on correctness in Section 5.4 basically says, that the user may stop
anytime during travel without any change wrt. privacy. On the other hand, our approach
also allows the user to extend his path in a way which allows incremental computation of
hidden locations. Recall that the number of moves involved in a Long attack is σ+1 (and
fewer for other attacks), so the user is allowed to modify his path, including extending
it, as long as the modification starts σ or more time instants after. RB approach will just
have to compute the hidden locations for the new path starting from the current instant.
Note that, the requirement of at least σ moves is necessary as can be seen for User-H
in Figure 1. If the user wants to extend his path by one more block when he is at the
last step, then the new path will actually cause an Long-attack; and, the optimum way
to hide this Long-attack will require hiding alternate blocks starting from the beginning
of this path, which cannot be done at the last step.

6 Experimental Results

In this section we examine the efficiency of our RB Approach in achieving a privacy
preserving path. We compared this approach with the brute-force approach. The brute-
force approach tries all possible combinations of locations to hide and returns the com-
bination with the minimum number of hidden locations. The experiment is run for 100
random paths of length 10–50 on cells of stretch 6. (Many of these paths did not have
any attack and do not appear in the results below.) All experiments were conducted on
a standard dual-core Pentium desktop computer with normal workload.

Our observation was that the RB approach returned more hidden locations for some
paths compared to the brute-force approach, but, in significantly less time. Fewer hidden
locations is important as the user would like to get service at maximum locations (albeit,
without any privacy violation). Therefore our focus of comparison was on these two
metric – number of hidden locations and time of execution.

We summarise our findings in the Figures 3 and 4. Observe that, in almost all cases,
RB approach hides at most 4 times the number of locations hidden by the brute-force
approach. The increase in hidden locations is perfectly complemented by the running
time — even for paths that took more than 2-3 hours using the brute-force approach, RB
approach computed the hidden locations in less than a minute. For better understanding,
we have classified the random paths into long dominant (60% of the attacks are Long
attacks), short dominant (60% of the attacks are Short attacks) and mixed (rest). We
found that even though for long dominant paths, RB suggested about 4 times more
hidden locations (on an average), for short dominant paths, RB suggested only about
twice as that by the brute-force.

278 A.S. Saxena et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 I

ns
ta

nc
es

#hides(RB)/#hides(BF)

Fig. 3. CDF of the ratio of number of hid-
den locations returned by RB to the optimum
number of hidden locations

0.1

1
550

T
im

e
(m

in
)

Instances

Long Short Mix

BF
RB

Fig. 4. Comparison of execution time (given
in log-scale) between RB approach and brute-
force. The instances are classified as Long-
dominant, Short-dominant and Mixed.

7 Conclusion

In this paper we have discussed the location privacy issues associated with a continuous
query scenario with the privacy module having advance knowledge of user paths. To
address the issue of privacy breach in this scenario, we have provided a deterministic
approach named RB approach based on the attack classification as defined in [3]. This
approach enables us to not only provide relationships between attacks in an attack se-
quence but also avoid them in a systematic manner by hiding locations according to
the hide equivalence rules provided in the paper. We have also shown that our RB ap-
proach to get a privacy preserving path takes effectively linear time; moreover, the loss
of service quality is upper bounded by a constant when compared to the optimum.

Acknowledgement. The first author was supported by Prof. Pankaj Jalote and the third
author was supported by the Department of Science and Technology, Govt. of India for
this work.

References

1. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in mobile
environments with privacygrid. In: WWW 2008: Proceeding of the 17th International Con-
ference on World Wide Web, pp. 237–246 (2008)

2. Barkhuus, L., Dey, A.: Location-Based Services for Mobile Telephony: a Study of Users’
Privacy Concerns. In: INTERACT 2003: 9th IFIP TC13 International Conference on Human-
Computer Interaction, pp. 709–712 (2003)

3. Bera, D., Goyal, V., Saxena, A.S.: Privacy of location obfuscation. Technical Report IIITD-
TR-2011-002, IIIT-Delhi (2011)

4. Beresford, A.R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE Pervasive
Computing 2, 46–55 (2003)

5. Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services. In: PER-
COMW 2004: 2nd IEEE International Conference on Pervasive Computing and Communi-
cations, pp. 127–131 (2004)

Preserving Location Privacy for Continuous Queries on Known Route 279

6. Bettini, C., Mascetti, S., Wang, X.S., Jajodia, S.: Anonymity in Location-Based Services:
Towards a General Framework. In: MDM 2007: Proceedings of the International Conference
on Mobile Data Management, pp. 69–76 (2007)

7. Burak, A., Sharon, T.: Usage patterns of FriendZone: mobile location-based community ser-
vices. In: MUM 2004: Proceedings of the 3rd International Conference on Mobile and Ubiq-
uitous Multimedia, pp. 93–100 (2004)

8. Chow, C.-Y., Mokbel, M.F.: Enabling Private Continuous Queries for Revealed User Lo-
cations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp.
258–275. Springer, Heidelberg (2007)

9. Chow, C.Y., Mokbel, M.F., He, T.: Tinycasper: a privacy-preserving aggregate location mon-
itoring system in wireless sensor networks. In: SIGMOD 2008: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, pp. 1307–1310 (2008)

10. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-Anonymity: Architecture
and Algorithms. IEEE TMC: IEEE Transactions on Mobile Computing 7, 1–18 (2008)

11. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial
and Temporal Cloaking. In: MobiSys 2003: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42 (2003)

12. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Pri-
vacy beyond k-anonymity. ACM TKDD: ACM Transaction on Knowledge Discovery in
Databases 1 (2007)

13. Martin, D.J., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.Y.: Worst-Case Back-
ground Knowledge for Privacy-Preserving Data Publishing. In: ICDE 2007: 23rd Interna-
tional Conference on Data Engineering, pp. 126–135 (2007)

14. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new Casper: query processing for location ser-
vices without compromising privacy. In: VLDB 2006: Proceedings of the 32nd International
Conference on Very Large Data Bases, pp. 763–774 (2006)

15. cellular news: Mobile Subscribers to Hit 5.9 Billion in, Driven by China, India, Africa (2013),
http://www.cellular-news.com/story/40439.php?s=h

16. Palanisamy, B., Liu, L.: Mobimix: Protecting location privacy with mix-zones over road
networks. In: 27th ICDE 2011, pp. 494–505 (2011)

17. Sweeney, L.: Achieving k-Anonymity Privacy Protection using Generalization and Suppres-
sion. International Journal on Uncertainty, Fuzziness and Knowledge-Based Systems 10,
571–588 (2002)

18. Voelcker, J.: Stalked by satellite: An alarming rise in GPS-enabled harassment. IEEE Spec-
trum 7, 15–16 (2006)

19. Xu, T., Cai, Y.: Exploring historical location data for anonymity preservation in location-
based services. In: INFOCOM 2008: Proceeding of 27th Conference on Computer Commu-
nications, pp. 547–555 (2008)

http://www.cellular-news.com/story/40439.php?s=h

A Data Mining Framework for Securing 3G Core

Network from GTP Fuzzing Attacks

Faraz Ahmed, M. Zubair Rafique, and Muhammad Abulaish

Center of Excellence in Information Assurance (CoEIA)
King Saud University (KSU)

Riyadh, Saudi Arabia
{fahmed.c,zrafique.c,mabulaish}@ksu.edu.sa

Abstract. Since the emergence of 3G cellular IP networks, internet us-
age via 3G data services has become ubiquitous. Therefore such network
is an important target for imposters who can disrupt the internet services
by attacking the network core, thereby causing significant revenue losses
to mobile operators. GPRS Tunneling Protocol GTP is the primary pro-
tocol used between the 3G core network nodes. In this paper, we present
the design of a multi-layer framework to detect fuzzing attacks targeted
to GTP control (GTP-C) packets. The framework analyzes each type
of GTP-C packet separately for feature extraction, by implementing a
Markov state space model at the Gn interface of the 3G core network.
The Multi-layered architecture utilizes standard data mining algorithms
for classification. Our analysis is based on real world network traffic col-
lected at the Gn interface. The analysis results show that for only 5%
fuzzing introduced in a packet with average size of 85 bytes, the frame-
work detects fuzzing in GTP-C packets with 99.9% detection accuracy
and 0.01% false alarm rate.

Keywords: Intrusion Detection, Fuzzing attacks, GTP Security.

1 Introduction

Connecting millions of people around the globe and providing exciting services
to end users, the demand of internet is ever rising [1]. Every effort has been made
to improve the user experience and to increase the Internet’s circle. Cellular net-
works provides only voice services but, with the advent of 3G technologies mobile
operators are providing data services with low broadband speed. The main rea-
son for the popularity of 3G network is its ability to provide greater bandwidth
with wide area coverage. Several data transmission techniques have been pro-
posed for better performance, e.g., WCDMA, TD/CDMA and CDMA2000 are
different Code Division Multiple Access techniques used for data transmission.
The first two techniques are based on General Packet Radio Service (GPRS) and
hence have the same core network architecture [2]. Our framework targets the
security of GPRS core network interface, i.e., Gn interface.

As compared to the widespread use of internet via cellular network there is
a huge threat to the security of the network. Attacks can come from inside the

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 280–293, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Data Mining Framework for Securing 3G Core Network from GTP 281

cellular network [3]. These attacks can cause network degradation and even-
tually lead to Denial of Service (DoS) to end users. However, 3G networks
have some of their own security issues as addressed in [4] and [5]. Due to open
nature of IP in 3G networks, attackers can exploit vulnerabilities in their core
network nodes and protocols. Attacks on the core nodes of the 3G networks can
be launched by compromising different nodes of the architecture such as the
Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node
(GGSN) [6]. As explained in [7], an attacker can establish herself as a legitimate
3G network element by IP spoofing. Such attacks pose serious threat to mobile
user privacy by stealing user data such as IMSI number, billing information,
contact details, etc. An attacker can exploit protocol vulnerabilities by fuzzing
sensitive fields of packet headers [8]. GPRS Tunneling Protocol GTP is the main
communication protocol used in the core network. All user requests for internet
services are made through GTP.

In this paper, we have analyzed the GTP protocol vulnerabilities and pro-
posed an effective and efficient multi-layered framework for their mitigation.
Our analysis is based on real world GTP (v1) traffic collected at the Gn inter-
face. The main contribution of our work is a framework that can detect GTP-C
fuzzing attacks in real time. It consists of three main modules: i) Packet Byte
Analyzer (PBA), ii) Benign Packet Definition (BPD), and iii) Decision Module.
The fuzzing is detected by modeling the differences in byte sequences of normal
and fuzzed packets. We use Markov state-space model for extracting features.
The less discriminative features are then pruned by using an information theo-
retic measure known as Information Gain. Each incoming packet is fed to BPA
which performs the feature extraction and forwards them to the BPD module.
The BPD module uses the extracted feature set as input and represents each
packet as a feature vector. The decision module implements standard data min-
ing algorithms to classify the incoming packets as normal or malformed. The
rest of the paper is organized as follows. Section 2 gives a brief summary of the
related works. In Section 4, we report different statistics of our real world benign
dataset. Section 5 presents the architectural detail of the proposed framework.
Section 6 presents the experimental setup and results. Finally in section 7, we
conclude the paper with future directions of work.

2 Related Work

The attacks in the cellular networks are not unprecedented. Some known at-
tacks are directed towards Mobile Stations (MSs) [9] and [10] whereas, some
attacks try to disrupt the services in general as mentioned in [11] and [3]. [12]
presents a taxonomy of such 3G attacks. The attacks have been classified as
Cross-Infrastructure, which are directed from the internet to the cellular net-
works, and Single Infrastructure attacks which arise from within a cellular net-
work. In [13], Patrick et al. holds the opposite design philosophies of internet
and 3G networks responsible for making 3G networks vulnerable to Denial of
Service (DoS) attacks, and also demonstrates two more attacks supporting this

282 F. Ahmed, M.Z. Rafique, and M. Abulaish

theory. The author highlights the fact that bandwidth is not the ultimate cause
of such attacks rather, it is the inflexibility of architecture of 3G networks that
makes these attacks practical.

One of the foremost attempt to highlight the vulnerabilities of GPRS core
network is presented in [4]. In this work, the author has provided an overview of
attacks and flaws associated with GPRS architecture. The report also provides
recommendations to avoid such type of attacks. A more detailed categorization
of attacks against GPRS is followed in [8]. In this paper, the authors have listed
Overbilling attacks, misconfigured WAP’s exploits and a detailed list of GTP
risks. The paper proposes an alternative design for network architecture that
can be adopted by network operators. The authors also present Check point
Firewall product that can provide additional security.

Another important contribution in securing GPRS from attacks on the GPRS
core is presented in [6]. Dmitriadis et al. presents a threat model with regard
to GPRS core network, depicting nine possible attack groups, and also gives
a feasibility study of honeynets in 3G networks. The authors propose 3GHNET,
a honeynet, for the improvement of GPRS core network security. The authors
have compared the advantage of 3GHNET implemented GPRS network over an
unprotected network and used concepts from the game theory for comparison.

[2] presents a defense mechanism for GTP security threats. The authors pro-
pose an event-based description language for the detection of attacks directed
towards the GTP protocol. They have classified GTP security concerns as proto-
col abnormal attacks, infrastructure attacks and resource consumption attacks.
They have categorized the GTP protocol into GTP-C, GTP-U and GTP’, which
are GTP control plane, GTP user plane and GTP prime respectively and ana-
lyzed them separately to perform the decision on the basis of events generated.
The authors have tested their architecture on OpenGGSN emulator which is an
open source implementation of the core network nodes - SGSN and GGSN [14].
Our work is different from [2] as it aims at securing only the GTP-C category of
the GTP protocol from fuzzing attacks. GTP-C packets are most important for
the communication between the GSNs. The architecture of our scheme enables
us to further categorize the GTP-C packets and analyze them separately.

3 GPRS Architecture

GPRS is an extension GSM, in fact it has been overlaid on the already existing
GSM infrastructure [15]. To handle packet data, a Packet Control Unit(PCU) is
introduced at Base Transceiver Station(BTS). Besides that two GPRS support
nodes(GSNs) have been added to the structure. SGSN is connected with many
BTSs analogous to BSC, and serves to transfer data requests over the network.
Whereas GGSN facilitates to connect the network to external data network. Any
user that intends to send/receive data from external network has to register a
context with these two nodes(SGSN and GGSN). The different interfaces of
GPRS are shown in Figure 5.

A Data Mining Framework for Securing 3G Core Network from GTP 283

Fig. 1. Architecture of GPRS

The next section is dedicated to the description of this interface, and depicts
how communication actually takes place on this interface. For the sake of brevity,
we have only considered GTPv1 specifications for the matter at hand.

3.1 Gn Interface

Whenever a user needs to send/receive packet data from external network, it re-
quests the network to activate a PDP context. On receiving such a request, the
SGSN sends a Create PDP context Request message containing IMSI number
of the user,(Access Point NAme) APN and Tunnel Endpoint Identifiers (TEID)
for GTP-C and GTP-U plane, to GGSN. Once the GGSN receives this informa-
tion, it stores it for future correspondence and sends back Create PDP Context
Response containing information elements(IEs to indicate wether the context
was established successfully), End User Address field (which contains the IP ad-
dress assigned by the GGSN to the user) and TEID for both GTP-C and GTP-U
plane.

(a) Create PDP Context Request (b) Create PDP Context Response

Fig. 2. Context Establishment between SGSN and GGSN

Figure 2 demonstrates how a context is established between the two nodes,
and how do SGSN and GGSN recognize tunnels at their ends, both in User
and Control plane. When SGSN sends a Create PDP context Request to the
GGSN as shown in Figure 2(a), it advertises a TEIDS and an IPS address
for User plane and a TEIDS and an IPS(subscript S is used for SGSN) for

284 F. Ahmed, M.Z. Rafique, and M. Abulaish

Table 1. Benign dataset summary

Type No. Avg. Size(Bytes) Description
Create PDP Request 1183681 197 Request for initiation of user session
Create PDP Response 3866 135 Response to the initiation request
Update PDP Request 555 85 Request to update the QoS, TFT etc parameters
Update PDP Response 684 95 Response to the update parameter request
Delete PDP Request 4317 60 Request for termination of user session
Delete PDP Response 3237 56 Response to the termination request

Control plane to the GGSN, to be used in future by the GGSN when ad-
dressing the specified tunnel at SGSN. SGSN uses the same parameters(the
TEIDS/IPS that it advertised) to discern between different tunnels operat-
ing at SGSN. Similarly, when GGSN responds with a Create PDP context
Response message as shown in Figure 2(b), it advertises a TEIDG and IPG

for User plane as well as for the Control plane to the SGSN, which are to be
used in future by the SGSN when addressing a specific tunnel at GGSN. The
GGSN uses these parameters to discern between different tunnels operating at
GGSN. Also, the port numbers are fixed for both Control and User plane data.
Similar to the Create PDP Context Request/Response messages, Delete PDP
Request/Response messages also exist, which are used to delete an active tun-
nel. Since the payload of user is tunneled through the Gn interface, it becomes a
natural choice for analysis when it comes to anomaly/intrusion detection in the
core network. A compromised SGSN or GGSN can host attacks to other criti-
cal systems, such as the Mobile Switching Center (MSC), home location register
(HLR), visitor location register (VLR) and other SGSN/GGSN nodes of the net-
work. Such attacks directly affect crucial information such as subscriber identity
database residing in the HLR, charging/ billing gateways (CG/BG), handoff
operations which involves VLR etc.

4 Dataset

In this section we describe the benign and malformed GTP dataset that we have
used in this study. We also give a brief description of our fuzzing algorithm used
to generate malformed GTP packets.

4.1 Benign Traffic

Our benign dataset consists of real world GTP-v1 traffic collected at the Gn inter-
face. The traffic was logged at GPRS core network node, during the peak usage
hours of the day. All type of GTP packets were captured however, our analysis
is based on only GTP-C packets, which are responsible for the creation and dele-
tion of user sessions between the GSNs. Table 1 provides different statistics of the
data set. The total number of PDP contexts shows the number of GTP tunnels
created, updated or deleted between the SGSN and the GGSN. It is obvious that
there are unequal number of requests and responses, which is due to window cen-
soring phenomenon [16]. This means that user sessions initiated during the data
logging period are not torn down before the end of the logging process.

A Data Mining Framework for Securing 3G Core Network from GTP 285

4.2 Fuzzed Dataset

We performed fuzzing of each type of GTP-C packet separately. The format of
the GTP packets is shown in Figure 3. For fuzzing, we have employed standard
bit-fuzzing technique used for other IP-based protocols, i.e., for 1% fuzzing a
bit is randomly selected from a packet and is inverted. Similarly for n% fuzzing,
we select n% bits randomly from a packet and invert them. In this way, we
have generated 24 different fuzzed datasets for each GTP-C packet category
corresponding to 2%, 5%, 10% and 20% fuzzing of each n-gram where, n varies
from 1 to 6.

Fig. 3. GTP packet format

Our fuzzed dataset consists of packets with fuzzed fields such as message type
field. Fuzzing this type of field changes the message type, for example, from Create
PDP Context Requestmessage(message type=0x10) to some other message type,
which may result in a message type that is not recognizable by the GGSN or in a
message type that GGSN is not expected to receive. In addition, there are some in-
formation elements following the mandatory header in the message that are more
apposite for fuzzing. This is because each type of packet uses the extension header
information elements differently. More specifically, the information elements(IEs)
are divided into TV (Type, Value) or TLV (Type,Length,Value) format. Figure
4 shows details of the formatting of such IEs. Our fuzzed dataset include pack-
ets with fuzzed TV-formatted IE’s because when we fuzz such a field, the length
of the fuzzed field may increase from that of the expected length known to the
GGSN, making the IEs following it to be unreadable. The fuzzed packet dataset
also contains fuzzed values of TLV-formatted IEs fields, end user address, access
point name (APN), protocol configuration options (PCO) and GPRS serving node
(GSN) address IEs. Table 2 describes the possible impact of fuzzing different fields
of GTP packet.

Table 2. Fuzzed fields and possible results of fuzzing

Fuzzed Field Explanation Result
Message Type Allows 255 different message types values Invalid message type

IE Contain packet specific information DoS/Dependent on Device Vulnerability
IE length Contains the length of IE Buffer overflow/System Crashes

End User Address Address of the Mobile Station DoS/Dependent on Device Vulnerability

286 F. Ahmed, M.Z. Rafique, and M. Abulaish

Fig. 4. Information element formats

5 GTP Malformed Packet Detection Framework

In this section, we present the architectural detail of the proposed intrusion de-
tection framework, which consists of a bi-directional detection module at the
Gn interface. Figure 5 shows the architecture of the proposed framework for
detection of malformed GTP packets. GTP protocol is used by most of the
3G transmission techniques including WCDMA and TD/CDMA, which employ
the GPRS core network architecture. So for simplicity we consider the GPRS
network for explanation of the proposed framework. SGSN is connected with
many Base Transceiver Stations (BTSs), and serves to transfer data requests
over the network. Whereas GGSN facilitates to connect the network to external
data network. The architecture secures the control plane of the GTP protocol
by employing a parallel design. The parallel architecture has two main advan-
tages. Firstly, it reduces the processing overhead by the simultaneous analysis
of different GTP control packets and secondly, it allows a deeper level of inspec-
tion by analyzing each packet type according to its use of extension headers as
explained in section 4.2. The detection framework perform byte-level analysis of
the incoming GTP-C packets and classify them as normal or malformed. The
proposed framework consists of three main modules - Packet Byte Analyzer,
Benign Packet Definitions, and Decision module. A detailed description of these
modules appears in the following sub-sections.

Gn Interface

GTP-U

BPD-3
BPD-2

PBA-3

PBA-2

PBA-1

GTP

Mobile
App.

IP

Radio
Layers

LLC

SNDCP

Radio
Layers

LLC

Lower
Layers

Lower
Layers

LLC

SNDCP
UDP

IP
Lower
Layers

IP

GTP

Lower
Layers

IP

UDP

I1

(k)byte (k+1)byte (k+n)byte

BPD-1 Decision

Create Req

Upd Req
Del Req

MS
BSS

SGSN
GGSN

GTP
GTP-C

I2

GTP’

Gb

Fig. 5. Architecture of proposed framework for GTP fuzzing attacks

A Data Mining Framework for Securing 3G Core Network from GTP 287

5.1 Packet Byte Analyzer

The PBA module acts separately for each type of GTP control packet. Its in-
puts are the validated GTP packets. The validation process is done through an
input interface, which checks input packets for explicit errors like invalid mes-
sage type. For each packet, it performs a byte-level analysis. The module uses a
windowing methodology for the collection of important discriminating features.
It implements a sliding window of n bytes. Given a byte sequence Ps, of a packet
P , sliding a window of size n = 1, we get Ps =< Φ1, Φ2, ..., Φi, .. >, where Φi

represents the ith byte of P . Similarly for n = 2 the representation becomes
Ps =< Φ1|Φ2, Φ2|Φ3..., Φi−1|Φi, .. >, where the symbol | represents a string con-
catenation operator. This relation explains the tradeoff that exists between the
amount of information and the size of the training data. Therefore, a thorough
analysis for the selection of the window size is necessary for better performance.
Accordingly, we model the byte sequences so that analysis can be performed with
varying window size. For this, we use discrete time Markov chain. We consider
the position of the window (size = n) as a state which changes in accordance
with the window slides. Therefore, for a representation Ps if S = s0, s1, ..., sk

is the set of possible states, then the position to state mapping function can
be described as: (f : pi → sj ∈ S) where, pi ∈ P =< p0, p1, ..., pm >. So for
two consecutive window positions the mapping functions are (f : pi → sx) and
(f : pi+1 → sy). The transition between two states is represented as sxy and
that the transition probability as τxy. This gives a state transition probability
matrix calculated as F : S × P → τ(S) where, F is a transition function. The
PBA computes τ(S) for each packet and outputs the probability matrix which
is used by the decision module.

5.2 Benign Packet Definitions

This module is used to model incoming data into an n-dimensional feature space
where, n represents the number of features identified by PBA module. n varies
for different types of control packets depending on the number and size of the
packet type. During training phase the PBA calculates transition probabilities
of the training dataset. Each transition probability is considered as a potential
feature which can help in discriminating normal packets from malformed packets.
So, during training phase six different feature vector sets are created one for each
packet type.

5.3 Decision Module

The decision module implements three classifiers: Decision tree (J48), Näıve
Bayes (NB) and inductive rule learner (Jrip). The module takes τ(S) as an input
from the PBA and on the basis of training dataset residing in the respective
BPD and generates the output for output filter. A brief description of the three
classifiers used is presented in the following paragraphs.

288 F. Ahmed, M.Z. Rafique, and M. Abulaish

Decision Tree (J48). Decisions trees are usually used to map observations
about an item to conclusions about the items target value using some predic-
tive model [17]. They are very easy to understand and are efficient in terms of
time especially on large datasets. They can be applied on both numerical and
categorical data, and statistical validation of the results is also possible. We use
C4.5 decision tree (J48) that is implemented in WEKA. We do not utilize binary
splits on nominal attributes for building trees. The confidence factor for pruning
is set to 0.25, where lower values lead to more pruning. The minimum number
of instances per leaf is set to 2. The number of folds of training data is set to 3,
where one fold is used for pruning and the rest are used for growing the tree.

Näıve Bayes (NB). Näıve Bayes is a simple probabilistic classifier assuming
näıve independence among the features, i.e., the presence or absence of a fea-
ture does not affect any other feature [18]. The algorithm works efficiently when
trained in a supervised learning environment. Due to its inherent simple struc-
ture it often gives very good performance in complex real world scenarios. The
maximum likelihood technique is used for parameter estimation of Näıve Bayes
models. We have neither used kernel estimator functions nor numeric attributes
for supervised discrimination that converts numeric attributes to nominal ones.

Inductive Rule Learner (Jrip). We chose rule based learners due to their
inherent simplicity that results in a better understanding of their learner model.
Jrip, performs quite efficiently on large noisy datasets with hundreds of thou-
sands of examples.The algorithm works by initially making a detection model
composed of rules which are improved iteratively using different heuristic tech-
niques. The constructed rule set is used to classify the test cases.

6 Experiments and Results

In this section we evaluate the performance of the proposed GTP-C fuzzing
detection framework. We measure the performance on the basis of detection rate.
We have carried out the standard Receiver Operating Characteristics (ROC)
analysis to evaluate the detection accuracy of our system. We report area under
the ROC curve (AUC) of three data mining algorithms: decision tree (J48),
Näıve Bayes (NB) and inductive rule learner (RIPPER).

Our experiments are based on two sets of analysis. In the first set we determine
the optimum value of n for best average detection accuracy. We perform ROC
analysis for window sizes of 1 to 6. For generalization we averaged the AUCs
of the three classifiers and using their AUC averages we calculated detection
accuracy for all categories of packets. In Figure 6, the overall average detection
accuracy for different levels of fuzzing is shown. The figure shows that in most
cases window size of 4 gives the best performance in terms of AUC. Increasing
the size of n increases the number of features and hence the dimensionality
of the data set, thereby exhibiting the curse of dimensionality. Whereas,
features extracted at smaller values of n, due to simplicity, do not have sufficient
discriminative abilities.

A Data Mining Framework for Securing 3G Core Network from GTP 289

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window size

A
U

C

UpdReq
UpdResp
CreateReq
CreateRest
DelReq
DelResp

(a) Fuzzing Rate 2%

1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Window size

A
U

C

UpdReq
UpdResp
CreateReq
CreateRest
DelReq
DelResp

(b) Fuzzing Rate 5%

1 2 3 4 5 6
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Window size

A
U

C

UpdReq
UpdResp
CreateReq
CreateRest
DelReq
DelResp

(c) Fuzzing Rate 10%

1 2 3 4 5 6
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Window size

A
U

C

UpdReq
UpdResp
CreateReq
CreateRest
DelReq
DelResp

(d) Fuzzing Rate 20%

Fig. 6. Average AUC at 2, 5, 10 and 20% fuzzing rate showing peaks at n = 4

In the second set of experiments, to select the most discriminative features, we
have used standard feature selection method. We employ information-theoretic
measure for feature ranking. Information gain is one such measure to calculate
the discriminative ability of a feature.

IG(Y ; X) = H(Y)−H(Y |X)

Where (IG ∈ [0, 1]) and H(X) and H(Y) are the entropies of a given attribute
X and a class attribute Y . We perform feature quantification to support the
notion of introducing feature selection. Figure 7 shows the normal probability
plot of the information gain of the extracted features. It can be observed that
for smaller values of n the IG values of almost all of the features are very low.
However for larger values of n some features exhibit significantly large IG values.
But as we increase the value of n the curse of dimensionality increases. Therefore
our analysis show that n = 4 is most suitable in terms of detection.

290 F. Ahmed, M.Z. Rafique, and M. Abulaish

Table 3. Performance evaluation results for different packet types

FR→ 2% 5% 10% 20%
Classifier↓ DA FA DA FA DA FA DA FA

NB .392 .570 1.00 0.00 1.00 0.00 1.00 0.00
Jrip .474 .514 1.00 0.00 1.00 0.00 1.00 0.00
J48 .470 .516 1.00 0.00 1.00 0.00 1.00 0.00

(a) Update PDP context request

FR→ 2% 5% 10% 20%
Classifier↓ DA FA DA FA DA FA DA FA

NB 1.00 0.00 .999 .001 .999 .001 .999 .001
Jrip .999 .001 .999 .001 1.00 0.00 .999 .001
J48 1.00 0.00 .999 .001 .999 .001 .999 .001

(b) Update PDP context response

FR→ 2% 5% 10% 20%
Classifier↓ DA FA DA FA DA FA DA FA

NB .490 .506 .490 .510 .999 .001 1.00 0.00
Jrip .498 .501 .498 .502 1.00 .001 1.00 0.00
J48 .500 .500 .500 .500 .999 .001 .999 .001

(c) Delete PDP context request

FR→ 2% 5% 10% 20%
Classifier↓ DA FA DA FA DA FA DA FA

NB .481 .506 .490 .510 1.00 0.00 .999 .001
Jrip .498 .502 .498 .502 .999 .001 1.00 0.00
J48 .498 .502 .498 .502 .999 .001 .999 .001

(d) Delete PDP context response

FR→ 2% 5% 10% 20%
Classifier↓ DA FA DA FA DA FA DA FA

NB 1.00 0.00 1.00 0.00 .999 .001 1.00 0.00
Jrip .999 .001 .999 .001 1.00 0.00 1.00 0.00
J48 .999 .001 .999 .001 .999 .001 1.00 0.00

(e) Create PDP context request

FR→ 2% 5% 10% 20%
Classifier↓ DA FA DA FA DA FA DA FA

NB .764 .226 .957 .130 .998 .170 .999 .001
Jrip .760 .229 .956 .051 .996 .110 .995 .007
J48 .640 .362 .906 .113 .990 .015 .995 .004

(f) Create PDP context response

A Data Mining Framework for Securing 3G Core Network from GTP 291

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.75

0.90

0.95

0.98
0.99

0.997
0.999

Information Gain

P
ro

b
a

b
il

it
y

n=1
n=2
n=3
n=4
n=5
n=6

(a) Create PDP Request

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.75

0.90

0.95

0.98
0.99

0.997

0.999

Information Gain

P
ro

b
a

b
il

it
y

n=1
n=2
n=3
n=4
n=5
n=6

(b) Create PDP Response

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.50

0.75

0.90
0.95

0.98
0.99

0.997

Information Gain

P
ro

b
a

b
il

it
y

n=1
n=2
n=3
n=4
n=5
n=6

(c) Update PDP Request

0 0.2 0.4 0.6 0.8 1

0.75

0.90

0.95

0.98
0.99

0.997

0.999

Information Gain

P
ro

b
a

b
il

it
y

n=1
n=2
n=3
n=4
n=5
n=6

(d) Update PDP Response

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.75

0.90

0.95

0.98
0.99

0.997

0.999

Information Gain

P
ro

b
a
b

il
it

y

n=1
n=2
n=3
n=4
n=5
n=6

(e) Delete PDP Request

0 0.2 0.4 0.6 0.8 1

0.50

0.75

0.90
0.95

0.98
0.99

0.997
0.999

Information Gain

P
ro

b
a
b

il
it

y

n=1
n=2
n=3
n=4
n=5
n=6

(f) Delete PDP Response

Fig. 7. Normal probability plot of different types of GTP-C packets

After determining the suitable value of n, i.e., 4 we improve the results by
selecting features of high IG values, which results in reduced number of features.
The analysis include all types of control packets for the value of window size 4.
Table 3 gives detection accuracies (DA) and false alarm rate (FA) for different
levels of fuzzing rate (FR). In this figure, we can see that 2% fuzzing is most dif-
ficult to detect for some type of packets. The difficulties arrive when the packet
size is small. For example in Delete PDP Request/Response packets the aver-
age sizes are 60 and 56 bytes respectively. So even for 5% fuzzing the number
of bits fuzzed will be 3, which makes it difficult to detect. Packets with fuzzing
rate as low as 2% have a very low threat level and can be considered as minor bit

292 F. Ahmed, M.Z. Rafique, and M. Abulaish

errors. However, when the packet size increases as in the case of Create PDP
Request/Response the number of bits fuzzed are relatively larger and have a
higher threat level. It can be seen from the results that the detection accuracy
for packets with higher threat level is as high as 99.9% whereas, the false alarm
rate is as low as 0.1%.

7 Conclusion and Future Work

In this paper, we have presented an efficient data mining framework for detection
of fuzzing attacks directed towards 3G core networks using the control packets
of the GTP protocol. The results show that the Markov chain model for feature
selection combined with standard classification algorithms is a good technique
for detection of fuzzing attacks. The analysis done for n = 4 shows that it is
most suitable for efficient detection of fuzzing attacks with fuzzing rate of 5%
or more whereas, performance results are also satisfactory in most of the cases
where fuzzing rate is less than 5%. Currently, we are working on exploring some
other data mining techniques to identify features resulting in improved detection
accuracy for lower fuzzing rates (1% and 2%). The future work also includes a
thorough analysis of the processing overheads of the proposed framework to
make it deployable in a real environment.

References

1. Odlyzko, A.: Internet traffic growth: Sources and implications. In: Proc. SPIE,
Citeseer, vol. 5247, pp. 1–15 (2003)

2. Peng, X., Yingyou, W., Dazhe, Z., Hong, Z.: GTP Security in 3G Core Network.
In: 2010 Second International Conference on Networks Security, Wireless Commu-
nications and Trusted Computing, pp. 15–19. IEEE (2010)

3. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., McDaniel, P., La Porta,
T.: On cellular botnets: Measuring the impact of malicious devices on a cellular
network core. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 223–234. ACM (2009)

4. Whitehouse, O.: GPRS wireless security: not ready for prime time. In: GSM As-
sociation Security Group Meeting, Berlin (2002)

5. 3GPP: Security Threats and Requirements. TS 21.133 (V 4.1.00)
6. Dimitriadis, C.: Improving mobile core network security with honeynets. IEEE

Security & Privacy, 40–47 (2007)
7. Xenakis, C., Merakos, L.: Vulnerabilities and Possible Attacks Against the GPRS

Backbone Network. In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 262–272.
Springer, Heidelberg (2006)

8. Whitehouse, O., Murphy, G.: Attacks and counter measures in 2.5 G and 3G cel-
lular IP networks. Atstake Inc. (March 2004)

9. Mulliner, C., Vigna, G.: Vulnerability analysis of MMS user agents. In: 22nd Annual
Computer Security Applications Conference, ACSAC 2006, pp. 77–88 (2006)

10. Racic, R., Ma, D., Chen, H.: Exploiting mms vulnerabilities to stealthily exhaust
mobile phone’s battery. IEEE SecureComm (2006)

A Data Mining Framework for Securing 3G Core Network from GTP 293

11. Enck, W., Traynor, P., McDaniel, P., La Porta, T.: Exploiting open functionality
in SMS-capable cellular networks. In: Proceedings of the 12th ACM Conference on
Computer and Communications Security, p. 404. ACM (2005)

12. Kotapati, K., Liu, P., Sun, Y., LaPorta, T.F.: A Taxonomy of Cyber Attacks on
3G Networks. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y.,
Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 631–633. Springer,
Heidelberg (2005)

13. Traynor, P., McDaniel, P., La Porta, T.F., et al.: On attack causality in internet-
connected cellular networks. In: USENIX Security Symposium, SECURITY (2007)

14. http://www.openggsn.org/

15. Sanders, G.: GPRS networks. John Wiley & Sons Inc. (2003)
16. Madsen, T., Schwefel, P., Hansen, M., Bogh, J., Prasad, R.: On Traffic Modelling

in GPRS Networks, pp. 1785–1789 (2005)
17. Quinlan, J.: C4. 5: programs for machine learning. Morgan Kaufmann (1993)
18. Maron, M., Kuhns, J.: On relevance, probabilistic indexing and information re-

trieval. Journal of the ACM (JACM) 7(3), 216–244 (1960)

http://www.openggsn.org/

An Efficient Decentralized Rekeying Scheme

to Secure Hierarchical Geographic Multicast
Routing in Wireless Sensor Networks

Prithu Banerjee, Mahasweta Mitra, Ferdous A. Barbhuiya,
Sandip Chakraborty, and Sukumar Nandi

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati, Assam, India

{prithu,mahasweta,ferdous,c.sandip,sukumar}@iitg.ernet.in
http://www.iitg.ernet.in

Abstract. Wireless Sensor Networks consist of several autonomous sen-
sors deployed in a distributed fashion for different purposes like that of
wildlife tracing, detection of intruders, environment monitoring etc. Ef-
ficient multicast is necessary to scale down the exchange of messages for
group communication in sensor networks. However incorporating secu-
rity in wireless sensor group communication is a huge challenge because
of the limited resource availability. In this paper, a decentralized rekey-
ing mechanism based on Logical Key Hierarchy is proposed to secure
the efficient Hierarchical Geographic Multicast Routing without affect-
ing its actual performance. The proposed protocol, Secure Hierarchical
Geographic Multicast Routing (SHGMR) meets all the security require-
ments necessary for any kind of secure group communication. This pro-
tocol is also efficient in terms of scalability as it uses only O(log2nmax)
message transmissions, where nmax is the size of the largest subgroup
among all the HGMR cells.

1 Introduction

Wireless Sensor Networks (WSN) [1] consist of large number of widely dis-
tributed self configuring sensor nodes. Sensor nodes are small, low-powered,
low-cost multifunctional devices with data processing and communication capa-
bilities. WSNs have huge applications in traffic management, enemy vigilance,
environment monitoring and health care [2]. In most of these domains, the sen-
sor nodes participating in the communication form a group amongst themselves.
These groups are dynamic as the nodes can join or leave causing a rapid change
in the structure of the group.

The sensor nodes belonging to a group exchange important messages. Thus
efficient routing mechanisms are required for proper group communication. Sev-
eral routing mechanisms exist in literature for group communication in wireless
sensor networks. Hierarchical Geographic Multicast Routing(HGMR) [3] is an ef-
ficient group communication mechanism based on geographical location of the
nodes. HGMR integrates the features of Geographic Multicast Routing(GMR)

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 294–308, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.iitg.ernet.in

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 295

AP AP
AP

APAP

APAP AP

AP

1 2 3

4 5 6

7 8 9

RP

S

REQUEST for AP from S to RP

REPLY from RP to S

Unicast from S to APs

Multicast from APs to Group Members

Fig. 1. Hierarchical Geographic Multicast Routing

[4] and Hierarchical Rendezvous Point Multicast (HRPM) [5] to optimize group
communication in WSNs. In Geographic Multicast Routing (GMR), the forward-
ing node selects a subset of its neighbours as relay nodes such that choosing
them reduces remaining distance towards the destinations. GMR reduces the
total number of transmissions by using the basic broadcast advantage of WSNs.
However IDs of all the destinations and the chosen relay nodes have to be in-
cluded in the packet header which leads to a large encoding overhead. Hier-
archical Rendezvous Point Multicast (HRPM) on the other hand reduces this
overhead by hierarchically dividing the arena into smaller cells. Each cell has
an Access Point(AP) and the entire arena has a Rendezvous Point (RP) which
can be considered as the root of this hierarchy. A new node joining the arena
is assigned the cell of the AP closest to this node. But for communication from
RP to AP and AP to nodes, HRPM uses unicast which increases the number of
message transmissions. HGMR intelligently combines the low encoding overhead
of HRPM with the forwarding efficiency of GMR. Whenever the source wants to
send data, it first sends the list of destinations to the RP. The RP returns the
set of APs’ under which the group members fall. The message is unicast from
source to the APs and then each AP multicasts it to the members of its cell using
GMR as shown in Figure 1. Thus HGMR provides a trade-off between locality
and load balancing. So it is a very efficient routing protocol for group communi-
cation in WSNs. Securing such group communication in WSN is an important
requirement for e.g. in military applications. In Wireless Sensor Networks any
group communication have the following security requirements:

296 P. Banerjee et al.

1. Group Confidentiality:
Only the group members must be able to decipher the messages exchanged.
This is one of the main challenges of multicast communication. All the nodes
that belong to one group can share a single secret key among themselves
called the group key to secure communication among themselves.This key
provides group secrecy as well as source authentication.

2. Forward and Backward Secrecy:
When an already existing member leaves the group, forward secrecy has to
be ensured so that the node can not decipher any new messages with the
group key already known to it. Same is the case when a new node wishes
to join the secure group. It becomes important to ensure backward secrecy
so that the new member can not decipher any previous messages encrypted
with the old group key.

3. Collusion Resistance:
The evicted members should not be able to exchange the information known
by them to discover the group key i.e. collusion has to be prevented.

For all above reasons rekeying is an important requirement for dynamic groups.
One way of rekeying can be to have a shared secret key between every source-
destination pair. The new group key can be sent by symmetric encryption. How-
ever for n number of nodes, O(n) transmissions are required and hence, this
scheme is not scalable and energy efficient. Furthermore, public key based ap-
proaches can not be used as it increases the message complexities enormously
which becomes difficult for the resource constrained sensor nodes to process [7].

Securing group communication in WSNs is difficult for many reasons as men-
tioned in [6]. In order to make the use of sensor networks affordable, the sensor
devices are constrained in energy availability and communication capabilities.
They are susceptible to physical attacks as they are mostly used in areas which
can be accessed by intruders. Several works exist in literature that aim to secure
group communication in sensor networks. In SPINS [7], data confidentiality is
provided using SNEP protocol. In the same paper, μ-TESLA has been proposed
to authenticate broadcast mechanism in resource constraint devices. However,
the proposed mechanism is not scalable because of high communication com-
plexity to bootstrap a receiver being in the order of the size of the network,
which is an essential part of the scheme. Eschenauer et al [8] propose a random
key pre-distribution mechanism to secure multicast communication. In [9], the
authors propose two centralized group rekeying scheme to secure group commu-
nication in wireless sensor networks. However, these schemes do not address the
underlying multicast routing mechanism for group communication. WSNs are
prone to attacks like node capturing, physical tampering and denial of service
[6]. Thus not taking care of security issues in underlying routing protocols often
causes it to become prone to attacks as mentioned earlier, especially energy de-
privation attacks. The paper on directed diffusion based secure multicast scheme
for WSNs [10] presents a protocol called the Logical Key Hierarchy For Wireless
Sensor Networks(LKHW) which uses Directed Diffusion mechanism for routing
and an extension of LKH for securing the routing mechanism. LKHW provides

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 297

both backward and forward secrecy and the energy cost also scales logarithmi-
cally with the group size. However, to the best of our knowledge, there are no
works till now that aims to secure HGMR protocol for group communication in
wireless sensor networks.

Logical Key Hierarchy(LKH) is one of the most popular group key manage-
ment protocols that requires only O(log2n) transmissions for rekeying [11], [12].
A tree of keys is created for the group members with the group key occupying
the root of this hierarchy. The internal nodes of the tree hold the encryption
keys. Here it is assumed that the group controller (GC) assigns keys to group
members. Each group member maintains a copy of the individual key it shares
with the group controller and the set of encryption keys encountered on the path
from the root to the leaf node. However, the basic LKH, being a centralized key
management protocol, creates a bottleneck at the group controller. The problem
is more intense in the case of WSN as computing power of each sensor node is
constrained. Dondeti et al [13] propose a dual encryption protocol exhibiting a
decentralized architecture that uses hierarchical subgrouping. But this scheme
uses signature based public key approach that can not be practically applied in
resource constrained sensor nodes.

In this paper, a decentralized rekeying scheme is proposed to secure the ef-
ficient HGMR based routing. To reduce the bottleneck at GC, the hierarchical
structure of the routing protocol is exploited to decentralize the key manage-
ment scheme. A modified version of LKH i.e. LKH+, as proposed by Waldvogel
et al [14], is applied inside each cell instead of applying it on the whole group.
The security analysis shows that it does not violate the security criterion stated
earlier. The proposed scheme also uses multicast communication for rekeying
both at the time of node join and node leave, and hence utilizes the broadcast
nature of WSN. The theoretical analysis shows that the proposed scheme uses
constant number of message transmissions in normal communication, whereas
rekeying requires O(log2nmax) message transmissions, where nmax is the size of
the largest subgroup among all the cells in HGMR hierarchy. In general, this
bound does not affect the efficiency of HGMR and is lesser than that of basic
LKH based rekeying.

2 Secure Hierarchical Geographic Multicast Routing
(SHGMR)

The proposed scheme aims to secure the communication between the group
members of a WSN that use the HGMR protocol. The members are assumed to
be distributed among different cells of HGMR hierarchy. The group members in
each cell form a subgroup among themselves. Let SGi denote ith such subgroup.
The AP of a particular cell multicast the group communication messages coming
from the source to the subgroup members under it. The two main advantages of
HGMR protocol that are exploited are as follows:

1. Each cell can be considered as a separate cluster and changes in one cell does
not affect sensor nodes in the other cells. This can be exploited to perform
rekeying in a decentralized way.

298 P. Banerjee et al.

2. At each level of the HGMR hierarchy, an AP holds the information required
for routing packets to its child nodes only. This property motivates to go for
a rekeying similar to LKH based scheme.

In HGMR, unicast is used to communicate between source and AP whereas
multicast is used to communicate between the AP and the group members inside
a HGMR cell. In the paper, unicast and multicast are depicted using ‘→’ and
‘⇒’ symbols respectively. Following assumptions are used throughout this paper
while describing the proposed security mechanism.

1. There are total t number of APs in the arena that spans the whole group of
n members. An AP can be a group member or a third party assisting the
forwarding process. In the latter case, the AP must not be able to decrypt
the messages that it forwards.

2. A two level hierarchy of HGMR is assumed for simplicity while describing
the scheme. However the protocol is applicable on any number of levels.

3. A group controller (GC) is a randomly picked group member who masters
the key refreshing process whenever a node joins or leaves the group.

4. A key distribution protocol through a third party key distribution center
(KDC) [15] is used. In the proposed protocol, the RP is assumed to be the
KDC as the source nodes for group communication contact the RP to obtain
the required list of APs. Along with the list of APs, the RP distributes the
secret session keys to the source i.e. one separate key for each AP.

2.1 Description of Key Hierarchy

Figure 2 shows the key hierarchy defined over a group. All the members of a
group share a common group key GKEK known only to the members of the
group. Along with the GKEK, the subgroup members under each AP form a
logical key hierarchy among themselves. LKHm denotes the logical key hierarchy
structure for the mth subgroup SGm. |SGm| denotes the number of members in
SGm. The leaves of LKHm consist of |SGm| number of keys KSGMmj, which
are the shared secrets between APm and each group member j ∈ SGm. The
remaining tree is formed according to the basic LKH+ protocol. The arity of
the tree is two. So the LKHm has log2(|SGm|) levels. In Figure 3, an example
of key hierarchy is shown for a HGMR cell with Eight members. The details of
keys possessed by a group member will be described in the initialization phase.
To secure the communication between the source and the APs of different cells
in HGMR, a session key KAPm is generated at the KDC, which is distributed
to APm and the source. The key distribution mechanism used here is similar to
[15].

There are few other keys used in this scheme for the decentralization of basic
LKH. This decentralization reduces the bottleneck at GC and makes the ap-
proach more optimized for resource constrained nodes of WSN. The notation
used to represent those keys and some other notations used in this paper are
described in the Table 1.

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 299

SGn

LKH1 LKH2 LKH3 LKHn

SG1 SG2 SG3

 GKEK

Fig. 2. The Key Structure of the Group

Table 1. Notations used in Rekeying Protocol

Key Notation Meaning of the Notation

KGMi
Secret key between ith group member ui and the Group Con-
troller

KSGMij Secret key between group member ui ∈ SGj and APj

SGKEKi
Subgroup Key Encryption Key of SGi, known to all members
of SGi. This key is the root of LKHi

LK The set of the keys to form LKH

KRPi Shared secret between RP and node i

GKEK′,SGEK′,LK′ denote the new keys after rekeying has been done

2.2 Initialization Phase

A set of keys are distributed to the group members by the GC when a group
is initialized. Figure 3 shows the key hierarchy for a subgroup SGm, where
{ui|i ∈ (1, 8)} ∈ SGm are the members of a group. For example, node u8

contains the group key GKEK, a secret key KGM8 shared with GC, secret
key KSGM8m shared with APm and the set of keys from the key hierarchy-
{LK78, LK5678, LK12345678}. The key at the root of the hierarchy is common
to all the members of the subgroup. Here LK12345678 is at the root of the key
hierarchy, hence SGKEKm = LK12345678.

2.3 Secure Message Transmissions

There can be two kinds of message transmissions:

1. The normal message transmission in an already formed group using group
key GKEK.

2. The set of messages transmitted for rekeying when a node joins or leaves the
group.

300 P. Banerjee et al.

LK12345678

LK1234 LK5678

LK12 LK34
LK56 LK78

U1 U2 U3 U4 U5 U6 U7 U8

l=0

l=1

l=2

l=3

Fig. 3. Logical Key Hierarchy of an SG with Eight Members

Normal Message Transmission: When the source S wants to communicate
with other group members, according to HGMR it first identifies the proper
APs under which the group members belong to. To get the list of APs, it first
queries the RP and the RP replies with the list of APs. In SHGMR, RP also
sends the corresponding KAP s, using the key distribution protocol similar to
[15]. Additionally all communication between source and RP is encrypted by
KRPS so that none can alter the message content.

In the original HGMR protocol, the source unicasts the message to the APs of
the list and from each AP the message is multicast to the corresponding subgroup
members. In SHGMR, for every AP of the list, the source first encrypts the
message with GKEK and appends the list of destinations to which the AP has
to forward the encrypted message. Then the whole packet (i.e. the encrypted
message and destination list) is encrypted by KAP and unicast to the APs of
the list. Upon receiving the packet an AP decrypts it with key KAP to get the
list of destination to which it needs to forward the message. It can be noted that
the message is encrypted with group key GKEK. Hence if an AP is not a group
member, it can not decrypt it.

Assume source S wants to send message M to set of group members {D1, D2,
..., Dn}. The list of APs returned by RP is {AP1, AP2, ..., APt}. Now to each
APi of the returned list, S unicasts the encrypted message and a subset of group
members that belongs to the cell of that APi i.e. {Di1, Di2, ..., Did} (assume
that the subset size is some d where d ≤ n) encrypted with the secret key KAPi

established between S and APi. After receiving the message, APi decrypts it
to obtain the destination nodes and multicast the EGKEK(M) encrypted with
SGEK to those nodes. So the message sequence is as follows:

1. S → RP : EKRPS{D1, D2, ..., Dn}
2. RP → S: EKRPS{AP1, AP2, ..., APt}
3. S → APi: EKAPi(EGKEK(M)||{Di1, Di2, ..., Did}), ∀i ∈ (1, t)
4. APi ⇒ {D1, D2, ..., Dd}: ESGKEKi(EGKEK(M))

Rekeying Mechanism: In order to provide forward and backward secrecy
whenever the member set of the group changes the group keys must be changed.

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 301

It has been shown in this paper that every change in the group does not always
require changing the existing group encryption key GKEK. Hence the overhead
is reduced. At the same time the rekeying procedure does not solely depend on
GC. It delegates the load of rekeying at the subgroup level to the AP of the
subgroup. This decentralization avoids the bottleneck at GC.

Whenever a node ui joins or leaves the subgroup SGm, all the keys on the path
from the root to the new leaf of LKHm has to be rekeyed. In Figure 3, suppose
a change occurs at u8. The compromised key set is {LK78, LK5678, LK12345678}.
The new key set for the compromised keys must be sent to the corresponding
subgroup members. However all of them need not be transmitted by APi in
LKH+, as proposed by Waldvogel et al [14]. Each node ui only needs to know
the first key affected on the path from its key at the leaf to the key at the root
of the LKH tree, as at each level of key hierarchy, only a single key has to be
refreshed. It can generate the other keys using a one way hash function applied
on the above key. This reduces the number of rekeying message transmissions.
Assume node u8 joins the subgroup, as shown in Figure 3, and the new key
set for the key tree be {LK ′

78, LK ′
5678, LK ′

12345678}. The relationship among the
keys is as follows:

LK ′
12345678=H(LK ′

5678)=H(H(LK ′
78)), where H is the hash function.

The advantage of using LKH+ is that only one key is required to send at any
node. From it the node can compute other refreshed key. This reduces number
of messages required for rekeying.

(i) Node Join

The new node sends a JOIN message to the RP indicating its own location.
RP replies with the location of the AP under which it must join. The node
finally sends an UPDATE message to that AP. These messages constitute the
join process as per the original HGMR protocol.

All the above messages are transmitted also in SHGMR. However some ad-
ditional messages are encountered for the rekeying process. Let node ui joins in
the subgroup SGm. ui has a secret key KGMi with GC. The APm, under which
it joins, assigns a secret key KSGMim to it. This KSGMim is the new leaf in
LKHm. All the keys on the path from the root to the new leaf of LKHm have to
be rekeyed. Thus SGKEKm, which is the root of the hierarchy, is automatically
refreshed. Two cases can arise in this situation.

1. If APm joins as a member of SGm, the group key GKEK has to be rekeyed
along with all the keys on the path from the root to the new leaf of LKHm.
The new GKEK ′ has to be informed to all the group members.

2. If any other node joins as a member of SGm, then there is no need to change
GKEK. Here rekeying is necessary only for LKHm. Thus it passes on the
burden of rekeying from group level down to subgroup level.

Let node u8 joins SGm, as shown in Figure 3. Then the keys of LKHm are
changed first. The sequence of rekeying messages transmitted are as follows.

302 P. Banerjee et al.

1. APm → u8: EKSGMm8(LK ′
78), u8 decrypts it and computes LK ′

5678 and
LK ′

12345678 using the hash function.
2. APm → u7: EKSGMm7(LK ′

78), u7 decrypts it and computes LK ′
5678 and

LK ′
12345678 similarly.

3. APm ⇒ {u5, u6}: ELK56(LK ′
5678), u5 and u6 decrypts it and computes

LK ′
12345678 in similar way.

4. APm ⇒ {u1, u2, u3, u4}: ELK1234(LK ′
12345678) The keys for the LKH are

refreshed and new SGKEK ′
m = K ′

12345678.
5. Case I. If u8 �= APm then GC forwards the unaltered group key GKEK

using following two messages. It must be noted that, in this case GC contacts
with the KDC to get the KAPm.

(a) GC → APm: EKAPm(EKGM8(GKEK)||u8)
(b) APm → u8: ESGKEK′

m
(EKGM8(GKEK))

Case II. If u8 = APm then the GKEK should be changed to a new group
key GKEK ′. It is distributed to the other group members using following
messages.

(a) GC → APm: EKAPm(GKEK ′||{u1, u2, ..., u8})
(b) APm ⇒ {u1, u2, ..., ud}: ESGKEK′

m
(GKEK ′)

(c) GC → APi: EKAPi(EGKEK(GKEK ′)||{Di1, Di2, ..., Did}), ∀i ∈ (1, t) ∧
i �= m

(d) APi ⇒ {Di1, Di2, ..., Did}: SGKEKi(GKEK ′), ∀i ∈ (1, t) ∧ i �= m

(ii) Node Leave

Whenever a node wants to leave the group, as per HGMR, it sends an UPDATE
message to its AP. If it is the last node under the AP, AP sends a NOTIFY
message to the RP. In SHGMR, two cases can arise. The member leaving the
group can be a normal group member or an AP. When an AP leaves a group,
it continues to serve like an AP as before but as it is not a group member,
it should not be able to decrypt any group messages further. The set of keys
of the subgroup where the membership changes is required to be refreshed is
shown. Assume node u8 leaves the group from SGm. Then the keys of LKHm

are changed using the following messages.

1. APm → u7: EKSGMm7(LK ′
78), u7 decrypts it and computes LK ′

5678 and
LK ′

12345678 similarly.
2. APm ⇒ {u5, u6}: ELK56(LK ′

5678), u5 and u6 decrypts it and computes
LK ′

12345678 in similar way.
3. APm ⇒ {u1, u2, u3, u4}: ELK1234(LK ′

12345678) The keys for the LKH are
refreshed and new SGKEK ′

g = K ′
12345678.

If u8 �= APm then no further messages are required. Else a new group key
GKEK ′ is chosen and it is unicast to all the remaining members of SGm

by GC itself but not via APm. For all other subgroups, GKEK ′ is multicast
using HGMR protocol via their APs, similar to the case of node join.

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 303

3 Security Analysis

In this section, the proposed SHGMR is critically analyzed to show that the four
requirements of secure group communication- Group Confidentiality, Forward
Secrecy, Backward Secrecy and Collusion Resistance are met.

1. Group Confidentiality: The group confidentiality is satisfied by assuring
that only the group members can possess group key GKEK using which the
group messages can be decrypted. Any node, even an AP which is not part of
the group can not decrypt the message being exchanged among the members.
LKH+ is applied inside a subgroup. It assures that all communication made
in a subgroup encrypted by subgroup key remains confidential. Although it is
applied only inside the subgroups, the presence of GKEK guarantees that no
other nodes apart from the group members can decrypt the group messages.

To send message M to the group members, source first contacts RP. All com-
munication between source S and RP is encrypted by KRPS known only to S and
RP. So no one else can interpret or modify the message content i.e the destination
list or the list of APs. Then S encrypts the message M with group key GKEK.
The encrypted message is appended with a destination list. The appended mes-
sage is further encrypted by KAP and sent from source to the APs. Thus only
destination APs can decrypt it to get their destination list, but they can not de-
crypt M if they do not know GKEK. Again the messages sent from AP to the
subgroup members under it, are always encrypted by the subgroup key. So any
node, inside the cell, that is not a group member can not decrypt it.

2. Forward Secrecy: Whenever a node leaves a group, two cases can occur.
If the node is not an AP, GKEK need not to be rekeyed. However forward
secrecy is maintained as SGKEKm is refreshed. Any communication from APm

to the subgroup members is encrypted by SGKEK ′
m. Thus the member who left

can not decrypt messages as SGKEK ′
m is not available to it. In case the leaving

member is the AP of the subgroup i.e. APm, it has access to GKEK, SGKEKm

and SGKEK ′
m. Thus in this case GKEK has to be refreshed. GKEK ′ is unicast

to each of the subgroup members in the affected cell using the shared secret key
KGM . This unicast is done by GC directly to the members of SGm so that APm

can not get the GKEK ′. The new group key (i.e. GKEK ′) is used to encrypt all
future messages. It should be noted that the newly chosen GKEK ′ is completely
independent of previous GKEK, so that knowing previous GKEK, a departing
node can not guess new GKEK ′. Thus forward secrecy is maintained.

3. Backward Secrecy: Whenever a node joins a group, two cases can occur. If
the node is not an AP, backward secrecy is maintained as SGKEKm is refreshed.
The new node is not aware of the old SGKEKm and can not decrypt previous
messages. In case the new member is an AP, GKEK is rekeyed as the AP of the
subgroup has access to GKEK, SGKEKm and SGKEK ′

m. The new group key
(i.e. GKEK ′) is used to encrypt future traffic after the AP joins. Thus it can
not decrypt any previous messages encrypted with old GKEK.

304 P. Banerjee et al.

4. Collusion Resistance: Whenever an AP joins or leaves a group, the GKEK
is changed and GKEK ′ is informed to the group members using the above
described scheme. Similarly, if the node is not an AP, SGKEK is changed.
Thus even if the evicted members discuss among themselves and try to obtain
information about the old group key or the old subgroup key it shall be of no use
as those keys are already changed. The encryption keys that were compromised
are also changed. Thus the proposed scheme is collusion resistant.

4 Performance Analysis

The complexity of the proposed algorithm is analyzed in terms of number of
message transmissions required. At each stage, a comparison between SHGMR
and the existing HGMR protocol is made. This vividly shows that SHGMR has
been successful in securing group communication without affecting its original
performance.

In traditional LKH approach, rekeying of group key for a group with n mem-
bers requires O(log2n) message transmissions. However the decentralized archi-
tecture of the proposed scheme has been successful in reducing this bound.
The analysis takes the same assumption that the group spans across t APs and
has n members. For any WSN, t (n. As per HGMR protocol, for a particular
arena the RP and APs are fixed.

Normal Message Transmission: The number of messages transmitted are as
follows:

SHGMR

1. One unicast message from source to RP providing the list of destinations it
wants to communicate with.

2. One unicast message from RP to source returning the list.
3. According to the key distribution protocol [15], three unicast messages are

required to be transmitted between the source and each APi of the list before
actual messages can be transmitted.

4. t unicasts of the actual message between the source and each AP in the list.
5. One multicasts initiated from each of the t APs to their corresponding sub-

group members.

So total number of messages transmitted is 5t+2 that is of O(1) as total number
of APs in the arena is constant and t (n.

HGMR

In this case, (1), (2), (4) and (5), as described previously in case of SHGMR
hold. So the total number of messages transmitted is 2t+2 in case of the original
HGMR protocol. Thus only at the cost of a few additional messages, SHGMR
provides secure group communication in a WSN working on the HGMR protocol.

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 305

Rekeying Messages: These messages are required when a new member joins
the group or any existing member leaves. APm is the AP of the cell affected by
a node join or leave and SGm is the subgroup under APm.

(i) Node Join:

When a new node joins the group, the number of transmitted messages are:

SHGMR

1. One unicast JOIN message from the joining node to the RP.
2. One unicast message from the RP to the node informing the location of the

APm under which it should join.
3. One unicast UPDATE message from the joining node to APm.
4. log2|SGm| number of multicasts from APm to the members of SGm.
5. Case I. When the new node is not APm,

(a) One unicast message from GC to RP requesting for KAPm

(b) One unicast message from RP to GC in reply to the previous request
(c) Three unicast messages between GC and APm for authenticating each

other before starting communication.
(d) One unicast message between GC and APm transmitting the encrypted

GKEK.
(e) One unicast message between APm and the new member informing

GKEK.
Whenever GC wants to communicate with APm, five unicast messages i.e.
(a), (b) and (c) are required for key distribution as per [15].
Case II. When the new node is APm,
(a) Five unicast messages for key distribution between GC and APm as

explained earlier.
(b) One unicast message between GC and APm to inform GKEK ′.
(c) One multicast message from APm to the subgroup members of SGm to

inform GKEK ′.
(d) t− 1 number of unicast messages from GC to the other unaffected APs

containing subgroup members for informing GKEK ′. Each such unicast
will require five extra unicast messages between GC and each unaffected
AP for key distribution as explained earlier i.e. a total of 5(t−1) unicast
are performed for key distribution.

(e) One multicast from each of the t−1 APs to send GKEK ′ to the subgroup
members.

The total number of messages transmitted is log2|SGm| + 10 when the node is
not APm , and 7t+ log2|SGm|+3, when the node is APm. As t is constant for a
particular arena, the total number of messages transmitted during a node join is
O(log2nmax) where nmax is the size of the largest subgroup among all the cells.

HGMR

In this case, (1), (2) and (3), as described for SHGMR (node join) hold. Thus
three messages are transmitted in the original HGMR protocol whenever a new
node joins the group.

306 P. Banerjee et al.

(ii) Node Leave:

When a node leaves a group, the number of transmitted messages are:

SHGMR

1. One unicast UPDATE message from the node to the APm.
2. One unicast NOTIFY message from APm to the RP in case the node is the

last one in the subgroup SGm.
3. log2|SGm| number of multicasts from the AP to the members of the sub-

group.
4. Case I. When the node is not an AP, no other message transmission is

required. Thus the total number of message transmissions in this case is
log2|SGm|+ 2 i.e. O(log2nmax).
Case II. When the node is an AP,
(a) |SGm| unicasts of GKEK ′ to each subgroup member under APm from

GC.
(b) t− 1 number of unicast messages from GC to the other unaffected APs

containing subgroup members for informing GKEK ′. Each such unicast
will require five extra unicast messages between GC and each unaffected
AP for key distribution as explained earlier i.e. a total of 5(t−1) unicast
are performed for key distribution.

(c) t− 1 number of multicasts from the above APs to send GKEK ′ to the
subgroup members.

Thus |SGm|+ 7t + log2|SGm| − 5 message transmissions are required in this
case i.e. O(nmax).

HGMR

Here, (1) and (2), as described in case of SHGMR (node leave) hold. Thus two
messages are transmitted in the original HGMR protocol whenever a new node
leaves the group.

Though the number of message transmissions encountered during a node join
or leave are slightly higher than the constant bounds of HGMR, each transmis-
sion is made following the protocols of the scheme and thus its functionality is
not hampered. Securing group communication in WSNs is a primary require-
ment and SHGMR has been successful in providing this as shown in the security
analysis of the scheme. Thus these extra messages are worthwhile as this makes
the original HGMR deployable in real life scenarios.

Thus for each of the above cases, an O(log2nmax) bound is achieved by the
SHGMR protocol except when an AP leaves a group where an O(nmax) bound
is obtained. However an AP leaving or joining a group is not a common event.
So this bound does not affect reduction in the message count than the O(log2n)
bound of the traditional LKH approach. This is achieved as a result of decen-
tralizing the rekeying process. Also, SHGMR protocol, as seen earlier, does not
require rekeying the GKEK every time a node leaves or joins which significantly
reduces the overhead at the GC. Thus it is scalable and more energy efficient for
WSN.

An Efficient Decentralized Rekeying Scheme to SHGMR in WSN 307

5 Conclusion

In this paper, a scheme is proposed to secure HGMR based group communication
in sensor network. The SHGMR protocol uses location based efficient routing
protocol HGMR and a decentralized version of LKH+ key management protocol.
It achieves low encoding overhead than signature based schemes. Forwarding
efficiency is enhanced with reduced number of message transmissions incurred
during rekeying. Compared to traditional rekeying mechanisms that run using
linear number of message transmissions, the proposed model uses much less
number of transmissions. Rekeying at subgroup takes place locally, independent
of others, thus reducing the overhead at GC. Though it does not deal with the
issue of data aggregation, it can be extended to incorporate this.

References

1. Akyildiz, I.F., Su, E.W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor
Networks: Survey. Journal of Computer Networks 38(4), 393–422 (2002)

2. Chong, C.Y., Kumar, S.P.: Sensor Networks: Evolution, Opportunities, and Chal-
lenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)

3. Koutsonikolas, D., Das, S.M., Hu, Y.C., Stojmenovic, I.: Hierarchical Geo-
graphic Multicast Routing for Wireless Sensor Networks. Journal of Wireless Net-
works 16(2), 449–466 (2010)

4. Sanchez, J.A., Ruiz, P.M., Stojmnenovic, I.: GMR: Geographic Multicast Routing
for Wireless Sensor Networks. In: The 3rd Annual IEEE Communications Society
on Sensor and Ad Hoc Communications, pp. 20–29 (October 2006)

5. Das, S.M., Pucha, H., Hu, Y.C.: Distributed Hashing for Scalable Multicast in
Wireless Ad Hoc Networks. IEEE Transaction on Parallel and Distributed Sys-
tem 19(3), 347–362 (2008)

6. Perrig, A., Stankovic, J., Wagner, D.: Security in Wireless Sensor Networks. Com-
munications of the ACM 47(6), 53–57 (2004)

7. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.: SPINS: Security Protocols
for Sensor Networks. Journal of Wireless Networks 8(5), 521–534 (2002)

8. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (2002)

9. Wang, Y., Ramamurthy, B.: Group Rekeying Schemes for Secure Group Com-
munication in Wireless Sensor Networks. In: The Proceeding of IEEE ICC, pp.
3419–3424 (2007)

10. Pietro, R.D., Mancini, L.V., Law, Y.W., Etalle, S.: LKHW: A Directed Diffusion-
Based Secure Multicast Scheme for Wireless Sensor Networks. In: Proceedings of
International Conference on Parallel Processing Workshops, pp. 397–406 (October
2003)

11. Wong, C.K., Gouda, M., Lam, S.S.: Secure Group Communications Using Key
Graphs. Department of Computer Sciences, The Univ. of Texas at Austin, Tech.
Rep. TR-97-23 (July 1997)

12. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure Group Communication using Key
Graphs. IEEE/ACM Transaction on Networking 8(1), 16–30 (2000)

308 P. Banerjee et al.

13. Dondeti, L.R., Mukherjee, S., Samal, A.: A Dual Encryption Protocol for Scal-
able Secure Multicasting. In: Proceedings of IEEE International Symposium on
Computers and Communications (1999)

14. Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The VersaKey
Framework: Versatile Group Key Management. IEEE Journal on Selected Areas
in Communications 17(9), 1614–1631 (1999)

15. Popek, G., Kline, C.: Encryption and Secure Computer Networks. ACM Computing
Surveys, 331–356 (December 1979)

SecWEM: A Security Solution

for Web Based E-mail

Ravi Shankar Yadav, Praveen Likhar, and M. Keshava Rao

Centre for Artificial Intelligence and Robotics (CAIR)
Defence Research and Development Organisation (DRDO) Bangalore-93, India

{ravi.yadav,praveen.likhar,keshava}@cair.drdo.in

Abstract. Web based e-mail (Webmail) service is a popular mode of e-
mail communication and is being widely used for personal and business
purposes. Security of webmails carrying sensitive commercial or corpo-
rate information is an important requirement today. A comprehensive
solution is expected to cover confidentiality and integrity requirements
during transit as well as authentication of the origin of webmails. Al-
though some e-mail security solutions such as PGP, S/MIME, SMS and
solution from Freenigma are currently available, most of them are tai-
lored for handling e-mail sent or received by mail clients such as the
Outlook Express or Eudora and they cannot handle webmails sent or
received by browsers. The Freenigma solution handles a few specific web-
mail services but does not provide a generic solution. The main challenge
in developing a security solution for webmails lies in building a parser to
extract e-mail header details and mail body from a HTTP message, that
can work with all webmail services. To address this challenge, we propose
SecWEM, a desktop level end-to-end security solution. The problems in-
volved in development and how they have been solved are presented in
this paper.

Keywords: Information security, e-mail encryption, Webmail, and
Webmail security.

1 Introduction

One of the important services that the Internet supports today is electronic-mail
or e-mail. The users of this service include government officials, professionals, ex-
ecutives in private and public sector, teachers, students and more. Next only to
the medium of telephone, the e-mail has become an indispensable part of every-
day operations of its users. The sensitivity of the messages being carried by e-mail
today has a much wider range than it was a decade ago, which raises concerns
about protecting e-mail messages from unauthorized access and inspection[1][2].
Thus, along with the need to communicate sensitive messages comes the need for
secure delivery of such messages. Firstly, the messages must be protected from
eavesdropping, ensuring confidentiality of the message. Secondly, tampering of
messages during transit must be prevented, thus ensuring integrity of the mes-
sages. Finally, the origin of the mail must be authenticated so that spoofing of

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 309–321, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

310 R.S. Yadav, P. Likhar, and M.K. Rao

sender’s identity is prevented. Collectively these three requirements constitute
security of e-mail.

Web-based e-mail, called webmail, is a widely used form of e-mail communi-
cation. In the context of providing security to webmail, it is necessary to appre-
ciate the difference between standard e-mails and webmails. The former type of
e-mail services use the Simple Mail Transfer Protocol (SMTP) [3] for sending
the mails and the Post Office Protocol (POP) [4] or the Internet Mail Access
Protocol (IMAP) [5] for receiving or reading the mails. The SMTP is used for
transfer the mails from one server to another over the Internet. On the other
hand, the webmail services use the Hyper Text Transfer Protocol (HTTP) [6]
for both sending and receiving webmails. As a consequence of the differences in
the protocols used, the user interfaces are different as well. One uses what may
be called as mail clients also known as mail user agents (MUAs) such as the
Outlook Express or Eudora to send or receive standard e-mail. A browser such
as the Internet Explorer or Firefox is used as an MUA also termed as webmail
client, for availing webmail services.

To provide security to the e-mails there are some solutions like Entrust SMS
[7], Freenigma [8], PGP [9], S/MIME [10], openPGP [11] and TLS [12]. Among
these e-mail security solutions only Entrust SMS and Freenigma can provide
security to webmails, but both these solutions have their own limitations.

Given the present options for solutions for e-mail security, it is desirable to
have a solution for webmail security that can handle different types of webmail
services at the desktop to desktop level. Additionally, the solution should be
a generic one independent of specific browsers. We have developed a solution
keeping these factors in mind. Making this solution compatible with all types
of webmail services and dealing with updates of the e-mail formats of webmail
services were two major problems. The latter problem required the development
of a module to train the solution to adapt to the changing HTTP message formats
of webmail services.

The paper is organized in seven sections. Following this introductory section
we give a detailed account of the security services required for protecting sensi-
tive webmails. In the third section we discuss the existing solutions. The fourth
section explains a generic approach for security of webmails, the challenges in-
volved and a security solution based on this approach. The fifth section covers
implementation and testing. In the sixth section we present the performance and
overhead statistics. The seventh section concludes the paper.

2 Security of Webmails

All the security threats to the traditional e-mails are equally applicable to the
webmails. In this section we list common security threats to e-mails and crypto-
graphic services required to protect against them. The most important security
services required are Authentication, Access control, Confidentiality, Integrity,
Non-repudiation, and Availability [13].

SecWEM: A Security Solution for Web Based E-mail 311

2.1 Security Threats to E-mails

Usually e-mail is transferred in plain text passing through one or more inter-
mediaries. Also, e-mail servers may take backup of e-mails that pass through
them. There is a risk that an attacker can access the e-mail contents, either by
eavesdropping on the network or accessing a repository. Some of the contents
within these e-mails may be sensitive in nature. Disclosure of such sensitive data
can result in loss or damage, such as identity theft or loss of business. Some-
times e-mail contents can be modified during transit or storage [14]. As e-mail
passes through various routers and e-mail servers, a person who has access to
these routers or mail servers can modify the contents of the e-mail. An attacker
that resides on the same Local Area Network (LAN) can use a tool for spoofing
Address Resolution Protocol (ARP) such as “ettercap” to intercept or modify
all the e-mail packets going to and from a mail server or gateway [14].

It is relatively easy to modify e-mails such that they appear to come from a
legitimate source; this attack is known as e-mail spoofing. Usually an attacker
modifies the sender’s address in the ‘From’ field of SMTP protocol and other
parts such as ‘Return-Path’, ‘Reply-To’ fields of the e-mail header to appear as
though the e-mail is sent by some known sender. E-mail spoofing is also used for
phishing to hide the origin of an e-mail. However, existing e-mail standards do
not put any emphasis on security and that’s why e-mail is inherently vulnerable
to both passive and active attacks [14]. The most common threats to e-mail are
listed in Table 1.

Table 1. Common Email Threats

S.No. ThreatType Threats

1 Active Message Modification, Spoofing

2 Passive Eavesdropping, Invasion of privacy, Identity theft,

Unprotected Backups

2.2 Protection of E-mail against Security Threats

Encryption is the most preferred solution for mitigating the risk of loss of con-
fidentiality. If e-mail is sent in encrypted form, then it cannot be read even by
the person who has the access or a person who hacks the en-route e-mail servers
or routers, unless the encryption key is compromised or the algorithm used is
broken. Message manipulation by an attacker can take the form of data mod-
ification within the message or even substitution of credentials, to change the
apparent source of the e-mail. This threat can be addressed by data authenti-
cation, which consists of two components namely data integrity and data origin

312 R.S. Yadav, P. Likhar, and M.K. Rao

authentication. Integrity check mechanisms such as hashing can be used to en-
sure that messages have not been tampered with in transit. Digital signature
enable the recipient to verify that message originate from the expected sender.
It makes sure that the person who is claiming to be the sender of the message
really is the one from whom it originates.

3 Related Work

A number of solutions for providing confidentiality, integrity, and origin authen-
tication to the e-mails are available today. Some of them are commercial while
some are freeware. The foremost and perhaps the oldest is Pretty Good Pri-
vacy (PGP) [9]. Though it started as a freeware, now commercial versions are
available. The main point to note is that the different versions of the PGP are
solutions for security of standard e-mails but they are not designed to handle
webmails. There is another popular solution for e-mail security from the En-
trust Corporation called the Secure Messaging Solution (SMS) [7]. This solution
too is primarily aimed at securing standard e-mails. Realising the importance
of providing security to webmails, the SMS suite offers a solution for webmail
services. However, this solution entails an extra server system within the cus-
tomer premises. A number of other less popular solutions are available [10] [11]
but none of them handle webmail security. Within the scope of a single webmail
service, it is possible to provide security to webmail services using the transport
layer security option, SSL/TLS [12]. However, in this approach the e-mail will
remain in plain in the e-mail servers, something that the users would not be
comfortable about. The Freenigma [8] group has announced that they have de-
veloped a solution for Google webmail (Gmail) and yahoomail but this solution
does not support other webmail services.

Over the years several new secure e-mail protocols have also been proposed
by researchers. Some examples of these e-mail security protocols are SMEmail
[14], WSEmail [15] and Trusted e-mail Protocol [16]. The process of adopting
these protocols may not be viable most of the times, as these protocols require
replacing the existing e-mail protocols. These protocols may be suitable for some
closed user group but the members of such group cannot communicate with
others because of the interoperability issues.

4 Our Approach to Webmail Security

In this section we briefly describe our approach to webmail security, SecWEM.
It is an end-to-end security solution for webmails. To make SecWEM indepen-
dent of webmail clients, we design it to work as a proxy. The SecWEM performs
cryptographic operations on outgoing webmails and forwards them to their re-
spective webmail servers. While receiving at the destination, after performing
the reverse cryptographic operation, SecWEM forwards the webmails to the lo-
cal webmail client.

SecWEM: A Security Solution for Web Based E-mail 313

Fig. 1. Webmail communication through SecWEM

4.1 Service-Independent Handling of Webmails

Extracting e-mail fields of the webmail such as sender’s e-mail address (From
field), recipients’ e-mail address (To, Cc and Bcc fields) and mail body is one of
the major tasks in developing any security solution for webmails. If a solution
is desired to work with all webmail services, then to extract all the information
mentioned above, a universal parsing module is required and building this is a
challenge. This subsection explains the challenge involved in building a universal
parsing module and our approach to overcome the challenge.

All webmail services use HTTP protocol to transfer webmails between web
browser and webmail server. For this purpose webmail services place all the e-
mail fields such as From, To, Cc, Bcc, Subject etc. and mail body in a particular
format into the data portion of the HTTP message. Building a parser to extract
these e-mail fields and mail body requires knowledge of the format used by the
webmail service. Even though every webmail service uses HTTP protocol to
transfer webmail, there is still no standard format for placing the e-mail fields
and the mail body into the HTTP data portion. Different webmail services use
different formats and sometimes they also change these formats from time to
time. This is the reason why existing webmail security solutions do not work
with all types of webmail services.

However some existing webmail security solutions work with limited webmail
services. The principal approach used by all these solutions is to manually find
out the format used by a particular webmail service and hardcode it in the
solution. But there is a main drawback with this approach; these solutions are
susceptible to fail whenever the webmail service changes or modifies the format.

To address this challenge, we have used an automated reverse engineering
approach to design a recogniser module and a universal parser module. The
universal parser module extracts the information using the format identified
by the recogniser module. To find out the format, the recogniser prompts the
user to send a dummy webmail to a pre-specified dummy recipient with a pre-
specified dummy mail body, as shown in Fig. 2. After the user sends the dummy
webmail, the recogniser module intercepts the webmail and finds out the format
by identifying the start and end delimiters of each e-mail fields and the mail
body. The recogniser module extracts the delimiters for each field by identifying
the prefix and suffix string of specified length for the corresponding dummy
value of the field in the HTTP Message. A delimiter template is formed for
a particular webmail service, which contains delimiters of all e-mail fields and

314 R.S. Yadav, P. Likhar, and M.K. Rao

Fig. 2. Dummy Webmail

that of the mail body. This template is used by the universal parsing module
for extracting the information. When a webmail service changes or modifies its
format, the universal parsing module fails to extract the required fields from the
HTTP message and then prompts the user to run the recogniser to find out the
new format. In this way SecWEM works for any webmail service. A user just
needs to run the recogniser once, when he is using SecWEM for the first time or
when the webmail service changes its format.

4.2 SecWEM Architecture and Working

There are six main modules in SecWEM as depicted in Fig. 3. The main functions
of each module are described below.

The HTTP Parser and E-mail Type Detector (HPED) Module,
parses the HTTP message and extracts the HTTP message headers and HTTP
message data. From the extracted headers it finds out the HTTP message type
and Uniform Resource Locator (URL). By using these parameters it determines
whether the type of the HTTP message is webmail transaction or not. While
receiving the webmail, this module also determines whether it is encrypted or
plain.

The Universal Outgoing Webmail Parser (UOWP) Module, parses
the HTTP message data to extract e-mail address of sender, e-mail address(es)
of receiver(s) and mail body. These are essential parameters required during
cryptographic operations.

SecWEM: A Security Solution for Web Based E-mail 315

Fig. 3. SecWEM Block Digram

The Recogniser Module, is associated with the UOWP module. It identifies
the format used by the webmail service for placing the e-mail fields into the
HTTP message.

The Incoming Webmail Parser (IWP) Module, parses the incoming
encrypted webmail to extract the sender’s e-mail address, encrypted mail body,
encrypted session key and digital signature.

The Crypto Module, facilitates all the cryptographic operations of SecWEM.
These operations are encryption, decryption, digital signing and verification of
the signature. The encryption operation involves generation of a session key (sk)
followed by encryption of the mail body (mb) using this session key. Then this
session key is encrypted using the public key of each recipient (RnP UB). Encrypted
message bundle is formed by the encrypted mail body (E[sk, mb]) appended with
the e-mail addresses of the recipients (RnEmail

) and their corresponding encrypted
session keys (E[RnP UB , sk]. The encrypted message bundle ({msg}E) is:

E[sk, mb]‖R1Email
, E[R1P UB , sk]‖ . . . ‖RnEmail

, E[RnPUB , sk]. (1)

For digital signing, the encrypted message bundle is signed using the private
key of the sender (SPri) and this digital signature is appended to the encrypted
message bundle. The final encrypted message bundle is:

{msg}E‖E[SPri, H({msg}E)]. (2)

The decryption operation involves extraction of the encrypted session key cor-
responding to the recipient from the encrypted message bundle. Then the en-
crypted session key is decrypted using the recipient’s private key(RnPri).

D[RnP ri , (E[RnP UB , sk])] → sk. (3)

By using this session key the mail body is decrypted.

D[sk, (E[sk, mb])] → mb (4)

316 R.S. Yadav, P. Likhar, and M.K. Rao

For the digital signature verification, the digital signature is extracted from the
message bundle and verified using the sender’s public key.

D[SPub, (E[SPri, H({msg}E)])] → H({msg}E) (5)

The HTTP Message Rebuilder (HMR) Module, rebuilds the webmail in
the format used by particular webmail service after the successful completion of
cryptographic operations. In case of the outgoing webmail, the plain mail body is
replaced by the final encrypted message bundle. For the incoming webmail after
successful sign verification and decryption, the encrypted mail body is replaced
by the decrypted mail body. After replacing the mail body, HTTP message
headers are modified accordingly.

4.3 Steps Involved in Securing the Webmail Using SecWEM

The process of sending webmail through SecWEM is depicted in Fig. 4, and it
involves the following steps:

Fig. 4. Sending Webmail through SecWEM

When SecWEM gets the HTTP message from the webmail client, the HPED
module determines the HTTP message type for webmail. If the HTTP message
type is other than the webmail transaction or the user wants to send the web-
mail without applying security then SecWEM forwards these HTTP messages to
its designated web server. If the user wants to send the webmail after applying
security then the HPED module passes the HTTP message to the UOWP mod-
ule. The UOWP module extracts the e-mail fields and the mail body from the
HTTP message and passes it to Crypto module. The Crypto module performs
the encryption and digital signing and passes the final encrypted message bundle
to the HMR Module. The HMR module rebuilds the webmail back in the format
used by the webmail service and forwards it to the webmail server.

The process of receiving the webmail through SecWEM is depicted in Fig. 5,
and it involves the following steps:

SecWEM: A Security Solution for Web Based E-mail 317

Fig. 5. Receiving Webmail through SecWEM

When SecWEM receives the HTTP message from the web server, the HPED
module determines whether the HTTP message contains encrypted webmail or
not. If the HTTP message does not contain encrypted webmail, SecWEM simply
forwards it to the webmail client. If the HTTP message contains encrypted
webmail then it passes the HTTP message to the IWP module for extracting
the encrypted mail body, the encrypted session key and digital signature. Then
the IWP module passes this extracted information to the Crypto module for sign
verification and decryption. After successful verification of the digital signature,
the Crypto module decrypts the mail body and passes the decrypted mail body
to the HMR module. The HMR module rebuilds the webmail back in the format
used by the webmail service and forwards it to the webmail client.

5 Implementation and Testing

The SecWEM solution is implemented using C++ programming language and
network programming using sockets networking API. User interface of the
SecWEM is implemented using Microsoft Visual C++. We have tested the
SecWEM in a live setup. This setup includes multiple servers located at dif-
ferent geographical locations, the test scenario is depicted in Fig. 6. We have
also successfully tested SecWEM with various webmails like Squirrel mail, Open
webmail, Icewrap etc. in the lab environment and also with some commercial
webmail service providers.

For automated public key distribution among the SecWEM users we devel-
oped a Key Management Server (KMS). The communication between SecWEM
users and KMS takes place through e-mails. The SecWEM user first registers
himself with the KMS and posts its public key to the KMS. The SecWEM user
interface facilitates the user registration process which in turn involves sending
an e-mail in a particular format to the KMS. The registration process completes
with the confirmation of an e-mail from the KMS. After successful registration,
the KMS sends the public keys of all other registered users to the newly regis-
tered user. The KMS also distributes the public key of the newly registered user
to all the registered users. Descriptive diagram of the KMS is shown in Fig. 7.

318 R.S. Yadav, P. Likhar, and M.K. Rao

Fig. 6. SecWEM test scenario

Fig. 7. Key Management System

6 Performance and Overhead Statistics

For the purpose of estimating performance and overhead statistics we consider two
scenarios in the test setup as described in the previous section; first the overhead
while sending the message and second while receiving the message. For both the
scenarios we measure the overhead for two cases, one for the plain and another for
encrypted messages. Each of these measurements has been performed for various
message sizes and repeated for twenty iterations to find the average time taken.
To obtain these measurements we integrated a timer module inside SecWEM. The
timer module is triggered by SecWEM when it receives a message from a webmail
client or the server. And it stops the timer at the time of forwarding the message
to its destination after completing all the processing. SecWEM requires user input
for sending the message in encrypted or plain form. But the time taken by the user
to provide this input will add to the overhead measurement. To avoid this we hard-
code the option appropriately during the measurement for both the cases. These
measurements are performed on a machine having Intel Xeon 2.8GHz CPU with
2GB RAM and 64 bit Windows 7 operating system. The results of these experi-
ments are presented in Fig. 8 and Fig. 9. Fig. 8 shows the average time taken by
SecWEM to relay the messages of various sizes for both the cases. Similarly Fig. 9
shows the average time taken by SecWEM while receiving the messages. For a

SecWEM: A Security Solution for Web Based E-mail 319

Fig. 8. Time taken for sending the message as a function of message size

Fig. 9. Time taken for receiving the message as a function of message size

message size of 100kBs and less the maximum overhead is 752ms while sending
the messages and 562ms while receiving the messages.

7 Discussion and Conclusion

In this paper we have described SecWEM, a webmail security solution to pro-
vide the security attributes of confidentiality, data integrity and data origin

320 R.S. Yadav, P. Likhar, and M.K. Rao

authentication for the webmails. For any webmail security solution the main
task is to extract information regarding sender, recipient(s) and mail body of
the webmail. While this is fairly straightforward in standard e-mail, because it
follows well formed standards, Simple Mail Transfer Protocol (SMTP), Post Of-
fice Protocol-Version 3 (POP3) and Internet Message Access Protocol (IMAP),
the webmail case involves considerable challenges in implementation as there is
no standard such as SMTP, POP3 or IMAP for webmails. The major challenge in
developing the security solution for webmails is that every webmail service uses
its own format to transfer mails and these webmail services sometime change or
modify their formats. To overcome this we have designed the recogniser mod-
ule which invokes a recogniser session to find out the format. Another issue is
that a webmail sends each attachment separately and the server returns a link
corresponding to each attachment which is included in the webmail. Here the
challenge is that, attachments does not contain recipients’ addresses and with-
out these recipients’ addresses cryptographic operations cannot be performed. To
overcome this problem SecWEM pops up one window, asking the user to provide
the the recipients’ addresses. The user can provide these addresses manually or
by selecting addresses from SecWEM address-book. After getting recipients ad-
dresses, required cryptographic operations are applied to the attachments before
sending them to the server.

SecWEM works as a proxy which makes it independent of the web browsers.
It is a desktop solution which runs on user’s desktop to provide end-to-end
security for webmails. We tested SecWEM in a live setup with more than 50
domains and it works fine with them. We have successfully tested SecWEM
with various webmails like Squirrel mail, Open webmail, Icewrap etc. in the lab
environment and also with some commercial webmail service providers.We also
obtained estimates of performance and overhead statistics experimentally in a
lab setup. The overheads have been marginal and hence acceptable. Therefore we
can conclude that SecWEM is a webmail security solution which is independent
of the web browser, provides end-to-end security, and works with all webmail
services.

Acknowledgments. We would like to thank Director CAIR for supporting
us to work in this area. We would also like to thank Mr. Philip Abraham, Dr.
Subrata Rakshit and Dr. G. Athithan for their help and constructive suggestions.

References

1. Bishop, M., Cheung, S., Wee, C.: The Threat from the Net. IEEE SPECTRUM 34,
56–63 (1997)

2. Mathew, A.R., Al Hajj, A., Al Ruqeishi, K.: Cyber crimes: Threats and Protection.
In: International Conference on Networking and Information Technology, pp. 16–18
(2010)

3. Foster, I., Kesselman, C.: Simple Mail Transfer Protocol (SMTP).: RFC 5321
(2008)

4. Myers, J., Rose, M.: Post Office Protocol Version -3 (POP3).: RFC 1939 (1996)

SecWEM: A Security Solution for Web Based E-mail 321

5. Crispin, M.: Internet Message Access Protocol (IMAP),version 4rev1.: RFC 3501
(2003)

6. Fielding, R., Gettys, J., Mogul, J., Frystylc H., Masinter, L., Leach P., Berners-Lee
T.: Hypertext Transfer Protocol -HTTP/1.1. : RFC 2616 (1999)

7. Entrust Secure Messaging Service, http://www.entrust.com
8. Freenigma, http://www.freenigma.com
9. Pretty Good Privacy (PGP), http://www.pgp.com

10. Ransdell, B., Turner, S.: Secure/Multipurpose Internet Mail Extensions (S/MIME)
version 3.2.: RFC 5751 (2010)

11. Open PGP, http://www.openpgp.org
12. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version

1.2.: RFC 5246 (2008)
13. Stallings, W.: Network Security Essentials: Applications and Standards. Prentice

Hall (2000)
14. Mohsen, T.: SMEmail - A New Protocol for the Secure e-mail in Mobile Environ-

ments. In: Australian Telecommunications Networks and Applications Conference,
Adelaide, Australia, pp. 39–44 (2008)

15. Lux, K.D., May, M.J., Bhattad, N.L., Gunter, C.A.: WSEmail: Secure Internet
Messaging Based on Web Services. In: IEEE International Conference on Web
Services, Orlando Florida USA, pp. 75–82 (2005)

16. Jang, J., Nepal, S., Zic, J.: Trusted e-mail Protocol: Dealing with Privacy Con-
cerns from Malicious e-mail Intermediaries. In: IEEE International Conference on
Computer and Information Technology, Sydney NSW, pp. 402–407 (2008)

http://www.entrust.com
http://www.freenigma.com
http://www.pgp.com
http://www.openpgp.org

A Multilayer Overlay Network Architecture for

Enhancing IP Services Availability against DoS

Dimitris Geneiatakis, Georgios Portokalidis, and Angelos D. Keromytis

Department of Computer Science,Columbia University, New York, NY, USA
{dgen,porto,angelos}@cs.columbia.edu

Abstract. Protection against Denial of Service (DoS) attacks is a chal-
lenging and ongoing problem. Current overlay-based solutions can trans-
parently filter unauthorized traffic based on user authentication. Such
solutions require either pre-established trust or explicit user interaction
to operate, which can be circumvented by determined attackers and is
not always feasible (e.g., when user interaction is impossible or undesir-
able). We propose a Multi-layer Overlay Network (MON) architecture
that does not depend on user authentication, but instead utilizes two
mechanisms to provide DoS resistant to any IP-based service, and op-
erates on top of the existing network infrastructure. First, MON imple-
ments a threshold-based intrusion detection mechanism in a distributed
fashion to mitigate DoS close to the attack source. Second, it randomly
distributes user packets amongst different paths to probabilistically in-
crease service availability during an attack. We evaluate MON using the
Apache web server as a protected service. Results demonstrate MON
nodes introduce very small overhead, while users’ service access time in-
creases by a factor of 1.1 to 1.7, depending on the configuration. Under
an attack scenario MON can decrease the attack traffic forwarded to the
service by up to 85%. We believe our work makes the use of overlays for
DoS protection more practical relative to prior work.

1 Introduction

Denial of service attacks (DoS), and their distributed counterparts DDoS, fre-
quently cause disruptions, and sometimes even complete outages, of services
offered over the Internet. E-mail, financial, publishing, and even e-government
services have repeatedly been the targets of such attacks, which have only intensi-
fied with the proliferation of botnets that employ compromised PCs (“zombies”)
to perform large scale DDoS attacks. Recently, we have also witnessed incidents,
where groups of users deliberately performed DDoS attacks using freely available
tools, like the low orbit ion cannon [1].

Centralized approaches such as [23,12,27] have not been able to thwart DDoS
attacks, mainly because they can also be congested, while distributed network
level solutions [15,33,16] require operators to deploy and manage new, and po-
tentially complex, architectures. On the other hand, distributed architectures
based on overlay networks [18,28,29,6,20,21,5] can operate on existing network

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 322–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Multilayer Overlay Network Architecture for Enhancing IP Services 323

infrastructure, and have shown to be able to withstand attacks involving millions
of attackers. Overlay based solutions can be categorized in three types:

1. Strict access: These approaches [18,6,20,5,29] assume that the users of the
protected service are pre-authorized, and only them are allowed to access
the service. They cater to scenarios like attacks against emergency services
used during disasters.

2. Relaxed access: Such networks [37,36] still use some form of authentication,
but they either allow anyone to “register” with the service, or mix authorized
and unauthorized users. In the first case, authentication is used to uniquely
identify clients without relying on their IP address (i.e., spoofing is no longer
relevant), while in the latter authorized user traffic is given precedence.

3. Open access: Open systems [28,29] can be accessed by everyone. They limit
or distinguish attackers by using user sessions and require some type of user
interaction, like a CAPTCHA [32], that separates real users from programs.

These techniques mitigate the consequences of DoS attacks using authentication
or user interaction to distinguish authorized from unauthorized traffic, limiting
or completely warding off the latter. However, limited access systems are not
applicable to open Internet services like the world wide web (WWW), and, more
importantly, they are still vulnerable to DoS attacks from authenticated users.
Also, user interaction mechanisms, like CAPTCHAs, is impractical, while they
are not impervious to attacks either [8].

We propose a new multilayer overlay network (MON) architecture that builds
on the advantages of ticketing and multi-path traffic distribution proposed in
previous relaxed access work [29] to enable open access to the protected ser-
vice without requiring any user interaction. Our solution operates on existing
network infrastructure and consists of multiple layers of nodes that are inter-
posed between the client and the protected service. MON collectively applies a
throttling-based DoS prevention mechanism (DPM) that alleviates the effects of
DoS attacks. The mechanism is applied in a distributed fashion by lightweight
DoS detection and mitigation engines (DDME) running on each overlay node. A
client accesses the service by contacting any of the nodes of the first layer, which
randomly routes his packets through the overlay, increasing MON’s robustness
in the case of node failures and DoS attacks.

We implemented a prototype using an uncomplicated practical threshold-
based filtering mechanism. Briefly, the DDME on each node monitors the IP
packets being send to the service, calculating the packet sending rate of each
client based on his IP address. When a client exceeds a predefined threshold,
some or all of his packets are dropped depending on the employed security policy.
Note that we do not invent a new defense against DoS attacks, but instead
propose the distributed application of prevention mechanisms based on overlay
network architecture. Results show that the overhead introduced by MON nodes
is small (in the range of 30 and 50 microseconds), while using MON to retrieve
a web site served by the Apache web server increases the client’s access time
by a factor of 1.1× to 1.7×, depending on the configuration. Moreover, we

324 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

demonstrate that the proposed solution is able to throttle and block malicious
network flows effectively when a service is under a DoS attack.

The rest of the paper is organized as follows. In Sect. 2, we describe the
types of DoS attacks that we tackle with this work. In Sect. 3, we describe
the architecture, while we discuss implementation details in Sect. 4. In Sect. 5,
we evaluate MON in terms of overhead and effectiveness. Sect. 6 presents an
overview of the related work, and compares it with ours. Finally, we conclude
this paper and give some pointers for future work in Sect. 7.

2 Threat Model

The goal of DoS attacks is to render a targeted services inaccessible to legiti-
mate users, by draining server resources like memory and CPU, or consuming
network bandwidth [22]. The simplest DoS attacks consume network bandwidth
and server resources simply by saturating the target with a high number of re-
quests, generated either from a single or multiple sources. However, as server
processing power and network bandwidth increases alternative, more sophisti-
cated, methods requiring fewer connections have been devised. For instance, a
flood of SYN TCP packets can be used to prevent the establishment of new con-
nections with a server [9]. Other approaches exploit the way the service handles
users’ requests to achieve the same goal [7]. Based on their method of operation,
we classify DoS attacks into the following categories:

(a) Attacks consuming network bandwidth. These attacks aim to congest the tar-
get’s network by generating an overwhelmingly large number of data packets.

(b) Attacks consuming server resources. Malicious users send a large number of
otherwise legitimate requests to the server to consume its resources. They
usually require less traffic than (a) to be sent by a malicious user, as network
bandwidth increases at a higher rate than computational power and storage.

(c) Attacks consuming limited operating system (OS) resources. These attacks
exploit the way the target’s software and OS operates to consume limited
resources such as file and socket descriptors, and TCP connections.

(d) Attacks exploiting server bugs. Software frequently has bugs like null point-
ers [14] and deadlocks [17]. If such bugs can be triggered using user input,
an attacker sending the appropriate data to the server can cause it to crash,
or simply stop responding to new requests. This type of attacks are beyond
the scope of this paper, since are tackled by solutions such as [34,10].

3 A Secure Multilayer Overlay Network Architecture

The goal of the MON architecture is to improve the availability of critical services
under a DoS attack, by “hiding” the protected service behind a semistructured
overlay network. Users of the service communicate with it through the over-
lay, which by design and by means of a distributed DoS prevention mechanism
(DPM) mitigates DoS attacks. We adopt an overlay network architecture to
incorporate certain properties in our design. Specifically:

A Multilayer Overlay Network Architecture for Enhancing IP Services 325

Fig. 1. The multilayer overlay network (MON) architecture. Multiple layers of nodes
are interposed between the clients and the provided service. The number of layers is
configurable at overlay setup, and can be tuned to favor performance over resistance
to intrusion by reducing the degree of internal redirection.

(a) Easy deployment on existing network infrastructure.
(b) Transparency to end-users.
(c) Decentralized design inherently strong against DoS attacks, and suitable for

applying intrusion prevention mechanisms in a distributed way.

An overview of the MON architecture is illustrated in Fig. 1. The first layer is
the entry point between users and the service. It ensures that no spoofed traffic
is forwarded to the protected service based on tickets (discussed in Sect 3.2), and
blocks attacks using the DPM. The rest of the layers remain invisible to end-
users, while they also use the DPM to protect from malicious or compromised
nodes of the previous layer. However, if an attacker discovers and compromises a
node in the last layer, the service will be exposed. The number of layers deployed,
depends on the network delay that the protected service can tolerate, and the
desired protection level that must be established.

MON provides open access to users, without requiring user interaction or pre-
established trust between clients and the provided service. Instead, it throttles
user traffic that exhibits abnormal behavior on a per- flow and ticket basis. Also,
MON operates at the IP level, supporting multiple transport layer protocols like
TCP, UDP and SCP.

3.1 The MON Structure

MON consists of a number of overlay-nodes Nn, which are organized in different
layers Lm. Clients can access the protected service through the first layer (entry
point) nodes after acquiring an access ticket. Tickets protect against DoS attacks
themselves, as they allow us to control the rate new clients can connect to the
network, but they also allow us to validate the sender of each packet. The nodes
of the first layer know the nodes of the next one, where they forward packets
to, and so forth (i.e., nodes of Li know the nodes Li+1). As a result, the actual
location (IP address) of the service is only known by the nodes in the last layer.

Also nodes instead of routing packets through a specific path, they randomly
route it in one of the available nodes of the next layer. The last hop of the

326 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

Fig. 2. MON packet structure. User’s IP traffic is encapsulated into a new transport
layer packet to enable routing by MON nodes, including an encrypted access ticket
and message authentication code to ensure MONs’ message integrity, and authenticity.
Only entry nodes can decrypt and validate the ticket.

employed architecture delivers the packets to the protected service. If one of
the nodes becomes “unavailable” due to network congestion or software failure,
traffic is forwarded through a different node in the same layer.

Consequently, an attacker would have to concurrently flood all nodes of at
least one layer of the overlay to successfully disrupt the service. Assuming that
the layer with the smallest number of nodes is Lv and contains V nodes, the
attacker would have to successfully flood all V nodes. However, since the route
followed by packets is chosen randomly, and every node implements the DPM,
which throttles flows classified as malicious, this task is far from trivial. Even if
an attacker compromises a first layer node (e.g., by exploiting a vulnerability in
its software) and uses it in its DoS attack, the next layer nodes can identify and
mitigate the attack, while the service remains hidden. Hence, MON is resistant to
DoS attacks by design. All the nodes in MON architecture operate autonomously.
MON encapsulates at the client side (see also Sect. 3.2) user packets into a new
packet (similarly to IP-in-IP encapsulation), as illustrated in Fig. 2.

3.2 Users and the Ticket Mechanism

Users access a MON-protected service through the first layer’s nodes. This is
done transparently, by installing an end-user module at the client, that captures
data packets destined for the service and re-routes them to one of the entry
points of MON. To overcome single points of failure, users’ traffic is randomly
distributed among the nodes of L1, similarly to the random routing described
in Sect. 3.1. MON-enabled users are allowed to connect to the protected service,
only if they have acquired a session key and the corresponding ticket from an
entry point. Particularly, a client receives a session key and a valid ticket by
issuing an access request to a randomly chosen entry node. The request is per-
formed over a secure channel (e.g., using SSL) to ensure the confidentiality of
the session key sent to the client.

Every session key Sk is computed based on the user’s IP and a pseudo-random
id generated by the contacted node, encrypted using a master key Kn shared
among all MON nodes using the following formula.

Sk = Enc(Kn, User IP ||Random Id)

The ticket sent to the user includes the user’s session key, a time-stamp, the
maximum number of packets allowed to be sent with the specific ticket, and a

A Multilayer Overlay Network Architecture for Enhancing IP Services 327

message authentication code (MAC) generated using the master key. The latter
enables any MON-node to validate the integrity and authenticity of every ticket.
Finally, the entire ticket is also encrypted using the master key and sent to the
user as a response.

ticket = Enc(Kn, session key||timestamp||MAC(Kn))

Clients include the ticket and a MAC based on their session key in all subsequent
packets (see Fig. 2). MON nodes are able to decrypt the ticket and validate MON
packet’s integrity and authenticity, using the shared master secret key. This way
an attacker cannot spoof a client’s packets (i.e., send packets pretending to be
another client), and nodes can validate tickets without having to store additional
information for the session key and the ticket.

3.3 A Collaborative DoS Detection and Mitigation Mechanism

MON is robust by design, but as the resources of the attackers grow, addi-
tional protective measures are necessary. Although, various centralized intrusion
detection and prevention solutions against DDoS attacks have been proposed
in literature [25], they can also be congested and rendered useless by the at-
tack against the protected service. MON adopts a collaborative DoS prevention
mechanism (DPM) that is applied individually by every node, and is thus more
resistant to attacks.

The core of the mechanism is implemented by the DoS detection and mit-
igation engines (DDME) running on the nodes. Its goal is to throttle or drop
incoming packets, whenever it detects that a client is performing a DoS attack.
It works by classifying incoming packets into IP network flows based on their
source, destination IP addresses, and the ticket (as it uniquely identifies a client).
This way, we can detect abnormal behavior and match it to a specific user. We
use IP layer flows, primarily because we desire that MON protects services inde-
pendently of the transport and application protocol being used. Secondly, this
will allow us to easily expand MON to support the IPv6 protocol.

Each DDME keeps track of all the incoming flows using a flow information
monitor (FIM). The FIM records the number of packets observed per flow, and
the time that each flow was initiated. Then, the DDME periodically examines
(with a period T) whether the packet rate of any flow has exceeded the legitimate
configurable threshold. If this is the case, packets belonging to this specific flow
are “punished” that is, delayed or dropped. For the scope of this work, we adopt
an exponential punishment mechanism, as in [2]. This technique is widely used
in networking to penalize users causing conflicts during transmission. The delay
introduced by the DDME for “punished” flows is computed by the following
formula delay = delay × 2. Devising mechanisms to calculate an appropriate
threshold is beyond the scope of this paper. In the future, we plan to investigate
threshold calculation mechanisms like the ones proposed in [15].

328 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

4 Implementation

4.1 Ticket Acquisition

A user inquires a ticket from the service by sending a ticket acquisition request
to a randomly chosen MON node. The request contains the user’s RSA public
key and the corresponding digital signature. As soon as a node receives a ticket
request, it validates the included digital signature and generates the response
message, which consists of the session key and the ticket as described in Sect. 3.2.
Note that the session key and the ticket are encrypted using the user’s RSA
public key and the AES algorithm. To compute the MAC, both for the ticket
and the response message, we use an HMAC function based on SHA-1. All the
cryptographic functions used are part of the OpenSSL library [31].

4.2 MON-enabled Users

On the client side, we developed a service, namely MONeU, operating transpar-
ently to existing applications in order to deliver user traffic to MON nodes. User
packets destined to the protected service, instead of following the normal network
path, are sent to a virtual interface implemented using the tun pseudo-device
driver [19]. As soon as a packet is received in this interface, the MONeU service
encapsulates it in a new UDP packet, which includes the ticket, the packet’s
sequence number, and an SHA-1 HMAC computed on the whole MON packet
to protect its integrity. This new packet is forwarded to a randomly chosen first
layer MON node. The technique shields end-users from single point failures, as
their traffic does not follow a specific path. This stands even for packets belong-
ing to the same session. As a result, a malicious user needs to compromise all
available MON entry nodes to cause a DoS to a legitimate user.

In the current implementation the available first layer nodes are included in
a pre-defined list. However, an alternative solution for MONeU to receive the
list is through DNS. In that case, the DNS instead of returning the actual IP
address of the protected service, will send back the IP addresses of all available
first layer nodes.

Whenever a response packet arrives, the MONeU service passes it to the
virtual interface, which is responsible for delivering it to the corresponding ap-
plication. The decision to use UDP instead of TCP for packet encapsulation is
based on the fact that the encapsulation of TCP within TCP is not efficient [30].

4.3 MON Nodes

MON nodes are the core of the proposed architecture and are responsible for
detecting and mitigating the effects of malicious flows (i.e., flows responsible for
a DoS attack), and routing user traffic to the actual destination. First, entry
nodes validate MON packet authenticity and integrity. To accomplish this task
the nodes decrypt the ticket using AES and the secret key Sn shared among the
MON nodes. They also ascertain its validity using the same key to validate the

A Multilayer Overlay Network Architecture for Enhancing IP Services 329

Fig. 3. MON flow information monitor (FIM) architecture. FIM uses the hash value
of the source and destination IP as an index to the monitor flow storage, and records
the number of packets per IP flow, the time-stamp of the first packet in the flow, as
well as MON packet sequence number.

Fig. 4. DDME’s time-window structure. The DDME checks all the flows exceeding the
allowed time in FIM.

SHA-1-based HMAC. If the ticket is valid, we extract the session key Sk, which
is used to confirm the authenticity and integrity of the whole packet, similarly
to the process used to validate the ticket.

After message and ticket validity is confirmed, the node extracts the source
and destination IP, and combines them with the ticket in order to uniquely
identify each flow. The FIM module records for every flow the number of received
packets, the arrival time of the first packet in the flow, and the sequence number
of the last received packet to protect MON against replay attacks. All numbers
are 32-bits long, so we store 96 bits per flow, which corresponds to 12 MBs of data
for one million users. For storage and searching efficiency, instead of recording
the source and destination IP for every flow, we use the remainder of the hash
value of the flow information with the maximum number of allowed flows (see
the formula below) for identifying a record in the FIM storage.

index = hash(SrcIP ||DestIP ||T icket) mod MAXCON

The main disadvantage of this approach is that if we receive more connections
than FIM’s capacity (MAXCON), it will cause a “conflicting” FIM record, af-
fecting the DDME’s accuracy. Otherwise, “conflicts” in the FIM storage solely
depend on the hash function’s collision probability [35]. For every received packet,
the FIM computes the flow’s index in order to update the packet counter, and
saves the timestamp of the first packet in the flow (tflow). Figure 3 illustrates
FIM’s general architecture. Note that the hash and modulo functions we use are
OpenSSL’s SHA-1 [31] and GMP’s modulo [13].

The DDME is triggered by a SIGALARM signal every Twindow seconds in
order to check whether any flow in the FIM has exceeded a pre-defined threshold.

330 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

Fig. 5. The two-layer test-bed we employed for the evaluation of the MON architecture

If this is the case, the packet is either punished by introducing a delay to its
forwarding. Note that the DDME inspects all the flows found “outside” of the
Twindow, where talarm− tflow > Twindow (see also Fig. 4). As soon as the DDME
checks a flow, it resets its corresponding record in the FIM.

Afterwards, the DDME encapsulates the incoming packet into a new UDP
packet, and forwards it to a randomly selected node at the next layer. When the
packet reaches a node in the last layer of MON, it is decapsulated to obtain the
original packet, and is forwarded to the protected service via a RAW socket.

For implementing the networking functionality of MON nodes, we relied on
Linux’s system calls. Based on current implementation MON nodes can be de-
ployed on routers, as well as desktop PCs, that are willing to participate in the
MON architecture, assuming that they are running a *nix type OS.

5 Evaluation

To evaluate our architecture in terms of performance and effectiveness, we de-
ployed a two-layered prototype as depicted in Fig. 5. Table 1 lists the technical
characteristics of the systems where we installed MON nodes. As a protected
service, we utilized the Apache web server. We employed five scenarios, where a
client is requesting files of different sizes from the Apache web server (sizes of
150KB, 500KB, 1MB, 5MB, and 13 MB). In all five scenarios, the client accesses
the service directly, using MON without DPM functionality, and lastly with
DPM functionality. Furthermore, to validate MON’s correctness and efficiency,
all the scenarios were executed in two different configurations:

1. All MON nodes running in our lab’s local network (LAN configuration).
2. MON’s 1st layer nodes running in a different network connected to the In-

ternet with an ADSL connection, while the 2nd layer nodes were in the lab’s
network (ADSL configuration).

5.1 Performance Evaluation

To quantify the overhead MON introduces to the protected service, we measured
the end-to-end service access time as well as the overhead introduced by the
MON nodes itself. On both configurations, when users access the service using
MON, they do not experience any apparent delay in service access time (SAT).

A Multilayer Overlay Network Architecture for Enhancing IP Services 331

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

150KB 500KB 1MB 5MB 13MB

E
nd

-t
o-

E
nd

 D
el

ay
 in

 S
ec

on
ds

File Size

LAN Configuration

Direct
MON without DPM

MON with DPM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

150KB 500KB 1MB 5MB 13MB
E

nd
-t

o-
E

nd
 D

el
ay

 in
 S

ec
on

ds
File Size

ADSL Configuration

Direct
MON without DPM

MON with DPM

Fig. 6. End-to-end service access time (SAT) comparison among direct access, and
MON without and with DPM. User SAT is increased by a factor of 1.1 to 1.7, depending
on the configuration.

The average SAT is very close in all the scenarios, as depicted in Fig. 6. In the
results, we include the case of using MON without the DPM functionality, in
order to show the lower bound of overhead imposed by the overlay network itself.
In the LAN configuration, MON increases the end-to-end SAT by a factor of 1.04
to 1.4, while in the ADSL configuration by a factor of 1.1 to 1.7. Though this
increase might be considered significant, we believe that is an acceptable “cost”
for enhancing IP service availability. Note that the total transfer time is affected
by the network link’s quality in which MON nodes are installed. For instance, the
% difference in average SAT between the LAN configuration and direct access
ranges from 4% to 40%. The same stands for the ADSL configuration, however,
in scenario 5 there is an increase of 66%.

Regarding the overhead introduced by entry and core MON nodes, the av-
erage ranges between 30 and 50 microseconds (see Fig. 7). As we use the same
underlying infrastructure for both configurations, there are no differences in the
delay introduced by each MON node. This fact validates our initial hypothesis
regarding the end-to-end SAT fluctuations in the ADSL configuration.

Based on our experimental results, we deduce that MON does not influence
the SAT, while the overhead imposed on the provided service by each MON

Table 1. Characteristics of the systems hosting the MON nodes in the test-bed

Name CPU Speed Memory Other characteristics

L1-N1 2.4 GHz 4Gb Ubuntu 10.04, Intel Core i5 laptop
L1-N2 2.4 GHz 2Gb Ubuntu 10.10, virtual machine
L2-N1 2.8 GHz 3Gb Ubuntu 10.04, Xeon 2xCPU
L2-N2 2.4 GHz 2Gb Ubuntu 10.10, virtual machine

332 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

0

10

20

30

40

50

60

150KB 500KB 1MB 5MB 13MB

O
ve

rh
ea

d
in

 M
ic

ro
se

co
nd

s

File Size

Core nodes
Entry points

Fig. 7. Average processing time introduced by entry points and core nodes in MON

node is negligible. However, it should be noted that the end-to-end delay is
affected both from the number of MON layers, and the latency of the underlying
network where the MON nodes are located. In the extreme case, we can optimize
performance by reducing the system to one level of indirection similar to [29].

5.2 Qualitative Analysis

MON introduces little delay to end user communication with a protected service,
however, its effectiveness as a protection mechanism against DoS attacks must
be evaluated as well for its ability to identify and punish DoS packets. Thus,
we employ a single source attack scenario in which the malicious user generates
1000 HTTP requests per second for a web page of 100 bytes. Regardless of the
simplicity of this attack, the main goal of this experiment is to demonstrate
MON’s efficiency during such an attack, by monitoring the number of requests
received by the protected service.

On the one hand, if the service is protected through traditional central-
ized DoS mechanisms, all the attack requests will arrive at least up to the
protected service network causing a congestion either at the edge of the net-
work or in the service itself. On the other hand, if MON is enabled it will
forward all the packets belonging to the attack flow toward the service until
the DDME is triggered. In the worst case, MON will deliver to the service
Tw × Number of Packets Per Second, however, the number of packets re-
ceived by the service depends on the Tw that the DDME is triggered, and the
punishment model. Since, the DDM is triggered the attack will be identified and
traffic will be throttled. Particularly, under our attack scenario the number of
requests received by the service is on average 107 HTTP requests, which corre-
sponds to 323 packets. The majority of these packet are delivered to the service
because the DDME had not triggered yet. Using MON we achieve a reduction
on the attack traffic receive by the service up to 85%. The number of times a
flow exceeds the legitimate threshold affects the punishment delay introduced

A Multilayer Overlay Network Architecture for Enhancing IP Services 333

on a flow exponentially, as described in Sect. 3. So if a malicious user exceeds
more than 10 times the threshold the introduced delay reaches to 1200 seconds.

Similar is the case of multiple sources DoS attack, as we can consider it as N
separate single source DoS attacks. The only difference is the amount of traffic
that will be delivered by MON towards to the service until the DDME is trig-
gered, which is N×Tw×Number of Packet Per Second. Note that a malicious
user can still spoof an IP address and get a valid MON ticket, but he is not able
to affect the communications of other users, as MON distinguishes flows on a
per ticket basis. However, to effectively shield a service against these types of
DoS attacks, MON nodes should be widely deployed across the Internet. Also,
additional IP spoofing protection mechanisms would further fortify the system.

All in all, MON can be used to defend against DoS attacks targeting service
network bandwidth or server resources (briefly described in Sect. 2) by exploiting
the autonomously operating MON nodes to detect and discard DoS traffic.

6 Related Work

Overlay networks emerged as a solution to overcome the limitations of the Internet
architecture, providing new services and applications in a distributed end-to-end
fashion. To that end, previous work build on overlay networks as an alternative un-
derlying mechanism to enhance Internet service security and availability. The very
first work exploiting overlay networks to enhance service availability is RON [4].
RON introduces an application-level routing and packet forwarding service that
enables end-points to monitor the quality of links in the network, and detect path
failures in order to choose an alternative path in a few seconds. However, the pre-
dominant work exploiting overlay networks to improve network service security
is presented in [18]. The SOS architecture routes traffic to the protected service
only from a set of pre-determined authorized users, based on protocols such as
IPsec [26] and SSL [31]. A similar approach is presented in [3].

Several variations of SOS have been proposed in literature [28,29,20,21,6,5].
[28] extends its functionality to defend against botnets using CAPTCHA [32],
while [29] introduces an architecture for enhancing service availability build on
multi-path and stateless tokens. In ODON [20], users are verified through cre-
dentials to access the overlay network. They establish a session token among
end-users, ODON nodes, and the final service used to verify traffic, and provide
integrity and confidentiality services. [21] proposes a federated overlay network
(FONet) architecture to protect services from DoS attacks. FONet forwards
only the traffic originating from the federation to the protected service, and fil-
ters the other traffic on the edge of the domains participating in the FONet. [5]
introduces an intermediate interface by overlay nodes to hide the location of ap-
plication sites during DoS attacks. Similarly, this solution allows communication
only among confirmed entities; meaning that any packet must be authenticated
through the proposed architecture. [6] protects a target using a filter that drops
any packet whose source address is not approved. In the case of a DoS attack,
rather than processing all arriving packets, the target’s filter processes only a
subset of received packets, and drops all the remaining.

334 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

Phalanx [11] follows a similar approach to SOS, leveraging the power of
swarms to combat DoS. A client communicating with a destination sends its
packets through a random sequence of entities called “mailboxes”. Mailboxes
discard user packets that do not include an authentication token, or a solution
to a cryptographic puzzle. A protected destination receives packets only from
specific mailboxes, which were authorized in a previous communication. The only
approach utilizing a distributed intrusion detection system (IDS) is presented in
DefCOM [24]. DefCOM nodes collaborate during an attack to spread alerts, and
protect legitimate traffic based on local classifier, which limits attack traffic.

Most of the existing overlay solutions, that were discussed above, have been
influenced by SOS [18]. These solutions rely on authentication mechanisms, re-
quiring pre-established trust or user interaction, to filter unauthorized traffic
and defend against DoS attacks. None of them except SOS [18], WebSOS [28]
and [29] operate transparently to end-users, and build on existing network in-
frastructure. While [24] is the only solution exploiting an IDS mechanism, but
assumes that such a protection mechanism already exists.

7 Conclusions and Future Work

In this paper, we proposed and implemented a distributed and transparent to
end-users architecture overlay network to counter DoS attacks, that does not
require modifications to the underlying network infrastructure. The proposed
architecture is based on a multi-layered semistructured overlay network, which
is DoS resistant by design, and uses filtering to stop DoS attacks close to their
source. We believe that our work makes the use of overlays for DoS protection
more feasible compared with previous work.

We evaluated MON using the Apache web server as the protected service.
Results shows that it has little effect on user experience, and it can effectively
detect and mitigate DoS attacks against the WWW and similar Internet services
like FTP and e-mail. However, additional analysis should be done for real time
services. For future extensions to MON, we are considering additional protection
mechanisms that can be incorporated into our DPM to also identify and prevent
other types of DoS attacks.

Acknowledgements. This work was supported by the National Science Foun-
dation through Grant CNS-07-14277. Any opinions, findings, conclusions or rec-
ommendations expressed herein are those of the authors, and do not necessarily
reflect those of the US Government or the NSF.

References

1. Abatishchev: Low orbit ion cannon, http://sourceforge.net/projects/loic/
2. Abramson, N.: THE ALOHA SYSTEM: another alternative for computer commu-

nications. In: AFIPS 1970 (Fall): Proceedings of the fall Joint Computer Confer-
ence, November 17-19, pp. 281–285. ACM (1970)

http://sourceforge.net/projects/loic/

A Multilayer Overlay Network Architecture for Enhancing IP Services 335

3. Andersen, D.G.: Mayday: Distributed Filtering for Internet Services. In: Proceed-
ings of the 4th Usenix Symposium on Internet Technologies and Systems, Seattle,
WA (March 2003)

4. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: The case for re-
silient overlay networks. In: Proceedings of the 8th Workshop on Hot Topics in
Operating Systems, p. 152. IEEE Computer Society (2001)

5. Beitollahi, H., Deconinck, G.: An overlay protection layer against denial-of-service
attacks. In: Proceeding of the IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pp. 1–8 (April 2008)

6. Beitollahi, H., Deconinck, G.: FOSeL: filtering by helping an overlay security layer
to mitigate DoS attacks. In: Proceedings of the IEEE International Symposium on
Network Computing and Applications, pp. 19–28. IEEE Computer Society (2008)

7. Chee, W.O., Brennan, T.: Slow HTTP POST DoS attacks. OWASP AppSec
DC (2010), http://www.owasp.org/images/4/43/Layer_7_DDOS.pdf (November
2010)

8. Chellapilla, K., Simard, P.Y.: Using Machine Learning to Break Visual Human
Interaction Proofs (HIPs). In: Advances in Neural Information Processing Systems
(NIPS), vol. 17, pp. 265–272. MIT Press (2005)

9. Cheswick, W.R., Bellovin, S.M., Rubin, A.D.: Firewalls and Internet security: re-
pelling the wily hacker. Addison-Wesley (2003)

10. Cretu-Ciocarlie, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J.: Adaptive anomaly
detection via self-calibration and dynamic updating. In: Kieda, E., Jha, S.,
Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 41–60. Springer, Heidel-
berg (2009)

11. Dixon, C., Anderson, T., Krishnamurthy, A.: Phalanx: withstanding multimillion-
node botnets. In: Proceedings of the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2008, pp. 45–58 (2008)

12. Gil, T.M., Poletto, M.: MULTOPS: a data-structure for bandwidth attack detec-
tion. In: Proceedings of the 10th USENIX Security Symposium (August 2001)

13. GNU: The GNU multiple precision arithmetic library, http://gmplib.org/
14. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In:

Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE), pp. 9–14 (2007)

15. Ioannidis, J., Bellovin, S.M.: Implementing Pushback: Router-based defense against
DDoS attacks. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS) (February 2002)

16. Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a dis-
tributed firewall. In: Proceedings of the 7th ACM Conference on Computer and
Communications Security, CCS 2000, pp. 190–199. ACM (2000)

17. Jula, H., Tralamazza, D., Zamfir, C., Candea, G.: Deadlock immunity: enabling
systems to defend against deadlocks. In: Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI), pp. 295–308
(2008)

18. Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: secure overlay services. In: Pro-
ceedings of the 2002 SIGCOMM Conference, pp. 61–72 (August 2002)

19. Krasnyansky, M.: Virtual point-to-point (TUN) and ethernet (TAP) devices,
http://vtun.sourceforge.net/tun/

20. Kurian, J., Kulkarni, A., Vu, H.T., Sarac, K.: ODON: an On-Demand security
overlay for Mission-Critical applications. In: Proceedings of the International Con-
ference on Computer Comm. and Netw., pp. 1–6. IEEE Computer Society (2009)

http://www.owasp.org/images/4/43/Layer_7_DDOS.pdf
http://gmplib.org/
http://vtun.sourceforge.net/tun/

336 D. Geneiatakis, G. Portokalidis, and A.D. Keromytis

21. Kurian, J., Saraç, K.: Provider provisioned overlay networks and their utility in
dos defense. In: Proceeding of the IEEE GLOBECOM, pp. 474–479 (2007)

22. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service: Attack
and Defense Mechanisms, illustrated edn. Prentice Hall (January 2005)

23. Mirkovic, J., Reiher, P.: D-ward: A source-end defense against flooding denial-of-
service attacks. IEEE Trans. Dependable Secur. Comput. 2, 216–232 (2005)

24. Oikonomou, G., Mirkovic, J., Reiher, P., Robinson, M.: A framework for a col-
laborative ddos defense. In: Proceedings of the 22nd Annual Computer Security
Applications Conference, pp. 33–42. IEEE Computer Society (2006)

25. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Netw. 51, 3448–3470 (2007)

26. Kent, S., Seo, K.: Security architecture for the internet protocol. RFC 4301 (De-
cember 2005)

27. Siris, V.A., Papagalou, F.: Application of anomaly detection algorithms for detect-
ing syn flooding attacks. Comput. Commun. 29, 1433–1442 (2006)

28. Stavrou, A., Cook, D.L., Morein, W.G., Keromytis, A.D., Misra, V., Rubenstein,
D.: WebSOS: an overlay-based system for protecting web servers from denial of
service attacks. Computer Networks 48(5), 781–807 (2005)

29. Stavrou, A., Keromytis, A.D.: Countering dos attacks with stateless multipath
overlays. In: Proceedings of the 12th ACM Conference on Computer and Commu-
nications Security, CCS 2005, pp. 249–259. ACM, New York (2005)

30. Titz, O.: Why tcp over tcp is a bad idea, http://sites.inka.de/bigred/devel/
tcp-tcp.html

31. Viega, J., Messier, M., Chandra, P.: Network Security with OpenSSL, 1st edn.
O’Reilly Media (June 2002)

32. Von Ahn, L., Blum, M., Langford, J.: Telling humans and computers apart auto-
matically. Commun. ACM 47, 56–60 (2004)

33. Wang, H., Zhang, D., Shin, K.G.: Change-point monitoring for the detection of
dos attacks. IEEE Trans. Dependable Secur. Comput. 1, 193–208 (2004)

34. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Re-
sistant to Mimicry Attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 226–248. Springer, Heidelberg (2006)

35. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions md4, md5, haval-
128 and ripemd. Cryptology ePrint Archive, Report 2004/199 (2004)

36. Yaar, A., Perrig, A., Song, D.: SIFF: A stateless internet flow filter to mitigate
DDoS flooding attacks. In: Proceedings of the IEEE Symposium on Security and
Privacy, pp. 130–143 (2004)

37. Yang, X., Wetherall, D., Anderson, T.: A DoS-limiting network architecture. In:
Proceedings of the 2005 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Comm., pp. 241–252 (2005)

http://sites.inka.de/bigred/devel/tcp-tcp.html
http://sites.inka.de/bigred/devel/tcp-tcp.html

Mitigation of Malicious Modifications

by Insiders in Databases

Harini Ragavan and Brajendra Panda

Department of Computer Science and Computer Engineering
University of Arkansas, Fayetteville, Arkansas 72701, USA

{hragavan,bpanda}@uark.edu

Abstract. Insider threat is considered as a serious issue in all organi-
zations. Sophisticated insiders can override threat prevention tools and
carry on their attacks with new techniques. One such technique which
remains to be an advantage for insiders to attack a database is depen-
dency relationship among data items. This paper investigates the ways
by which an authorized insider detects dependencies in order to perform
malicious write operations. The paper introduces a new term ’thresh-
old’, which defines the constraints and limits a write operation could
take. Having threshold as the key factor, the paper proposes two differ-
ent attack prevention systems which involve log and dependency graphs
that aid in monitoring malicious activities and ultimately secure the data
items in a database. Our proposed systems continuously monitor all the
data items to prevent malicious operations, but the priority is to se-
cure the most sensitive data items first since any damage to them can
hinder the functions of critical applications that use the database. By
prioritizing the data items, delay of the system is reduced in addition to
mitigating insider threats arising from write operations.

Keywords: Database, Threshold, Log, Dependency Graph, Insider
Threat.

1 Introduction

Most of the existing organizations make use of computer systems to store, process
and distribute information regarding their day to day activities. These informa-
tion systems which contain valuable data are confronted with a variety of threats
originating from both inside and outside the organization. It is therefore highly
essential for every organization to maintain high level of security since failure
of security could lead to unauthorized disclosure, modification, or interruption
of information. Various research works show that even though attacks such as
hacking, viruses etc. arise from the outside and cause heavy damage, insider
threats pose a significantly higher level of risk than outsiders do [1].

Basically, insiders are trusted persons. They have knowledge of the informa-
tion systems they use and the services used in the organization. They also have
knowledge about the security measures that have been taken to protect valuable
information. Since they are aware of these measures and policies, they have the

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 337–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 H. Ragavan and B. Panda

ability to violate or go around them. Thus certain attacks would go undetected
for some time.

This paper investigates the problem of insider threat in database systems. It
mainly deals with the threats posed by insiders who have authority to change and
modify information in the database. Generally, insiders with write permissions
can input any data into the database which at times becomes a serious threat for
the organization. Our proposed system catches those malicious write operations
by associating a new term called ’threshold’ with every data item in the database.
Threshold defines the limit to which a data item could be modified. One may
argue that an insider with the knowledge of a threshold for a data item can
modify the data item maliciously by keeping the changes within the threshold.
However, the thresholds are determined in such a way that, any value less than
the threshold is within acceptable risk and causes no problem to the system.
Furthermore, thresholds can be adjusted as needed. These concepts are discussed
in the paper later.

The rest of the paper is organized as follows. Section 2 presents the background
and related work. Section 3 discusses our proposed model and explains the terms
used in the paper. Section 4 and 5 contains the algorithms and working of our
models. Section 6 is a comparison between the models followed by section 7
which gives the conclusion and states our future work.

2 Background and Related Work

The term ’insider’ carries many definitions and few among them are discussed
here. In a paper [2], the authors define an insider as ”someone with legitimate ac-
cess to an organization’s computers and networks. For instance, an insider might
be a contractor, auditor, ex-employee, temporary business partner, or more”. In
another paper by Bishop and Gates [3], they address an insider as ”a trusted
entity that is given the power to violate one or more rules in a given security pol-
icy... the insider threat occurs when a trusted entity abuses that power.” In [4], an
insider is defined as, ”Anyone with access, privilege, or knowledge of information
systems and services”. Also, numerous methods to prevent insider threats have
been introduced till date. In a paper by Spitzner [5], honeypots have been used
to detect insider threat. They discuss the ways of indicating insider threats by
combining honeypots with honeytokens and honeynets. Apart from this, various
mechanisms like attack graphs, trees have been proposed in many papers. One
such paper [6] uses attack trees as a framework to monitor the activities of users
and also to catch them if their target node is found along the tree. Adding to
this, in [7] use of attack decomposition trees and attack vs. defense matrices for
insider threat defense is discussed.

A paper by Yaseen and Panda [8] discusses how an unauthorized insider can
acquire knowledge about a relational database by detecting the dependencies
between objects. Sufficient amount of work has been performed in preventing
insiders, who build their knowledge by exploring dependencies in order to access
sensitive information. Our model also deals with dependencies, but in contrast

Mitigation of Malicious Modifications by Insiders in Databases 339

to their work, we deal with malicious write operations. Similar work has been
done in paper [9] which discusses few methods to predict malicious activities by
insiders who combine object dependencies and their knowledge gained in order
to launch an attack. In [10], the authors proposed a model called a key challenge
graph, which describes various paths an insider could take to reach the target
node. They say that every time a node is compromised, additional information
is gained which helps in continuing the attack.

Since dependencies remain to be a major issue in insider threat mitigation,
many researchers have discussed about it extensively in [11] [12] [13] [14]. In
[11][12] the authors talk about the problem of combining non-sensitive data to
derive sensitive data. They present a survey of the current and emerging research
works in data inference controls. In [13] and [14] the authors investigate the
problem of inference channels which arises when one combines non sensitive data
to get sensitive information. An integrated architecture to detect various types
of insiders was proposed by Maybury et al. in [15]. This paper summarizes few
works that have been carried out for counter attacks on insiders. Bradford and
Hu [16] combined intrusion detection mechanisms with forensics tools to detect
insiders in a layered approach. They have employed intrusion detection systems
to drive the forensic tools. Morgenstern [17] formulated a function to compute
the amount of knowledge an insider could attain by detecting dependencies. In
the paper [18], the authors advocate a model called the Capability Acquisition
Graph (CAG) which analyzes the individual actions of users to evaluate their
cumulative effects and detect possible violations. To complement these existing
works, our proposed models aim at preventing malicious write operations. The
following section describes our attack prevention system and explains few key
terms used in the paper.

3 The Attack Prevention System

Insiders are trusted entities of an organization who have the authority to perform
various operations, and when they misuse their permissions and violate rules,
it turns out to be a threat. As mentioned earlier, good amount of work exists
in preventing malicious read operations; so this paper focuses on preventing
malicious write operations in databases. A write operation can modify a data
item by one of the following ways:

– Direct access.
– Modifying some data item which will trigger an indirect update[Indirect

access].

Direct Access. Here, an insider will have write permissions on the data item
he/she is trying to modify. So as an authorized user, he will be trusted and he
can make modifications directly on the object.

Indirect Access. In this case, an insider might not have direct permissions to
modify the data item as such, but he can still work on it by figuring out its

340 H. Ragavan and B. Panda

dependencies. This means, when the dependent data item is changed, it makes a
change in the target item or might change few intermediate data items which get
reflected in the target node. Thus, changing one value can produce a transitive
change in the data items.

For example, let us assume that someone orders an item online and money gets
deducted from their account twice for the same item by mistake. To notify this,
one might inform the concerned person and they will take necessary actions. The
vendor who is responsible for this will have to manually deal with this situation.
So, in cases like these where actions have to be directly taken, insiders will be
given permissions and would be trusted. This is an example of insiders directly
accessing data items.

A simple example to understand an indirect access would be to consider three
attributes namely Date of Birth (DOB), Age and Vote. Vote denotes if the
person has the right for voting (varies depending on the country). When there
is a change in the DOB, it gets reflected in the age as well as the vote column.
This is an indirect change, i.e. change in one data item produces a change in the
other one too. This is a simple example and in cases like this, the insider may
be prohibited from modifying DOB. However, there may be complex situations
that may not make the dependencies so obvious and insiders can take advantage
of that.

3.1 Working of the Models

With these classifications in mind, our attack prevention system has been mod-
eled to forbid malicious writes specifically in two scenarios.

– Prevent malicious writes in the presence of log.
– Prevent malicious writes in the absence of log (dependency graph).

A new term called ’threshold’ is introduced in the paper which sets the limit to
which a data item can be modified. Every data item in the database is associated
with a ’threshold’. When a change crosses the threshold, it signals a threat and a
check is made to verify the validity of the write operation. There might be cases
where one would need more information about the write operation in order to
proceed with the investigation. So, to get a clear picture of the write operation,
the log is examined for determining the complete set of data items that were
accessed during that entire transaction. By doing so, one can pull out the corrupt
data items and can clean (recover) them from damages.

Tracing the entire log for identifying a malicious update would cause more
delay when there are numerous transactions getting recorded. So, an alternate
approach which works faster by employing ’dependency graphs’ is proposed as
the next model in the paper. Here, the process begins by developing a graph
called the ’dependency’ graph, whose nodes are various data objects of the
database. An edge between two nodes means that there is a dependency re-
lationship between the two data items (explained in next section). This means
that the write operation performed on one data item might affect the other

Mitigation of Malicious Modifications by Insiders in Databases 341

in some way. Our system works by monitoring every write operation on nodes
and when the changes go beyond the threshold, necessary security checks are
performed. The main difference between log and the graph is that, log records
each activity of every transaction in a database and it is tedious to distinguish a
particular sequence of interest; whereas, the graphs get dynamically built when
the data items are accessed and it is easy to go back and trace which data item
was accessed before or after a particular one. In the following section each term
introduced in the paper is defined with suitable examples.

3.2 Definitions

Definition 1. In a database, the data items which are very sensitive and whose
changes are to be highly monitored are addressed as Critical Data Items (CDI).
For example, in a healthcare database, the report of a patient is a CDI. In a
university database the grade of a student is a CDI. Malicious changes to these
data items will cause a major damage to the database, and so they have to be
monitored with high security.

Definition 2. A Regular Data Item (RDI) in a database is a non-sensitive data
item and changes to such data items do not cause an immediate problem. Few
data items like address, gender etc. in a company or university database may
not matter much to the organization as compared to the CDI’s. So changes to
these might affect the database in little amounts without any serious damage.

Definition 3. A dependency between two data items x and y (denoted as x → y)
can be defined as a relationship such that, y is a function of x; i.e., y is calculated
using the value of x. For example, in a student database, if the data item grade
is calculated as score1+score2, then changing either of the values produces a
change in grade. This means that a dependency relationship exists betweengrade
and score1, score2.

Fig. 1. An Example Dependency Graph

The figure above is an example of how a dependency graph would look like.
The dependency graph is defined as V, E where the vertices V are various data
items and edges E between two vertices convey that a dependency relationship
exists between them.

In fig. 1, the data item x is dependent on two data items a and b. Similarly a
and b are dependent on c and d, e respectively. The dependency graph is built
when a transaction modifies a data item. Before the changes get committed, ap-
propriate security checks are performed to verify the validity of write operations

342 H. Ragavan and B. Panda

Table 1. A University Database

NAME ATTENDANCE ASSIGNMENT GRADE

Alisa 90% 98% A

Jack 92% 88% A

Jim 80% 85% B

and also to ensure the security of data items. If they are valid, then execution
of such operations is allowed.

To understand how the dependency graph is built, let us consider a scenario
where the pay of an employee is calculated by multiplying the number of hours
he worked per week with pay per hour. When his number of hours is entered into
the database every week, a node corresponding to it gets added to the graph. At
the end of the month when his pay is calculated from the number of hours and
pay per hour, both the nodes are appended to the graph. The graph simply shows
that pay is dependent on the both the nodes and if some threat is encountered
with pay the other two nodes also have to be investigated. Here is an example
that clarifies the concept of dependency better. A University database which
maintains the academic information of a student may contain fields like the ones
listed above. Here the grade of a student depends both on his attendance as well
as his assignments. He gets an A grade when his assignments are between 89%
and 100%. Also, an extra credit is given for the attendance in such a way that
if his grade is along the border of A (88% is a B) from the assignments and he
holds more than 90% in attendance, then a credit gets added and he gets an A.
This simply means that both attendance and assignment play an important role
in the value of grade. So, attendance and assignment are two data items which
are the dependencies of grade.

A CDI can be dependent on another CDI or an RDI. So changing an RDI
can also affect a CDI which is the main concern of our paper. As long as these
dependencies exist, it will be easier for insiders to attack a CDI by working on
RDI’s. In spite of preventing insiders from accessing CDI’s without authorization,
they can alter other data items and achieve their goal.

Definition 4. The term Δi denotes the amount of change (in numerals) that is
made to a data item ’i’ by a write operation. To understand it better, let us take
the bank balance as a data item. When we deposit, withdraw or transfer money,
the value of the balance changes. The difference between the initial value and
the value after the change (new value) is defined as Δbalance.

Definition 5. Every data item ’i’ in the dependency graph is associated with
a Threshold denoted as Ti. It can be defined as a numerical value that sets the
limit to which a data item could be modified without causing a threat. Threshold
may take different kinds of values depending on the data item to which it is
related. If Ti=0, changes to i are highly critical to the database and if Ti=∞,
the changes are trivial. Thus, every data item acquires a threshold value that
ranges between 0 and ∞. These values can be changed by security personnel as
and when required.

Mitigation of Malicious Modifications by Insiders in Databases 343

Here are few numerical examples:-

1. For a company database, salary of employees is very sensitive and the thresh-
old takes a value in such a way that, any change to the salary till it crosses
the threshold is trivial. For example, a + or - $10 change to the salary may
not make much harm whereas when one figures more than $1000 change it
has to be investigated. So, depending upon the risk the company is willing
to take, in the described situation, the threshold value can be set between
$10 and $1000.

2. Let us consider a database which stores the SSN of people. It is highly
sensitive and the threshold for SSN will monitor the number of times it gets
altered. So, in this case threshold is not a mere number, it also tracks the
changes.

A Non-numerical Example
Threshold for data items that are not numeric will have to be defined in a
different manner than the numeric ones. It is easy to note the changes in numbers,
but when the data items have values that are in alphabets, it is inefficient to
monitor every single letter for a change. In those cases, initially a predefined set
contains all the values a data item could take. Then a Δ value is associated for
changes from one value to the other in the set. If they cross the threshold then
it is considered as a violation of security. Here is an example to make it clearer.

Table 2. A Company Database

NAME JOB TITLE YEARS OF EXP. SALARY

Tom Associate Prof. 3 20k

Kelly Professor 10 50k

John Teaching Assistant 5 9k

Consider a company database as shown in Table 2. An insider might target
the job title and could try to change the designation. The threshold for job title is
complicated and a numeric threshold cannot help catching the malicious change.
So, for data items like this which are non numeric, a predefined set is employed
which holds the possible values the data item could take. In this case, job title
would have a set with values such as Professor, Associate professor, Assistant
Professor, Office Staff, Teaching Assistant. A shift from one position to another
takes a unique Δ value which helps us in identifying threats. An immediate
change from Teaching Assistant to Associate Professor is not acceptable; same
way one cannot become a Professor from being an Office Staff. Thus, for each
combination a Δ value is attached accordingly. For example, for the position
of a Teaching Assistant, the change could be defined as (Assistant Professor,
Associate Professor, Professor) in that sequence. If the Δ is made as 1 for a shift
to the next position, then anything greater than 1 is considered to be invalid in
this example. So the threshold for job title can have the condition as Δ greater
than 1 and any changes that have Δ more than 1 will go for verification.

344 H. Ragavan and B. Panda

Listing out all the possibilities a data item would take is little tedious. This
information could be taken from the domain defined for every data item while
building the database. This method helps in identifying threats associated with
any type of data item, especially that are non-numeric. The set is dynamic and
have to be updated whenever the domain of a data item changes.

In practical terms, threshold can be defined for an entire table, for an attribute
or for every data item. As mentioned, threshold value 0 signifies that the data
item is highly sensitive and every change made to it has to be monitored. For
example, let us consider SSN again. It very rarely gets changed and so even a
one-time change has to be validated, thus it takes a threshold of 0. Similarly a
data item with threshold infinity denotes that it can take any number of changes
and the changes do not constitute a risk. Assigning proper threshold to the data
items is a very important task. The selection of threshold should be judicious
enough and it must cover all the possible scenarios by which a data item could
be attacked. It should also be dynamic so that if the risk level of the data item
increases or decreases, our threshold must also change accordingly. In this paper,
for simplicity, we have focused on threshold values that operate on numeric data
items.

Definition 6. Every time a transaction operates on a data item ’i’ and makes
a change, the Δ value gets collected in a variable called ’unverified Δ’ denoted
as Δu.

If the changes are below threshold, they get added to the existing values in the
variable and the point at which Δu exceeds Ti it signifies a threat. A value of
0 to Δu denotes that the data item is secure and there are no unchecked write
operations. Initially when the database is built, the Δu values of all the data
items are initialized to 0. Δui refers to the unverified Δ value for the data item
’i’. Let us consider the balance attribute of a bank database. Initially let’s assume
that the Δu has a value 100. When someone makes a deposit or withdrawal of
50 dollars, it becomes 150 or 50, respectively. Same is the case for any other data
item; the amount of change made to the data item is recorded and summed up
in the variable. The main goal of the proposed idea is to make Δu = 0 most of
the times so that, the data items remain secured.

Irrespective of the sensitivity, the changes made to every single data item in
a database is important to the organization. But, it is time consuming to check
all the transactions to verify each and every write operation. Thus, the most
important data items, the CDIs are alone investigated every time it changes.
We do not claim that the changes of an RDI are immaterial, but checking each
change to each RDI will slow down system performance significantly. So, our
priority is to safeguard the critical data items first, and then periodically track
the RDI’s to assure they are free from threats.

When security checks are made, it might require manual verification of trans-
actions. For example, if there is a vast change in a bank account, then during
the check one needs to manually affirm that the change was valid. This checking
is real time and might involve some delay, but eventually it satisfies our goal of

Mitigation of Malicious Modifications by Insiders in Databases 345

securing data items. When security is a top priority, delays are small prices one
must be willing to pay. The two models introduced in the paper are explained
in the following sections.

4 Log Based Model

A log file keeps record of each operation and the data items accessed during
every transaction that gets executed. Although traditional logs do not store
read operations, in our model we require them to be stored. Furthermore, we
also require that, the type as well as the amount of changes (Δu) made to each
data item during a transaction must also be recorded. With all these information
in hand, one can trace the log to figure the dependencies and the sequence of
data items involved during a transaction.

4.1 Identifying Threats

According to our proposed idea, when a write operation does something that
goes beyond the threshold, the system sends an alert. As stated earlier, if a
critical data item is getting modified then the corresponding write operation
is immediately monitored. There might be cases where the current operation
modifying a data item is determined to be correct during investigation where as
one or more of the past operations that contributed to the present value may
involve malicious activities. Hence, all past operations have to be investigated
as well. According to the proposed model, there are two scenarios during which
a log would be examined.

– Changes exceeding threshold.
– Sum of values in Δu exceeding threshold.

Whenever the write operation makes a change that exceeds the threshold, the
transaction is verified and if it requires more information the log is examined.
Same is the case when the sum of values in Δu exceeds the threshold. Below is
an example.

Table 3 shows how a modified log used in this model would look like. It
contains the data items getting involved in a transaction and the type of action
performed on each data item by a transaction. If the data items are written,
the ways in which they get modified are also recorded. The ’value’ field stores
the unverified changes for every item and it gets updated once they are verified.
In the figure below, initially, a transaction t1 performed a write operation on
data item b which is recorded as b2, after which the value of b was read by t2.
Following this, t2 updated the value of a by adding b to it. Then a transaction
t3 read the updated value of a and modified x as x+ a3. Now, if the changes
made to x cross the threshold, verification is triggered. If the write made by t3
appears to be wise, then other data items which contributed to the value of x
might be wrong. By tracing the log, it is easy to figure out which data items were
involved in the modification made to x. The Δu value for every data item shows

346 H. Ragavan and B. Panda

the amount of changes that are still unverified and are less than the threshold.
By validating those changes for a and b, one could figure out which update was
wrong. This shows the strength of dependencies. Even though the changes made
to a and b did not cross their threshold, they indirectly affected x which turned
out to be malicious. Once the checking is done, the Δu values of all the data
items involved could be set to 0, which states there are no pending changes
to be verified and the data items are out of threats so that the forthcoming
transactions can avoid checking those items.

Table 3. Modified Log

Data item b a x

Actions written by t1(b
2)

read by t2 written by t2(a+b)

read by t3 written by t3(x+a3)

Value Δub Δua Δux

The log modeled in the paper avoids all aborted transactions and works on
the committed ones. The corresponding algorithm is provided below.

Algorithm 1. Preventing malicious writes with Logs

Input: i, ui, Data item i, Threshold Ti
Output: Allow only valid write transactions

1. For each write operation on a data item i
2. ui= ui+ i
3. If i a CDI
4. Check the validity of the write operation
5. Else
6. If ui>Ti,
7. If i valid
8. For the set of data items {j} that affected i
9. If j is empty
10. Set u of parent and children to zero
11. If uj=0 then
12. Remove j; goto step 8
13. Else assign j as the parent node(i); goto step 7
14. Else Check the current transaction
15. Assign ui=0
16. End for

Comments: Step 7 checks if the current write operation is valid or not, Step
8 reads the log and pulls out all the read dependencies into a subset {j} where
j denotes a dependent data item. Step 13 starts a recursive search by assigning
the child node as the parent node. Thus, our algorithm tries to find which trans-
action is the reason for a malicious activity. This method introduces some delay
since one has to back track a substantial portion of the log and find the right
transaction which was malicious. To overcome this delay, we have introduced
the dependency graph model which is discussed in the following section.

Mitigation of Malicious Modifications by Insiders in Databases 347

5 Dependency Graph Based Model

Generally in all the databases, numerous dependencies will exist between data
items, which continue to be an advantage for insiders. Insiders who are not
authorized to access the critical data items tend to use dependencies as a means
of attacking CDI’s. They try to guess the dependency between regular data items
and the critical data items, as a result of which they can successfully modify the
CDI’s by modifying the RDI’s.

Initially, when the database is built, numerous dependencies will be created
among data items. Based on those, we build our dependency graph immedi-
ately after a transaction starts its operations. The dependency graph has the
data items getting accessed as nodes and their relationship with other items
contributing to the edges.

Every time a transaction generates a write operation, the Δ value gets added
to its Δu. Then, depending on the type of the data item under modification,
certain actions are performed to ensure its security. There are three cases:

– Data item is a CDI.
– Data item is an RDI.
– Data item is a CDI or an RDI, affecting a CDI immediately.

If the data item getting modified is a CDI, then irrespective of its Δ, security
checks are made. This is to ensure that the CDI’s in a database are always
free from malicious activities. Information such as SSN, medical reports etc. are
highly confidential and have to be under supervision continuously. Next, when an
RDI is modified, if the changes are less than the threshold they get accumulated
in Δu. If they cross the threshold then security checks are triggered. If the RDI
or CDI getting modified is found to impact another CDI then it is immediately
checked, since the goal of our system is to prioritize the security of CDIs. This
is the basic idea of the dependency graph model. In all these cases, dependency
graphs are built but the process depends on few other conditions as listed:

– Write operation on a data item immediately affecting the dependents.
– Write operation on a data item subsequently affecting the dependents.

The first scenario addresses the write operations which modify a data item,
which in turn automatically changes few other data items. As a consequence, all
the data items getting involved in the change are added as nodes to the graph
with corresponding edges denoting the manner in which the data items affect
each other. This signifies that there is a dependency between them. The DOB,
age and vote example discussed previously falls under this category. Firstly let’s
assume vote is a CDI. When DOB is changed, all the three nodes are added
to the graph since they get affected automatically. As the CDI vote is getting
changed here, the write operation on DOB is immediately verified. Now let
us imagine that vote is an RDI. When DOB is changed, the graph adds all the

348 H. Ragavan and B. Panda

three nodes, but since there is no CDI getting changed here, the operation is
continued without any checks. The transaction is checked only when any data
item among them has a change that goes beyond its threshold. Also, if vote
remains the same for a change in DOB, then only the first two nodes are added
to the graph. Thus, only the transactions that have happened in the database
will be recorded in the graph.

The next scenario deals with write operations on data items which may affect
other items, but not immediately. Since the dependents are not altered immedi-
ately, only the node currently getting modified is added to the graph. To make it
clearer, let us consider that the grade of a student depends on the scores of four
tests. The grade will not be calculated until all the four test scores are received.
So, even though grade is dependent on various data items, a change will be done
to it only when all the test scores have received a value. So here, every time
a value is entered for a test score, only that corresponding node gets added to
the graph. Finally while calculating grade, a grade node will be appended to
the graph and if there are any issues encountered, then the graph is traced to
find which test score carries a wrong value. The entire idea is that, when a data
item is found to be invalid, then all its dependents are also checked and cleared.
This will leave the data items in the database free from malicious activities. The
proposed idea is explained in terms of an algorithm below.

Algorithm 2. Preventing malicious writes with Dependency graph

Input: i, ui, Data item i, Threshold Ti
Output: Allow only valid transactions
1. For each write operation on a data item i
2. ui = ui + i
3. If i a CDI OR any CDI dependent on i OR i >Ti,
4. Check the validity of the write operation
5. If valid
6. Check the dependents of i
7. Set u of data items in the sequence to 0
8. Else proceed with the transaction
9. End for

Comments. Step 4 checks the validity of the current write operation. If valid,
then Step 6 figures out the dependencies from the graph built and checks them
also. In step 7, Δu values of the checked data items are re-initialized to 0 which
means they are perfect.

Anytime a check is triggered for a data item, it terminates by making its
Δu= 0. This ensures that the data items are secure. A transaction accesses its
own set of data items, so every transaction starts building its own dependency
graph. The dependency graphs may be disjoint for each transaction since each

Mitigation of Malicious Modifications by Insiders in Databases 349

might have different sequence and the data items may not be related. But once a
dependency is found between two data items in two different graphs, the graphs
will then be merged by delineating an edge between the nodes.

6 Comparison of the Two Models

As stated earlier, both the models aim at preventing a database from insider
threats. But there are few factors which make one better than the other at
times. Some of them are speed, complexity, accuracy and efficiency.

In terms of speed, tracing the log to find a malicious transaction is time con-
suming than figuring it out from the dependency graph. Dependency graphs sim-
plify the work done by a log, by automatically building the transaction sequence;
whereas, the log records numerous operations every day and it is practically hard
to check every data item to pull out the invalid ones. But, though log method
puts in delay, it maintains all the information we need. So, one can be confident
about catching the malicious operations by looking through the log.

Adding to speed, dependency graphs are less complex than logs in figuring
out threats, but are more difficult to build when the database is huge and has
numerous dependencies. Both the log and graphs are accurate, but logs are
trusted more because, the entries in a log cannot be changed or hacked. Certain
organizations might refrain from building the graphs since it requires more effort,
but it is certainly an improvement over the logs in all aspects. To compare the
efficiency of the models, we intend to develop a simulation of both the models.
Since the ultimate goal of mitigating insider threat is achieved by both of them,
they are efficient in their own terms.

7 Conclusions and Future Work

Insider threat is a problem that is standing for long and it sometimes becomes
unpreventable due to the lack of proper tools and mechanisms. In addition to
this, attacking a database and evading detection has become easy for an insider
who successfully discovers the dependencies among data items. So establish-
ing appropriate techniques for catching insiders is essential in enhancing and
creating a secured database system. Thus, in this paper we discussed various
possibilities through which an insider can perform malicious writes. We intro-
duced an idea of using threshold to limit the amount of change an operation
could perform without requiring a validation. We also proposed two different at-
tack prevention models that can detect and prevent malicious write operations
in various scenarios. For systems which don’t create dependency graphs, we ex-
plained how logs could be a counterpart. The two models were also compared
and analyzed in terms of various factors. Various works exist to prevent malicious
read operations (unauthorized disclosure of information) in databases. To com-
plement those models, an attack prevention model concentrating mainly on write

350 H. Ragavan and B. Panda

operations was proposed. As a future work, we plan to carry out experiments to
prove the effectiveness of the models for both numeric and non-numeric data.

Acknowledgement. This work has been supported in part by US AFOSR
under grant FA 9550-08-1-0255. We are thankful to Dr. Robert. L. Herklotz for
his support, which made this work possible.

References

1. Schultz, E.E.: A framework for understanding and predicting insider attacks. Com-
puters & Security 21(6), 526–531 (2002)

2. Predd, J., Pfleeger, S.L., Hunker, J., Bulford, C.: Insiders Behaving Badly. IEEE
Security & Privacy 6(4), 66–70 (2008)

3. Bishop, M., Gates, C.: Defining the Insider Threat. In: Proceedings of the 4th
Annual Workshop on Cyber Security and Information Intelligence Research, Ten-
nessee, vol. 288 (2008)

4. Brackney, R., Anderson, R.: Understanding the insider threat. In: Proceedings of
a March 2004 workshop. Technical report, RAND Corporation. Santa Monica, CA
(2004)

5. Spitzner, L.: Honeypots: Catching the Insider Threat. In: Proceedings of the 19th
Annual Computer Security Applications Conference, Washington (2003)

6. Ray, I., Poolsapassit, N.: Using Attack Trees to Identify Malicious Attacks from
Authorized Insiders. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005)

7. Franqueira, V., van Eck, P.: Defense against Insider Threat: A Framework for Gath-
ering Goal-based Requirements. In: Proceedings of the 12th International Work-
shop on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD
2007), Trondheim, Norway (June 2007)

8. Yaseen, Q., Panda, B.: Knowledge Acquisition and Insider Threat Prediction in
Relational Database Systems. In: Proceedings of the International Workshop on
Software Security Processes, Vancouver, Canada, pp. 450–455 (2009)

9. Althebyan, Q., Panda, B.: A knowledge-base model for insider threat prediction.
In: Proceedings of the IEEE Workshop on Information Assurance and Security,
West Point, NY, pp. 239–246 (2007)

10. Chinchani, R., Iyer, A., Ngo, H.Q., Upadhyaya, S.: Towards a Theory of Insider
Threat Assessment. In: Proceedings of the International Conference on Dependable
Systems and Networks (DSN), June 28-July 1, pp. 108–117 (2005)

11. Farkas, C., Jajodia, S.: The Inference Problem: A Survey. ACM SIGKDD Explo-
rations 4, 6–11 (2002)

12. Farkas, C., Toland, T., Eastman, C.: The Inference Problem and Updates in Re-
lational Databases. In: Proceedings of the 15th IFIP WG11.3 Working Conference
on Database and Application Security, pp. 181–194 (2001)

13. Brodsky, A., Farkas, C., Jajodia, S.: Secure Databases: Constraints, Inference
Channels and Monitoring Disclosures. In: Proceedings of the IEEE Trans. on
Knowledge and Data Engineering, vol. 12, pp. 900–919 (2000)

14. Yip, R., Levitt, K.: Data Level Inference Detection in Database Systems. In: Pro-
ceedings of the 11th Computer Security Foundations Workshop, Rockport, MA,
pp. 179–189 (1998)

Mitigation of Malicious Modifications by Insiders in Databases 351

15. Maybury, M., Chase, P., Cheikes, B., Brackney, D., Matznera, S., Hetherington, T.,
Wood, B., Sibley, C., Marin, J., Longstaff, T.: Analysis and Detection of Malicious
Insiders. In: Proceedings of the International Conference on Intelligence Analysis,
VA (2005)

16. Bradford, P., Hu, N.: A Layered Approach to Insider Threat Detection and Proac-
tive forensics. In: Proceedings of the Twenty-First Annual Computer Security Ap-
plications Conference, Tucson, AZ (December 2005)

17. Morgenstern, M.: Security and Inference in Multilevel Database and Knowledge-
Base Systems. In: ACM SIGMOD Record, NewYork, USA, pp. 357–373 (1987)

18. Mathew, S., Upadhyaya, S., Ha, D., Ngo, H.Q.: Insider abuse comprehension
through capability acquisition graphs. In: Proceedings of 11th IEEE International
Conference on Information Fusion, pp. 1–8 (2008)

A Semantic Hierarchy for Erasure Policies

Filippo Del Tedesco1, Sebastian Hunt2, and David Sands1

1 Chalmers University of Technology, Sweden
2 City University London

Abstract. We consider the problem of logical data erasure, contrasting
with physical erasure in the same way that end-to-end information flow
control contrasts with access control. We present a semantic hierarchy
for erasure policies, using a possibilistic knowledge-based semantics to
define policy satisfaction such that there is an intuitively clear upper
bound on what information an erasure policy permits to be retained.
Our hierarchy allows a rich class of erasure policies to be expressed,
taking account of the power of the attacker, how much information may
be retained, and under what conditions it may be retained. While our
main aim is to specify erasure policies, the semantic framework allows
quite general information-flow policies to be formulated for a variety of
semantic notions of secrecy.

1 Introduction

Erasing data can be difficult for many reasons. As an example, recent research
on SSD-drives has shown that the low-level routines for erasing data often in-
advertently leave data behind [30]. This is due to the fact that information on
an SSD (in contrast to a more conventional magnetic hard drive) gets copied to
various parts of memory in order to even out wear. The naive firmware sanitisa-
tion routines do not have access to the movement-history of data, and so leave
potentially large amounts of data behind.

This paper is not focused on low-level erasure per se. The requirement that
data is used but not retained is commonplace in many non hardware-specific
scenarios. As an everyday example consider the credit card details provided by
a user to a payment system. The expectation is that card details will be used to
authorise payment, but will not be retained by the system once the transaction
is complete.

An erasure policy describes such a limited use of a piece of data. But what
does it mean for a system to correctly erase some piece of data? One natural
approach taken here is to view erasure as an information-flow concept – follow-
ing [7]. To erase something means that after the point of erasure there is no
information flowing from the original data to observers of the system. This gives
a natural generalisation of the low-level concept of physical erasure to what one
might call logical erasure. Logical erasure specifies that a system behaves as if
it has physically erased some data from the viewpoint of a particular observer.
The observer viewpoint is more than just a way to model erasure in a multi-level

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 352–369, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Erasure Policies 353

security context (as in [7]). To understand the importance of the attacker view-
point, consider a system which receives some data subject to an erasure policy.
The system then receives a random key from a one-time pad and XORs it with
the secret. The key is then overwritten with a constant. Does such a system erase
the data? The answer, from an information-flow perspective, depends on what
the observer (a.k.a. the attacker) can see/remember about the execution. An
attacker who can see the exact final state of the system (including the encrypted
data) and nothing more, cannot deduce anything about the subject data, and
so we can conclude that it is erased for that attacker. But if the attacker could
also observe the key that was provided, then the system is not erasing. Different
situations may need to model different attacker powers.

In practice the concept of erasure is a subtle one in which many dimensions
play a role. This is analogous to the various “dimensions” of declassification
[28]. In this paper we develop a semantic model for erasure which can account
for different amounts of erasure, covering the situation where some but not
necessarily all information about the subject is removed, and different varieties
of conditional erasure, which describes both what is erased, and under what
conditions.

The contribution of this work is to identify (Section 2) and formalise (Sec-
tion 4) a hierarchy of increasingly expressive erasure policies which captures vari-
ous dimensions of erasure. To do this we build on a new possibilistic information-
flow model (Section 3) which is parameterised by (i) the subject of the informa-
tion flow policy (e.g. the data to be erased), (ii) the attacker’s observational
power. This is done taking into account the facts that an attacker might be
interested to learn, and the queries which he can or will be able to answer about
the subject.

Proofs of main results can be found in the extended version of the paper [13].

2 Erasure Case Studies

We consider a series of examples of erasing systems which differ according to the
way they answer the following questions:

1. How much of the erasure subject is erased?
2. Under which conditions is erasure performed?

The examples are presented via simple imperative pseudocode. We emphasise
that the examples themselves are not intended to be realistic programs – they
serve to motivate simply and intuitively various types of erasure policy that we
will formalise in a more abstract setting in Section 4.

2.1 Total Erasure

Consider a ticket vending machine using credit cards as the payment method.
A partial implementation, in simplified form, is shown in Listing 1.1. Line 1

354 F. Del Tedesco, S. Hunt, and D. Sands

1 get (cc number) ;
2 cha rge (t i c k e t c o s t , cc number) ;
3 l o g (c u r r e n t t im e ()) ;
4 cc number=n u l l ;

Listing 1.1. Ticket vending machine,
total and unconditional erasure

inputs the card number; line 2 exe-
cutes the payment transaction; line 3
writes the transaction time to a log for
audit purposes; line 4 deletes the card
number.

This is an example of an erasing
program: once line 4 is executed, the

card number has been erased from the system. This statement can be refined
further with respect to our original questions: 1) the system is totally erasing
(no information about the card number is retained) and 2) erasure occurs un-
conditionally, since control flow always reaches line 4.

2.2 Partial Erasure

Consider a variant of the vending machine (Listing 1.2) which logs the last four
digits of the card number of each transaction, enabling future confirmation of
transactions in response to user queries. The difference to Listing 1.1 is in line 3,
where additional data is written to the log.

1 get (cc number) ;
2 cha rge (t i c k e t c o s t , cc number) ;
3 l o g (c u r r e n t t im e () , l a s t 4 (cc number)) ;
4 cc number=n u l l ;

Listing 1.2. Ticket vending machine, partial and
unconditional erasure

With this change, line 4
no longer results in to-
tal erasure since, even af-
ter cc number is overwritten,
the last four digits of the
card number are retained in
the log.

2.3 Low Dependent Erasure

Consider a further elaboration of the vending machine example (Listing 1.3)
which allows the user to choose whether the last four digits are retained. In

1get (cc number) ;
2cha rge (t i c k e t c o s t , cc number) ;
3get (ch o i c e) ;
4i f ch o i c e=”Al low”
5then l o g (c u r r e n t t im e () , l a s t 4 (cc number)) ;
6e l s e l o g (c u r r e n t t im e ()) ;
7cc number=n u l l ;

Listing 1.3. Ticket vending machine, low dependent erasure

line 3 the program ac-
quires the user choice,
then it either pro-
ceeds as Listing 1.2 or
as Listing 1.1, accord-
ing to the choice. Now
the question about
how much informa-
tion is erased has two
different answers, de-
pending on the second user input. Since this dependency is not related to the
erasure subject itself, we call this low dependent erasure.

2.4 High Dependent Erasure

Suppose there is a brand of credit card, StealthCard, which only allows terminals
enforcing a strict confidentiality policy to be connected to their network. This

Erasure Policies 355

1get (cc number) ;
2cha rge (t i c k e t c o s t , cc number) ;
3i f (cc number i s i n S t e a l t hCa rd)
4then l o g (c u r r e n t t im e ()) ;
5e l s e get (ch o i c e) ;
6i f ch o i c e=”Al low ”
7then l o g (c u r r e n t t im e () ,
8l a s t 4 (cc number)) ;
9e l s e l o g (c u r r e n t t im e ())
10cc number=n u l l ;

Listing 1.4. Ticket vending machine, high dependent
erasure

requires a further refine-
ment of the program (List-
ing 1.4), since StealthCard
users are not permitted a
choice for the logging op-
tion. At line 3 the credit
card number is inspected
and, if it is a StealthCard,
the system proceeds like 1.1.

Compared to the previ-
ous case, this example has
an additional layer of depen-
dency, since the amount of
data to be erased is itself dependent on the erasure subject. We refer to this as
high dependent erasure.

3 An Abstract Model of Information Flow

We formalise erasure policies as a particular class of information flow policies. In
this section we define the basic building blocks for describing such policies. We
consider trace-based (possibilistic) models of system behaviour and we interpret
information flow policies over these models. We make the standard conservative
assumption that the attacker has perfect knowledge of the system model.

Our definitions are based directly on what an attacker can deduce about an
erasure subject from observations of system behaviour. In this respect our model
is close in spirit to Sutherland’s multi-level security property of nondeducibilty
[29]. However, we are not directly concerned with multi-level security and, in a
number of ways, our model is more abstract than non-deducibility. For example,
McLean’s criticism [22] of nondeducibility (that it fails to incorporate an appro-
priate notion of causality) does not apply, since our notion of the “subject” of
a policy is general enough to incorporate temporal dependency if required. On
the other hand, our model is open to the criticism of nondeducibilty made by
Wittbold and Johnson [31] with regard to interactive environment behaviours.
Adapting our work using the approach of [31] (explicit modelling of user strate-
gies) remains a subject for future work. A more radical departure from the cur-
rent work, though still possibilistic, would be to take a process-calculus approach
[16].

3.1 Trace Models

The behavioural “atom” in our framework is the event (in our examples this will
typically be an input (?v) or output (!v) but internal computation steps can be
modelled in the same way). Traces, ranged over by s, t, s1, t1, etc, are finite or
countably infinite sequences of events. We write t.e for the trace t extended with
event e and we write s.t for the concatenation of traces s and t. In what follows
we assume given some set T of traces.

356 F. Del Tedesco, S. Hunt, and D. Sands

A system is considered to be a set S ⊆ T (the assumption is that S is the
set of maximal traces of the system being modeled). Certain parts of system
behaviour will be identified as the subject of our policies and we define these
parts by a function Φ : T → D, for some set D (typically, Φ will be a projection
on traces). For a confidentiality property the subject might represent the secret
that we are trying to protect (an input or a behaviour of a classified agent). For
erasure the subject will be the input which is to be erased.

Given a system S, we denote by Φ(S) the subset of D relevant for S:

Φ(S) = {Φ(t)|t ∈ S}
We call this the subject domain of S. Let Sys(V) be the set of all systems with
subject domain V . Our flow policies will be specific to systems with a given
subject domain.

3.2 Equivalence Relations and Partitions

The essential component of a flow policy is a visibility policy which specifies
how much an attacker should be allowed to learn about the subject of a system
by observing its behaviour. Following a standard approach in the information
flow literature – see, for example [20,27] – we use equivalence relations for this
purpose. A flow policy for systems in Sys(V) is R ∈ ER(V), where ER(V)
denotes the set of all equivalence relations on V . The intention is that attackers
should not be able to distinguish between subjects which are equivalent according
to R. An example is the “have the same last four digits” relation, specifying that
the most an attacker should be allowed to learn is the last four digits of the credit
card number (put another way, all cards with the same last four digits should
look the same to the attacker).

In what follows we make extensive use of two key, well known facts about
equivalence relations:

– The set of equivalence relations on V , ordered by inclusion of their defining
sets of pairs, forms a complete lattice, with the identity relation (which we
denote IdV) as the bottom element, and the total relation (which we denote
AllV) as the top.

– The set of equivalence relations on V is in one-one correspondence with the
set of partitions of V , where each of the disjoint subsets making up a partition
is an equivalence class of the corresponding equivalence relation. We write
PT(V) for the set of all partitions of V . Given P ∈ PT(V), we write E(P)
for the corresponding equivalence relation: v1E(P)v2 iff ∃X ∈ P.v1, v2 ∈ X .
In the other direction, given R ∈ ER(V) and v ∈ V we write [v]R for the R-
equivalence class of v: [v]R = {v′ ∈ V |v′ R v}. We write [R] for the partition
corresponding to R: [R] = {[v]R|v ∈ V }.

In the current context, the significance of R1 ⊆ R2 is that R1 is more discriminat-
ing - i.e., has smaller equivalence classes - than R2. Hence, as visibility policies,
R1 is more permissive than R2. The lattice operation of interest on ER(V) is

Erasure Policies 357

meet, which is given by set intersection. Given a family of equivalence relations
{Ri}i∈I , we write their meet as

∧
i∈I Ri (the least permissive equivalence relation

which is nonetheless more permissive than each Ri).
The order relation on partitions corresponding to subset inclusion on equiv-

alence relations will be written �ER, thus [R1] �ER [R2] iff R1 ⊆ R2. We
overload the above notation for meets of partitions in this isomorphic lattice:∧

i∈I Pi = [
∧

i∈I E(Pi)].

3.3 Attacker Models and K-Spaces

As discussed in the introduction, whether or not a system satisfies a policy will
depend on what is observable to the attacker. We specify an attacker model as
an equivalence relation on traces, A ∈ ER(T). Note that this is a passive notion
of attacker - attackers can observe but not interact with the system.

To compare what the attacker actually learns about the subject with what
the visibility policy permits, we define, for each attacker observation O ∈ [A],
the corresponding knowledge set KS(O) ⊆ V , which is the set of possible sub-
ject values which the attacker can deduce from making a given observation1:
KS(O) = {Φ(t)|t ∈ O ∩ S}.

The K-space of A for S, denoted KS(A), is the collection of all the attacker’s
possible (ie non-empty) knowledge sets when observing S:

KS(A) = {KS(O)|O ∈ [A], O ∩ S 	= ∅}
Lemma 1. Let S ∈ Sys(V) and A ∈ ER(V). Then the K-space of A for S
covers V , by which we mean that every member of KS(A) is non-empty and⋃KS(A) = V .

From now on, for a given V , we use the term K-space to mean any collection of
sets which covers V .

In the special case that a system’s behaviour is a function of the subject, each
K-space will actually define an equivalence relation on V :

Proposition 1. Say that S ∈ Sys(V) is functional just when, for all t, t′ ∈ S,
t 	= t′ ⇒ Φ(t) 	= Φ(t′). In this case, for all A ∈ ER(T), KS(A) partitions V .

When S is functional, the K-spaceKS(A), being a partition, can be interpreted as
the equivalence relation E(KS(A)). So, in the functional case there is a straight-
forward way to compare a visibility policy with an attacker’s K-space: we say
that the policy R is satisfied just when R is more discriminating than this in-
duced equivalence relation. Formally, when S is functional, S satisfies R for
attacker A, written S �A R, just when R ⊆ E(KS(A)) or, equivalently:

S �A R iff [R] �ER KS(A) (1)

We now consider how to extend this definition to the general case, in which a
system has other inputs apart from the policy subject.
1 A more reasonable but less conventional terminology would be to call this an uncer-

tainty set.

358 F. Del Tedesco, S. Hunt, and D. Sands

3.4 Comparing K-Spaces: Facts and Queries

In general, a system’s behaviour may depend on events which are neither part of
the policy subject nor visible to the attacker. In this case, the attacker’s knowl-
edge of the subject need not be deterministic, resulting in a K-space which is not
a partition. This raises the question: when is one K-space “more discriminating”
than another?

Here we motivate a variety of orderings by considering some basic modes in
which an attacker can use observations to make deductions about the subject of
a system:

Facts. A fact F is just a set of values. A given knowledge set X confirms fact F
just when X ⊆ F . Dually, X has uncertainty F when F ⊆ X . For example a
fact of interest (to an attacker) might be the set of “Platinum” card numbers.
In this case an observation might confirm to the attacker that a card is a
Platinum card by also revealing exactly which platinum card it is. For a
given K-space K we then say that
– K can confirm F if there exists some X ∈ K such that X confirms F .
– K can have uncertainty F if there exists some X ∈ K such that X has

uncertainty F .
Queries. A query Q is also just a set of values. We say that a given knowledge

set X answers query Q just when either X ⊆ Q or X ⊆ V \ Q. For a given
K-space K we then say that
– K will answer Q if for all X ∈ K, X answers Q, and
– K can answer Q if there exists some X ∈ K such that X answers Q.

In a possibilistic setting it is natural to focus on those “secrets” which it is
impossible for a given system to reveal, where revealing a secret could mean
either confirming a fact or answering a query. Two of the four K-space properties
defined above have an immediate significance for this notion of secrecy:

– Say that S keeps fact F secret from attacker A iff there are no runs of S for
which A’s observation confirms F , i.e., iff: ¬(KS(A) can confirm F).

– Say that S keeps query Q secret from attacker A iff there are no runs of S
for which A’s observation answers Q, i.e., iff: ¬(KS(A) can answer Q).

The possibilistic secrecy significance of “has uncertainty” and “will answer” is
not so clear. However, as we will show, we are able to define flow policies and a
parameterized notion of policy satisfaction which behaves well with respect to
all four properties.

Using the ability of a K-space to confirm facts and answer queries, we can
order systems in different ways, where a “smaller” K-space (ie one lower down
in the ordering) allows the attacker to make more deductions (and so the system
may be regarded as less secure). Define the following orderings between K-spaces:

Upper: K1 �U K2 iff ∀F.K2 can confirm F ⇒ K1 can confirm F . Note that
K1 �U K2 iff K2 keeps more facts secret than K1.

Lower: K1 �L K2 iff ∀F.K1 can have uncertainty F ⇒ K2 can have uncertainty
F .

Erasure Policies 359

Convex (Egli-Milner): K1 �EM K2 iff K1 �U K2 ∧ K1 �L K2.
Can-Answer: K1 �CA K2 iff ∀Q.K2 can answer Q ⇒ K1 can answer Q. Note

that K1 �CA K2 iff K2 keeps more queries secret than K1.
Will-Answer: K1 �WA K2 iff ∀Q.K2 will answer Q ⇒ K1 will answer Q.

It is straightforward to verify that these orders are reflexive and transitive, but
not anti-symmetric. The choice of names for the upper and lower orders is due
to their correspondence with the powerdomain orderings [25]:

Proposition 2

K1 �U K2 iff ∀X2 ∈ K2.∃X1 ∈ K1.X1 ⊆ X2

K1 �L K2 iff ∀X1 ∈ K1.∃X2 ∈ K2.X1 ⊆ X2

We can compare the K-space orders 1) unconditionally, 2) as in the case of policy
satisfaction, when we are comparing a partition with a K-space, and, 3) when
the K-spaces are both partitions, yielding the following results:

Proposition 3. 1. �EM � �L � �WA and �EM � �U � �CA.
2. Additionally, when P is a partition: P �CA K ⇒ P �WA K (the reverse

implication does not hold in general).
3. �ER, �EM, �L, and �WA all coincide on partitions. Furthermore, when P1

and P2 are partitions: P1 �ER P2 ⇒ P1 �U P2 ⇒ P1 �CA P2 (the reverse
implications do not hold in general).

These orderings give us a variety of ways to extend the definition of policy satis-
faction from functional systems (Equation 1) to the general case. The choice will
depend on the type of security condition (eg protection of facts versus protection
of queries) which we wish to impose.

4 The Policy Hierarchy

We specify a three-level hierarchy of erasure policy types. All three types of
policy use a structured collection of equivalence relations on the subject domain
to define what information should be erased. A key design principle is that,
whenever a policy permits part of the erasure subject to be retained, this should
be explicit, by which we mean that it should be captured by the conjunction of
the component equivalence relations.

For each type of policy, we define a satisfaction relation, parameterized by a
choice of K-space ordering o ∈ {U ,L,EM ,CA,WA}.

Assume a fixed policy subject function Φ : T → D. Given a subset V ⊆ D,
let TV = {t ∈ T |Φ(t) ∈ V }. Note that if S belongs to Sys(V) then S ⊆ TV .

Type 0 Policies

Type 0 policies allow us to specify unconditional erasure, corresponding to the
two examples shown in Section 2 in Listings 1.1 and 1.2.

360 F. Del Tedesco, S. Hunt, and D. Sands

A Type 0 erasure policy is just a visibility policy. We write Type-0(V) for the
set of all Type 0 policies for systems in Sys(V) (thus Type-0(V) = ER(V)). The
definition of satisfaction for a given attacker model A and system S uses a K-
space ordering (specified by parameter o) to generalise the satisfaction relation
of Equation 1 to arbitrary (i.e., not-necessarily functional) systems:

S �o
A R iff [R] �o KS(A)

For functional systems note that, by Proposition 3, choosing o to be any one of
EM , L or WA yields a notion of satisfaction equivalent to Equation 1, while U
and CA yield strictly weaker notions.
Example. Consider the example in Listing 1.2. The subject domain is CC, the
set of all credit card numbers, and (since the erasure subject is the initial input)
the subject function is the first projection on traces. The policy we have in mind
for this system is that it should erase all but the last four digits of the credit
card number. We extend this example so that it uses a method call erased() to
generate an explicit output event η (signalling that erasure should have taken
place) followed by a dump of the program memory (thus revealing all retained
information to a sufficiently strong attacker).

1 get (cc number) ;
2 cha rge (t i c k e t c o s t , cc number) ;
3 l o g (c u r r e n t t im e () , l a s t 4 (cc number)) ;
4 cc number=n u l l ;
5 e r a s e d () ;
6 dump() ;

Listing 1.5. Ticket vending machine, partial and
unconditional erasure: extended

If we restrict attention to
systems (such as this one)
where each run starts by in-
putting a credit card num-
ber and eventually outputs
the erasure signal exactly
once, we can assume a uni-
verse of traces T such that
all t ∈ T have the form
t =?cc.s.η.s′, where s, s′ are

sequences not including η. Let S be the trace model for the above system. The
required visibility policy is the equivalence relation L4 ∈ ER(CC) which equates
any two credit card numbers sharing the same last four digits. An appropriate
attacker model is the attacker who sees nothing before the erasure event and
everything afterwards. Call this the simple erasure attacker, denoted AS:

AS = {(t1, t2) ∈ T × T |∃s1, s2, s3. t1 = s1.η.s3 ∧ t2 = s2.η.s3}

Informally, it should be clear that, for each run of the system, AS will learn the
last four digits of the credit card which was input, together with some other log
data (the transaction time) which is independent of the card number. Thus the
knowledge set on a run, for example, where the card number ends 7016, would
be the set of all card numbers ending 7016. The K-space in this example will
actually be exactly the partition [L4], hence S does indeed satisfy the specified
policy: S �o

AS L4 for all choices of o. From now on, we write just S �A R to
mean that it holds for all choices of ordering (or, equivalently, we can consider
�A to be shorthand for �EM

A , since EM is the strongest ordering).

Erasure Policies 361

Type 1 Policies

Type 1 policies allow us to specify “low dependent” erasure (Section 2, List-
ing 1.3), where different amounts may be erased on different runs, but where the
erasure condition is independent of the erasure subject itself.

For systems in Sys(V) the erasure condition is specified as a partition P ∈
PT(TV). This is paired with a function f : P → Type-0(V), which associates
a Type 0 policy with each element of the partition. Since the domain of f is
determined by the choice of P , we use a dependent type notation to specify the
set of all Type 1 policies:

Type-1(V) = 〈P : PT(TV), P → ER(V)〉

Because we want to allow only low dependency – i.e., the erasure condition must
be independent of the erasure subject – we require that P is total for V , by
which we mean:

∀X ∈ P.Φ(X) = V

This means that knowing the value of the condition will not in itself rule out
any possible subject values. To define policy satisfaction we use the components
X ∈ P to partition a system S into disjoint sub-systems S ∩ X and check both
that each sub-system is defined over the whole subject domain V (again, to
ensure low dependency) and that it satisfies the Type 0 policy for sub-domain
X . So, for a Type 1 policy 〈P, f〉 ∈ Type-1(V), an attacker model A, and system
S ∈ Sys(V), satisfaction is defined thus:

S �o
A 〈P, f〉 iff ∀X ∈ P.SX ∈ Sys(V) ∧ SX �o

A f X

where SX = S ∩ X .

Example. Consider the example of Listing 1.3 extended with an erasure signal
followed by a memory dump (as in our discussion of Type 0 policies above).
Let S be the system model for the extended program. We specify a conditional
erasure policy where the condition depends solely on the user choice. The erasure
condition can be formalised as the partition Ch ∈ PT(T) with two parts, one
for traces where the user answers “Allow” (which we abbreviate to a) and one
for traces where he doesn’t: Ch = {Y, Y }, where Y = {t ∈ T |∃s, s1, s2. t =
s.?a.s1.η.s2} and Y = T \ Y . For runs falling in the Y component, the intended
visibility policy is L4, as in the Type 0 example above. For all other runs, the
intended policy is AllCC, specifying complete erasure. The Type 1 policy is thus
〈Ch, g〉 where g : Ch → ER(CC) is given by:

g(X) =
{

L4 if X = Y
All if X = Y

Intersecting Y and Y , respectively, with the system model S gives disjoint sub-
systems SY (all the runs in which the user enters “Allow” to permit retention of
the last four digits) and SY (all the other runs). Since the user’s erasure choice is

362 F. Del Tedesco, S. Hunt, and D. Sands

input independently of the card number, it is easy to see that both sub-systems
are in Sys(CC), that SY �AS L4, and SY �AS All. Thus S �AS 〈Ch, g〉.

The following theorem establishes that our “explicitness” design principle is
realised by Type 1 policies:

Theorem 1. Let 〈P, f〉 ∈ Type-1(V) and S ∈ Sys(V) and A ∈ ER(T). Let
o ∈ {U ,L,EM ,CA,WA}. If S �o

A 〈P, f〉 then:

[
∧

X∈P

(f X)] �o KS(A)

Example. Consider instantiating the theorem to the policy 〈Ch, g〉 described
above. Here the policy is built from the two equivalence relations All and L4;
the theorem tells us that the knowledge of the attacker is bounded by the meet of
these components (and hence nothing that is not an explicit part of the policy)
i.e., All ∧ L4, which is equivalent to just L4.

Type 2 Policies

Type 2 policies are the most flexible policies we consider, allowing dependency
on both the erasure subject and other properties of a run.

Recall the motivating example from Section 2 (Listing 1.4) in which credit
card numbers in a particular set (the StealthCards) SC ⊆ CC are always erased,
while the user is given some choice for other card numbers. In this example, the
dependency of the policy on the erasure subject can be modelled by the partition
HC = {SC, SC}. For each of these two cases, we can specify sub-policies which
apply only to card numbers in the corresponding subsets. Since these sub-policies
do not involve any further dependence on the erasure subject, they can both be
formulated as Type 1 policies for their respective sub-domains. In general then,
we define the Type 2 policies as follows:

Type-2(V) = 〈Q : PT(V), W : Q → Type-1(W)〉

To define satisfaction for Type 2 policies, we use the components W ∈ Q to par-
tition a system S into sub-systems (unlike the analogous situation with Type 1
policies, we cannot intersect S directly with W ; instead, we intersect with TW).
To ensure that the only dependency on the erasure subject is that described
by Q, we require that each sub-system S ∩ TW is defined over the whole of the
subject sub-domain W . So, for a Type 2 policy 〈Q, g〉 ∈ Type-2(V), an attacker
model A, and system S ∈ Sys(V), satisfaction is defined thus:

S �o
A 〈Q, g〉 iff ∀W ∈ Q.SW ∈ Sys(W) ∧ SW �o

A g W

where SW = S ∩ TW .
To state the appropriate analogue of Theorem 1 we need to form a conjunction

of all the component parts of a Type 2 policy:

Erasure Policies 363

– In the worst case, the attacker will be able to observe which of the era-
sure cases specified by Q contains the subject, hence we should conjoin the
corresponding equivalence relation E(Q).

– Each Type 1 sub-policy determines a worst case equivalence relation, as de-
fined in Theorem 1. To conjoin these relations, we must first extend each one
from its sub-domain to the whole domain, by appending a single additional
equivalence class comprising all the “missing” elements: given W ⊆ V and
R ∈ ER(W), define R† ∈ ER(V) by R† = R ∪ AllV \W .

Theorem 2. Let 〈Q, g〉 ∈ Type-2(V) and S ∈ Sys(V) and A ∈ ER(T). For any
Type 1 policy 〈P, f〉, let R〈P,f〉 =

∧
X∈P (f X). Let o ∈ {U ,L,EM ,CA,WA}. If

S �o
A 〈Q, g〉 then:

[E(Q) ∧
∧

W∈Q

R†
(g W)] �o KS(A)

Example. We consider a Type 2 policy satisfied by Listing 1.4, namely 〈HC, h〉
where HC is the partition into Stealth and non-Stealth cards (as above), and h
is defined as follows.

h(SC) = 〈{TSC}, λx.AllSC〉
h(SC) = 〈Ch, h1〉

h1(Y) = L4SC

h1(Y) = AllSC

The term TSC denotes the set of traces which input a Stealth card number as
first action. As in the example of Type 1 policy above, Y is the set of (non-
stealth) traces where the user gives permission (“Yes”) to retain the last digits,
Y is its complement (relative to the set of non-stealth traces), and Ch is the
partition {Y, Y }. The term L4SC denotes the restriction of L4 to elements in SC.
Instantiating Theorem 2 to this example tells us that the attacker knowledge is
bounded by E(HC) ∧ All†SC ∧ L4†

SC
∧ All†

SC
, which is just L4†

SC
.

4.1 Varying the Attacker Model

The hierarchy deals with erasure policies independently of any particular at-
tacker model. Here we make some brief remarks about modelling attackers. Let
us take the example of the erasure notion studied in [18] where the systems are
simple imperative programs involving IO on public and secret channels. Then
the implicit attacker model in that work is unable to observe any IO events prior
to the erasure point, and is able to observe just the public inputs and outputs
thereafter. (We note that [18] also considers a policy enforcement mechanism
which uses a stronger, state-based non-interference property.)

Now consider the example of the one-time pad described in the introduction,
codified in Listing 1.6. Let system S be the set of traces modelling the possible
runs of the program and let the subject be the first input in each trace. For the
simple erasure attacker AS (Section 4), unable to observe the key provided in
line 2, the K-space will be {V } = [All], hence S �AS All. This is because the
value of data in the output does not inform the attacker about the initial value.

364 F. Del Tedesco, S. Hunt, and D. Sands

1 get (data) ;
2 get (key) ;
3 data := data XOR key ;
4 key := n u l l ;
5 e r a s e d () ;
6 output (data) ;

Listing 1.6. Key Erasure

On the other hand, the attacker who can also
observe the key learns everything about the data
from its encrypted value.2 So for this stronger at-
tacker, using encryption to achieve erasure does
not work, and indeed policy satisfaction fails for
this particular system.

If the attacker is strengthened even further, we
arrive at a point where no system will be able to
satisfy the policy. Intuitively, if an attacker can

see the erasure subject itself (or, more specifically, more of the erasure subject
than the policy permits to be retained) no system will be able to satisfy the
policy. In general, we say that a policy p with subject domain V (where p may
be of any of Types 0,1,2) is weakly o-compatible with attacker model A iff there
exists S ∈ Sys(V) such that S �o

A p (we call this weak compatibility because
it assumes that all S ∈ Sys(V) are of interest but in general there will be
additional constraints on the admissible systems). Clearly, to be helpful as a
sanity check on policies we need something a little more constructive than this.
For the special case of Type 0 policies and the upper ordering we have the
following characterisation:

Lemma 2. R is weakly U -compatible with A iff ∀v ∈ V.∃O ∈ [A].[v]R ⊆ Φ(O).

Deriving analogues of this result (or at least sufficient conditions) of more general
applicability remains a subject for further work.

Finally, we note that, while our main aim has been to specify erasure poli-
cies, by varying the attacker model appropriately, we can specify quite general
information-flow properties, not just erasure policies. For example, by classifying
events into High and Low and defining the attacker who sees only Low events,
we can specify non-interference properties.

5 Related Work

We consider related work both directly concerned with erasure and more gener-
ally with knowledge based approaches to information flow policies.

Erasure. The information-flow perspective on erasure was introduced by Chong
and Myers [7] and was studied in combination with confidentiality and declassi-
fication. Their semantics is based on an adaptation of two-run noninterference
definitions, and does not have a clear attacker model. They describe conditional
erasure policies where the condition is independent of the data to be erased.
Although this appears similar to Type 1 policies (restricted to total erasure),
it is more accurately viewed as a form of Type 0 policy in which the condition
defines the point in the trace from which the attacker begins observation.
2 Note, however, that we cannot model the fact that certain functions are not (eas-

ily) invertible, so our attackers are always endowed with unbounded computational
power.

Erasure Policies 365

The present paper does not model the behaviour of the user who interacts
with an erasing system. This was studied in [15] for one particular system and
attacker model. We believe that it would be possible to extend the system model
with a user-strategy parameter (see [31,24,24] which consider explicit models of
user strategies). Neither do we consider here the verification or enforcement of
erasure policies; for specific systems and attacker models this has been studied
in a programming language context in [18,8,9,14,23].

Knowledge Based Approaches. Our use of knowledge sets was inspired by
Askarov and Sabelfeld’s gradual release definitions [2]. This provides a clear
attacker-oriented perspective on information-flow properties based on what an
attacker can deduce about a secret after making observations. A number of
recent papers have followed this approach to provide semantics for richer infor-
mation flow properties, e.g. [4,5]. Our use of knowledge sets to build a K-space,
thus generalising the use of equivalence relations/partitions, is new. The use of
partitions in expressing a variety of information flow properties was studied in
early work by Cohen [10]. The use of equivalence relations and more generally
partial equivalence relations as models for information and information flow was
studied in [20] and resp. [27].

Recent work [3] uses an epistemic temporal logic as a specification language
for information flow policies. Formulae are interpreted over trace-based models of
programs in a simple sequential while language (without input actions), together
with an explicit observer defined via an observation function on traces. Our work
looks very similar in spirit to [3], though this requires further investigation, and
it appears that our modelling capabilities are comparable. The use of temporal
logic in [3] is attractive, for example because of the possibility of using off the
shelf model-checking tools. However, our policy language allows a more intuitive
reading and clear representation of the information leakage.

Alur et al [1], study preservation of secrecy under refinement. The information
flow model of that work bears a number of similarities with the present work.
Differences include a more concrete treatment of traces, and a more abstract
treatment of secrets. As here, equivalence relations are used to model an at-
tacker’s observational power, while knowledge models the ability of an attacker
to determine the value of trace predicates. Their core definition of secrecy co-
incides with what we call secrecy of queries (viz., negation of “can answer”),
although they do not consider counterparts to our other knowledge-based prop-
erties.

Abstract Non-interference. Abstract Non-Interference [17] has strong sim-
ilarities with our use of K-spaces. In abstract non-interference, upper closure
operators (uco’s) are used to specify non-interference properties. The similari-
ties with the current work become apparent when a uco is presented as a Moore
family, which may be seen as a K-space closed under intersection.

[17] starts by defining the intuitive notion of narrow abstract non-interference
(NANI) parameterized by two upper closure operators η (specifying what the
attacker can observe of low inputs) and ρ (ditto low outputs). A weakness of

366 F. Del Tedesco, S. Hunt, and D. Sands

NANI is that it suffers from “deceptive flows”, whereby a program failing to
satisfy NANI might still be non-interfering. From our perspective, the deceptive
flows problem arises because η fails to distinguish between what an attacker can
observe of low inputs and what he should be allowed to deduce about them (i.e.,
everything). Since we specify the attacker model independently from the flow
policy, the deceptive flows problem does not arise for us.

The deceptive flows problem is addressed in [17] by defining a more general
notion of abstract non-interference (ANI) which introduces a third uco parameter
φ. The definition of ANI adapts that of NANI by lifting the semantics of a
program to an abstract version in which low inputs are abstracted by η and high
inputs by φ. A potential criticism of this approach is that an intuitive reading is
not clear, since it is based on an abstraction of the original program semantics.
On the other hand, being based on Abstract Interpretation [12,11], abstract non-
interference has the potential to leverage very well developed theory and static
analysis algorithms for policy checking and enforcement. It would therefore be
useful to explore the connections further and to attempt an analysis of the ANI
definitions (see also additional variants in [21]) relating them to more intuitive
properties based on knowledge sets. A starting point could be [19] which provides
an alternative characterisation of NANI using equivalence relations.

Provenance. A recent abstract model of information provenance [6] is built
on an information-flow foundation and has a number of similarities with our
model, including a focus on an observer model as an equivalence relation, and a
knowledge-based approach described in terms of queries that an observer can an-
swer. Provenance is primarily concerned with a providing sufficient information
to answer provenance-related questions. In secrecy and erasure one is concerned
with not providing more than a certain amount.

6 Conclusions and Further Work

We have presented a rich, knowledge-based abstract framework for erasure pol-
icy specification, taking into account both quantitative and conditional aspects
of the problem. Our model includes an explicit representation of the attacker.
The knowledge-based approach guarantees an intuitive understanding of what
it means for an attacker to deduce some information about the secret, and for a
policy to provide an upper bound to these deductions.

Our work so far suggests a number of possible extensions. At this stage, the
most relevant ones on the theoretical side are:

– Develop a logic defined on traces, both to support policy definition and to
give the basis for an enforcement mechanism (as is done in [3]).

– Model multilevel erasure, based on the fact the attacker might perform obser-
vations up-to a certain level in the security lattice. It would be interesting to
investigate different classes of such attackers and to analyse their properties.

– Generalise policy specifications to use K-spaces in place of equivalence rela-
tions. This would allow specification of disjunctive policies such as “reveal

Erasure Policies 367

the key or the ciphertext, but not both”. Non-ER policies may also be more
appropriate for protection of facts, rather than queries, since ER’s are ef-
fectively closed under complementation and so cannot reveal a fact without
also revealing its negation (for example, we may be prepared to reveal “not
HIV positive” to an insurance company, but not the negation of this fact).

– Extend the scope of the approach along the following key dimensions (de-
fined in the same spirit as [28]):
What: Our model is possibilistic but it is well known that possibilistic se-

curity guarantees can be very weak when non-determinism is resolved
probabilistically (see the example in Section 5 of [26]). A probabilistic
approach would be more expressive and provide stronger guarantees.

When: Our policies support history-based erasure conditions but many
scenarios require reasoning about the future (“erase this account in 3
weeks”). This would require a richer semantic setting in which time is
modelled more explicitly.

Who: We do not explicitly model the user’s behaviour but it is implicit
in our possibilistic approach that the user behaves non-deterministically
and, in particular, that later inputs are chosen independently of the
erasure subject. Modelling user behaviour explicitly would allow us to
relax this assumption (which is not realistic in all scenarios) and also to
model active attackers.

– Understand the interplay between erasure and cryptographic concepts. To
make this possible some refinements of the theory are needed. Firstly, it
would be natural to move to a probabilistic system model. Secondly, the
present notion of knowledge assumes an attacker with computationally un-
limited deductive power; instead we would need a notion of feasibly com-
putable knowledge.

We have focussed on characterising expressive erasure policies, but not on their
verification for actual systems. As a step towards bridging this to more prac-
tical experiments in information erasure, it would be instructive to explore the
connections to the rich policies expressible by the enforcement mechanism for
Python programs we describe in our earlier work [14].

Acknowledgment. Alejandro Russo provided valuable input throughout the
development of this work. Many thanks to the anonymous referees for useful
comments and observations. This work was partially financed by grants from
the Swedish research agencies VR and SSF, and the European Commission EC
FP7-ICT-STREP WebSand project.

References

1. Alur, R., Černý, P., Zdancewic, S.: Preserving Secrecy Under Refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006)

368 F. Del Tedesco, S. Hunt, and D. Sands

2. Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption
and key release policies. In: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, SP 2007, pp. 207–221. IEEE Computer Society, Washington, DC,
USA (2007)

3. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information
flow security. In: ACM SIGPLAN Sixth Workshop on Programming Languages
and Analysis for Security (June 2011)

4. Banerjee, A.: Expressive declassification policies and modular static enforcement.
In: Proc. IEEE Symp. on Security and Privacy, pp. 339–353 (2008)

5. Broberg, N., Sands, D.: Flow-sensitive semantics for dynamic information flow
policies. In: ACM SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security (PLAS 2009), June 15. ACM (2009)

6. Cheney, J.: A formal framework for provenance security. In: The 24th IEEE Com-
puter Security Foundations Symposium (June 2011)

7. Chong, S., Myers, A.: Language-based information erasure. In: 18th IEEE Work-
shop on Computer Security Foundations, CSFW-18 2005, pp. 241–254 (June 2005)

8. Chong, S.: Expressive and Enforceable Information Security Policies. Ph.D. thesis,
Cornell University (August 2008)

9. Chong, S., Myers, A.C.: End-to-end enforcement of erasure and declassification.
In: CSF, pp. 98–111. IEEE Computer Society (2008)

10. Cohen, E.S.: Information transmission in sequential programs. In: DeMillo, R.A.,
Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation,
pp. 297–335. Academic Press (1978)

11. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones,
N. (eds.) Program Flow Analysis: Theory and Applications, ch.10, pp. 303–342.
Prentice-Hall, Inc., Englewood Cliffs (1981)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. ACM
Symp. on Principles of Programming Languages, pp. 238–252 (January 1977)

13. Del Tedesco, F., Hunt, S., Sands, D.: A semantic hierarchy for erasure policies
(extended version). In: International Conference on Information System Security
(2011), http://arxiv.org/abs/1109.6914

14. Del Tedesco, F., Russo, A., Sands, D.: Implementing erasure policies using taint
analysis. In: Aura, T. (ed.) The 15th Nordic Conference in Secure IT Systems.
LNCS. Springer, Heidelberg (October 2010)

15. Del Tedesco, F., Sands, D.: A user model for information erasure. In: 7th Inter-
national Workshop on Security Issues in Concurrency (SECCO 2009), pp. 16–30
(2009)

16. Focardi, R., Gorrieri, R.: A classification of security properties for process algebras.
J. Computer Security 3(1), 5–33 (1995)

17. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: Proc. ACM Symp. on Principles of
Programming Languages, pp. 186–197 (January 2004)

18. Hunt, S., Sands, D.: Just Forget it – The Semantics and Enforcement of Information
Erasure. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 239–253. Springer,
Heidelberg (2008)

19. Hunt, S., Mastroeni, I.: The Per Model of Abstract Non-Interference. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 171–185. Springer, Heidelberg
(2005)

20. Landauer, J., Redmond, T.: A lattice of information. In: Proc. IEEE Computer
Security Foundations Workshop, pp. 65–70 (June 1993)

http://arxiv.org/abs/1109.6914

Erasure Policies 369

21. Mastroeni, I.: On the Rôle of Abstract Non-Interference in Language-Based Se-
curity. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 418–433. Springer,
Heidelberg (2005)

22. McLean, J.: Security models and information flow. In: Proc. IEEE Symp. on Se-
curity and Privacy, pp. 180–187 (May 1990)

23. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: Proc. IEEE Symp. on Security and Pri-
vacy (2011)

24. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: CSFW 2006: Proceedings of the 19th IEEE Workshop on Com-
puter Security Foundations, pp. 190–201. IEEE Computer Society, Washington,
DC, USA (2006)

25. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. pp. 452–487 (1976)
26. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequen-

tial Programs. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 40–58.
Springer, Heidelberg (1999)

27. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation 14(1), 59–91 (2001)

28. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security 15(5), 517–548 (2009)

29. Sutherland, D.: A model of information. In: Proc. National Computer Security
Conference, pp. 175–183 (September 1986)

30. Wei, M.Y.C., Grupp, L.M., Spada, F.E., Swanson, S.: Reliably erasing data from
flash-based solid state drives. In: 9th USENIX Conference on File and Storage
Technologies, San Jose, CA, USA, February 15-17, pp. 105–117. USENIX (2011)

31. Wittbold, J.T., Johnson, D.M.: Information flow in nondeterministic systems. In:
IEEE Symposium on Security and Privacy, pp. 144–161 (1990)

A Universal Semantic Bridge

for Virtual Machine Introspection

Christian Schneider, Jonas Pfoh, and Claudia Eckert

Technische Universität München
Munich, Germany

{schneidc,pfoh,eckertc}@in.tum.de

Abstract. All systems that utilize virtual machine introspection (VMI)
need to overcome the disconnect between the low-level state that the
hypervisor sees and its semantics within the guest. This problem has
become well-known as the semantic gap. In this work, we introduce our
tool, InSight, that establishes a semantic connection between the guest
and the hypervisor independent of the application at hand. InSight goes
above and beyond previous approaches in that it strives to expose all
kernel objects to an application with as little human effort as possible. It
features a shell interface for interactive inspection as well as a scripting
engine for comfortable and safe development of new VMI-based methods.
Due to this flexibility, InSight supports a wide variety of VMI applica-
tions, such as intrusion detection, forensic analysis, malware analysis,
and kernel debugging.

1 Introduction

Bridging the semantic gap requires knowledge about the virtual hardware ar-
chitecture, the guest operating system (OS), or both. A VMI component that
bridges the semantic gap by applying such knowledge is referred to as a view
generating component (VGC) [6]. Most VGCs target exactly that portion of the
VM state necessary for a particular VMI application, for example, protection of
system hooks [7,8], monitoring of critical data structures [3,7], or comparison of
data collected from the hypervisor and from within the guest [3,4,5]. Recently,
cutting edge research has begun to focus on stand-alone view generation [2].
However, such work lacks the completeness and flexibility necessary for the wide
range of possible VMI applications.

For our VMI research, we have implemented a VGC called InSight [1] to
bridge the semantic gap on the Intel x86 and AMD64 platforms. In contrast
to the aforementioned approaches, the goal of InSight is to make all kernel
objects and their associated values available with as little human effort or expert
knowledge as possible. InSight strives to interpret the entire kernel memory of
a running guest OS in the same way the guest kernel does. It is very flexible
in that it provides access to the VM state through a powerful command line
interface as well as through a scripting engine to directly interact with kernel
objects as JavaScript objects. This way, the actual VMI application is completely

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 370–373, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Universal Semantic Bridge for Virtual Machine Introspection 371

decoupled from the view generation process, making InSight a universal tool for
various applications such as intrusion detection and forensic analysis, as well as
for kernel debugging.

2 Challenges in View Generation

Reconstructing a VM’s state from the vantage point of the hypervisor requires
the following knowledge of the guest OS as well as the virtual hardware archi-
tecture: (1) the layout of the kernel address space, (2) the layout and size of
kernel data structures, (3) the location of kernel objects in the kernel’s address
space, and (4) the function of the virtual-to-physical address translation. This
knowledge is delivered to the VGC out-of-band—that is, before the introspection
starts [6]—in the form of, for example, kernel debugging symbols and a software-
based memory management unit. The view is then generated by applying this
knowledge to the guest physical memory. When put into practice, re-creating
the VM’s state with this knowledge at hand provides several challenges, as we
will outline in the following. Up until now, these challenges have been solved by
manually applying expert knowledge on a case-by-case basis.

OS kernels organize objects in efficient data structures such as, for example,
linked lists or hash tables. A common implementation of these lists and tables
works by defining generic “node” data structures along with auxiliary functions
and macros to operate on them. These nodes must then be embedded as a mem-
ber of the kernel object’s definition to be organized in a list or table. To retrieve
objects stored in such data structures, the auxiliary functions operate only on the
embedded nodes but still make the embedding object available through address
manipulations and type casts. When a VGC aims to make the objects stored in
such a list or table available, it faces several problems. First, the head to such
data structures is often a plain node itself. There is no hint in the debugging
symbols as to which object type is stored in a particular list. Second, once the
VGC has access to an object stored in a list or table, the type information does
not indicate which object type lurks behind the pointers of the embedded node
member. To make matters worse, many structures contain several node members
as heads to other lists holding various types, making it impossible to guess the
correct type based on heuristics.

Further uncertainties in inferring the correct object type and address result
from untyped pointers, pointer casts from integer values, offset pointers, pointers
with status flags encoded in their least significant bits, pointers that are used as
arrays, and ambiguous types such as unions.

OS kernels perform various operations atomically or in critical sections to
keep their state consistent. Detecting that the virtual CPU is currently in a
critical section is a difficult task, as the debugging symbols do not provide enough
information to discover such situations. In case a view is generated while the CPU
is in a critical section, the VGC might encounter inconsistent data structures;
this is even more likely for a VM with multiple CPUs. It must then be able to
cope with such inconsistencies in a reliable way.

372 C. Schneider, J. Pfoh, and C. Eckert

3 Implementation

For our VMI research, we need a view-generating component that automatically
provides access to all kernel objects in memory, not only to a small number of
selected data structures. In addition, we require a high-level, flexible, and power-
ful interface to these objects in oder to be able to perform sophisticated analysis
of the guest OS state. Our tool, InSight, is such a view-generating component for
the x86 and AMD64 platform that addresses many of the aforementioned chal-
lenges. It is written in C++ and operates on physical memory. Thus, it works
with memory dump files as well as with any hypervisor that provides access to
its guest’s physical memory. For Linux guests, InSight fully supports the reading
of arbitrary kernel objects for both 64-bit and 32-bit addressing schemes with
and without physical address extension (PAE). Multiple memory files can be
processed simultaneously (for example, to compare the current “live” state of a
running VM to a previous snapshot).

We designed InSight to be as straightforward to use as possible. Whenever the
member of a kernel object is accessed, the user receives a new kernel object of the
type that this member represents; all pointers are automatically dereferenced.
With regard to efficient lists and hash tables that are implemented as detailed
in Section 2, InSight detects these “node” data structures and marks the partic-
ular members of the embedding structure accordingly. If the user accesses these
members, he receives an object of the embedding type with its correct address,
just as the kernel macros for operating on those data structures would do.

The current approach enables an easy enumeration of running processes and
loaded kernel modules, for example. In situations in which total automation is
not achieved, the flexible design of InSight allows the user to address this by
encapsulating expert knowledge in JavaScript functions that are reusable for
all applications. In an effort to reduce the amount of human intervention even
further, we are already working on an improved solution which parses the kernel’s
source code in order to automatically resolve virtually all data types of pointers
and type casts without requiring expert knowledge.

The InSight shell provides an interactive interface to analyze the state of a
VM. It allows inspection of the kernel’s data structures and global variables.
For each loaded memory file, the kernel objects referenced by the global vari-
ables as well as their members can be accessed using the common notation
object.member. In addition, the user may choose to read an object from an
arbitrary virtual or physical address as any known data type, allowing the user
to further follow any members of that type.

The true power of InSight lies in its included JavaScript engine which enables
users to interact with kernel objects and to automate complex analysis tasks. The
user can access global variables by requesting an Instance object of a variable
by its name. If the resulting object represents a structure, its members can be
accessed by their name using the “dot” notation just like any other property of
a JavaScript object. In addition, an Instance object provides methods to access
meta data of the corresponding kernel object, change its type, manipulate its
address, and access array elements. Using all of these features, writing a function

A Universal Semantic Bridge for Virtual Machine Introspection 373

that prints out a list of loaded kernel modules requires less than ten lines of
JavaScript code. Besides its simple application, another substantial benefit of
the scripting engine in comparison to any low-level approach is the fact that
any sort of runtime error will result in a JavaScript exception rather than a
segmentation fault. All errors are contained within the scripting engine and
do not propagate to the VGC itself. The user can modify and re-run the script
instantly without having to recompile the source code, restart InSight, or restart
the monitored VM. This is a major advantage of InSight over other approaches
and greatly eases the development of new VMI mechanisms.

4 Conclusion

InSight focuses on the well-known semantic gap issue faced by all VMI applica-
tions. While other approaches strive to bridge the semantic gap for a particular
problem, InSight takes a general approach. We strive to provide a VGC that
gives a complete view of the guest kernel, is decoupled from the VMI compo-
nent itself, and remains flexible enough to be applicable for forensics, intrusion
detection, malware analysis, and kernel debugging. Our efforts have resulted in
InSight which is an extremely powerful and flexible VGC offering several inter-
faces including a scripting engine for further automation of complex tasks. It has
already proven to be very useful and is successfully applied in several projects
within our research group. We have released InSight as an open source tool [1] to
enable the fast and intuitive development of new VMI and forensic approaches.

References

1. InSight project website, https://code.google.com/p/insight-vmi/
2. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: Narrowing

the semantic gap in virtual machine introspection. In: Proceedings of the IEEE
Symposium on Security and Privacy (Oakland) (May 2011)

3. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proc. of NDSS, pp. 191–206 (2003)

4. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proc. of the 17th Conf. on Security Symp., pp. 243–258.
USENIX, Berkeley (2008)

5. Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L.: Live and Trustworthy Forensic
Analysis of Commodity Production Systems. In: Jha, S., Sommer, R., Kreibich, C.
(eds.) RAID 2010. LNCS, vol. 6307, pp. 297–316. Springer, Heidelberg (2010)

6. Pfoh, J., Schneider, C., Eckert, C.: A formal model for virtual machine introspection.
In: Proc. of 2nd Workshop on VM Sec. ACM, New York (2009)

7. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with
VMM-Based Memory Shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

8. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proc. of 16th Conf. on Computer and Communications Security,
CCS 2009, pp. 545–554. ACM (2009)

https://code.google.com/p/insight-vmi/

A Signature-Based Approach of Correctness

Assurance in Data Outsourcing Scenarios

Morteza Noferesti, Mohammad Ali Hadavi, and Rasool Jalili

Data and Network Security Lab,
Sharif University of Technology, Tehran, Iran

{mnoferesti,mhadavi}@ce.sharif.edu, jalili@sharif.edu

Abstract. Correctness assurance of query results in data outsourcing
scenarios includes authenticity, completeness, and freshness of the re-
sults. Utilizing signature chaining and aggregation, this paper proposes
a method to verify the correctness of results returned from an untrusted
server. An MHT constructed over attribute values of a tuple is used to
provide the authenticity, and timestamp is used to provide the fresh-
ness verifiability of results. While our approach supports a wide range of
queries, simulation results indicate its efficiency in comparison with some
existing methods in terms of communication and computation overhead
imposed to execute a query.

Keywords: data outsourcing, correctness, freshness.

1 Introduction

Database outsourcing is a paradigm to reduce data management costs in which
data along with its management is outsourced to a third party service provider.
A generic model for data outsourcing consists of a data owner OWNER, a service
provider SP, and some users U who submit their queries to the system. OWNER
outsources data to SP and updates them whenever necessary.

Due to the untrustworthiness of the service provider SP, a lazy service provider
or a malicious attacker who has compromised the server may violate the cor-
rectness of query results. So, a data outsourcing scheme is required to make
a correctness proof for the client. To this purpose, the untrusted server sends
some extra information to the client as a verification object together with the
query results. Subsequently, the client uses the verification object to verify the
query results correctness. The returned result is correct if it satisfies authenticity,
completeness, and freshness.

In a dynamic environment where data changes frequently, OWNER must be
able to update the outsourced data efficiently and U must receives the latest
version of data. To cope with such a requirement, in reply to the received query
Q from U, SP calculates the result RST and VO. Upon receiving the result,
U verifies the RST based on the VO through a verification algorithm. The
algorithm should be sound and complete. The soundness means if RST is a
correct result to Q, the verification algorithm identifies it as a correct result.

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 374–378, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Signature-Based Approach of Correctness Assurance 375

The verification algorithm is complete if SP can generate VO of a correct result
for every query where the algorithm identifies it as a correct result.

Our proposed approach enables users to verify correctness of query result.
This approach imposes low overhead depending on the size of the query result.
Considering a typical relational data model environment and queries formulated
through SQL, our approach supports different types of query.

The existing approaches for correctness assurance are mainly based on au-
thentication data structures or digital signatures. Merkel Hash Tree (MHT) is
an authentication data structure, which has been used in several proposals [1,2].
It is constructed on a data set such that its root maintains the integrity of the
whole data set. In digital signature-based approaches[3,4], the data owner sings
data, and outsources the data along with their signatures. These signatures are
used to verify the correctness of the returned result.

2 The Proposed Approach

Using digital signature schemes, we provide the correctness verifiability for clients
at the granularity of a tuple. In the proposed approach, OWNER signs each
tuple. The OWNER’s public key is used to verify authenticity of the returned
results. Signature chaining is used to verify the result completeness. For this
purpose, each tuple is linked to its previous and next ones by a collision-free
hash function.

We provide online verification of the result freshness without involving the
data owner. For this goal, we propose a scheme to verify freshness of returned
result based on the fact that update frequency in a database is not the same for
all attributes of a relation.

For example the table schema SENSOR(SensorID,Loc, Tmp) provided by
a weather forecasting company. Each sensor has a unique SensorID which does
not change during its lifetime, so it is persistent. Each sensor has been located at
a specific location Loc and it may be changed with low frequent updates. These
sensors periodically sample the temperature Tmp, so Tmp′s value changes with
high frequency. We consider this example in the rest of this paper. we go into
depth of our approach in the three following paragraphs:

Initial construction at the owner side: To outsource a table, some at-
tributes are inserted into its schema. For example SENSOR schema changes
to SENSOR(SensorID,Loc, Tmp,H(Loc− Prev), H(Loc −Next), H(Tmp−
Prev), H(Tmp − Next), T imeLoc−Expired, T imeTmp−Expired). In this schema,
H(Loc − Prev) and H(Loc − Next) presents the hash values of the previous
and next location values of each tuple. T imeLoc−Expired describes the fresh-
ness time interval of the Loc value. H(Tmp − Prev), H(Tmp − Next), and
T imeTmp−Expired do the same for Tmp value. Finally, OWNER sings each tuple
and stores it beside the tuple. The signature of an arbitrary tuple r is com-
puted as equation 1 where ‖ denotes concatenation, H(.) is a cryptographic hash
function, and SK is the private signing key of the data owner:

376 M. Noferesti, M.A. Hadavi, and R. Jalili

Sign(r) = H(H(SensorID||H(Loc)||H(Tmp)||H(Loc− Prev)||
H(Loc−Next)||H(T imeLoc−Expired)||H(Tmp− Prev)||

H(Tmp−Next)||H(T imeTmp−Expired))SK (1)

Building Verification Object at the Server Side: For an arbitrary query,
SP computes a set RST of satisfying tuples based on the query conditions.
Then, it finds their associated signature and aggregates them as an aggregated
signature σ as the verification object. SP sends RST and σ to the user.

Verifying Correctness at the User Side: The user assures the authentic-
ity through verifying σ, ensuring that all members of RST are originated by
OWNER. Hash values are used to verify the completeness of the returned result.
To this end, a collision-free hash function, same as [5] is used, such that for each
two distinct values m and n (m≥n ⇒ hash(m)≥hash(n)). The result is fresh if
and only if the current time is less than or equal to the returned timestamps. We
suppose that all the parties in the data outsourcing model have a synchronized
clock.

3 Query Processing

SELECT: The SELECT operation is denoted by σ<selection condition>(R). It
is used to select a subset from a relation R such that satisfying the <selection
condition>. Consider a query selects entire rows of the SENSOR table where its
Tmp value is in the range [Tmplow, Tmphigh]. SP sends RST = {rm, ..., rn}, and
its aggregated signature σ = Aggregated(sign(rm), ..., sign(rn)) to the client.U
uses to verify the authenticity of the returned tuples. Hash values and times-
tamps in the returned tuples are used to verify the completeness and freshness
of RST, respectively.

N5=H(N1||N2) N6=H(N3||N4)

N1=H(SensorID))
 N2=H(Loc)||H(Loc-Prev)||

H(Loc-Next)||H(TimeLoc-Expired) N4=NULL
 N3=H(Tmp)||H(Tmp-Prev)||
H(Tmp-Next)||H(TimeTmp-Expired)

N7=H(N5||N6)

Fig. 1. MHT is build over a tuple in the SENSOR table. Shades nodes represent the
VO for Tmp value.

PROJECT: The PROJECT operation is indicated by π<attribute list>(R) where
<attribute list> is the desired list of attributes from the attributes of relation

A Signature-Based Approach of Correctness Assurance 377

R. For a PROJECT operation, the overhead of verification process should be
correspondent to the size of the projected attributes, not to the size of the entire
tuple. To verify correctness of a PROJECT query result, OWNER builds an
MHT over values of a tuple and signs its root. as depicted in figure 1, SP sends
with each attribute value, its co-path to the root and the root signature.

INSERT: The INSERT command is used to add a single tuple into a relation.
For this, SP finds the next and previous tuples for each searchable attribute of
the new tuple and sends them with an appropriate VO to OWNER. After that,
OWNER resigns the adjacent tuples with respect to the values of the new tuple.
He also sets the timestamps of the new tuple, makes an MHT over it, and signs
the MHT′s root. Then the updated signatures and the new tuple together with
its signature are sent back to SP. Regarding this process, the cost of inserting a
new tuple into a relation with n searchable attributes is calculated as equation
2 where Sx denotes the size of x, Tverification denotes the time of signature
verification, and Tsignature denotes the time of producing signature:

communication cost = O((2n+ 1) ∗ Stuple + (2n+ 2) ∗ Ssignature (2)

computation cost = O(Tverification + (2n+ 1) ∗ Tsignature

Due to space restriction, we just mentioned the cost of UPDATE operation to
modify m searchable attributes of a tuple in equation 3.

communication cost = O((2n+ 1) ∗ Stuple + (2n+ 2) ∗ Ssignature (3)

computation cost = O(Tverification + (2n+ 1) ∗ Tsignature

4 Implementation and Result

We simulated our approach and compared the results with Goodrich et al.s
MHT-based and Narasimha and Tsudiks signature-based methods. We exe-
cuted a simple SELECT query to retrieve appropriate random tuples from the
SENSOR table which had been filled with 100000 random records.

Figure 2(a) indicates that the execution time of our approach is less than the
others. In the Narasimha and Tsudiks approach, SP sorts database per each
searchable attribute in the table schema, but in our approach database is sorted
according to the searchable attributes that are presented in the query condition.
Result verification in MHT-based approach contains executing several hash and
concatenation functions and verifying the root signature. On the contrary, result
verification in our approach consists of verifying an aggregated signature which
makes ours faster than the MHT-based approach.

Figure 2(b) compares the communication cost of different approaches. Com-
munication cost refers to the volume of VO transferred from SP to the user while
processing a SELECT query. In the Narasimha and Tsudiks signature based ap-
proach VO contains two boundary tuples for each tuple in the result size, but in
our approach there are two hash values for each tuple. VO in the MHT-based
approach contains its co-path to the root and the root signature, so its size is
higher than the size of VO in our approach.

378 M. Noferesti, M.A. Hadavi, and R. Jalili

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Result set (tuple)

C
li
e
n
t
c
o
m

p
u
ta

ti
o
n
 c

o
s
t
(m

s
e
c
)

Our approach

Signature−based [3]

MHT−based [1]

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12
x 10

4

V
o
lu

m
e
 o

f
V

O
 (

b
y
te

)

Result set (tuple)

Our approach

Signature−based [3]

MHT−based [1]

Fig. 2. Client computation cost(a) and communication cost(b) of different approaches

5 Conclusion

This work investigated the correctness problem of query results when data is
outsourced to an untrusted service provider. The query results are correct if and
only if they were authentic, complete, and fresh. We use signature aggregation
schemes to verify authenticity of query results. The tuples in the outsourced
database are chained with a collision free hash function. These chains are used
to verify the completeness of query results. We used timestamps to provide online
freshness verification of a query result. This approach allows the data owner to
categorize its data and update them based on their change frequency. Moreover,
according to the philosophy of data outsourcing, in our approach the cooperation
of the data owner does not required in the verification process.

References

1. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-Efficient Verification of Dy-
namic Outsourced Databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 407–424. Springer, Heidelberg (2008)

2. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data - SIGMOD 2006, p. 121 (2006)

3. Narasimha, M., Tsudik, G.: DSAC: An Approach to Ensure Integrity of Outsourced
Databases using Signature Aggregation and Chaining. In: ACM Conf. on Informa-
tion and Knowledge Management, pp. 420–436 (2005)

4. Pang, H.H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic
databases. In: Proceedings of the VLDB Endowment, vol. 2, pp. 802–813 (2009)

5. Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.: Database Management as a
Service: Challenges and Opportunities. In: 2009 IEEE 25th International Conference
on Data Engineering, pp. 1709–1716 (March 2009)

Towards Access Control Model Engineering

Winfried E. Kühnhauser and Anja Pölck

Ilmenau University of Technology, Ilmenau, Germany
{winfried.kuehnhauser,anja.poelck}@tu-ilmenau.de

Abstract. Formal security models have significantly improved the un-
derstanding of access control systems. They have influenced the way
access control policies are specified and analyzed, and they provide a
sound foundation for a policy’s implementation.

While their merits are many, designing security models is not an easy
task, and their use in commercial systems is still far from everyday
practice. This paper argues that model engineering principles and tools
supporting these principles are important steps towards model based se-
curity engineering. It proposes a model engineering approach based on
the idea that access control models share a common, model-independent
core that, by core specialization and core extension, can be tailored to a
broad scope of domain-specific access control models.

Keywords: security engineering, security policies, security models, se-
curity model engineering, access control models.

1 Introduction

IT systems with advanced security requirements increasingly apply problem-
specific security policies for describing, analyzing, and implementing security
properties, e.g. [3,9]. In order to precisely describe security policies, security
models like [6,10] are applied, allowing for a formal analysis of security proper-
ties and serving as specifications from which policy implementations are engi-
neered [11,12].

Since the appearance of the first security models, the scope of security-relevant
applications has grown rapidly, and many application-specific security models
have emerged. Models were tailored to specific application domains (such as
work flow management or health care), and their basic paradigms (such as access
control matrices or role hierarchies) reflect such specialization.

Domain-specific security models have both advantages as well as disadvan-
tages: model paradigms that are well-tuned to application-specific security re-
quirements result in small, elegant, and simple models. On the other hand, from
a model engineering point of view, model diversity is an obstacle to engineering
efficiency (e.g. by model reuse) and model-independent tool support (such as
model analysis).

This paper motivates and identifies basic, model-independent engineering
principles for access control (AC) security models. The idea is to identify a

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 379–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

380 W.E. Kühnhauser and A. Pölck

domain-independent model core shared by a broad scope of access control mod-
els that can be tailored to domain-specific access control models by core special-
ization and core extension.

2 Idea

This section first sketches engineering principles shared by many contemporary
AC models. The idea of core-based model engineering is introduced afterwards.

Butler Lampson, the pioneer of AC models, published one of the first AC
models in 1971 [8]. The goal of his model was to provide precise rules about
which subjects in a computer system (users or processes) are allowed to execute
specific operations (such as read or write) on the objects (e.g. files or printers) in
that system. Lampson used a simple access control function (ACF): subjects×
objects×operations → {true, false} (often represented by an isomorphic access
control matrix (ACM)) to model a static snapshot of the protection state.

In order to describe real-world policies, for which modifying privileges or
adding/deleting users are important features, Lampson’s model was augmented
by a deterministic state automaton [5,6] with the objective to model dynamic
changes of the protection state. In the following years, innumerable models have
emerged from this approach, e.g. [7,11,13]. All of these AC models are based on
an automaton (Q, Σ, δ, q0) where Q is the state space, Σ is a finite set of inputs,
δ : Q×Σ → Q is the transition function, and q0 ∈ Q is the initial state. They all
have in common that each q ∈ Q represents a policy’s protection state contain-
ing a derivative of Lampson’s ACM and other components like attribute or role
assignments. For example, the ABAM model [13] combines the ACM with sub-
ject and object attributes; and both the ACM and the attribute assignments are
state components. Hence, many dynamic AC models share a state automaton to
describe policy dynamics. For all of them holds that a state of the automaton
represents a policy’s protection state, e.g. a system’s right or role assignments,
and policy dynamics are represented by changing right or role assignments via
state transitions.

The central idea of core-based model engineering is that these design principles
provide a model-independent fundament – referred to as model core – for a model
engineering method. The model core builds a universal foundation for a broad
scope of AC models, and domain-specific AC models are engineered by reusing
the core and adapting it to domain-specific model paradigms. The objective
is to facilitate the complex process of model engineering by model reuse and
thus provide a common specification for AC models. This again enables model-
independent tool-support for model engineering and model analysis.

The model core is a deterministic state automaton which is already known
from the HRU model [6]. However, it generalizes the HRU automaton in such a
way that it supports a broad scope of AC models and then allows for its spe-
cialization in order to engineer domain-specific AC models. Models are derived
from the model core using core specialization and core extension inspired by
generalization/specialization concepts of object-oriented software design.

Towards Access Control Model Engineering 381

In object-oriented design, a subclass is derived from a super class by inheriting
attributes, operations, and constraints of the super class with the goal to reuse
software. Subclasses are then allowed to add new features, e.g. new attributes and
operations, or to override inherited operations in order to express individual class
characteristics. In the context of security models, the model core corresponds to a
super class and any security model corresponds to a subclass that can be derived
from the model core. Consequently, models inherit the core’s components Q, Σ, δ,
and q0 which may then be specialized. Result is a model-specific state automaton
to model a policy’s dynamic components, i.e. components of the protection state,
and rules to modify them. The latter is modeled by the state transition function
whose responsibility is to make policy decisions and alter a policy’s protection
state.

While core specialization focuses on dynamic model components, AC security
models also require static model components that do not change during policy
runtime, e.g. a system’s right set, subject/object typification, or attribute tuples.
Thus, the model core can be further tailored to a domain-specific model by
core extensions representing such static components. In order to consider static
extensions in policy decisions, interrelations between static and dynamic model
components can be defined by the transition function δ.

Result is a methodical, straightforward, and manageable security model en-
gineering approach whose contributions are as follows. Core-based model engi-
neering provides the basis for a common specification of AC models and AC
policies resulting in general advantages like usability and maintainability. More
precisely, the unifying model core contributes to facilitate the typically burden-
some process of model engineering and policy modeling by (i) establishing general
semantics for AC models and (ii) providing basic model-engineering principles
for AC models. In this way the contributions of core-based model engineering
are similar to [2]. In contrast to [2], the main merit of core-based model engineer-
ing is, however, that it allows for tool support for model engineering and model
analysis. That is, once a policy has been described by a model in core notation,
it is unlocked to a family of core-based analyzing methods that implements state
reachability analyses by heuristic search algorithms [1,4].

The approach of core-based model engineering also supports the activity of
policy implementation. It is ongoing work to design a system’s trusted computing
base (TCB) by deriving its functionality from core-based security models. The
objective is to establish a comprehensive and tool-supported security engineering
process for modeling, analyzing, and implementing security policies.

3 Conclusion

This paper argues that contemporary access control models share common
paradigms that form a model-independent fundament for methods and tools
of model engineering. The paper identified a unified model core shared by a
broad scope of access control models. Inspired by object-oriented software engi-
neering, model engineering is based on deriving models from the common core

382 W.E. Kühnhauser and A. Pölck

by specializing and extending the core. This sets the course for a straightforward
and methodical security engineering approach enabling tool support for model
engineering, model analysis, and model implementation.

Acknowledgements. This work was partially supported by Carl-Zeiss-
Stiftung.

References

1. Amthor, P., Kühnhauser, W.E., Pölck, A.: Model-based Safety Analysis of SELinux
Security Policies. In: Samarati, P., Foresti, S., J.H.G. (eds.) Proc. of 5th Int. Con-
ference on Network and System Security, pp. 208–215. IEEE (2011)

2. Barker, S.: The Next 700 Access Control Models or a Unifying Meta-Model? In:
Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2009, pp. 187–196. ACM, New York (2009)

3. Benats, G., Bandara, A., Yu, Y., Colin, J.N., Nuseibeh, B.: PrimAndroid: Privacy
Policy Modelling and Analysis for Android Applications. In: 2011 IEEE Interna-
tional Symposium on Policies for Distributed Systems and Networks (Policy 2011),
pp. 129–132. IEEE (2011)

4. Fischer, A., Kühnhauser, W.E.: Efficient Algorithmic Safety Analysis of HRU Se-
curity Models. In: Katsikas, S., Samarati, P. (eds.) Proc. International Conference
on Security and Cryptography (SECRYPT 2010), pp. 49–58. SciTePress (2010)

5. Graham, G.S., Denning, P.J.: Protection: Principles and Practice. In: AFIPS 1972
(Spring): Proceedings of the Spring Joint Computer Conference, May 16-18, pp.
417–429. ACM, New York (1972)

6. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: On Protection in Operating Systems.
Operating Systems Review, special issue for the 5th Symposium on Operating
Systems Principles 9(5), 14–24 (1975)

7. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards Formal Ver-
ification of Role-Based Access Control Policies. IEEE Transactions on Dependable
Secure Computing 5, 242–255 (2008)

8. Lampson, B.W.: Protection. In: Fifth Annual Princeton Conference on Information
Sciences and Systems, pp. 437–443 (March 1971); Protection. Operating Systems
Review 8(1), 18–24 (reprinted January, 1974)

9. Loscocco, P.A., Smalley, S.D.: Integrating Flexible Support for Security Policies
into the Linux Operating System. In: Cole, C. (ed.) Proc. 2001 USENIX Annual
Technical Conference, pp. 29–42 (2001)

10. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: a Flexible Break-glass
Access Control Model. In: Proceedings of the 16th ACM Symposium on Access
Control Models and Technologies, SACMAT 2011, pp. 73–82. ACM (2011)

11. Sandhu, R.S.: The Typed Access Matrix Model. In: Proc. IEEE Symposium on
Security and Privacy, pp. 122–136. IEEE (May 1992)

12. Zanin, G., Mancini, L.V.: Towards a Formal Model for Security Policies Specifica-
tion and Validation in the SELinux System. In: Proc. of the 9th ACM Symposium
on Access Control Models and Technologies, pp. 136–145. ACM (2004)

13. Zhang, X., Li, Y., Nalla, D.: An Attribute-based Access Matrix Model. In: Proc.
of the 2005 ACM Symposium on Applied Computing, pp. 359–363. ACM (2005)

IFrandbox - Client Side Protection

from Malicious Injected Iframes

Tanusha S. Nadkarni, Radhesh Mohandas, and Alwyn R. Pais

Information Security Research Lab,
Department of Computer Science and Engineering,

National Institute of Technology Karnataka, Surathkal, India
{tanushanadkarni,radhesh,alwyn.pais}@gmail.com

Abstract. Drive-by downloads are currently one of the most popular
methods of malware distribution. Widely visited legitimate websites are
infused with invisible or barely visible Iframes pointing to malicious
URLs, causing silent download malware on users system. In this pa-
per, we present a client side solution for protection from such malevolent
hidden Iframes. We have implemented our solution as an extension to
Mozilla Firefox browser. The extension will check every Iframe loaded
in the browser for properties emblematic of malicious Iframes such as
hidden visibility styles and 0-pixel dimensions. These Iframes are then
blocked by using browser content policy mechanism, hence alleviating
the possibility of the malicious download taking place.

Keywords: Iframes, Malicious JavaScript, Obfuscation, nsIContentPol-
icy, Drive-by Downloads, Malware, Iframe Injection Attack, Mozilla Fire-
fox Browser, Extension.

1 Introduction

Malicious code is either hosted directly on rogue web sites or injected using
Iframes into legitimate web sites. The victim sites are compromised either par-
tially or completely by cyber criminals to serve the malicious content. Hackers
bring into play various social engineering techniques to lure users to visit rogue
sites. But this requires attackers to trick users to open doors for malware to
descend on their systems. To broaden their techniques of distributing malware
hackers continuously work on inventing ways of downloading malware without
users consent. Most Drive-by downloads happen when a user visits a website that
contains a malicious Iframe. The Iframe may load the exploit script, or redirect
to another malevolent site[1]. This script targets vulnerabilities in the browser
or one of its plugins, successful exploitation of which results in the automatic
execution of the spiteful code, triggering a drive-by download. The downloaded
executable is then automatically installed and started on the infected system.
Attackers use a number of obfuscation techniques to evade detection and com-
plicate forensic analysis. The beginning point of a drive-by download attack is
an Iframe, hence the main focus of our work is to utilize the power provided

S. Jajodia and C. Mazumdar (Eds.): ICISS 2011, LNCS 7093, pp. 383–386, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

384 T.S. Nadkarni, R. Mohandas, and A.R. Pais

to browser extensions to identify potentially harmful Iframes and prevent them
from loading in the browser.

2 Related Work

NoScript [8] an extension for Mozilla’s Firefox browser, selectively manages
Iframes. Iframes are blocked based on same origin policy and list of trusted sites.
In our extension, we look for different properties of Iframes such as dimensions
and visibility properties before blocking them.

3 Iframe Injection Attack

The key problem addressed in this paper is protection from malicious Iframes
injected in legitimate websites, which are invisible to the visitors of the website.
The <Iframe> tag is an HTML element that contains another document. A
hidden Iframe is an Iframe which is present in the HTML of a webpage, but is not
visible in the browser. Iframe Injection Attack threat injects an invisible Iframe
into legitimate websites [2]. The Iframe source will be a malicious URL hosting
an exploit or containing code which redirects to a malicious page. Malicious
Iframes are made invisible by setting their attributes appropriately, and are
usually injected in the footer or header. Invisible Iframes allow silently loading
of malware. To evade detection, obfuscated JavaScript is infused into legitimate
sites, which after decoding embeds malevolent Iframe. Many fall victims to such
attacks as it is easy to inject such malicious Iframe into a legitimate webpages
if the hosting server or FTP accounts are compromised or using Cross Site
Scripting and SQL Injection attacks.

3.1 Techniques for Hiding Iframe

Iframe are rectangular elements and they occupy some space on web pages.
Hackers use several techniques [3], such as dimension tricks, and visibility styles,
to make them invisible for the compromised website visitor. Initially, either or
both of the dimensions of the Iframes were set to 0. Since scanners search-
ing for zeros, hackers started to use Iframes with very small dimensions, which
makes an Iframe appear like a dot. To by pass scanners looking for dimen-
sions, techniques such as setting visibility to ’hidden’, or display to ’none’,
made the Iframes completely unseen, irrespective of their dimensions. The trick
was to place visible Iframes within any parent node with hidden styles e.g.
invisible <DIV> element. This hid Iframes despite not containing any code
which made them invisible. A real example: <Iframe src=”hxxp://google-analyz
.cn/ count.php?o=1” width=0 height=0 style=”visibility: hidden”> </Iframe>.
JavaScript onload trick, is another technique, in which, hackers inject Iframe
that does not have a src, style and dimension parameters that can make Iframe
invisible. A script is specified for the ”onload” event of Iframe which assigns

IFrandbox - Client Side Protection from Malicious Injected Iframes 385

values to Iframe’s src, height and width on the fly when is its loaded. For exam-
ple: <Iframe onload=”if (!this.src) this.src=’hxxp://iqmon .ru:8080/ index.php’;
this.height=’0’; this.width=’0’;”> </Iframe>. Execution of the script makes the
Iframe hidden, loading a malicious page at the same time.

4 Motivation

Hackers are always in search of vulnerable popular sites. A very recent victim
of Iframe injection attack is the Lenovo site. According to reports from security
vendor from Zscaler[7], a website of Lenovo India was compromised and injected
with a malicious invisible Iframe. This Iframe was redirecting visitors silently to
the Incognito exploit kit. The Iframe had zero height and width, and its display
property is set to none, making it invisible to the visitors of the website. Other
real attack cases in 2011 include the frequently visited Geek.com [7], ICFAI site
[7], BBC website [6], Goal.com [5]. Hundreds of such attacks are seen each and
every day.

5 IFrandbox - Sandbox for Iframes

Deriving incite from the real examples in the motivation section above, an ex-
tension was created for Mozilla Firefox, to assuage the damage caused by Iframe
injection attack. This extension will observe every Iframe being loaded, for prop-
erties typical of malicious Iframes. If an Iframes falls in the malicious category
it will be blocked. When a web page is rendered by browser, all the elements
loaded are monitored using nsIContentPolicy XPCOM interface [4], an interface
for content policy mechanism. This interface can observe and control content
that is being loaded into the browser. When an Iframe is being loaded, using
Document Object Model functions, the source and style properties of the Iframe
are checked against a set of rules. If the Iframe element passes the check, then it
is loaded, else it is blocked. The rules are based on tricks used to hide Iframe elu-
cidated in Iframe Injection Attack section. The rules include checking if Iframe
visibility style is hidden or collapse or display style is set to none, if Iframe has
zero or negligible dimensions, if any of the parent nodes (till the root node) of
Iframe posess an invisibility property that can render the Iframe hidden. In ad-
dition, Iframes are also checked for the onload trick. These rules are configured
considering various methods practiced by hackers and can be improvised as the
hackers improvise. We have provided a framework to add new policies to the
extension to keep up with the new methods to carry out attacks that hackers
keep innovating.

6 Testing of IFrandbox

The extension was tested against malicious URLs from Malware Domain List [9].
The Iframe attributes are checked when they are loaded and not by statically scan-
ning the source code of a web page. Hence even if the Iframe is injected using obfus-
cated JavaScript, it does not prevent the attribute check and this is the foremost

386 T.S. Nadkarni, R. Mohandas, and A.R. Pais

advantage. For example, <Iframe src=http://www.malsite.com width=0
height=0> </Iframe> when injected using obfuscated JavaScript appears as doc-
ument.write(unescape(”%3CIfr ame%20src%3Dhttp%3A//www.malsite.com
%20width%3D0%20height%3D0%3E%3C/Iframe%3E)); The Iframe was en-
coded using the escape() function and decoded just before being injected into
the page using document.write. When this webpage was rendered in the browser
this Iframe was blocked by the extension for having zero dimensions. Thus the
obfuscation does not prevent the Iframe from being undetected. Even in the case
when the onload trick is used, the source is available when Iframe is loading, and
the dimensions are retrieved by checking the content of onload trick.

One disadvantage of IFrandbox is that the rules will filter out those sites using
invisible Iframes for valid purpose, leading to false positives. But false positives
can be alleviated by adding exceptions to the rules. For this purpose, this addon
was tested against more than 5000 URLs, to see if it blocked any genuine Iframes.
It was observed that among the sites blocked, the most common were Facebook
’like’ plugin, Google AdSense program (http://googleads.g.doubleclick.net),
http: //ad.doubleclick.net, http://s7.addthis.com/, Twitter button etc. Our ex-
tension allows users to manage an exception list.

7 Conclusion

In this paper we have presented a solution to protect users from threat posed
by malicious Iframes injected into legitimate websites. An extension to Fire-
fox has been created which will block all Iframes having properties indicating
their maliciousness, including those injected using obfuscation techniques. Using
the extension will help in preventing Drive-by downloads initiated by malicious
invisible Iframes, hence making user’s browsing experience more safe and secure.

References

1. Provos, N., Mavrommatis, P., Abu, M., Monros, R.F.: All Your Iframes Point to Us
In: Google Technical Report provos-2008a

2. Hidden iframe injection attacks—Diovo,
http://diovo.com/2009/03/hidden-iframe-injection-attacks/

3. Evolution of Hidden Iframes—Unmask Parasites Blog, http://
blog.unmaskparasites.com/2009/10/28/evolution-of-hidden-iframes/

4. nsIContentPolicy, https://developer.mozilla.org/en/
XPCOM Interface Reference/nsIContentPolicy

5. Goal.com Riddled with Malware-Serving Code,
http://news.softpedia.com/news/

Goal-com-Riddled-with-Malware-Serving-Code-198040.shtml

6. Infosecurity, http://www.infosecurity-magazine.com/view/15993/
bbc-6-music-and-1xtra-websites-infected-by-phoenix-exploit-kit-hack

7. Zscaler Research, http://research.zscaler.com
8. NoScript, https://addons.mozilla.org/en-US/firefox/addon/noscript/
9. Malware Domain List, http://www.malwaredomainlist.com

http://diovo.com/2009/03/hidden-iframe-injection-attacks/
http://blog.unmaskparasites.com/2009/10/28/evolution-of-hidden-iframes/
http://blog.unmaskparasites.com/2009/10/28/evolution-of-hidden-iframes/
https://developer.mozilla.org/en/XPCOM_Interface_Reference/nsIContentPolicy
https://developer.mozilla.org/en/XPCOM_Interface_Reference/nsIContentPolicy
http://news.softpedia.com/news/Goal-com-Riddled-with-Malware-Serving-Code-198040.shtml
http://news.softpedia.com/news/Goal-com-Riddled-with-Malware-Serving-Code-198040.shtml
http://www.infosecurity-magazine.com/view/15993/bbc-6-music-and-1xtra-websites-infected-by-phoenix-exploit-kit-hack
http://www.infosecurity-magazine.com/view/15993/bbc-6-music-and-1xtra-websites-infected-by-phoenix-exploit-kit-hack
http://research.zscaler.com
https://addons.mozilla.org/en-US/firefox/addon/noscript/
http://www.malwaredomainlist.com

Author Index

Abulaish, Muhammad 280
Ahmed, Faraz 280

Banerjee, Prithu 294
Barbhuiya, Ferdous A. 294
Basu, Atanu 175
Bellini, Andrea 144
Bera, Debajyoti 265
Blocki, Jeremiah 1
Burghouwt, Pieter 131

Cavallaro, Lorenzo 160
Chakraborty, Rajat Subhra 190
Chakraborty, Sandip 294
Christin, Nicolas 1
Cuppens, Frédéric 87
Cuppens-Boulahia, Nora 87

Das, Apurba 204
Datta, Anupam 1
Del Tedesco, Filippo 352
de Weger, Benne 235
DeYoung, Henry 1

Eckert, Claudia 370
Enck, William 49
Evans, David 28

Gadyatskaya, Olga 250
Garg, Deepak 1
Geneiatakis, Dimitris 322
Goyal, Vikram 265
Goyal, Vipul 71
Gupta, Indivar 215
Gupta, Puneet 116

Hadavi, Mohammad Ali 374
Huang, Yan 28
Hunt, Sebastian 352

Jalili, Rasool 374
Jaume, Mathieu 72
Jia, Limin 1

Katz, Jonathan 28
Kaynar, Dilsun 1
Keromytis, Angelos D. 322
Krishnan, Ram 102
Kühnhauser, Winfried E. 379

Likhar, Praveen 309
Lostal, Eduardo 250

Maggi, Federico 144
Maitra, Subhamoy 204
Massacci, Fabio 250
Mé, Ludovic 72
Mitra, Mahasweta 294
Mohandas, Radhesh 383

Nadkarni, Tanusha S. 383
Nandi, Sukumar 294
Naskar, Ruchira 190
Noferesti, Morteza 374

Pais, Alwyn R. 383
Panda, Brajendra 337
Paul, Goutam 204
Pfoh, Jonas 370
Pölck, Anja 379
Portokalidis, Georgios 322
Pundir, Mayank 265

Rafique, M. Zubair 280
Ragavan, Harini 337
Rao, M. Keshava 309

Salvaneschi, Guido 144
Sandhu, Ravi 102
Sands, David 352
Sarkar, Santanu 204
Saxena, Anuj S. 265
Saxena, P.K. 215
Schneider, Christian 370
Sekar, R. 160
Sengupta, Indranil 175

388 Author Index

Shelat, Abhi 28
Shen, Chih-hao 28
Sing, Jamuna Kanta 175
Sinha, Arunesh 1
Sips, Henk 131
Spruit, Marcel 131
Stoller, Scott D. 116

Thomas, Julien A. 87

Veeningen, Meilof 235
Viet Triem Tong, Valérie 72

Xu, Zhongyuan 116

Yadav, Ravi Shankar 309

Zanero, Stefano 144
Zannone, Nicola 235

	Title Page
	Foreword from the General Chairs
	Foreword from the Technical Program Chairs
	Conference Organization
	Table of Contents
	Invited Papers
	Understanding and Protecting Privacy: Formal Semantics and Principled Audit Mechanisms
	Introduction
	Concepts in Privacy Policies
	Structure of Privacy Policies
	Common Concepts in Privacy Policies
	Subjective Concepts

	Logic of Privacy and Its Semantic Model
	Overview
	Syntax of the Logic of Privacy
	Partial Structures and Semantics

	Policy Audits over Incomplete Logs
	Related Work

	Periodic Audits with Imperfect Information
	Related Work

	Research Directions
	References

	Efficient Secure Computation with Garbled Circuits
	Introduction
	Garbled Circuits Background
	Oblivious Transfer
	Improvements
	Frameworks

	Efficient Garbled Circuits Framework
	Pipelined Circuit Execution
	Generating Efficient Circuits
	Implementation
	Applications

	Stronger Adversaries
	Threats
	Previous Work
	Our Approach
	Communication Complexity

	Fairness
	Complete Fairness for Specific Functions
	Partial Fairness
	Fairness with Rational Parties

	Conclusion
	References

	Defending Users against Smartphone Apps: Techniques and Future Directions
	Introduction
	Background
	Application Markets
	Platform Protection

	Protection Mechanisms
	Rule Driven Policy Approach
	High-Level Policy Approach
	Platform Hardening
	Multiple Users
	Faking Sensitive Information

	Application Analysis
	Permission Analysis
	Dynamic Analysis
	Static Analysis
	Cloud-Based Monitoring

	Additional Research Directions
	Conclusion
	References

	Secure Composition of Cryptographic Protocols
	Talk Overview

	Regular Papers
	Flow Based Interpretation of Access Control: Detection of Illegal Information Flows
	Introduction
	Access Control Models and Induced Information Flows
	Flow Policies
	Detecting Illegal Information Flows
	Implementation
	Conclusion
	References

	Consistency Policies for Dynamic Information Systems with Declassification Flows
	Introduction
	Motivating Scenario
	Declassification Flows and Consistency Issues
	Information System Model with Dynamic Behavior
	ECA Rules Security Model
	Flow Control Policy and Declassification Policy
	Scenario Specification

	Dynamic Information Systems and Consistency
	Graph Model for the ECA Rules
	Explanation Graphs
	Consistency Property
	Initial Database Consistency Policy

	Dynamic Explanation Graph Evaluations and Consistency Policy
	Invariants on the state based knowledge: initializing a node
	Explicit Derivation Rules: after a node N_i is created
	Explicit Derivation Rules: after a predicate P is defined in s_i
	Implicit Derivation Rules: after a predicate Pis defined in s_i
	Index Evaluation
	Consistency Policy for Dynamic Information Systems

	Related Work
	Conclusion
	References

	Authorization Policy Specification and Enforcement for Group-Centric Secure Information Sharing
	Introduction
	Background
	Overview of g-SIS
	The Stateless π-system G-SIS Specification

	Stateful π-system
	Stateful π-system Design
	Stateful π-system Specification
	Implementation Considerations

	Equivalence of Stateful and Stateless π-system Specifications
	Conclusion and Future Work
	References

	Abductive Analysis of Administrative Policies in Rule-Based Access Control
	Introduction
	Policy Framework
	Abductive Reachability
	Becker and Nanz's Algorithm for Tabled Policy Evaluation with Proof Construction and Abduction
	Analysis Algorithm
	Phase 1: Elimination of addRule and removeRule
	Phase 2: Tabled Policy Evaluation
	Phase 3: Ordering Constraints
	Implementation and Experience

	References

	Towards Detection of Botnet Communication through Social Media by Monitoring User Activity
	Introduction
	Related Work
	Detection Principle
	Detection of Botnet Traffic to Twitter.com
	Empirical Estimation of Optimal Time Windows
	Theoretical Performance of the Detector
	Experimental Evaluation of the Detection Algorithm

	Special Cases of Twitter Traffic
	Automatic Legal Traffic
	Evasion by User Synchronized Botnet Traffic

	Conclusions and Future Work
	References

	Finding Non-trivial Malware Naming Inconsistencies
	Introduction
	Malware Naming Inconsistencies
	Finding Naming Inconsistencies
	Types of Inconsistency
	Phase 1: Naming Convention Modeling
	Phase 2: Comparing Vendors

	Experimental Measurements
	Naming Tree Visual Comparison
	Singletons and ``Not Detected'' Samples
	Quantitative Comparison

	Conclusions
	References

	Taint-Enhanced Anomaly Detection
	Introduction
	Approach Description
	Fine-Grained Taint-Tracking
	Taint-Enhanced Behavior Models
	Coarse-Grained Taint Properties
	Fine-Grained Taint Properties

	Implementation
	Evaluation
	Effectiveness in Detecting Attacks
	False Positives
	Performance Overheads

	Related Work
	Conclusion
	References

	Secured Cloud Storage Scheme Using ECC Based Key Management in User Hierarchy
	Introduction
	Related Work
	Review of Key Management Schemes with Access Control in Hierarchy
	Setup Phase
	Key Generation Phase
	Changing Secret Key of a Security Class

	Proposed Cloud Storage Scheme
	System and Network Model
	Detail Description of the Cloud Storage Model

	Performance Analysis
	Computational Overhead
	Storage Overhead
	Security Analysis

	Comparison with Other Scheme
	Conclusion
	References

	Reversible Image Watermarking through Coordinate Logic Operation Based Prediction
	Introduction
	Coordinate Logic Operations
	Proposed Algorithm
	Watermark Embedding Algorithm
	Watermark Extraction Algorithm
	Handling of Under/Overflow

	Results and Discussion
	Conclusions
	References

	Some Combinatorial Results towards State Recovery Attack on RC4
	Introduction
	Previous Works on State Recovery
	State Recovery with Known j: Theoretical Analysis
	Without Using the Keystream Bytes
	Using the Keystream Bytes

	Heuristics for Further Improvement
	Experimental Results

	Conclusion
	References

	Distributed Signcryption from Pairings
	Introduction
	Mathematical Background
	Overview of Pairings
	Intractable Problems

	Signcryption Scheme with Key Privacy Proposed by Li et al
	Distributed Signcryption and Group Signcryption
	Definition and Security Models for Distributed Signcryption from Pairings
	Definition and Security Models for Group Signcryption from Pairings

	 DSC$pairge$ and GSC$pairge$ Schemes
	Distributed Signcryption Scheme Based on Pairings: DSC$pairge$
	Group Signcryption Scheme Based on Pairings: GSC$pairge$

	Performance and Security Analysis
	Complexity Analysis and Expansion Factor
	Security Analysis
	Comparative Study

	Conclusion
	References

	Formal Privacy Analysis of Communication Protocols for Identity Management
	Introduction
	A Three-Layer Model of Personal Information
	Personal Information
	Three-LayerModel
	Maps between Layers and Equivalence

	Knowledge Analysis
	Messages Analysis on the Information Layer
	Message Analysis on the Object Layer
	Deduction on Object vs Information Layer

	Knowledge of Personal Information
	Defining and Verifying Identity-Related Properties
	Case Study: TAS3 Attribute Aggregation
	TAS3 Attribute Aggregation
	Formalization
	Formal Analysis and Discussion

	Conclusion and Future Work
	References

	Load Time Security Verification
	Introduction
	The SXC Architecture for the Java Card Platform Evolution
	The Java Card Platform Architecture and the Loading Process
	Security-by-Contract for Java Cards
	Threats to Validity of the SxC Approach

	The Java Card Internals
	Application Contract
	The Contract Delivered on the Card
	Contract Population

	The Claim Checker Algorithm
	The Algorithm

	Implementation of the Claim Checker
	The Policy Checker and the Policy Applet Implementation
	Details of the Claim Checker Implementation Memory Statistics

	Related Work
	Conclusions and Future Work
	References

	Preserving Location Privacy for Continuous Queries on Known Route
	Introduction
	Related Work
	Background
	Theoretical Framework
	Hiding Policy of Rule Based Approach

	Rule Based (RB) Approach
	Hide Rules for Individual Attacks
	Hide Rules for Non-separated Attacks
	Time Complexity
	Correctness
	Change of Plans: Real-Time Modifications to User Path

	Experimental Results
	Conclusion
	References

	A Data Mining Framework for Securing 3G Core Network from GTP Fuzzing Attacks
	Introduction
	Related Work
	GPRS Architecture
	G_n Interface

	Dataset
	Benign Traffic
	Fuzzed Dataset

	GTP Malformed Packet Detection Framework
	Packet Byte Analyzer
	Benign Packet Definitions
	Decision Module

	Experiments and Results
	Conclusion and Future Work
	References

	An Efficient Decentralized Rekeying Scheme to Secure Hierarchical Geographic Multicast Routing in Wireless Sensor Networks
	Introduction
	Secure Hierarchical Geographic Multicast Routing (SHGMR)
	Description of Key Hierarchy
	Initialization Phase
	Secure Message Transmissions

	Security Analysis
	Performance Analysis
	Conclusion
	References

	SecWEM: A Security Solution for Web Based E-mail
	Introduction
	Security of Webmails
	Security Threats to E-mails
	Protection of E-mail against Security Threats

	Related Work
	Our Approach to Webmail Security
	Service-Independent Handling of Webmails
	SecWEM Architecture and Working
	Steps Involved in Securing the Webmail Using SecWEM

	Implementation and Testing
	Performance and Overhead Statistics
	Discussion and Conclusion
	References

	A Multilayer Overlay Network Architecture for Enhancing IP Services Availability against DoS
	Introduction
	Threat Model
	A Secure Multilayer Overlay Network Architecture
	The MON Structure
	Users and the Ticket Mechanism
	A Collaborative DoS Detection and Mitigation Mechanism

	Implementation
	Ticket Acquisition
	MON-enabled Users
	MON Nodes

	Evaluation
	Performance Evaluation
	Qualitative Analysis

	Related Work
	Conclusions and Future Work
	References

	Mitigation of Malicious Modifications by Insiders in Databases
	Introduction
	Background and Related Work
	The Attack Prevention System
	Working of the Models
	Definitions

	Log Based Model
	Identifying Threats

	Dependency Graph Based Model
	Comparison of the Two Models
	Conclusions and Future Work
	References

	A Semantic Hierarchy for Erasure Policies
	Introduction
	Erasure Case Studies
	Total Erasure
	Partial Erasure
	Low Dependent Erasure
	High Dependent Erasure

	An Abstract Model of Information Flow
	Trace Models
	Equivalence Relations and Partitions
	Attacker Models and K-Spaces
	Comparing K-Spaces: Facts and Queries

	The Policy Hierarchy
	Varying the Attacker Model

	Related Work
	Conclusions and Further Work
	References

	Short Papers
	A Universal Semantic Bridge for Virtual Machine Introspection
	Introduction
	Challenges in View Generation
	Implementation
	Conclusion
	References

	A Signature-Based Approach of Correctness Assurance in Data Outsourcing Scenarios
	Introduction
	The Proposed Approach
	Query Processing
	Implementation and Result
	Conclusion
	References

	Towards Access Control Model Engineering
	Introduction
	Idea
	Conclusion
	References

	IFrandbox - Client Side Protection from Malicious Injected Iframes
	Introduction
	Related Work
	Iframe Injection Attack
	Techniques for Hiding Iframe

	Motivation
	IFrandbox - Sandbox for Iframes
	Testing of IFrandbox
	Conclusion
	References

	Author Index

